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1. Introduction

Estimates of demand elasticity are abundant. Estimates of supply

elasticity are exceedingly scarce.l Yet few would deny the usefulness of
estimates of supply elasticities for many concrete applications. Using a
simple two equation model and annual data for the US going back to the
beginning of the century, this study attempts to estimate the parameters
that reveal the supply elasticities for 8 commodities whose quality has
stayed the same over the sample period.

There are also good theoretical reasons for attempting to fill
Clapham’s empty boxes. Because theoretical analyses of the status of the
core for an industry places the nature of the supply conditions at the
center of the stage, it is necessary to learn more about the cost blade of
Marshall’s scissors., According to the theory of the core, an industry has a
nonempty core only if the industry total cost function (ITCF) is
subhomogeneous so that the industry has nondecreasing returns to scale. This
means that the marginal industry total cost function (MITC) is either equal
to or below the industry unit cost. In the neoclassical competitive
equilibrium the MITC is the industry supply schedule. Hence under the first
alternative a perfectly elastic supply schedule implies a nonempty core.

Two criteria determine the suitability of a commodity for estimation of
its supply conditions in this study. The first is the availability of a long
series of annuwal data. The second is that the quality of the commodity has
remained constant over the period for which data are available.

Two exogencous variables are crucial for this study. The first is a
measure of the general price level. The Consumer Price Index is the longest
time series available for this purpose. The second is a measure of permanent

income. Annual expenditures on consumption serve as a proxy for permanent




\supply\secl

income. Briefly, the main reason is this. The amount that people spend on
their consumption depends on their future prospects, their expected wealth.
Consumption outlays are available for each year starting in 1929 and are
available for a scattered selection of years beginning in 1900. Hence the
sample period cannot begin before 1900. The commodities and the number of
years for which there are observations in the samples are as follows:

67 for corn, cotton, potatoes and wheat;

65 for eggs;

61 for Douglas fir;

56 for electricity;

51 for cement.

The second major constraint is imposed by the desire to study
commodities of constant quality during the sample period. Many raw materials
satisfy this requirment especially among agricultural commodities. I chose
corn, cotton, Douglas fir, eggs, potatoes and wheat. The two nonagricultural
commodities in the sample are electricity and Portland cement. Supply
conditions differ markedly between these two groups. The agricultural
commodities are produced by many quite small firms. During the sample period
the number of agricultural firms (farms) has been decreasing and the firm
size increasing. Even so, by the end of the sample period, 1988, it remains
accurate to describe these as small firm industries. In contrast, the
electricity industry has relatively few large firms subject to State and
Federal regulation. It is the prevailing belief that there are economies of
scale in generating electricity. The Portland cement industry contains many
firms that operate in regional markets. Cement is rarely shipped more than
300 miles. This fact alone does not, of course, explain the regional nature

of the cement industry. Nothing prevents a cement firm from operating plants
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widely scattered throughout the U.S. Nevertheless, each regional market
contains relatively few firms. The industry adhered tenaciously to basing
point pricing a practice at variance with a neoclassical model of
competition (Stigler, 1949). A long legal battle between the Federal Trade
Commission and the firms in the industry stretching over more than 4 decades
finally culminated in Federal victory and, presumably, this pricing practice
no longer occurs. Complications are also present in agriculture. Since 19233,
the Federal government has been an active participant in corn, cotton and
wheat via the various programs aimed at supporting prices and limiting
output. Federal loan programs allow farmers of corn cotton and wheat to
obtain nonrecourse loans from the goverrnment at so much per unit. If the
farmers do not redeem these loans then the government takes title to the
collateral. These programs put a floor on prices because they allow farmers
in effect to sell their output to the govermment at the support prices.
Either the market price is above the support level and clears the market, or
the market price is at the support level and the government accumulates
stocks of the commodity at the support price. In either case, the average
price received by farmers, the price variable in the regressions, presumably
lies on the farmers’ supply schedules. The effects of these programs on
output are more difficult to guage. Even after 1933, these programs limited
acreage planted but did not directly control production. The only
commodities in the sample to which it would seem that the neoclassical model
of perfect competition may apply are Douglas Fir, eggs and potatoes.

Supply conditions take as given the inputs that cannot or do not vary
for at least the time spanned by a sample observation, one year. If the
firms can produce other products with the same facilities as they can use to

produce the given product, then the supply of this commodity is not
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constrained by fixed inputs specialized to it. Thus perhaps only the total
agricultural cropland can be said to be specialized for producing
agricultural outputs. For instance, if producers of corn can also readily
produce soybeans then there are no inputs committed to corn for periods even
as long as the corn growing season. This point of view seems especially well
founded for a commodity like eggs for which the specialized input, hens, may
live less than one year depending on the economic prospects for eggs and
poultry. Production conditions for Douglas fir suggest that all the inputs
are highly mobile on very short notice. For these reasons there is no
attempt to include measures of any fixed inputs for Douglas fir and eggs. A
possible candidate for fixed inputs for coxn, cotton, potatoes and wheat is
acreage planted. The results for these 4 commodities are reported in two
ways: first, assuming high substitutability among such agricultural products
so there is no measure of fixed inputs in the model; second, assuming
acreage planted (or harvested) is a proxy for inputs committed for one year
(in the Appendix). This Appendix also describes some salient trends in these
4 commodities that are pertinent to the role of acreage harvested as a proxy
for fixed specialized inputs.

For Portland cement and electricity the situation is different because
there are specialized facilities. Measures of industry capacity are
available for Portland cement and electricity. It is important to realize
that these are measures of the physical capacity of the production
facilities. They have no connotations about optimality nor do they refer to
the scale of output at which unit costs might be a minimum. For cement,
capacity simply refers to the size of the kiln in which the product is made.

For electrieity, it refers to the peak load capacity of a generator. Both
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measures owe more to the laws of physics and chemistry than to the laws of

economics.
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2. Estimation of Model Parameters
1. Demand

According to the standard theory, the quantity demanded, q, of a
commodity varies inversely with its relative price, p, holding real income,
y, constant. The total quantity demanded depends on the size of the
population, denoted by h (for humans). The relative price of the commodity
is defined to be its nominal price divided by an index of the price level. I
use the Consumer Price Index (CPI) to estimate the price level. However, as
many studies have shown, the CPI suffers from many shortcomings. For present
purposes the most serious are these. The CPI keeps old commodities in its
sample for too long and brings new commodities in too late. Nor is this all.
In addition it fails to correct prices of the commodities in its sample for
changes in product quality. These practices bias the price index upward to
the extent that existing products improve in quality and new products drop
rapidly in price before they enter the CPI sample. Because of these errors
it is advisable to make the price level index a separate variable in the
demand equation. All the variables in the model are in (natural) logs. P
denotes the log of the nominal price of the commodity, Q the log of
quantity, and II the log of the CPI. The price level appears as a separate
exogenous variable in the demand equation. One can test the hypothesis that
the coefficient of II is equal in size and opposite in sign to the
coefficient of P (see helow sec.3).

The total demand for the product depends on some appropriate measure of
total real permanent income. The reasons for a reluctance to deflate the
nominal price of the commodity by the CPI apply to nominal income as well.
The research distinguishing between permanent and transitory income suggests

that total consumption is a better measure of permanent income than is total




\supply\sec.2

income itself (Friedman, 1957). Therefore, Y., the log of nominal income, is

represented by the log of nominal consumption. The demand equation of the
model is as follows:

(L) Q = e + alP + a2YN + a3H + aaH + u.

H denotes the log of total population and u is a random residual.
2. Industry Total Cost Function

Because the title of the preceding subsection is "Demand," it would
seem that "Supply" ought to be the title of this one. However, the longer
title more accurately represents the underlying theory. This theory assumes
that an industry is organized so that each given rate of output is produced
at the minimum total cost. The function relating this minimum total cost to
output is called the Industry Total Cost Function (ITCF). The derivative of
this function with respect to output is the Marginal Industry Total Cost
(MITG) and it underlies the industry supply schedule. At the optimal levels
of industry inputs, production of a given rate of output occurs at the least
total cost. Therefore, the input that describes how to make the commodity,
the stock of knowledge, is also an endogenous variable that depends on the
desired scale of operation. The state of technology underlying the ITCF is
not given and is a function of the expected demand. The distinction between
the short run and the long run ITCF depends on which inputs are held
constant. At an instant in time all inputs may be given and the given
outputs of the firms in the industry may be sold on the market for whatever
price they can fetch. Ultimately, all inputs can adjust in order to satisfy
the given demand conditions at the least total cost. In a competitive
industry with growing demand, the shifting demand traces out the long run
MITC. The output at an efficient industry equilibrium maximizes the net

benefit of producing and selling the commodity. Hence it is that rate of
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output at which the marginal industry total cost equals the marginal
benefit. Write MITC as a function of the output, q, and k, the stocks of the
inputs that are fixed for the time period to which the ITCF refers.

(1) MITC = f{q, k).

Because the model uses logs of all variables, a convenient specific form of

f is given as follows:

A1 By
(2) f(q, k) =B q "k ",
It is plausible to suppose that the equilibrium price is proportional
to but not necessarily equal to Marginal Industry Total Cost.

(3) p = MITC x.

If the ITCF is convex then the MITC must be nondecreasing so that ﬂl is

nonnegative. The factor of proportionality, x, can represent the effects on
the price of movements along a shorter run MITC than f. Fluctuations of
demand result in short run equilibria such that markets clear at prices
equal to short run industry marginal cost. The factor x can also represent
departures from marginal cost pricing of industry output. It may be that the
price equals unit cost so that if the MITC is below the IUTC (Industry Unit
Cost Function) then x is greater than one. Therefore, because of either
demand or cost factors,

(4) p - £(q, k) x.

Taking logs and substituting from (2) gives

{5) log p = ﬁo + ﬁl Q + ﬁz K+ X+ v,

in which v denotes a random residual. If X is a proxy for shorter term

marginal cost then write
(6) X = Yot 77 AUH 75 K.

Possibly, 7 > 0 and Yy < 0. Substituting X given by (6) into (5) yields
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7 log P = (Bt 7)) + (yy+ B Q + (75 + By) K+ v.

This shows that the coefficients of Q@ and K are the sums of the shorter and
longer term effects. However, the nature of the available data may prevent
disentangling these effects so that it may be necessary to remain content
with estimates of the sums. Because p is the relative price, log p = P - 1.
Hence (7) becomes

(8) P=pB,+BQ+pHK+T+v,

in which the primed coefficients denote the corresponding sums in (7).
Equation (8) is the relevant supply side of the model.
3. The Reduced Form
In this model the endogenous variables are price and quantity. The
reduced form equations express these variables as functions of the exogenous

variables that are I, YN, and H. In addition because the data are annual

figures the stock of capital that is specialized to the production of the
commodity is exogenous as well. Even if the industry produces several
commodities, the prices and quantities of these would be endogenous so that
introducing them explicitly into the model would not help us estimate the
structural parameters. The reduced form equations obtained by solving (1.1)
and (2.8) for Q and P are given as follows:

(1) Q= <, + clH + 02 YN + c3H + CAK + £,

(2) P-d +dl+d, Yo +d, H+dK-+ 7.

1 2 N 3 4

In case it is assumed that no inputs are specialized for the production of
the given commodity during a year, K is absent from both equations. However,
if K should appear in the reduced form equations but is omitted, then the
least squares estimates of the coefficients of (1) and (2) would not be

consistent. More generally, the absence of any pertinent exogenous variable
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from the estimated reduced form regressions prevents the claim that least
squares estimates of these regressions are consistent. Because one can
always say that some such variable has been left-out, this kind of empirical
work does not rest on a purely objective foundation. Some untestable prior
beliefs always remain.

By expressing the coefficients of (1) and (2) in terms of the
structural parameters of (1.1) and (2.8), it is not difficult to verify that

the reciprocal of the supply elasticity is

(3) Bl = dy/cy = dy/c,

because
dy= Biay /(1 - a18]) and ¢, = a,/(1 - ajBf]);
dy = Bla,/(1 - a,8]) and ¢y = a,/(1 - B7).

Also, the demand elasticity (¢f. (1.1) satisfies
(4) a]_ = cl-l-/dll-’
because

¢, = alﬁé/(l - alﬂi) and da = ﬂé/(l - alﬂi).
Note that the random residuals of the reduced form equations would be
correlated even if the residuals of the structural equations are
uncorrelated. This can be verified from the two equations as follows:
(5) ¢ =(u+ av)/(L - @f]) and n = (v + Blw)/(L - aB])

The simplest hypothesis at the outset concerns the deflator, II. If the
correct relative price were the nominal price divided by the CPI and if
"real" income were nominal income divided by the CPI then in equation (1.1)
it would follow that

(6) Gy = -ay - ag.
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This would yield testable implications about the reduced form coeficients as
follows:

(7) ¢y +c, = 0 and d1 + d2 = 1.

Also, one must say something about the nature of the probability
distributions supposed to generate the random shocks in order to perform
statistical tests of the hypotheses in (7). The usual assumption is
normality. My tests of the hypotheses in (7) follow convention. The Section
Results describes the results.

We shall focus our attention on the estimates given by (3) and (4) for
two reasons. First, they relate directly to fundamental parameters of the
structural relations and, second, they are relatively simple functions of
the reduced form regression coefficients. Even so, estimates of confidence
bounds for these important parameters are not straightforward. Moreover, as

is plain from (3), the structural parameter ﬂi is overidentified and the two

estimates are correlated because each uses ratios of coefficients from the
same pair of equations,
4. Confidence Bounds for Estimates of Ratios
This section describes a new way of obtaining confidence bounds for the
structural parameters. Consider two correlated random variables, x and y

with means Bos py and standard deviations g ay. These random variables

correspond to estimates of the regression coefficients of the same exogenous
variable in the pair of reduced form equations (3.1) and (3.2). In (3.3), x

corresponds to, say, d2 and v to ¢ Let

2

(L X=(x-p/o, and Y= (y - #y/ay-

(Note that X and Y in this section do not refer to natural logs.) Thus X and

Y have mean zero and standard deviation one. The ellipse defined by
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(3) X - 2 pxy XY+ Y =¢,
in which

2
(4) c=2(1 - p%) 2

gives an iso-probability contour for a bivariate normal distributien
(Uspensky, 1937, pp.308-12). This ellipse covers a fraction of the bivariate
distribution as determined by £. The correlation between the two estimates

is p = o__ /o o . The ratio estimator is z = x/y. The extreme values of the
Xy Xy XYy

ratio included by this ellipse is given by the rays from the origin tangent
to the ellipse as shown in Figure 1. This is not the same as the area of the
bivariate distribution between the extremal rays. One way to obtain
confidence bounds on z is to find the extrema of z on the ellipse defined by
(3). This may furnish confidence level bounds under suitable conditions for

some values of £. The Lagrangian for the extremum problem is defined by

(5) z +AX2 - 2 p XY + Y- )
(dropping subscripts from p causes no ambiguity). If a solution exists it
must satisfy the first-order conditions as follows:

(6) (1/y) + (22/0) (X - p¥) = 0

7) - (x/3%) H2Va) (Y - p ) - 0.

Complications can arise that are most easily understood with the help
of diagrams. Figure 1 shows the ellipse for a given £. The center of the

ellipse is at the point M whose coordinates are Bys B The orthogonal lines

v
A1A2, B132 are the principal axes of the ellipse. The length of these axes

is proportional to the standard deviations of x and y. A solution of the

extremum problem is given by the rays through the origin that are tangent to




Figvrt 1
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the ellipse., Figure 1 shows the two tangents, T1 and T2. Tl gives the upper
confidence bound and T2 the lower confidence bound. Note that the ray

connecting the origin to M (this ray is not shown in the diagram) lies
between these two bounds. Therefore, the point estimate given by the ratio
of the means is bracketed by the ratios given by the slopes of the two
tangents. The probability level corresponding to the ellipse is the
confidence level of the bracket. There is a family of ellipses, all centered
on M and generated by choosing various values of £, that determines the
confidence level. Thus, £ = 3 gives a 95% confidence bound. Various other
values of £ and the corresponding confidence levels are as follows:
2 .5 .75 1 1.5 2 2.5

Conf Level ¥ 39 53 63 78 86 92.
For large enough £, the ellipse becomes tangent to the y-axis and the upper
bound of the extremum is infinite. For still larger values of £, the ellipse
intersects the y-axis and the solutions of the necessary conditions do not
give the extrema, the confidence bounds for the ratio. Figure 2 shows an
ellipse that intersects both axes. Plainly, no rays from the origin are
tangent to this ellipse. This means there are no finite extrema and,
consequently, the necessary conditions are meaningless. A necessary
condition for an extremum problem is valid if an extremum exists. However,
an extremum may not exist as shown by Figure 2. The closer is M to the
origin, the smaller the £ that can give confidence bounds on the ratio. This
is reasonable. Thus if one of the means is close to zero, one cannot hope to
obtain confidence bounds for the ratio. In case extrema do exist for a
suitably chosen value of £, they can be found by solving the following

equation:




FiGuRE 2
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(8) (B /o) (X = pY) + (/o )(Y - pX) + ¢ = 0

together with (3) for pairs (X, Y). Equation (8) comes from the necessary
conditions (6) and (7) by eliminating the Lagrangian multiplier. It is a
valid equation provided the tangents do bracket the point estimate given by
the ratio of the means, the coordinates of M. The bounds are given by

(%) z=(p +X Ux)/(#y + ¥ ay)-

The relation between £ and the confidence level B is

(10) B=1-e% <>~ log(l -B). (Uspensky, p.312)

Now s py, o and ay directly refer to the estimated reduced form

regression coefficients and their standard errors., The correlation between

=0o Joo

the errors of the estimated coefficients across equations is p .
Xy Xy. Xy

Let

(11) s; - E(¢%), sﬁ - E(n%), and S¢, = B(E )

so that these are the variances and covariances of the residuals of the

reduced form equations. Let ml1 refer to the leading element of Z'Z_l where

Z'Z is the moment matrix of the exogenous variables.

11 B 11 1
(12) o, SS Jm o, = Squ Ty = 0 ssn.
Therefore,
(13) [

= § 5.5 .
Xy En/ £y
The correlation between the errors of estimate of regression coefficients

equals the correlation between residuals of the reduced form regressions.
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3. The Results

The results in this section assume there are no specialized inputs used
to produce the agricultural commodities. The firms producing these
commodities can use their resources to produce several commodities. Hence no
estimate of K appears in the reduced form regressions for corn, cotton,
Douglas fir, eggs, potatoes or wheat. However, Section 5, the appendix,
reports results using acreage harvested as a proxy for specialized inputs
for corn, cotton, potatoes and wheat. K does appear as an exogenous variable
for cement and electricity.

The results of testing hypotheses about the deflator are in Table 1. If
the demand and MITC equations were homogenous of degree zero in the nominal
price and the GPI, and if the CPI were the correct deflator for nominal

consumption then c1+c2=0 and dl+d2=l. Table 1 shows the actual sums, the F-

ratios and the probability of getting these or larger F-ratios on the
hypothesis that the sums do equal 0 and 1 respectively. In all but 4 cases
these hypotheses can be rejected decisively. In two cases the probabilities
of getting F-ratios at least as large as the actual values are as much as
about .8 - the c¢'s for cotton and the d's for cement., It is only for
potatoes that the results are consistent with the hypotheses about the

deflators with high probability.
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Table 1

Tests of Hypotheses about the CPI Deflator

Commodity cqte,= d1+d2=1
Corn

Sum 0.479 0.487
F-ratio 28.201 10.249
Prob 0.000 0.002
Cotton

Sum -0.037 0.757
F-ratio 0.091 1.739
Prob 0.764 0.014
Wheat

Sum 0.453 0.605
F-ratio 34.500 5.105
Prob 0.000 0.027

Sum 0.564 -0.366
F-ratio 14,670 3.487
Prob 0.005 0.067
Eggs

Sum -0.232 0.546
F-ratio 14,581 18.615

Prob 0.00032 0.0000
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Potatoes

Sum 0.0533 0.9078
F-ratio 0.955 0.293
Prob 0.332 0.590
Electricity

Sum -0.141 1.536
F-ratio 15.994 26.203
Prob 0.000 0.000
Cement

Sum 1.067 0.969
F-ratio 26,300 0.062

Prob 0.000 0.804
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Table 2 gives the two point estimates of bl' the reciprocal of the

supply elasticity, and confidence bounds. In every case, the confidence band
does bracket the point estimate so that the extremum problem used to derive
the confidence bands does have a unique solution. For the 6 agricultural
products, 4 of the pairs of point estimates are positive and two pairs,
cotton and eggs, are negative. However, the upper value of the 95%
confidence bounds for cotton exceeds 6 and the upper value of the 86%
confidence bound for eggs is about 3.5 so that the confidence bounds for

both these estimates cover zero. A value of zero for bl means an infinitely

elastic supply. Hence the results for cotton and eggs are consistent with an
infinitely elastic supply for these two commodities. Even though the point

estimates of bl for potatoes and Douglas fir are both positive, like eggs

and cotton, the 95% confidence bands for Douglas fir and potatoes cover
zero. Hence like eggs and cotton these results are also consistent with an
infinitely elastic supply schedule for Douglas fir and potatoes. It is only
for corn and wheat that the confidence bands are well inside a positive
interval. However, even for these two commodities the lower bound of the
interval is not far from zero. It is reasonable to conclude, therefore, that
the supply schedule for corn and wheat is highly elastic albeit perhaps not
infinitely elastic. It should be noted that the high multicollinearity among

the exogenous variables raises the estimates of O and ay which in turn

widens the estimated confidence bounds.

The cement and electricity regressions include the same 3 explanatory
variables as the agricultural commodities and in addition include estimates
of the productive capacity of these industries. Hence there are 4 exogenous

variables for these regressions. The pairs of point estimates of b1 for
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these two commodities are negative indicating downward sloping Industry Unit
Total Cost curves for electricity and cement on the hypothesis that the
price approximates unit costs for these commodities. It is not possible to
compute 95% confidence bounds for electricity because the ellipse for both
ratio estimates intersects the y-axis. Table 2 gives a 53% confidence bound
{2=.75) for one of the point estimates and a 63% confidence bound (2 =1
for the other. Notice that the 95% bound for cement covers zero while the
86% bounds are negative. Hence these results support the hypothesis of a

downward sloping IUTC curve for both cement and electricity at fairly high

confidence levels.
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Table 2
Estimates of bl' Reciprocal of Supply Elasticity, and 95% Level Confidence

Corn
Point Est
Conf Bnds

1.624
0.375 6.194

Cotton
Point Est
Conf Bds

-2.426
-.33% 7.204

Douglas Fir
Point Est
Conf Bds

1.693
.802 3.342

Eggs
Point Est
Conf Bds

3.067
1.833 3.494%

dy/ey
1.503
270 6.157
22,671
- 402 6.092
0.645
-.677 2.382
-3.948

-16.539 -1.394

Potatoes
Point Est
Conf Bds

2.015
-.0462 4,994

7.370
-15.979 2.872

Point Est
Conf Bds

1.963
.558 5.588

2.321
.676 8.059

Electricity
Point Est
Conf Bds**

-3.254
-40.517 -.736

-6.271
-14.543  -4,088

Cement

Point Est

-.332
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Conf Bdst -1.372 .0350 -2.731 .0517
-1.008 .-.0236 -1.597 -.0192

* The first pair gives the 86% bounds (£=2) and the second pair the 95%
bounds.

#% The first pair give the 53% confidence bound (£ = .75) and the second
pair gives 63% confidence bound (f=1).

t The second line gives the 86% confidence bounds (£=2).
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Because the cement and electricity regressions include measures of
capacity, the model implies it is also possible to estimate the elasticity

of demand, al=c4/d , for these two commodities (see (2.3.4)). Table 3 gives

the point estimates and confidence bounds.

Table 3

Estimates of the Demand Elasticity, a), and Confidence Bounds

Commodity
Electricity 86% Confidence Bounds (.£=2)
Point Est -.891
Conf Bnd -.630 -1.622
Cement 63% Confidence Bounds (£=1)
Point Est -3.233
Conf Bnd -.364  6.546

Compared to most estimates of demand elasticities, these are fairly high.
Table 4 contains selected statistics for the reduced form equations

that are the basis of the results given in the three preceding tables.
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Table 4

Selected Statistics for the Reduced Form Regressions

Commodity Coefficients* Correlation R2
{(Standard Errors) of Residuals
Dependent
Variable I YN H K
Corn
Q -.255 .734 -1.598 -.529 .859

(.240) (.188) (.419)

P -.705 1.192 -2.402 .756
(.424) (.332) (.739)

Cotton
Q 432 -.472 .980 111 .154
{.329) (.258) (.574)
P -.387 1.145 .980 .766

(.489) (.383) (.853)

Douglas Fir
Q -2.059 1.693 -3.055 .173 436
(.380) (0.322) (0.782)

P -2.302 2.866 -1.972 .950
(.716) (.605) (1.473)

Eggs
Q -.5748  .3430 .6895 .6113 .872
(.1661) (.1352) (.3211)
P -.5056 1.0518 -2.7220 .798

(.2877) (.2343) (.5562)
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Potatoes
Q -.2919 .3452 -.2987 -.4858 . 803
{.1451) (.1138) (0.2531)
P L2122 .6856 -2.2014 734
(.4528) (.3551) (0.7900)
Wheat
Q -.214 .668 -1.293 -.102 L8905
(.202) (.158) (.352)
P -.705 1.311 -3.001 .723
(.464) (.364) (0.811)
Electricity
Q -.298 . 157 -.728 1,225 -.559 .999
(.142% (.123) (.325) (.095)
P 2.047 -.511 4.565 -1.374 .928
(.422) (.364) (.9653) (.281)
Cement
Q -.244 1.311 -4.051 . 909 .299 .915
(.416) (.338) (1.301) (.304)
P 1.404 - 435 1.630 -.281 .939

(.246) (.200) (2.122) (1.566)
* The regressions also include constant terms but since these
coefficients and their standard errors play no role in the analysis they are

not shown in the table.
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It must be noted that the estimated serial correlation of the residuals
is fairly high especially for the price regressions. Therefore, it would
seem to be possible to improve the efficiency of the estimates by
transforming the data in order to remove this serial correlation. However
there are good reasons for not doing this. Some of the time series have
gaps. There is no complete series for nominal consumption or income prior to
1929 and data are missing for these variables for almost every other year in
the sample from the starting point to 1929. It would greatly reduce the
degrees of freedom to do the usual transformations in order to remove the

serial correlation of the residuals.

4. Conclusions
A necessary condition for a nonempty core is that the Marginal Industry
Total Cost Function is not above the Industry Unit Cost Function. A
sufficient condition for this is that the Marginal Industry Total Cost be
infinitely elastic. In the case of the 6 agricultural commodities the
hypothesis of an infinitely elastic supply lies well within the confidence
bounds of the point estimates. For electricity and cement the point

estimates of b1 are negative. If the price approximates unit cost in these

industries, it follows that unit costs are a decreasing function of output
indicating the presence of nondecreasing returns to scale. This would also
mean that marginal cost pricing would fail to cover total cost and that a
neoclassical competitive equilibrium could not exist for these two

industries although there is an implication of a nonempty core for cement

and electricity.
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5. Appendix
1.Equilibrium with Uncertainty about Demand and Cost Conditions
A brief description of the economic theory underlying the empirical
estimates is given here. It is an extension of a theory more fully described
in (Telser,1978, chap. 3). The function B(q,v) defines the ex post monetary
benefit from a rate of consumption q. The variable v denotes a random

disturbance affecting the demand. B is expressed as follows:

q

It may be regarded as the area under the demand curve b(.). The Industry

Total Gost Function, G{q,k,u) is defined as follows:

q
2) cta.k,w) = [ geek,wae,

in which u is a random disturbance and k represents the inputs that must be
chosen ex ante. For instance, u includes the effects of the the weather. The
function g(.) stands for the marginal industry cost. Assume that the random
variables u and v are independent. Let ¢ and ¥ denote their respective
probability density functions. The ex post net benefit is

(3) ¥ = B(q, v} - G(q, k, u).

It is the net benefit after the realization of the random variables u and v.

The ex ante net benefit is the expected value of v, namely

(&) E(y) = I Y ¥{(v) ¢(u) du dv.

The optimal q maximizes the ex post net benefit in (3) so it is an implicit
function of u, v and k. Conditional on the optimality of the ex post q, the
optimal k maximizes the ex ante net benefit (4). Therefore the optimal k
depends on the parameters of the pdf’s for u and v but not on the actual

realizations of the random shocks. In other words, k, the fixed inputs, is
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optimal for the long run while q is optimal for the short run. To show how g
can be optimal if it is subject to random shocks requires a closer look at
the ex post equilibrium.

The current output is not entirely at the mercy of random effects,
Although the Industry Total Cost Function is subject to random disturbances,
firms can partially offset these by choosing appropriate levels of thosze
inputs they can vary in the short run. For instance, inventories of the
final product serve this purpose. After the realization of the random
variables u and v, the price adjusts so that the quantity purchased equals
the marginal benefit. Formally, the ex post net benefit is a maximum with
respect to q if q satisfies the following equation:

5 B -G =0.
(3) q 9

Let p denote the price. Equation (5) asserts there is an optimal equilibrium
if

6 =B =G,
(6) P a q

Assume that the price always satisfies (6) so that the quantity is always
optimal ex post. If the fixed inputs, k, are optimal, there is an ex ante
equilibrium given by the first-order conditions for maximizing the expected

net gain as follows:

(7) I{[Bq —Gq]aq/ak - Gk}¢ ¢ du dv = 0,
By virtue of (5), this reduces to

(8 IGk P ¢ du dv = 0.

Hence the equilibrium value of the fixed inputs must satisfy (8). Note that
k does not depend on the actual value of q, u or v and instead it depends on

the parameters that determine the pdf’s of u and v together with the
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parameters of the demand function. The latter enter via the dependence of

the ex post equilibrium value of q on the demand conditions as shown by (5).
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2. Necessary Conditions for a Nonempty Core
This section sketches those results that are pertinent for the material

in the text about the status of the industry's core. Let t denote an n-

vector in the nonnegative orthan of R". The coordinates of t are nennegative
real numbers that represent how many persons of each of the n types belong
to the grand coalition. Let f(s) be the function giving the return that a

coalition s € t can assure itself under the most adverse conditions. There

is a nonempty core if a y exists capable of satisfying the two conditions as

follows:
n .
(1> yt-= Ei=1yiti = f(t);
(2) y s > £(s) for all s: 0 < s < t.

We seek conditions on f so that it will admit a nonempty core for arbitrary

nonnegative t in R". This means f is to be totally kind (for more
information about kind characteristic functions see Telser, 1978, sec.4.4
and 1987, chap. 4, prt. 1, sec. 5).

Wherever f has a gradient it is straightforward to show that ¥y can
satisfy the core constraints (1) and (2) for arbitrary t only if

(3 y < th(t).
It follows that t y = f(t) <t th(t) . The latter inequality is equivalent

to superhomogeneity of £. A function f is said to be superhomogeneous if for

all » > 1,
(4) £(at) > x £(¢).

Hence at any t where the gradient of f exists, inequality (4) is equivalent

to
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(5) t th(t) > £(t).
These results apply to an industry that makes m different products. Let
Bi(qi) denote thé benefit a type i person obtains from a bundle of m goods

given by the coordinates of the m-vector ql. The total cost to the coalition
t of furnishing its members with the total of the m goods given by Q =
Zitiq1 = t q is given by the function G(Q). This total cost function
corrsponds to the Industry Total Cost Function. The optimal [ql} for the
coalition t maximizes the following expression:

(&) t B(q) - G(Q).

By definition, this maximum equals f(t). Ignoring nomnegativity conditions

i, . . i .
on q , innocuous in the present treatment, the optimal q must satisfy the
following first-order necessary condition:

(7) VqB(Q) - VoG(Q) = O.

Q
The optimal q is an implicit function of t by virtue of (7).
To derive the necessary condition for a nonempty core in this case we

need the gradient of

(8) £(t) = max {t B[q(t)] - G(Q)}.
{q)

with respect to t.

I

V.E(E) = B + VB (dg/dt) - VG (dQ/dt)

Q

and

dQ/dti q + t, dq/dti.

Therefore,

€V E(®) - € B+ €[V B - V,Cl(dg/de) - Q Vo8

=t B - QY
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=tB-6+G-QVg

= f(t) + G - Q V.G.

Q
According to (5), for a nonempty core it is necessary that
(9) t th(t) -f=6G6G -Q VQG > 0.
However,
(10) G(Q) > Q V6

is true for arbitrary Q if and only if G is a subhomogeneous function of Q.

This completes the proof of the following

PROPOSITION. The core of the industry is nonempty only if the Industry Total
Cost Function 1Is subhomogeneous.

This Proposition gives a necessary condition for a nonempty core under
very weak restrictions on B and G. If each benefit function is an increasing
concave function of q, so that the demand functions are downward sloping,
and if the cost function G is convex in Q then subhomogeneity of the cost

function is alse sufficient for a nonempty core. (Telser, 1987, chap.4, prt.

3,sec.2, prop. 1).
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3. Estimates of the Model for 4 Agricultural Commodities with Acreage
Harvested as an Exogenous Variable

Suppose we take the acreage planted of a commodity as a proxy for the
fixed inputs used to produce it. Although acreage planted may be more
closely correlated to the relevant fixed inputs than is acreage harvested,
figures on planting are not available for as long a period as acreage
harvested. Hence in order to have as long a time series as possible, let us
use acreage harvested as representative of the fixed inputs instead of
acreage planted. Sometimes acreage harvested is considerably smaller than
acreage planted owing to adverse weather conditions. Output is more closely
correlated, though certainly not perfectly correlated, to acreage harvested
than it is to acreage planted. Acreage planted varies less over time than
does acreage harvested. This is shown by the fact that the standard
deviation of acreage planted is smaller than of acreage harvested (Figures
3-14 show high correlations between plantings and harvestings). However, in
addition to the fact that data giving acreage harvested are available since
1866 and for a much shorter period for acreage planted, there is one
advantage in favor of acreage harvested, the acreage harvested figures are
probably more accurate than the acreage planted figures.

Even granting that it may be better to use acreage planted as a proxy
for the specialized fixed inputs, it must be admitted that producers can
choose which crop to raise from among several alternatives. Few inputs are
specialized to one crop. Perhaps the only specialized input is the total
agricultural cropland and it may impose only a weak constraint on the
production of a particular commodity. This means there are good reasons for
omitting entirely any variable to represent specialized inputs for a single

crop. Nor is this all. Figures 3 - 14 show upward trends in the production
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of corn, cotton, potatoes and wheat while there are downward trends in the
acreage harvested. Therefore, what may be the most specialized of the
inputs, land, has become increasingly less important during the sample
period as less specialized inputs replace it perhaps largely in response to
Federal programs in agriculture.

Having said all this, as Table 5 shows , the point estimates of bl are

not much affected by the addition of the variable the log of acreage
harvested. The main effect of introducing this variable is to widen the

confidence bounds on the point estimates of b1 because the standard errors

of the estimated coefficients tend to increase. Probably this is as a result

of the greater multicollinearity among the explanatory variables resulting

from the addition of acreage harvested. Note that although the R2 for cotton
is much higher with the addition of acreage harvested, there is little

effect on the estimates of bl' In particular the point estimates still

bracket zero as is the case in Table 2.

The pertinent statistics for the regressions are in Table 6. Consider
the regressions with P as the dependent variable. For these regressions, the
coefficient of acreage harvested is nearly zero relative to the estimated
standard error. These coefficients do not furnish a basis for reasonable
estimates of the demand elasticity for these 4 commodities. Not only are the
point estimates implausible but also the confidence bands are of very little
use. These results differ considerably from those for cement and electricity
in which it is found that the coefficients of capacity imply a reasonable
estimate for the demand elasticity. Therefore, the estimates of capacity for
cement and electricity probably lie closer to the correct figures than is

true for the 4 agricultural commodities. It is, therefore, plausible to
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conclude that acreage harvested is either not a good proxy for the
specialized inputs or that the specialized inputs of the 4 agricultural

commodities are of little quantitative importance.

Table 5
Estimates of b1 the Reciprocal of the Supply Elasticity, for Corn, Cotton,

Potatoes and Wheat from Regressions that Include Acreage Harvested

Commodity d2/c2 d3/c3
Corn

Point Est 1.112 1.473

Conf Bnds 0.189 3.172 0.252 5.372
Cotton*

Point Est 4,289 -4.518

Conf Bds 1.746 152.2 -1136 -1.776
Potatoes

Point Est 1.006 5.529

Conf Bds -0.3780 3.392 0.8422 153.19%*
Wheat

Point Est 1.682 2.282

Conf Rds 0.000 131876 0.000 280475

* The bounds for cotton are at the 63% level (£=1).
*% These bounds are at the 88% level (£ = 2.1).

Table 6 contains selected statistics for the reduced form equations

that are the source of the results given in Table 5.
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Table 6
Selected Statistics for the Reduced Form Equations
Commodity Coefficients* Correlation R2
(Standard Errors) of Residuals
Dependent
Variable Il YN H Hvt
Corn
Q -.827 1.08s -1.620 .833 -.588 .883
(.272) (.199) (.385) (.233)
P -.736 1.208 -2.386 L0621 . 755
(.528) (.386) (0.746) (.452)
Cotton
o] -.543 .316 .602 .739 .0443 .552
(.275) (.217) (.424) (.0997)
P -.646 1.354 -2.721 .193 .769
(.557) (.440) (.860) (.202)
Potatoes
Q -.6850 .6751 -.3973 L4184 -.6670 .899
(.1167) (.0928) (.1834) (.0546)
P L2314 L6795 -2.1966 -.0205 734
(.5082) (.4041) (.7982) (.2378)
Wheat
Q -.656 .859 -1.268 .631 -.393 .947
(.163) (.122) (.268) (.0886)
P -1.066 1.446 -2.892 .572 .743

(.480) (.359) (.789) (.261)
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Notes

* 1 am grateful to Yair Mundlak for helpful comments on the preceding
draft of this paper. Scott Lyden assisted me by gathering some of the
figures. The Center for the Study of the Economy and the State helped
support this research.
1. For an excellent survey of the various estimates of supply elasticities
for agricultural products and a history of the problem, see Mundlak (1985).

Nerlove (1957) is a well known source for estimates of supply schedules
for agricultural commodities. His model attempts to explain acreage planted
as a function of the expected price of the commodity planted. However,
acreage planted is an input and in the standard theoxy the equilbrium input
is at the level where the expected value of its marginal product equals its
price. In this case the price is an imputed rental of the land. A supply

schedule ought to relate gutput to the product price, not an input such as

land.
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