Melvin, Michael; Menkhoff, Lukas; Schmeling, Maik

Working Paper
Automating exchange rate target zones: intervention via an electronic limit order book

CESifo Working Paper, No. 2221

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Melvin, Michael; Menkhoff, Lukas; Schmeling, Maik (2008) : Automating exchange rate target zones: intervention via an electronic limit order book, CESifo Working Paper, No. 2221, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/26266

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
AUTOMATING EXCHANGE RATE TARGET ZONES:
INTERVENTION VIA AN ELECTRONIC LIMIT ORDER BOOK

MICHAEL MELVIN
LUKAS MENKHOFF
MAIK SCHMELING

CESifo WORKING PAPER NO. 2221
CATEGORY 6: MONETARY POLICY AND INTERNATIONAL FINANCE
FEBRUARY 2008

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
AUTOMATING EXCHANGE RATE TARGET ZONES: INTERVENTION VIA AN ELECTRONIC LIMIT ORDER BOOK

Abstract

This paper describes and analyzes “automated intervention” of a target zone. Unusually detailed information about the order book allows studying intervention effects in a microstructure approach. We find in our sample that intervention increases exchange rate volatility (and spread) for the next minutes but that intervention days show a lower degree of volatility (and spread) than non-intervention days. We also show for intraday data that the price impact of interbank order flow is smaller on intervention days than on non-intervention days. Finally, we reveal that informed banks take different positions than uninformed banks as they tend to trade against the central bank – which reflects a rational stance. Despite this position taking, the targeted exchange rate range holds and volatility, spread and price impact go down. Overall, the credible expression of an intervention band seems to achieve the desired effects of a target zone.

JEL Code: F31.

Keywords: foreign exchange, microstructure, intervention, exchange rate.

Michael Melvin
Barclays Global Investors
45 Fremont St.
San Francisco CA 94105
USA
Michael.melvin@barclaysglobal.com

Lukas Menkhoff
Leibniz University Hannover
Institute GIF
Königsworther Platz 1
Germany - 30167 Hannover
menkhoff@gif.uni-hannover.de

Maik Schmeling
Leibniz University Hannover
Institute GIF
Königsworther Platz 1
Germany - 30167 Hannover
schmeling@gif.uni-hannover.de

January 2008
We thank Leila Gadijeva for very useful research assistance and gratefully acknowledge financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft DFG).
AUTOMATING EXCHANGE RATE TARGET ZONES: Intervention via an Electronic Limit Order Book

I. INTRODUCTION

Central banks typically intervene in foreign exchange markets via large trades in the “over-the-counter” market by placing telephone calls with brokers to communicate orders. Such orders are more, or less, transparent depending upon the instructions of the central bank to its counterparties regarding a preference for secrecy or communication. In any case, it is uncommon to know the size of the central bank’s order in real time or the exact price at which it was executed. Market participants must infer the intervening central bank’s exchange rate target from exchange rate behavior on the day of a known or rumored intervention.

This study reports and analyzes a unique type of foreign exchange (FX) market intervention by the Russian Central Bank which occurred by placing limit orders on an electronic limit order book to set an upper bound on the rouble price of a dollar (USDRUR). This could be a credible statement of an exchange rate target zone that signals a firm commitment of the Bank to spend or accumulate reserves as needed to keep the exchange rate within the zone. We will analyze for our sample the workings of such an electronic latent intervention arrangement that occurred in Russia.¹

¹ Target zones have received ongoing interest in the literature, such as recently Iannizzotto and Taylor (1999), Bauer et al. (2007) and Corrado et al. (2007) but there is no empirical examination of a target zone in the presence of electronic trading.
There is a large literature on foreign exchange intervention. Empirical papers have been limited by a lack of knowledge of the exact time of central bank activity. Those central banks that do make their activity public typically have only published daily data on the size of their intervention activity, but exact knowledge of when they were in the market has to be inferred from news reports or actual price movements. Exceptions to this are the Swiss National Bank, which has made its data public. Data sets from Denmark and Canada have been studied, but are not available to the public. An important aspect of the existing literature is that it, quite rightly, focuses on the effects of intervention in terms of the impact of central bank decisions to intervene and the consequent exchange rate effects of purchases or sales of currency. What is unique about the analysis undertaken in our paper is that we study what could be called “automated intervention” in that the central bank determines a desired range for the exchange rate and then places very large limit orders to keep the exchange rate inside this range.

The unusually detailed information about the complete order book allows studying intervention effects in an almost “ideal” microstructure setting: we analyze about 2,700 central bank transactions within a total sample of more than 56,000 orders,

2 Among the several surveys, Sarno and Taylor (2001), Edison (1993), Almekinders (1995) and Neely (2005) cover the key issues.
3 Scalia (2006) is a recent example of a high-frequency study using news of intervention to identify event time. Fischer (2006) shows that Reuters news reports of Swiss intervention are often erroneous and bring into question the accuracy of such news for timing Swiss interventions.
4 See Fatum and Pedersen (2007) for the Danish example; Fischer and Zurlinden (1999), Payne and Vitale (2003), and Pasquariello (2007) for Swiss data; and Beattie and Fillion (1999) and Fatum and King (2005) for Canada.
among them about 30,000 transactions. The resulting order flow analyses are new to the intervention literature.\(^6\) We find that intervention increases exchange rate volatility (and spread) for the next minutes but that intervention days show a lower degree of volatility (and spread) than non-intervention days. We also show for intraday data that the price impact of interbank order flow is smaller on intervention days than on non-intervention days. Finally, we reveal that informed banks take different positions than uninformed banks as they tend to trade against the central bank – which reflects a rational stance. Despite this position taking, the targeted exchange rate range holds and volatility, spread and price impact go down. Overall, the intervention band seems to realize the wanted effects of a target zone during the few weeks period under study.

The paper is organized as follows. In the next section the institutional details of the electronic crossing network will be presented along with a detailed overview of the data available for analysis. Then in Section III, an empirical examination of the limit orders placed by the central bank is undertaken with a focus on its effect on volatility, spread, price impact of order flow and order choice. Section IV discusses implications for the central bank and, finally, Section V offers a summary and conclusions.

II. INSTITUTIONAL DETAILS

II.A. The SELT System

\(^6\) To our knowledge there are two other studies analyzing interventions in an order flow approach: Scalia (2006) has to estimate intervention timing and thus aggregates data to hourly frequency, Girardin and Lyons (2007) use customer order flow of a large bank on a daily frequency.
Local interbank trading in the rouble occurs on an electronic limit order market at the MICEX in Moscow and, at the time of interest to this study, March 2002, this market determined the official exchange rate of the USDRUR. This country-wide trading at the MICEX is called the “unified trading session” or UTS. The structure is that of a multiple dealer market without designated market makers. While an interbank market, it is expected that much of the trading reflects customer orders received by the participating banks. During the period analyzed, the UTS took place for one hour a day from 10:30-11:30 Moscow time and the only instrument traded was the USDRUR spot rate.\(^7\)

MICEX FX trading occurs on the SELT electronic system that is similar to the electronic brokerage systems of Reuters or EBS. One difference for SELT is that only limit orders, specifying price and quantity desired, or cancellations may be submitted. Unlike Reuters or EBS, there are no market orders specifying desired quantity at the best price in the order book. To receive immediate execution, an order must be submitted that crosses the best price in the order book. Such marketable or crossing limit orders are the equivalent of market orders on the SELT. Like EBS or Reuters, participants on SELT just see the top of the book or the best bid and ask prices with associated order size.

Foreign exchange trading within Russia appears to have a local information component.\(^8\) Banks in the financial centers of Moscow and St. Petersburg are more likely to see the customer order flow of the large Russian corporate clients than banks in other cities. The banks on the periphery are also less likely to be as well informed on economic policy developments as the banks in the financial centers. Menkhoff and Schmeling (2007) show that there is more likely to be a permanent price impact of trades originated

\(^7\) Trading was later extended to a four hour session and forward contracts.
\(^8\) See Menkhoff and Schmeling (2007).
by Moscow and St. Petersburg banks than banks on the periphery. This is consistent with the trades from the financial centers reflecting private information compared to the transitory price impact associated with the trades originated by other banks. Following these earlier findings, we will structure some of our empirical analysis to take account of this institutional feature of the Russian market.

Participants on the system see the best bid and offer price plus respective quantities. They also see the cumulative buy and sell volumes for the current trading session and the last transaction quantity and price. Trades occur anonymously and then post-trade counterparty identities are revealed. The fact that the central bank learns the identities of private banks that trade at its limit order may serve as a form of central bank monitoring that helps to enforce the desired target zone with a minimum of reserve loss.

It is likely that using an electronic limit order book as a vehicle for maintaining a target zone is effective only in a case where that crossing network accounts for a very significant part of the overall market. In the case of Russia, this was made possible by the controls on foreign exchange trading. Foreigners traded roubles in an offshore market in the form of non-deliverable forward contracts. So the domestic market was segmented from foreign participation and this allowed the central bank to effectively target the exchange rate with limit orders on the MICEX. Such a mechanism is unlikely to be of much use to a country with a convertible currency and open financial markets given the current structure of the foreign exchange market. For instance, electronic trading in the major developed currencies is split across several different platforms and there is no one

9 We thus observe and analyze the trading dynamics of the domestic market. Within domestic markets, the UTS provides much higher liquidity than regional bourses which are only open to banks from the respective regions. Moreover, the central bank determines via its interventions the official exchange rate at the UTS which is then binding to others. Thus the UTS is the core market to exchange information among domestic players.
crossing network that has a dominant portion of overall liquidity. Over time, if liquidity concentrates on one platform and electronic trading comes to dominate the large and active over-the-counter market, it may be possible to think of managing a target zone via an electronic limit order market for the major currencies. But for emerging market currencies with segmented domestic foreign exchange markets, the existence of an efficient electronic market that pools liquidity for domestic trading may serve as a useful vehicle for operating a target zone and may thus provide an alternative to more conventional interventions in the OTC market.

II.B. Data

We study a unique data set on the Russian interdealer FX market for USDRUR over a period in March 2002 during which the central bank used the market for intervention purposes. There were 722 traders participating in the market at this time. While participants only see the best bid and ask orders in real time, we have anonymous data on the entire order book, or every submitted and cancelled order and trade that occurred on the system during this period. The data are stamped to the second and we know the initiator of each transaction, although true identities are unknown for us. The data also indicate the regional location of the bank submitting the order.

The data cover the period from March 1 to March 22, 2002. This includes days with major FX market intervention by the central bank and provides a unique view of a central bank using an electronic limit order book to set an exchange rate bound. Table 1 provides descriptive statistics for each day in the sample. At the bottom of the table, summary statistics are given for March 1 to 7, the days of central bank intervention. On
these days, the central bank’s limit price served as an upper bound on the price in the market. Note that these were the days of heaviest trading volume that month, with average trade size of $91,024 on those 5 days compared to $49,401 on the other days. The central bank’s ask price was the effective limit in the market and there were many more trades that occurred at the central bank’s ask price (2,584) than bid price (109) over those days. It is notable that the maximum price in the market on March 4-7 was 30.9950. The central bank’s ask provided an upper bound for the exchange rate and the market was actively consuming the liquidity offered by the central bank.

Figure 1 contains a histogram of the sample average number of trades and order activity, including submissions and cancellations, in each 5 minute interval. There is a clear pattern of both trades and orders being at their peak at the beginning of the session and then declining over the session. By the third 5-minute interval, trades and orders are less than half of their values for the first 5-minute interval. By mid-session, trades and orders appear to plateau at a level less than half of the values during the first 5-minute interval. It appears that liquidity peaks early in each session and then steadily tapers off and becomes uniformly low over the last half of each session.

Table 2 summarizes the order and trade activity of the central bank and the private banks. It is striking that the central bank only submits 11 limit orders over the sample period with a median size of $50,298,000 versus the private banks who submit 6,626 orders with median size of $30,000. The central bank pegs the target zone for the rouble by placing large limit orders at the target zone bound and then filling all orders that arrive at that price. The central bank only initiates 7 trades. The rest of its trade activity is as counterparty to private-bank-initiated trades. The median size of the central bank trades is
$210,000 while the median for the private banks is $20,000. This, coupled with the minimum trade size of $100,000 for the central bank and $1,000 for the private banks, yields a picture of a market where the private bank trades with the central bank tend to be large versus a relatively small size of the private interbank trades among themselves.

II.C. The Central Bank’s Intervention Threshold

Intervention via the limit order book occurs by the central bank placing a large limit order at the beginning of a trading session and then meeting all orders that cross that price. While this could occur on both sides of the market, in the case of a bank desiring to establish a narrow range for the exchange rate, in the Russian case, the rouble was undergoing a period of depreciation as seen in Figure 2. As a result, the intervention policy involved setting an upper bound on the exchange rate via a large limit ask order at the start of each day. This allowed the central bank to control the daily rate of depreciation in a kind of crawling peg arrangement.

The effect of such an arrangement is clearly seen in a plot of the limit order price and counterparty activity for a day when the central bank’s limit price becomes one side of the inside spread in the market. The upper part of Figure 3 illustrates the central bank’s limit orders and the market price for March 4-7. On March 1, the central bank set a narrow range for the rouble with a bid price of 30.9400 and an ask price of 30.9450, which rises to 30.9500 late in the session. It is seen that many trades occurred at both sides of the central bank’s orders. Then on March 4, the ask price limit is raised to 30.9950 and the market consistently trades at that price over the day. The lower part of Figure 3 shows that the central bank started the day with an order for $50 million which
is soon raised to $150 million. As the market continued to take the liquidity on offer by
the central bank, the available quantity on offer steadily declines over the day ending
around $75 million. Then on each successive day, the central bank posts a new order of
$150 million at the ask price of 30.9950. On March 5, the third and few more trades
occurs at that price so the quantity on offer by the central bank slightly decreases only.
On March 6 and 7, there were also only a few trades with the Central Bank as
counterparty right at the beginning of the session, but later the market seemed to trade
consistently at the central bank’s ask price and the quantity on offer fell steadily.

III. EFFECTS OF CENTRAL BANK LIMIT ORDERS

III.A. The Intervention Effect on Volatility and Spread

The microstructure literature on foreign exchange interventions has not produced
fully conclusive results about the intervention effect on exchange rate volatility. Whereas
interventions are tentatively conducted in order to reduce volatility (see Neely, 2007),
their success has been questioned and high frequency analyses show that interventions
rather increase short-term volatility (Dominguez, 2006).

The literature on this subject is limited by appropriate data to overcome the
identification problem: Are interventions related to volatility because they aim for
stabilizing volatile markets or do they create volatility? At the daily data frequency the
relation between interventions and volatility is positive, so intraday data seem helpful in
solving the causality issue. Indeed, at high frequency there is not much doubt that
interventions are treated as news by the market and lead to a similar reaction, i.e. a short-
term volatility increase.10 At the daily level, however, there is still controversy whether possibly the exchange rate regime may play a role. The target zone model predicts that a credible commitment should reduce volatility: it seems plausible that a central bank fixing – in our case in particular – the ask price reduces risk to a one-sided risk which should lower volatility and spread. There is also evidence from the Canadian experience with a pre-announced non-intervention band which seemed to lead to somewhat lower volatility due to interventions (Beattie and Fillion, 1999).

We use our tick-by-tick data to construct a time series sampled at a 30 second frequency to eliminate microstructure noise.11 With this data at hand we examine determinants of volatility, measured by the standard deviation of midquotes within a 30 second interval.12 The approach aims for integrating the intraday and daily view by considering the effect of lagged interventions, i.e. during the last few minutes, and also considering a dummy variable for intervention days. The equation we estimate via GMM with HAC standard errors is

\[\hat{\sigma}_{t+1} = \alpha + \sum_{j=1}^{4} \beta_j \cdot share_{t+1-j} + \lambda \cdot CBday_{t+1} + \Theta_i \gamma + \varepsilon_{t+1} \]

(1)

where $\hat{\sigma}_t$ is the midquote return standard deviation, $share_t$ is the share of total trading volume in a 30 second time interval transacted with the central bank as counterparty,

10 This has been nicely demonstrated by D’Souza (2002) who compares the effect of interventions versus replenishment operations of the central bank on volatility: interventions increase volatility, non-interventions do not.

11 Investigating data aggregated over fixed calendar time is quite common, see e.g. Evans and Lyons (2002, 2002a). Results are robust when sampling at a different frequency, e.g. one minute (see Payne (2003) for similar findings).

12 Using the absolute return over a 30 second interval or the sum of squared returns yields qualitatively the same results.
CBday is a dummy indicating days with central bank activity13, and Θ is a vector of (lagged) control variables. Depending on the specification employed, Θ includes lagged volatility, lagged bid-ask spreads (i.e. the mean bid-ask spread over a 30 seconds interval), lagged trading volume and deterministic time patterns (the time variable is just the minute of the trading session). Note also, that here and in all further econometric estimation exercises, we eliminate overnight observations. For example, in the regression above, the first four 30 second intervals are eliminated from the sample and show up as lagged values in the above regression only. Furthermore, since we are dealing with standard deviations which are bounded below by zero, one might also use a censored regression model with censoring at zero. Doing so does not alter the findings reported below.

The left panel of Table 3 contains estimation results for different specifications of Θ and shows that both volatility effects discussed above are significant: first, volatility increases directly after interventions and keeps the significantly increased level for about one or two minutes, i.e. the β’s are significant. Second, volatility is significantly lower during intervention days as indicated by the highly significant estimate for λ14. As controls in the full specification (iii) we use lagged volatility, then lagged spread and transaction volume to consider possible delayed effects from earlier events and finally two time variables to consider a possible volatility pattern during the one hour opening time. However, whether controls or subsets of these controls are used or not, results

13 Since all intervention days have trades with the central bank right at the beginning of the day (see e.g. Figure 2), the fact that the central bank intervenes on a given day is visible to the market and, thus, public information. Therefore, we use the CBday dummy in its form described above. However, using a dummy variable that indicates lagged intervention days, i.e. interventions at the day before, does not change the qualitative conclusions.

14 These effects also hold when we test them in isolation and without any controls.
remain stable. Therefore, the effect is unlikely to result from higher trading volume due
to central bank trading since trading volume is included as a control in the regression and
since trading volume and the share of central bank activity (share) is not significantly
correlated on intervention days.15

We conclude that the Russian target zone policy during the sample period has two
effects on volatility, which have – to the best of our knowledge – not been analyzed in a
single approach before: automated intervention reduces volatility at the daily level and
increases volatility in the minutes following a trade at the central bank’s ask price.

In another regression we analyze the effect of intervention on bid-ask spreads.
There are hardly any papers examining this relation as appropriate data are missing. The
studies of Chari (2007) and Pasquariello (2007) rely on quotes which are tentatively
wider than effective spreads and do not necessarily reflect market conditions as precisely.
Both studies find that spread increases after interventions, indicating that a volatility
reducing effect may be counter balanced by higher transaction costs for customers (see
Naranjo and Nimalendran, 2000, for daily data). Thus, we test this by using an equivalent
specification as we did above for volatility:

\[
(mean \ spread)_{t+1} = a + \sum_{j=1}^{3} \beta_j \cdot share_{t+1-j} + \lambda \cdot CBday_{t+1} + \Theta_t \cdot p + \epsilon_{t+1} \tag{2}
\]

where (mean spread)\textsubscript{h} is the average bid-ask spread over a 30 second interval and all other
variable definitions remain unchanged. Note, that we use only three lags of the share
variables since further lags are generally insignificant and also increase the AIC. Again,

15 As can be seen in Table 1, daily trading volume and CB activity is correlated. However, in the
intraday analysis conducted here (intervals of 30 seconds), we do not find a high correlation of
volume and the share variable.
one might use a censored regression model. However, the results do not change when doing so.

Results are shown in the right panel of Table 3 – in specifications (iv) to (vi) – and we find a negative significant sign at the daily level and a very short-lived spread increase after interventions. Obviously, spread effects go in the same direction as volatility effects in our sample.

The increase in spreads directly following interventions seems to be – at least partly – driven by lower liquidity. We find some (unreported) evidence that limit order submission decreases subsequently to reaching the central bank’s quote which might explain the temporary surge in spreads. However, the effect on spreads is short-lived and is clearly outweighed by the overall reduction in spreads on central bank intervention days.

Overall, in the case studied here intervention policy seems to contribute towards stable markets without noteworthy costs for the public.

III.B. The Target Zone Effect on the Price Impact of Order Flow

We extend the analysis of an automated target zone effect on trading activity by considering high frequency order flow. The theoretical expectation of the price effects of order flow is derived from the target zone literature. Following Krugman (1991), a credible exchange rate band should dampen the price effect of order flow as the limit of the band is approached. Taking into account that order flow transports information (Lyons, 2001), days when the central bank’s limit is reached should be characterized by a lower price impact of order flow, i.e. that the exchange rate is less responsive to the
arrival of information. Girardin and Lyons (2007) do not find clear evidence for such an effect for daily end user order flow of Citibank in the Yen/US dollar market.

We run price impact regressions of order flow on returns, as in Evans and Lyons (2002), i.e. we estimate via GMM a regression of the following form, again on the basis of 30 second intervals:

$$\Delta m_{t+1} = \beta_0 + \beta_1 OF_{t+1} + \beta_2 OF_{t+1} CBday_{t+1} + \beta_3 OF_{t+1} CBday_{t+1} Dist_{t+1} + \gamma \theta_t + \epsilon_{t+1} \quad (3)$$

where Δm_{t+1} is the midquote return over the chosen interval, OF_{t+1} is the order flow indicator\(^{16}\) and $CBday$ is a dummy that equals one on intervention days.\(^{17}\) $Dist$ denotes the average distance to the upper limit of the Central Bank's target zone, and, again, θ contains control variables, namely lagged midquote returns and order flows.

For this specification we again rely on the 30 seconds frequency, and we exclude all trades at the central bank limit because the impact is in these cases necessarily zero. Results presented in Table 4 show that the relation between order flow and returns is highly positive and of the same order as in other studies.\(^{18}\) The interaction term of order flow with the central bank dummy is significantly negative. This indicates – as predicted by the target zone model – that price impact is dampened due to the intervention band. A

\(^{16}\) The order flow indicator equals one if a trade is buyer initiated and minus one otherwise. All order flow indicators in a 30 second interval are aggregated to yield the aggregate order flow indicator for the respective interval which is used here.

\(^{17}\) One may think of this specification as a varying parameter model where

$$\Delta m_{t+1} = \beta_0 + \lambda_t OF_{t+1}$$

$$\lambda_t = \beta_1 + \beta_2 CBday_{t+1} + \beta_3 CBday_{t+1} Dist_{t+1}$$

$$\Delta m_{t+1} = \beta_0 + \beta_1 OF_{t+1} + \beta_2 OF_{t+1} CBday_{t+1} + \beta_3 OF_{t+1} CBday_{t+1} Dist_{t+1}$$

\(^{18}\) Evans and Lyons (2002a) find that the order flow coefficient is 0.6 basis points per 10 million for DEM/USD and goes up for smaller markets, such as 2.4 for the Australian dollar, while Scalia (2006) finds an even higher value of 7.6 for the Czech koruna. The order flow coefficients in Table 4 are for order flow indicators and have to be multiplied by a factor of 20 to obtain the impact per 10 million. Table 4 suggests that the impact on non-intervention days is about 0.123, so that we have an average impact of 0.123×20 ≈ 2.5 basis points.
Wald test of the restriction $\beta_1 + \beta_2 = 0$, which would indicate that the price impact completely vanishes on intervention days, cannot be rejected at any reasonable level of significance. Furthermore, the interaction term with the distance variable $Dist$ tends to be positive and is marginally significant. The estimated coefficient in specification (v) of Table 4 indicates that a one standard deviation increase in the distance variable increases the price impact of order flow by slightly less than 20%. Therefore, trades occurring farther away from the Central Bank’s target zone have a tentatively higher price impact which is in line with the “honeymoon effect” of a target zone.

Due to the high frequency data available we can exercise a robustness test which is able to discriminate between mechanistic transitory liquidity effects of order flow and its permanent information transmission. Therefore, we estimate price impacts according to the Hasbrouck (1991) metric, i.e. as the cumulative response of midquote returns to order flow shocks in a SVAR-model. More specifically, we estimate a SVAR with midquote returns and market order flow as endogenous variables:

$$ Ay_{t+1} = \Gamma(L)y_t + Bu_{t+1} \quad \text{with} \Var[u_{t+1}] = I_2 $$

where $y = [\Delta m_{t+1} \ OF_{t+1}]^T$,

$$ A = \begin{pmatrix} 1 & -\alpha_1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} \beta_r & 0 \\ 0 & \beta_x \end{pmatrix} $$

so that the SVAR is just-identified and causality runs from order flow to midquote returns via α_1. $\Gamma(L)$ is a matrix polynomial in the lag operator and the number of lags is chosen by the AIC for each subset of observations employed in the estimation detailed below. Permanent price impacts are computed by calculating the long-run cumulative response of midquote returns to order flow shocks (see e.g. Evans and Lyons, 2002a, or Payne, 2003 for applications of this procedure to FX spot rates).
The first row in Table 5 shows permanent price impacts of order flow on returns for intervention days (left column) and non-intervention days (right column). As can be seen, and corroborating the evidence from the Evans-Lyons-type regressions in Table 4, order flow has a much larger price impact on non-intervention days than on intervention days, consistent with the analysis of Krugman (1991).

In order to further examine whether the degree of price impact robustly depends on the fact of interventions or not, we compare the average price impact on intervention days with non-intervention days under various market conditions. Thus we condition the price impact analyses on variables that reflect market conditions typically found to be important in microstructure analysis. We use transacted volume as a proxy for market activity, midquote return volatility as a rough measure of information arrival and spreads to reflect the degree of asymmetric information in the market.19 We then split the sample into two subsamples according to whether a sorting variable is below or above the sample median and the permanent price impact of order flow is calculated for intervention days and non-intervention days. Results of this procedure are given in the remaining rows of Table 5.

Results show marked variation in price impacts under different market conditions. Price impacts tend to be higher in times of more market activity, higher volatility and higher spreads, so that times of higher market activity seem to indicate more information processing. Most interesting for our analysis is, however, that price impacts differ in an economically significant way between intervention and non-intervention days. Price

19 These variables are also detrended to eliminate typical intraday patterns and thus to rule out the indirect influence of time. Therefore, we project each of the sorting variables on 60 time dummies representing the minute of the trading session. We then use the predicted values of this regression as the intraday pattern and divide the actual observations by the predicted value of the corresponding interval.
impacts are much higher on non-intervention days in all regimes except the high volatility regime where the price impact increases only slightly. This again corroborates our finding that interventions dampen the impact of information arrival on spot rate movements as predicted by Krugman (1991).

III.C. Order Choice of (Un)Informed Traders during Intervention Days

We know from the earlier descriptive parts of this paper that there seem to be participants trading “against” the intervention band as can be seen from the loss of reserves in Figure 3. At first sight this may be unexpected, given the credibility of the intervention band. A plausible interpretation of this fact may be, however, that a later depreciation of the rouble is expected due to some pressure from fundamentals and that either banks or informed customers of these banks trade on their anticipation.20 There is indeed Reuters headline news supporting this view.

On March 4 for example, there is Reuters news in which a market participant reports that “there are roubles available on the market. […] and banks used the opportunity to take long dollar positions expecting the rouble to go further down”. On another case, on March 6 a market participant is quoted with the following statement: “it is the usual story of past few sessions: banks build up speculative positions (against the rouble) early, then the central bank comes out to the unified session offering dollars at 30.9950 and the market obeys, […]”.

To explore who might be trading against the central bank, we exploit another feature of our data, i.e. its disaggregation of trading banks into more or less informed

20 In the latter case, that is pressure from customer trading, banks have to cover their open positions.
participants, as discussed in Section II.A. Regarding the analytical framework we rely on the recent empirical order choice literature, such as Hasbrouck and Saar (2007) or Ranaldo (2004). This implies to model trading decisions by a set of possible influences, i.e. momentum, herding, ask volume, bid volume and time, in order to capture time-varying dynamics of market conditions. Specifically, we include the following determinants of order choice:

Momentum, which is measured as the midquote change over the past 30 seconds preceding an order. As in earlier studies we direction-adjust order flow by multiplying it by minus one if the current order is a sell order. This price momentum is intended to capture price pressure which induces adjustments in the order strategy of traders.

Herding, which is measured as cumulative order flow over the past 30 seconds. Similar to the above price momentum, this variable is direction adjusted. We include it to capture the general trading direction. Since traders seem to learn from observed order flow (Lyons, 2001), changing order flow trends might induce different order placement strategies.

Ask volume is the size of the best order on the ask side of the book and thus visible on the trading screen. Similarly, *bid volume* is the size of the best order on the bid side of the book and also visible on the trading screen.

Same side volume is measured as the volume at the bid just prior to a buy order’s submission and as the volume at the ask just prior to a sell order’s submission, respectively.

Other side volume is measured as the volume at the ask just prior to a buy order’s submission and as the volume at the bid just prior to a sell order’s submission, respectively. This and the preceding variable are suggested by Parlour’s (1998) model of
limit order placement. The two volume variables are found to be important empirically e.g. in Griffiths et al. (2000) or Ranaldo (2004).

Time indicates the minute of the trading session (1, …, 60) and is used to capture deterministic time patterns.

Distance from central bank’s ask is the difference between the actual ask price of the central bank and the last transaction price (in pips). This variable is used to test whether the likelihood of trading against the central bank (the likelihood is high when the distance is low) influences the behavior of traders.

We complement the standard variables, from momentum to time, by another variable, given at the end of above definitions, i.e. the distance of the central bank’s price from the current market price. If the heavy buying at the central bank’s ask is noise trading, then the share of buy orders should be largely independent of the distance from the intervention price. Moreover, there should be no difference between more and less informed traders.

We estimate a logit model, where the dependent variable is coded 1 if the market order is a buy and 0 for a sell. The model is estimated separately for banks from Moscow and St. Petersburg to see if there is a difference in the trading behavior of the banks that are expected to be better informed. Estimation results are presented in Table 6.

We see that trading behavior of both groups is different. Traders from the center, i.e. Moscow and St. Petersburg, buy more when the price comes closer to the upper intervention level, whereas traders from the periphery behave in a contrary manner. Among the control variables, herding is the only one which has the same significant sign for both groups. The further variables are different as center traders buy with momentum.
and later in the session. Periphery traders, however, buy more when the ask volume is larger, bid volume smaller and earlier in the session. Overall, the significantly different behavior of better informed center and less informed periphery traders suggests that traders’ buys at the ask may be no accident but a sort of speculative mini-attack on the target zone.

As another approach to address this issue, we examine the order choice between marketable limit orders that receive immediate execution and all other limit orders. Again, if not due to heterogeneity in trading motives, there should be no difference between the likelihood of using one of both order types, with respect to price distance from the central bank’s ask. In order to investigate whether order aggressiveness changes systematically with the distance to the central bank’s quote, we run a logit regression where the dependent variable is coded 1 when a trader uses a market order and 0 when she uses a limit order. Explanatory variables parallel those of the approach above and results are presented in Table 7.

Again, the variable of interest – distance to the central bank's quote – is significant for both groups but with an opposite sign. Center traders are more likely to submit orders for immediate execution when the price is closer to the upper intervention band, i.e. they trade more aggressively when the price comes close to the central bank’s limit. By contrast, periphery traders are more likely to employ non-marketable limit orders and thus trade less aggressively near the central bank’s target zone limit. Turning to the control variables, herding is again significant for both groups. Momentum has the same impact as herding for periphery traders. Both groups tend to prefer immediate execution when volatility is smaller and the spread larger. It is mainly the book volume
determinants that differ between both groups: whereas periphery traders show the expected behavior, i.e. to buy fast when there is much volume on the same side and vice versa, the pattern of center traders seems to be dominated by their behavior towards the large intervention order. As they heavily buy against this order, their order choice behavior superficially looks perverse.

IV. IMPLICATIONS FOR THE CENTRAL BANK

The posting of limit orders is an effective device for containing exchange rate movements within narrow bounds. However, credibility of such a mechanism depends upon the central bank posting a quantity that is large relative to the market so that whenever the central bank’s quote rises to the top of the order book, the market cannot exhaust the quantity on offer and move the exchange rate outside of the central bank’s desired range. In this analysis of the Russian central bank’s activity on an electronic crossing network, it is clearly the case that the limit orders are very large relative to the quantities traded on this market. This conveys the image of a credible target zone.

The literature on intervention has often focused on the channel through which intervention changes exchange rates. The typical discretionary central bank intervention is accompanied by sterilization of reserve flows in order to leave the money supply unchanged. Since interest rates and prices are left unchanged, the usual avenues through which exchange rates are changed include the portfolio balance and signaling channels, or coordination of expectations (e.g. Reitz and Taylor, 2008). In the special case where intervention occurs through limit orders on an electronic crossing network, it may be less
likely that relative bond supplies are changed so that the portfolio balance channel is not a likely candidate. There is clear signaling of the central bank’s desired exchange rate with the posting of a limit order that the market learns must come from the central bank. In addition, such a posted limit order, with a very large quantity associated, serves as a credible mechanism for coordinating the expectations of market participants.

When a central bank supports the domestic currency by providing a perfectly elastic supply of dollars at a given exchange rate, reserve losses will be associated with trades that occur. In the case under study, where we know the trade sizes, it is possible to calculate the reserve losses associated with the intervention activity. Figure 4 reproduces the Figure 3 central bank limit orders and actual market prices in the upper figure while the lower figure illustrates the cumulative loss of reserves. The changing slope of the line in the bottom part of Figure 4 reflects trade sizes at the central bank’s ask price. Over the week as a whole, the central bank sold approximately $338 million dollars for roubles during the electronic trading sessions. The data indicate that on March 7 there were some large trades late in the session as the loss of reserves increases steeply on this day. It is notable that on the next day, the central bank allowed the official exchange rate to depreciate to 31.1 as seen in Figure 2.

The reserve losses occurring on March 7 may represent a sort of “mini speculative attack”. The fact that there was no limit order placed at 30.9950 on March 8, so that the exchange rate was allowed to depreciate, is consistent with the central bank defending its reserves by allowing the depreciation. Perhaps one disadvantage of maintaining a target zone with a visible limit order on an electronic crossing network is the ability of private bank participants to infer the reserve loss in real time from reported completion of trades.
If the market knows that there is a very large limit order that serves to bound exchange rate movements, then it is reasonable to expect that this is posted by the central bank. As trades occur at this price, the quantities shown on the screen for the last transaction allow traders to calculate a cumulative reserve loss. If reserve losses are estimated to be reaching a threshold that would lead to the central bank’s removal of the limit order, one would expect traders to be even more aggressive in trading at the central bank’s price.

However, a potential central bank advantage of intervening in the passive form of posting limit orders is that the identity of counterparties is revealed after each trade is completed. This information may be useful in enforcing good behavior on the part of the private banks as they know the central bank can monitor their trades when the central bank is the counterparty. If the central bank exerts moral suasion or other enforcement mechanisms, then private banks may regulate their trades at the central bank price to avoid any appearance of an attack on the central bank. This mechanism may be weakened, however, if private banks just intermediate trades for their informed customers who are not necessarily revealed to the central bank.

V. SUMMARY AND CONCLUSIONS

We have focused on a short period of 2002 when the Russian Central Bank maintained a target zone for the rouble price of a dollar by posting limit orders on an electronic crossing network. The central bank orders were very large relative to the market and served as a credible signaling device to private market participants. It was unlikely that the market would exhaust the central bank’s posted order quantity given the relatively small size of trades compared to the size of the limit order. Effectively, there
was a perfectly elastic supply of dollars being provided at an exchange rate of 30.9950 that was visible to private banks whenever the central bank’s price was at the top of the order book.

Due to available deep information about the order book, we are able to analyze implications of the target zone literature in a way not being tackled in the earlier literature. We find for our sample that trades at the central bank’s limit price simultaneously induce a downward shift in volatility on a daily frequency, i.e. they reduce the overall level of volatility. However, at the intraday frequency, such trades induce a higher transitory volatility that lasts for a few minutes. The same results hold for spreads, although the transitory effects on bid-ask spreads are weaker than for return volatility. The dampening effect of trades associated with defense of the target zone can also be recognized from the lower price impact of order flow on days when the central bank is an active participant in the market. There is evidence of a “honeymoon effect” where the price impact falls the closer price is to the central bank’s limit. Taken together, these results fit into the picture painted by the target zone literature. It follows from this literature that central bank policy must be credible which is supported here by the very large limit orders. It would be interesting to know whether our finding holds in different samples.

Finally, we see from the intraday order choice analysis that more informed traders expect – in line with fundamentals and correctly in retrospect – a further decline of the rouble since they trade aggressively against the upper limit of the target zone. This is in contrast to the behavior of the uninformed and is consistent with rational speculation

21 Findings are not driven by particular characteristics of the Russian market as the daily interbank trading session at the MICEX has characteristics like those of other electronic crossing networks.
from informed traders in combination with an intervention policy to successfully calm the market.

Since market participants know the size of trades that occurred, the central bank’s reserve losses from trades at its offer price, i.e. $338 million over the week under study, are easily calculated. This transparency of the central bank’s position is one potential disadvantage of using such a mechanism to target exchange rates. However, there may be an informational counterweight in that the central bank also learned who was trading at their limit price as after each trade is completed, the parties learn each other’s identity. So the central bank could potentially use moral suasion or other means to discipline any private banks that might be viewed as abusing the system or contributing to a speculative attack.

The provision of liquidity via an electronic limit order book is only likely to serve as an effective exchange rate targeting device in a market where over-the-counter trading is small compared to the electronic market and liquidity is concentrated on one trading platform. In the case of Russia, non-residents traded in an offshore market due to a lack of full convertibility of the rouble so that the domestic market was segmented from outside pressures and this allowed the central bank to effectively facilitate a target zone using limit orders.
REFERENCES

Table 1. Descriptive statistics

Panel A: Descriptive statistics per day

<table>
<thead>
<tr>
<th>Day of March</th>
<th>Stdev</th>
<th>Obs</th>
<th>max price</th>
<th>min price</th>
<th>trades at CB ask</th>
<th>trades at CB bid</th>
<th>trading volume</th>
<th>number of trades</th>
<th>average trading volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.01</td>
<td>3,548</td>
<td>30.9600</td>
<td>30.9400</td>
<td>299</td>
<td>109</td>
<td>95,336,000</td>
<td>1,470</td>
<td>64,854</td>
</tr>
<tr>
<td>4</td>
<td>4.95</td>
<td>3,405</td>
<td>30.9950</td>
<td>30.9420</td>
<td>922</td>
<td>0</td>
<td>165,000,000</td>
<td>1,653</td>
<td>99,819</td>
</tr>
<tr>
<td>5</td>
<td>1.27</td>
<td>4,049</td>
<td>30.9950</td>
<td>30.9855</td>
<td>13</td>
<td>0</td>
<td>83,964,000</td>
<td>1,593</td>
<td>52,708</td>
</tr>
<tr>
<td>6</td>
<td>0.61</td>
<td>3,392</td>
<td>30.9950</td>
<td>30.9920</td>
<td>748</td>
<td>0</td>
<td>165,000,000</td>
<td>1,639</td>
<td>100,671</td>
</tr>
<tr>
<td>7</td>
<td>1.31</td>
<td>3,334</td>
<td>30.9950</td>
<td>30.9851</td>
<td>602</td>
<td>0</td>
<td>212,000,000</td>
<td>1,555</td>
<td>136,334</td>
</tr>
<tr>
<td>11</td>
<td>5.58</td>
<td>3,372</td>
<td>31.0720</td>
<td>30.9950</td>
<td></td>
<td></td>
<td>69,543,000</td>
<td>1,258</td>
<td>55,281</td>
</tr>
<tr>
<td>12</td>
<td>1.57</td>
<td>4,281</td>
<td>31.0632</td>
<td>31.0504</td>
<td></td>
<td></td>
<td>94,964,000</td>
<td>1,640</td>
<td>57,905</td>
</tr>
<tr>
<td>13</td>
<td>2.19</td>
<td>4,235</td>
<td>31.0840</td>
<td>31.0600</td>
<td></td>
<td></td>
<td>74,905,000</td>
<td>1,621</td>
<td>46,209</td>
</tr>
<tr>
<td>14</td>
<td>7.52</td>
<td>4,715</td>
<td>31.0720</td>
<td>31.0050</td>
<td></td>
<td></td>
<td>65,768,000</td>
<td>1,649</td>
<td>39,884</td>
</tr>
<tr>
<td>15</td>
<td>4.92</td>
<td>4,523</td>
<td>31.0900</td>
<td>31.0250</td>
<td></td>
<td></td>
<td>82,350,000</td>
<td>1,571</td>
<td>52,419</td>
</tr>
<tr>
<td>18</td>
<td>7.25</td>
<td>4,499</td>
<td>31.1200</td>
<td>31.0701</td>
<td></td>
<td></td>
<td>65,267,000</td>
<td>1,575</td>
<td>41,439</td>
</tr>
<tr>
<td>19</td>
<td>3.64</td>
<td>4,324</td>
<td>31.1400</td>
<td>31.1175</td>
<td></td>
<td></td>
<td>69,565,000</td>
<td>1,582</td>
<td>43,973</td>
</tr>
<tr>
<td>20</td>
<td>2.89</td>
<td>4,446</td>
<td>31.1449</td>
<td>31.1285</td>
<td></td>
<td></td>
<td>94,152,000</td>
<td>1,686</td>
<td>55,843</td>
</tr>
<tr>
<td>21</td>
<td>4.23</td>
<td>4,047</td>
<td>31.1499</td>
<td>31.1151</td>
<td></td>
<td></td>
<td>80,408,000</td>
<td>1,527</td>
<td>52,657</td>
</tr>
<tr>
<td>22</td>
<td>4.21</td>
<td>4,485</td>
<td>31.1400</td>
<td>31.0999</td>
<td></td>
<td></td>
<td>77,721,000</td>
<td>1,674</td>
<td>46,428</td>
</tr>
</tbody>
</table>

Panel B: Descriptive statistics for intervention versus non-intervention days

<table>
<thead>
<tr>
<th>Days of March</th>
<th>stdev</th>
<th>obs</th>
<th>max price</th>
<th>min price</th>
<th>trades at ask</th>
<th>trades at bid</th>
<th>trading volume</th>
<th>number of trades</th>
<th>average trading volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 7</td>
<td>3.24</td>
<td>17,728</td>
<td>30.9950</td>
<td>30.9400</td>
<td>2584</td>
<td>109</td>
<td>720,000,000</td>
<td>7910</td>
<td>91,024</td>
</tr>
<tr>
<td>11 to 21</td>
<td>4.89</td>
<td>38,442</td>
<td>31.1499</td>
<td>30.9950</td>
<td></td>
<td></td>
<td>697,000,000</td>
<td>14109</td>
<td>49,401</td>
</tr>
</tbody>
</table>

Panel C: Volatility tests

H₀: \(\sigma_{\text{intervention days}} = \sigma_{\text{non-intervention days}} \) (all events) **(0.00)**

H₀: \(\sigma_{\text{intervention days}} = \sigma_{\text{non-intervention days}} \) (all events off the quote) **(0.00)**
Notes: Panel A shows descriptive statistics for each day of our sample. March 1st to 7th are days with major central bank intervention, March 22nd only has a few very minor interventions from the central bank. Columns “stdev” and “obs” show the sample standard deviation of midquote returns and the number of observations on a given day. The next two columns show the maximum and minimum price. Trades at CB ask (bid) shows the number of trades at the ask (bid) quote of the central bank. All volumes are expressed in USD. Panel B shows the same descriptive statistics for all days in the respective two main blocks of our sample: March 1st to 7th (major intervention days) versus March 11th to March 21st (non-intervention days). Panel C shows p-values for the test that the standard deviation of midquote returns is the same on intervention days and non-interventions days. The test is based on Newey-West HAC robust standard errors. Stars refer to the level of significance, *: 5%-level, **: 1%-level.
Table 2. Order and trade activity of the central bank and private banks

<table>
<thead>
<tr>
<th></th>
<th>Central Bank</th>
<th>Private Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit orders submitted</td>
<td>11</td>
<td>6,626</td>
</tr>
<tr>
<td>Number of trades initiated</td>
<td>7</td>
<td>7,910</td>
</tr>
<tr>
<td>Median limit order size</td>
<td>$50,298,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>Maximum limit order size</td>
<td>$151,000,000</td>
<td>$45,000,000</td>
</tr>
<tr>
<td>Minimum limit order size</td>
<td>$6,000,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>Median trade size</td>
<td>$210,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Maximum trade size</td>
<td>$45,000,000</td>
<td>$7,995,000</td>
</tr>
<tr>
<td>Minimum trade size</td>
<td>$100,000</td>
<td>$1,000</td>
</tr>
</tbody>
</table>

Notes: The data summarize all trade and order activity of the Russian central bank and private banks active on the interbank SELT system over the period March 1 to March 22, 2002.
Table 3. FX spot rate volatility and mean spreads

<table>
<thead>
<tr>
<th></th>
<th>Dependent: Volatility</th>
<th></th>
<th>Dependent: Mean spread</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
</tr>
<tr>
<td>Share CB.1</td>
<td>0.11 [2.92]</td>
<td>0.12 [2.82]</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.10 [3.07]</td>
<td>0.11 [3.00]</td>
<td>0.07</td>
</tr>
<tr>
<td>Share CB.2</td>
<td>[3.81]</td>
<td>[3.70]</td>
<td>[2.53]</td>
</tr>
<tr>
<td></td>
<td>0.10 1.12</td>
<td>0.10 1.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Share CB.3</td>
<td>[2.63]</td>
<td>[2.49]*</td>
<td>[1.61]</td>
</tr>
<tr>
<td></td>
<td>0.02 0.01</td>
<td>0.00</td>
<td>-0.03</td>
</tr>
<tr>
<td>Share CB.4</td>
<td>[0.68]</td>
<td>[0.58]</td>
<td>[-0.33]</td>
</tr>
<tr>
<td>volatility.1</td>
<td>1.14</td>
<td>[4.34]</td>
<td></td>
</tr>
<tr>
<td>volatility.2</td>
<td>0.08</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>mean spread.1</td>
<td>[3.43]</td>
<td></td>
<td>[10.42]</td>
</tr>
<tr>
<td>mean spread.2</td>
<td>-0.00</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>volume.1</td>
<td>[2.07]*</td>
<td></td>
<td>[2.05]</td>
</tr>
<tr>
<td>volume.2</td>
<td>-0.02</td>
<td>-1.59</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>-0.02</td>
<td>0.00</td>
<td>-0.61</td>
</tr>
<tr>
<td>time²×10²</td>
<td>[-3.72]</td>
<td>[-1.14]</td>
<td>[-4.17]</td>
</tr>
<tr>
<td>constant</td>
<td>0.60</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>adj. R²</td>
<td>0.09</td>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>AIC</td>
<td>1.35</td>
<td>1.33</td>
<td>1.10</td>
</tr>
<tr>
<td>obs</td>
<td>1,740</td>
<td>1,740</td>
<td>1,740</td>
</tr>
</tbody>
</table>

Notes: This table shows regression results where the dependent variable is the midquote return standard deviation in specifications (i) to (iii) and the mean bid-ask spread in specifications (iv) to (vi). The sampling frequency is 30 seconds. T-statistics based on Newey-West HAC standard errors in parentheses. Stars refer to the level of significance, *: 5%-level, **: 1%-level.
Table 4. Price impact of order flow

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF_t</td>
<td>0.087</td>
<td>0.123</td>
<td>0.087</td>
<td>0.123</td>
<td>0.121</td>
</tr>
<tr>
<td>$\text{OF}_t \times (\text{CB-day})$</td>
<td>-0.083</td>
<td>-0.096</td>
<td>-0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[-3.85]</td>
<td>[-3.79]</td>
<td>[-4.33]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{OF}_t \times (\text{CB-day}) \times \text{Dist}$</td>
<td>-1.685</td>
<td>10.327</td>
<td>11.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.31]</td>
<td>[1.98]</td>
<td>[2.04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δm_{-1}</td>
<td>0.089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.57]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δm_{-2}</td>
<td>-0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-1.08]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF_{t-1}</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.38]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF_{t-2}</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.31]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>const.</td>
<td>-0.480</td>
<td>-0.433</td>
<td>-0.482</td>
<td>-0.414</td>
<td>-0.436</td>
</tr>
<tr>
<td>[-7.39]</td>
<td>[-7.21]</td>
<td>[-7.49]</td>
<td>[-7.04]</td>
<td>[-6.87]</td>
<td></td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.11</td>
<td>0.14</td>
<td>0.11</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>obs</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,800</td>
<td>1,770</td>
</tr>
</tbody>
</table>

Notes: The table shows regression results of midquote returns on order flow and further controls. The sampling frequency is 30 seconds. T-statistics based on Newey-West HAC standard errors in parentheses. Stars refer to the level of significance, *: 5%-level, **: 1%-level.
Table 5. Permanent price impacts under different market conditions

<table>
<thead>
<tr>
<th>Price Impacts ($\times 1,000$)</th>
<th>CB-days</th>
<th>Non-CB-days</th>
</tr>
</thead>
<tbody>
<tr>
<td>All trades</td>
<td>0.721</td>
<td>1.444</td>
</tr>
<tr>
<td></td>
<td>[0.000; 1.442]</td>
<td>[0.664; 2.224]</td>
</tr>
<tr>
<td>Low volume</td>
<td>0.547</td>
<td>1.057</td>
</tr>
<tr>
<td></td>
<td>[-0.101; 1.194]</td>
<td>[0.303; 1.811]</td>
</tr>
<tr>
<td>High volume</td>
<td>0.836</td>
<td>2.053</td>
</tr>
<tr>
<td></td>
<td>[-0.042; 1.741]</td>
<td>[0.716; 3.390]</td>
</tr>
<tr>
<td>Low volatility</td>
<td>0.140</td>
<td>0.651</td>
</tr>
<tr>
<td></td>
<td>[-0.198; 0.478]</td>
<td>[0.257; 1.045]</td>
</tr>
<tr>
<td>High volatility</td>
<td>1.742</td>
<td>1.899</td>
</tr>
<tr>
<td></td>
<td>[0.021; 3.464]</td>
<td>[0.613; 3.185]</td>
</tr>
<tr>
<td>Low spreads</td>
<td>0.242</td>
<td>0.954</td>
</tr>
<tr>
<td></td>
<td>[-0.194; 0.678]</td>
<td>[0.318; 1.590]</td>
</tr>
<tr>
<td>High spreads</td>
<td>1.211</td>
<td>2.101</td>
</tr>
<tr>
<td></td>
<td>[-0.248; 2.670]</td>
<td>[0.453; 3.749]</td>
</tr>
</tbody>
</table>

Notes: The table shows permanent price impacts from order flow on midquote returns. Permanent price impacts are measured according to the SVAR in equations (4) and (5). The sampling frequency is 30 seconds. 95% bootstrap confidence intervals are shown in squared brackets.
Table 6. Trading direction of different market participants

<table>
<thead>
<tr>
<th></th>
<th>Traders from Moscow and St. Petersburg</th>
<th>Traders from Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>**(0.00)</td>
<td>** (0.00)</td>
</tr>
<tr>
<td>Momentum</td>
<td>0.47</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>** (0.00)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Herding</td>
<td>2.69</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td>** (0.00)</td>
<td>** (0.00)</td>
</tr>
<tr>
<td>Ask volume</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.41)</td>
<td>*0.03</td>
</tr>
<tr>
<td>Bid volume</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>**(0.00)</td>
</tr>
<tr>
<td>Time</td>
<td>7.87</td>
<td>-3.90</td>
</tr>
<tr>
<td></td>
<td>** (0.00)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Distance (from CB’s ask)</td>
<td>-7.59</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td>** (0.00)</td>
<td>*(0.04)</td>
</tr>
<tr>
<td>McFadden R²</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>AIC</td>
<td>1.18</td>
<td>1.34</td>
</tr>
<tr>
<td>SIC</td>
<td>1.19</td>
<td>1.37</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-2385.79</td>
<td>-863.64</td>
</tr>
<tr>
<td>Restr. log likelihood</td>
<td>-2573.00</td>
<td>-891.37</td>
</tr>
<tr>
<td>LR statistic (6 df)</td>
<td>374.41</td>
<td>55.46</td>
</tr>
<tr>
<td>Probability(LR stat)</td>
<td>**(0.00)</td>
<td>**(0.00)</td>
</tr>
</tbody>
</table>

Notes: The table shows results from logit regression models where the dependent variable is coded as one when an order is a buy order and zero when it is a sell order. The sampling frequency is event time. Bootstrap p-values based on 250 replications in parentheses. Stars refer to the level of significance, *: 5%-level, **: 1%-level.
Table 7. Order aggressiveness of different market participants

<table>
<thead>
<tr>
<th></th>
<th>Traders from Moscow and St. Petersburg</th>
<th>Traders from Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>0.15</td>
<td>-0.37</td>
</tr>
<tr>
<td>** (0.00)</td>
<td>** (0.00)</td>
<td></td>
</tr>
<tr>
<td>Momentum</td>
<td>0.06</td>
<td>0.41</td>
</tr>
<tr>
<td>(0.63)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Herding</td>
<td>1.24</td>
<td>1.31</td>
</tr>
<tr>
<td>** (0.00)</td>
<td>** (0.00)</td>
<td></td>
</tr>
<tr>
<td>Distance (from CB's ask)</td>
<td>-4.39</td>
<td>4.39</td>
</tr>
<tr>
<td>** (0.00)</td>
<td>** (0.00)</td>
<td></td>
</tr>
<tr>
<td>Same side volume</td>
<td>-0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>** (0.00)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Other side volume</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>** (0.00)</td>
<td>** (0.00)</td>
<td></td>
</tr>
<tr>
<td>Spread</td>
<td>1.32</td>
<td>1.46</td>
</tr>
<tr>
<td>(0.05)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>Volatility</td>
<td>-1.85</td>
<td>-2.60</td>
</tr>
<tr>
<td>(0.14)</td>
<td>*(0.09)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>17.54</td>
<td>12.36</td>
</tr>
<tr>
<td>(0.00)</td>
<td>*(0.00)</td>
<td></td>
</tr>
<tr>
<td>McFadden R²</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>AIC</td>
<td>1.31</td>
<td>1.33</td>
</tr>
<tr>
<td>SIC</td>
<td>1.32</td>
<td>1.35</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-4847.39</td>
<td>-2055.68</td>
</tr>
<tr>
<td>Restr. log likelihood</td>
<td>-5003.88</td>
<td>-2107.49</td>
</tr>
<tr>
<td>LR statistic (6 df)</td>
<td>312.97</td>
<td>103.62</td>
</tr>
<tr>
<td>Probability(LR stat)</td>
<td>** (0.00)</td>
<td>** (0.00)</td>
</tr>
</tbody>
</table>

Notes: The table shows results from logit regression models where the dependent variable is coded as one when an order is a market order and zero if the order is a limit order. The sampling frequency is event time. Bootstrap p-values based on 250 replications in parentheses. Stars refer to the level of significance, *: 5%-level, **: 1%-level.
Figure 1: Number of trades and order events per 5-minute interval of the trading session
The figure shows the number of trades and order events (submissions and cancellations) occurring on the SELT system used for interbank USDRUR spot trading in Russia for each 5-minute interval of the 1-hour trading session over the period from March 1 to March 22, 2002.

Panel A: Number of trades per 5 minute interval

Panel B: Number of events per 5 minute interval
Figure 2: Exchange Rate, Roubles per dollar
The official rouble price of the dollar is plotted for the first half of 2002. The period of central bank intervention studied in this paper is indicated by the vertical lines in the chart.
Figure 3: Central Bank Limit Orders and Trading Activity
The upper figure illustrates the central bank’s order at a price of 30.9450 for March 1 and 30.9950 for March 4-7, along with the actual price of executed deals in the market. Note that the central bank’s bid price is held fixed at 30.9400, on March 1 there were several trades at this bid. The lower figure illustrates the quantity on offer at the central bank’s limit price for March 4-7.
Figure 4: Central Bank Limit Orders, Market Price, and Cumulative Reserve Loss
The upper figure illustrates the central bank’s limit order at an ask price of 30.9450 for March 1 and 30.9950 for March 4-7, along with the actual price of executed deals in the market. The lower figure shows the cumulative loss of dollar reserves as a result of central bank trades.

2157 Andreas Haufler and Christian Schulte, Merger Policy and Tax Competition, December 2007

2158 Marko Köthenbürger and Panu Poutvaara, Rent Taxation and its Intertemporal Welfare Effects in a Small Open Economy, December 2007

2159 Betsey Stevenson, Title IX and the Evolution of High School Sports, December 2007

2160 Stergios Skaperdas and Samarth Vaidya, Persuasion as a Contest, December 2007

2161 Morten Bennedsen and Christian Schultz, Arm’s Length Provision of Public Services, December 2007

2162 Bas Jacobs, Optimal Redistributive Tax and Education Policies in General Equilibrium, December 2007

2163 Christian Jaag, Christian Keuschnigg and Mirela Keuschnigg, Pension Reform, Retirement and Life-Cycle Unemployment, December 2007

2164 Dieter M. Urban, Terms of Trade, Catch-up, and Home Market Effect: The Example of Japan, December 2007

2166 Samuel Bentolila, Juan J. Dolado and Juan F. Jimeno, Does Immigration Affect the Phillips Curve? Some Evidence for Spain, December 2007

2167 Rainald Borck, Federalism, Fertility and Growth, December 2007

2168 Erkki Koskela and Jan König, Strategic Outsourcing, Profit Sharing and Equilibrium Unemployment, December 2007

2169 Egil Matsen and Øystein Thøgersen, Habit Formation, Strategic Extremism and Debt Policy, December 2007

2170 Torben M. Andersen and Allan Sørensen, Product Market Integration and Income Taxation: Distortions and Gains from Trade, December 2007

2171 J. Atsu Amegashie, American Idol: Should it be a Singing Contest or a Popularity Contest?, December 2007

Ben Greiner, Axel Ockenfels and Peter Werner, The Dynamic Interplay of Inequality and Trust – An Experimental Study, December 2007

Alexander Chudik and M. Hashem Pesaran, Infinite Dimensional VARs and Factor Models, December 2007

Christoph Moser and Axel Dreher, Do Markets Care about Central Bank Governor Changes? Evidence from Emerging Markets, December 2007

Alessandra Sgobbi and Carlo Carraro, A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin, December 2007

Christa Hainz, Creditor Passivity: The Effects of Bank Competition and Institutions on the Strategic Use of Bankruptcy Filings, December 2007

María del Carmen Boado-Penas, Salvador Valdés-Prieto and Carlos Vidal-Meliá, the Actuarial Balance Sheet for Pay-As-You-Go Finance: Solvency Indicators for Spain and Sweden, January 2008

Lans Bovenberg and Coen Teulings, Rhineland Exit?, January 2008

Sándor Csengödi and Dieter M. Urban, Foreign Takeovers and Wage Dispersion in Hungary, January 2008

Jan Bouckaert, Hans Degryse and Theon van Dijk, Price Discrimination Bans on Dominant Firms, January 2008

M. Hashem Pesaran, L. Vanessa Smith and Takashi Yamagata, Panel Unit Root Tests in the Presence of a Multifactor Error Structure, January 2008

Antonis Adam, Margarita Katsimi and Thomas Moutos, Inequality and the Import Demand Function, January 2008

Helmut Seitz, Democratic Participation and the Size of Regions: An Empirical Study Using Data on German Counties, January 2008

Chiara Dalle Nogare and Roberto Ricciuti, Term Limits: Do they really Affect Fiscal Policy Choices?, January 2008

Andreas Bühn and Friedrich Schneider, MIMIC Models, Cointegration and Error Correction: An Application to the French Shadow Economy, January 2008

2205 Sascha O. Becker and Mathias Hoffmann, Equity Fund Ownership and the Cross-Regional Diversification of Household Risk, January 2008

2208 Frederick van der Ploeg and Steven Poelhekke, Globalization and the Rise of Mega-Cities in the Developing World, February 2008

2209 Sara Biancini, Regulating National Firms in a Common Market, February 2008

2210 Jin Cao and Gerhard Illing, Liquidity Shortages and Monetary Policy, February 2008

2211 Mathias Kifmann, The Design of Pension Pay Out Options when the Health Status during Retirement is Uncertain, February 2008

2212 Laszlo Goerke, Tax Overpayments, Tax Evasion, and Book-Tax Differences, February 2008

2213 Jun-ichi Itaya and Heinrich W. Ursprung, Price and Death, February 2008

2214 Valentina Bosetti, Carlo Carraro and Emanuele Massetti, Banking Permits: Economic Efficiency and Distributional Effects, February 2008

2215 Assar Lindbeck, Mårten Palme and Mats Persson, Social Interaction and Sickness Absence, February 2008

2218 Dorothee Crayen and Joerg Baten, Global Trends in Numeracy 1820-1949 and its Implications for Long-Run Growth, February 2008

