Bühn, Andreas; Schneider, Friedrich G.

Working Paper
MIMIC models, cointegration and error correction: an application to the French shadow economy

CESifo Working Paper, No. 2200

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Bühn, Andreas; Schneider, Friedrich G. (2008): MIMIC models, cointegration and error correction: an application to the French shadow economy, CESifo Working Paper, No. 2200, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/26245

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
MIMIC MODELS, COINTEGRATION AND ERROR CORRECTION: AN APPLICATION TO THE FRENCH SHADOW ECONOMY

ANDREAS BÜHN
FRIEDRICH SCHNEIDER

CESifo WORKING PAPER NO. 2200
CATEGORY 1: PUBLIC FINANCE
JANUARY 2008

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
MIMIC MODELS, COINTEGRATION AND ERROR CORRECTION: AN APPLICATION TO THE FRENCH SHADOW ECONOMY

Abstract

The analysis of economic loss attributed to the shadow economy has attracted much attention in recent years by both academics and policy makers. Often, multiple indicators multiple causes (MIMIC) models are applied to time series data estimating the size and development of the shadow economy for a particular country. This type of model derives information about the relationship between cause and indicator variables and a latent variable, here the shadow economy, from covariance structures. As most macroeconomic variables do not satisfy stationarity, long run information is lost when employing first differences. Arguably, this shortcoming is rooted in the lack of an appropriate MIMIC model which considers cointegration among variables. This paper develops a MIMIC model which estimates the cointegration equilibrium relationship and the error correction short run dynamics, thereby retaining information for the long run. Using France as our example, we demonstrate that this approach allows researchers to obtain more accurate estimates about the size and development of the shadow economy.


Keywords: shadow economy, tax burden, regulation, unemployment, cointegration, error correction models, MIMIC models.

Andreas Bühn
Department of Economics
TU Dresden
01062 Dresden
Germany
andreas.buehn@tu-dresden.de

Friedrich Schneider
Department of Economics
Johannes Kepler University of Linz
4040 Linz-Auhof
Austria
friedrich.schneider@jku.at
1. Introduction

This paper presents a first attempt to econometrically improve the multiple indicators multiple causes (MIMIC) model in order to gather more precise information about the size and development of the shadow economy over time. Its main contribution is the first ever analysis of the cointegration of the shadow economy’s causes and indictors and the consideration of their long and short run relationships.

The shadow economy is still a controversial issue. Every day, many people around the world are engaged in black market activities. These people usually go underground in order to avoid taxation and save money as products and services are considerably cheaper. Policymakers are concerned about rising shadow economic activities because they weaken tax and social security bases. As a result, they may make ineffective policy decisions based on erroneous official indicators, which in turn give rise to crowding-out effects of official economic activity (Schneider and Enste, 2000). Economists focus on the shadow economy to improve economic theory. They also try to obtain accurate measures of the shadow economy for more effective formulation of economic policies. Specifically, the size and development of the shadow economy is a fundamental requirement. Our paper presents an improved estimation procedure that provides more precise figures than previous attempts to quantify the shadow economy.

Theoretical and empirical research in the field of shadow economics has gained much attention\(^1\). Although some progress has been made, it is still a difficult task because individuals engaged in such activities do not wish to be identified. Consequently, the estimation of the shadow economy becomes a scientific passion to know the unknown. Today, a variety of techniques has been employed to measure the size and development of the shadow economy. This includes direct approaches such as surveys and discrepancy methods as well as indirect methodologies like the transaction or the currency demand approach.\(^2\) Recently, the MIMIC model was derived as a special type of structural equation model with latent variables.\(^3\) It analyzes the covariance structures between observable cause and indicator variables to derive information about the relationship between them and an unobservable

---

\(^1\) See for example Schneider and Enste (2000 and 2002).
\(^2\) See Schneider and Enste (2000) for a reliable survey about diverse approaches.
\(^3\) The MIMIC model approach traces back to Weck (1983), Frey and Weck (1983), and Frey and Weck-Hannemann (1984) and was enhanced by Aigner et al. (1988).
latent variable. Because it is generally agreed that the shadow economy can be treated as a latent variable, the MIMIC model rightly supplements existing direct and indirect approaches. In contrast to the latter, its major advantage is that it differentiates between causes and indicators and, most notably, when estimating the shadow economy considers its various causes.

Often, MIMIC models are applied to time series data to derive estimates of the size and development of the shadow economy over time. As most macroeconomic variables do not satisfy the underlying assumption of stationarity, the problem of spurious regressions may arise. Researchers usually overcome this problem by transforming the time series into stationary ones, employing a difference operator. Alternatively, one could estimate an error correction model (ECM) if the variables were cointegrated and a stationary long run relationship existed between them. This approach has become popular in applied economics in recent years. The former approach, however, is still used in MIMIC model investigations of the shadow economy. The latter MIMIC model in first differences is referred to as the DYMIMIC model (Aigner et al., 1988). In the DYMIMIC model, on the other hand, the data’s long run information is lost if the variables are used in their first differences, albeit they are cointegrated. Retaining this information may help to improve estimates of the shadow economy. The authors are not aware of any study that tests for cointegration in the variables and makes use of their long run equilibrium relationships in a MIMIC model estimation.

The paper is organized as follows. Section 2 provides a short summary of the basics of cointegration and the error correction mechanism. The MIMIC model is presented in Section 3. Section 4 widens the traditional MIMIC model, allowing for cointegration of the variables, and presents the covariance matrices for the new model’s long run and short run equations. In Section 5 we employ our model to France and present the results. Section 6 concludes.

2. Cointegration and Error Correction Models

Empirical investigations in macroeconomics using time series data mostly involve variables that do not fulfill the assumed statistical properties. Specifically, they are not stationary and integrated to an order $d$ different from zero ($I(d), d > 0$). In the past, such variables were differenced to remove random walk and/or trend components and then analyzed using the Box and Jenkins method. The drawback of this approach is that valuable information about
the variables’ potential long run relationship is lost. Granger and Weiss (1983) later showed that two variables, $x_t$ and $y_t$, each I(1), may have a linear combination, $u_t = y_t - \beta x_t$, that is, I(0). We would normally expect the standard linear regression model’s error term, $u_t$, to be I(1). But if $u_t$ is still a white noise series, $x_t$ and $y_t$ are said to be cointegrated with the cointegration vector $[1,-\beta]$. Generally, the cointegrated relation between variables is interpreted as their long run equilibrium. This concept of cointegration immediately enjoyed great popularity because it finally introduced the equilibrium concept of economics to econometrics.

For any two cointegrated I(1) variables $x_t$ and $y_t$ with cointegration vector $[1,-\beta]$, we know that their first differences $\Delta x_t$ and $\Delta y_t$ as well as their long-run relation $y_t - \beta x_t$ are I(0). We can thus formulate the following equation:

$$\Delta y_t = \gamma \Delta x_t + \lambda u_{t-1} + w_t,$$

where $w_t$ is a white noise error term and all expressions are I(0). The residual $u_{t-1}$ is the one-period lagged equilibrium error of the cointegrated long run equation and is used as an error correction term in the dynamic, first difference regression of equation (1). Engle and Granger (1987) proved that this error correction model (ECM) is the data generating process of any two cointegrated variables $x_t$ and $y_t$ and that ECMs generate cointegrated variables.\(^4\)

Unlike the examination of the long run equilibrium, the ECM studies the relationship between the deviations of $x_t$ and $y_t$ from their respective long run trends. The expansion of equation (1) to the multivariate case where $y_t$ is a vector of variables that are individually I(1), and $x_t$ is a vector of variables containing a constant – variables that are assumed to be I(0) and where a time trend might also apply (Greene, 2007).

The concepts of cointegration and error correction enable researchers to study both the long run relationship between variables and the deviations from their respective long run trends and gather a better understanding of the economy’s major features. Before showing how to utilize the idea of cointegration in an analysis of structural equation relations, we briefly introduce the standard MIMIC model.

---

\(^4\) This class of models traces back to Sargan (1964), who introduced a model that retained long run information in a non-integrated specification for the first time.
3. The MIMIC Model

The MIMIC model explains the relationship between observable variables and an unobservable variable by minimizing the distance between the sample covariance matrix and the covariance matrix predicted by the model. The observable variables are divided into causes of the latent variable and its indicators. Formally, the MIMIC model consists of two parts: the structural equation model and the measurement model. The structural equation model is given by:

$$\eta_t = \gamma' x_t + \zeta_t, \quad (2)$$

where $x_t = (x_{1t}, x_{2t}, \ldots, x_{qt})$ is a $(1 \times q)$ vector of time series variables as indicated by the subscript $t$. Each time series $x_{it}$, $i=1,\ldots,q$ is a potential cause of the latent variable $\eta_t$. $\gamma' = (\gamma_1, \gamma_2, \ldots, \gamma_q)$, a $(1 \times q)$ vector of coefficients in the structural model describing the “causal” relationships between the latent variable and its causes. Since the structural equation model only partially explains the latent variable $\eta_t$, the error term $\zeta_t$ represents the unexplained component. The MIMIC model assumes that the variables are measured as deviations from their means and that the error term does not correlate to the causes, i.e. $E(\eta_t) = E(x_t) = E(\zeta_t) = 0$ and $E(x_t\zeta_t') = E(\zeta_t x_t') = 0$. The variance of $\zeta_t$ is abbreviated by $\psi$ and $\Phi$ is the $(q \times q)$ covariance matrix of the causes $x_t$.

The measurement model represents the link between the latent variable and its indicators, i.e. the latent unobservable variable is expressed in terms of observable variables. It is specified by:

$$y_t = \lambda \eta_t + \epsilon_t, \quad (3)$$

where $y_t = (y_{1t}, y_{2t}, \ldots, y_{pt})$ is a $(1 \times p)$ vector of individual time series variables $y_{jt}$, $j=1,\ldots,p$. $\epsilon_t = (\epsilon_{1t}, \epsilon_{2t}, \ldots, \epsilon_{pt})$ is a $(p \times 1)$ vector of disturbances where every $\epsilon_{jt}$, $j=1,\ldots,p$ is a white noise error term. Their $(p \times p)$ covariance matrix is given by $\Theta_\epsilon$. The single $\lambda_j$, $j=1,\ldots,p$ in the $(p \times 1)$ vector of regression coefficients $\lambda$, represents the magnitude of the expected change of the respective indicator for a unit change in the latent variable. Like the MIMIC model’s causes, the indicators are directly measurable and expressed as deviations from their means, that is, $E(y_t) = E(\epsilon_t) = 0$. Moreover, it is assumed that the error terms in the measurement model do not correlate either to the causes $x_t$ or to...
the latent variable $\eta_t$, hence, $\mathbf{E}(x_t\epsilon'_t') = \mathbf{E}(\epsilon_t'x_t') = 0$ and $\mathbf{E}(\eta_t\epsilon'_t') = \mathbf{E}(\epsilon_t'\eta_t') = 0$. A final assumption is that the $\epsilon_t$ do not correlate to $\zeta_t$, i.e. $\mathbf{E}(\epsilon_t\zeta'_t) = \mathbf{E}(\zeta_t\epsilon'_t) = 0$. Figure 3.1 shows the general structure of the MIMIC model.

![Fig. 3.1 General Structure of a MIMIC Model](image)

From equation (2) and (3) and making use of the definitions, we can derive the MIMIC model's covariance matrix $\Sigma$ (see Appendix A). This matrix describes the relationship between the observed variables in terms of their covariances. Decomposing the matrix derives the structure between the observed variables and the unobservable, latent variable, here, the shadow economy. The model's covariance matrix is given by:

$$\Sigma = \begin{pmatrix} \lambda(\gamma'\Phi\gamma' + \psi) + \Theta_{\epsilon} & \lambda\gamma'\Phi \\ \Phi\gamma\lambda' & \Phi \end{pmatrix},$$

where $\Sigma$ is a function of the parameters $\lambda$, $\gamma$ and the covariances contained in $\Phi$, $\Theta_{\epsilon}$, and $\psi$. Since the latent variable is not observable, its size is unknown, and the parameters of the model must be estimated using the links between the observed variables’ variances and covariances. Thus, the goal of the estimation procedure is to find values for the parameters and covariances that produce an estimate for $\Sigma$ that is as close as possible to the sample covariance matrix for the observed causes and indicators, i.e. the $x_t$s and $y_t$s. Now we extend this model to include the concept of cointegration.
4. The EMIMIC Model

4.1. The MIMIC Model and Co-integration

The first step in deriving the error correction MIMIC (EMIMIC) model is to put equation (2) into equation (3). This yields:

\[ y_t = \Pi x_t + z_t, \quad (5) \]

where \( \Pi = \lambda \gamma' \) and \( z_t = \lambda \zeta_t + \epsilon_t \). The error term \( z_t \) in equation (5) is a \( (p \times 1) \) vector of linear combinations of the white noise error terms \( \zeta_t \) and \( \epsilon_t \) from the structural equation and the measurement model, i.e. \( z_t \sim (0, \Omega) \). The covariance matrix \( \Omega \) is given as \( \text{Cov}(z_t) = \lambda \lambda' + \Theta_e \). Equation (5) is comparable to a simultaneous regression model where the endogenous variables \( y_{jt}, j=1,...,p \) are the latent variable \( \eta \)'s indicators and the exogenous variables \( x_{it}, i=1,...,q \) its causes. The application of cointegration theory to the MIMIC model is thus possible.

From Section 2 we already know that the presumption that every element \( z_j, j=1,...,p \) of \( z \) is a stationary white noise series is probably untrue if some of the causes and indicators \( x_{it}, i=1,...,q \) and \( y_{jt}, j=1,...,p \) are I(1) series. Thus, if \( x_t \) and \( y_t \) are vectors of I(1) variables, one would normally expect every linear combination \( y_{jt} - \pi_j x_t \) to be I(1), i.e. a trend over time. Here, \( \pi_j \) is the \( j^{th} \) \((1 \times q)\) row vector of matrix \( \Pi \) in equation (5); therefore, the \( j^{th} \) long run equilibrium error \( z_{jt} \) will also be I(1), which implies inconsistency in equation (5) of the model. On the other hand, we know that if a linear combination \( z_{jt} = y_{jt} - \pi_j x_t \) exists, where \( z_{jt} \) is I(0), the variables are said to be cointegrated (Engle and Granger, 1987). The vector \([1, -\pi_j]\), where \( \pi_j \) itself is a \((1 \times q)\) row vector, is a cointegration vector. Generally, since every linear combination \( z_{jt}, j=1,...,p \) consists of \( q+1 \) variables, there could be more than one cointegration vector – in principle up to \( q \) linearly independent cointegration vectors (Greene, 2007). If \( p \) indicators are I(1), the number of linearly independent cointegration vectors is \((p \cdot q)\).
Of course, not every macroeconomic variable is I(1): there may also be some I(0) time series. We therefore generalize the assumptions of the previous paragraph and denote these causes as a vector \( \mathbf{v}_t = (v_{1t}, v_{2t}, \ldots, v_{kt}) \). Equation (5) then becomes:

\[
y_t = \Pi x_t + Tv_t + z_t,
\]

where \( T = \lambda \beta' \) and \( \tau' = (\tau_1, \tau_2, \ldots, \tau_r) \) is the \((1 \times r)\) vector of coefficients of the I(0) variables in the structural relationship. Given that \( r \) of the causes are I(0), the dimensions of \( \Pi = \lambda \eta' \) and \( x_t \) are \([1 \times (q-r)]\) and \([(q-r) \times 1]\), respectively, and the dimensions of \( T \) and \( v_t \) are \((p \times r)\) and \((r \times 1)\), respectively. Consequently, if \( r \) of the causes are I(0), the maximum number of linearly independent cointegration vectors for every disturbance term \( z_{jt}, j=1,\ldots, p \) in equation (6) is \((q-r)\). Moreover, if \( s \leq p \) of the \( p \) indicator variables are also individually I(0), the maximum number of linearly independent cointegration vectors decreases to \((q-r)-s\).

### 4.2. Error Correction Representation of the EMIMIC Model

As equation (1) shows, every cointegration relationship has an error correction mechanism where the long run relationship leads to equilibrium and the short run relationship contains a dynamic mechanism (Engle and Granger, 1987). Thus, equation (6) can be written as:

\[
\Delta y_t = A \Delta x_t + T v_t + K z_{t-1} + w_t.
\]

where \( \Delta y_t = y_t - y_{t-1} \), \( \Delta x_t = x_t - x_{t-1} \), \( z_{t-1} = y_{t-1} - \Pi x_{t-1} \), and \( A \), \( B \), and \( K \) are coefficient matrices in this dynamic, short run model specification. Furthermore, in this specification \( A = \lambda a' \) is the \([p \times (q-r)]\) coefficient matrix of the first differences of the I(1) causes, and \( B = \lambda \beta' \) is the \((p \times r)\) coefficient matrix of the I(0) causes. The matrix \( K = \lambda \kappa' \) is the \((p \times p)\) coefficient matrix for the long run disequilibrium's error correction term and \( w_t \sim (0, \Omega) \) is a white noise disturbance.\(^5\) As long as \( x_t \) and \( y_t \) are vectors of I(1) variables, their changes will be I(0). Thus, every term in equation (7) – given that \( y_t \) and \( x_t \) in equation (6) are cointegrated, leading to \( z_t \) that is also individually I(0) – is I(0). Together, equation (6) and (7) define the EMIMIC model. Since the fundamental idea of the MIMIC model is to

---

\(^5\) Both separate equations of the MIMIC model in first differences are \( \Delta y_t = \lambda \Delta x_t + \epsilon_t \) and \( \Delta \eta_t = a' \Delta x_t + \beta' \nu_t + \kappa' z_{t-1} + \epsilon_t \). Putting the first equation into the second and using the definitions of \( A, B, K, \) and \( w_t \) gives, at first, \( \Delta y_t = \lambda a' \Delta x_t + \beta' \nu_t + \lambda \kappa' z_{t-1} + w_t \), and, finally, equation (7).
minimize the distance between the sample covariance matrix and the covariance matrix predicted by the model, the next step is to derive the underlying structural equation system, i.e. the covariance matrices of equations (6) and (7) for the EMIMIC model.

To begin, we define (6) in terms of $\Sigma$. Its general structure is:

\[
\Sigma = \begin{pmatrix}
\text{Var}(y_t) \\
\text{Cov}(x_t, y_t) & \text{Var}(x_t) \\
\text{Cov}(v_t, y_t) & \text{Cov}(v_t, x_t) & \text{Var}(v_t)
\end{pmatrix}.
\]

Next, we formulate this covariance matrix in terms of the observed variables as a function of the model parameters using the assumption established in Section 3 (see Appendix B). From this, it follows that:

\[
\Sigma = \begin{pmatrix}
\lambda(\gamma' \Phi_1 \gamma + 2\gamma' N \tau + \tau' \Phi_2 \tau) \lambda' + \Theta_e \\
(\Phi_1' \gamma + N \tau) \lambda' \\
(N' \gamma + \Phi_2' \tau) \lambda' \\
\Phi_1 \\
N' \Phi_2
\end{pmatrix},
\]

where $N := E(v_t x_t')$. $\Phi_1$ is the covariance matrix for the I(1) causes and $\Phi_2$ for the I(0) causes. For all other variables, the definitions introduced in the previous sections still hold. The covariance matrix of the short run error correction mechanism for equation (7) is:

\[
\Sigma = \begin{pmatrix}
\text{Var}(\Delta y_t) \\
\text{Cov}(\Delta x_t, \Delta y_t) & \text{Var}(\Delta x_t) \\
\text{Cov}(v_t, \Delta y_t) & \text{Cov}(v_t, \Delta x_t) & \text{Var}(v_t) \\
\text{Cov}(z_{t-1}, \Delta y_t) & \text{Cov}(z_{t-1}, \Delta x_t) & \text{Cov}(z_{t-1}, v_t) & \text{Var}(z_{t-1})
\end{pmatrix}.
\]

Taking $z_t \sim (0, \Omega)$ into account, defining $M := E(v_t \Delta x_t')$, and making use of the assumptions established, we can also derive the short run equation’s covariance matrix in terms of the model’s parameters and covariances (see Appendix C). Thus, the covariance structure of equation (7) is:

\[
\Sigma = \begin{pmatrix}
\lambda(\alpha' \Phi_3 \alpha + 2\alpha' M \beta + \beta' \Phi_2 \beta + \kappa' \Omega \kappa) \\
(\Phi_3' \alpha + M' \beta) \lambda' \\
(M \alpha + \Phi_2 \beta) \lambda' \\
\lambda(\psi' \lambda \kappa + \psi') \lambda' + \Theta_e \\
\Phi_3 \\
M \Phi_2 \\
0 \\
0 \\
\Omega
\end{pmatrix}.
\]

A closer examination of equations (8) and (9) and a comparison with the MIMIC model's covariance matrix in equation (4) shows the effect of cointegration. In contrast to the latter, the EMIMIC model's covariance matrix in (9) is adjusted by the long run equilibrium error term’s covariance matrix $\Omega$ and the error correction term's parameter vector $\kappa$. The further
modifications are needed to separate the I(0) and I(1) causes forming sub-matrices $(\Phi_3 a + M' \beta) \lambda'$, $(M a + \Phi_2 \beta) \lambda'$, $\Phi_2$, $\Phi_3$, and $M$. However, because $\Sigma$ is still a function of the model parameters $a$, $\beta$, $\kappa$, and $\lambda$, and of covariances, the estimation procedure ensures that an estimate for the EMIMIC model’s covariance matrix can be adapted. This model is now applied to estimate the size and development of the French shadow economy.

5. Applying the EMIMIC Model

5.1 The Concrete EMIMIC Model

Most analyses of the shadow economy come to the conclusion that tax and social security burdens and the intensity of regulation are the two main causes affecting the size and development of the shadow economy. Taxes affect labor-leisure choices and stimulate labor supply in the shadow economy since the greater the difference between the total cost of labor in the official economy and the after-tax earnings from work, the greater the incentive to avoid this difference and to work in the shadow economy. An increase in the intensity of regulations, such as trade barriers and labor restrictions for foreigners, reduces the freedom (of choice) for individuals engaged in the official economy and leads to a substantial increase in labor costs in the official economy. Since most of these costs can be shifted onto employees, there is further incentive to work in the shadow economy – where they can be avoided. Statistically significant empirical evidence of the influence of taxation and the intensity of regulation on the shadow economy is provided in studies by Schneider (1994, 2005) and Johnson et al. (1998a, 1998b).

Unemployment and the hours worked per employee in the official economy also affect the shadow economy. While it is clear that a reduction in working hours in the official economy increases hours spent working in the shadow economy, unemployment’s effect on the shadow economy is ambiguous. Whether the unemployment variable exhibits a positive or negative relationship depends on income and substitution effect. Income losses due to unemployment reduce demand in the shadow as well as the official economy. A substitution takes place as

---

unemployed workers turn to the shadow economy where cheaper goods make it easier to countervail utility losses. This may stimulate additional demand there. If the income effect exceeds the substitution effect, a negative relationship develops. Likewise, if the substitution effect exceeds the income effect, the relationship is positive.

To mirror activities in the shadow economy, we use the monetary aggregate M1 and a GDP volume index. These variables are particularly suitable for this purpose as a result of the following considerations. Transactions in the shadow economy are typically carried out using cash or money that is drawn from a current account at a moment’s notice. We therefore expect a positive relationship between the shadow economy and M1. The lower the officially measured GDP, the fewer possibilities people have to earn money in the official economy, and the likelier they are to be driven into the shadow economy. In the short run, we expect this negative relationship to exist. In the long run, however, the official and the shadow economy are complements rather than substitutes, and the variables will thus exhibit a positive relationship. One possible explanation is that when the official economy grows, the shadow economy grows as well since favorable economic conditions do not discern between the official and unofficial economy. The demand for maintenance and other services in the shadow economy in particular increase in the long run as a result of higher consumption (e.g. cars) in the official economy. Based on these theoretical considerations, we employ tax and social security contribution burdens, the intensity of regulation (measured by the ratio of government employment to the total labor force), the unemployment rate, and an index of hours worked per employee as causal variables for the shadow economy in the long run equilibrium estimation. A GDP volume index and the monetary aggregate M1 are used as indicators. Figure 5.1 illustrates these relationships. The small squares attached to the arrows indicate the expected signs in the empirical analysis.
5.2 Data and the Analysis of Stationarity and Co-integration

Our data cover each quarter between 1981 and 2006: the number of observations is 104. Data sources and in-depth definitions of the variables are summarized in Table D.1 in the Appendix. We begin our empirical analysis by pre-testing the data. In the first step, each series is individually examined under the null hypothesis of a unit root against the alternative of stationarity. As shown in Table 5.1 we find that all variables are I(1) using conventional unit root tests.
Table 5.1: Analysis of Stationarity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Equation Level</th>
<th>Test Equation First Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADF</td>
<td>PP</td>
</tr>
<tr>
<td>Causes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax</td>
<td>C &amp; T</td>
<td>0.2707</td>
</tr>
<tr>
<td>Unemp</td>
<td>C &amp; T</td>
<td>0.5072</td>
</tr>
<tr>
<td>Reg</td>
<td>C &amp; T</td>
<td>0.2000</td>
</tr>
<tr>
<td>Work</td>
<td>C &amp; T</td>
<td>0.4872</td>
</tr>
<tr>
<td>Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>C &amp; T</td>
<td>0.1696</td>
</tr>
<tr>
<td>M1</td>
<td>C &amp; T</td>
<td>0.8536</td>
</tr>
</tbody>
</table>

*Stationarity at 1%. **Stationarity at 5%. ***Stationarity at 10%.

Note: For the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test, the MacKinnon (1996) one-sided $p$ values are given whereas test statistics are reported for the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. Its critical values are taken from Kwiatkowski et al. (1992). For a test equation with constant (C) the critical values are: 0.347 (10% level), 0.463 (5% level), and 0.739 (1% level) whereas for a test equation with constant and trend (C & T) the critical values are: 0.119 (10% level), 0.146 (5% level), and 0.216 (1% level). For the order of the autoregressive correction for the ADF test, we use the Akaike Information Criterion (AIC). For the PP and KPSS tests, we use the Bartlett kernel estimator and the Newey-West (1994) data-based automatic bandwidth parameter method.

Next, we use the Engle and Granger two-step approach to see if all four causes are cointegrated with each indicator variable and therefore exhibit a valid error correction representation (Engle and Granger, 1987). To do this, we first estimate least square regressions with variables in levels, where the particular indicator is the dependent variable and the causes are the independent variables. Thus, the regression equations are:

$$\text{GDP} = \alpha_1 \cdot \text{Taxes} + \alpha_2 \cdot \text{Unemp} + \alpha_3 \cdot \text{Reg} + \alpha_4 \cdot \text{Work} + u_1$$

$$\text{M1} = \alpha_1 \cdot \text{Taxes} + \alpha_2 \cdot \text{Unemp} + \alpha_3 \cdot \text{Reg} + \alpha_4 \cdot \text{Work} + u_2$$

Because all variables are deviations from their means, no constant is included in the regression equations. Next we analyze the assumed cointegration relationship’s residuals $u_1$ and $u_2$ using the ADF test. If the causes are cointegrated with the indicators, we expect the ADF test to reject the null hypothesis of a unit root against the alternative for both error terms $u_1$ and $u_2$. As presented in Table 5.2, we can in fact reject the null hypothesis for both residuals at conventional significance levels. We therefore conclude that the causes are cointegrated with each indicator.
Table 5.2: *Analysis of Cointegration Between Causes and Indicators*

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Causes</th>
<th><em>t</em>-statistic for Residual</th>
<th>Jarque Bera Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP Tax</td>
<td>Unemp</td>
<td>0.0006</td>
<td>0.55</td>
</tr>
<tr>
<td>GDP Reg</td>
<td>Work</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>GDP Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1 Tax</td>
<td>Unemp</td>
<td>0.002</td>
<td>0.62</td>
</tr>
<tr>
<td>M1 Reg</td>
<td>Work</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>M1 Work</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note:* The critical values of the ADF test’s *t*-statistic are taken from Engle and Yoo (1987). For a sample with 100 observations, they are: 4.61 (1% level), 4.02 (5% level), and 3.71 (10% level). The order of the autoregressive correction has been chosen using the AIC as suggested by Engle and Yoo (1987). Thus, the null hypothesis of a unit root is rejected at the 10% level for residual \( u_1 \) and at the 5% level for residual \( u_2 \). The *p*-values of the parameter estimators are given in parenthesis.

The confirmation of both cointegration relationships permits the estimation of a long run equilibrium MIMIC model for the size and development of the shadow economy according to equation (5). The next step is to estimate the short run MIMIC model of equation (7) employing first differences of all causes and indicators. The estimation also includes the long run error correction terms \( u_1 \) and \( u_2 \) from both cointegration relationships. Here, the number of observations is 103. Table 5.3 presents the long run equilibrium model’s parameter estimates and primary test statistics as well as those for the short run model. Supplementary summary statistics indicating the overall fit of both MIMIC models are provided in Table D.2 in the Appendix.
### Table 5.3: MIMIC Models and Parameter Estimates

<table>
<thead>
<tr>
<th>Causes</th>
<th>Long-run MIMIC Model</th>
<th>Short-run MIMIC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxes</td>
<td>0.17*** (5.74)</td>
<td>0.50*** (6.84)</td>
</tr>
<tr>
<td>Unemp</td>
<td>-0.20*** (-5.14)</td>
<td>0.26*** (3.47)</td>
</tr>
<tr>
<td>Reg</td>
<td>0.22*** (5.39)</td>
<td>0.21*** (2.86)</td>
</tr>
<tr>
<td>Work</td>
<td>-0.75*** (-21.47)</td>
<td>-0.03 (-0.40)</td>
</tr>
<tr>
<td>$u_1$</td>
<td>-- (-0.04)</td>
<td>(-0.47)</td>
</tr>
<tr>
<td>$u_2$</td>
<td>-- -0.27** (-3.50)</td>
<td></td>
</tr>
</tbody>
</table>

**Indicators**

<table>
<thead>
<tr>
<th></th>
<th>Long-run MIMIC Model</th>
<th>Short-run MIMIC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>1.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>M1</td>
<td>0.99*** (45.58)</td>
<td>0.19 (1.43)*</td>
</tr>
</tbody>
</table>

**Statistics**

<table>
<thead>
<tr>
<th></th>
<th>Long-run MIMIC Model</th>
<th>Short-run MIMIC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>2.54</td>
<td>17.17</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>$P$-value</td>
<td>0.9989</td>
<td>0.9073</td>
</tr>
<tr>
<td>Root Mean Squared Error of Approximation (RMSEA)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

T-statistics are reported in parenthesis. *Significance at 10% level. **Significance at 5% level. ***Significance at 1% level.

The estimated coefficients of all variables in the long run equilibrium relationship are highly statistically significant at the 1% significance level and have the theoretically expected sign. In the short run, the MIMIC model estimates for the independent variable “Work” and the residual $u_1$ from the cointegration relationship between the causes and the GDP are not statistically significantly different from zero. As in the long run equilibrium relationship, all remaining variables – with the exception of M1, which is statistically significant only at the 10% level – are statistically significant at the 1% level. Overall, the various test statistics point to a close fit.
In order to estimate not only the relative size of the parameters but also their levels, it is necessary to fix a scale for the unobservable latent variable. A convenient way to determine the relative magnitude of the variables is to set the coefficient of one of the measurement model’s indicator variables to non-zero. Here, we fix the coefficient of the variable GDP for both the long run and the short run MIMIC estimation.

We now summarize our findings from the estimations. First, we can confirm our theoretical considerations. Second, tax and social security contribution burdens and the intensity of regulation are important causes of the size of the shadow economy. These findings confirm our hypothesis as well as previous empirical findings. As expected, the relation between hours worked per employee and the shadow economy is negative, i.e. decreasing working hours encourage people to engage in informal economic activities. With regard to unemployment, it turns out that the overall long run effect is negative. That is, the income effect exceeds the substitution effect. This finding is supported by the positive relation between the shadow economy and official GDP, suggesting that in the long run the two are complements rather than substitutes. As expected, however, the short run relationship is negative, i.e. people who face unemployment switch to the shadow economy thereby negatively affecting official GDP. The other causes also show the expected sign in the short run estimation. That is, high tax and social security contribution burdens and a high intensity of regulation force people into the shadow economy. Declining working hours create the required freedom for those activities.

Both the long run equilibrium relationship and the short run dynamic error correction representation of the MIMIC model represent our EMIMIC model. With it, we can now estimate the size and development of France’s shadow economy. The first step uses the long run part of our model to calculate the ordinal index. This index is then transformed into a cardinal series using the average of the estimates from Dell’ Anno et al. (2007) and Schneider (2005), which is 14.25% of official GDP in 1995. Next, the short run deviations from equilibrium are calculated. Finally, taking these into account, estimates for the French shadow economy are derived using Bajada and Schneider’s (2005) calibration methodology. Figure 5.2 illustrates these results. The thick line is the long run equilibrium, and the thin line represents the final estimates for the French shadow economy taking short run dynamic fluctuations into account.

---

7 Giles and Tedds (2002), 109.
Applying the EMIMIC model to the French shadow economy produces an estimate of 12.88% in Q1 1982, which increases to 15.93% in Q4 2006. All quarterly estimates for 1982 to 2006 are shown in Table D.3 in the Appendix. Table D.4 compares these estimates with those of the long run equilibrium relationship and illustrates this deviation for France’s shadow economy. Thus, our findings correspond to other recent studies of the French shadow economy with 13.80% for 1990-93 (Schneider and Enste, 2000) and 15.30% for 2000 (Schneider, 2005). Our approach is nonetheless quite different from previous investigations because we use the long run equilibrium estimation for the initial calculation of the cardinal time series index. The calibration methodology is then only used to correct for deviations from equilibrium in the short run. Previous studies, on the other hand, derive the cardinal index of the shadow economy in a particular country from their DYMIMIC estimates using some type of calibration methodology. Our EMIMIC model thus estimates the size and development of the shadow economy more precisely.
6. Summary and Conclusions

In this paper we consider cointegration and error correction techniques within a latent variable approach. First, we demonstrate the possibility of controlling for long run equilibrium relationships in a MIMIC model by using the standard econometrics of cointegration and error correction mechanisms. Next, we present the cointegration equation and the error correction equation of a MIMIC model where indicators and causes are cointegrated. Finally, we derive the covariance matrices for the EMIMIC model and employ this model to estimate the size and development of the French shadow economy. We demonstrate that the EMIMIC model better quantifies the size of the shadow economy because it considers both the long run equilibrium relationships and the short run dynamic error corrections at the same time. This is particularly advantageous for economists trying to gather more precise figures for and track the development of the shadow economy and, of course, for the improvement of research in this problematical field of statistics. The preciseness of our estimates also benefit policymakers’ efforts to deal with the shadow economy and their formulation of economic policy strategies.

Literature


Appendix A: Deriving the MIMIC Model’s Covariance Matrix

The MIMIC model’s structural and measurement equations are \( \eta_t = \gamma' x_t + \zeta_t \) and \( y_t = \lambda \eta_t + \epsilon_t \), respectively. Expressing this model in terms of covariances gives:

\[
\Sigma = \begin{bmatrix}
\text{Var}(y_t) & \text{Cov}(y_t, x_t) \\
\text{Cov}(x_t, y_t) & \text{Var}(x_t)
\end{bmatrix} = \begin{bmatrix}
y_t' \\
x_t'
\end{bmatrix} \begin{bmatrix}
\Sigma \\
\Sigma
\end{bmatrix} \begin{bmatrix}
y_t \\
x_t
\end{bmatrix}'.
\]

After taking the transposes, multiplications, and making use of the assumptions that:

1. the variables are measured as deviations from mean, i.e. \( \mathbb{E}(\eta_t) = \mathbb{E}(x_t) = \mathbb{E}(\zeta_t) = \mathbb{E}(y_t) = \mathbb{E}(\epsilon_t) = 0; \)
2. the error terms do not correlate to the causes, i.e. \( \mathbb{E}(x_t \zeta'_t) = \mathbb{E}(\zeta_t x'_t) = 0 \) and \( \mathbb{E}(x_t \epsilon'_t) = \mathbb{E}(\epsilon_t x'_t) = 0; \)
3. the error terms do not correlate across equations, \( \mathbb{E}(\epsilon_t \zeta'_t) = \mathbb{E}(\zeta_t \epsilon'_t) = 0 \); and,
4. the errors of the measurement model do not correlate to the latent variable, i.e. \( \mathbb{E}(\eta_t \epsilon'_t) = \mathbb{E}(\epsilon_t \eta'_t) = 0; \)

we distribute the expectation operator and can thus derive both the variance and covariance between the observable variables. By doing this, it follows that:

\[
\mathbb{E}(y_t y'_t) = \mathbb{E} \left[ (\lambda \eta_t + \epsilon_t) (\lambda \eta'_t + \epsilon'_t) \right] \\
\quad = \mathbb{E} \left[ (\lambda' x_t + \zeta_t) (\lambda' x'_t + \zeta'_t) \right] \\
\quad = \lambda \mathbb{E} \left[ \gamma' x_t x'_t + \gamma' x_t \zeta'_t + \gamma' x'_t \zeta_t + \zeta_t \zeta'_t \right] \\
\quad = \lambda (\gamma' \Phi ) + \psi \lambda' + \Theta \epsilon \\
\mathbb{E}(x_t y'_t) = \mathbb{E} \left[ x_t (\lambda \eta_t + \epsilon_t) \right] \\
\quad = \mathbb{E} \left[ x_t \lambda' + \lambda \eta'_t + \epsilon_t \eta'_t + \epsilon_t \epsilon'_t \right] \\
\quad = \mathbb{E} \left[ \gamma' x_t + \zeta_t \right] \lambda' \\
\quad = \Phi \gamma \lambda' \\
\mathbb{E}(y_t x'_t) = (\Phi \gamma \lambda')' \\
\quad = \lambda \gamma' \Phi
\]
\( E(x_i x'_i) = \Phi \).

Thus, \( \Theta \) is the covariance matrix of the error terms in the measurement model; \( \psi \) is the variance of the error term in the structural equation; and, \( \Phi \) is the covariance matrix of the causes. Finally, the covariance matrix of the MIMIC model is:

\[
\Sigma = \begin{pmatrix}
\lambda (\gamma' \Phi' + \psi) \lambda' + \Theta & \lambda \gamma' \\
\Phi' \gamma' & \Phi
\end{pmatrix}.
\]

Appendix B: Covariance Matrix of the Long Run Part

The EMIMIC model's long run equations with I(0) and I(1) causes are \( y_t = \lambda \eta_t + \varepsilon_t \) and \( \eta_t = \gamma' x_t + \tau' v_t + \zeta_t \). As a result, the covariance matrix in its general form is given as:

\[
\Sigma = \begin{pmatrix}
\text{Var}(y_t) & \text{Cov}(x_t, y_t) & \text{Var}(x_t) \\
\text{Cov}(x_t, y_t) & \text{Cov}(v_t, y_t) & \text{Var}(v_t) \\
\text{Cov}(v_t, y_t) & \text{Cov}(v_t, x_t) & \text{Var}(v_t)
\end{pmatrix} = E \begin{pmatrix}
[ y_t ] & [ x_t ] & [ v_t ]
\end{pmatrix}^T.
\]

After multiplication, distributing the expectations operator, and using the necessary assumptions, we get the covariance matrix in terms of model parameters and covariances. Its sub-matrices are:

\[
E(y_i y'_i) = E\left( (\lambda \eta_i + \varepsilon_t)(\lambda \eta_i + \varepsilon_t) \right)
\]

\[
= E(\lambda \eta_i \eta'_i + \lambda \eta_i \varepsilon'_t + \varepsilon_t \eta'_i \lambda' + \varepsilon_t \varepsilon'_t)
\]

\[
= \lambda E(\eta_i \eta'_i) \lambda' + \Theta \epsilon
\]

\[
= \lambda E\left( (\gamma' x_t + \tau' v_t + \zeta_t)(\gamma' x'_t + \tau' v'_t + \zeta'_t) \right) \lambda' + \Theta \epsilon
\]

\[
= \lambda E(\gamma' x_t x'_t \gamma + \gamma' x_t v'_t \tau + \tau' v_t x'_t \gamma + \tau' v_t v'_t \tau) \lambda' + \Theta \epsilon
\]

\[
= \lambda (\gamma' \Phi' \gamma + 2 \gamma' \Omega + \tau' \Phi_2 \tau) \lambda' + \Theta \epsilon
\]

\[
E(x_i x'_i) = \Phi_1, \ E(v_i v'_i) = \Phi_2, \ E(v_i x'_i) = N',
\]
\[ E(x_t, y'_t) = E \left[ x_t \left( \lambda \eta_t + \varepsilon_t \right)' \right] \]
\[ = E(\lambda \eta_t, x_t) + E(x_t, \varepsilon_t)' \]
\[ = \left( \lambda N \tau \gamma \Phi + \varepsilon_x \lambda \right)' \]
\[ = \left( \lambda \tau \nu \gamma \varepsilon_x \lambda \right)' \]
\[ = \left( \Phi_1 \gamma + N \tau \right) \lambda' \]

\[ E(v_t, y'_t) = E \left[ v_t \left( \lambda \eta_t + \varepsilon_t \right)' \right] \]
\[ = E(v_t, \lambda \eta_t) \lambda' \]
\[ = E \left[ v_t \left( \lambda \tau \nu \gamma \varepsilon_x \lambda \right)' \right] \]
\[ = \left( \Phi_1 \gamma + N \tau \right) \lambda' \]

where \( \Phi_1 \) and \( \Phi_2 \) are sub-covariance matrices of the I(0) and I(1) causes, respectively. We further define \( N := E(v_t, x'_t) \). Finally, we obtain:

\[ \Sigma = \begin{pmatrix}
\lambda(\gamma' \Phi_1 \gamma + 2 \gamma' N \tau + \tau' \Phi_2 \tau) \lambda' + \Theta_e \\
(\Phi_1 \gamma + N \tau) \lambda' \\
(N' \gamma + \Phi_2 \tau) \lambda' \\
\end{pmatrix}. \]

**Appendix C: Covariance Matrix of the Short Run Part**

Both of the short run part of the EMIMIC model’s equations are \( \Delta y_t = \lambda \Delta \eta_t + \varepsilon_t \) and \( \Delta \eta_t = \alpha \Delta x_t + \beta v_t + \kappa z_{t-1} + \zeta_t \). As a result, the model's general covariance matrix is given as:

\[ \Sigma = \begin{pmatrix}
\text{Var}(\Delta y_t) & \text{Cov}(\Delta x_t, \Delta y_t) & \text{Var}(\Delta x_t) \\
\text{Cov}(v_t, \Delta y_t) & \text{Var}(v_t) & \text{Cov}(v_t, \Delta x_t) \\
\text{Cov}(z_{t-1}, \Delta y_t) & \text{Cov}(z_{t-1}, v_t) & \text{Var}(z_{t-1}) \\
\end{pmatrix} = E \begin{pmatrix}
\Delta y_t \\
\Delta x_t \\
v_t \\
\end{pmatrix}. \]

In terms of model parameters and covariances, it becomes:
In addition to previous definitions, we define $\Phi_3 := \mathbb{E}(\Delta \lambda x_t')$, and assume that the long run part's error term is a stationary white noise series. Consequently, its covariance matrix should not change with time, i.e. $\text{Cov}(z_t) = \text{Cov}(z_{t-1}) = \Omega$. We further assume that $\mathbb{E}(x_t'3_t') = 0$, $\mathbb{E}(z_{t-1}z_t') = 0$, $\mathbb{E}(x_t'e_{t-1}') = 0$, and $\mathbb{E}(\varepsilon_{t-1}x_t') = 0$. In addition, $\mathbb{E}(\eta_t, e_{t-1}') = 0$ and $\mathbb{E}(\varepsilon_{t-1} \eta_t') = 0$. As a result, the sub-matrices are derived as follows:

\[
\begin{align*}
\Sigma &= \begin{pmatrix}
\lambda(\alpha'\Phi_3 \alpha + 2\alpha'M\beta + \beta'\Phi_2 \beta + \kappa'\Omega \kappa)\lambda' + \Theta \varepsilon \\
(\Phi_3 \alpha + M'\beta)\lambda' \\
(M\alpha + \Phi_2 \beta)\lambda' \\
\lambda(\psi'\lambda\kappa + \psi)\lambda' + \Theta \varepsilon \\
\end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\mathbb{E}(\Delta y_t' \Delta y_t') &= \mathbb{E}\left((\lambda \Delta \eta_t + \varepsilon_t')(\lambda \Delta \eta_t + \varepsilon_t')'\right) \\
&= \mathbb{E}(\lambda \Delta \eta_t, \Delta \eta_t') + \lambda \Delta \eta_t \varepsilon_t' + \varepsilon_t \Delta \eta_t' + \varepsilon_t \varepsilon_t' \\
&= \lambda \mathbb{E}(\lambda \Delta \eta_t' \lambda') + \Theta\varepsilon \\
&= \lambda \mathbb{E}\left((\alpha'\Delta x_t + \beta'\varepsilon_t + \kappa'z_{t-1} + \zeta_t)\lambda'\right) + \Theta\varepsilon, \\
&= \lambda\left[\alpha'\Phi_3 \alpha + \alpha'M\beta + \beta'\Phi_2 \beta + \beta'\mathbb{E}(\Delta x_t \lambda z_{t-1}) + \kappa'\mathbb{E}(\lambda z_{t-1} z_t') + \kappa'\Omega \lambda\right] + \Theta\varepsilon, \\
&= \lambda(\alpha'\Phi_3 \alpha + 2\alpha'M\beta + \beta'\Phi_2 \beta + \kappa'\Omega \kappa)\lambda' + \Theta\varepsilon.
\end{align*}
\]

\[
\begin{align*}
\mathbb{E}(\Delta x_t' \Delta y_t') &= \mathbb{E}\left(\Delta x_t (\lambda \Delta \eta_t + \varepsilon_t')'\right) \\
&= \mathbb{E}(\Delta x_t, \Delta \eta_t') \lambda' \\
&= \mathbb{E}\left(\Delta x_t (\alpha'\Delta x_t + \beta'\varepsilon_t + \kappa'z_{t-1} + \zeta_t)\right) \lambda', \\
&= (\Phi_3 \alpha + M'\beta + \mathbb{E}(\Delta x_t, \lambda z_{t-1} + \varepsilon_{t-1}')\kappa) \lambda', \\
&= (\Phi_3 \alpha + M'\beta) \lambda'.
\end{align*}
\]

\[
\begin{align*}
\mathbb{E}(\Delta x_t' \Delta x_t') &= \mathbb{E}\left(v_t (\lambda \Delta \eta_t + \varepsilon_t')\right) \\
&= \mathbb{E}\left(v_t (\alpha'\Delta x_t + \beta'\varepsilon_t + \kappa'z_{t-1} + \zeta_t)\right) \lambda', \\
&= \mathbb{E}(\Delta x_t' \alpha + v_t \varepsilon_t' \beta + v_t z_{t-1} \kappa) \lambda', \\
&= (M \alpha + \Phi_2 \beta) \lambda'.
\end{align*}
\]
\[ E(z_{t-1} \Delta y'_t) = E \left[ (\lambda z_{t-1} + \epsilon_{t-1} + \epsilon_t) \right] \]
\[ = \lambda E(z_{t-1} \Delta y'_t) \lambda' + \Theta_\epsilon \]
\[ = \lambda E \left[ (z_{t-1}) (\alpha' \Delta x_t + \beta' v_t + \kappa' z_{t-1} + \zeta_t) \right] \lambda' + \Theta_\epsilon , \]
\[ = \lambda E \left[ (\zeta_{t-1}) (\lambda z_{t-1} + \epsilon_{t-1}) \right] \lambda' + \Theta_\epsilon \]
\[ = \lambda (\psi' \kappa' + \psi') \lambda' + \Theta_\epsilon , \]
\[ E(z_{t-1} \Delta x'_t) = E \left[ (\lambda z_{t-1} + \epsilon_{t-1}) (\Delta x_t) \right] = 0 , \]
\[ E(z_{t-1} v'_t) = E \left[ (\lambda z_{t-1} + \epsilon_{t-1}) (v_t) \right] = 0 . \]
### Appendix D: Data Sources and Additional Test Statistics

#### Table D.1: Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
<th>Annotations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax</td>
<td>Tax and Social Security Contributions Burden / GDP</td>
<td>OECD Economic Outlook</td>
<td>Quarterly Data (Q1 1981:Q4 2006), seasonally adjusted</td>
</tr>
<tr>
<td>Unemp</td>
<td>Unemployment Rate</td>
<td>OECD Economic Outlook</td>
<td>Quarterly Data (Q1 1981:Q4 2006), seasonally adjusted</td>
</tr>
<tr>
<td>Reg</td>
<td>Government Employment / Labor Force</td>
<td>OECD Economic Outlook</td>
<td>Quarterly Data (Q1 1981:Q4 2006), seasonally adjusted</td>
</tr>
<tr>
<td>Work</td>
<td>Hours Worked per Employee in Total Economy</td>
<td>OECD Economic Outlook</td>
<td>Index Series (2000=100), Quarterly Data (Q1 1981:Q4 2006), seasonally adjusted</td>
</tr>
<tr>
<td>Indicators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Monetary Aggregate M1</td>
<td>Banque de France</td>
<td>Natural Logarithm, Quarterly Data (Q1 1981:Q4 2006)</td>
</tr>
<tr>
<td>GDP</td>
<td>GDP</td>
<td>OECD Economic Outlook</td>
<td>Volume Index (2000=100), Quarterly Data (Q1 1981:Q4 2006), seasonally adjusted</td>
</tr>
</tbody>
</table>

#### Table D.2: Further Summary Statistics of the MIMIC Models

<table>
<thead>
<tr>
<th></th>
<th>Long Run MIMIC Model</th>
<th>Short Run MIMIC Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value for Test of Close Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RMSEA &lt; 0.05)</td>
<td>1.0000</td>
<td>0.9800</td>
</tr>
<tr>
<td>Root Mean Square Residual (RMR)</td>
<td>0.0035</td>
<td>0.0540</td>
</tr>
<tr>
<td>Standardized RMR</td>
<td>0.0035</td>
<td>0.0550</td>
</tr>
<tr>
<td>Goodness of Fit Index (GFI)</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Adjusted Goodness of Fit Index (AGFI)</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>Parsimony Goodness of Fit Index (PGFI)</td>
<td>0.61</td>
<td>0.69</td>
</tr>
<tr>
<td>Year</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1982</td>
<td>12.88</td>
<td>12.86</td>
</tr>
<tr>
<td>1983</td>
<td>12.96</td>
<td>13.00</td>
</tr>
<tr>
<td>1985</td>
<td>13.28</td>
<td>13.28</td>
</tr>
<tr>
<td>1987</td>
<td>13.68</td>
<td>13.52</td>
</tr>
<tr>
<td>1996</td>
<td>14.58</td>
<td>14.49</td>
</tr>
<tr>
<td>1997</td>
<td>14.34</td>
<td>14.30</td>
</tr>
<tr>
<td>1999</td>
<td>14.66</td>
<td>14.64</td>
</tr>
<tr>
<td>2000</td>
<td>14.83</td>
<td>15.09</td>
</tr>
<tr>
<td>2001</td>
<td>15.31</td>
<td>15.48</td>
</tr>
<tr>
<td>2002</td>
<td>15.52</td>
<td>15.68</td>
</tr>
<tr>
<td>2003</td>
<td>15.73</td>
<td>15.82</td>
</tr>
<tr>
<td>2004</td>
<td>15.52</td>
<td>15.35</td>
</tr>
<tr>
<td>2005</td>
<td>15.43</td>
<td>15.62</td>
</tr>
<tr>
<td>2006</td>
<td>15.72</td>
<td>15.72</td>
</tr>
<tr>
<td>Year</td>
<td>EMIMIC</td>
<td>Long Run Equilibrium Relationship</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>1982</td>
<td>13.06</td>
<td>12.99</td>
</tr>
<tr>
<td>1983</td>
<td>13.20</td>
<td>13.03</td>
</tr>
<tr>
<td>1984</td>
<td>13.47</td>
<td>13.34</td>
</tr>
<tr>
<td>1985</td>
<td>13.27</td>
<td>13.36</td>
</tr>
<tr>
<td>1986</td>
<td>13.58</td>
<td>13.49</td>
</tr>
<tr>
<td>1987</td>
<td>13.41</td>
<td>13.56</td>
</tr>
<tr>
<td>1988</td>
<td>13.51</td>
<td>13.57</td>
</tr>
<tr>
<td>1989</td>
<td>13.62</td>
<td>13.83</td>
</tr>
<tr>
<td>1990</td>
<td>14.14</td>
<td>14.03</td>
</tr>
<tr>
<td>1991</td>
<td>13.97</td>
<td>13.93</td>
</tr>
<tr>
<td>1992</td>
<td>14.13</td>
<td>13.96</td>
</tr>
<tr>
<td>1993</td>
<td>14.07</td>
<td>13.96</td>
</tr>
<tr>
<td>1994</td>
<td>14.12</td>
<td>14.19</td>
</tr>
<tr>
<td>1995</td>
<td>14.66</td>
<td>14.48</td>
</tr>
<tr>
<td>1996</td>
<td>14.52</td>
<td>14.47</td>
</tr>
<tr>
<td>1997</td>
<td>14.31</td>
<td>14.43</td>
</tr>
<tr>
<td>1998</td>
<td>14.68</td>
<td>14.62</td>
</tr>
<tr>
<td>1999</td>
<td>14.84</td>
<td>14.97</td>
</tr>
<tr>
<td>2000</td>
<td>15.25</td>
<td>15.35</td>
</tr>
<tr>
<td>2001</td>
<td>15.69</td>
<td>15.55</td>
</tr>
<tr>
<td>2002</td>
<td>15.89</td>
<td>15.76</td>
</tr>
<tr>
<td>2003</td>
<td>15.57</td>
<td>15.53</td>
</tr>
<tr>
<td>2004</td>
<td>15.34</td>
<td>15.43</td>
</tr>
<tr>
<td>2005</td>
<td>15.76</td>
<td>15.78</td>
</tr>
<tr>
<td>2006</td>
<td>15.93</td>
<td>16.01</td>
</tr>
</tbody>
</table>
CESifo Working Paper Series
for full list see www.cesifo-group.org/wp
(address: Poschingerstr. 5, 81679 Munich, Germany, office@cesifo.de)

2136 Xavier Freixas and Bruno M. Parigi, Banking Regulation and Prompt Corrective Action, November 2007

2137 Jan K. Brueckner, Partial Fiscal Decentralization, November 2007


2139 Alan J. Auerbach, Michael P. Devereux and Helen Simpson, Taxing Corporate Income, November 2007

2140 Lorenzo Cappellari, Paolo Ghinetti and Gilberto Turati, On Time and Money Donations, November 2007

2141 Roel Beetsma and Heikki Oksanen, Pension Systems, Ageing and the Stability and Growth Pact, November 2007

2142 Hikaru Ogawa and David E. Wildasin, Think Locally, Act Locally: Spillovers, Spillbacks, and Efficient Decentralized Policymaking, November 2007

2143 Alessandro Cigno, A Theoretical Analysis of the Effects of Legislation on Marriage, Fertility, Domestic Division of Labour, and the Education of Children, November 2007

2144 Kai A. Konrad, Mobile Tax Base as a Global Common, November 2007


2146 Guglielmo Maria Caporale, Yannis Georgellis, Nicholas Tsitsianis and Ya Ping Yin, Income and Happiness across Europe: Do Reference Values Matter?, November 2007

2147 Dan Anderberg, Tax Credits, Income Support and Partnership Decisions, November 2007


2150 Axel Dreher, Pierre-Guillaume Méon and Friedrich Schneider, The Devil is in the Shadow – Do Institutions Affect Income and Productivity or only Official Income and Official Productivity?, November 2007

Balázs Égert and Dubravko Mihaljek, Determinants of House Prices in Central and Eastern Europe, November 2007

Christa Hainz and Hendrik Hakenes, The Politician and his Banker, November 2007

Josef Falkinger, Distribution and Use of Knowledge under the “Laws of the Web”, December 2007


Andreas Haufler and Christian Schulte, Merger Policy and Tax Competition, December 2007

Marko Köthenbürger and Panu Poutvaara, Rent Taxation and its Intertemporal Welfare Effects in a Small Open Economy, December 2007

Betsey Stevenson, Title IX and the Evolution of High School Sports, December 2007

Stergios Skaperdas and Samarth Vaidya, Persuasion as a Contest, December 2007

Morten Bennedsen and Christian Schultz, Arm’s Length Provision of Public Services, December 2007

Bas Jacobs, Optimal Redistributive Tax and Education Policies in General Equilibrium, December 2007


Dieter M. Urban, Terms of Trade, Catch-up, and Home Market Effect: The Example of Japan, December 2007


Samuel Bentolila, Juan J. Dolado and Juan F. Jimeno, Does Immigration Affect the Phillips Curve? Some Evidence for Spain, December 2007

Rainald Borck, Federalism, Fertility and Growth, December 2007

Erkki Koskela and Jan König, Strategic Outsourcing, Profit Sharing and Equilibrium Unemployment, December 2007
Egil Matsen and Øystein Thøgersen, Habit Formation, Strategic Extremism and Debt Policy, December 2007

Torben M. Andersen and Allan Sørensen, Product Market Integration and Income Taxation: Distortions and Gains from Trade, December 2007

J. Atsu Amegashie, American Idol: Should it be a Singing Contest or a Popularity Contest?, December 2007


Ben Greiner, Axel Ockenfels and Peter Werner, The Dynamic Interplay of Inequality and Trust – An Experimental Study, December 2007


Alexander Chudik and M. Hashem Pesaran, Infinite Dimensional VARs and Factor Models, December 2007

Christoph Moser and Axel Dreher, Do Markets Care about Central Bank Governor Changes? Evidence from Emerging Markets, December 2007

Alessandra Sgobbi and Carlo Carraro, A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin, December 2007

Christa Hainz, Creditor Passivity: The Effects of Bank Competition and Institutions on the Strategic Use of Bankruptcy Filings, December 2007


Maria del Carmen Boado-Penas, Salvador Valdés-Prieto and Carlos Vidal-Meliá, the Actuarial Balance Sheet for Pay-As-You-Go Finance: Solvency Indicators for Spain and Sweden, January 2008


2186 Lans Bovenberg and Coen Teulings, Rhineland Exit?, January 2008


2188 Sándor Csengődi and Dieter M. Urban, Foreign Takeovers and Wage Dispersion in Hungary, January 2008


2192 Jan Bouckaert, Hans Degryse and Theon van Dijk, Price Discrimination Bans on Dominant Firms, January 2008

2193 M. Hashem Pesaran, L. Vanessa Smith and Takashi Yamagata, Panel Unit Root Tests in the Presence of a Multifactor Error Structure, January 2008


2196 Antonis Adam, Margarita Katsimi and Thomas Moutos, Inequality and the Import Demand Function, January 2008

2197 Helmut Seitz, Democratic Participation and the Size of Regions: An Empirical Study Using Data on German Counties, January 2008


2199 Chiara Dalle Nogare and Roberto Ricciuti, Term Limits: Do they really Affect Fiscal Policy Choices?, January 2008

2200 Andreas Bühn and Friedrich Schneider, MIMIC Models, Cointegration and Error Correction: An Application to the French Shadow Economy, January 2008