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ABSTRACT

This paper studies induced factor growth and factor biases
associated with measures of accumulated knowledge. These measures are
indicators of stocks of academic science. We find strong evidence for
biases of knowledge towards capital input, especially equipment, and
also towards labor quality. The bias runs against labor quantity,
particularly blue collar labor, consistent with the view that human
capital is more valuable in a technically driven economy. Our results
suggest a lag of 20 years in order for the peak effects of academic
research on inputs to take place.

We argue that knowledge stimulates mainly capital formation at
the aggregate level, estimating that annual growth in capital is 3%
higher because of knowledge. This amounts to a 0.6% higher annual
growth rate of output stemming from the induced growth of inputs.
Combined with previous estimates of the effects on multifactor
productivity in Adams (1990), our results suggest that academic
science increased growth in aggregate output by about 1% per year.
This is one third of total growth during the postwar era.

Useful comments on earlier versions were offered by John Bound,
Lawrence Kenny, Paul Romer, and Sherwin Rosen. The paper also )
benefited from presentations at University of Chicago, University of
Florida, and the 1989 Summer Meetings of the Econometric Socilety,
University of Michigan. Brenda Brinton, Debasis Pal, and Nathan
Waisman helped process the data. Adams received support for this
research from the ASA/NSF/BLS Senior Fellows program and f;om the
center For the Study of the Economy and the State, University of
Chicago.




I. INTRODUCTION

This paper studies the relationship between changes in factor
demands and changes in technology arising out of fundamental
knowledge. A strong assumption underlying our thinking about this
relationship is that technology and knowledge are treated as
critically dependent on academic science, at least in a 20th century
context. Our paper has two main concerns.

The first is with the connection between xnowledge, growth in the
demand for factors, and growth accounting. In a classic article Sclow
(1957) found that residuals imputed from production function estimates
accounted for a large proportion of output growth. Despite early
recognition that the residuals amount to ignorance concerning the
black box of production, there has been a tendency to identify the
residuals with technology. This tendency underliies recent efforts to
improve measurement of factors. The most spectacular of these is
Jorgenson, Gollop, and Fraumeni (1987), where the residual diminishes
sharply after changes in factor quality are taken into account. Does
this mean that knowledge or technology is less important as a source
of growth? An answer of yes indicates neglect of technology’s role in
factor demand.

The identification of technology with the residual is inaccurate
because factor demands are partly driven by technology, and because
the residual consists of other causes of growth besides technology

(Morrison 1986; Baltagi and Griffin 1988; Bernstein and Nadiri 1989).
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In effect we can break up the impact of knowledge into direct effects
on the residual and indirect effects on factor demands. This
decomposition is a guiding principle of our paper.

our second concern is with the biases generated by knowledge.
Knowledge typically raises the demand for inputs since incomes rise
over time. However its bias is probably in favor of higher quality
inputs because these embody scarce knowledge (for an example see
Horowitz and Sherman [1980]). Several studies have shown that input
quality does rise over time. Schultz (1961) and Becker (1975) studied
the rising stock of skills per worker from the perspective of human
capital. Denison (1962) and Griliches and Jorgenson (1967) are
landmark studies in growth accounting which demonstrated improved
factor quality over time. Kendrick (1976) confirmed a pronounced
deepening of human and physical capital per head. Jorgenson, Gellop,
and Fraumeni (1987) showed that rising labor and physical capital
quality accounted for much of U.S. growth since World War II.

Previewing the outcome of our investigation, we find that
knowledge is biased in favor of capital, especially equipment. We find
similar, very powerful effects on labor guality but on average
knowledge is mildly labor saving. Factor saving is more pronounced for
blue collar labor, which declines sharply with the growth of
knowledge. The effects of knowledge on input growth are more expansive
in high technology industries than elsewhere. Finally, at the
aggregate level knowledge appears to stimulate growth at the rate of
0.5% per year holding multifactor productivity constant. Combined with

the direct effects on productivity of 0.5% per year obtained in Adams
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(1990), science appears to have been responsible for annual growth of
1%, or one third of postwar economic growth in the United States.

Until now formidable problems of measurement have made it
impossible to study the link between knowledge and input growth
despite the inherent interest of the topic. We overcome these
difficulties by adopting estimates of the formation of academic
science that first appeared in Adams (1988, 1990).

We employ two sets of production data. The first is that
developed by Jorgenson, Gollop, and Fraumeni (1987). In our analysis
of their data we study growth in the quantity and quality of labor,
physical capital, and intermediate goods. Our second data set, from
the Bureau of Labor Statistics, consists of distinct categories of
labor and capital in two digit manufacturing industries. We study
growth in two categories of physical capital, eguipment and all other,
and two categories of labor, white and blue collar workers.

Each set of data has its advantages and disadvantages. The data
generated by Jorgenson and associates express growth in capital,
labor, and intermediate goods in convenient summary form. But their
summary nature conceals important details of technical change. The BLS
data are able to capture these details since equipment, for example,
probably embodies more technical change than other capital.
Nevertheless, the discrete categories omit important dimensions
relevant to factor productivity. To take just one case, the white and
blue collar distinction misses the rise in skills within each group.

The rest of the paper explores the twin themes of factor growth

and factor bias originating in knowledge. In Section IT we present our
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decompoéition of the growth effects of knowledge. Section III
discusses important new data on the accumulation of knowledge and
describes the new variables. Estimates based on our two data sets are
reported in Section IV. Section V draws implications for sectoral and
aggregate growth. The final section is a summary and outline of

additional research.

II. ANALYTICAL FRAMEWORK

A. Growth Accounting Considerations

Besides the direct effects of knowledge on productivity growth we
have noted the indirect effects on factors. Indirect effects operate
through growth eguations for factors because to a first order
approximation, factor growth rates predict the explained growth in
output. Since knowledge influences growth in factors, the size of the
indirect effects can be compared with the direct effects of knowledge
on productivity (Adams 1990). Such comparisons are carried out in
Sections V and VI.

The contrast between the direct and indirect effects of knowledge
is sharpened by the following approximation to sectoral output growth

M
(1) Ding= v+ kElakD.Enzkt+ BNe -1,

in which DZnqgg is the percentage change in output, ~ is disembodied
growth, the o; are cost shares, DInz,, is the percentage growth in

input i, By is the effect of knowledge on multifactor productivity
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growth, and N _, 1s knowledge. Notice that 4y and N, _, can be
specified as a vector when knowledge is heterogeneous, a feature that
we exploit in Sections IIT and IV. Table 1 is a glossary of terms.

Now append linear equations in rates of growth of factor demand,

(2) Dﬂnzkts "th—L+.

. pkiDﬂn(sit/pt)+ Sxt, (k= 1...M)

1

h o~

in which T is the factor-specific effect of knowledge on growth in
the kth input, 4, is the effect of the ith input price on growth in
Zygr D£n(sit/pt) is the real rate of growth in the ith input price,
and the x, are shift factors. The factor growth equations (2) can be
thought of as slopes of factor demand trajectories. Section II.B shows
that (2) is based on several Taylor‘’s Series expansions.

substitute (2) in (1) and take the partial derivative with

respect to knowledge. The result is

aDINg, _
N

(3)

I
1

aqu+ ﬂN.

-1, 1=1

The first term on the right of (3) is the indirect effect of knowledge
on explained growth while the second is the direct effect of knowledge
on productivity. Studies which link technology with the residual alone
neglect the indirect effect of knowledge: a weighted average of the
individual shift coefficients p,, where the weights are cost shares.

This paper is concerned only with the indirect effect.




TABLE 1

Glossary of Terms

Symbol Meaning

Panel A. Variables

EPVt, EVt expected present value of the firm

de output of the firm

Py price of output

Zy e kth input of the firm

Syt kth input price

Xy vector of shift factors

EX expected marginal benefit of kth input in

kt+1

the future

Ejt' Ly scientists in jth field, total scientists

KN, 1, total own knowledge stock in an industry

*

Ne 1 N opg weighted and unweighted own stocks of
knowledge per scientist

It R spillover knowledge stock

Panel B. Parameters
M number of inputs

L, R lags between absorption and application of
own and spillover knowledge

Cos Bij correlation between scientific workforces in
industries i and Jj; cosine of the angile
between their scientific workforces

(continued next page)




TABLE 1
(Cont.)
Glossary of Terms

Panel B.

“x
B

Pxi

Parameters(Cont.)
share of kth input in cost
discount factor
effect of knowledge on productivity
rate of disembodied growth
vector of shift effects
effect of knowledge on growth in the kth input

elasticity of growth in the kth input with
respect to the ith factor price

NOTE. all parameters are defined to be positive.




B. Behavior of Firms

Although the interpretation offered by (3) is convenient in its
separation of the direct and indirect effects of knowledge on growth,
it is (2) which makes this separation possible. We derive (2) below.

We make the following assumptions. Firms maximize expected
present value of net cash flow over an infinite horizon. Optimization
entails learning about science and technology, application of that
learning to R&D, and production of goods and processes embodying the
R&D. In this paper we avoid a separate R&D capital stock and enter
indicators of science directly into the production function. A
formulation of the firm’s learning activities emphasizing basic
science probably yields a more stable research function than an
approach based on R&D alone. This follows from the replenishment of
R&D payoffs by basic science in search-theoretic models of applied
research (Evenson and Kislev 1976).

Expected present value is

M

_g 5 g _
(4) EV Et.zoﬁ [ Pevs9esy (kéoskt+jzkt+j)]'

t
J=

where E is the expectation at time t, 0<g<l1 is the discount factor,
pt+j is the price of output qt+j in period t+3j, and skt+j is the price

of input Zkt+j' The firm maximizes (4) using discounted Dynamic

Programming. Bellman’s equation for this problem is

(5) EV,= 2%
Kkt

M
t {[ ptqt_(iélsktzkt)- 0 ﬁEvt+1}'
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the maximized sum of current cash flow and the discounted expected
vValue Function in period t+1, EV . 1- Assuming interior solutions for

the controls Zppr first order conditions required by (5) are:

Here qp. is the marginal product of Zye and Edp = E(avt+1/azkt) is
the effect of a current hire on the expected value of the firm next
period. Naturally that effect exceeds zero when inputs build physical,
human, and intellectual capital of the firm and hence future output.
The solution to (6) in terms of (2) is approximated as follows.
Divide (6) by j take logarithms, and first difference the result.

These operations yield

- 1
a( Sgt - P e+ ]
P 3
(7) En[l+ Aldye = in|1+ t t .
Oyt
Kt-1 l. ( Sit-1- 5 Pt

Pty Pga

Using the relation £n(1+ x)=z x for small x, (7) is approximately

- s _ EX
(8) Ding,= akDﬂn[ Kkt ] kaﬂn[ t+1 ],
Pe Py
where we employ the notation Dﬁnxts dxt/xt_l, and a, and bk are
assumed to be stable coefficientsl. The growth rate of marginal
product is on the left. We know this depends on inputs, knowledge, and

shift factors. Expanding in Taylor’s Series to the first order yields
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(9) Dingp.= 1ckiDﬂnzit+ ANy .+ ep¥ ¢,

Ie~1=

i
in which X.p 1S @ subset of Xy -
Growth of real future marginal benefit of z,, is the second term
on the right of (8). This too depends on inputs, knowledge, and shift
factors. Thus an expansion similar to (9) gives

M
EX
(10) Dﬂn[ t+1 ] .=lfkiD£nzit+ hth—L+ M Xy

Py i

It

in which X,p 18 another subset of X and Xq g U= Xy- Equation (2)

follows by direct substitution of (9)-(10) into (8):

he-1=

(2) DInzye= myNe p+

. {Dens; + 6X, . (k= 1...M)

*x t

1

Equation (2) is readily applied to industry level data once it is
interpreted as a system of factor demands by the average firm. For

notice that
(11) Dﬂnzkt= Dinz, .+ Dznnt, (k= 1...M)

where industry factor growth rates are on the left, the first term on
the right is given by (2), and D,ennt is the percentage change in the

number of firms n,, taken to be linear in factor prices and knowledge

luiDﬂnsit+ N, o,

[l -

(12) Dinn= .
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Equations (2} and (12) in (11) yield the system estimated in
Section IV?. But first we describe the empirical counterparts to the

knowledge Ny _1.-
III. INTERPRETATION AND DESCRIPTION OF THE KNOWLEDGE DATA

Data on factor quantities and prices used in this paper are
documented elsewhere (Jorgenson et al. [1987]; U.S. Department of
Labor [1983]). Thus we concentrate on the knowledge measures entering
(2), (11), and (12). Consider the contents of the Nt—L vector. The

foremost consideration is that the stock dimension of knowledge enter

the growth equations. Why should the stock influence growth, rather
than net investment, comprised here of new findings? In addition to
the publicness of knowledge, which grants it a longer life than its
creators (Romer 1990), we assert that older learning is useful to new
research. In this view it is partly the longevity of mathematics which
crowns it queen of the sciences and continually expands its domain.

Secondly we equate knowledge with academic science because of our
belief that fundamental work has been essential to nearly all major
technological advances in recent years (for a skeptical view see
Rosenberg [1982], Ch. 7). This assumption, so affirmative of the
importance of theory to practical concerns, is essential for the
sequel.

We assume that academic science affects industry in two distinct
ways. One way is through the own stock of knowledge acquired by an

industry. The other is through spillovers of knowledge from other
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industries. Spillovers entail the imitative behaviors stressed by
Rosenberg (1976) and Schmitz (1989). Again we emphasize gtocks because
both o0ld and new knowledge are useful for growth.

The own and spillover stocks of knowledge used in this paper are
index numbers based on interactions by field of science between
industry scientists and stocks of academic papers. A key assumption
justifies the index numbers: that the scientific paper is a unit of
theoretical innovation just as a patent is a unit of applied
innovation. Although individual pépers vary widely in value, the mean
is reached with small error in large samples3. Advantages offered by
stocks of scientific papers are that they represent basic science
rather than development; that they cover a wide range of sciences;
that they are available soconer than their main competitor, R&D
expenditures, permitting tests of long lags in effect; and that they
are more exogenous than R&D, given their world-wide <=<ope.

The definition of the total own stock of knowledge acquired by an
industry is

F

in which Ejt is the employment of scientists in field j and the th
are article count stocks in field j, both at time t. According to (13)
the size of the science labor force in a given field captures the
relevance of that science to an industry. The test of relevance is a
telling one in economics: the willingness to pay for a resource.

The definition requires the distributions of both industrial
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scientists and stocks of scientific papers. The industrial
distribution of scientists by field and industry is taken from U.S.
Department of Labor (1973), National Science Foundation (various
years), and unpublished National Science Foundation tabulations4. An
appendix explaining collection procedures is available on request.

The article count stocks are obtained as follows. Raw data on
scientific papers are drawn from major abstracting journals in the
nine science fields in Table 2. These provide world-wide flows of
publications over the periods listed in the table. Flows are
accumulated into stocks at social rates of obsolescence ranging from 1
through 25 percent in 2 percent intervals. Stocks of depreciated
scientific papers in fields from agriculture through physics are the
result. Weighting the stocks with the industrial distribution of
scientists yields (13). Further details of the realized stocks are
gathered for convenience in Table 3. Note the short lag on the
scientist weights: this is consistent with findings on brief
developmental lags in Griliches, ed. (1984). Much longer lags on
scientific papers are preferred by the data, consistent with sizable
gestation periods for the peak influence of fundamental research on
industry.

Unfortunately the employment of scientists in (13) is endogenous,

so we prefer the per scientist own stock of knowledge instead:

F
(14) N _,= (jzlzthjt_L)/zt,

or (13) divided by the total number of scientists in an industry.
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TABLE 2

Bibliographic Sources of the Article Count Data

Field of Science

Time Period

Source Index

Agriculture

Biology

Chemistry#*

Computer Science

Engineering,
Combined*

Geoclogy

1930-~1983

1918-1926

1827-1983
1907-1983
1957-1965
1966-1968
1969-1983%

1928-1983

1933-1983

Series is the Sum of article
counts derived from 10
British Abstracting Journals:

Review of Applied Entomology
Plant Breeding Abstracts
Herbjage Abstracts
Helminthological Abstracts
Animal Breeding Abstracts
Nutrition Abstracts
Rev] of A jed M (o)
Forest str s

ticu al acts
Soils and Fertilizers

Series is the sum of article
counts taken from 2 American
Journals:

Abst ts o c iolo
anical str s

Biological Abstracts
Chemic stracts

Science Abstracts,Sections 27-30

Contrel Abgtracts
C r _an ontr stract

Engineering Index

GeoRef

(continued next page)
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TABLFE 2
(cont.)
Bibliographic Sources of the Article Count Data

Field of Science Time Period Source Index
Mathematics and 1868-1942 Jahrbuch Uber Die Fortschritte
Statistics der Mathematik (Berlin)
1943-1983 Mathematical Reviews
Medicine 1879-1898 Index Medjcus, 1st Series
(1899) {interpolated)
1900-1902 Bibliographia Medica (Paris)
1903-1920 Index Medicus, 2nd Series
1921-1926 Index Medicus, 3rd Series
1927-1940 Quarterly Cumulative Index
Medicus
1941-1950 Current List of Medical
Literature
1951-1983%* Index Medicus, 4th Series
Physics* 1896-1983 Physics Abstracts
Notes. Annual counts are estimates obtained by random sampling, except
when marked by an asterisk. Indicates exact counts supplied by the

index or abstracting journal over the time pericd.
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TABLE 3

Definitions of Knowledge First Differences

Concept Formula Preferred Lags Industry Coverade
Total Own see (13) 1 year on scientist 18-19 2-Digit Industries
Knowledge in text weights; 0-20 years in Manufacturing

on scientific papers

Own Knowledge see (14) 1 year on scientist 18-19 2-digit Industries
Per Scientist in text share weights; 0-20 in Manufacturing

years on scientific

papers
Weighted Own see (15) 1 year on scientist 18-19 2-digit Industries
Knowledge Per in text share weights; 0-20 in Manufacturing
Scientist years on scientific

papers; 1950 total
industry employment

weights
Spillover see (16) 1 year on scientist 18-19 2-digit Industries
Knowledge and (17) weights; 0-30 years in Manufacturing , 9
in text on scientific papers sectors outsideb
Manufacturing

NOTES. Preferred lags are best fitting in the regressions below. Share
weights for own knowledge are the fraction of scientists in an industry in
each of the following nine fields: agriculture, biclogy, chemistry,
computer science, engineering, geology, mathematics and statistics,
medicine, and physics. Scientific papers are similarly classified, as in
Table 2. Note that the spillover omits engineering. 4" rhe manufacturing
industries are food and kindred, textiles, apparel, lumber, furniture,
paper, printing, chemicals, petroleum, rubber and plastics, stone, clay,
and glass; primary metals, fabricated metals, machinery, except electrical;
electrical equipment, automobileg, other transportation equipment,
instruments, and miscellaneocus. The nine sectors outside manufacturing
are mining, construction, transportation, communications, public utilites,
finance and services, federal government, state and local government, and
colleges and universities. Note that coverage of own knowledge is limited
by the regression sample and is less than coverage of the spillover.
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The weights applied to the article count stocks th—L in (14) are
shares in the science labor force of an industry. This improves on
(13) since the share weights are more exogenous than employment.
our final and favored definition of own knowledge multiplies (14)
by the 1950 employment of scientists in each industry 1, in order to

capture the technological intensiveness of an industry:

*
(15) Ny 1= 2N _;.

Notice that the 1950 employment weights used in this third definition
of own knowledge are initial conditions since they precede the 1951~
1979 period of our study. We prefer (14) and (15) to (13) given the
exogeneity of knowledge per scientist.

our definition of spillovers follows Jaffe (1986):

N

(16) I, _p= j¢i§j=lcOseinth_R,

where Kth-R is given by (13) and Coseij is the cosine of the angle

between the scientific employment vectors in industries i and j,

F

kélgikﬂjk
(17) Cosé, .=
1]
F 2 F 2 1/2
(L 23 (L 2]

Coseij measures the similarity of the science employment vectors
for industries i and j. As any two vectors become more similar, (17),

which is bounded between 0 and 1, approaches 1. Equation (16) gives
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the spillover stock as the weighted sum of the knowledge stocks of
other industries, where each is computed according to (13). Note lag R
in (16): we expect that R>L, since interindustry spillovers must first
be absorbed as own knowledge, with lag L, and then acquired by other
industries, with lag R-L>0. Note that the spillover purposefully omits
engineering in order to increase the sensitivity of the cosine weights
to differences in industry employment. This concludes our discussion
of data sources and data construction.

Figures 1 to 3 graph the raw data on scientific papers and the
derived knowledge stocks. To convey an idea of the article count data
before weighting according to (14)-(17), Figure 1 presents yearly
averages of stocks and flows of articles across the nine fields of
Table 2. Stocks and flows are contemporaneous in this graph. Not
surprisingly flows of scientific papers fall sharply during both World
Wars, and the rise in stocks temporarily ceases.

Figure 2 graphs own stocks of knowledge per scientist in an
industry weighted by ﬂo as in (15). Here the count data are lagged 20
years and depreciated at 13 percent since these parameter values fit
best in the regressions. Recall that own Knowledge is an average of
stocks of scientific papers; then its path is determined by the past
behavior of stocks of academic research and by assumptions concerning
lags in effect. To show that lags matter we present three variants of
own knowledge in Figure 2. The slowest growing assumes a uniform 20
year lag in effect of science. The fastest growing assumes a 10 year
lag for technology and a 20 year lag for basic science. Actual

declines occur in Figure 2. This follows from the assumed lags, the 13
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Source: See eg. (14) and the text.
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per cent depreciation rate, and the decline in academic science during
World War IT.

Interindustry spillovers defined according to (16) are depicted
in Figure 3. Again three variants are shown. The pattern is one of
rapid growth until 1971, decline until 1976, and recovery thereafter>.
In assessing the decline of spillovers during the 19708 one should be
aware of an additional factor which was absent in Figure 2. Since
spillovers are partly determined by the size of science workforce in
other industries, their path is determined by industrial scientific
employment as well as lags, obsolescence, and past science. In fact
employment of scientists seems to have declined sharply during most of
the 1970s (National Science Foundation [1981]) and this is the main
reason for the spillover’s decline through 1976. Given the long lags
noted above, the slowdown in science employment during the 1970s may
follow from the slowdown in basic science during World War II. This

concludes the presentation of the new data.

IV. EMPIRICAL RESULTS

A. Findings from the Jorgenson, Gollop, and Fraumeni Data

Descriptive statistics are shown in Table 4. According to rows
1-3, guantities of capital and intermediate goods grow more rapidly
than labor’s. The reverse holds for prices in rows 4-6 since wages
appreciate more rapidly than other input prices. The story told by the
standard deviations and the extremes of input quantity and price

growth agrees with previous research on relative factor adjustment
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(Nadiri and Rosen [1973]), since capital growth varies less than other
input growth but capital price growth varies more. The BLS data tell a
very similar story in the next five rows.

Turning to the final three rows we see that weighted own
knowledge is larger and more variable than its unweighted counterpart.
That pattern reflects multiplication of knowledge per scientist by
1950 industrial scientific employment in the weighted case. By either
definition the spillover is considerably larger, 10 times larger even
than the weighted definition of own knowledge. This follows from the
wider coverage of the spillover, average values of the cosine weights
of about 0.5, and its definition in terms of current scientific
employment rather than the 1950 weights applied to own knowledge (see
Table 3). Current employment is considerably larger given the rapid
growth of scientific personnel during this time.

Tables 5-6 present regression findings on the pooled Jorgenson
data. These consist of triplets of input growth rates for 19
industries over the period 1951-1979. Table 5 reports results for
unweighted and weighted own stocks of knowledge defined according to
(14) and (15). A very specific lag structure is employed in this
Table. Lags in effect of own knowledge are assumed to be 0 years for
computer science, 10 years for engineering, and 20 years for basic
science. Corresponding spillover lags are 0 years for computer science
and 30 years on basic scienceG. Later on in Table 6 we experiment with
other lags. T-statistics in all the regession tables are corrected for

heteroskedasticity using the method of Halbert White (1980).
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TABLE 4

Variable Mean Standard Minimum Maximum
Deviation
Jorgenson, Gollop,
and Fraumeni Data:
Percentage Growth in
Input Quantities
Physical Capital 0.040 0.05 -0.14 0.33
Labor 0.016 0.07 -0.24 0.49
Intermediate Goods 0.039 .11 -0.54 0.57
Percentage Growth in
Deflated Input Prices
Physical Capital -0.023 0.20 -0.97 1.23
Labor 0.015 0.02 -0.05 0.07
Intermediate Goods -0.006 0.02 -0.12 0.06
BLS Data:
Percentage Growth in
Input Quantities
Equipment 0.040 0.03 -0.04 0.17
All other capital 0.038 0.04 -0.19 0.27
White Collar Labor 0.026 0.04 -0.11 0.25
Blue Cecllar Labor 0.007 0.07 -0.23 0.23
Materials 0.037 0.08 -0.31 0.30
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TABLE 4
{(cont.)
Descriptive Statistics

Variable Mean Standard Minimum Maximum
Deviation

Knowledge Stock Data:

own Knowledge_Stock
Per Scientist

Weighted 28.1 30.6 2.0 150.1
Unweighted 1.8 0.7 0.4 3.9
Spilleer Knowledge
Stock 308.6 160.9 50.3 665.7

NOTES. Number of observations is 551 in the Jorgenson data, 522
in the BLS data. Statistics are drawn from the sample of 18-19
industries defined in Table 2 over the period 1951-1979. See text
for sources of the knowledge data. a Weighted own knowledge per
scientist is defined by (15) of the text; unweighted own
knowledge per scientist is defined by (14). Assumed lag on the
underlying article counts is 20 years on basic sc%ence, 10 years
on engineering, and 0 years on computer science. Definition of
the spillover is given by (16) and (17). Note that engineering is
omitted from the spillover. Lag assumed on the underlying article
counts is 30 years for basic science, 0 years for computer
science.on the inputs.
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Turning to the results in Table 5, notice that we include
the log of each input lagged once as a check for adjustment
costs. Lagged capital stock is significant but other lagged
inputs usually are not, consistent with greater adjustment costs
for capital. For the purpose of later calculations we report the
knowledge coefficients to a higher degree of accuracy in 5.1-5.3
than elsewhere. Weighted own knowledge has a nearly identical
effect across 5.1-5.3. Unweighted own knowledge favors labor and
intermediate goods in 5.4-5.6, but differences are insignificant
in a test for equality of the coefficients across equations (F=
0.56, F .= 3.00)7. Weighted own knowledge enters more
significantly than unweighted knowledge.

Cross-equation differences are greater for interindustry
spillovers. In both sets of equations the spillover is capital-
using, but saving in labor and intermediate goods. This
difference is significant at the 1% level in 5.1-5.3 (F=8.63) and
5.4-5.6 (F=9.26)8. The input growth equations in Table 5 include
growth in real factor pricesg. Own price effects, with the
exception of labor, are usually negative as one would expect from
a demand curve. Later we discuss attempts to take the many errors
and biases associated with factor prices into account, but few of
them made much difference to the findings reported here.

We introduce several shift variables for macroeconomic
events. Controls for the composition of product and factor demand

are the trade surplus, the surplus of the federal government, and
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TABLE 5

Jorgenson, Gollop, and Fraumeni Data
(Asymptotic T-statistics in Parentheses)

Variable or Equation
Statistic Int. Int.
Capital Labor Goods Capital Labor Goods
5.1 5.2 5.3 5.4 5.5 5.6
Constant 0.015 0.060 0.132 -0.002 0.016 0.082
(0.9) (1.9) (2.4) (-0.1) (0.5) (1.4)
LOg(Zyy_q) -0.012 -0.012 -0.014 -0.009 -0.001 -0.007
(-4.8) (-2.1) (-1.6) (-3.4) (-0.3) (-1.0)
Own Knowledge
Per Scientist
Weighted 0.336E~3 0.319E-3 0.295E-3
(5.1) (3.1) (1.7)
Unweighted 0.9E-2 1.2E-2 1.5E-2
(3.1) (3.5) (2.6)
Spillover 0.715E-4 -0.675E-4 -0.690E-4 0.5E-4 -0.9E-4 -0.9E-4
Knowledge (3.9) (=2.1) (-1.2) (3.0) (-2.9) (-1.6)
Stock
% Growth in
Factor Price:
Capital -0.07 .11 0.17 -0.07 0.11 0.17
(-6.4) (6.5) (6.0) (-6.4) (6.6) (6.0)
Labor -0.03 0.04 0.54 -0.03 0.02 0.52
(-0.3) (0.2) (1.8) (-0.3) (0.1) (1.8)
Int.Goods 0.09 0.11 -0.42 0.08 0.08 -0.44
(1.2) (1.2) (-2.3) (1.1) (0.9) (-2.5)

(continued next page)



25

TABLE 5
(cont.)
Input Growth Equations, 1951-1979
(Asymptotic T-statistics in Parentheses)

Variable or Equation
Statistic Tne. Int.
Capital Labor Goods Capital Labor Goods

5.1 5.2 5.3 5.4 5.5 5.6

Shift Factors:

Trade Surplus 1.02 -0.94 -2.02 0.88 -1.14 =-2.25
(3.0) (-1.9) (-2.3) (2.5) (=2.4) (-2.6)

Federal Budget 0.39 0.31 0.82 0.41 0.35 0.90

Surplus (2.6) (1.2) (2.0) (2.6) (1.3) (2.1)

Defense Share 0.28 -0.51 -1.02 0.25 -0.52 -0.99
(2.1) (-2.4) (-3.9) (1.9) (-2.4) (=2.8)

Capacity 0.01 0.05 0.05 0.02 0.07 0.08

Utilization (2.2) (4.7) (2.2) (4.4) (4.7) (3.5)

Real Energy

Price:

Growth Rate 0.63 -0.72 ~-2.46 0.68 =0.63 =-2.36
(1.9) (-1.1) (~2.3) (2.0) (-1.1) (-2.2)

Growth Rate -0.78 0.83 3.08 -0.85 0.72 2.96

xCapacity (-2.0) {1.1) (2.5) (=2.1) (1.1) (2.4)

Utilization

Adjusted RZ 0.254 0.185 0.160 0.231 0.188 0.164

F 16.6 11.4 9.8 14.8 11.6 10.0

NOTES. Number of observations is N=551. * r-statistics are computed using
White’s (1980)_heteroskedasticity-consistent standard errors for the

coefficients. Assumed lags are 0 years on Bomputer science, 10 years on
engineering, and 20 years on basic science. Assumed lags are 0 years on

computer science and 30 years on basic science. Engineering is omitted from
the spillover.
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defense expenditures. All are expressed as shares of Gross National
Product. Secondly we include a set of business cycle controls: the
Federal Reserve index of manufacturing capital utilization, growth in
real energy price, and the interaction between real energy price and
capacity utilization.

How should the controls be interpreted? Consider compositional
shift variables first. National income accounting implies that the
trade surplus equals domestic saving minus investment when the
government surplus is held constantlo. State and local governments
operate in approximate budget balance so the overall government
surplus is held constant along with the federal surplus. Since the
trade surplus captures abundance of domestic saving in these
circumstances, we expect it to promote capital formation. Support for
this view is offered by 5.1 and 5.4. Another interpretation is that
trade surpluses are associated with more capital intensive
manufacturing. This is consistent with declines in labor and
intermediate goods as the trade surplus rises. Partly reflecting its
cyclical component, the sign of the federal budget surplus is positive
and significant in Table 5. Turning to the defense share we observe a
bias towards capital much like the trade surplus. This suggests that
defense promotes capital intensive methods and industries.

Next consider the cyclical controls. Capacity utilization
captures upturns, so we expect the more rapid growth of factors in
Table 5 as utilization rises. Growth of real energy price is a shock
effect (Griliches 1988), yet regressions 5.1 and 5.4 show that it

Promotes capital growth. Increased replacement demand for capital
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caused by changes in energy price may produce this finding. On this
interpretation, capital replacement conceals the disruptive effects
noticeable for labor and intermediate goods. Finally, turn to the
interaction of capacity utilization and energy price growth. The
effect on capital is significantly negative in 5.1 and 5.4 but
positive elsewhere. Cyclical peaks seem to attenuate capital
replacement due to energy shocks. Conversely, cyclical peaks dissipate
real energy price disruptions to labor and intermediate goods.

Table 6 reports sensitivity tests. Since the controls behave very
similarly in the two tables, only knowledge coefficients are reported.
We use the weighted definition of own knowledge given by (15). Panel A
shortens lags in the effect of basic science. We reduce the lag on
basic science to 10 and 20 years in the definition of own and
spillover knowledge. As in Table 5 lags on academic technology
(computer science and engineering) remain at 0 and 10 years. While the
results are similar, own knowledge is generally weaker in these
equations. This suggests a lag in the peak effect of basic science of
20-30 years. The lag structure agrees closely with the analogous
structure for productivity (Adams [19%90]).

Panel B of Table 6 extends the 20-30 year lags on basic science
to academic technology. Longer lags on technology fit capital growth
about as well as shorter ones: compare 6.1 of Panel B with 5.1. Longer
lags also make little difference in the labor and intermediate goods
equations. Therefore, the peak lag in effect of technology is probably
on the order of 10 or more rather than 0 years.

shift variables matter strongly to the results we have reported.
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Panel C drops all controls except lagged inputs and price growth. The
lag structure in Table 5 is retained: 0-10 years on technology, 20-30
years on basic science. Findings are quite different though knowledge
generally stimulates growth. Surprisingly, its bias turns in favor of
intermediate goods. In our opinion the results without shift factors
are less meaningful than the others. The amplitude of the business
cycle rises, international competitiveness erodes, and defense
spending declines during an expansion of knowledge in the 1970s. None
of this implies diminishing returns to science, but much of it seems
to bear on capital formation and other growth.

Panel D studies growth in factor quality: the difference between

11. We observe

price-weighted and unweighted growth in inputs
significant positive effects on labor quality of own and spillover
knowledge but insignificant effects elsewhere. The findings on labor
quality are consistent with evidence that new technclogy increases the
demand for highly educated labor (Bartel and Lichtenberg [1987]). The
findings on capital and intermediate goods quality are inconsistent
with this view. The negative evidence may reflect more accurate
measurement of labor quality.

One somewhat troubling implication of Tables 5 and 6 relates to
labor input. The negative effect of the spillover dominates the
positive effect of own knowledge at sample means: on average knowledge
reduces labor (see Table 8 below). This is consistent with
observations of successful plant retoolings made by the MIT Commission

on Industrial Productivity (Dertouzos, Lester, and Solow [1989]).

Still, knowledge may be saving in the type of labor prevalent in the
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1970s, but not saving of the more skilled labor force about to enter
during this period. This second view is consistent with the positive
effect of knowledge on labor quality. Since the decline in the science
work force during the 1970s represents an aberration from the norm,
perhaps even data error, those years are dropped from panel E. The
negative sign of the spillover essentially disappears. In all candor
however, this negative sign reappears if lags in effect of knowledge
are shortened, so the experiment is not an unqualified success.

We carried out many other checking procedures. We implemented the
collinearity diagnostics of Belsley, Kuh, and Welsch (1980), but found
only slight evidence for collinearity, largely confined to energy
price and its interaction with capacity utilization. We checked for
division error bias between input quantity and price growth by
regressing current input growth on 3 year moving averages of input
prices. Since results were unchanged, division error bias was not the
source of the negative own price coefficients in Table 5. Also we
corrected for endogeneity of factor price growth by estimating a six
equation system consisting of all three inputs and all three input
prices. Our method was Three Stage Least Squareslz. However these
results failed to reverse the positive sign of wage growth in the
labor equations. For the same reason we added growth of the civilian
labor force to the labor eguations in order to control for supply
changes, but that too had little effect on the estimates.

This concludes our discussion of the Jorgenson data.
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TABLE 6
Input Growth Equations, 1951-1979:

Specification Experlments
(Asymptotic T-Statistics in Parentheses)

Variable or Equation
Statistic
Capital Labor Intermediate
Goods
6.1 6.2 6.3

Panel A. Experiments with shorter lags on basic science: lag=10
on basic science in own knowledge, lag=20 on basic science in
spillover knowledge.

Weighted 0.2E-3 0.2E-3 0.2E-3
Own Knowledge (4.7) (3.0) (1.8)
Per Scientist

Spillover 0.2E-4 -0.6E-4 -0.8E-4

Knowledge (1.2) (=-2.0) (-1.3)

Stock

Panel B. Experiments with uniform lags on all sciences and
technology: lag=20 on own knowledge, lag=30 on the spillover.

Weighted 0.4E-3 0.3E-3 0.3E-3
own Knowledge (5.2) {2.8) (1.6)
Per Scientist

Spillover 0.7E-4 -0.8E-4 -0.8E-4
¥nowledge (3.8) (=-2.7) (-1.3)
Stock

Panel C. Experiments without shift variables. Specification of
lags is exactly as in Table 5.

Weighted 0.3E-3 0.5E-3 0.4E-3
Own Knowledge (4.7) (4.5) (2.8)
Per Scientist

Spillover -0.2E-5 -0.8E-5 7.1E=5
Knowledge (-0.2) (-0.5) (2.1)
Stock

(continued next page)
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TABLE 6
{(Cont.)
Input Growth Equations, 1951-1979:
Specification Experiments *
(Asymptotic T-statistics in Parentheses)

Variable or Equation
Statistic
Capital Labor Intermediate
Goods
6.1 6.2 6.3

Panel D. Experiments with pure factor quality: lags are exactly
as in Table 5.

Weighted 0.1E-4 0.4E-4 -0.0E-4
Own Knowledge (0.3) (3.9) (-0.5)
Per Scientist

Spillover -0.1E-5 0.9E-5 0.1E-5
Knowledge (-0.1) (2.4) (1.1)
Stock

Panel E. Experiments with sample period: years 1971-1976 are
omitted. Lags are exactly as in Table 5.

Weighted 0.4E-3 0.4E-3 0.4E-3
Own Knowledge {5.1) {(3.5) (2.1)
Per Scientist

Spillover 8.5E-5 ~-0.9E-5 -0.0E-b
Knowledge (3.9) (-0.3) (-0.0)
Stock

NOTES. Number of observations is N=551 except for Panel E, where
N=437.
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B. Findings from the Bureau of Labor Statistics Data

Table 7 records results from the BLS data. Again we restrict
reported coefficients to the knowledge stocks since the controls
behave similarly to Table 5. In these data own knowledge is biased
towards capital rather than labor and intermediate goods. To interpret
this, recall that labor growth equals unweighted growth in hours of
work in the BLS data. Thus quality as defined in Tables 5 and 6 is
omitted from these results. Since labor quality increases strongly
with own Knowledge, this may explain the weaker relationships between
knowledge and labor growth in Table 7.

The spillover is the second point of comparison between Tables 5
and 7. Spillover knowledge has a more negative effect on the two forms
of labor in Table 7 than before, again consistent with an omitted
guality story. Note that the spillover increases capital growth but
decreases labor growth just as before. There is little effect of
knowledge on intermediate goods.

The contribution of Table 7 lies in comparisons between
categories of inputs. In 7.1 we observe powerful effects of knowledge
on capital equipment coming especially from the spillover. At sample
means the combined effects are sufficient to dwarf those for any of
the other inputs (see Table 8, Panel B)13. This is a hint that
equipment embodies many of the technical advances in other industries.

Spillover knowledge is also less biased against white collar
labor than blue collar. On average knowledge shifts the composition of

the labor force towards white collar workers, as one would expect14.
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TABLE 7

Input Growth Eguations, 1951-1979
Bureau of Labor Statistics Data
(Asymptotic T-statistics in Parentheses)

variable or Equation

Statistic Equipment Other Wh. Collar Bl. Collar Int.
Capital Capital Labor Labor Goods

7.1 7.2 7.3 7.4 7.5

Weighted 0.27E-3 0.34E-3 0.18E-3 0.18E-2 0.14E-2

Own Knowledge {7.3) {5.6) (3.0) (2.5) (1.6)

Stock per

Scientist

Spillover 0.7E-4 0.1E-4 -0.7E-4 -1.3E-4 -0.8E-4

Knowledge (5.6) (0.8) (-4.3) (-5.0) (-2.3)

Stock

Adjusted R2 0.258 0.301 0.438 0.510 0.411

F 14.0 17.06 30.0 39.8 27.0

NOTES. Number of observations is N=522. The sample covers 18 industries and

29 years. Motor vehicles and other transport equipment are combined in

these data.

T-statistics are computed using White’s (1980)

heteroskedasticity-consistent standard errors for the coefficients.
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V. INTERPRETATION OF THE FINDINGS

Table 8 collects the major findings of this paper. It reports
imputed effects at means in which imputations are products of means
and regression coefficients. Panel A records imputed effects from the
Jorgenson data, where the source is regressions 5.1-5.3. Panel B
records imputations from the BLS data, regressions 7.1-7.5. Throughout
our verbal discussion emphasizes the combined effect of own and
spillover knowledge. Table 8 provides added details.

Panel A reveals that input growth proceeds most rapidly in high
technology industries. This relationship is monotonic across subpanels
1-3, reflecting the relative size of own knowledge in high technology

and other industries15

. Consider Subpanel 2, which records imputations
for the full sample. Combined effects of knowledge on capital, labor,
and intermediate goods growth are 3.1%, -1.1%, and -1.3%, though
negative effects are rarely significanth. Therefore knowledge is
capital using rather than labor or intermediate goods saving.

Panel B summarizes imputations from the BLS data. Again these
rise monotonically from low to high technology samples. The Kkey
difference between Panels A and B lies in the statistical significance
of the negative effects of knowledge on labor input. Blue collar labor
is hardest hit, undergoing significant decline due to knowledge in
each of subpanels 1-3. White collar labor declines also, yet its rate
of decline is just half that of blue collar labor in the full sanple,

-1.8% compared with -3.6%. Since labor quality is omitted these

results are downward biased. But the great decline in blue collar
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TABLE 8

Estimated Contributions of Knowledge to Input Growth,

. . . *
(T-Statistics in Parentheses)

1951-1979

Estimated Contribution of:

Sample,
Factor of
Production own Spillover Combined
Knowledge Knowledge Knowledge
Panel A. Jorgenson, Gollop, and Fraumeni Data®
1. Low Technology Subsampleb
Capital 0.0021 0.0209 0.0230
(5.1) (3.9) (4.2)
Labor 0.0023 -0.0197 -0.0174
(3.1) (-2.1) (=1.8)
Intermediate 0.0020 -0.0202 -0.0182
Goods (1.7) (-1.2) (-1.0)
2. Full Samplec
Capital 0.0090 0.0221 0.0311
(5.1) (3.9) (4.8)
Labor 0.0094 —-0.0208 -0.0114
(3.1) (-2.1) (-1.0)
Intermediate 0.0083 -0.0213 -0.0130
Goods (1.7) (-1.2) (-0.6)
3. High Technology Subsample
Capital 0.0168 0.0218 0.0386
(5.1) (3.9) (5.2)
Labor 0.0177 -0.0206 -0.0029
(3.1) (-2.1) (-0.2)
Intermediate 0.0156 -0.0210 -0.0054
Goods (1.7) (~1.2) (-0.2)

(continued next page)
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TABLE 8
{cont.)
Estimated Contributions of Knowledge to Input Growth
at Means, 1951-1979
(T-Statistics in Parentheses)

Estimated Contribution of:
Sample,

Factor of
Production own Spillover Combined
Knowledge Knowledge Knowledge

Panel B. BLS Datae

1. Low Technology Subsampleb

Equipment 0.0018 0.0208 0.0226
(7.3) (5.6) (5.9)

Other Capital 0.0023 0.0042 0.0066
(5.6) (0.8) (1.2)

White Collar 0.0012 -0.0218 -0.0206
Labor (3.0) (-4.3) (-4.0)

Blue Collar 0.0012 -0.0393 -0.0381
Labor (2.5) (-5.0) (-4.8)

Intermediate 0.0009 -0.0243 0.0232
Goods (1.6) (2.3) (-2.2)

2. Full SampleC

Equipment 0.0079 0.0220 0.0299
(7.3) (5.6) (7.0)

Other Capital 0.0102 0.0045 0.0147
(5.6) (0.8) (2.4)

White Collar 0.0052 -0.0230 -0.0178
Labor (3.0) {(-4.3) (-3.1)

Blue Collar 0.00562 -0.0415 -0.0363
Labor (2.5) (-5.0) (-4.1)

Intermediate 0.0041 -0.0256 -0.0216
Goods (1.6) (=2.3) (-1.9)

(continued next page)
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TABLE 8
(cont.}
Estimated Contributions of Knowledge to Input Growth
at Means, 1951-1979
(T-Statistics in Parentheses)

Estimated Contribution of:

Sample,
Factor of
Production own Spillover Combined
Knowledge Knowledge Knowledge
Panel B. BLS Data(cont.)e
3. High Technology Subsampled
Equipment 0.0195 0.0218 0.0413
(7.3) (5.6) (8.1)
Other Capital 0.0252 0.0044 0.0296
(5.6) (0.8) (4.0)
White Collar 0.0128 -0.0227 -0.0099
Labor (3.0) (-4.3) (-1.4)
Blue Collar 0.0128 -0.0410 -0.0282
Labor (2.5) {(-5.0) (-2.8)
Intermediate 0.0101 -0.0254 -0.0153
Goods (1.6) (-2.3) (-1.2)

OTES. Number of observations is N=551 in Panel A, N=522 in Panel B.

Contributions are the products of the mean knowledge stocks and the
regression coefficients. T-statistics are the mean contributions
divided by their standard errors. See the text for definitions of the
staBdard errors. Source is the regression triplet 5.1-5.3 of Table
5. Low technology subgample consists of food, textiles, apparel,
lumber, and furniture. Full sample consists of all manufacturing
industries in the data that could be matched to our science data. Note
that tobacco and leather products are omitted, and that, in the
Jorgenson data, transportation is broken into motor vehicles and other
transportation equipment. Thus there are 19 2 diqitdindustries in the
Jorgenson data, and 18 industries in the BLS data. High technology
sample consists of instrumgnts, transportation equipment, chemicals,
and electrical equipment. Source is the set of regressions 7.1-7.5
of Table 7.
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labor is no artifact. Rather it confirms a growing sense that
education is essential in a technically driven economy.
Remaining patterns are by now familiar: the induced growth of
equipment is the largest of any input, followed by other capital.
Intermediate goocds are saved by knowledge, but this effect is often

insignificant.

Vi. SUMMARY AND CONCLUSTONS

A number of conclusions can be drawn from these findings.
Knowledge seems to be biased towards capital input, especially
equipment. It is biased towards labor quality and against labor
quantity, particularly blue collar employment. Knowledge shifts the
economy towards high technology industries and inputs. It is a
powerful mover of the entire structure of production.

At the aggregate level the indirect effect of knowledge on
output, attributable to induced input growth, seems to be comparable
to the direct effect on productivity. This can be seen as follows.

Evaluation of the indirect effect depends on the elasticity of
aggregate factor supplies. Let aggregate labor supply be perfectly
inelastic, so that knowledge effects the real wage rather than output.
Then the effects of knowledge on output due to labor growth are
approximately zero. Also, changes in intermediate goods cancel out at
the level of the whole economy.

Then to a first approximation, only the effects of knowledge on

capital remain to be considered in assessing the indirect effects on
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aggregate output. Let the aggregate supply of capital be perfectly
elastic. Evaluated at means for the full sample of manufacturing
industries, Table 8 implies that capital grows 3% faster as a result
of knowledge17. Now, the average share of capital in cost is
approximately 0.2 in manufacturing. It follows that the indirect
contribution of knowledge to output is about 0.6% per year. This
estimate is conservative since wages probably rise and capital goods
prices probably fall due to knowledge. In Adams (1990) the estimated
effects of knowledge on productivity cluster around 0.5%. Thus, if
manufacturing is at all representative, then the effects of knowledge
on capital are comparable with the direct effect on productivity, and
the combined effect on annual growth in output is roughly 1%. This is
a sizable contribution, about a third of postwar economic growth in
the United States.

In the next stage of our research we shall study the complex
linkages between academic science and industrial R&D. It is just
possible that the deep problem of the connections between the many
facets of research-- academic, governmental, and industrial-- and the
still deeper question, of the connection between research in all its
forms and the growth that we have experienced, will eventually be

illuminated by this approach.
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FOOTNOTES

It is readily seen that the coefficients a, and b, are

Skt-1 be Wt
ay= Py_; b= dzye_
Sxt-1 + bE SVt Sxt-1 + bE V¢
Py_q dZpe-1 Py_q dZpe—1

Thus, in the text we are taking a, and b, to be independent of time.
2 This is a dynamic approach to factor demand based on different
approximations than Nickell (1986). Note the difference in emphasis
from the production function approach in static modelling of factor
demand (Hamermesh [1986], Jorgenson[1986]): most are intractable in a
dynamic context.

3 a failing of the count data is that citation weights measuring
cross-field differences in influence do not presently exist. Adams
(1990) discusses many other details of measurement.

4 We are indebted to Michael Crowley and Keith Wilkinson of NSF for
advice concerning the data on scientists.

> Figure 3 shows two series that are virtually identical until 1970:
the spillover with a uniform lag of 30 years applied to basic and
computer science, and the spillover with the same 30 year lag except
for a lag of 0 on computer science. The two series are identical until

1970 because of the insignificant employment in industry of computer

scientists until later in the 1970s.
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% The spillover deliberately excludes engineering in order to increase

sensitivity of the cosine weights to industry differences in fields of
science. See Section III.

7 The 95 percent F value reported in the text has degrees of freedom
(f1,£2)= (2,1614) and is approximated by F, ..

8 When the own knowledge coefficients are restricted to be equal
across the three equations and the spillover coefficients are forced
to be separately equal, then the F statistics for 5.1-5.3 and 5.4-5.6
are 4.52 and 4.86, both significant at the 1% level.

% Real input price growth equals growth in the nominal input price
less growth in the GNP deflator.

10 gince aggregate expenditure is C+I+G+X and aggregate income is
C+S+T+M, then I+G+X= S+T+M, and X-M= S-I-(T-G). Here C is consumption;
I, G, and X are investment, government spending, and exports; and S,
T, M are saving, taxes, and imports. When the budget surplus T-G is
held constant, the trade surplus X-M equals S-I, or domestic saving
minus investment.

11l Growth in factor quality amounts to relative growth of higher
valued classes of inputs within the three input categories. Mean
growth of labor, capital, and intermediate goods quality in the sample
is 0.45%, 0.56%, and 0.02% respectively.

12 The 3sLs system satisfied both rank and order conditions for
identification. In the case of the factor growth equations, the system

was the same as Table 5. In the case of the factor price growth

equations, the specification included industry dummies, productivity
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growth, industry input growth (endogenous), and other industry input
growth of the factor whose price growth is at issue. Besides these
variables, growth in the labor force affected growth of wages, and the
change in the savings rate affected growth of capital and intermediate
goods prices.
13 own knowledge coefficients on the two forms of capital are not
significantly different. The Chi-square statistic for the difference
in the log likelihoods is 1.26, so one cannot reject equality.
Corresponding statistics for equality of spillover coefficients and
for equality of the two sets of coefficients separately are 7.66 and
11.08. Cross-equation equality is rejected at the 1% level.
14 Differences in own knowledge coefficients in the two labor
equations are again insignificant, Chi-square=0.42. Differences in the
spillover coefficients are again significant, yielding corresponding
statistics of 8.78 and 8.80.

In additional runs we tested the influence of knowledge on
indexes of white and blue collar education over the period 1959-1979.
We found a positive effect of own knowledge on white collar education
(t= 2.4), but an insignificant effect on blue collar education
(t=0.8). The spillover had no discernable effect on either index.

15 In the Jorgenson data own and spillover means for the high

technology, full, and low technology samples are 52.7 and 305.2; 28.1
and 308.6 ; and 6.7 and 292.3. Magnitudes are similar in the BLS data.
16 pormulas for the T-statistics reported in Table 8 are unchanged

from the source tables with the exception of the combined effects

listed in the third column. Their standard deviations are given by
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J §2Var(,6,,)+ 2CoVv( By, B:)* I_QVar(ﬂx)

Reported T-statistics are ratios of combined effects to the standard

deviations.

17 rhe indirect effects of knowledge on output at the sectoral level

are much smaller, approximately zero, since knowledge decelerates
labor and intermediate goods growth. But it is the aggregate level

which is relevant to a whole economy calculation.
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