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UNCERTAIN AVAILABiLITY, SPATIAL LOCATION AND REGULATION:

AN APPLICATION TQ THE AIRLINE INDUSTRY

I. INTRODUCTION

This paper presents an analysis of industries characterized
by both uncertain availability and spatial location of the pro-
duct. The analysis is applied to the U.S. airline industry and
is used to analyze the differential effect of price regulation
on different markets and firms. From this analysis we obtain
insights into which firms and markets may have benefited most
from the deregulation of the industry in 1978.

Previous works on the regulation of the airline industry
(see Caves [1962], Jordan (1970}, Keeler [1972] and Douglas and
Miller [1973] améhé others) implicitly assume that markets have
the same demand structure. Tﬁis work takes into account differ-
ent demand structures in analyzing the effect of price regulation
(i.e., the difference between the requlated and the unregulated
solution).

If airline services are of homogeneocus quality, then we do
rnot expect the unregulated solution to depend on demand struc-
tures. If on thé other hand airline services vary in their
quality component, then different markets may have different
equilibrium price~quality combinations depending on the charac-
teristics of demand.? Some markets may be characterized by low

price-low guality, while others by high price-high quality.

lln this sense, this paper extends and generalizes the analy-
sis done in Panzar (1979).

2Like in a hedonic model & la Rosen (1974).
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Minimum price regulation will affect mainly the low price-low
quality market. The loss in consumer surplus is larger for that
market because the difference between the regulated and the un-
regulated price is larger. Customers (as well as firms in the
short run) in this kind of market would benefit the most from
deregulation. This paper explores the implications of different
demand structures on the impact of (de)regulation.

The analysis of industries with spatial location and.
uncertain availability of the product provides a framework
in which to analyze the implications of different demand
structures,

The airline industry (as well as many other industries
like reﬁailing, tourism and transportation) can be character-
ized by the following features: a) demand has a spatial aspect
(that is a 3 a.m. flight is completely different from a 3 p.m.
flight), b) démand is random, ¢) capacity per location (size
of aircraft for each flight time) and number of locations
(flights) are determined before demand is realized and d)
demand depends on the probability of obtaining the good (a
seat) at a specific location (flight time).

Firms have to decide how many flights and what type of
aircraft to supply before demand is realized. Since demand
for each specific flight time is a random variable,-there is
a positive probability that at each flight time capacity may
be rationed. Customers therefore face a probability of not
obtaining a seat at a specific flight time. Demand will depend

on that.probability in the sense that the larger the probability
: >
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it is the way to achieve required levels of availability and
frequency. Moreover, the optimal level of excess capacity
~will depend on demand characteristics like unpredictability
of the demand (i.e., the variance of the stochastic term in
the demand), and availability and frequency elasticities of

demand.

The optimél pricé-will exceed the marginal cost of
passengers by a factor that depends on the availability
elasticity of demand and on the variability of demand.

That factor will be exactly egual to the marginal cost of
capacity divided by the expected utilization rate (i.e., the
expected load factor). This would also imply that if there
are no fixed éos;s and capacity average costs are constant,
profits would be zero and there would be a finite optimal '
number of firms (and flights). .This result is in contra-
diction to non-stochastic spatial models that require fixed
costs in order to get a finite number of firms. The reason
for this discrepancy is that uncertain démand with capacity
being determined before demand is realized creates short '
run fixed costs therefore limiting the optimal number of

firms. _ :
We analyze how the optimal solution changes when price

is regulated. This analysis is performed in two stages. In
the first stage it is assumed that either total £flights (i.e.,
frequency) is given or that available seats per flight are
given. This partial analysis provides straightforward results.
Minimum price regulation implies aﬁ increase in seats per

£flight in the first case, and in the second case it implies
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an increase in ffequenuy. Moreover, the larger the availa- .
bility elasticity of demand the smaller the increase in
capacity and in flight frequency due to the minimum pricé
regulation. Once we allow for both frequency and capacity
pPer flight to be endogenously determined the results are
not as straightforward as in the partial cases. The reason
is that quality is multidimensional and availability can be
produced by increasing either capacity or frequency. An
increase in the regulated price may impiy an increase in
only some of the dimensions of quality-~for example an increase
in availability and a reduction in frequency coupled with an
increase in capacity per flight.

The analysis presented in this paper is related to
previous works in the area of uncertain demand, availability
and spatial location. For example, Carlton [1977], Crew and
Kleindorfer [1978] and Visscher [1973] analyze optimal solu-
tions to non-spatial models characterized by random demand
and capaeity being determined before demand is realized.
Gould [1278] and De Vany and Savings [1977] introduce avail-
ability as a factor in the demand. Carlton [1978] analyzes
availability in a competitive market with demand being sto-
chastic. Finally De Vany [1975] analyzes availability as

affecting the total (non-stochastic) industry demand.1

lAvailability in a non-stochastic framework like De Vany's
has a different meaning than in a stochastic one. In the case
of airlines availability in a non-stochastic framework it would
imply that people dislike crowded airplanes even when the
probability of obtaining a seat is always one.




6
In the area of spatial location our work is related to

optimal models like Telser [1978] and Sharkey [1976]). Telser
(1978] deals only with the spatial location problem. Sharkey
{1876] introduces a random demand but it is not spatially
located and it is independent of the availability of the good.
He deals with the optimal distribution of firm size. 1

In this paper the theoretical analysis is applied to
the airline industry; therefore, location means flight time
and c;pacity supplied at each flight time is the number éf
available seats.

Section IIX is organized as follows. First we describe
demand and cost conditions. We introduce the concepts of
rationing and availability and their relationships to demand
and supply. We iafer develop the 'Total Expected Net Benefit®
which is the objective function to be maximized. The optimal
solution is described next and compéred with previous results.
Finally we analyze how the optimal solution depends on demand

characteristics.

In Section III we présent preliminary results of estimating
demand characteristics for different airlines. It is found that
airlines differ in the average type of market they serve accord-
ing to the relevant demand characteristics discussed in Section ITI.
This result implies that different firms should be affected 4if-
ferently by *the deregulation of the industry. Moreover, we can rank
firms according to the predicted effect of deregulation. 1In
another paper (Spiller [1980a1) we found that ghere is a high

correlation between the predicted and the actual effects of past

lIt differs from monopolistic competition models in spatial loca-
tion frameworks (like Prescott and Visscher (1977) or Salop (1979))
in analyzing the optimal (and therefore fully cooperative) solution.
For a non-cooperative solution to this problem see Spiller (1980c).
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regulatory changes, providing support to the idea that differf
ences in demand characteristics are relevant in explaining the
differential impact of deregulation. Finally, in a study of the
reaction of individual stock prices to the news of deregulation
(Spiller [1980b]) it is shown that the firms found in this paper
to be more constrained by the regulation of the industry had sig-
nificant increases in their relative risk and in their profita-
bility due to derequlation. In Section IV we present the conclu-

sions and ideas for future research.

II. THE THEORETICAIL MCDEL

1. The Demand and Cost Structures

a. The Demand Side

Let G(|k - ¢|,P,v,Z,R,V) be the maximum number of poten-
tial-customers located at time k (i.e., that theif preferred
flight time is k) who would fly at time t when the price of
the flight is P and the probability of getting an empty seat

on that flight is v. Z is a vector of variables that includes

the price of alternatiﬁe modes of transportation, the income
of the population with desired time k and other relevant
exogenous variables. R and V are vectors containing the
prices and availability levels of all other flights.

The function G(.) is derived as follows. Assume that
there is a continuum of flights all around the daf, that all
the flights charge the same price and have the same availa-
bility levels. 1In this situation some customers would like

to fly at k. That is, k is their desired flight time. Assume




8
that we have a finite number of flights. It may be that those
customers who wanted to fly at time k find that there is no
flight at that time but that there is a flight at time t.
Then G(|t - k|,P,v,§,§,Z) is the maximum number of customers
that would ‘take the flight at t with time k being their most
desired flight time.l'2

Since the model is a stationary-stochastic one3 (i.e.,

the distribution of passengers over time does not depend on
the specific time and the cost structure will be independent
of time of day), prices and availability levels at each
flight would be the same.

Por the same prices and availability, customers at k
would be willing.tq take flight t if there is no other
flight t' such that |k - t] > |k - ¢7]. | :

Since_the optimal solution is a symmetric solution, we
can express the demand for flight t by customers located at

k as depending only on |k - t{, P and v.

lFor convenience we shall not express all of the arguments
that appear in functional forms.

2It is assumed that customers are indifferent between two
flights that are equally distant from their most desired flight,
but one is an earlier, and the other is a. later flight. This
symmetry assumption may not always hold. Some customers may
value much less a later flight than an earlier one.. For sim-
Plicity of exposition we shall assume symmetry in customers’
preferences.

3we are excluding from the analysis deterministic peak
load pricing considerations. These arise from periods of
time having a higher (mean) demand than others, like day
versus night. If the cost of any one flight is independent
of the existence of other flights (i.e., there are no economies
of scope), then time differences in the distribution of the
demand do not affect the main conclusions of this section, it
will only create price differences over time.
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The function G(|k - t|,P,v,2,R,V)is derived from a simple
model of consumer behavior.l For the sake of simplicity I will
assume G(.) to be non-stochastic. The stochastic aspect of the
demand is introduced by assuming that only a certain fraction s
of the maximum number of customers show up. Let s be a .
random variable, se{0,l), with F(s) and £(s) being the
probability distribution and the density functions respec-
tively. I assume that the distribution of s is independent
of time of day.2 |

The signs of the derivatives of G(.) are: Gp < 0,

G, > 0 and G, < 0 where z = |k - t].
In order to get the expected demand for flight t it is

necessary to knoy who would like to fly at time t. Given all
other flights, we can say that the customers that eventually
show up will come from a time interval aroﬁnd t, being the
lower and upper boundaries kt and kt+l respectively. |

Let's call N(t,P,v,kt,kt+1) the expected number of

customers that show up for flight t. Then

kerr(t
(2.1)  N(t,B,v,k,,k = I J sG]k - t|,P,v) £(s)dsak
k. Jo

t+1)

k
=§ft+l

G(lk=-t],P,vidk = Sg(k_,k,4.,t,P,V)
t

lSee Spiller (1980c, Appendix C).

2A more sophisticated way would be to let G(.) be sto-
chastic, then we may have different sources of variation, a
market specific source of variation and an economy-wide one.
I do not pursue this line of research here.

I

-
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1
where s = ! sf(s)ds

0

Kesy

and g(kt,kt+l,t,P,v) = I G(lk-—t[,P,v)dk.
k

. _ t
Nk is the increase in the expected demand for flight
t+1 ' - .
t if we increase its upper boundary. N =Sg ==sG(Ikt+l—t[,P,v).
t+l t+1

The expected demand for flight t will increase if the customers
located exactly at the boundaries have a positive demand.

Their demand depends on how much they value proximify of a

lN = N For convenience, partial derivatives

kt+l akt+1

will be expressed by subscripts.
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flight to their most desired flight. As we will see later if
'n is the number of flights, Keyp = £+ 1/2n and k_ = t - 1/2n,
then an increase in the number of flights reduces (increases)
the upper (lower) boundary and therefore reduces the demand
for flight t. The change in the demand for flight t arising

rom a change in the number of flights is: §§n = -E@k /nz.

The expression Sn is the basis for what will be calledt:ie
frequency elasticity of demand. Tt is the percentage change
in total éxpected demand from a percentage change in the
number of flights. If Ei,j is the elasticity of i with

respect to j, then:

E;gn'n =1 + ng /g =1 - gkt+l/(ng) .

If gkt+l = 0, that_is the customers at the boundaries
have zero demand, then the elasticity of demand with respect
o number of flights will be one; otherwise the frequency
elasticity'of demand will always be less than one (it can
be seen from the second order conditions for the optimai
solution that the frequency elasticity of demand has to be

less than one). In the same way, g, is the basis for the

availability elasticity of demand:

g
Y.
g

Eggn,v

Following Savings and De Vanﬁ [1978] we can define the

probability of getting a seat on flight t in the following
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way. Vv is the unéonditional probabiliiy of getting a seat.
There are just two relevant future states of the worlgd,
either there will be an empty seat at t or ﬁhererwill be

no empty seats at time t. In the case of no empty seats,

it is necessary to arrange some way of rationing seats. T
will assume that if more customers than available seats

show up at t, seats will be rationed randomly with the
probability of a customer getting a seat equal to the number
of seats divided by the actual number of customers that
showed up.

Define Qt as available seats at time t. Then if
(realized demand) s.g(kt,kt+l,t,P,v) z Q. the probability
of getting a segt.is Qt/[s.g(kt,kt+1,t,P,v)]. If on the
other hand, s.g(k,,k, ,,t,P,v) T Q_ the probability of
getting a seat is one.

Therefore, the unconditional probability is:

Q./g(v) 1
(2.2) v = j f(s)ds + J [Qt/sg(v)]f(s)ds.-

0 Q./9(v)
If vy satisfies (2.2), then vy is a rational expectations
equilibrium value of the Probability of getting a seat. It
is an equilibrium in the sense that for a given capécity Qt'
if customers think that vy is the expected value of the
probability of getting a seat, they will behave in such a
way that vy will turn out to be the expected value of the

probability of getting the seat. Since the r.h.s. of (2.2)
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is a contraction mappingi on v, equation (2.2) implies that
v is an implicit function of kps keyqs €, P oand Q.

In the r.h.s. of (2.2), g is a function of v. For any
vV, customers will demand g(v). If vy satisfies (2.2), then
customers are demanding g(vl), that is they are behaving
with the knowledge that \£1 is the probability of obtaining
a seat. In this sense, a solution to (2.2) is a rational
expectations solﬁtion.

From (2.2) we can get the implicit partial derivatives
of v with respect to each one of the parameters. They are

stated in eguations (2.3), (2.4), (2.5) and (2.6).

1
% J éf(S)ds
v _ Q/q 2
(2.3) 30 i _‘¢v > 0.
(2.4) 2 = -—l-g Q—Il l'-f(s)c‘is
Bkt S ¢v ktgz Q/gs

Further, from the definition of g(.),

1
av 1 Q 1
= G(|k, - t],P,v) —I =f(s)ds > 0.
akt 1 ¢v t g2 Q/gs
v 1 o) Ly
(2.5) 3Kk = -m—G(Ikt_'_l - tl,P,V) _EJ E‘f(S)dS < 0
t+1 v g” ‘Q/g
l'I'he absolute value of the derivative of the r.h.s. of
1 1
(2.2) is & j £(s)/sds.g /g that is smaller than 1 if I £(s)/sds
9 Jo/g - Q/g
is smaller than 1.

2The function ¢(kt,kt+l,P,t,v) is the r.h.s. of equation (2.2).
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and,

(2.6) L =—1—§¢—gP%] Ze(s)ds > 0.
b. The Expected Social Gross Benefit

We shall now turn to analyze how much the public wvalues
flying at t when v is the probability of getting a seat and
Q is the capacity supplied. Both the probability of an
empty seat and the capacity level are important since the
number of customers that show up at time t depends directly
on P and v, but the number of those who actually fly depends
on the capacity supplied Q.

Assume that for a price of P and a probability of v,
the'random variable s turns out to be $g- Then.as in Figure 2

all of those customers will fly and their consumer benefit is:l

P
b
\ Slg(PyV]
P a
0 sog(P.V) Q
sog(P,v)

Figure3

1Several works such as Carlton {1977] and Caves and
Pazner [1975] have mentioned that when there is rationing
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(B
J sog(p,v)dp + Pso(P,v)
P

where P is such that g(ﬁ,v) = 0.

On the other hand, if s turns out to be Sys only Q will
fly. In order to calculate the social gross benefit for the
Q passengers that fly, we have to introduce rationing in the
way that was stated before.

I assumed that rationing is a random Process, that is,
the probability of getting a seat is independent of the
Ccustomer’s valuation. This assumption is not free of criti-
cism because actually there are ways to influence the proba-
bility of getting a seat.

As a first ééproximation I will assume that r&tioning
is random aé stated above--therefore disregarding the possi-
bility of more than one class of service, that is unsatisfied
coach passengers are not able to buy a first class seat.

In order to calculate the social gross benefit I will
use a method proposed by Harberger [1973]. 1If the disﬁribu-
tion of customers according to their valuation is the same

as the distribution of actual passengers,l the consumer

the relationship between the area under the demand curve and
consumer benefit is not necessarily a one to one relationship,
even if there are no other distortions in the economy. It can be
shown (see Spiller [1980c], Appendix C) that if customers differ
only on their valuation of the flight but not on income or in
the cost of not flying, the condition for a one to one rela-
tionship is the same as in the normal case, i.e., the marginal
utility of income is constant over the relevant range.

lAlternatively each customer gets an equal proportion of
its demand in the case of rationing.

MY

.
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benefit of those that travel is the area Qa§0l which is

equal to:

s
j 2g(p,v) dp +gp
Pg

Then the expected social gross benefit is:

Py

/g (B
s‘[ g(p)dp + sg(P)P | £(s)ds
P

(2.7) B(kt,kt+l,t,P,v) = Io

) I Q.ﬁ )
+ J QP + —:[ g({p)dp | £(s)ds.
Q/g | 9lp

If we define N as the expected ocutput, then

' N Q/g 1
(2.8) N = f sf(s)ds.g(P) + Q f(s)ds

0 _ Q/g

and we can express the expected social gross benefit as:

”~

P
(2.7a) B(kt!kt+lrtrPrv) = (P + IPQTP)/Q(P)dP).ﬁ
1l
2 f{s)dsQ
Q/g P I )
= -1 glr) Q/g
(2.7b) 3B/3P IO sf(s)ds(gp+gvvp) 1 JPQ(P) dp 9/9 < 0.
J sf(s)dsg
0

From (2.7b) it can be seen that the change in expected

gross benefit from a change in price depend on the price

- elasticity of the demand but also on the extent of rationing.

The larger the proportion of rationed to non-rationed customers

lI:E rationing were done according to willingness to pay,
theaconsumer benefit of those that travel would be the area
0QbP (Brown and Johnson [1969]).
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the smaller the reduction in expected gross benefit from an

increase in price.

€. The Cost Structure

I will assume a simple cost structure: the cost of one
flight is independent of the existence of other flights:
that is there are constant returns to flights. Total cost
will be composed of two components. The first is a capacity
cost and it is assumed to depend only on the size of the
airplane chosen: C(Q). C(Q) in a short run horizon is a
fixed cost because capacity is supplied before demand is
realized, but in the long run C(Q) is a variable cost since
by changing aircraft size we may chaﬁge the capacity costs.
The second compohent depends on the realized number of
passengers. I will assume it to be proportional to the
realized number of passengers. Let's call the average and
marginal variable cost per passenger c. Thus for values of

s such that s.g(kt,kt+l,t,P,v) < Q.

(2.8a) TC(kt,kt+1,t,P,v,Q,s) = C(Q) + sg(kt,kt+l,t,P,v).c
and when s.g(kt,kt+l,#,P,v) = Q.

(2.8b) Tc(kt,kt+l,t,P,v,Q,s) = C(Q) + sQc

when TC(.)--total cost--is a random variable.

The expected value of total cost is:

— Q/g
(2.9) TC(kt,kt+l,t,P,v,Q) = C(Q) + CIO s.g(kt,kt+l,t,P,v)f(s)ds

1
+ cQJ £f(s)ds.
Q/g
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From (2.9) we see that the expected total marginal cost

of capacity 3TC/9Q is different from the marginal cost of
capacity CQ, since the former includes the increase in
expected costs from an increase in expected output due to

the increase in availability. O8TC/9Q is expressed in (2.9a).

- I (1 .
(2.92)  aTC/30 = ¢, + e "J' £48) asfi/(1-4,)
g” ‘Q/g

1
+ cf f(s}ds/(l-d:v).
Q/g9

It will be assumed that CQ > 0 and CQQ > 0.

2. The Optimum Solution

The optimum solution will be the one that maximizes the
" sum of the expectéd net benefits of the different flights,
which we call the total Expected Net Benefit.

Let us assume that n is the optimal number of flights
per period. Since the solution is symmetric, all the flights
wiil be equally spaced. Moreover, all flights will charge
equal prices and provide equal capacity and availability.

The boundary between two flights will be at the mid-point
between them.

Call H(kt,kt+l,P,t,Q) the expected net benefit of a
flight at t with capacity Q and price P, with Customers coming

from the interval (kt'kt+1)’ that is:

(2100 Hkg Ky 1r€/2,0) = Bk k) ,P,v,Q) - Tk, K, ,P,v,0).
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If n is the optimal number of flights (and flights are located
in a circle with a circumference of length one), kt+1==t'*1/(2n)
and kt = t-1/2n. Therefore, the Total Expected Net Benefit
is:

TH(n,P,Q) = nH{t "%’/n:t +%/nrprtrQ) .

Since t can be any point in the circle (since the distri-
bution of the demand is the same over the circle) we are
going to maximize TH with respect to n,P,Q.

The problem is to solve:
_ 1 1
Max{TH(n,P,Q) = n[B(t,v,P,t - 3/n,t +3/n)

- TC(t,v,P,Q,t - %‘-/n,t +%/n) 1.

s-tov -_; v(t_%/n’t-i-%/nft'P'Q)'

After substituting v(.) into B(.) and TC(.) the first

order conditions are:

(2.11) BQ - 'I'CQ + (BV - TCV)VQ =0
(2.12) BP - TCP + (Bv - TCV)VP =0
(2.13) B(.)-TC(.)+[B, -B -TC, +TC,
L e M
+(B,=TC) (v -v, )1/ =o0.
t t+1
From the definition of B(.) in (2.7), B, = -B and
kt kt+1
Tck =--TCk ~ therefore (2.13) can be expressed as

t t+1
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(2.13a) B(..)—'I'C(.)=|,Bk -TCk

a1 -+(BV-TCV?vk l1/n.

t+l t+1

The first result is related to the pricing poliecy. It
says that if there is a positive probability of rationing,
then the optimal price has to exceed the marginal cost of
4 passenger. The different is a dongestion fee that is
exactly equal to the marginal cost of increasing capacity
divided by the expected load factor.1

From the definition of B{.) and TC(.) we have

— Q/g 2 P 1
By =TC,= (P=-c)g f sf(s)ds - Q/(g )-gpf g(p)dp[ f(s)ds
Plg 2 Q/g '
and
_ , 1 : 1 . B
BQ-TCQ= (P-’c)[ f(s)ds-{-l/g.f f(s)ds[ g(p)dp—cq.
Q/g Q/g P

Substituting these expressions in (2.11) and (2.12) and

equation (2.11) into (2.12), and recalling that VP/VQ = -gPQ/g :

we get:
(2.14) P-c¢c= cQQ/ﬁ
~ Q/g 1
where N = J sf(s)dsg(P) + @ f(s)ds is expected output
0 Q/g .

and N/Q is expected load factor.

Proposition l: Optimal price exceeds short run marginal cost

by a congestion toll exactly equal to the marginal cost of

lThis result generalizes Carlton's [1977). He gets the
same result for a non-spatial peak load pricing with uncertain
demand that does not depend on availability. :
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capacity divided by the expected load factor.

Expression (2.14) says that there is a positive rela-
tionship between price and availability. N/Q is the expected
load factor. :In the case of f(s) = 1 {i.e., s is uniformly
distributed) from (2.2), the probability of getting a seat
is exactly Q/g9.[1 - Log(Q/g)] and the expected load factor is
1-%%. Therefore, when the Probability of getting a seat goes

up, the expected load factor goes down and price is increased.

Therefore:

Corollary: If s is uniformly distributed, and the marginal
cost of capacity is constant, then optimal price and availa-
bility are positively related.

By substituting expression (2.14) into (2.11) we get:

1.
‘ f fis)ds r§ 1
(2.15) P-c = 1+§WQ/§9—— %J gv(p)/g(P)dpf £(s) /sds
J sf(s)ds P _ Q/g
0

1
[ f(s)ds P

ngﬂ— f g(p) /g(P)dp

J sf(s)ds P
0

-+

o

Expression (2.15) suggests that the optimal difference
between price and short run marginal cost depends positively
on the availability elasticity of demand (which is related to
the expression gv/g) and on the proportion of expected rationed

to non-rationed customers. The first implication is intuitively
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clear. . Markets with lzrger availability elasticity of demand
will have larger availability and higher prices (see Appendix

A for a proof of this statement).

Proposition 2: The optimal difference between price and

short run marginal cost will depend positively on the availa-
bility elasticity of demand.
The second implication can be explained in the following

way. The ratio

1l
Qf f(s)ds
Q/g
IQ/g
g
0

sf(s)ds

is a measure of the extent of rationing in the market. The
numerator is thé éxpected number of customers given that |
theré is rationing, while the denominator is the expected
number of customers given that there is no rationing. 1In the
case of £(s) = 1, the ratio is just % - 1. The probability
of obtaining a seat is Q/g[l -1Log(Q/g))}. . An increase in g/Q
increases the ratio of rationed to non~-rationed customers and
decreases the pProbability of obtaining a seat. That is availa-
bility and the ratio of rationed to non-rationed customers are
negatively related; We may expect this negative cofrelation fo
hold alsc for more general density functions.

There are many reasons for changes in the proportion of
rationed to non-rationed customers. One possible reason is

an increase in the variance of the demand (if f(s) is symmetric).
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For given prices and capacity levels, an increase_in the
variance of the demand reduces the probability of obtaining
a seat. The optimal response may be to inciease'price and
capacity per f£light. We may expect the increase in price
and capacity not to restore the pProbability v to its former
level. We may end up therefore with a larger proportion of
rationed to non-rationed customers and with a higher price.
The next result shows that the optimal size of firm2
also depends on the stochastic process generating the demand.
This is shown by looking at the optimal number of firms when
there are no fixed costs and when marginal and average
capacity costs are constant. In a non-stochastic framework,
these condition; imply an infinite number of firms. iIn a
stochastic framework the optimal number of firms is finite.
Uncertain demand with capacity being determined before demand
is realized provides an extra source of réturns to scale,
over and beyond those implied by the existence of fixed
capacity costs. That is, the firms have a larger market area—-
the distance between the lower and upper boundaries increases.
This result provides some more intuitive support to the claim
that an increase in the variance of the demand will increase

optimal prices.

lWe have been unable to provide a proof to this statement.
In the meantime, this implication is a conjecture.

2In this model firms and flights are interchangeable terms.
Since there are no returns of scope each firm is assumed to
supply one flight.
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Expected net benefit is:

o~

| ' B R
(2.10a) B(.) - TC(.) = (P-c)ﬁuf 3(p)/g(P)dph - ¢ (0) .
: ’ P

Substituting (2.14) into (2.10a) we get:

~

P -~
(2.16) B(.) -TG(.) = cQQ-C(QHj g(p) /g (P)dpH.
P

By substituting (2.14) and (2.16) into the first order
condition with respect to number of flights (equation.(2.13))
we get:

P .
{(2.17)  cpe-cla) + Jpg(p)/g(P)de

A

N P P 1
§ J Q £(s)
=—1|] 9 @d+g —J g dp[ “sds|(l-¢).
. ng iy kt+1 kt+1g2 /g ® M

Equation (2.17) shows that if there are no fixed costs
~and the marginal cost of capacity is constant {CQQ==C(Q)],

then the optimal number of firms (flights) n is finite and

is equal to:

)

) JP . 9 $ 1
g dp + g Igdpj f(s
(2.18) n=2E Kes1 Kee1g20p Y o/g £l

j

This result then shows that uncertain demand is a soﬁrce

g(p)dp(l - )

" I, < M

of increasing returns to scale when capacity has to be

supplied before demand is realized.

Proposition 3: The optimal number of firms (or flights) is
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finite, even with constant marginal (and average) cost of
capacity and no fixed costs.
In the next subsection we will analyze the effects of
{minimum) price regulation and their dependence on demand

characteristics.

3. A Diagrammatical Exposition of the Effect of Price Regulation

In' this section we will analyze the effect of regqulating
prices in three stages. The first two are partial analyses'
when we allow the firm to decide only on one variable (either
size of aircraft or frequency). This analysis gives straight-
forward results. The third stage is a general one in which
firms decide both on frequency and capacity. In this stage
sufficient conditions are given for the partial results to

hold in the general framework.l

a. Effect of Price Regulation with Given Frequency
Let us first assume that frequency is given. Therefore,
the only two decision variables are price (P) and aircraft

size (Q). The two first order conditions are:

(2.12) -(BP - TCP)/VP + Bv - Cv =0
(2.11) BQ/VQ - TCQ/VQ + BV - TCv = 0.

Equations (2.11) and (2.12) can be represented in a (P,Q)

axis, and we get two schedules that can be called "zero

lSee Appendix B for analytical proofs of the results of
this subsection.
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marginal consumer surplus” schedules. From the second order
conditions it can be seen that around the equilibrium point
the sliope of ZMCSQ (the schedule derived from equation (2.11})

is steeper than the slope of ZMCS.. Rearranging (2.12) and

P
ZMCS
PA MCS,,
TCopt ZMCSP
Fopt [T
|
!
|
I
!
|
5 >Q
opt
Figure 2
(2.11) and dividing one by-the other we get:
2.10) d0| _ _BP+vaP__chvP+TcP“d_Q
‘ dap| Bv, + B V. + ~ dp
B v Q v Q Q TC

That is, the equilibrium point is a tangency point between
an iso-expected cost schedule (TC) and an iso-expéqted
consumer benefit one (B). There are many tangency points

in the (P,Q) axis, but only the one that coincides with the
intersection of the zero marginal consumer benefit schedules

is the optimum one. In fact, the schedule of all the tangencies
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can be shown to be represented by the equilibrium price

schedule:
ey 8
(2.14) (P c) o) "FCQ

The right hand side of (2.11) and (2.12) can be expressed by:

-~
Pl

Q/q

P
{2.20) Bv-’ft.'v=-1§f g (P)dp+-—-—LJ gsf(s)ds (P~ ¢)

o (1 P
-—J f(s)ds[ gipldp
9lo/g P |

which in equilibrium has to be positive.

If g, is independent of P then B, - EE; is proportional
to the semi-elasticity of the demand with respect to seat
availability (gv))g. An increase in'gv (holding g constant)
shifts both ZMCS schedules to the northeast, bringing there-
fore a new equilibrium with higher price and bigger aircrafts.

This is represented in Figure 3. (See Appendix B.1l).

0
A ZMCS 2MCS !
O // o)
reg
0
Preg B
1 }
Popt
0
Popt]

0 0 ' '
Qopt Qreg Qr:>pt Qreg
Figure 3
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We can now analyze the effect of regulating the price
of flights. When prices are requlated there is only one
decision variable, aircraft size. Therefore, the market will
move along thé ZMCSQ sche@ule. We do not get any tangency
condition and the equilibrium level of seats is determined
by the intersection of the regqulated price and the relevant
Zero marginal consumer benefit schedule (ZMCSQ).

From Figure 3 we see that markets with low availability
elasticity of dgmand are more affected by price regulation
(when the regulated price_is above the optimal one) than
those markets with high availability elasticity of demand.

Regulation therefore, will imply more seats per aircraft--
i.e., more capacity--and thereforgra level of excess capacity

or availability that is larger than the optimal one.

b. The Effect of Minimum Price Regulation When Aircraft
Size is Exogenous
When aircraft size (or capacity per location) is given,
the two decision variables are price and number of flights.

The first order conditions are therefore:
(2.12) BP - TCP + (Bv - TCV)VP =0
(2.13) B(.) - TC(.) + n(Bn - TCn + (BV - TCv)vn) = Q

Both equations can be represented in a (P,n) plane and
the optimal price-~-frequency combination is the crossing point

of both schedules. This is shown in Figure 4.
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Equation (2.12) is the set of'price and frequency

combinations for which the change in expected consumer surplus
from a change in price is zero.. We call this schedule the
Zero Marginal Consumer Surplus with respect to price (ZMCSP).
In the same way we can call equation (2.13) the ZMCSn schedule,
since (2.13) is the set of price and frequency combinations
for which the expected consumer surplus does not change with
small changes in frequency. From the second order conditions

we get that in Figure 4, ZMCSn has to be steeper than ZMCSP.

PA
ZMCS
P P
reg
1 ]
Pbpt
0
Popt
n0 n' =1
opt v opt
Figure 4

The optimal solution (P ) is also a tangency point

opt'nopt
between an iso-expected cost schedule (TC) and an iso—-expected
total gross benefit (TB) one. This can be seen by rearranging
(2.12) and (2.13) and dividing one by the other.

Equation (2.13)--the ZMCSn schedule--depends on the
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frequency elasticity of demand. For a larger frequency
elasticity the ZMCS shifts to the east (for the same price
more frequency flights are required) crossing the ZMCSP
schedule at a higher price and larger number of flights

(p' ).

nl
opt’™ opt
On the other hand, a change in the availability elas-
ticity of demand shifts both schedules. The ZMCS | (equation
(2.13)) shifts to the east from an increase in the availa-
bility elasticity and the ZMCSP (equation (2.12)) shifts
to the north if availability and frequency are substitutes-

(i.e, if 9yn < 0)- This result is presented in Figure 5

. ' . . , .
with (n on'P opt)-be;ng the new optimal point.

PA
ZMCS0
n ZMCS&
Preg
]
Popt
0
Popt
>
0 '
Ropt Ropt
Figure 5
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If we now impose & minimum price regulation the only
decision variable is the number of flights. The "secbnd
best" solution will be the number of flights at which the
ZMCSn schedule crosses the requlated price. As can be
seen from Figures 4 and 5 the smaller the availability and
frequency elasticities the larger the difference between
the optimal and the actual freguency (See Appendix B.2 for

proof).

€. Effect of Minimum Price Regulation with Frequency

and Capacity Being Endogenous

The results of the two previous subsections are partial
results and in this section we will try to generalize them
when both freguency and capacity are endogenous.

The relevant first order conditions are:

(2.11) B, - TCQ

0 + (Bv - TCV)V =0

0]
{(2.13) B(.) - TC(.) + n(Bn - IC, + (Bv - Tc?v)vn) =0

Equations (2.11) and (2.13) are fhe Zero Marginal
Consumer Surplus equations with respect to capacity and
flight frequency and were used in the previous subsections,
Since price is regulated we can plot those equations in
an (n,Q) plane. This is done in Figure 6.

Q0 and n, are the "second best" solutions for capacity
and frequency when price is fixed at P.. An increase in the

0
frequency elasticity will shift ZMCSn upwards while leaving
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nA

—>Q

Figure 6

unchanged the ZMCSQ schedule. It will imply an increase in
flight frequencf but a reduction in capacity per flight.
This result is expected since an increase in frequency
brings an increase iﬁ availability that was not required
by the increase in the frequency elasticity.

On the other hand, an increase in the availability

elasticity will shift both schedules to the right implying

that capacity or frequency may decrease if the other increases

sufficiently. It may also imply that both capacity and

frequency are increased. Tt cannot be that both are reduced.

This result is shown in Figure 3. We can conclude that:

(See Appendix B.3 for an analytical proof).

Proposition 4: With minimum regulation markets with larger

availability elasticity of demand will provide more flights
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or more capacity per flight (or both} than ﬁarkets with
lower availgbility elasticity; On the other hand, markets
with larger frequency elasticity of demand will provide
more flights and lower capacity per flight.

nA

T~ | “\\‘““—--—4-__zmcs$

Ro
0
0 ZMCS
ZNCS ZMCS ! n
Q
' >0
Q Q
Figure 7 )

Figure 7 is done for a given price. We can assume
that (Qo,no) and (Ql,ﬁl) represent the respective eguilibrium
points in two different markets. Let us further assume that
the regulated price is exactly the optimal priqe for the
market with the larger availability elasticity of demand.
{Ql,nl) will_then be the optimal combination of capacity -
and frequency for that market. Deregulation will have no
effect on this market but will shift ZMcsg and zmcsg to

the left implying a reduction in either frequency or

capacity (or both) for the market with the lower availability
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elasticity of demand.
In the same way, price deregulation should have a
larger effect on markets with lower frequency elasticity of

demand.l

Proposition 5: Price deregulation will imply a larger

reduction in freguency and/or in capacity per flight (and
therefore in price) the lower the availability and the
frequency elasticity of demand.

This proposition will be used in the next chapter
when analyzing the differential effect on individual firms

of several regulatory price changes.

lSee Appendix A,
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ITI. AN ANALYSIS OF THE DEMAND FOR AIRLINE SERVICES

1. Introduction

In Section IT it is shown how demand characteristics like
elasticities with respect to availability and frequency are
relevant in assessing the effect of deregulation.

Previous works on the demand fér air travel, either did
not take those factors into aécount (see Verleger [1972] for
an extensive analysis of demand using city-pair data) or 4id
not differentiate betﬁeen the two factors (like De Vany [1975]
or Olson and Trapani [1979]). .

This Sectién. presents an estimation of demand functions
for airlines' coach services that takes both avaiiability and

frequency into account.

2. The Datal

The data used in this Appendix is yearly data for indi-
vidual airlines for the period 1959/1975. That is, for each
airline an observation is a sum over all its routes for the
whole year.

For the price variable we used average revenue per coach

passenger per mile. This measure would be a good proxy for

lFor sources and description of the data see Appendix C.
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price if éll the customers had paid the same price. Since.
different customers paid different prices, this measure may

ias downwards the estimate of its coefficient.(See Verleger
[1972] for a discussion of average revenue per mile as a
Proxy for price). In the demand equation average revenue
per passenger mile is divided by the cost of living index.
In the supply equations it is divided by the wholesale price
index; this is the reason for two different price variables

PRICE1 and PRICE2

; the férmer in the demand and the latter
in the supply equation.

The cost variable used in the supply equations is the
averaée operafing cost per flight divided by the wholesale price
index. | |

For the.inéoﬁe variable in the demand equation, we used
either the industrialhproductionVindex or the real GNP. Real
GNP turned out to be more useful in the regressions of EAL, TWA, -
UAL and WAL, while the industrial production index was more
useful in the other equations. This result may be related to
the national characteristic of the big four trunk airlines
(AMR, EAL, TWA and UAL). The demand for these airlines'
services may depend on the aggregate movement of the economy
and not on industrial output alone..

Load factor in this model is a measure of availability,
for a given level of flight frequency. BAn increase in load
factors (holding constant flight frequency) would reduce

availability. On the other hand, an increase in frequency
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(for a given lével of availability) would reduce the discrep-
ancy between actual and desired flight time. Since aircraft
size is a variable in the model, availability cannot be
-identified by departures (or frequency) alone. That would be
the case if aircraft size was a constant. Some works have
used total available seats (that is, departures times air-
craft size) as the relevant variable for availability (see
Olson and Trapani [1979]), but availability may chanée even
if total_available seats remains constant (for example if we
double the number of flights but reduce to half the size of
,aircfaft, total available seats will remain constant but
availability will go down).

For the distance variable we used the average trip
iength of passenéefs.

For a measure of frequency of service we used total

number of departures.

3. The Model

Each of the demand equations that we are interested in
estimating belongs to a simultaneous equations model. Demand
depends on ;vailability and on frequency. Frequency is a
firm's decision variable, while availability is determined
by the decisions of the firms on frequency and capacity per
flight, and on the distribution of the demand. The model i§
formed by a demand equation, an equation describing fhe firm's
decision on flight frequency, another equation describing the

decision on size of aircraft and an identity defining availability.
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Load factor in coach is used as a proxy for availability.
We postulate the following model1 for each airline:

- The Demand Equation:

(3.1) PASSENGERSt - al+leEPARTURES +clLOAD FACTORt

t

1
+ leRICEt-FelTIMEd-leISTANCEt

+ gIINCOME + error term_ .

t t
- The Supply of Frequency Equation:

(3.2) DEPARTURESt = az-szPASSENGERSt4-c2LOAD FACTORt

j : _
+ dzPRICEt-+e2COSTt4-szIME4-error termt.

- The Aircraft Size Equation: .

(3.3) AIRCRAFT SIZEt = a3-+b3AIRCRAFT'SIZEt;l

+ cBEXPECTED FUTURE LOAD FACTORt

+ d,PRICE?

3 t+e

3COSTt4-f3TIME

+ 93DISTANCEt-berror termt.

- Definition of Load Factor:

(3.4) LOAD FACTOR,_ = PASSENGERS

. -~ DEPARTURES

c . AVA.ILABLE SEATS, .
The demand equation postulates that the annual number of
passengers is a function of actual values of price, frequency,

availability (load factor), distance, trend and income (different

lAll the variables--except for the time trend--are in
logarithms.
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lags of income were used to capture persistent income effects

of more than one year). We would expect the coefficients to

have the following signs:

1

b1 >0, c1 < 0, d, < 0, £

1 120, 9,>0, e %O

The supply of fregquency suggests that an inérease in
passengers implies an increase in departures supplied, load
factor and price should also increase the supply of departures;
an increase in cost per flight should reduce frequency.

Finally, the supply of aircraft size depends on previous
average aircraft size, since supposedly airlines have to incur
significant adjustment césts if they desire to change dras-
tically their fleet size. Expected future load factor is
included since dééisions on aircraft”pruéhases are not--in
general-—for a one year térm.2 Distancé is included in this
equation since different aircrafts are suited for different
distance ranges.

Since this is a regulated industry we did not include an
equation for price. It is assumed that price is exogenously

determined by the CAB.3

1c has to be negative, since load factor is negatively
related™to availability, and an increase in availability should
increase demand.

2Since we do not estimate equations (3.2) and (3.3), but
use them to obtain the instrumental variables to estimate
equation (3.1), we did not attempt to formulate a precise way
to form the expectations on future load factors. Sufficient
for our purposes that it be based on previous values of the
exogenous variables of this model.

3In future work I intend to perform exogeneity tests using
those developed by Wu [1973] and [1974].
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4. The Estimation

The above model can be estimated either using simple
equation or full information methods. Since we are mainly
interested in the demand equation, it was estimated using
two stages least_squares.1 |

The endogenous variables in the esfimation are DEPARTURES
and LOAD FACTOR. The instrumental variables used were those
exogenous variables not appearing in equation (3.1), that is:
the cost variable, the price variable (divided by the wholesale
pPrice index), and lagged wvariables (lagged aircraft size,
lagged departures, lagged cost). The exogenous variables are
the price variable divided by the consumer price index, the
time trend, disgance and income (including lagged terms).

The basic functional form was linear in the natural
logarithm. We also tested for non-constant elasticities for
departurss and load factors—--we used a regression linear in
their logs and in the squared values of their logs., For
four firms these specifications significantly reduced the
serial correlation of the disturbance term. The time trend
was introduced linearly or in its log forms.

The results of the two stages estimation are in Table 2.

The results of Table 2 show us an industry where aﬁailability

is a relevant factor. In almost all the equations the point

lFor single equations estimation, two stages least squares
is asymptotically efficient, but in small samples the results
from two stages may differ from the ordinary least squares and
we may not have a clear justification for using one or the other.
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. TABLE 1
GLOSSARY OF TERMS USED IN THE DEMAND STUDYZ

o = Constant

LFY - Load Factor in Coach

LFY2 _ - Load Factor in Coach squared

DEP - Departures

DEP2 - Departures sgquared

PRICE - Average Revenue per Passenger Mile divided by
the cost of living index (1970=100)

DIST - Distance: average stage length of passengers'
flights

INDP | - Indusﬁfial'Ptoduction Index‘(19?0=100) :

INDP1 - INDP lagged one year

RGNP . — Real GNP

RGP1 - RGNP lagged one year

RGP2 = RGNP lagged two years

iD = Trend

LID - Log of ID

%see Appendix C for a description of the variables and
the sources used.




TABLE 2

DEMAND FOR AIRLINES' PASSENGER SERVICES (COACH)--TWO STAGES
LEAST SQUARES ESTIMATION (1959/1975)3 :

RGNP

RGPl

RGP2

ID

LID

DW

1.84

EAL

TWA

28.66
(.46)

-.45
(-1.46)

——— — —

.85
(1.88)

1.95

1.86

v ——— a—

- ——

. ———

t-statistics are in parentheses.

of variable.

3The left hand side variable in this
of coach passengers,

See Table 1

equation is the log
the right hand side endogenous variables
are load factor and departures (LFY, LFY2, DEP, DEPZ2).

for definition
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TAY.LE 2 (CONT.)

CAL

-150.78
(-- 99)

-1.67
(-1.69)

.96
{.03)

~.03
(-.02)

~.17
(-.12)

1.92
(1.22)

DAL

=-174.56
(-4.16)

(-.94)

T ———
———

-—————

-

- ——

NAL NWL
-99.79 -1164.27
(-4.29) (-2.24)

.28 .11

(2.18) (.30)

———— —

WAL
-3220.13

=-13.77
(~1.48)

-10.73
(-1.34)

.63
(.80)

-
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estimate of the coefficient of load factor is negative, but
its statistical significance is relatively weak. The coeffi-
cient of departures is positive in almost all cases and is
statistically significant (at nnrmal levels) in three egua-
tions.1 The price variable which is the average revenue per
pa#senger mile turned out to be insignificant (ana on the
wrong sign for two significant cases);

The frequency elasticity estimates found in this analysis
are lower than those found in previous works such as De Vany
[1975] or Olson and Trapani [1979]. The difference in the
estimates is‘derived frdm perforﬁing différént nn&eflying
experiments when estimating the demand function.

De Vany's [1975] experiment is as follows. Increase
frequency while.nbt changing aircraft size, therefore
increasing toﬁal available seats proporticnally. The increase
in frequenéy will imply an increase in demand, load factors
would go-down further stimulating the demand. The total effect
of increasing frequency is therefore to increase availability
as well and the estimate of the frequency elasticity does
include a term related to the availability elasticity of demand.

In our case since we are holding availability constant, we are

performing the following experiment. Increase frequency and

lFrequency of service has a positive coefficient in
almost all the equations, but for those with t-statistics
larger than one, the point estimate is very close to one.
It can be shown (Spiller [1980c], Appendix B) that in a spatial
framework a monopoly would never operate at a point on the demand
with unity frequency elasticity since at that point his profits
would be zero. If these firms (EAL, NAL, NWL] had a signifi-
cant market power then we would be facing a "second best"
regulatory price.
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decreasg aircraft size such that the increase in demand
induced by the increase in frequency will not imply a change
in availability. The above discuésion shows that.our esti-
mates should be lower than De Vany's [1975] or Olson and
Trapani's [1979]. |

This demand analysis shows large differences among
firms in their availability elasticities. Braniff, Continental,
American and Western have availabilities elasticities larger
_ th;n‘.S while the others have lower elasticities. The elas-
ticities are presented in_Table 3.. These two groups will be
" affected very differently by.price déregulation. VThose firms
with large-av;ilability elasticities would not be affected

as much as those with smaller elasticities.
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TABLE 3

RANKING OF AIRLINES ACCORDING TO THEIR POINT ESTIMATES OF.
‘THE AVAILABILITY ELASTICITIES OF DEMAND2

Rankihg Firm Point Estimate

1 - BNF -3.45

2 CAL . =1.67

3 WAL | -1.32°
4 AMR | -.77

5 TWA -.45

6 DAL ~.33

7 UAL -.24

8 EAL .00

9 T WL .11
10 NAL .28

3see Table 29 for the demand equations.

bElasticities calculated at mean values.
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IV. SUMMARY

We developed a theoretical framework to analyze industries
characterized by uncertain aQailability and spatial location of
the product. This framework was applied to the airline industry
and used to analyze the differential impact of price regulation
on different markets and firms. It was shown that the effect
depends on demand characteristics such as demand elasticities
with respect to availability and frequency.

In the empirical part a demand analysis for each airline
was performed and used to assess the willingness to pay for
availability.. It was found that firms differ in their customers'
willingness to pay for availability. These differences were
found elsewhere to be highly correlated to the differential im-
pact deregulation'ﬁad on relative risk and profitability of the
domestic trunks.

This work fité into the Economic Theory of Regulation as
developed by Stigler [1971] and Peltzman [1976] when trying to
explain the deregulation of the airline industry. It suggests
that the simple capture theory of regulation may not be valid in
the airline case, since regulation may have had a differ-
ent impact across firms. This result has relevance for
regulation studies in general. When analyzing the effect
of a regulatory decision on an industry, it is necessary
to analyze whether we expect a differential impact. If it
is expected, pooling firms not according to the predicted
effect may significantly bias the estimated effect of the

regulatory change.
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The main thrust of this work is that different firms
wereAaffected differently by the price regulations of the
CAB. We pointed to the theoreticél and empirical relevance
of willingness to pay for quality (availability) as a dis-
criminating factor in analyzing the differential iméact of
price regulation. Little is known about the sources of the
differences across markets in their valuation of availability.

Several factors may be of relevance. First, different

routes may differ in the type of passenger they serve.
Business versus pleasure may be a relevant distinction. We
will expect, for example, Florida routes to be routes with--
relatively--low willingness to pay for availability.l
Second, passengers' value of time may also affect the
willingness to pay for availability.‘ Since the fifﬁs' net-
works are in different regional areas (with some degree of
overlapping), differences in average values of time may have
an effect on the differences in valuation of quality across

markets.

Third, the degree of competition.may also be an impor-
tant factor.

Fourth, the type of network may affect the willingness
to pay for availability. Compare a non-stop flight with a
multi-stop one. The probaiblity of obtaining a seat for the
whole flight in a multi-stop flight is the product of the

probabilities in the different segments of the flight. 1If

1It is interesting to note that Florida routes were

among those to have significant entry and price reductions
(Keeler [19801).
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all the different segments have the same probability--and
the same load factor--a non-stop flight with the same proba-
bility-—-and load factor--as each one of the segmeﬁts of the
-multi—stop flight will have a higher probability than the
multi-stop flight. Customefs of multi-stop flights will
require for a given price a lower load factor (to keep the
same utility level constant)}. Moreover, the difference in
the required load factor increases with the level of load

factor (since for low load factors, the probability is close
to one). This implies that customers of firms with mostly

multi-stop flights will show a larger willingness to pay for
load factor than those using airlines with mostly non-stop
£lights.®

This list of potentially relevant factors is not intended
to be exhaustive. An exhaustive analysis of the determinants

of the differences in the willingness to pay for availability

is the topic of a future research project.

1This seems to be a relevant factor. The ratio Average
Stage Length (ASL) to Overall Stage Length (OSL} is (approxi-
mately] the average number of stops each fixms' flight have
(AST, is the average length of customers' flights, 0OSL is the
average length of airplanes' flights). The average ratio for
the 1959/78 period ranges from 1.41 (TWA) to 1.74 (CAL) and
1.88 (NAL). The rank correlation between the ranking of firms
according to the effect of availability on the probability of
selecting first class over coach--our measure of relevance of
availability on demand--and the ranking according to number of
stops is .33 (and it is .7 if we exclude NAL, the firm with
the largest number of stops).
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APPENDIX A

THE EFFECT OF THE AVAILABILITY AND FREQUENCY ELASTICITIES
OF DEMAND ON OPTIMAL PRICE, FREQUENCY AND CAPACITY

The first order conditions are:

{tal) H, = B, = TC, + (Bv-TCv}vP =0,
(a.2) HQ = BQ - TCQ + (Bv-TCv)vQ =0,
(A.3) TH, = B(.) - TC(.) - (Bk -Ek + (Bv-ﬁv)vkt+l)/n=0.

If 'a’ is a shift variable, then the comparative statis-

tics are obtained in the following way:

3g0/da H__TH -H_ TH . TH

PP inn "FpnTHnp nQHPn oPPnn HPQTHAP'HPPTHnQ
ap/da| = % HonBnp~HopTHy,  HooTH, -Ho TH o H o TH -8 TH
dn/da HpoPen~ppfon  Hop¥onHoo¥en Hog¥erEgrfeg

"8,
(A.4) x -HPa .
“Hna

where D is the determinant of the Hessian matrix (D < 0).

If 'a' is the change in the demand for each individual
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flight from an increase in the number of flights (i.e., 'a’'

is gn),1 then (the approximations assume 9y and 9p constant)

Hogn = HPg'n -

TH (@ )fe/g £(s)d [1 £(s)d Jﬁ (p)d
- = n -C s s S - S s gP Pl -
ndn 0 -7 Q/9g : P

If -TH > 0, then dn/dgn < 0 and the sign of dQ/dgn

ngn

and dP/dgn depend on the signs of HPQTHnP—HPPTHnQ and

HQPTHnQ QQ respectively. ~This is a glausible assumption,
since it means that an increase in the absolute value of A

(a reduction in gn) implies an increase in number of flights
_.if the first_prder cqnd;tion (A3} is to hold. Since THnQ
(and HQn) is negative both signs are indeterminate. On the
other hand, the second order conditions constrain the signs
of both terms. A sufficient condition for the second order
conditions to hold is that the first term be negative and the
second positive {the opposite would violate the second order

conditions).2

If that is the case, then
.dQ/dgn >0 and

dP/dgn < 0.

1l
g. is negative, therefore an increase 1n g, means a reduc-
tion in'its absolute value.

2The implications of these signs in terms of characteris-
tics of demand functions will be explored in future work.
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That is, an increase in the absolute value of 9, (i.e.,
and increase in the frequency elasticity of demand) would
increase frequency, decrease capacity per flight and increase
price. | _

If H QTH P HPPTH nQ is negative, then in order for the
second conditions to hold it is necessary that HQ TH. np- QP an
be positive. In this case all the terms of the matrix in the
right hand side of (A.4) have a definite sign. 1In pérticular,
all the terms of the second row are of pésitive sign.

If the shift variable 'a' is Iy (the increase in demand

from an increase in availability), then

sl
N
-H = «H N - 1 f(s)sds(P-¢c) < 0O
(A.5) =-H. = -H > - 3(13—19) <0
Pa ng g
1 Q
—THna = -THngv= -{B TC)Iq/gf(s)/sds—f < 0.

From ( .4) and ( .5) we obtain that if we assume the
sufficient conditions just described to hold, the only straight-

forward answer is that optimal prices will rise.
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APPENDIX B
THE EFFECT OF MINIMUM PRICE REGULATION

1. Effect of Price Regulation with Given Freguency

The first order conditions1 are:

(B.1) HP =B, - TC, + (E'»V-'rcv)vP = 0
(B.2) | HQ = BQ - 'ch + (Bv-ch)vQ = 0.

If we define 'a' as a shift variable, and 'da' as the
change in a, the comparative statistics can be performed in

the following way:

o ~ | o0 op
dr/da _1 -HPa
' W

dg/da

where W= (H } > 0.

PPioQ opfeg
If we let 'a' be 9y (that is, the derivative of the

expected demand with respect to availability), then:2

1When price is regulated equation (B.l) does not hold
anymore.

2The approximations were performed by assuming = and

- 9p constant.
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§rl
-H = —H D e f(s)/sds{(P~¢) < 0
D
ba ng ngQ/g
-H._ = -H s—ﬁ(ii-p) < 0;
Qa qu g
therefore, '

dp/da dP/dgv
= > 0.
daqQ/da dQ/dgv

2. Effect of Price Regulation when Aircraft Size is Exogenous

The first order conditions1 in this case are:

H, = 0

(B.1)

‘(.B.3) TH =0 = B(.) fTC(.) + n(Bn_- 'r.cn+.(Bv.-ch)vn).
Defining 'a' as the shift variable, the comparative statistics
are: '
nn ~TH.p
dp/da _ 1 -HPa
dn/da -Wl : -TH
u g na
Pn PP

where Wl = HPPTHnn-THnPHPn > 0.

If we let 'a' be = (that is the change in each flight's

demand as a consequence of an increase in the total number of

flights —gn-<0-), then,

lWhen price is regulated equation (B.1l) does not hold

anymore.
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: ) Q/g o) 1 fﬁ
—THn > 2n (P-—c)J sf(s)ds - _EJ f(s)ds} g(pldp} .
09, 0 g7'Q/g P

If —THng > 0, then we have that
n

dP/dgn
< 0.
dn/dgn
If 'a' is Ior then from Section 1, -HPg < 0, and we have
v
that:
, 1 Q
~H P = -(B-TC)I f(s)/sds <0
19y Q/g g%
so that
dP/dgv
> 0 -
dn/dg

3. Effect of Minimum Price Requlation with Frequency and

Capacity Being Endogenous

If price is regulated the two relevant first order con-
ditions are:
(B.2) Hy = 0
(B.3) | THn =.0.

If 'a' is the shift variable, then the comparative statistics
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can be obtained from:

FTHnn ~TH
dQ/da 1 . 'HQa
w
dn/da 2] -TH .
“Hon . Epg

where W2 = HQQTHnn_HQ nTHnQ > 0.

If 'a' is g, then from Section 2 we know that ~TH, > 0,
_ ) n
and since -Han = 0 and HnQ < 0 we obtain that

dQ/dgn >0 and
dn/dgn < 0.
If 'a' is 9, we have that

I?Hn (-H

n(-Hgg ) - TH,

. (-TH__ )]

Q g, " \-
- dQ/dg
(B.4) ° vy = L

dn/dg, 2

["Hon (THog ) * Hog("THqg 11

From expression (B.4) we obtain that dQ/dgv and dn/dgv
cannot both be negative since that will contradict the second

order condition W2 > 0. If iiQ/dgv < 0, then

(-ﬁ% ) <0 or

5 -H - TH
(B.5) T (~Hgg ) a

nQ

(B.5a} THnn/THnQ < (—THngv)/(-Hng)
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If dn/dgv < 0, then

{B.6) —HQn(—H } +H

v

(-TH Y <0 or

Qg Q0 ng,

{B.6a) HQn/HQQ > (-'rnngv)/ (-Hogv)

From (E.5a) and (E.6a) we obtain

(B.7) THnnHQQ-HQnTHnQ < 0,

therefore contradicting the second order condition W2 > 0.
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APPENDIX C
DATA DESCRIPTION AND SOURCES *

1. Data Sources

There are two types of data used in Section IIT: airlines’
data (traffic and financial), and economy-wide informaticn
(price levels, income). The sources for airlines' data are
the CAB reports: . "Handbook of Airline Statistics", "Air
Carrier Financial Statistics" and "Air Carrier Traffic Sta-
tistics™ (issues 1958 to 1978). The source for economy-wide
variables is the IMF publication: "International Financial

Statistics” (various issues, 1958/1978). All data is yearly.

2, Data Description and Glossary

~ Load Factor: is the proportion of occupied seats (average).
It is obtained by dividing total passenger miles by available
seat miles (in each category of service: coach or first class).
- Average Revenue per Passenger Mile: is obtained by dividing
Revenue of Passengers (in $000) by Revenue Passenger Miles (in
thousand miles). The ratio is in § value.

- Departures: is the total number of departures performed by
the airline during the year.

- Distance: There are two measures of distance. a) averagé

stage length of passengers' flights (in miles): is the average
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distance of each passenger's'flight: b) average stage length
of aircraft {in miles): is the average distance of each
aircraft flight. The latter measure is smaller than the
former. Average stage length of passengers divided by average
stage length of aircraft is the average number of stops each
paSéenger's flight has. 1In the demand analysis, the measure

of distance used is average stage length of passengers' flights.
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