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ABSTRACT 

This paper quantifies the extent to which the U.S. manufacturing labor market is characterized by 
employer market power and how such market power has changed over time. We find that the vast 
majority of U.S. manufacturing plants operate in a monopsonistic environment and, at least since the early 
2000s, the labor market in U.S. manufacturing has become more monopsonistic. To reach this conclusion, 
we exploit rich administrative data for U.S. manufacturers and estimate plant-level markdowns—the ratio 
between a plant’s marginal revenue product of labor and its wage. In a competitive labor market, 
markdowns would be equal to unity. Instead, we find substantial deviations from perfect competition, as 
markdowns average 1.53. This result implies that a worker employed at the average manufacturing plant 
earns 65 cents on each dollar generated on the margin. To investigate long-term trends in employer 
market power, we propose a novel measure for the aggregate markdown that is consistent with aggregate 
wedges and also incorporates the local nature of labor markets. We find that the aggregate markdown 
decreased between the late 1970s and the early 2000s, but has been sharply increasing since. 
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1 Introduction

Is the U.S. labor market perfectly competitive? In perfectly competitive labor markets,
marginal revenue products of labor are equal to workers’ wages, meaning that every dollar
generated on the margin is paid to workers. Although it’s a convenient modeling assump-
tion, does this benchmark accurately describe the U.S. labor market? Wedges between
marginal revenue products of labor and wages may constitute evidence of monopsony
and suggest a departure from allocative efficiency. In this paper, we provide estimates of
these wedges—“markdowns”— across U.S. manufacturing plants between 1976 and 2014.
Specifically, we show that (i) the U.S. manufacturing labor market is characterized by sig-
nificant markdowns, consistent with employer market power, and (ii) the degree of this
market power decreased between the late 1970s and the early 2000s but increased sharply
afterwards.

Quantifying employers’ market power and understanding that market power’s dynamics
across employers and over time is fundamental to devising appropriate policy responses.
Reliable evidence on employer market power is particularly relevant when evaluating poli-
cies that directly affect workers’ compensation and mobility, such as changes in the mini-
mum wage. Similarly, when assessing regulatory limits on the growth of large firms, it is
helpful to consider the extent to which such firms are able to compensate labor below their
marginal revenue products. Policymakers have recently considered enacting these policies
to mitigate a perceived increase in employers’ market power (cfr. FTC, 2018).1 While this
rise in employer market power can be plausibly connected to several labor market trends,
measures of employer market power that directly compare the wedge between the marginal
revenue product of labor and the wage are not available to inform the current policy de-
bate.2

Our paper responds precisely to this gap. We estimate plant-level markdowns for the whole

1See the Federal Trade Commission Hearing #3: Multi-Sided Platforms, Labor Markets and Potential
Competition, on October 15–17, 2018.

2Several complementary measures have been proposed, including those related to labor market concen-
tration (Azar, Marinescu and Steinbaum, 2020a; Azar et al., 2020b; Benmelech, Bergman and Kim, 2020;
Rinz, 2020; Schubert et al., 2021), as well as fully structural approaches (Posner, Weyl and Naidu, 2018;
Azar, Berry and Marinescu, 2019b; Jarosch, Nimczik and Sorkin, 2021; Berger, Herkenhoff and Mongey,
Forthcoming). The measure we develop is based on the production function approach and is unique in that
it quantifies, with minimal assumptions, plant-level wedges between the marginal revenue product and the
wage.
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U.S. manufacturing sector and study their relationship with employer size, age, and pro-
ductivity. As well, we look at the evolution of aggregate markdowns over time.

Our analysis of labor market monopsony starts with estimating and characterizing the dis-
tribution of plant-level markdowns. In our baseline framework, firms internalize a finitely
elastic labor supply curve and thus operate in a monopsonistic environment. Without im-
posing further restrictions on the labor supply curve, we interpret gaps between the output
elasticity of labor and labor’s revenue share as market power, jointly in output (product
markups) and input (labor markdowns). Under the assumption that at least one other ob-
servable input is flexible—that is, free of adjustment costs and monopsony power—we
show that markups and markdowns can be identified and estimated separately. The key
insight is that the wedge for the flexible input reflects only product markups, and so the
ratio of the labor wedge and the wedge for the flexible input permits identification of both
markups and labor markdowns. To implement this insight empirically, we adapt the pro-
duction function approach from the industrial organization (IO) literature.

This approach has several advantages. First, we can remain agnostic about the sources of
employer market power. In fact, we show that our approach is consistent with a broad
range of monopsony models. Second, although we do need to impose a functional form for
a firm’s production, we can be highly flexible by specifying a translog function—a second-
order approximation to any arbitrary, differentiable production function. A third benefit is
that the production function approach remains valid regardless of the assumptions made
on other inputs besides labor and materials (and thus can accommodate capital adjustment
costs). Finally, the approach readily permits several extensions and modifications, includ-
ing heterogeneous labor within plants, labor adjustment costs, ex-ante specified returns to
scale, and alternative measures of labor compensation, such as inclusion of benefits.

Estimating such production functions and markdowns with comprehensive administrative
data for the U.S. manufacturing sector (using the Census and Annual Surveys of Manufac-
tures), we find that that labor markets in U.S. manufacturing are far from perfectly com-
petitive. The average plant’s marginal revenue product of labor is 53 percent higher than
its wage, implying that a worker employed there receives about 65 cents on the marginal
dollar. Furthermore, we document a substantial amount of dispersion across plants even
within 3-digit NAICS industries, with an average within-industry interquartile range of
61.6 percent. Investigating the sources of heterogeneity in markdowns, we find a robust
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positive association between markdowns and size, whether measured as an establishment’s
(or firm’s) relative share of employment or in terms of industrial and geographical scope.
This result supports the hypothesis that employer size matters when assessing the welfare
implications of labor market power. On the other hand, we find that plant-level dispersion in
markups and in productivity account for little of the heterogeneity in markdowns. We con-
clude that the typical U.S. manufacturing plant operates in a monopsonistic environment,
and that a significant degree of variation persists within narrowly defined industries.

We next use our estimates of micro-level markdowns to describe trends in macro-level
markdowns since 1977. This is not straightforward, as there is no uncontested framework
that delivers a clear aggregation rule for markdowns. We propose a novel “aggregate mark-
down” measure that satisfies two requirements. First, aggregate markdowns and markups
reflect aggregate wedges, the gaps that a fictional representative firm would face. This in-
terpretation has the advantage that no specific market structure for labor or output needs
to be imposed for aggregation. Second, aggregate markdowns need to account for the lo-
cal nature of labor markets, consistent with evidence on the cost of distance during job
search. In the end, we show that aggregation occurs through sales-weighted harmonic av-
erages, where weights are adjusted for heterogeneity in output elasticities. This measure
of the aggregate markdown displays a U-shaped evolution over time, decreasing between
1977 and 2002, and sharply increasing afterwards. We thus find support for the hypothe-
sis that monopsony in the U.S. manufacturing labor market has increased since the early
2000s.

Finally, we relate our aggregate markdown estimates to measures of labor market concen-
tration that have been commonly used in recent studies, as described below, on account of
their simplicity of construction. Despite our finding that plant-level markdowns increase
with employment size, we find little correlation between concentration and markdowns
at the aggregate market level, a consequence of accounting for heterogeneity in output
elasticities across firms within a market and our aggregation rule. Furthermore, although
aggregate local concentration and our aggregate markdowns show qualitatively similar de-
clines in the late 20th century, the concentration measure does not show the sharp reversal
of markdowns since the early 2000s. We conclude that cross-sectional and time variation
in local employment concentration do not necessarily reflect variation in employer market
power as measured by markdowns—at least within manufacturing.
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CONTRIBUTION TO THE LITERATURE. Our paper contributes to a recently reinvigorated
research agenda on the prevalence and evolution of labor market monopsony in the U.S.
economy. This interest in the exercise of market power by firms, and especially large
firms, has been motivated heavily by the secular decline in labor’s share of income (Elsby,
Hobijn and Şahin, 2013; Karabarbounis and Neiman, 2013), which has in turn been linked
to changes in industry-level sales concentration, with “superstar” firms potentially having
higher product markups and lower labor shares(Autor et al., 2020).3

Our contribution is twofold. First, we use comprehensive administrative data for U.S. man-
ufacturers and provide direct estimates of the wedge between an employer’s marginal rev-
enue product of labor and its wage. In so doing, we document substantial dispersion in
plant-level markdowns and document how this heterogeneity varies with employer charac-
teristics, such as size, age, productivity, and geographic scope. Second, we develop a new,
theory-grounded way to characterize aggregate markdowns and document their evolution
over the past four decades.

Our markdown estimation procedure relies on the “production approach” (De Loecker,
2011), which combines insights from Hall (1988) with production function estimation
techniques from the IO literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
De Loecker and Warzynski, 2012; Ackerberg, Caves and Frazer, 2015). In our estima-
tion procedure, we explicitly identify markups and markdowns separately. As a result, we
do not confound these two sources of market power. Most previous studies tend to fo-
cus on only one source of market power instead, and thus possibly overstate the extent of
that source’s market power. Exceptions to this practice, however, include Dobbelaere and
Mairesse (2013) and Morlacco (2020), who also exploit the flexibility of material inputs to
study monopsony in, respectively, non-U.S. labor markets and the market for foreign inter-
mediate inputs. Brooks et al. (2021b) also use techniques analogous to those in this paper
to estimate markdowns in China and India, and conclude that “in the context of developing
economies, markdowns substantially lower the labor share.”4

A related literature has documented a contemporaneous increase in markups, arguing that

3With the exception of the lowest-productivity establishments, which we discuss further below, we find
a positive relationship between plant-level productivity and markdowns. This finding is consistent with the
thesis in Autor et al. (2020), as long as labor shares fall faster than product markups rise.

4In a companion paper, Brooks et al. (2021a) further show that highway construction in India offset
markdowns and increased the labor share among nearby firms.
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the latter could be a unifying explanation behind many observed secular trends in the U.S.
economy, including the decrease in the labor share (Eggertsson, Robbins and Wold, 2021;
De Loecker, Eeckhout and Unger, 2020). Our paper contributes related evidence on the dy-
namics of the labor share and wages at the micro-level. Specifically, we document substan-
tial variation in plant-level markdowns for the manufacturing sector, both across and within
narrowly defined industries, and illustrate a tight positive relationship between markdowns
and size.

In our baseline measure, we assume that firms take monopsony forces into account by inter-
nalizing a finitely elastic labor supply curve, thus reflecting the assumption of an upward-
sloping labor supply curve common in many of the current models of monopsony. This
includes frameworks based on Burdett and Mortensen (1998), as in Bontemps, Robin and
Van den Berg (2001), Manning (2003), Mortensen (2003), Manning (2011), and Webber
(2015). It also encompasses the class of additive random utility models as characterized in
Chan, Kroft and Mourifie (2019), which include Card et al. (2018) and Lamadon, Mogstad
and Setzler (2022), and environments based on monopsonistic competition, as in Bhaskar
and To (1999), Staiger, Spetz and Phibbs (2010), and Berger, Herkenhoff and Mongey
(Forthcoming). Our paper contributes to this literature by proposing a strategy to estimate
markdowns that, while compatible with many of the frameworks studied previously, is not
tightly linked to a specific micro-foundation but instead is quite general.5

Finally, our paper relates to the burgeoning literature on labor market concentration, as we
compare concentration indices to markdowns. Interest in concentration indices stems from
their ease and breadth of use in both academic research and the practice of antitrust in the
U.S. economy. These have been calculated at the national (Autor et al., 2020) and local
levels (Rossi-Hansberg, Sarte and Trachter, 2020), and show diverging long-run trends.6

Recent work by Azar, Marinescu and Steinbaum (2020a) and Azar et al. (2020b) shows
the negative association between concentration and wages using vacancy data from online

5Standard arguments dating back to Robinson (1933) imply that markdowns are one-to-one with labor
supply elasticities. As a result, our markdown estimates also speak to the literature evaluating the elasticity
of labor supply. Our implied average elasticity estimate of 1.88 is only slightly above the median elasticity
estimate from more than 800 research papers covered in the meta-study by Sokolova and Sorensen (2020).

6A recent paper by Benmelech, Bergman and Kim (2020) also computes employment concentration and
relates it to average wages in U.S. manufacturing. Lipsius (2018) and Rinz (2018) both provide estimates of
concentration in firm-level employment from the Longitudinal Business Database and conclude that, though
local concentration reduces earnings and increases inequality, observed changes in concentration are unable
to explain the rise in income inequality observed in the U.S. economy.
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sources and argues for extending antitrust considerations to mergers that affect labor market
concentration. Despite this popular usage, however, it is unclear from a theoretical stand-
point whether a market’s labor concentration is necessarily positively correlated with its
level of competitiveness in the markdown sense (Syverson, 2019). Our paper contributes
to this conversation by documenting that the correlation between markdowns and employ-
ment concentration is quite modest, both cross-sectionally (across local labor markets) and
in the aggregate over time. We view this result as highlighting the challenges posed by
aggregation when comparing micro-founded measures of employer market power, such as
markdowns, to reduced-form indices, such as employment concentration.

OVERVIEW OF THIS PAPER. Section 2 lays out our estimation procedure and describes the
data. Section 3 illustrates our markdown estimates and discusses heterogeneity. Section
4 proposes a novel measure for aggregate markdowns and shows that the time trend in
aggregate markdowns is U-shaped, with a minimum in the early 2000s. It concludes with
documenting a weak relationship between our estimated aggregate markdown and an index
of local employment concentration. In section 5, we discuss the robustness of our baseline
results. Section 6 summarizes the evidence and concludes. We provide several additional
results, derivations, and robustness tests in the Appendix and Online Appendix.

2 Markdown estimation

Our analysis of monopsony in the U.S. labor market is based on markdowns, the percentage
gap between a plant’s marginal revenue product of labor (MRPL) and the wage it pays its
workers. This is a direct measure of employer market power that is easy to compare to
the benchmark of perfect competition. In a perfectly competitive labor market, markdowns
would be equal to unity. When markdowns are larger than unity, however, the employer
compensates workers less than dollar-for-dollar for every unit of revenue generated at the
margin.

In this section, we describe our basic framework. We begin by using the optimality condi-
tions from a firm’s profit maximization problem to show a one-to-one relationship between
markdowns and firm-level labor supply elasticity. We then use the firm’s dual problem
(through cost minimization) to derive an estimation strategy for markdowns in the spirit
of Hall (1988) and De Loecker and Warzynski (2012). Using this strategy and detailed
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administrative data on plants’ output and inputs, we retrieve micro-level markdowns in
the U.S. manufacturing sector. Our approach simultaneously allows for positive product
markups.

2.1 Obtaining markdowns through duality

2.1.1 Profit maximization

Our notion of an individual employer’s monopsony power is rooted in the idea that a
monopsonistic employer can compensate its workers below their marginal revenue product
of labor; a definition of monopsony power popularized by Manning (2003). We refer to
this percentage gap as a firm’s markdown. In the following, we will show that a firm’s
markdown has a one-to-one relationship with its (perceived) labor supply elasticity.7 To
see this, consider a firm’s profit maximization problem:

max
ℓ≥0

R(ℓ)− w(ℓ)ℓ

where R(ℓ) ≡ rev(ℓ;X∗
−ℓ(ℓ)) is shorthand notation for revenues in which all inputs are

evaluated at their optimum with the exception of labor ℓ. For ease of notation, we drop
the firm’s index for the moment. Given this structure and assuming that the revenue func-
tion and wage schedule are differentiable, a firm’s optimality condition can be rearranged
as:

R′(ℓ∗) =

[
w′(ℓ∗)ℓ∗

w(ℓ∗)
+ 1

]
w(ℓ∗)

=
[
ε−1
S + 1

]
· w(ℓ∗) (1)

where the firm’s perceived (inverse) elasticity of labor supply is defined as: ε−1
S ≡ w′(ℓ)ℓ

w(ℓ)

∣∣
ℓ=ℓ∗

.
Therefore, it is sufficient to characterize a firm’s labor supply elasticity in order to retrieve
its markdown. Hence, we get:

ν ≡ R′(ℓ∗)

w(ℓ∗)
= ε−1

S + 1, (2)

so that the markdown, ν, is expressed as the ratio of the MRPL to the wage, or the inverse

7This parallels the intuition behind the Lerner index formula, which relates residual demand elasticities
with price-cost markups.
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labor supply elasticity plus one.8 In this conceptual framework, we do not take a specific
stance on the sources of monopsony power; the only requirement is finite, firm-specific
labor supply elasticities. In Online Appendix O.7, we show that our setup is quite general
and nests a variety of monopsony frameworks, including wage-posting models (e.g., Bur-
dett and Mortensen, 1998), additive random utility models (e.g., Card et al., 2018; Chan,
Kroft and Mourifie, 2019; and Lamadon, Mogstad and Setzler, 2022), and monopsonis-
tic competition models (e.g., Bhaskar and To, 1999; Staiger, Spetz and Phibbs, 2010; and
Berger, Herkenhoff and Mongey, Forthcoming).

2.1.2 Cost minimization

A complication, however, is that estimating a firm’s perceived elasticity of labor supply in
a general setting is challenging, in part because of the potential for firm market power over
both inputs (monopsony) and output (monopoly). In this section, we propose a “production
approach” to retrieve markdowns for U.S. manufacturers in a general setting, building on
insights from Hall (1988), De Loecker (2011), and De Loecker and Warzynski (2012). The
key insight is that wedges between output elasticities and revenue shares can reflect market
power in both input and output markets. Intuitively, the output elasticity of labor captures
the gain from an additional unit of labor, whereas labor’s share of revenue reflects its cost
(normalized by a firm’s total revenue). If this wedge is larger than unity, the marginal gain
is larger than its costs, and the firm must be capturing margins through either markups on
its output or markdowns on its inputs.

The production approach starts with a firm’s optimal input choices. Suppose there are K >

1 inputs, denoted by Xit =
(
X1

it, . . . , X
K
it

)′. These inputs have pricing schedules {V k
it}Kk=1,

and adjustment costs for some input k are captured by the function Φk
t (X

k
it, X

k
it−1). Also,

we denote a firm i’s productivity level at time t by ωit. Then, to derive markdowns, we
adopt the following set of assumptions:

ASSUMPTION I. A firm engages in cost minimization.
There exists at least one input k′ that satisfies the following:
ASSUMPTION II. There are no adjustment costs for input k′, i.e. Φk′

t (·, ·) = 0.
ASSUMPTION III. Input k′ is not subject to monopsony forces, i.e. V k′

it (X
k′
it ) = V k′

it .
8Some studies define the markdown as the inverse of our measure, since it reflects the extent to which

wages are marked down. Under this convention, markdowns below unity reflect labor market power, whereas
in our measure, markdowns above unity reflect labor monopsony.
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ASSUMPTION IV. Input k′ is chosen statically.
ASSUMPTION V. Production F (·;ωit) is twice continuously differentiable in Xk′

it and it
satisfies:

lim
Xk′

it →0

∂F (Xit;ωit)

∂Xk′
it

= +∞ and lim
Xk′

it →+∞

∂F (Xit;ωit)

∂Xk′
it

= 0.

for any ωit ∈ R+. Furthermore, the demand schedule Pit(·) is continuously differentiable
and strictly decreasing.
ASSUMPTION VI. Input k′ is used for the production of output only.

Any input k′ that satisfies assumptions II–VI simultaneously, will be referred to as a flex-
ible input. Assumptions I and V are regularity assumptions and ensure that (a subset of)
inputs can be characterized through their first-order conditions alone. Assumption VI is
relatively weak and requires the flexible input to be used solely for production purposes.9

Assumption IV implies that an input k′ cannot directly affect a firm’s future outcomes,
ruling out certain dynamic narratives.10

Hence, the challenge becomes to find an input that simultaneously satisfies assumptions II
and III: the existence of a static input k′ free of adjustment costs and for which firms are
price-takers. If such an input k′ exists, we can establish the following result:

PROPOSITION 1. Let assumption I hold. If assumptions II–VI hold for some input k′

other than labor, we can characterize a firm’s product markup with the gap of its flexible
input k′: µit =

θk
′

it

αk′
it

, where θk
′

it and αk′
it denote a firm’s output elasticity of input k′ and its

share of revenue, respectively. If assumptions II and IV–VI also apply to labor ℓ, and firm i

faces a differentiable, finitely elastic wage schedule, then its markdown, νit, satisfies:

νit =
θℓit
αℓ
it

· µ−1
it (3)

where θℓit and αℓ
it denote a firm’s output elasticity of labor and its labor share of revenue,

9This rules out, for example, inputs designed purely to increase the demand for output, such as marketing.
Because our data are at the establishment level and allow us to separate production from nonproduction labor,
this assumption is relatively innocuous, and we discuss it in detail in Section 5.

10Our setup allows for (dynamic) capital adjustment costs as long as there is a flexible input other than
capital. We do rule out, however, mechanisms in which current output (which depends on current inputs)
affects a firm’s future demand, such as by affecting the customer base (see, for example, Foster, Haltiwanger
and Syverson, 2016).
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respectively.

Proof. See Appendix A.1. □

Proposition 1 implies that the ratio between the output elasticity of labor and labor’s share
of revenue equals the product of the markdown and the markup. In the remainder of this
paper, we follow the IO literature and assume that conditions II–VI hold for material inputs
(therefore referred to as “the flexible input” and indexed by M ). The availability of a flex-
ible input is the key factor that allows us to distinguish between markdowns and markups,
isolating our measure for labor market power from market power for outputs.

Thus, a key question for our identification is whether materials lack adjustment costs and
monopsony power in our context. Several pieces of evidence suggest these are reasonable
assumptions. First, the Census Bureau’s definitions of material inputs includes largely
generic, primary goods, as well as contract services, which tend to be traded on open,
often global markets.11 Second, Atalay (2014) does not find that prices for material inputs
vary with quantities (as required by Assumption III).12 Third, even if material inputs were
subject to monopsony forces, our estimates would reflect markdowns for labor relative to
markdowns for material inputs, implying our estimates would be lower bounds for labor
market power.13

For labor markdown estimation, Proposition 1 also requires that Assumptions II and IV–
VI apply to labor. For Assumptions II and IV to hold, we need to rule out labor adjustment
costs, including non-spot-market contracts.14 We address the sensitivity of our results to
possible labor adjustment costs in Appendix C and find that these matter relatively little,
for both convex and nonconvex adjustment costs.

Finally, our setup also excludes labor being used for any purpose other than the production
of output (Assumption VI). This could occur, for example, when labor is used for market-

11See Table XVI in Online Appendix O.5 for a complete list.
12Atalay (2014) also finds that some U.S. manufacturing plants pay “low materials prices because their

suppliers are exceptionally productive.” Hence, the variation in material input prices across plants can be
partially explained by variation in the marginal costs of suppliers, rather than plants exploiting their monop-
sonistic power.

13We discuss these issues in more detail in Section 5.
14Adjustment costs in labor would occur, for instance, in the presence of hiring and firing costs, such

as a corporate tax schedule that varies with firm size, or legal requirements that limit employment at will.
However, these provisions are not especially binding in the U.S. labor market.
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ing or hiring. This assumption may seem strong, but it is less restrictive in our context of
U.S. manufacturing plants, where most workers are indeed production workers. Further-
more, we show in Section 5 that our results are not affected when we explicitly distinguish
production from nonproduction labor.

2.2 Production function estimation

A distinct advantage of the production approach is its generality. We do not need to make
any assumptions on the sources of market power in order to quantify markdowns. In par-
ticular, we do not take a stance on the market structure for labor or the form of labor sup-
ply curves that firms face—a distinguishing feature of this paper from the fully developed
structural models of Card et al. (2018), Chan, Kroft and Mourifie (2019), and Lamadon,
Mogstad and Setzler (2022), and Berger, Herkenhoff and Mongey (Forthcoming). Further-
more, we need make no additional assumptions for inputs besides materials and labor: our
approach is valid as long as firms are subject to some finitely elastic labor supply curve and
material inputs are flexible. Finally, we can explicitly distinguish between market power in
output and labor markets. Our result in Proposition 1 implies that observing output elas-
ticities and revenue shares is sufficient for constructing markdowns. Revenue shares are
directly observable in administrative data on U.S. manufacturing plants, but output elastic-
ities need to be estimated.

To do so, we estimate production functions through “proxy variable” methods (Olley and
Pakes, 1996; Levinsohn and Petrin, 2003; De Loecker and Warzynski, 2012; Ackerberg,
Caves and Frazer, 2015). We adopt standard assumptions from the proxy-variable litera-
ture, particularly Ackerberg, Caves and Frazer (2015), which we discuss below.

ASSUMPTION 1. A firm i’s information set at time t, Fit, is generated by {ωiτ}tτ=0. The
transitory shock εit is not observed by the firm and satisfies E [εit|Fit] ≡ Et(εit) = 0.
ASSUMPTION 2. A firm i’s state variables at time t are given by the pair (kit, ωit). Further-
more, its stock of capital accumulates as a function of lagged capital kit−1 and investment
ιit−1:

kit = κ(kit−1, ιit−1) (4)

ASSUMPTION 3. The technology parameters β are constant across time and common
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within an industry group. Productivity evolves according to a first-order Markov pro-
cess:

p(ωit+1|Fit) = p(ωit+1|ωit) (5)

where the distribution p(·|Fit) is known to firms and is stochastically increasing in ωit.
ASSUMPTION 4. For at least one flexible input, the only unobservable factor (from the
econometrician’s point of view) in a firm’s input demand function is productivity ωit, which
is a scalar and is Hicks-neutral.
ASSUMPTION 5. For any flexible input satisfying assumption 4, a firm’s input demand
function is strictly monotone in ωit.

Assumptions 1 and 2 are standard in the literature and encompass a rich set of frameworks
of firm behavior. Because the econometrician does not observe firm-level productivity, a
least squares regression of output on inputs would lead to biased estimates (the “trans-
mission bias” in Griliches and Mairesse, 1998). To address this problem, Assumption 3
places some general structure on idiosyncratic productivity by having it follow a first-order
Markov process. 15

Assumption 4, also known as the “scalar unobservable” assumption, requires that idiosyn-
cratic productivity be the only input demand factor unobserved by the econometrician.
Bond et al. (2021) argue that this assumption is not consistent within the context of market
power, and that other estimators that do not rely on it should be used instead (e.g., Blundell
and Bond, 2000). However, in Online Appendix O.5, we run a set of Monte Carlo simula-
tions and demonstrate that our empirical approach, relying on the proxy variable estimator
of De Loecker and Warzynski (2012), still produces estimates with less bias than do esti-
mators that do not rely on the scalar unobservable assumption. Consequently, we do not
view Assumption 4 as restrictive in practice.

Finally, we require that flexible input demand functions are invertible in productivity. This
assumption allows us to obtain a nonparametric estimate of output without observing pro-
ductivity. While implicitly ruling out some production functions, this assumption still al-
lows for a general specification, such as the translog production function that we adopt in

15Although not without loss of generality, this structure is the most general in the production function
estimation literature (Ackerberg, 2020) and allows for considerably greater flexibility than other common
persistent stochastic processes, such as an AR(1).

13



our baseline estimates.16 Its flexibility rests on its interpretability as a second-order approx-
imation to any arbitrary, differentiable production function (see De Loecker and Warzynski,
2012). Hence, a translog specification nests and is substantially more general than, for ex-
ample, a Cobb-Douglas specification.17

In the following, we briefly describe the mechanics of the proxy-variable methodology and
how we obtain output elasticities. We refer the reader interested in a more detailed treat-
ment of our estimation procedure to Appendix A.2. In section 5, we further discuss possible
challenges to the proxy-variable methodology and how they relate to our results.

We denote yit as log output and xit as the vector of log inputs. This vector of inputs
contains the first-, cross-, and second-order terms of the vector x̃it = (kit, ℓit,mit, eit)

′,
consisting of capital, labor, materials, and energy. Because of the unobserved productiv-
ity parameter, we require instruments for the input vector to recover consistent production
parameters. Let zit be the vector instrumenting for the set of endogenous inputs xit. Fol-
lowing De Loecker and Warzynski (2012), we construct zit by taking the lag of each input
in xit with the exception of capital. Last, let f(xit;β) denote the log transformation of the
production function. In the end, our goal is to estimate production function parameters β
in the following setting:

yit = f(xit;β) + ωit + εit (6)

where εit reflects measurement error.18 The loglinearity of output in productivity comes
from the second part of Assumption 4. Given Assumptions 1–5, we estimate production
function parameters β ∈ RZ for each industry-specific production function in a three-step
process:

16This is important because the production approach does require a functional form on a firm’s production
function. For our estimates to have some external validity, it is therefore desirable to adopt a production
structure that is as general as possible. We believe this is achieved through a translog specification.

17Assumption 2 allows production parameters to vary across detailed industry groups (i.e., three-digit
NAICS) but imposes that they are constant over time. However, in our context with translog production, this
does not imply that output elasticities are constant over time. Indeed, under a translog specification for gross
output, output elasticities are allowed to vary across plants with the (time-varying) level of each firm’s inputs.
Furthermore, explicitly allowing time-varying production parameters does not greatly alter our conclusions.
As a result, this part of Assumption 2 is without much loss of generality.

18Other interpretations for εit are possible (Bond et al., 2021). We follow De Loecker and Warzynski
(2012) and interpret εit as measurement error. Its exact interpretation is not important for our results as long
as εit is unobserved by the firm and the econometrician.
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1. Run a third-order polynomial regression of yit on x̃it and a set of controls.19 Obtain
nonparametric estimates of log output φit free of measurement error.

2. Construct an estimate of productivity as ωit(β̃) = φit − f(xit; β̃) and run a third-
order polynomial regression of ωit(β̃) on ωit−1(β̃) to obtain estimates of productivity
shocks ξit(β̃).

3. Obtain estimates β̂ of the production function parameters β through the GMM sys-
tem induced by the moment conditions E

(
ξit(β̃) · zit

)
= 0Z×1.

Once estimates of β are obtained, it is a straightforward matter to calculate output elas-
ticities. Under a Cobb-Douglas specification, for example, the parameters β are equal
to output elasticities. However, under our translog setup, output elasticities are a linear
function of the inputs in x̃it, with coefficients that depend on β. A complete description
on the construction of output elasticities under translog production is found in Appendix
A.2.

A crucial part of the proxy variable methodology is to obtain transitory shocks to firm-level
productivity. As a result, we need to separately identify productivity ωit and measurement
error εit. Under Assumptions 4 and 5, productivity can be written as a function of observ-
ables only. This allows us to identify εit in the first step.20 Our translog structure then
allows us to obtain firm-level productivity in step two. Finally, we are able to identify
transitory shocks ξit to productivity through the Markov property in Assumption 3. These
shocks are the key behind our moment conditions: current inputs are orthogonal to future
shocks in productivity through Assumption 2.

INTUITION BEHIND IDENTIFICATION. The econometric literature on production function
estimation has not provided formal arguments on whether proxy variable estimators pro-
duce consistent estimates. However, informal arguments for identification can be given
through the logic of an IV estimator. As demonstrated in step three of our estimation pro-
cedure, we construct our moment conditions through the instrument vector zit. Therefore,

19Our baseline estimates include a set of year fixed effects, but our results do not change by much when
other controls, such as size and age, are included.

20By Assumptions 1, 2, and 4, we can write mit = mt(ωit; kit). Whenever Assumption 5 also holds,
mt is invertible in productivity and there exists some function ωit = ht(mit; kit). Thus, we have yit =
f(xit;β)+ht(mit; kit)+εit ≡ ϕ(xit;γ)+εit. Hence, we can obtain estimates for output net of measurement
error by running a nonparametric regression (e.g., a high-order polynomial) in only observables.
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we are “instrumenting” the endogenous input vector xit with zit. To understand why the
above system can retrieve valid estimates of β, we can verify a set of exogeneity and rank
conditions.

Exogeneity implies that zit is orthogonal to the innovations to productivity in period t. By
Assumption 2, firms choose inputs kit, ℓit−1, mit−1, and eit−1 without knowing what the
productivity shock ξit will be. As a result, exogeneity holds through our timing assump-
tions. However, how do we ensure that the “instruments” are valid, that those moment
conditions associated with ℓit−1, mit−1, and eit−1 are actually informative for the produc-
tion function coefficients on inputs ℓit, mit, and eit? For this to follow, we need factor-input
demand to evolve relatively smoothly, ruling out, for example, production functions that re-
flect perfect substitutes or perfect complements. We also need price schedules to similarly
evolve smoothly and be somewhat—but not perfectly—persistent over time. We believe
these are plausible requirements; Atalay (2014), for instance, finds empirical support for
the partial persistence of materials prices.

For consistent estimates, we further require reasonably long panel data ( Pesaran and Smith,
1995; Gandhi, Navarro and Rivers, 2020; Bond et al., 2021). In particular, Gandhi, Navarro
and Rivers (2020) formalize that time-series variation in the prices for material inputs—our
flexible input—is critical for identification, as it is the only residual source of variation that
can identify β under the proxy variable methodology.21 As our data, described below,
span almost 40 years, we believe there is sufficient variation in materials prices, whether in
aggregate or industry-specific, to identify production-function parameters.22

21As Flynn, Gandhi and Traina (2019) point out, it is important to note that this input price variation should
be orthogonal to productivity and output prices. As a result, some forms of unobserved heterogeneity in inputs
can be problematic. For example, it cannot reflect differences in the quality of purchased inputs. While it
is difficult to verify these assumptions explicitly in the absence of input quantity data, we did verify that
the overwhelming majority of the variation in material input deflators from the NBER-CES Manufacturing
Database comes from the time series.

22We should note that our measures of output and inputs are based on deflated expenditures. While we
show that markdowns can be obtained even if only (deflated) revenue elasticities can be estimated (see Section
5), the absence of input prices does technically violate the scalar unobservable assumption (see Hu, Huang
and Sasaki, 2020; Bond et al., 2021). However, this issue does not seem to be a major concern in practice,
as we summarize in the “Scalar unobservable assumption” subsection of Section 5. Using Monte Carlo
methods, we show more fully in Online Appendix O.5.3 that our preferred proxy variable estimator appears
more robust than other estimators that do not rely on the scalar unobservable assumption.

16



2.3 Data: Censuses and Annual Surveys of Manufactures

We use two administrative data sets for the estimation of markdowns: the Census of Manu-
factures (CM) and the Annual Survey of Manufactures (ASM), both from the U.S. Census
Bureau. The Census of Manufactures is a quinquennial survey that covers the universe
of manufacturing establishments in years ending in “2” and “7.” Crucially, the CM con-
tains establishment-level data on revenues and inputs, the two necessary ingredients for
production-function estimation. We construct our measures of output (revenues) and inputs
(capital, labor, materials, and energy) using deflators from the NBER-CES Manufacturing
Database, following the standard procedures described in Syverson (2004a) and Kehrig
(2015).

To construct markdowns for non-census years, we use the Annual Survey of Manufac-
tures (ASM). The ASM contains a representative, rotating sample of manufacturing plants.
While large plants are sampled with near certainty, small plants are sampled less frequently
based on their size.23 We use provided sampling weights to ensure that our estimates are
representative of the whole manufacturing sector. Our main results are thus based on a
nonbalanced panel for manufacturing plants in years 1976–2014. To avoid artificial spikes
in census years, we keep only those plants that are in the rotating sample of the ASM in
these years.

3 Markdowns in U.S. manufacturing

3.1 Cross-sectional distribution

We present results of our estimation procedure in Table I. These paint a clear picture: mark-
downs are sizable and considerably larger than unity. The average establishment through-
out the period charges a markdown of 1.53—that is, a plant’s marginal revenue product of
labor is, on average, 53 percent higher than the wage it pays its workers. Alternatively,
taking the reciprocal, a markdown of 1.53 implies that a worker receives about 65 cents on
the marginal dollar generated. Furthermore, we find that labor market power is widespread
across manufacturing plants. Half charge a markdown of at least 1.364 (73 cents on the
dollar), and the interquartile range in markdowns exceeds 0.6. Although these markdown
estimates may seem large, they are largely in line with implied estimates from previous

23Plant size is determined by the U.S. Census Bureau in terms of revenues and/or employment.
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studies (see Manning, 2003; Webber, 2015; Sokolova and Sorensen, 2020). When we
compare our markdown estimates with the meta-analysis on labor supply elasticities by
Sokolova and Sorensen (2020), our estimates fall below the median of this literature. We
conclude that the data support the hypothesis that the average (or even median) manufac-
turing plant operates in a monopsonistic environment.

Table I: Estimated plant-level markdowns in U.S. manufacturing: markdowns are sizable
and considerably larger than unity. The average manufacturing plant operates in a monop-
sonistic environment.a

INDUSTRY GROUP Median Mean IQR75−25 SD
Petroleum Refining 2.391 2.547 1.828 1.267

Computer and Electronics 2.296 2.558 1.227 1.075
Plastics and Rubber 1.812 1.906 0.582 0.584

Food and Kindred Products 1.761 1.913 0.872 0.823
Paper and Allied Products 1.695 1.795 0.573 0.625

Chemicals 1.623 1.817 0.941 0.870
Lumber 1.540 1.623 0.467 0.522

Primary Metals 1.450 1.503 0.506 0.479
Motor Vehicles 1.368 1.422 0.376 0.432

Printing and Publishing 1.345 1.495 0.454 0.632
Electrical Machinery 1.317 1.416 0.519 0.513

Fabricated Metal Products 1.257 1.313 0.339 0.360
Nonelectrical Machinery 1.246 1.317 0.532 0.454

Miscellaneous Manufacturing 1.208 1.254 0.348 0.358
Textile Mill Products 1.208 1.266 0.412 0.454
Furniture and Fixtures 1.150 1.167 0.320 0.358
Nonmetallic Minerals 1.139 1.217 0.372 0.522
Apparel and Leather 1.035 1.146 0.413 0.539

Whole sample 1.364 1.530 0.618 0.708
Sample size 1.393 ·106

aMarkdowns are estimated under the assumption of a translog specification for gross output. Each industry group in

manufacturing corresponds to the manufacturing categorization of the U.S. Bureau of Economic Analysis, which approx-

imately follows a 3-digit NAICS specification. The distributional statistics are calculated using sampling weights provided

in the data. Source: Authors’ calculations from ASM/CM data in 1976–2014.

Moreover, there is considerable variation in markdowns across plants within the same in-
dustry. The average within-industry interquartile range (standard deviation) of markdowns
is 61.6 (60.4) percent. This suggests that heterogeneity in markdowns likely relates to id-
iosyncratic factors, such as plant-level productivity differences or specific human capital,

18



rather than industry-wide characteristics, such as legacy structure, institutional agreements,
or industry regulations.24

Recent studies have emphasized that the welfare cost of market power distortions can be
considerable (Edmond, Midrigan and Xu, 2021; Baqaee and Farhi, 2020; Berger, Herken-
hoff and Mongey, Forthcoming), and so we next turn to understanding the determinants of
markdown variation.

3.2 Heterogeneity in markdowns

VARIANCE DECOMPOSITION. To investigate markdown heterogeneity, we first decompose
markdowns into their components according to Equation (3). Micro-level markdowns are
additively separable (in natural logs) according to:

ln(ν) = ln(θℓ)− ln(αℓ)− ln(µ) (7)

Recall that θℓ is the elasticity of output with respect to labor, αℓ is labor’s share of rev-
enue, and µ is the product markup. We can then apply the following variance decomposi-
tion:

V (ln(ν)) = V (ln(θℓ)) + V (ln(αℓ)) + V (ln(µ))

− 2 · [cov(ln(θℓ), ln(αℓ))− cov(ln(αℓ), ln(µ)) + cov(ln(θℓ), ln(µ))] (8)

In Table II, we document the contribution of each component.

The variation in markdowns is largely accounted for by the variation in output elasticities
θℓ and labor shares αℓ, as well as their covariance. Variations in markups, on the other
hand, play a quantitatively small role for markdown variation.25 Our results consequently
imply that the main determinants of markdown variation are different from those that drive
variation in markups.

24This pattern accords with the dispersion in revenue-based total factor productivity documented by Syver-
son (2004b). In Online Appendix O.1, we explore whether industry-level characteristics (e.g., unionization)
can explain some of the observed heterogeneity in markdowns. Qualitatively, we find a slight negative rela-
tionship between markdowns and unionization at the industry-state level.

25Although the focus of this paper is on the markdown estimation, we acknowledge that a more complete
treatment of the relationship between plant-level markups and markdowns is worthy of future research.
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Table II: Variance in plant-level markdowns is accounted for by the variances and covari-
ances of output elasticities θℓ and labor shares αℓ. Variance in markups is quantitatively
small.b

Variance Relative contribution
Markdown ν 0.1696 1.000

Elasticity θℓ 0.3149 1.857
Labor share αℓ 0.3813 2.248
Markup µ 0.0276 0.1627

Covariance Relative contribution
θℓ, αℓ 0.2804 −3.307
θℓ, µ −0.00601 0.0709
αℓ, µ −0.00271 −0.0320

bVariance decomposition of plant-level markdowns as based on Equation
(8). Source: Authors’ calculations from ASM/CM data in 1976–2014.

SIZE, AGE, AND PRODUCTIVITY. We proceed to investigate the source(s) of markdown
variation by focusing on idiosyncratic factors, especially those likely to be related to labor
supply elasticities and labor shares. In particular, we look at the relationship between
markdowns and establishment size. A recent literature has emphasized the welfare costs of
markups and markdowns that vary through size alone (Edmond, Midrigan and Xu, 2021;
Berger, Herkenhoff and Mongey, Forthcoming), and it is thus natural to ask whether size
can account for a substantial amount of variation in our markdown estimates.

As mentioned by Haltiwanger, Jarmin and Miranda (2013), however, it is important to
control for age while assessing size effects because the two are heavily correlated and
could thus confound each other. We therefore run a set of nonparametric regressions to
flexibly capture the heterogeneity of markdowns by size and age. These regressions are of
the following form:

νit = β0 +
S∑

d=1

βsize
d · 1sit∈Sd

+
A∑

d=1

βage
d · 1ageit∈Ad

+X′
itγ + εit, (9)

where Xit contains a full set of industry, state, and year fixed effects. We create size
dummies over a grid of S = 10 equally spaced bins of a plant’s employment share of its
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local labor market (NAICS3-county cell).26 We categorize age into 8 groups.27 The results,
depicted in figure 1, display a clear picture: markdowns are monotonically increasing in
size.

Figure 1: Average markdowns increase with establishment size.
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Note: The figure shows point estimates and 95 percent confidence intervals of plant-specific markdowns
on size (as measured by employment share) indicators, controlling for indicators for plant age and industry,
as well as state and year fixed effects. The omitted group is the smallest size indicator, so coefficients
reflect deviations relative to this baseline. The indicator labeled “0.1” is equal to unity for those plants with
employment shares s ∈ (0, 0.1]. Other indicators are defined similarly. Standard errors are clustered at the
industry level. Source: Authors’ own calculations from ASM/CM data in 1976–2014.

Conditional on plant age, industry, and other covariates, markdowns for plants with the
highest shares of employment are, on average, roughly 20 percent higher than for the small-
est plants.

The results for age are somewhat similar but less clear-cut. Without size controls, there
is a statistically significant positive age gradient in markdowns. However, as shown in
figure 2, this relationship is attenuated once size controls are included, and we cannot

26Following Haltiwanger, Jarmin and Miranda (2013), we apply employment weights. However, our re-
sults are little affected if we do not use employment weights.

27These age groups include: 0–2 years, 3–4, 5–6, 7–8, 9–10, 11–12, 13–15, and 16+ years. To min-
imize reporting bias in size and age, we take a plant’s employment share and age from the Longitudinal
Business Database (LBD), which contains the universe of employers, and merge them to ASM/CM at the
establishment-year level.
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Figure 2: Markdowns tend to increase with establishment age, but this result is relatively
weak conditional on establishment size.
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Note: The figure shows point estimates and 95 percent confidence intervals of plant-specific markdowns on
age category indicators, controlling for indicators for plant size and industry, as well as state and year fixed
effects. The omitted group is the smallest age category, less than three years, so coefficients reflect deviations
relative to this baseline. Standard errors are clustered at the industry level. Source: Authors’ own calculations
from ASM/CM data in 1976–2014.

reject that average markdowns are similar across the plant age distribution. Consequently,
the relationship between markdowns and plant age is not especially robust.

We also investigate the relationship between markdowns and plant-level productivity. Pre-
vious studies have identified a positive association between wages and profits (or sales) per
worker. Christofides and Oswald (1992), for example, find a robust relationship between
industry profits and firm-level wages, while Van Reenen (1996) documents that innovative
firms tend to pay their workers higher wages. Similarly, strategies popularized by Abowd,
Kramarz and Margolis (1999) have found that positive sorting and correlation between
workers’ bargaining power and firms’ profitability measures partially explain the positive
relationship between wages and productivity. More recently, Card, Devicienti and Maida
(2014) estimate an elasticity of wages to (economic) rents of approximately 4 percent, and
Seegmiller (2021), using a dynamic wage posting model, finds that public firms higher in
the labor productivity distribution have greater markdowns. In a related vein, we correlate
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plant-level productivity not simply to the average wage but rather to its markdown—the ra-
tio between the marginal revenue product and the wage. Since we do not observe quantities,
we proxy physical productivity (TFPQ) by revenue productivity (TFPR).28

Figure 3: There is a qualitative U-shaped relationship between establishment-level mark-
downs and TFPR.
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Nonparametric regressions of markdowns on productivity (employment-weighted). To avoid collinearity is-
sues, we follow Haltiwanger, Jarmin and Miranda (2013) and apply the normalization βTFPR

1 = 0 (lower
percentile of the TFPR distribution). Hence, productivity coefficients should be interpreted as deviations rel-
ative from this baseline. Standard errors are clustered at the industry level. Source: Authors’ own calculations
from ASM/CM data in 1976–2014.

Unlike that for size and age, we find that the relationship between a plant’s markdown and
productivity is not monotonic. As shown in Figure 3, the data suggest more of a U-shaped
association between markdowns and productivity. Markdowns are increasing in TFPR only
after about the 10th percentile in the TFPR distribution. Though the variation in markdowns
across the TFPR distribution is large, the coefficients on the productivity percentile cate-
gories are noisily estimated, and most estimates are not significantly different from zero at
the 5 percent level.29 Although there is suggestive evidence that the most productive estab-

28Although being able to observe TFPQ would be ideal, Foster, Haltiwanger and Syverson (2008) show
that TFPQ and TFPR are highly correlated with each other in a subsample of manufacturing plants for which
both measures of productivity can be constructed.

29The U-shape relationship between markdowns and TFPR does not appear to be driven by outliers in
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lishments may have larger markdowns, given the relative imprecision in these estimates,
we do not make strong inferences on the productivity-markdown relationship.

SCOPE AND HIGH-TECH STATUS. Another feasible dimension of heterogeneity is the ex-
tent to which markdowns vary for plants belonging to firms with multiple establishments
or with wide industrial or geographical scope. Such plants likely belong to firms with
greater capitalization and internal networks for resource reallocation, potentially increas-
ing the scope for markdowns (Giroud and Mueller, 2019). We thus create binary variables
that equal one when a plant is owned by a firm that has at least two active establishments
(“multi-unit”), owned by a firm with establishments in two or more different 6-digit NAICS
industries (“industry-scope”), or owned by a firm with establishments in two or more coun-
ties (“geography-scope”).

Table III: Plants belonging to multi-unit firms or firms active in more than one sec-
tor/location have higher markdowns.c

Dependent variable: MARKDOWNS

MULTI-UNIT INDUSTRIAL GEOGRAPHICAL HIGH-TECH

Premium 0.2514
(0.04236)

0.2543
(0.04173)

0.2558
(0.04247)

−0.09054
(0.1081)

Observations (in millions) 1.393 1.393 1.393 1.393
R2 0.2668 0.2696 0.2697 0.2511

c See note to Table I on markdown estimation. Industrial and geographical scope refer to a plant that is owned by a firm active

in multiple 6-digit NAICS industries or 5-digit FIPS counties, respectively. A plant is considered “high-tech” based on its 4-digit

NAICS code and the categorization of Decker et al. (2016). Standard errors, in parentheses, are clustered at the industry level.

Source: Authors’ calculations from ASM/CM data in 1976–2014.

Table III shows that plants owned by multi-unit firms charge markdowns more than 0.25
greater, on average, than stand-alone plants. We find quantitatively similar markdown pre-
mia for plants with greater industrial or geographical scope. These results continue to hold
if we control for firm size.

We additionally investigate whether plants in the high-tech sector have higher markdowns.30

High-tech firms play a disproportionate role in aggregate employment and productivity

TFPR or by entering and exiting plants. If we drop these observations from our sample, the U-shape flattens
somewhat, but neither the qualitative pattern nor the statistical significance changes.

30We follow the definition for high-tech sectors of Decker et al. (2016). For manufacturing, these in-
clude the 4-digit NAICS industries 3254 (pharmaceuticals), 3341 (computers), 3342 (communications equip-
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growth (see Decker et al., 2016), thus it is interesting to know whether they charge higher
markdowns on their labor. We find, however, that average markdowns for high-tech plants
are (weakly) lower than for other plants, which is consistent with the results on more inno-
vative firms in Van Reenen (1996).

HETEROGENEOUS LABOR. Our baseline estimates allow for different types of labor across
plants but implicitly assume that labor is homogeneous within plants. The ASM and CM
break down the plant wage bill into components of production and nonproduction workers,
allowing us to test for heterogeneity in markdowns across these two types of labor (treating
them as separate inputs in the production function).31 Table IV shows estimated mark-
downs by industry separately for each labor type. Allowing for labor heterogeneity does
not greatly affect the pattern from our original estimates. Markdowns for nonproduction
workers correspond closely to the baseline in Table I, while those for production workers,
while more variable, are somewhat higher, on average, than the baseline. However, there
is little evidence of any systematic difference between the two groups that would suggest
markdowns are driven by only one type of labor.32

That markdowns are similar for production and nonproduction labor may seem surpris-
ing to the extent that these groups are presumed synonyms for low-skill and high-skill,
respectively, and that low-skill workers should have an easier time finding a comparable
outside employment option. However, upon reflection, the pattern we find should not be
surprising. First, production and nonproduction workers are not synonyms for low- and
high-skill workers; rather, the former group, in addition to “fabricating, processing, [and]
assembling,” also includes highly skilled craftspersons, inspectors, and product developers.
Second, the summary results in Table IV subsume spatial heterogeneity. The portability of a
worker’s skills across jobs depends not only on that worker’s type of skill but on the demand
for that skill in the local labor market.33 Thus, it is plausible that production workers are

ment), 3344 (semiconductors and electronic components), 3345 (precision and control instruments) and 3364
(aerospace).

31The Census Bureau defines production workers as those “engaged in fabricating, processing, assembling,
inspecting, receiving, packing, warehousing, shipping (but not delivering), maintenance, repair, janitorial,
guard services, product development, auxiliary production for [the] plant’s own use, record keeping, and other
closely associated services.” This includes line supervisors but not managerial and administrative positions.

32It is also reassuring that, even under the strict interpretation of Assumption VI and Proposition 1, we
continue to find markdowns for production workers.

33Marinescu and Rathelot (2018) show that 81 percent of job seekers apply within their metropolitan area
of residence, while Macaluso (2019) finds that earnings of laid-off workers recover faster if their last job used
skills common to many jobs in the workers’ metropolitan area.
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Table IV: Markdowns for both production and nonproduction workers exceed unity and are
similar to baseline estimates in Table I. Markdowns for one group are not systematically
higher than for the other.d

Nonproduction Production
INDUSTRY GROUP Mean Median Mean Median

Food and Kindred Products 2.395 2.174 2.014 1.848
Textile Mill Products 1.924 1.736 1.460 1.403
Apparel and Leather 1.311 1.216 1.186 1.122

Lumber 1.660 1.553 1.707 1.620
Furniture and Fixtures 1.372 1.310 1.199 1.138

Paper and Allied Products 1.232 1.125 2.150 2.049
Printing and Publishing 2.021 1.896 1.243 1.142

Chemicals 1.599 1.400 2.473 2.146
Petroleum Refining 2.682 2.356 2.254 1.804
Plastics and Rubber 1.398 1.317 1.802 1.713

Nonmetallic Minerals 1.299 1.204 1.628 1.504
Primary Metals 1.824 1.760 1.416 1.339

Fabricated Metal Products 1.474 1.384 1.530 1.422
Nonelectrical Machinery 1.539 1.359 5.018 4.530

Electrical Machinery 1.383 1.311 1.667 1.526
Motor Vehicles 1.450 1.411 1.523 1.439

Computer and Electronics 2.620 2.436 3.383 2.954
Miscellaneous Manufacturing 1.532 1.456 1.344 1.258

Whole sample 1.682 1.488 1.963 1.527
Baseline 1.530 1.364

dSee note to Table I on markdown estimation. The summary statistics under “Nonproduction” (“Production”) reflect markdowns

applied to nonproduction (production) workers. Source: Authors’ calculations from ASM/CM data in 1976–2014.

subject to lower markdowns in some locations (where the opportunities for alternative em-
ployment are plentiful) but not in others (where alternative employers are scarce), and this
accords with their greater dispersion in markdowns. Third, it is not clear a priori whether
production workers are more subject to labor market power than nonproduction workers.
Outside employment options for both groups may be limited by noncompete employment
contracts (Starr, Prescott and Bishara, 2021), which are quite prevalent in manufacturing
(Colvin and Shierhold, 2019). Indeed, using a structural nested logit model, Azar, Berry
and Marinescu (2019b) find little difference in labor market power between higher- and
lower-paying occupations.
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4 Secular trends in aggregate market power

4.1 Aggregation of markdowns

Thus far, we have focused on cross-sectional markdown dispersion, pooling across years,
and have shown that (i) the average manufacturing plant operates in a monopsonistic en-
vironment, and (ii) plant-level markdowns vary substantially across and within industries
but are positively associated with plant size. While an increase in labor market power is
consistent with several observed secular trends in the U.S. economy, there is still little di-
rect time-series evidence for widening gaps between marginal revenue product of labor
and wages (Syverson, 2019). In this section, we investigate time trends in aggregate mark-
downs to gauge whether monopsony in U.S. manufacturing has increased over time.

Although we have estimates for markdowns at the plant level, aggregation is not straight-
forward. Previous studies on markups have relied on weighted averages based on sales
(De Loecker, Eeckhout and Unger, 2020) or employment (Rossi-Hansberg, Sarte and Tra-
chter, 2020), but it is unclear in which context and for which questions it is appropriate
to use these particular weights for markdown aggregation.34 We propose instead a flexible
measure of aggregate markdowns that is 1) theoretically consistent with aggregate wedges,
in the spirit of Edmond, Midrigan and Xu (2021), and 2) accounts for the local nature of
labor markets.

We argue that a measure for aggregate markdowns needs to satisfy these two requirements.
First, consistency with aggregate wedges is natural since micro-level markdowns are based
on micro-level wedges.35 Hsieh and Klenow (2009), and Itskhoki and Moll (2019) use sim-
ilar approaches in defining aggregate productivity as a function of micro-level productivi-
ties. Importantly, we do not have to impose a specific structure for labor or output markets
in order to achieve consistency with aggregate wedges. Consequently, our measure for the
aggregate markdown is consistent with a variety of monopsony models.36

34Aggregation is more straightforward when one is willing to impose more structure. Berger, Herkenhoff
and Mongey (Forthcoming) show that in their model, a labor market counterpart to Atkeson and Burstein
(2008), Herfindahl indices of payroll are sufficient statistics to calculate aggregate labor market power, but
this need not hold more generally.

35Aggregate wedges are consistent with gaps that a fictional representative firm would face. This is the
interpretation adopted in, for example, Cole and Ohanian (2002), Gali et al. (2007), and Karabarbounis
(2014). In particular, the aggregate wedge that defines the aggregate markdown in our setup is part of the gap
between marginal product of labor and real wages in Karabarbounis (2014).

36We discuss these in Online Appendix O.7.
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Second, several studies have shown that labor markets are “local” because workers find it
costly to search for jobs in locations far from where they reside. For instance, Manning
and Petrongolo (2017) estimate that the attractiveness of jobs decays sharply with distance,
while Marinescu and Rathelot (2018) find that job seekers are 35 percent less likely to apply
to a job 10 miles away from their zip code of residence. It is similarly costly to search in
settings using different skills or performing different tasks (Kambourov and Manovskii,
2009). We thus characterize a local labor market as a sector-location pair, using 3-digit
NAICS codes and counties, resulting in a total of more than 20 distinct sectors (within
manufacturing) and over 3,000 locations. In what follows, we denote sectors by j and
locations by l.37

We define the aggregate markup Mjlt in a labor market (j, l) as the wedge between the
aggregate output elasticity of some flexible input and its revenue share.38 We define the
aggregate markdown Vjlt as the part of the wedge between the aggregate output elasticity
of labor and the labor share that is not accounted for by markups. By construction, the
following identities hold at the market level:

θLjlt
αL
jlt

= Mjlt · Vjlt (10)

θMjlt
αM
jlt

= Mjlt, (11)

where, with some abuse of notation, θLjlt and αL
jlt are, respectively in some market, the

aggregate output elasticity of labor and the labor share. These objects are defined analo-
gously for material inputs. We say that any measures for the aggregate markup Mjlt and
markdown Vjlt, that are based on micro-level markups and markdowns, are consistent with
aggregate wedges whenever Mjlt and Vjlt satisfy equations (10) and (11).

Then, we can show the following:

PROPOSITION 2. Let Assumption I hold. Furthermore, let Assumptions II–VI hold for
material inputs and assumptions II and IV–VI hold for labor. If firm-level wage schedules

37We thank Jan Eeckhout for his suggestion to explore aggregate markdowns while thinking of the local
nature of labor markets.

38Edmond, Midrigan and Xu (2021) adhere to a similar definition but instead assume that labor is fully
flexible.
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are differentiable, then the aggregate markdown and aggregate markup for a local labor
market (j, l) are consistent with aggregate wedges whenever they are equal to:

Vjlt =

(∑
i∈Ft(j,l)

sit · θLit
θLjlt

· (νitµit)
−1
)−1

(∑
i∈Ft(j,l)

sit · θMit
θMjlt

· µ−1
it

)−1 (12)

Mjlt =

 ∑
i∈Ft(j,l)

sit ·
θMit
θMjlt

· µ−1
it

−1

, (13)

where sit are sales weights (i.e., sit = pityit
PjℓtYjlt

) and Ft(j, l) denotes the set of firms in labor
market (j, l).

Proof. See Appendix B.1. □

Whenever the market for material inputs is perfectly competitive, we can use an insight sim-
ilar to the one used in Proposition 1. Recall that Proposition 1 states that firm-level markups
are equal to the ratio between the output elasticity for materials and their revenue share. If
we define the aggregate markup as being equal to the ratio between the aggregate output
elasticity for materials and their aggregate revenue share, then the aggregate markup is a

weighted harmonic average of firm-level markups, i.e., Mjlt =
(∑

i∈Ft(j,l)
sit · θMit

θMjlt
· µ−1

it

)−1

,
similar to Edmond, Midrigan and Xu (2021).

Using an analogous argument, we derive that the product of the aggregate markdown
and markup is a weighted harmonic average of the product of firm-level markdowns and
markups. We obtain:

Vjlt · Mjlt =

 ∑
i∈Ft(j,l)

sit ·
θLit
θLjlt

· (νitµit)
−1

−1

Given that we have an expression for the aggregate markup, the expression for the aggre-
gate markdown follows automatically. If output elasticities do not vary across firms within
a given labor market—i.e., firms have Cobb-Douglas production technologies—then ag-
gregation follows by taking sales-weighted harmonic averages. If production technologies
are not Cobb-Douglas, we need only apply correction terms that deal with heterogeneity in
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output elasticities—as can be seen from Equations (12) and (13) in proposition 2.

We then aggregate across labor markets through employment weights, defining the aggre-
gate markdown as:

Vt =
∑
j∈J

∑
l∈L

ωjltVjlt, (14)

where Vjlt is as in equation (12), and ωjlt denotes the employment share of labor market
(j, l). Following the literature on markups (e.g., De Loecker, Eeckhout and Unger, 2020)
and concentration (Autor et al., 2020; Rossi-Hansberg, Sarte and Trachter, 2020), we pro-
ceed by constructing markdowns at the firm, rather than plant, level using the CM.39

Figure 4 illustrates the resulting time trend of aggregate markdowns, Vt. In contrast with
previous trend estimates of markups (e.g., De Loecker, Eeckhout and Unger, 2020), the
aggregate markdown Vt is not monotonic. Instead, Vt falls between the early 1980s and
early 2000s, after which it begins to sharply increase. This pattern is inconsistent with the
notion that increasing labor market power by firms is the primary cause of the decline in the
labor share, which began well before the early 2000s. Yet the stark increase in the aggregate
markdown since this time is interesting, as others have noted acceleration in the decline in
U.S. business dynamism over the same horizon (see, e.g., Decker et al., 2016).40

Contrasting the time series for the aggregate markdown in equation (14) with two com-
monly used alternatives highlights the importance of using a local measure of aggregate
markdowns that is also micro-founded. The first alternative we consider is a labor mar-

39By construction, the aggregate markdown is an employment-weighted average of markdowns at the mar-
ket level. The latter is constructed using Equations (12) and (13). However, it is difficult to construct these
objects with the previously used ASM sample, since our definition of a local labor market is rather narrow.
Recall that the ASM is a representative sample and does not contain the universe of manufacturing plants.
This is sufficient for use in a repeated cross-section, as in our earlier analyses of the distribution of plant-level
markdowns, but not for employment-weighted aggregation. In particular, the number of observations avail-
able to construct Vjlt and Mjlt might be rather small for some labor markets (j, l) and induce measurement
error biases in these objects. Thus, we instead utilize the CM, which contains the universe of manufacturing
plants but only at a quinquennial frequency.

40To understand which groups of firms determine movements in the aggregate markdown, we have applied
a decomposition in the spirit of Foster, Haltiwanger and Krizan (2001) to Vjlt. This decomposition analyzes
the role of changes within firms, across firms, and through firm entry and exit. As documented in Online
Appendix O.2.4, no single component drives the trend. In Online Appendix B.2, we show that the trend in
the aggregate markdown also cannot be explained by changes in the composition of local labor markets or by
excluding health and pension benefits from the labor share.
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Figure 4: Time evolution of the aggregate markdown across U.S. manufacturing plants
from 1977 to 2012.
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Markdowns are constructed under the assumption of translog production and aggregated according to expres-
sions (12) and (14). The aggregate markdown is normalized relative to its initial value in 1977. Standard
errors are obtained through a block bootstrap procedure and are percentile-based and thus not symmetri-
cal; production function parameters enter firm-level markdowns in a highly nonlinear fashion, and firm-level
markdowns also enter the aggregate markdown nonlinearly. Source: Authors’ own calculations from quin-
quennial CM data from 1977–2012.

ket equivalent of the aggregate markup measure used in De Loecker, Eeckhout and Unger
(2020):

VdLEU
t =

∑
p∈Pt

ωptνpt

=
∑
f∈Ft

ωft

 ∑
p∈Pt(f)

spftνpt


≡
∑
f∈Ft

ωftνft, (15)

where Pt denotes the set of active plants in year t and spft the employment share of plant
p in firm f . By construction, VdLEU

t is an employment-weighted average of plant-level
markdowns. This is identical to a firm-level average whenever firm-level markdowns are
calculated as employment-weighted averages across a firm’s plants.
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Figure 5: Our micro-founded aggregate markdown measure Vt (solid black) decreases
between 1977 and 2002 and increases afterwards. The employment-weighted aggregate
markdown à la De Loecker, Eeckhout and Unger (2020) (dashed blue) shows a similar
pattern qualitatively, while a local aggregate inspired by local concentration in Rossi-
Hansberg, Sarte and Trachter (2020) (dotted red) is steadily decreasing.
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Markdowns are constructed under the assumption of translog production and aggregated according to expres-
sions equation (14), equation (15), and equation (16), respectively. All measures are normalized relative to
their initial value in 1977. Source: Authors’ own calculations from quinquennial CM data from 1977–2012.

A second option is a measure for the aggregate markdown that mirrors the aggregate mea-
sure for local employment concentration, as in Rossi-Hansberg, Sarte and Trachter (2020).
This approach still aggregates micro-level markdowns through employment weights, sim-
ilar to Equation (15), but does so in two stages. First, micro-level markdowns are aggre-
gated through their respective employment shares within each market, then markets are
aggregated through employment weights to construct an aggregate measure. This leads
to:

VRHST
t =

∑
j∈J

∑
l∈L

ωjltMjlt with Mjlt =
∑

f∈Ft(j,l)

ωfjltνfjlt. (16)

Figure 5 illustrates that while our preferred measure Vt is decreasing until the early 2000s
and sharply increasing afterwards, the alternatives display a different time evolution. While
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VdLEU
t follows our measure in a qualitative sense, VRHST

t monotonically decreases over the
whole period.41

4.2 Comparing markdowns with concentration indices

Several recent studies have used measures of concentration—either in output or input
markets—as proxies for market power, both cross-sectionally and longitudinally. In this
subsection, we discuss whether concentration is an accurate proxy for market power—at
least within manufacturing—by comparing its cross-sectional and time-series properties
with our estimated markdowns.

The Herfindahl-Hirschman Index (HHI) is a canonical way to summarize the level of con-
centration in output markets (Autor et al., 2020; Rossi-Hansberg et al., 2020) and has been
increasingly popular in studies of labor markets as well (Rinz, 2018; Azar et al., 2020b;
Azar, Marinescu and Steinbaum, 2020a; Benmelech, Bergman and Kim,2020; Dodini et
al., 2020). Yet there is no a priori reason concentration and market power must be posi-
tively correlated. It may seem intuitive that large employers are able to exert more labor
market power, but as Syverson (2019) points out for output markets, a negative correlation
can arise naturally in the framework of Melitz and Ottaviano (2008) and has been empir-
ically observed in several studies ( Syverson, 2004a; Syverson, 2004b; Goldmanis et al.,
2010). Despite these critiques, concentration indices have never been explicitly compared
to direct, wedge-based measures of market power, at least not at a scale as wide as the
whole manufacturing sector. This is precisely our aim in this section.

For our comparison between aggregate markdowns and measures of concentration, we
adopt the HHI as our main measure of market-level concentration and define it in a standard
fashion:

HHImt =
∑

f∈Ft(m)

(
xft

XF (m)t

)2

s.t. XF (m)t =
∑

f ′∈Ft(m)

xf ′t, (17)

where m denotes a market, Ft(m) the set of firms in market m during a year t, and x is

41These differing trends can be rationalized by how markdowns are aggregated at the market level. Mark-
downs are aggregated linearly under the measure VRHST

jlt , but Vjlt is constructed through the ratio of two
harmonic weighted averages. Furthermore, each of these averages contain markups and reflect heterogeneity
in output elasticities for labor and material inputs. Empirically, we have confirmed that these latter factors
explain more of the difference between VRHST

t and Vt.
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a measure of size (often employment or sales). We focus on labor markets and thus set
m = (j, ℓ) to remain consistent with our previous analyses.

By construction, the HHI ranges from 1/Ft(m) to 1. A value of 1 indicates maximum
concentration—the presence of only one active seller/employer in a specific market-year. If
firms were equally sized, the inverse of the HHI would be equal to the number of employers
Ft(m) in a market m.

There are two common approaches to combining market-level concentration measures into
an aggregate measure. Under the first approach, HHIs are constructed at the industry level
(so that a market m is a national industry) and then aggregated through employment or
sales weights. Following Autor et al. (2020), we refer to these as measures of national
concentration.

In contrast to this “national” approach, Rossi-Hansberg, Sarte and Trachter (2020) have
argued that market competition is sometimes better captured at the local level, which may
especially be the case for labor. Therefore, markets are instead defined through sector-
location cells. Formally:

LOCALt =
∑
j∈J

∑
l∈L

ωjltHHIjlt (18)

=
∑
j∈J

∑
l∈L

ωjlt

 ∑
f∈Ft(j,l)

(
xflt

XF (j,l)t

)2
 s.t. XF (j,l)t =

∑
f ′∈Ft(j,l)

xf ′lt

Following our reasoning on the local nature of labor markets as in section 4.1, we imple-
ment equation (18) with data on employment as our preferred measure underlying both xflt

and ωjlt, where the latter are sector-location cell shares of total employment.42

Before we turn to comparisons of aggregates, we first correlate HHIs and our measure

42Rossi-Hansberg, Sarte and Trachter (2020) focus on product markets and apply the analogue of Equation
(18) to sales for xjlt but employment for ωjlt. Rinz (2018), like us, focuses on labor markets and uses
employment for both xjlt and ωjlt, but uses the Longitudinal Business Database to cover all establishments,
not just those in manufacturing. While our results here consider (stock) employment concentration, we have
also constructed concentration measures based on vacancies (as in Azar et al. (2020a)), job creation flows,
and payroll, all of which produce qualitatively similar patterns. Results for vacancies, based on data from
Burning Glass Technologies (BGT), can be found in Online Appendix O.8. Remaining results are available
upon request.
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of markdowns across local labor markets (sector-location cells). We find that the cross-
sectional correlation between Vjlt and HHIjlt is essentially zero: across years, this cor-
relation never exceeds 0.02, and it is sometimes negative.43 Despite this weak cross-
sectional correlation, Figure 6 demonstrates that time trends in aggregate local concen-
tration (LOCALt) and markdowns (Vt) are qualitatively similar. Nonetheless, while both
series generally decline between the late 1970s and early 2000s, the subsequent rise in the
aggregate markdown occurs both sooner and faster than the uptick in employment concen-
tration.

Figure 6: Within manufacturing, markdowns trend somewhat similarly with local employ-
ment concentration but show greater increases since the early 2000s.
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Note: The solid black line shows the time series for the aggregate markdown, as in equation (14), and the
dashed orange line shows the time series of local employment concentration, as in equation (18). Both are
normalized to their initial respective values in 1977. Source: Authors’ own calculations from quinquennial
CM data from 1977–2012.

These patterns suggest that—at least within manufacturing—cross-sectional and temporal
variation in local employment concentration may not necessarily reflect variation in em-
ployer market power as measured by markdowns. While it is beyond the scope of this
paper to thoroughly analyze these differences, we believe a promising area of future re-

43We provide full details in Appendix B.2.
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search is advancing theory on the general conditions under which measures of concentra-
tion serve as sufficient statistics for wedges between wages and marginal revenue products
of labor.44

5 Robustness

In this section, we discuss the robustness of our results. We present several exercises that
address concerns related to the validity of our markdown formula in Proposition 1. We also
discuss some unresolved econometric issues of the proxy variable methodology.

CHOICE OF FLEXIBLE INPUT. The production approach, as popularized by De Loecker
and Warzynski (2012), comes with many advantages but is not free of criticism. One of the
key identifying assumptions is the requirement for at least one flexible input. Pinpointing
such an input is difficult in most publicly available data sets, as most inputs are not observed
separately but rather aggregated into broad groups following accounting standards.45 Al-
though there is still some disagreement on what constitutes a flexible input (e.g., Traina,
2018), we follow the IO literature and assume that material inputs are flexible (Basu, 1995;
De Loecker and Warzynski, 2012).

Despite this standard IO assumption, there is some evidence of monopsony in the mar-
ket for material inputs. For instance, Morlacco (2020), using transaction-level data from
French manufacturers, finds evidence of market power in imported intermediate inputs un-
der the identifying assumption that domestically sourced intermediate inputs are perfectly

competitive. If material inputs are subject to monopsony, then the ratio θℓ
αℓ

(
θM
αM

)−1

in
Equation (3) would reflect the markdown for labor relative to the markdown for materi-

als, say, νℓ/νM . Therefore, in the presence of market power for materials, νM implicitly

44The weak empirical relationship we document may stem, in part, from different definitions of the relevant
labor market. Azar, Marinescu and Steinbaum (2019a), for example, find a negative correlation between
job application elasticity and HHI when markets are defined by occupation–commuting zone pairs. Data
limitations unfortunately prevent us from investigating the relative roles of occupation vs. industry, or sectoral
composition, in explaining these differences.

45Recent studies estimating markups typically rely on the Compustat database, in which variable inputs
are often identified with “cost of goods sold” (COGS)—which commingles material inputs and variable and
fixed labor—or “selling, general, and administrative expenses” (SGA). Because our data allow us to observe
separately expenditures on capital, labor, material, and energy, we circumvent having to make this choice.
Regrettably, neither data source—or any other with similar coverage, to our knowledge—further allows for
observation of input quality or other sources of heterogeneity.
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exceeds unity, and our estimates for labor markdowns would be biased toward zero, under-
estimating the extent of labor monopsony in U.S. manufacturing.

A plausible alternative for the flexible input is energy, as advocated by Kim (2017). He
maintains that monopsony power through buyer-supplier networks may affect materials,
while energy inputs are less prone to monopsony forces, as prices for energy tend to be
regulated. On the other hand, Davis et al. (2013) provide robust evidence against the hy-
pothesis that the energy input market is perfectly competitive. They find that plant-level
differences within manufacturing industries in energy purchases account for a substan-
tial fraction—at least one-third—of overall price dispersion. Furthermore, they document
sizable price gaps between larger and smaller purchases, even when controlling for plant
location and/or electric utility provider fixed effects. This seems to contradict the “no
monopsony” condition for energy and cautions against its use as a flexible input. More-
over, material inputs have another attractive property in that they represent a much larger
share of manufacturing revenues than does energy. Because our measure of markdowns
requires division by the flexible input, measurement error is of lesser concern for material
inputs compared to energy.46 We view these factors as compelling evidence in favor of
materials as the flexible input.

POINT IDENTIFICATION. Gandhi, Navarro and Rivers (2020) show that the standard as-
sumptions of the proxy variable method (as we describe in subsection 2.2) are insufficient
to point-identify production function parameters, and that additional sources of variation
in the demand for flexible inputs are required. In turn, Flynn, Gandhi and Traina (2019)
have shown that point identification can be restored if the returns to scale of the production
function are known. They suggest that a baseline assumption of “constant returns to scale”
forms a useful benchmark that performs well in their Monte Carlo simulations. When we
impose this constant returns to scale assumption in our context, we reassuringly find our
markdown estimates change relatively little (column “CRS” of Table V).47 This corrob-
orates the notion that our strategy yields reliable estimates of monopsony power in U.S.
manufacturing.

46We provide evidence of both factors in Online Appendix O.1.3. If we calculate markdowns using energy
as the flexible input, we find higher markups and lower markdowns, suggesting labor markdowns are low
relative to energy markdowns. Additionally, labor markdowns calculated with energy as the flexible input
have volatility nearly an order of magnitude greater than our baseline estimates, suggesting division bias.

47Additional details of this exercise are in Online Appendix O.3.1.
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Table V: Our markdown estimates are robust to alternative assumptions, including ex-ante
specified returns to scale (CRS), adjustment costs (Biennial), and including employee ben-
efits in labor compensation (Benefits).e

INDUSTRY GROUP Baseline CRS Biennial Benefits
Food and Kindred Products 1.761 1.475 1.871 1.276

Textile Mill Products 1.208 1.389 3.852 1.128
Apparel and Leather 1.035 0.663 1.074 1.024

Lumber 1.540 1.746 1.508 1.223
Furniture and Fixtures 1.150 1.831 1.122 1.038

Paper and Allied Products 1.695 1.669 1.699 1.431
Printing and Publishing 1.345 0.954 1.344 1.263

Chemicals 1.623 1.765 1.671 1.429
Petroleum Refining 2.391 2.826 2.131 3.463
Plastics and Rubber 1.812 1.424 1.200 1.207

Nonmetallic Minerals 1.139 1.296 1.289 1.147
Primary Metals 1.450 1.712 1.477 1.440

Fabricated Metal Products 1.257 1.684 1.368 1.148
Nonelectrical Machinery 1.246 1.489 1.151 1.068

Electrical Machinery 1.317 1.338 1.184 1.193
Motor Vehicles 1.368 1.663 1.268 1.078

Computer and Electronics 2.296 2.786 2.320 1.669
Miscellaneous Manufacturing 1.208 2.468 1.208 1.114

eMarkdowns are estimated under the assumption of a translog specification for gross output. For each robustness

specification, we report the median of each industry group. Under the column “CRS,” we display estimates under

the additional assumption of constant returns to scale to address identification concerns. Results from estimating

markdowns using biennial data to capture nonconvex adjustment costs are displayed under the column “Biennial.”

Results from including benefits in the measure of labor compensation (available only from 2002 forward) are displayed

under the column “Benefits.” Source: Authors’ calculations from ASM/CM data in 1976–2014.

LABOR ADJUSTMENT COSTS. In our baseline specification, we assume there are no labor
adjustment costs (Assumptions II and IV). Adjustment costs, however, also can potentially
drive a wedge between the output elasticity of labor and its revenue share, possibly con-
taminating our markdown estimates as expressions of monopsony power. In a quantitative
assessment of such bias, however, we find that the impact of labor adjustment costs on our
estimates is minimal.

To show that adjustment costs trivially affect our baseline estimates, we proceed in two
steps. First, we show that, when labor is subject to convex adjustment costs, the wedge
between the marginal revenue product of labor and wages reflects both monopsony power
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and adjustment costs. In particular, we show that R′(ℓ∗)
w(ℓ∗)

= (ε−1
S + 1) +A, where A would

equal zero in the absence of labor adjustment costs. Second, we derive an explicit correc-
tion term when labor adjustment costs are quadratic, as commonly suggested (Hall, 2004;
Cooper, Haltiwanger and Willis, 2007). This term depends on a plant’s growth in labor
and its wage bill, and a parameter governing the magnitude of adjustment costs. When
we calibrate the correction term over a varied range of labor adjustments and parameters
drawn from the literature, we find that the resulting “corrected” estimates of markdowns
are not far from baseline. In particular, the most conservative correction adjusts average
markdowns by approximately 0.03, quite small relative to the baseline average markdown
of 1.53.48

We also consider the possibility of fixed or otherwise non-convex adjustment costs by re-
estimating our markdowns on a biennial basis. Conceptually, nonconvex adjustment costs
that may affect our estimates at an annual frequency are less likely to do so at a biennial
frequency, especially since the majority of plants demonstrate changes in their employment
levels every year. Results from this biennial estimation, as illustrated in Table V under the
column “Biennial,” are again similar to baseline.

BENEFITS. Our baseline measure of labor costs is based on “wages” and covers a broad
range of compensation, including base salaries and wages; bonuses; incentive, overtime,
and shift differential pay; and stock grants and options. However, it does not include
employer-provided benefits. Consequently, it is possible that we overestimate employers’
labor market power to the extent that health and pension benefits are a significant source of
overall labor compensation and are correlated with the components of markdowns. We thus
re-estimate micro-level markdowns, including benefits in our compensation measure. This
more inclusive measure of labor compensation is available only from 2002 onward, which
results in a smaller sample than our baseline estimates.49 The results—displayed in the last
column of Table V—show markdown estimates that are slightly lower than baseline, indi-
cating that the inclusion of benefits may be a nontrivial part of the wedge between observed
wages and the marginal revenue product of labor. Nonetheless, these estimated markdowns
are still above unity for each industry, demonstrating that the presence of monopsony is
robust to broader measures of compensation.

48We provide derivations of the correction term and a detailed illustration of this exercise in Appendix C.
49Appendix O.4.1 provides full details on the components of labor compensation in the ASM/CM data.
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REVENUE VERSUS QUANTITY ELASTICITIES. In a recent paper, Bond et al. (2021) argue
that the production approach and its implementation with proxy variable estimators cannot
generate unbiased estimators of market power. Their critique centers around three issues
that we discuss here. The first is that, in most firm-level data sets, the quantity of physical
output is not available and instead has to be proxied by deflating revenues. As noted by
Klette and Griliches, 1996, this can lead to downward-biased estimates for markups. Bond
et al. (2021) further argue that markups under the production approach will mechanically
equal unity whenever (deflated) revenues are used to proxy for physical output.

We argue that this is indeed problematic when markups need to be identified in isolation.
However, this critique does not apply to markdowns. The key insight is that markdowns
are estimated through a ratio of elasticities. Revenue elasticities are not equal to output
elasticities; however, the component (or “bias”) that separates them is identical across in-
puts and multiplicative. As a result, the bias documented by Bond et al. (2021) cancels out
via our construction of markdowns: the ratio of revenue elasticities for two inputs is equal
to the ratio of output elasticities for these two same inputs. We formalize this intuition in
Proposition 4 of Online Appendix O.5.

INPUTS FOR NONPRODUCTION PURPOSES. Bond et al. (2021) also argue that the produc-
tion approach can lead to biased estimates of markups and markdowns when the econome-
trician cannot separate inputs used for purposes other than production that could still affect
the quantity of output. For example, inputs could also be used to shift demand (e.g., mar-
keting/advertising). To ensure that our estimates are not subject to this criticism, we need
to show that material inputs and labor are used primarily for production purposes.

We argue that it is unlikely prima facie that material inputs are used to influence demand.
Note that these inputs consist of raw materials, parts, containers, and supplies. Given
this categorization, it is safe to assume that material inputs are used solely for production
purposes.

However, it is less obvious that no labor inputs are used for shifting demand. We perform
two robustness exercises to address this possibility. First, as noted in Section 3.2, our data
allow us to separate labor into production and nonproduction workers, and when we es-
timate markdowns for these types of labor separately, we find that monopsony forces are
still significant among production workers specifically. Second, and more generally, our
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focus on manufacturing plants should render our analysis more robust to this specific cri-
tique, since we can plausibly assume that the great majority of a manufacturer’s plant-level
workforce is indeed employed for production. In fact, we explicitly derive a markdown
counterpart for the bias characterized in Bond et al. (2021) and show that, even if we do
not separate production from nonproduction labor, the components inducing bias are likely
to be small for manufacturers.50

SCALAR UNOBSERVABLE ASSUMPTION. The last critique in Bond et al. (2021) relates to
the scalar unobservable assumption (our Assumption 4). They show that, in the presence
of market power, this assumption cannot be satisfied, since the econometrician is also re-
quired to observe a plant’s marginal cost of production. Consequently, they suggest using
production function estimators that do not rely on the scalar unobservable assumption, such
as dynamic panel IV methods (Blundell and Bond, 2000). To evaluate this claim, we use
Monte Carlo methods to compare the performance of several production function estima-
tors. In particular, we adopt data-generating processes from Ackerberg, Caves and Frazer
(2015) that are inconsistent with the econometric assumptions of the family of proxy vari-
able estimators. Nevertheless, as we show in Onlne Appendix O.5.3, our preferred translog
estimator outperforms several estimators that do not rely on the scalar unobservable as-
sumption, including those from Blundell and Bond (2000) and Hu, Huang and Sasaki
(2020). Hence, even though the scalar unobservable assumption is violated, we do not
believe it causes significant problems in practice.

6 Conclusion

This paper provides a characterization of employer market power in the U.S. manufactur-
ing sector, both in the cross-section and over time. We start by estimating markdowns—the
wedge between marginal revenue products of labor and wages—at the plant-year level us-
ing the “production approach.” We find that labor markets in U.S. manufacturing are far
from perfectly competitive: the average plant operates in a monopsonistic environment, as
it charges a markdown of 1.53. In other words, a worker employed at the average manu-
facturing plant earns 65 cents of each dollar generated on the margin. We also document
that there is a substantial amount of dispersion in markdowns. For our whole sample, the
interquartile range of markdowns is 0.618, but most of this variation is observed within

50The details for this exercise are found in Online Appendix O.5.
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detailed industries, with an average within-industry interquartile range of 0.616. Further-
more, we find that size—whether measured as the relative share of employment in a local
labor market or as geographical and sectoral scope—is associated with greater markdowns.
On the other hand, we find less correlation with a revenue-based measure of productivity
or an indicator for being in a high-tech industry.

We also investigate long-term trends in employer market power, via a novel measure of
aggregate markdowns that is consistent with aggregate wedges, accounts for local labor
markets, and uses sales-weighted harmonic averages to adjust for production heterogene-
ity across firms. We find that aggregate markdowns decreased between the late 1970s and
early 2000s but increased sharply afterward. This nonmonotonic pattern is inconsistent
with the view that the decline in the U.S. labor share (or wage stagnation) was induced
by changes in labor market power. Furthermore, we show that popular measures of em-
ployment concentration do not line up well with the aggregate markdown, suggesting that
the variation underlying local employment concentration does not necessarily reflect the
variation underlying employer market power as measured by markdowns.51

While we believe that our approach makes significant strides in the estimation and trend
measurement of markdowns, we have only scratched the surface in understanding how
and why markdowns vary. For example, while we provide qualitative evidence of a neg-
ative correlation between the industry’s rate of unionization and markdowns, we do not
yet know whether the cross-industry variation in markdowns can be further rationalized by
the prevalence of noncompete agreements or labor regulations (e.g., right-to-work laws).
Such empirical exercises could help us further understand the determinants—and welfare
implications—of employer market power.

We also acknowledge that our approach is not without shortcomings. While it is compatible
with a broad array of monopsony frameworks, it rules out any model of monopsony in
which firms’ market power does not originate from an upward-sloping labor supply curve.
Most notably, our results cannot be interpreted through the lens of models in the family of
Diamond (1982) and Mortensen and Pissarides (1994). However, Dobbelaere and Mairesse

51Recent papers have documented that large increases in HHI driven by mergers lead to decreased wages
(Arnold, 2020; Prager and Schmitt, 2021). It is unclear, though, whether this relationship holds throughout
the HHI distribution, or whether the reduction in wages stems from labor market frictions other than the
wedge between wages and marginal product.
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(2013) show that wedges between output elasticities and revenue shares can also be used
to identify firm-level parameters of a static Nash bargaining problem in which risk-neutral
workers and firms negotiate over wages and the level of employment. These estimated
parameters can be informative for characterizing employer market power in random search
settings with perfectly elastic labor supply curves. Last, our econometric methodology
does not explicitly allow for factor-biased technological change. While there are estimation
methods that do account for labor-augmenting technological change, they do not allow for
a generalized production function (Doraszelski and Jaumandreu, 2018; Raval, 2020) or
labor market power (Demirer, 2020). We leave investigation of these themes for future
research.
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A Details on markdown estimation

A.1 Derivations

In this appendix, we formalize our arguments in the main text. In particular, we show that
retrieving output elasticities and revenue shares are sufficient in order to estimate mark-
downs. To see this, we start with the cost minimization problem of a firm. In general, we
have:

min
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)′ is the firm’s vector of K > 1 production inputs with prices
{V k

it}Kk=1. Furthermore, ωit denotes a firm i’s productivity level at time t, whereas a firm’s
production technology is denoted by F (Xit;ωit). Adjustment costs for some input k are
captured by the function Φk

t (·, ·).

To derive markdowns, we start with the insight by Hall (1986) that the wedge between
a flexible input’s output elasticity and its revenue share must reflect a firm’s output mar-
ket power (or its markup; defined as its output price over marginal cost of production).

LEMMA 1. Let Assumption I hold. Furthermore, let Assumptions II – VI hold for some
input k′. Then a firm i’s markup satisfies:

µit =
∂F (Xit;ωit)

∂Xk′
it

Xk′
it

Qit

·
(
V k′
it X

k′
it

PitQit

)−1

≡ θk
′

it

αk′
it

(20)

Proof. Under the stated assumptions, the first-order condition for any flexible input k′,
associated with cost-minimization problem (19), satisfies:

V k′

it = λit
∂F (Xit;ωit)

∂Xk′
it

where λit is the Lagrangian multiplier associated with the cost-minimization problem in
(19). This shadow value of total variable costs is also known as firm i’s marginal cost of
production. The above equality can easily be manipulated to:
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V k′
it X

k′
it

PitQit

=
λit

Pit

∂F (Xit;ωit)

∂Xk′
it

Xk′
it

Qit

where Pit denotes a firm’s price for its output good. Then, we get the expression for a firm
i’s markup µit =

Pit

λit
at time t:

µit =
θk

′
it

αk′
it

(21)

where θk
′

it ≡ ∂F (Xit;ωit)

∂Xk′
it

Xk′
it

Qit
and αk′

it ≡ V k′
it Xk′

it

PitQit
. Thus, a firm’s markup is equal to the wedge

between the output elasticity and the revenue share of some input k′. Note that the existence
of only one flexible input k′ that satisfies Assumptions II – VI is sufficient to establish this
result. □

Given this lemma, we can prove the main result of Proposition 1.

Proof of Proposition 1. Without loss of generality, consider the following conditional cost-
minimization problem:

min
ℓit≥0

wit(ℓit)ℓit s.t. F (ℓit,X
∗
−ℓ,it;ωit) ≥ Qit,

where X∗
−ℓ,it denotes the vector of optimized inputs with the exception of labor ℓit. The as-

sociated optimality condition with Lagrangian multiplier λit can be characterized as:

[
w′

it(ℓit)ℓit
wit(ℓit)

+ 1

]
= λit ·

∂F (ℓit,X
∗
−ℓ,it;ωit)

∂ℓit

wit(ℓit)
,

which we can rearrange as:[
w′

it(ℓit)ℓit
wit(ℓit)

+ 1

]
≡ ε−1

S (ℓit) + 1

=
λit

Pit

·
∂F (ℓit,X

∗
−ℓ,it;ωit)

∂ℓit

ℓit
Qit

· PitQit

wit(ℓit)ℓit

≡ µ−1
it · θ

ℓ
it

αℓ
it

. (22)
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Given our insight on a firm’s markdown, we must have:

θℓit
αℓ
it

= νit · µit. (23)

Then, the result follows immediately from lemma 1. Hence, we have:

νit =
θℓit
αℓ
it

·
(
θk

′
it

αk′
it

)−1

, (24)

which is what we wanted to show. □

Note that the result from the main text follows immediately from the above proposition
whenever material inputs are assumed to be flexible. The revenue shares αℓ

it and αM
it can

be directly constructed from the data. To obtain markdowns (and markups), it is suffi-
cient to estimate output elasticities only. Therefore, we need to estimate production func-
tions.

A.2 GMM-IV estimation procedure

In the following, we will provide more details on how we obtain output elasticities. To
do so, we will follow the “proxy variable” literature on production function estimation
(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; De Loecker and Warzynski, 2012;
Ackerberg, Caves and Frazer, 2015).

Let the production function be given by:

Qit = F (Vit,Kit;ωit),

where we categorize inputs as flexible or nonflexible inputs, i.e., X′
it = (V′

it,K
′
it). In

particular, we have:

Vit = (X1
it, . . . , X

V
it )

′

Kit = (XV+1
it , . . . , XK

it )
′,

where the first V ≥ 1 inputs are flexible and the latter K − V inputs are not fully flexible.
In particular, Kit is a state variable when choosing the inputs Vit. Furthermore, ωit denotes
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a firm’s productivity. In particular, suppose that X1
it = Mit are material inputs.

To account for measurement error, we assume that observed logged output satisfies yit =
ln(Qit) + εit; i.e., measurement error enters production in a multiplicative fashion. Note
that the error term εit is not observed by firms when they have to make their optimal input
decisions. Given our econometric assumptions 1–5, we can write:

yit = f(vit,kit;β) + ωit + εit,

where f(vit,kit;β) = ln (F (Vit,Kit;β)), and vit and kit denote componentwise natu-
ral log transformations of Vit and Kit, respectively. Firm-level productivities ωit are not
observed by the econometrician, but are observable for firms themselves.

Unobservable productivity is the main cause of endogeneity concerns in our estimation
procedure. To deal with this, we use the insight of Levinsohn and Petrin (2003). Under
Assumptions 4 and 5, material demand ln(X1

it) = mit can be used to proxy for productivity.
Note that firms choose flexible inputs given the state Kit, idiosyncratic productivity ωit, and
some controls that can influence their decisions cit (e.g., input prices):

mit = mt(ωit;kit, cit),

where the vector cit denotes any additional, observable variables that can affect a plant’s
optimal demand for material inputs.52 The above mapping for materials is invertible in
productivity ωit by Assumption 4. Following Levinsohn and Petrin (2003), a sufficient
condition for invertibility is:

DM =
∣∣∣∂Vit(Kit,ωit)

∂ωit
HF

2,V (Kit, ωit) . . . HF
V,V (Kit, ωit)

∣∣∣ > 0,

where ∂Vit(Kit,ωit)
∂ωit

=
(

∂X1
it(Kit,ωit)

∂ωit
, . . . ,

∂XV
it (Kit,ωit)

∂ωit

)′
and

HF
r,V (Kit, ωit) =

(
∂F (Vit,Kit,ωit)

∂Xr
it∂X

1
it

, . . . , ∂F (Vit,Kit,ωit)

∂Xr
it∂X

V
it

)′
is the rth column of the Hessian ma-

trix for F (·,Kit;ωit) evaluated at Vit ∈ RV
+.

52In the empirical implementation, cit contains only a set of year fixed effects. Industry fixed effects are
not required whenever production technology parameters are estimated industry-by-industry. However, the
used methodology is flexible enough to account for other observables.
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Under this assumption, the material input demand function is monotonic in productivity
ωit.53 Then there exists some function ht(·;kit, cit) so that:

ωit = ht(mit;kit, cit).

As a result, production yit can be written in terms of observables only:

yit = f(vit,kit;β) + ht(mit;kit, cit) + εit

= ϕt(vit,kit, cit) + εit

= φit + εit.

Estimating the production technology parameters β is done in a three-stage fashion, which
is in a similar spirit to Ackerberg, Caves and Frazer (2015). To implement our estimation
procedure, we set vit = mit, kit = (kit, ℓit, eit)

′ and cit = (di,1, . . . , di,T )
′, where di,t is a

fixed effect for a specific year t. Even though we will mainly focus on translog production
functions, we also occasionally report results for Cobb-Douglas specifications.

STEP 1. NONPARAMETRIC ESTIMATION OF φit AND εit.
First, we estimate φit and εit nonparametrically by approximating yit with a third-degree
polynomial in x̃it = (kit, ℓit,mit, eit)

′ with interaction terms. In the case of translog pro-
duction, we have:

xit = (kit, ℓit,mit, eit, kitℓit, kitmit, kiteit, ℓitmit, ℓiteit,miteit, k
2
it, ℓ

2
it,m

2
it, e

2
it)

′.

Let its fitted values and residuals be denoted by φ̂it and ε̂it, respectively. These residuals
are then interpreted as measurement error in observed output.

STEP 2. CONSTRUCTION OF INNOVATIONS ξit TO PRODUCTIVITY ωit.
By Assumption 3, idiosyncratic productivity ωit is Markovian; thus, its expected value is
only a function of its lagged value. As a result, we have ωit = gt(ωit−1) + ξit. Then,
productivity is approximated in the data by:

53This follows from standard arguments for comparative statics under multiple inputs. We then apply
Cramer’s rule to arrive at the stated condition. Levinsohn and Petrin (2003) show a similar result for V = 2 in
their Appendix A. In a nutshell, Assumption 5 imposes a set of regularity conditions on the cross-derivatives
of the production function in Vit which are fairly mild.
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ωit(β) = φ̂it − f(xit;β).

Then we approximate gt(.) with a P th order polynomial in its argument:

ωit(β) = Ωit−1(β)
′ρ(β) + ξit

=
P∑

p=0

ρpω
p
it−1(β) + ξit,

where we follow De Loecker and Warzynski (2012) and set P = 3. Thus, the innovations
to productivity can be constructed as a function of β through:

ξit(β) = ωit(β)− Ωit−1(β)
′ρ̂(β).

The estimates ρ̂(β) = ({ρ̂p}Pp=1)
′ are simply obtained by running a least squares regression

of Ωit−1(β) on ωit(β).

STEP 3. GMM-IV ESTIMATION OF β.
By Assumption 2, capital is predetermined at time t, as a firm chooses it one period ahead.
As a result, it is safe to assume that kit is orthogonal to the innovation ξit(β). Similarly,
firms cannot observe the string of future innovations to their productivity. As a result,
current input decisions (with the exception of investment in capital) must be orthogonal to
shocks to their idiosyncratic productivity in the future. Define the instrument zit ∈ RZ

as the vector that contains one-period lagged values of every polynomial term containing
ℓit, mit, and eit in the production technology f(xit;β), but with capital preserved at its
current value kit. Then, we define the following system of moment conditions to identify
β ∈ RZ :

E (ξit(β)zit) = 0Z×1. (25)

By construction, this system of equations defines a set of exogeneity conditions. Lagged
inputs are used to instrument for current period inputs. To validate this identification strat-
egy, we need to argue that the moment conditions in (25) also satisfy rank conditions. Our
focus lies on material inputs, so we will pay particular attention to this specific input. For
lagged material inputs to be a valid instrument for current material inputs, mit and mit−1

need to be correlated. A sufficient condition would be that input prices for material inputs
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are persistent over time. In fact, Atalay (2014) finds empirical evidence for this using data
from the Census of Manufactures.

To obtain β, we rely on the minimization of a quadratic loss function, which is standard in
GMM estimation.54 Thus, we get:

β̂ = argmin
β∈RZ

Z∑
m=1

(
N∑
i=1

T∑
t=1

ξit(β)z
m
it

)2

,

where we have zit = (z1it, . . . , z
Z
it )

′.

CONSTRUCTING MARKUPS AFTER OBTAINING ESTIMATES β̂. In general, output elas-
ticities with respect to material inputs can depend on the level of all inputs, whether that
level be flexible or predetermined. This implies that θMit = θ

j(i)
M (x̃it;β). Following the

estimation procedure by De Loecker and Warzynski (2012), we can furthermore correct for
measurement error εit in logged output. This is particularly important for data in the ASM
and CM. Output prices are not available at the firm level, so output levels are obtained by
deflating revenues adjusted for inventories. Unfortunately, the deflators used in the NBER-
CES Manufacturing Industry Database are only available at the industry level. This causes
an unavoidable bias in measuring real output.

However, De Loecker and Warzynski (2012) mention that some of the concern about this
bias can be taken care of with the correction term εit. By construction, any unobserved vari-
ation in output prices orthogonal to a firm’s inputs will be absorbed by the measurement-
error correction term. In addition, if pricing decisions are correlated with a plant’s produc-
tivity, then this specific variation will be controlled for as well, through the use of a proxy
for productivity. Then, markups are constructed as:

µ̂it = θ̂Mit

(
vmit

tvsit/ε̂it

)−1

= θ
j(i)
M (x̃it; β̂)

(
vmit

tvsit/exp(ε̂it)

)−1

, (26)

where vmit and tvsit denote a plant i’s total expenditure on intermediate inputs and total
value of shipments in year t, respectively. Production technologies do not differ over time,

54By construction, the number of parameters in β is equal to the amount of identifying moments. This
case of “just identification” renders the specification of a weighting matrix useless.
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but are allowed to vary across industries by assumption 3.55

To construct output elasticities explicitly, we need to take a stance on the production func-
tion. In the following, we demonstrate how to obtain output elasticities in the case of
translog production.56 Our preferred specification assumes that production is translog, for
two reasons. First, the translog specification is a second-order log approximation to any

arbitrary, differentiable production function. In fact, the Cobb-Douglas setup is nested
within our translog specification. Second, output elasticities are allowed to vary with the
level of any input under the translog specification. This implies that markups and mark-
downs have two sources of time variation: 1) time-varying output elasticities and 2) input
revenue shares.

TRANSLOG PRODUCTION. Assumption 3 under translog production implies:

f(xit;β) = βKkit + βLℓit + βMmit + βEeit

+ βKLkitℓit + βKMkitmit + βKEkiteit + βLMℓitmit + βLEℓiteit + βMEmiteit

+ βKKk
2
it + βLLℓ

2
it + βMMm2

it + βEEe
2
it.

Assuming that capital is chosen one period ahead, the instrument vector becomes:

zit =

(
kit, ℓit−1,mit−1, eit−1, kitℓit−1, kitmit−1, kiteit−1, ℓit−1mit−1, ℓit−1eit−1,mit−1eit−1,

k2
it, ℓ

2
it−1,m

2
it−1, e

2
it−1

)′

,

where β ∈ R14 is estimated for each industry j. Note that the number of parameters
increases exponentially whenever more inputs are considered.57 Markdowns are then em-

55Note that this assumption can be relaxed by estimating, for example, time-varying Cobb-Douglas param-
eters. This is easily done by restricting the estimation sample to repeated cross-sections in a subset of years.
Theoretically, this should be possible for the translog case as well, but the amount of cross-sectional variation
in these subsamples might not be sufficient to identify all parameters properly.

56Under Cobb-Douglas production, output elasticities are equal to their respective production coefficients.
57With a translog production function with K inputs, there are K linear terms, K quadratic components

and
(
K
2

)
unique input pairs. Thus, there are a total of 2K +

(
K
2

)
= K(K+3)

2 terms.
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pirically implemented through:

ν̂TL
it = θ̂

j(i)
ℓ (x̃it; β̂)

(
swit

tvsit

)−1
[
θ̂
j(i)
M (x̃it; β̂)

(
vmit

tvsit/exp(ϵ̂it)

)−1
]−1

s.t.

θ̂
j(i)
ℓ (x̃it; β̂) = β̂

j(i)
L + β̂

j(i)
KLkit + β̂

j(i)
LMmit + β̂

j(i)
LE eit + 2β̂

j(i)
LL ℓit

θ̂
j(i)
M (x̃it; β̂) = β̂

j(i)
M + β̂

j(i)
KMkit + β̂

j(i)
LMℓit + β̂

j(i)
MEeit + 2β̂

j(i)
MMmit.

B Aggregate markdowns

B.1 Aggregation of micro-level markdowns

Proof of Proposition 2. Whenever Assumptions I – VI are satisfied and Assumptions II
– VI apply specifically to material inputs, then we show in lemma 1 that markups can be
characterized as:

µit =
θMit
αM
it

= θMit · PitQit

PM
t Mit

. (27)

Similar to Edmond, Midrigan and Xu (2021), we define the aggregate markup as the
wedge between the aggregate output elasticity of some flexible input and its revenue share.
Under the assumption of material inputs being flexible, Equation (27) also holds in the
aggregate; i.e., we have:

Mt ≡ θMt · PtYt

PM
t Mt

, (28)

where we dropped the indices for local markets (j, ℓ) for simplicity. Substituting out the
price for material inputs PM

t from (28) into (27), we obtain:

µit =
θMit
θMt

· PitQit

PtYt

· Mt

Mit

· Mt.

Then, we sum across firms and rearrange to derive the aggregate markup:
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Mt =

(∑
i∈Ft

θMit
θMt

· sit · µ−1
it

)−1

, (29)

where sit ≡ PitQit

PtYt
denotes a firm i’s revenue share relative to the aggregate and we used the

definition for aggregate materials Mt =
∑

i∈Ft
Mit. Whenever production technologies are

Cobb-Douglas, we have θMit = θMt for each i ∈ Ft. Then, the aggregate markup is simply
a revenue-weighted harmonic average of firm-level markups.

We use a similar insight to derive the aggregate markdown Vt. Whenever Assumptions II
and IV – VI hold for labor, the wedge between the output elasticity of labor and its revenue
share for a firm i must reflect market power in either output or labor markets. We showed
this explicitly in Proposition 1. Therefore, we have:

νitµit = θLit ·
PitQit

witℓit
. (30)

Rearranging for a firm i’s wage bill and summing across firms, it follows that:∑
i∈Ft

witℓit = wtLt

= PtYt ·
∑
i∈Ft

θLit · sit · (µitνit)
−1,

where the first equality follows from definition of the aggregate wage bill. We define the
aggregate markdown Vt as that part of the wedge between the aggregate output elasticity
of labor and the aggregate labor share that is not due to markups. Then, by definition, we
have:

Vt · Mt = θLt · PtYt

wtLt

. (31)

Using our previous results, we then get:
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Vt · Mt = θLt ·

(∑
i∈Ft

θLit · sit · (µitνit)
−1

)−1

=

(∑
i∈Ft

θLit
θLt

· sit · (µitνit)
−1

)−1

.

Apply Expression (29) for the aggregate markup and we obtain an expression for the ag-
gregate markdown:

Vt =

(∑
i∈Ft

θLit
θLt

· sit · (µitνit)
−1
)−1

(∑
i∈Ft

θMit
θMt

· sit · µ−1
it

)−1 . (32)

A special case is whenever each firm i has a Cobb-Douglas technology. Then, we get:

Vt =

(∑
i∈Ft

sit · (µitνit)
−1
)−1(∑

i∈Ft
sit · µ−1

it

)−1 , (33)

which amounts to a ratio of sales-weighted harmonic averages. □

B.2 Aggregate markdowns and employment concentration

We calculate the cross-sectional correlation (across local labor markets) between the ag-
gregate markdown Vjlt and employment concentration HHIjlt. The results for each census
year can be found in Table VI.

Our results indicate that the correlations between labor market power and employment
concentration are low. In fact, these correlations are close to zero, and for some census
years even negative. When we take the average cross-market correlation across census
years, we basically find a value of zero. Our conclusions do not change whenever we base
our results on rank correlations (e.g., Spearman’s ρ or Kendall’s τ ) instead. In Section 4,
we found that the aggregate markdown in the spirit of Rossi-Hansberg, Sarte and Trachter
(2020), calculated with Equation (16), displayed a relatively strong correlation over time,
with local concentration LOCALt. However, our results in Table VI indicate that the cross-
sectional correlations are also fairly weak under this specification.
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Table VI: The correlation between employment HHIs and aggregate markdown across local
labor markets is close to zero.†

Specification: TRANSLOG MARKDOWNS

YEAR ρ(Vjlt,HHIjlt) ρ(VRHST
jlt ,HHIjlt)

1977 0.01656 0.00017
1982 0.00779 0.03593
1987 −0.00164 0.03528
1992 −0.01491 0.03305
1997 0.00097 0.01567
2002 0.00385 0.01444
2007 0.00440 0.00425
2012 −0.01964 0.01108

AVERAGE −0.00033 0.01873

†Markdowns are estimated under the assumption of a translog specifi-

cation for gross output. Cross-market correlations are calculated at the

3-digit NAICS county level for each census year. Aggregate markdowns

are calculated according to formulas (14) and (16), whereas HHIjlt de-

notes a market’s employment Herfindahl-Hirschman Index. Source: Au-

thors’ own calculations from quinquennial CM data from 1977–2012.

C Labor adjustment costs

In this appendix, we show that the wedge between the marginal revenue product of labor
and the wage is no longer reflective of only labor market power whenever labor adjustment
costs are present. This is not a trivial result, since a firm’s profit maximization problem
becomes dynamic when labor is subject to costly adjustments. Intuitively, this is because
labor adjustment costs depend on the level of labor in the previous period. If these adjust-
ment costs take a quadratic form, however, it is possible to “correct” our initial estimates for
markdowns. When we apply these correction terms to our estimates, we obtain measures
for markdowns that are only reflective of monopsony forces and not of labor adjustment
costs. In the end, we find that these correction terms are quantitatively small.

The proposition below shows that labor adjustment costs can also drive a wedge between
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marginal revenue products of labor and wages. Nevertheless, we can identify the “monop-
sony” component whenever these adjustment costs take a quadratic form.

PROPOSITION 3. Let z denote a firm’s set of stochastic state variables and suppose
revenue, labor adjustment cost, and wage schedule functions are differentiable. Then, a
firm’s wedge between its MRPL and wage satisfies:

R′(ℓ∗)

w(ℓ∗)
=
(
ε−1
S + 1

)
+A(ℓ∗, ℓ−1),

where A(ℓ∗, ℓ−1) equals zero whenever labor adjustment costs are absent. If, in addition,

a firm is subject to convex labor adjustment costs of the form Φ(ℓ, ℓ−1) =
γ
2
ℓ
(

ℓ−ℓ−1

ℓ−1

)2
for

γ ≥ 0 and it discounts future profits at the rate of β ∈ [0, 1], then a firm’s monopsony
power can be characterized as:

ε−1
S + 1 =

R′(ℓ∗)
w(ℓ∗)

− γ · (gℓ(1 + gℓ)− βEz′ [gℓ′(1 + gℓ′)(1 + gsw′)|z])
1 + γ

2
g2ℓ

, (34)

where gℓ, gℓ′ , and gsw′ denote current labor growth, future labor growth, and future wage
bill growth, respectively.

Proof. We will consider environments in which revenue, labor adjustment costs, and wage
schedules are continuously differentiable (at least in labor). Furthermore, we will restrict
our attention to convex adjustment costs in labor, but we do allow for dynamic consider-
ations (i.e., adjustment costs in labor are allowed to depend on the stock of labor in the
previous period, denoted by ℓ−1). Then, consider a firm’s dynamic profit maximization
problem:

v(ℓ−1; z) = max
ℓ≥0

R(ℓ; z)− w(ℓ) · ℓ− w(ℓ) · Φ(ℓ, ℓ−1) + β · Ez′ [v(ℓ; z
′)|z] , (35)

where Φ(ℓ, ℓ−1) denotes a firm’s adjustment cost (in real terms) whenever it wants to change
its stock of labor to ℓ ̸= ℓ−1, and β ∈ [0, 1] is its discount factor. We will assume that the
adjustment cost function is homogeneous of degree one and continuously differentiable in
both arguments. Furthermore, we have that Φ(ℓ, ℓ−1) > 0 for ℓ ̸= ℓ−1 and zero otherwise.
Similar to before, we denote the revenue function by R(ℓ; z) ≡ rev(ℓ;X∗

−ℓ(ℓ), z), where z

denotes a firm’s (possibly stochastic) state variable, e.g. productivity. Given this setup, a
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firm’s optimal choice is characterized by its first-order condition:

R′(ℓ) = w′(ℓ)ℓ+ w(ℓ) + w(ℓ) · Φ1(ℓ, ℓ−1) + w′(ℓ) · Φ(ℓ, ℓ−1)− β · Ez′ [v
′(ℓ)|z]

= w′(ℓ)ℓ+ w(ℓ) + w(ℓ) · Φ1(ℓ, ℓ−1) + w′(ℓ) · Φ(ℓ, ℓ−1) + β · Ez′ [Φ2(ℓ
′, ℓ)w(ℓ′)|z] ,

where we applied the envelope theorem in the last equality. This can be rearranged to end
up with an expression for a firm’s markdown:

ν ≡ R′(ℓ)

w(ℓ)

= ε−1
S + 1 + Φ1(ℓ, ℓ−1) +

Φ(ℓ, ℓ−1)

ℓ
ε−1
S + β · Ez′

[
Φ2(ℓ

′, ℓ)
w(ℓ′)

w(ℓ)

∣∣∣∣z]
≡ ε−1

S + 1 +A(ℓ, ℓ−1), (36)

where A(ℓ, ℓ−1) reflects a firm’s expected continuation value of adjustment cost relative to
its wage level.

Without specifying the shape of the real labor adjustment cost function further, it is hard
to assess the magnitude of the bias (i.e., A(ℓ, ℓ−1)) that we are dealing with. For illustra-
tive purposes, we use a commonly specified labor adjustment cost function Φ(ℓ, ℓ−1) =
γ
2
ℓ
(

ℓ−ℓ−1

ℓ−1

)2
(Hall, 2004; Cooper, Haltiwanger and Willis, 2007). Given this specification

and after some algebra, we can simplify Equation (36) to:

ν =
(
1 +

γ

2
g2ℓ

)
(ε−1

S + 1) + γgℓ(1 + gℓ)− βγEz′ [gℓ′(1 + gℓ′)(1 + gsw′)|z] , (37)

where we defined labor growth rates as gℓ =
ℓ−ℓ−1

ℓ−1
and gℓ′ =

ℓ′−ℓ
ℓ

, respectively. Further-
more, we have a firm’s future growth rate in its wage bill, which equals gsw′ =

w(ℓ′)ℓ′

w(ℓ)ℓ
− 1.

If our estimates for markdowns do not only reflect monopsony, then we can obtain “unbi-
ased” estimates for labor market power (i.e., percentage wedges between marginal revenue
products of labor and wages corrected for labor adjustment costs, as reflected by ε−1

S + 1

alone) by using Equation (37) instead. To do so, we solve for ε−1
S + 1 and obtain:

ε−1
S + 1 =

R′(ℓ∗)
w(ℓ∗)

− γ · (gℓ(1 + gℓ)− βEz′ [gℓ′(1 + gℓ′)(1 + gsw′)|z])
1 + γ

2
g2ℓ

,
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which is exactly what we wanted to show. □

We apply the above proposition by substituting out expected growth rates with their real-
ized counterparts. In particular, our estimates for markdowns ν̂ can be adjusted for labor
adjustment costs as follows:

εS + 1

εS
=

ν̂ − γ · [gℓ(1 + gℓ)− βgℓ′(1 + gℓ′)(1 + gsw′)]

1 + γ
2
g2ℓ

. (38)

The proposition above shows that the wedge between a firm’s MRPL and the wage it pays
its workers no longer only reflects monopsony power in the presence of convex labor ad-
justment costs. In other words, labor adjustment costs can also drive a wedge between
MRPL and wages. Hence, one could be worried that our measured markdowns do not only
reflect monopsony forces but also capture labor adjustment costs.

Figure 7: Corrections to markdowns from convex labor adjustment costs are quantitatively
small.
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Wage bill growth gsw′ is set at 2.19 percent, which is the average level of wage bill growth in U.S. manufac-
turing from 1987 to 2017 (BEA GDP by Industry accounts). Horizontal and vertical axes denote current and
future labor growth gℓ and gℓ′ , respectively. The adjustment cost parameter γ is set at 0.185 (Hall, 2004).
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If labor adjustment costs are quadratic, then the second part of the above proposition
demonstrates that we can correct our measured markdowns so that they only reflect forces
of monopsony power. This can be done if we observe a plant’s growth in labor and its wage
bill, and we know the parameters β and γ. Obviously, quadratic adjustment costs are not
without loss of generality, but it is a specification that is often employed (see Hall, 2004;
Cooper, Haltiwanger and Willis, 2007). Another advantage of this functional form is that it
is governed by only one parameter. Obviously, in the absence of adjustment costs, we are
back to our baseline when γ = 0 holds, as can be seen from Equation (34).

To be conservative, we choose the highest estimate for γ in Hall (2004) that is estimated
with reasonable precision. This results in γ = 0.185.58 In Figure 7, we set β = 1 and show
that our measured markdowns only have to be adjusted by a maximum of 3.15 percent
for a broad range of labor growth rates (varying from −10 to 10 percent). We conclude
that labor adjustment costs play only a minor quantitative role and, hence, our baseline
estimates must reflect labor market power.

58See the estimation results in table II of Hall (2004).
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ONLINE APPENDIX (NOT FOR PUBLICATION)

O.1 Additional results on markdowns

O.1.1 Unionization

In the following, we provide some external validity on our markdown measures by corre-
lating them with measures of unionization. The Annual Survey of Manufactures (ASM)
and Census of Manufacturs (CM) unfortunately do not contain measures of unionization
at the plant level. Instead, we leverage the Current Population Survey (CPS), which since
1984 has asked about unionization and collective bargaining status in outgoing rotation
months, to construct measures of unionization at the 3-digit NAICS–state–year level. To
do so, we convert the census industry codes for manufacturing in the CPS to 21 consistent,
3-digit, 2012-vintage NAICS codes using crosswalks provided by IPUMS.59 We then run
a logit regression of union coverage (union member or covered by a union) on a vector
of state indicators, NAICS3 indicators, and year indicators. After collapsing the data to
3-digit NAICS–state–year cells, we fit values of union coverage based on the estimated
logit coefficients. This simulated instrument adjusts for small cells (including missings)
and mitigates endogeneity, although it still contains measurement error.

Due to data limitations, we can construct these measures only from 1984 onward. Hence,
our sample to correlate markdowns with unionization will be somewhat smaller than our
baseline sample (which starts in 1976). There are only a limited number of observations
available at this narrow cell level in the CPS, so our correlations with labor market power
could be noisy. To avoid this, we create a binary variable which categorizes a plant’s level
of unionization either above or below the median of the unionization distribution for a given
year. Our results are displayed in the table below.

As expected, markdowns are negatively correlated with unionization, albeit the correlation
is noisily estimated. A plant operating in a 3-digit NAICS–state cell that is in the upper half
of the unionization distribution has a markdown that is about 7.5 percent lower on average.
This is intuitive since plants can extract less rents in those environments in which workers
are more likely to be affiliated with a union.

59See https://cps.ipums.org/cps-action/variables/IND#codes_section.
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Table VII: Plant-level markdowns are negatively correlated with unionization.†

Dependent variable: PLANT-LEVEL TRANSLOG MARKDOWNS

UNIONIZATION −0.07463
(0.04760)

−0.07628
(0.04731)

Fixed effects
YEAR N Y

Weights empwt empwt
Observations (in millions) 10.91 10.91

†Markdowns are estimated under the assumption of a translog specification for gross output. Each

industry group in manufacturing corresponds to the manufacturing categorization of the BEA,

which approximately follows a 3-digit NAICS specification. Standard errors are clustered at the

industry-state level and denoted between parentheses. Regressions are weighted by the product of

employment count and ASM sampling weights. Source: Authors’ calculations from ASM/CM data

in 1984–2014.

O.1.2 Below-unity markdowns

Our baseline estimates on markdowns in Section 3 indicate that most plants operate in a
monopsonistic environment, since markdowns are above unity. However, a relatively small
fraction of our sample (approximately 11 percent) features markdowns below unity. We
have verified that our core results are robust to dropping establishment-years with below-
unity markdowns, but while these types of markdowns could partly be the result of sta-
tistical noise, they could also be real, especially when temporary. In the following, we
rationalize why below-unity markdowns can occur under the production approach.

First, we deal with measurement error in output, but we do not account for measurement
error in inputs. This type of measurement error can obviously impact the estimated produc-
tion function coefficients. Whenever we allow for a translog specification, it is not unlikely
that some of the higher order (cross- and second-order) terms are negative, which pulls esti-
mated output elasticities below their revenue shares. Given that the overwhelming majority
of observations with below-unity markdowns are between 0.75 and 1.00 (see table below),
we believe moderate measurement error in inputs can likely account for some markdowns
being estimated below unity.
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Table VIII: Estimated plant-level markdowns in U.S. manufacturing (below-unity sample).†

BELOW-UNITY SAMPLE Median Mean 25% 75% SD
0.864 0.816 0.748 0.942 0.173

Sample size 1.56 ·105

†Markdowns are estimated under the assumption of a translog specification for gross output. The flexible input is materials.

Each industry group in manufacturing corresponds to the manufacturing categorization of the BEA, which approximately

follows a 3-digit NAICS specification. The sample is restricted to those plant-year observations with markdowns strictly

below unity. Source: Authors’ calculations from ASM/CM data in 1976–2014.

Second, our baseline results are relying on the assumption that material inputs are not sub-
ject to any monopsony forces. However, it is not unlikely that this specific assumption does
not apply equally to all plants in a given industry. Think about monopolistic competition
across space in the spirit of Hotelling (1929) and Salop (1979). Whenever this is the case,
we are identifying monopsony for labor relative to material inputs. If the latter is larger
than the former, then we expect to see below-unity labor markdowns.

Third, we are also assuming that labor is chosen statically. Whenever this is the case, our
markdown formula based on static first-order conditions applies. Even though we show in
Appendix C that labor adjustment costs are unlikely to change our estimates, we did not
rule out other dynamic considerations. It might be the case that some plants in our sample
are subject to a (for example) “customer capital” mechanism. Under this narrative, a plant’s
future demand directly depends on the amount of quantity currently sold. As a result, some
plants are willing to make losses (i.e., set below-unity markdowns and/or markups) in order
to sell more in the future. This reflects “investing-harvesting” incentives that are present
in models of the customer base. Even though our baseline estimates do not capture these
dynamic considerations, we do think they describe the data in a reasonable fashion.

Fourth and last, the estimated wedges for labor cannot be interpreted as labor market power
under the classical monopsony framework whenever these wedges are below unity. How-
ever, Dobbelaere and Mairesse (2013) show that these below-unity wedges can be inter-
preted as labor market imperfections in a setting where risk-neutral workers and firms ef-
ficiently bargain over wages in the spirit of McDonald and Solow (1981). In fact, the esti-
mated wedges can be used to retrieve the relevant bargaining parameters. Let γit ∈ (0, 1)

denote workers’ bargaining power (also referred to as the “absolute extent of rent sharing”
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by Dobbelaere and Mairesse, 2013). Then it can be shown that:

θMit
αM
it

− θℓit
αℓ
it

= µit ·
γit

1− γit
·
[
1− αℓ

it − αM
it

αℓ
it

]
,

which we can rearrange as:

1− θℓit
αℓ
it

/
θMit
αM
it

=
γit

1− γit
·
[
1− αℓ

it − αM
it

αℓ
it

]
. (39)

Obviously, the interpretation for γit is only valid whenever relative labor wedges θℓit
αℓ
it

/ θMit
αM
it

are below unity. Following Dobbelaere and Mairesse (2013), below-unity markdowns
in the classical monopsony setting can also be reinterpreted as a different labor market
“regime” in which there are labor market imperfections under efficient bargaining.

O.1.3 Markdowns with energy as flexible input

In our baseline estimates, we assumed that material inputs were flexible and used these in-
puts to identify markups. We argued in Section 5 that material inputs are more suitable than
energy because (a) Davis et al. (2013) document that a large fraction of the cross-sectional
dispersion in electricity prices is due to variation in purchase quantities contradicting the
required “no monopsony” Assumption III, and (b) revenue shares for energy are much
smaller when compared to material inputs; thus, measurement error in energy inputs gets
amplified when estimating markdowns due to division bias. In this section, we provide
some additional evidence supporting these claims.

We start by recalculating markdowns with energy as the flexible input. If there is indeed a
substantial amount of monopsony in energy markets, then our estimates do not necessarily
reflect labor market power alone but labor markdowns relative to energy markdowns, say
νℓ/νE . The evidence in Davis et al. (2013) indicates that νE > 1 is likely, so we expect
our markdown results with energy inputs to be lower when compared to our baseline. If
monopsony in energy markets is so prevalent, in fact, it is also possible that our estimates
fall below unity most of the time. This is the case whenever νE > νℓ. This is exactly
what we observe in Table IX. For many industries, the median markdown is smaller than
unity.
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Table IX: Estimated plant-level markdowns in U.S. manufacturing (energy as a flexible
input).†

INDUSTRY GROUP Median Mean SD
Food and Kindred Products 0.559 0.758 0.825

Textile Mill Products 1.871 2.998 3.085
Apparel and Leather 0.473 0.727 0.970

Lumber 0.681 1.032 1.369
Furniture and Fixtures 0.634 0.889 1.007

Paper and Allied Products 1.118 1.553 1.632
Printing and Publishing 1.396 2.287 2.450

Chemicals 0.980 1.870 2.380
Petroleum Refining 1.963 2.258 1.781
Plastics and Rubber 1.023 1.264 1.135

Nonmetallic Minerals 0.389 0.531 0.606
Primary Metals 1.218 1.603 1.501

Fabricated Metal Products 0.656 0.846 0.889
Nonelectrical Machinery 0.310 0.376 0.276

Electrical Machinery 0.494 0.914 1.366
Motor Vehicles 0.387 0.492 0.457

Computer and Electronics 0.986 2.084 2.77
Miscellaneous Manufacturing 0.518 0.691 0.765

Whole sample 0.618 0.957 1.350
Sample size 1.018 ·106

†Markdowns are estimated under the assumption of a translog specification for gross output. The

flexible input is energy. Each industry group in manufacturing corresponds to the manufacturing

categorization of the U.S. Bureau of Economic Analysis (BEA) which approximately follows a

3-digit NAICS specification. Source: authors’ calculations from ASM/CM data in 1976–2014.

Furthermore, energy shares in U.S. manufacturing are small. The NBER-CES Manufac-
turing Database indicates that revenue shares average around 2 percent.60 In addition, the
dispersion in energy shares is substantial: its 10th and 90th percentiles equal 0.59 percent
and 4.26 percent, respectively. Note, however, that energy is not only more dispersed across
plants, but it is also more volatile for a given plant. To show this, we have calculated the
standard deviation of log inputs for each plant’s life cycle. Inputs are normalized by the
mean of its log level over time. The results are displayed in Table X. Because of its modest
and volatile revenue share, we conjectured that markdowns estimated with energy as the
flexible input would be much less accurate. Indeed, because of the volatility of expenditure

60The median revenue share for energy is even smaller, at 1.18 percent.
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on energy inputs, measurement error in energy shares is amplified by division bias. This
is reflected in the within-industry standard deviations of markdowns when estimated with
energy inputs, which are significantly higher compared to our baseline estimates.

Table X: Variability of inputs.†

INPUT Median Mean 25% 75% SD
Capital 0.0154 0.0280 0.0080 0.0339 0.0341
Labor 0.0307 0.0401 0.0171 0.0518 0.0349

Materials 0.0391 0.0493 0.0222 0.0648 0.0394
Energy 0.0625 0.0954 0.0335 0.1158 0.1331

†For each plant, we calculate the standard deviation of its log normalized inputs over time. Each plant’s input is normalized by

the mean of its log level over time. The sample is restricted to those plants that have at least three observations over their life

cycle. Source: Authors’ calculations from ASM/CM data in 1976–2014.

As expected, we see that energy usage is much more volatile for the average plant when
compared to other inputs. Hence, it is not surprising that our markdown estimates with
energy are much more volatile when compared to our baseline estimates.

O.1.4 Markups

In the following, we report our estimates for markups. Summary statistics are provided
for each industry group. The results clearly indicate that there is market power in output
markets: the median (and mean) markup at the plant-year level equals about 20 percent.
Similar to markdowns, there is a substantial amount of variation across industry groups,
though the within-industry variation of markups is substantially more limited when com-
pared to markdowns. The interquartile range (IQR) for markups is about 16.5 percent,
whereas the standard deviation for the whole sample is 18.8 percent.

While these estimates are informative for markups, it should be noted that our estimates for
markups in isolation are faced with a bias. This is because we proxied physical output with
deflated revenues, which causes a downward bias in markups (see Klette and Griliches,
1996). This has recently been reiterated by Bond et al. (2021). Thus, in a conservative
sense, our estimates for markups can also be interpreted as lower bounds for market power
in output markets. Note, however, that these estimates for markups are still valid when
they are used in order to obtain estimates for markdowns. This is a point we emphasize in
Online Appendix O.5.
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Table XI: Estimated plant-level markups in U.S. manufacturing.†

INDUSTRY GROUP Median Mean IQR75−25 SD
Food and Kindred Products 1.145 1.165 0.139 0.123

Textile Mill Products 1.218 1.220 0.136 0.122
Apparel and Leather 1.286 1.293 0.152 0.193

Lumber 1.056 1.055 0.115 0.107
Furniture and Fixtures 1.227 1.226 0.143 0.122

Paper and Allied Products 1.081 1.084 0.129 0.106
Printing and Publishing 1.249 1.234 0.136 0.183

Chemicals 1.330 1.368 0.243 0.214
Petroleum Refining 1.119 1.160 0.194 0.192
Plastics and Rubber 1.107 1.105 0.147 0.131

Nonmetallic Minerals 1.219 1.218 0.104 0.135
Primary Metals 1.129 1.142 0.116 0.096

Fabricated Metal Products 1.194 1.198 0.073 0.058
Nonelectrical Machinery 1.449 1.488 0.278 0.193

Electrical Machinery 1.286 1.294 0.105 0.083
Motor Vehicles 1.170 1.178 0.082 0.071

Computer and Electronics 1.023 1.018 0.197 0.180
Miscellaneous Manufacturing 1.255 1.263 0.071 0.068

Whole sample 1.205 1.214 0.165 0.188
Sample size 1.393 ·106

†Markups are estimated under the assumption of a translog specification for gross output. The flexible input is materials.

Each industry group in manufacturing corresponds to the manufacturing categorization of the BEA, which approximately

follows a 3-digit NAICS specification. Source: Authors’ calculations from ASM/CM data in 1976–2014.
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O.1.5 Size, age, and productivity effects

O.1.5.1 Size and age regressions without controls

Figure 8: Markdowns increase with establishment size.
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Note: The figure shows point estimates and 95 percent confidence intervals of plant-specific markdowns on
size (as measured by employment share) indicators, controlling for state, industry, and year fixed effects.
The omitted group is the smallest size indicator, so coefficients reflect deviations relative to this baseline.
The indicator labeled “0.1” is equal to unity for those plants with employment shares s ∈ (0, 0.1]. Other
indicators are defined similarly. Standard errors are clustered at the industry level. Source: Authors’ own
calculations from ASM/CM data in 1976–2014.

Figure 9: Markdowns increase with establishment age, but this result only holds when not
controlling for establishment size.
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Note: The figure shows point estimates and 95-percent confidence intervals of plant-specific markdowns on
age category indicators, controlling for state, industry and year fixed effects. The omitted group is the smallest
age category, less than three years, so coefficients reflect deviations relative to this baseline. Standard errors
are clustered at the industry level. Source: Authors’ own calculations from ASM/CM data in 1976–2014.
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O.1.5.2 Baseline results in tabular form
Table XII: Nonparametric estimates of markdowns on size, age, and productivity†

Dependent variable: MARKDOWNS

SIZE AGE TFPR

Share bin Age bin TFPR %
0.1 – 0.2 0.0849

(0.0181)
3 – 4 0.0242

(0.0308)
1% – 5% −0.8088

(0.2842)

0.2 – 0.3 0.1030
(0.0212)

5 – 6 0.0536
(0.0327)

5% – 10% −0.8162
(0.3920)

0.3 – 0.4 0.1286
(0.0254)

7 – 8 0.0637
(0.0326)

10% – 25% −0.7629
(0.4198)

0.4 – 0.5 0.1471
(0.0326)

9 – 10 0.0557
(0.0333)

25% – 50% −0.6257
(0.4360)

0.5 – 0.6 0.1452
(0.0308)

11 – 12 0.0586
(0.0365)

50% – 75% −0.5020
(0.4383)

0.6 – 0.7 0.1560
(0.0377)

13 – 15 0.0709
(0.0401)

75% – 90% −0.4031
(0.4486)

0.7 – 0.8 0.1880
(0.0419)

16+ 0.0978
(0.0514)

90% – 95% −0.2453
(0.4747)

0.8 – 0.9 0.1882
(0.0420)

95% – 99% 0.1084
(0.5182)

0.9 – 1 0.1934
(0.0420)

99%+ 0.8046
(0.5321)

Observations
(in millions)

1.393 1.393 1.393

R2 0.2579 0.2579 0.3385

†All regression specifications contain fixed effects at the state, industry and year level, and are weighted by the product

of employment and the ASM sampling weights. The results are almost identical when only ASM sampling weights are

used instead. The specifications for size and age respectively control for the other factor. The omitted categories for the

size, age, and productivity specifications are 0–0.1, 1–2 and < 1%, respectively. Hence, the regression coefficients reflect

deviations relative to these baselines. The indicator labeled “0.1–0.2” is equal to unity for those plants with employment

shares s ∈ (0.1, 0.2]. Other indicators for the size specification are defined similarly. Standard errors, in parentheses, are

clustered at the industry level. Source: Authors’ calculations from ASM/CM data in 1976–2014.
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O.2 Additional results on the aggregate markdown

O.2.1 Compositional effects and benefits

In this section, we provide several robustness checks on the aggregate markdown Vt. First,
we verify that the distinct time evolution of the aggregate markdown is not purely driven by
compositional changes across local labor markets. To do so, we recalculate the aggregate
markdown but fix its weights across local labor markets at their 1977 level. That is, we
construct Vt|τ ≡

∑
j∈J
∑

l∈L ωjlτVjlt with τ = 1977. The results can be found in Figure
10.

Figure 10: The qualitative nature of the time evolution for the aggregate markdown cannot
be explained by compositional changes across local labor markets.
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t

0.9
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1.1

Markdown

t t τ=1977

Markdowns are constructed under the assumption of translog production and aggregated according to equa-
tion (14). Our baseline measure Vt is depicted by the solid black line. The aggregate markdown Vt|τ=1977

(dashed red) is calculated by fixing the employment weights for local labor markets at their 1977 values.
All measures are normalized relative to their initial value in 1977. Source: Authors’ own calculations from
quinquennial CM data from 1977–2012.

We find that the qualitative nature of the aggregate markdown is preserved. When em-
ployment weights across local labor markets are fixed at their 1977 values, the aggregate
markdown also decreases until 2002 and increases afterward. However, its decrease from
1977 to 2002 is a bit stronger than in our baseline specification. Nevertheless, we conclude
that the evolution of the aggregate markdown Vt cannot be accounted for by changes in the
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employment composition across local labor markets.

Second, our baseline specification of the aggregate markdown does not include health and
pension benefits. However, these benefits are available from 2002 onward. We verify that
the aggregate markdown also starkly increases whenever benefits are taken into considera-
tion. Given that benefits are available from only 2002 onward, we normalize our series to
unity in 2002. As shown in Figure 11, the aggregate markdown also increases from 2002
onward whenever benefits are included.

Figure 11: The stark increase of the aggregate markdown Vt (solid black) from 2002 on-
ward is preserved whenever benefits (dashed blue) are also taken into account.
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Markdowns are constructed under the assumption of translog production and aggregated according to equa-
tion (14). The aggregate markdown Vbenefits

t is calculated by including health and pension benefits. All
measures are normalized relative to their values in 2002. Source: Authors’ own calculations from quinquen-
nial CM data from 1977–2012.

O.2.2 Secular trend in markdowns: Cobb-Douglas

In our baseline estimates, we specified production functions to be translog. By construc-
tion, the translog specification allows output elasticities to vary with the level of inputs. As
a result, these output elasticities can vary over time as well. Under a Cobb-Douglas speci-
fication, output elasticities are constant and markdowns can only vary over time because of
changes in revenue shares. In the following, we show that allowing for time-varying output
elasticities is important for several measures of the aggregate markdown.
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Figure 12: Time evolution of aggregate markdowns across U.S. manufacturing plants from
1977 to 2012 (Cobb-Douglas case). Unlike the baseline estimation using translog, these
measures are increasing over time (cfr. Figure 4 in main text).
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Markdowns are constructed under the assumption of Cobb-Douglas production and aggregated according to
Equations (14) and (16), respectively. All measures are normalized relative to their initial value in 1977.
Source: Authors’ own calculations from quinquennial CM data from 1977–2012.

We start by calculating the aggregate measures Vt and VRHST
t whenever production tech-

nologies are assumed to be Cobb-Douglas. While these measures are decreasing over time
(at least before 2002) under a translog specification, the opposite is true whenever mark-
downs are estimated under Cobb-Douglas technologies. This is illustrated in Figure 12.
These differences underline that Cobb-Douglas specifications can be quite restrictive. By
construction, the Cobb-Douglas specification assumes that output elasticities are constant
and, hence, ignores any time variation in a plant’s output elasticities. Conversely, a translog
specification allows precisely for this. Our results favor the translog specification since they
indicate that this time variation is quantitatively important.

O.2.3 Secular trend in markups

In this section, we present the time series for the aggregate markup. The aggregate markup
at the market level is calculated according to Equation (13). Then, we aggregate markups
across markets through either employment or revenue weights.
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Figure 13: Time evolution of revenue- and employment-weighted markups (the black and
blue line, respectively) across U.S. manufacturing plants from 1977 to 2012.
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Markups are constructed under the assumption of translog production and aggregated according to equa-
tion (13). Source: Authors’ own calculations from ASM/CM data in 1976–2014.

As emphasized by Bond et al. (2021), the estimation of micro-level markups with deflated
revenues, instead of physical output, leads to biases that make interpretation challenging
(see Online Appendix O.5). In turn, bias in the level of markups at the micro level will lead
to bias in the aggregate markup. Note however, as we show formally in Online Appendix
O.5.1, this concern does not apply to our estimation of markdowns.

Consequently, we feel that using our methodology to present markups should—at the very
least—be treated cautiously by other researchers. However, presenting a trend of aggregate
markups could still be useful to others even when bias is present—perhaps in comparison
to markup trends created under different approaches and different biases. This trend is
depicted in Figure 13.

O.2.4 Decomposition of aggregate markdowns

In the following, we will apply the decomposition by Foster, Haltiwanger and Krizan
(2001) to aggregate markdowns in order to understand what was driving its changes. How-
ever, this is not straightforward because the accounting decomposition by Foster, Halti-
wanger and Krizan (2001) applies to arithmetic (weighted) averages only. In the discussion
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below, we will present some accounting identities that will allow us to apply the decompo-
sition by Foster, Haltiwanger and Krizan (2001) to harmonic (weighted) averages. To do
so, we start with the following lemma.

LEMMA 2. For any aggregate variable Xt, we have:

∆Xt = − ∆X−1
t

1 + ∆X−1
t

. (40)

Proof. By definition, we have:

∆X−1
t =

X−1
t −X−1

t−1

X−1
t−1

= −Xt−1

Xt

(
Xt −Xt−1

Xt−1

)
= − ∆Xt

1 + ∆Xt

.

Then, the lemma follows directly by solving for ∆Xt. □

This is useful since our definition of the aggregate markdown consists of a ratio of two
sales-weighted harmonic averages. That is, we have Vjlt ≡ Vjlt

Mjlt
with:

Vjlt =

 ∑
i∈Ft(j,l)

sit ·
θLit
θLjlt

· (νitµit)
−1

−1

(41)

Mjlt =

 ∑
i∈Ft(j,l)

sit ·
θMit
θMjlt

· µ−1
it

−1

. (42)

Note that for any weighted harmonic average Xt, we can write:

X̃t ≡ X−1
t =

∑
i∈Ft

sitx
−1
it ≡

∑
i∈Ft

sitx̃it.

The latter is just a simple (i.e., arithmetic) weighted average. For these types of averages,
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we can apply the decomposition of Foster, Haltiwanger and Krizan (2001):

∆X̃t =
∑
i∈Ct

sit−1∆x̃t +
∑
i∈Ct

(
x̃it−1 − X̃t−1

)
∆sit +

∑
i∈Ct

∆x̃it∆sit

+
∑
i∈Nt

sit

(
x̃it − X̃t−1

)
−
∑
i∈Xt

sit−1

(
x̃it−1 − X̃t−1

)
(43)

≡ WITHINt + BTWNt + COVt + ENTRYt − EXITt, (44)

where the growth rate of X̃t can be decomposed into within-firm, between-firm, covariance,
entry and exit components, respectively. Note that the first three components can only be
applied to incumbent firms (i.e., firms active in periods t and t − 1). By definition of the
aggregate markdown, we have:

Ṽjlt ≡ V −1
jlt =

∑
i∈Ft(j,l)

sit ·
θLit
θLjlt

· (νitµit)
−1

≡
∑

i∈Ft(j,l)

sit · ṽit

M̃jlt ≡ M−1
jlt =

∑
i∈Ft(j,l)

sit ·
θMit
θMjlt

· µ−1
it

≡
∑

i∈Ft(j,l)

sit · µ̃it.

Thus, we can apply the insight of Foster, Haltiwanger and Krizan (2001) in (43) to Ṽjlt and
M̃jlt to obtain decompositions for ∆Ṽjlt and ∆M̃jlt. This will aid us in understanding
growth in the aggregate markdown, since we have:

∆Vjlt = ∆Vjlt −∆Mjlt

= − ∆Ṽjlt

1 + ∆Ṽjlt

+
∆M̃jlt

1 + ∆M̃jlt

(45)

≈ ∆M̃jlt −∆Ṽjlt, (46)

where the last approximation follows from the fact that we have − x
1+x

≃ −x up to a
first order for small values of x. This seems appropriate in our setting given the observed
movements in aggregate markdowns. Thus, growth in the aggregate markdown, for a given
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local labor market, is primarily led by those components that are more important for the
growth rate of the inverse aggregate markup—i.e., ∆M̃—whereas it is slowed down by
those components that determine the growth rate of the inverse aggregate labor wedge—
i.e., ∆Ṽ .

Table XIII: Decomposition of ∆M̃ and ∆Ṽ (cfr. Equation 46).† Movements in the aggre-
gate markdown are not clearly driven by one specific type of reallocation.

YEAR WITHINt BTWNt COVt ENTRYt EXITt

1977 – 1982 ∆M̃ 0.3618 0.1370 0.1547 0.2042 0.1423
1977 – 1982 ∆Ṽ 0.3997 0.1231 0.1120 0.2162 0.1490

1982 – 1987 ∆M̃ 0.3724 0.1125 0.1140 0.2317 0.1694
1982 – 1987 ∆Ṽ 0.3386 0.1271 0.1553 0.2261 0.1528

1987 – 1992 ∆M̃ 0.3782 0.1131 0.1218 0.2244 0.1625
1987 – 1992 ∆Ṽ 0.3537 0.1236 0.1585 0.2190 0.1453

1992 – 1997 ∆M̃ 0.3903 0.1250 0.1164 0.2113 0.1570
1992 – 1997 ∆Ṽ 0.3452 0.1281 0.1753 0.2119 0.1395

1997 – 2002 ∆M̃ 0.3555 0.1189 0.1193 0.2408 0.1655
1997 – 2002 ∆Ṽ 0.3358 0.1262 0.1583 0.2307 0.1491

2002 – 2007 ∆M̃ 0.3777 0.1273 0.1244 0.2172 0.1534
2002 – 2007 ∆Ṽ 0.3363 0.1384 0.1819 0.1966 0.1469

2007 – 2012 ∆M̃ 0.3979 0.1281 0.1280 0.2033 0.1426
2007 – 2012 ∆Ṽ 0.3441 0.1449 0.1767 0.190 0.1444

†Markdowns are estimated under the assumption of a translog specification for gross output. The flexible input is materials.

Each industry group in manufacturing corresponds to the manufacturing categorization of the BEA, which approximately

follows a 3-digit NAICS specification. Each component is denoted in absolute values and normalized by the sum of absolute

values for each component. The table reports the employment-weighted mean across local labor markets. Source: Authors’

calculations from ASM/CM data in 1976–2014.

We follow Foster, Haltiwanger and Krizan (2001) and calculate the employment-weighted
average across local labor markets of the absolute contribution for each component. By
construction, we can write ∆Ṽ = WITHIN + BTWN + COV + ENTRY − EXIT. Then,
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for each local labor market, we calculate each component’s absolute contribution by taking
its absolute value and dividing it by the sum of absolute values for each component. That
is:

x̂ =
|x|

|WITHIN|+ |BTWN|+ |COV|+ |ENTRY|+ |EXIT|

for x ∈ {WITHIN,BTWN,COV,ENTRY,EXIT}.61 Then, we report averages across lo-
cal labor markets using employment weights. This is appropriate in our setting since we
aggregate markdowns across local labor markets by taking employment-weighted averages
in order to obtain Vt.

Our decomposition in Equation (46) indicates that movements in the aggregate markdown
are primarily determined by those components that are relatively important for ∆M̃ but not
for ∆Ṽ . However, our results in Table XIII indicate that each component is about equally
important for ∆M̃ and ∆Ṽ . As a result, we conclude that movements in the aggregate
markdown are not clearly driven by one specific type of reallocation.

61We report absolute contributions for each component since the patterns over time for each raw compo-
nent are difficult to interpret: they can switch signs over time and are also quite volatile. This is similar to
Foster, Haltiwanger and Krizan (2001), who apply the decomposition to aggregate productivity in U.S. man-
ufacturing sectors (see their Table 8.7). In fact, they mention that their results can be quite “erratic” under the
used accounting decomposition.
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O.2.5 Aggregate markdowns and local concentration in tabular form
Table XIV: Measures of the aggregate markdown and local concentration.†

Specification: TRANSLOG MARKDOWNS

YEAR Vt VRHST
t VdLEU

t LOCALt

1977 1.000 1.000 1.000 1.000
1982 1.0362 0.9653 0.9495 0.9640
1987 0.9829 0.9515 0.9392 0.9841
1992 0.9555 0.9460 0.9289 0.9707
1997 0.9599 0.9344 0.9330 0.9224
2002 0.9114 0.9322 0.9310 0.9269
2007 1.0088 0.9366 0.9815 0.9297
2012 1.0979 0.9272 1.016 0.9646

†Markdowns are estimated under the assumption of a translog specifi-

cation for gross output. Aggregate markdowns Vt, VdLEU
t and VRHST

t

are calculated according to formulas (14), (15) and (16), respectively,

whereas LOCALt denotes local concentration as calculated according to

Equation (18). All values are normalized with respect to 1977. Source:

Authors’ own calculations from quinquennial CM data from 1977–2012.
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O.3 Details on GMM-IV estimation procedure

O.3.1 Implementation of constant returns to scale restriction

We implement the “production approach” for obtaining markdowns by relying on proxy
variable methods. While the induced moment conditions are easily derived and understood,
Gandhi, Navarro and Rivers (2020) emphasize that point identification is not achieved when
applying the methodology by De Loecker and Warzynski (2012), for example. To address
this criticism, we apply the solution suggested in Flynn, Gandhi and Traina (2019). They
show that the nonidentification problem can be resolved whenever a production function’s
return to scale is ex-ante specified. Similar to their work, we show the robustness of our
markdown estimates whenever we impose a constant-returns-to-scale restriction.62 Assum-
ing constant returns to scale seems reasonable, since a substantial body of previous work
(e.g., Basu and Fernald, 1997; Syverson, 2004a; Syverson, 2004b) has shown that constant
returns to scale is a good approximation for manufacturing plants.

In the following, we will briefly describe how our estimation procedure is adjusted (for
the translog case) when imposing constant returns to scale. In fact, this requires minor
adjustments only. Steps 1 and 2 are unchanged, whereas we only need to add some moment
conditions to step 3. To do so, we define a firm’s returns to scale as follows:

Σit(β) =
∑

ι∈{k,ℓ,m,e}

∂f(xit;β)

∂ιit
. (47)

Also, if we define the vector χit = (1, x̃′
it)

′ = (1, kit, ℓit,mit, eit)
′ ∈ RK+1, then the new

set of moment conditions can be compactly written as:

E

(
ξit(β)zit

Σit(β)− 1

)
= 0(Z+1)×1. (48)

In the case of a translog production function, we can write the constant returns to scale
restriction as a linear operator:

Σit(β)− 1 = (Rβ)′χit,

62We draw similar conclusions whenever we allow for deviations around constant returns to scale.
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where R is a 5× Z matrix defined as:

R =


−1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 2 0 0 0

0 0 0 0 0 1 0 0 1 1 0 0 2 0 0

0 0 0 0 0 0 1 0 1 0 1 0 0 2 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 2


Our estimation results are displayed in column 2 of Table V in the main text (see Section
5).

O.3.2 Bootstrapping procedure

The GMM-IV estimator of the proxy variable approach does not have a closed-form so-
lution for its standard errors. Furthermore, even if we did have these standard errors for
the production function coefficients, it is difficult to derive standard errors for the aggre-
gate markdown because of its nonlinear structure. As a result, we resort to bootstrapping
methods, similar to De Loecker and Warzynski (2012). In the following, we describe the
bootstrap algorithm that we implemented with the census data.

Initiate bootstrap round parameter at b = 1.

I. For each industry group j ∈ {1, . . . ,J }, draw a random sample with replacement
from the unbalanced ASM panel containing N

[b]
j = 0.9×Nj observations.

II. For each plant that has been sampled, select its entire life cycle; i.e., we engage in
panel bootstrapping (or block-bootstrapping at the plant level). This generates the
unbalanced sample S

[b]
j .

III. Obtain the estimated production function parameters β̂[b]
j (with the two-step GMM-

IV estimator from De Loecker and Warzynski, 2012) for each industry j, using data
from sample S

[b]
j .

IV. For each census year τ , calculate the aggregate markdown V̂ [b]
τ (normalized to unity

in 1977) with the universe of manufacturing plants from the CM using the production
function parameters β̂[b] = (β̂

[b]′
1 , . . . , β̂

[b]′
J )′.

V. Define b := b+ 1 and repeat step I. Stop the algorithm whenever b > B.
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Confidence interval bounds at the α-significance level for the aggregate markdown Vτ can
then be constructed by taking the 100 · α

2
and 100 · (1− α

2
) percentile of the set {V̂ [b]

τ }Bb=1.
We construct 95 percent confidence intervals through 500 simulations; i.e., α = 0.05 and
B = 500.

Note that the constructed confidence interval for the normalized aggregate markdown does
not necessarily have to be symmetric around the estimated (normalized) aggregate mark-
down Vt. This is because of the nonlinear structure of markdowns at the firm level and how
firm-level markdowns enter the aggregate markdown in a nonlinear fashion. Note that we
only sample with replacement in the ASM to estimate the production function parameters
β. However, markdowns at the firm level and the aggregate markdown are always calcu-
lated using the full sample of the CM for every census year τ ∈ {1977, . . . , 2012}. By
construction, there is no confidence interval for the aggregate markdown in 1977, since this
value is always normalized to unity.

Using these block-bootstrap methods, we have verified that the production function pa-
rameters β are statistically significant for every industry group. In particular, we find that
the cross- and second-order terms of our production function specification are statistically
significant, indicating the importance of the translog specification.
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O.4 Benefits

O.4.1 Measures of compensation

In our baseline estimation procedure, we use a plant’s total wage bill (or “payroll”) as its
total variable expenditure on labor. Following the instructions of form MA-10000, payroll
is an overall measure of wages and salaries paid to a plant’s employee(s). An employee
is defined according to Internal Revenue Service Form 941, Employer’s Quarterly Federal
Tax Return. This includes:

• All persons on paid sick leave, paid holidays, and paid vacation during these pay
periods

• Officers at this establishment, if a corporation

• Spread on stock options that are taxable to employees as wages

An employer’s wage bill is defined as its payroll before deductions, excluding an em-
ployer’s cost for fringe benefits. In particular, it includes:

• Employee’s Social Security contributions, withholding taxes, group insurance pre-
miums, union dues, and savings bonds

• In gross earnings: commissions, dismissal pay, paid bonuses, employee contributions
to pension plans such as 401(k), vacation and sick leave pay, and the cash equivalent
of compensation paid in kind

• Spread on stock options that are taxable to employees as wages

• Salaries of officers of this establishment, if a corporation

• Paid holiday, personal, funeral, jury duty, military and family leave

• Nonproduction bonuses

– Cash profit-sharing

– Employee recognition

– End-of-year

– Holiday

– Payment in lieu of benefits—Referral

– Other
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By construction, the wage bill does not include benefits. Fortunately, the ASM/CM does
include a measure of these benefits from 2002 onward. Benefits cover health insurance,
pension plans, and other employer-paid benefits. The latter includes legally required bene-
fits (e.g., Social Security, workers’ compensation insurance, unemployment tax, state dis-
ability insurance programs, Medicare), benefits for life insurance, “quality of life” benefits
(e.g., childcare assistance, subsidized commuting, etc.), employer contributions to pretax
benefit accounts (e.g., health savings accounts), education assistance, and other benefits.
In the end, our results on markdowns are not qualitatively changed whenever we use a
measure for labor that includes benefits.

O.4.2 Understanding markdowns with benefits

In one of our robustness exercises, we calculated micro-level markdowns whenever benefits
were also included as a part of workers’ compensation. We saw from Table V that median
markdowns at the industry group level slightly declined relative to our baseline results from
Table I.

In this section, we verify that the differences between our baseline estimates for markdowns
and those with benefits included can be rationalized by the fraction of benefits in total
compensation.

Given that benefits are not included in our baseline estimates, we expect that these esti-
mates are biased upwards. This is intuitive, since we are including only wage payments in
the denominator of the markdown. As a result, the bias of our baseline estimates should
increase more for those plants whose compensation to workers relies more on benefits. We
measure the latter by the “benefit fraction”—i.e., total benefits relative to the sum of total
benefits and wage payments.

Our hypothesis is confirmed by Table XV. Our baseline estimates, but more importantly the
difference between our baseline estimates and those including benefits, are increasing in the
benefit fraction. Our conclusions are not affected much when we take absolute differences
instead. This is as expected, since our baseline estimates are larger than those estimates
including benefits for the overwhelming fraction of our sample anyway.

However, it could also be argued that the sign of the benefit fraction coefficient may at first
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Table XV: The fraction of benefits in total compensation accounts for the difference be-
tween baseline and markdowns with benefits.†

Dependent variable νit νit − νbenefit
it |νit − νbenefit

it |

BENEFIT FRACTION 1.682
(0.3153)

1.299
(0.2057)

1.0360
(0.1642)

Fixed effects
INDUSTRY Y Y Y

STATE Y Y Y
YEAR Y Y Y

Weights empwt empwt empwt

Observations 4.02 · 105 4.02 · 105 4.02 · 105

†Markdowns are estimated under the assumption of a translog specification for gross output. Each industry

group in manufacturing corresponds to the manufacturing categorization of the BEA, which approximately

follows a 3-digit NAICS specification. Baseline markdowns are denoted by ν, whereas markdowns with

benefits are denoted by νbenefit. A plant’s benefit fraction is defined as benefit payments divided by the sum

of wage and benefit payments to workers. All regressions contain size and age controls at the plant level.

Furthermore, all regressions include average earnings (i.e., total wage bill divided by employment count)

as a control. Standard errors are clustered at the industry group level and denoted between parentheses.

Regressions are weighted by the product of employment count and ASM sampling weights. Source: Authors’

calculations from ASM/CM data in 2002–2014.

be surprising, as one might associate larger benefit shares of compensation with stronger
employee bargaining power and thus expect a lower markdown. However, because we con-
trol for plant-level average earnings, the results in Table XV show how markdown estimates
change as the benefit share changes, holding average earnings constant. To the extent that
benefit shares are higher in lower-wage plants, on average, our regressions control for this
mechanical relationship.

Finally, note that this sample is smaller than our base sample, since we can estimate mark-
downs with benefits from 2002 onward only.
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O.5 Critique by Bond et al. (2021)

O.5.1 Deflated revenues

Unfortunately, most firm-level data sets do not have physical output available. As an alter-
native, physical output is typically approximated by deflating revenues with some industry-
level deflator. While it could be argued that revenues are more easily comparable across
firms, it does not align with the theory behind production function estimation. In fact, Klette
and Griliches (1996) show that estimated production function coefficients in an imperfectly
competitive environment with price heterogeneity are downwardly biased whenever physi-
cal output is approximated with deflated revenues. This immediately implies that markups
are also downwardly biased under the production approach.

Bond et al. (2021) demonstrate that the problem is even more severe: using deflated rev-
enues does not only induce a downward bias, but it results in ratio estimators, such as the
one we employ in Equation (3), to be equal to unity. To see why this is the case, consider
the analog of (3) using revenue elasticities:

θk
′,rev

it

αk′
it

=
θk

′,Q
it

αk′
it

·
(
1 +

dP (Qit)

dQit

Qit

Pit

)
≡ θk

′,Q
it

αk′
it

· (1 + εP,Q,it)

≡ µit · (1 + εP,Q,it)

= 1, (49)

where the last equality follows directly from Lerner’s monopoly pricing rule, i.e. µit =

(1+εP,Q,it)
−1. Based on this result, Bond et al. (2021) conclude that it is basically hopeless

to retrieve markups through the production approach whenever data on physical output is
not available. Estimates of markups using deflated revenues that do not equal unity then
indicate that Assumptions I–VI and/or 1–5 must be violated. While this is an issue for
the estimation of markups, we argue that it does not pose any problems when estimating
markdowns. This can be shown most clearly through the following proposition:

PROPOSITION 4. Let θj,Qit ≡ ∂ln(Qit)
∂ln(Xj)

and θj,rev
it ≡ ∂ln(P (Qit)·Qit)

∂ln(Xj)
denote the output and

revenue elasticities with respect to some differentiable input j, respectively. Furthermore,
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let αj
it ≡

V j
it·X

j
it

PitQit
denote the revenue share of input j. Then, we have:

θℓ,rev
it

αℓ
it

/
θM,rev
it

αM
it

=
θℓ,Qit

αℓ
it

/
θM,Q
it

αM
it

. (50)

That is, it is sufficient to estimate revenue elasticities in order to construct markdowns on
labor inputs.

Proof. We drop firm and time subscripts to ease notation. To prove the proposition, it is
sufficient to show that θrev

ℓ

θrev
M

=
θQℓ
θQM

is true. To do so, note that we have:

θrev
j ≡ ∂ [P (Q) ·Q]

∂Xj

· Xj

P (Q)Q

= [P ′(Q)Q+ P (Q)] · ∂Q

∂Xj

· Xj

P (Q)Q
.

Then, with some abuse of notation, it immediately follows that:

θrev
ℓ

θrev
M

=
[P ′(Q)Q+ P (Q)] · ∂Q

∂ℓ
· ℓ
P (Q)Q

[P ′(Q)Q+ P (Q)] · ∂Q
∂M

· M
P (Q)Q

=

∂Q
∂ℓ

· ℓ
Q

∂Q
∂M

· M
Q

≡ θQℓ
θQM

,

which is exactly what we wanted to show. □

The proposition shows that the bias occurring from proxying physical output with deflated
revenues cancels out, since it appears in both the numerator and denominator (i.e., markup)
of the markdown expression in a multiplicative manner. Thus, the lack of data availability
on physical output would only affect our results if we were interested in estimating markups
separately. As a result, the main point of critique by Bond et al. (2021) does not apply to
markdowns.
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O.5.2 Demand shifters

Another point of critique on the production approach in Bond et al. (2021) revolves around
the assumption of inputs being solely used for the production of output (i.e., Assumption
VI). However, in reality, some inputs can also be used for activities to shift demand, such
as marketing or advertising. When inputs are also used to shift (or “influence,” using the
terminology of Bond et al., 2021) demand, then the markup formula in Equation (3) is no
longer correct.

To see this, consider an environment in which each input Xk
it can be used for either the

production of output Xk,Q
it or to shift demand Xk,D

it . Then, assume that a firm’s inverse
demand function is of the following form:

P (Qit, Dit) s.t. Dit = D(XD
it ), (51)

where all functions are differentiable in their arguments and XD
it = (X1,D

it , . . . , XK,D
it )′ are

those parts of each input that are used for shifting demand. Hence, by construction, we
have Xit = XD

it +XQ
it .

If we let k′ be some flexible input, then Hall’s (1988) formula only holds for that part
dedicated to production; i.e., we have:

µit =
θk

′,Q
it

αk′,Q
it

. (52)

Bond et al. (2021) argue that, for most data sets, we can only observe Xk′
it and its expendi-

ture, but not its components Xk′,Q
it and Xk′,D

it separately. If one would apply formula (3) to
Xk′

it rather than Xk′,Q
it , we would obtain a biased estimate of the markup:

µit ·
εXk′,Q,Xk′

1 +
Xk′,D

it

Xk′,Q
it

, (53)

where εXk′,Q,Xk′ denotes by what percentage the usage of input k′ for production purposes
increases if total expenditure on input k′ is raised by 1 percent. If Assumption VI holds,
then we must have εXk′,Q,Xk′ = 1 and Xk′,D

it = 0.
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In our baseline estimates, we adopt the definition for material inputs as used by the Census
Bureau, which includes contract work. It is not unlikely that some of this contracted labor
is used for activities such as marketing; even though it is less likely for manufacturers.
However, our results are robust to using an alternative definition for materials as proposed
by Kehrig (2015), in which contract work is disregarded and information on inventories for
materials is used instead. Under this definition, material inputs only consist of materials
and parts. Its exact definition can be taken from Section 16A1 of Form MA-10000, which
we documented below for convenience.

Table XVI: Description of what constitutes “material inputs” from Section 16A1 in Form
MA-10000 of ASM.

MATERIALS PARTS CONTAINERS SUPPLIES

Lumber Cement Pumps Pails Bolts, screw and nuts Cleaning supplies
Plywood Clay Wheels Drums and barrels Drills, tools, dies, jigs and Stationary and
Paper Glass Bearings Tubes fixtures which are charged to office supplies
Resins Steel sheet Engines Boxes and bags current accounts First aid and
Sulfuric acid Steel scrap Gears Crates Welding rods, electrodes and safety supplies
Alcohols Copper rods Motors acetylene Dunnage
Rubber Iron castings Hardware Lubricating oils Water
Coking coal Metal stampings Compressors
Crude petroleum Wire

If we impose the assumption that none of the expenditures on materials and parts are used
to shift demand, which we believe to be reasonable given the table above, then there are no
issues with the denominator of our markdown definition. On the other hand, the numerator
of our markdown definition consists of the “labor markup.” If some fraction of total labor
is used to shift demand, then our markdown estimates are biased. This is formally shown
in the proposition below.

PROPOSITION 5. Let there exist some input k′ ̸= ℓ that satisfies Assumptions I–VI. If
labor ℓ does not satisfy Assumption VI and firms possess monopsony power but cannot
discriminate between different workers, then the ratio estimator for the markdown in (3)
retrieves:

ν̂ =

[
ε−1
S

ℓQ

ℓ
+ 1

]
·

εℓQ,ℓ

1 + ℓD

ℓQ

, (54)
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where total labor ℓ ≡ ℓQ+ ℓD is the sum of labor used for production and shifting demand,
respectively. Furthermore, εℓQ,ℓ denotes the elasticity of labor used for output with respect
to total labor. If labor ℓ does not satisfy Assumption VI but firms are allowed to discrimi-
nate between different workers, then the ratio estimator for the markdown in (3) retrieves
instead:

ν̂ = νℓQ ·
εℓQ,ℓ

1 + ℓD

ℓQ

, (55)

where νℓQ denotes the markdown a firm charges on its production workers.

Proof. We follow the proof of Bond et al. (2021) closely. For notational convenience, we
drop firm and time subscripts. A firm’s profit maximization problem reads as:

max
Q,D≥0

P (Q,D) ·Q− CQ(Q)− CD(D), (56)

where CD(D) denotes the cost of reaching a level D for the demand shifter. This results in
the two first order conditions:

(1 + εP,Q)
−1 = µ (57)

εP,D =
dCD(D)

dD ·D
P (Q)Q

. (58)

Assuming that a firm has monopsony power but faces a residual labor supply curve only for
its total stock of workers, the first-order conditions for ℓQ and ℓD for the cost minimization
problem give us: [

ε−1
S

ℓQ

ℓ
+ 1

]
· µ =

εQ,ℓQ

αℓQ
(59)[

ε−1
S

ℓD

ℓ
+ 1

]
=

dCD(D)
dD ·D
P (Q)Q

·
εD,ℓD

αℓD
, (60)

where we defined εD,ℓD = ∂D(XD)
∂ℓD

ℓD

D(XD)
. Then, we get:

αℓ = αℓQ + αℓD

= (1 + εP,Q)εQ,ℓQ

[
ε−1
S

ℓQ

ℓ
+ 1

]−1

+ εP,DεD,ℓD

[
ε−1
S

ℓD

ℓ
+ 1

]−1

(61)
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where εQ,ℓQ = θℓ
Q,Q is the output elasticity with respect to labor for production purposes.

Similarly, we define εD,ℓD as the demand shifter elasticity with respect to labor for “influ-
encing” purposes. Then, the numerator for our markdown expression in Equation (3) using
total labor ℓ is equal to:

θℓ,Q

αℓ

=
εQ,ℓQ · εℓQ,ℓ

αℓ

=
εQ,ℓQ · εℓQ,ℓ

(1 + εP,Q)εQ,ℓQ

[
ε−1
S

ℓQ

ℓ
+ 1
]−1

+ εP,DεD,ℓD

[
ε−1
S

ℓD

ℓ
+ 1
]−1

=
εℓQ,ℓ

µ−1
[
ε−1
S

ℓQ

ℓ
+ 1
]−1

+
εP,Dε

D,ℓD

ε
Q,ℓQ

[
ε−1
S

ℓD

ℓ
+ 1
]−1

= µ ·
[
ε−1
S

ℓQ

ℓ
+ 1

]
·

εℓQ,ℓ

1 +
α
ℓD

α
ℓQ

= µ ·
[
ε−1
S

ℓQ

ℓ
+ 1

]
·

εℓQ,ℓ

1 + ℓD

ℓQ

. (62)

If there exists some input k′ ̸= ℓ that satisfies Assumptions I–VI, then we get an unbiased
estimate for markups. As a result, we must have:

ν̂ =
θℓ,Q

αℓ

(
θk

′,Q

αk′

)−1

=

[
ε−1
S

ℓQ

ℓ
+ 1

]
·

εℓQ,ℓ

1 + ℓD

ℓQ

, (63)

which covers the case whenever a firm faces a residual labor supply curve as function of
only its total stock of workers. This is similar to the case in Bond et al. (2021), in which it is
assumed that production and nonproduction workers are compensated at an identical wage
rate. The derivation for the case in which a firm faces different residual labor supply curves
for its production and nonproduction workers is almost identical. Note that a firm can then
charge different markdowns for different workers. We only need to replace

[
ε−1
S

ℓQ

ℓ
+ 1
]

with
[
ε−1
S,ℓQ

+ 1
]
≡ νℓQ and

[
ε−1
S

ℓD

ℓ
+ 1
]

with
[
ε−1
S,ℓD

+ 1
]
≡ νℓD . Then, Expression (62)

becomes:

ν̂ = νℓQ ·
εℓQ,ℓ

1 + ℓD

ℓQ

, (64)
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which is exactly what we wanted to show. □

If labor was used for production only, then we must have εℓQ,ℓ = 1, ℓ = ℓQ and ℓD = 0,
and our markdown estimates would feature no bias(es), since ν̂ = ν. Bond et al. (2021)
point out that bias-free estimates can be obtained if labor inputs used for production and
“influencing demand” were observed separately. Even though our baseline estimates are
somewhat subject to this point of critique in Bond et al. (2021), our markdown results for
production and nonproduction workers (which are estimated separately) corroborate our
baseline results. It supports the observation that it is unlikely that manufacturers spend
a large fraction of their workforce for nonproduction purposes (see Dey, Houseman and
Polivka, 2012). As a result, it is reasonable in our setting to have εℓQ,ℓ ≈ 1 and ℓD

ℓQ
≈

0.

O.5.3 Scalar unobservable assumption

The last point of critique in Bond et al. (2021) relates to the scalar unobservable assumption
of the proxy variable methodology. Bond et al. (2021) argue that this assumption cannot
be satisfied whenever firms possess market power. Whenever this is the case, the econo-
metrician also needs to observe a firm’s marginal cost of production. This point is formally
illustrated below through a simple example.

PROPOSITION 6. If a monopolist is faced with some differentiable, downward-sloping
demand curve and is endowed with a Cobb-Douglas production technology, then there
exist parameters α = (α0, αω, αk, α

′
p, αMC)

′ such that its optimal input demand schedule
for materials under market power satisfies:

mit(kit, ωit,mc∗it) = α0 + αω · ωit + αk · kit + α′
ppt + αMC(p

∗
it − ln(µ∗

it))

= α0 + αω · ωit + αk · kit + α′
ppt + αMC ·mc∗it. (65)

That is, the optimal input demand schedule for materials depends on idiosyncratic produc-
tivity and a firm’s marginal cost of production.

Proof. The monopolist’s profit maximization problem becomes:

max
Kit,Lit,Mit≥0

Pt(Qit)Qit − C(Qit) s.t. Qit = exp(ωit)K
βK
it LβL

it M
βM
it . (66)
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It is easy to show that the firm’s optimal input demand schedule for materials is:

Mit =

(
Wt

βL

) βL
βL+βM

·
(
PM
t

βM

)− βL
βL+βM

·

(
Qit

exp(ωit)K
βK
it

) 1
βL+βM

, (67)

which leads to the Cobb-Douglas cost function (conditional on a given level of output and
capital):

C(Qit) = (βL + βM) ·
(
Wt

βL

) βL
βL+βM

(
PM
t

βM

) βM
βL+βM

·

(
Qit

exp(ωit)K
βK
it

) 1
βL+βM

. (68)

Following the Lerner index pricing formula, a firm’s optimal output is pinned down by:

µ∗
it ≡

εD(Q
∗
it)

εD(Q∗
it)− 1

=
Pt(Q

∗
it)

C ′(Q∗
it)

, (69)

which, using (68) for the marginal cost of production, we can rearrange as:

C ′(Qit) =

(
Wt

βL

) βL
βL+βM

(
PM
t

βM

) βM
βL+βM

·

(
1

exp(ωit)K
βK
it

) 1
βL+βM

Q
1−βL−βM
βL+βM

it

= Pt(Qit)µ
−1
it . (70)

Using (70), we solve for the optimal level of output Q∗
it:

Q∗
it =

P ∗
it

µ∗
it

·
(
Wt

βL

)− βL
1−βL−βM

(
PM
t

βM

)− βM
1−βL−βM

(
exp(ωit)K

βK
it

) 1
1−βL−βM . (71)

Plugging (71) into (67) and taking natural logs, there exist values for α0, αω, αk, αp,
and αMC such that the optimal input demand schedule for materials under market power

satisfies:

mit(kit, ωit,mc∗it) = α0 + αω · ωit + αk · kit + α′
ppt + αMC(p

∗
it − ln(µ∗

it))

= α0 + αω · ωit + αk · kit + α′
ppt + αMC ·mc∗it. (72)
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As a result, a firm’s input demand schedule for materials becomes a direct function of its
marginal cost of production whenever it has pricing power. □

The proposition illustrates that the econometrician needs to observe both firm-level produc-
tivity and its marginal cost of production, contradicting the scalar unobservable assumption.
As a result, Bond et al. (2021) argue that other estimators, in particular those that do not

rely on the scalar unobservable assumption, should be used in order to estimate produc-
tion function parameters. In particular, they refer to the estimator from Blundell and Bond
(2000).

In the following, we evaluate a set of proxy variable estimators and two estimators that
do not rely on the scalar unobservable assumption. Regarding the latter two, we use the
dynamic panel IV estimator from Blundell and Bond (2000) and the estimator from Hu,
Huang and Sasaki (2020). To evaluate the performance of all estimators, we apply them
to simulated data. In particular, we adopt the third data-generating process (DGP) from
Ackerberg, Caves and Frazer (2015) (or “ACF – DGP3”) which is least favorable to the
family of proxy variable estimators. The latter paper only allows for gross output spec-
ifications in which materials enter in a Leontief fashion. We replicate ACF to the letter,
but we also look at the performance of production function estimators whenever gross
output is also Cobb-Douglas in materials. This requires us to specify a process for mate-
rial prices. We follow ACF and assume it follows an AR(1) process in natural logs, i.e.
ln(PM

t ) = φM · ln(PM
t−1) + εMit . Online Appendix O.5.4 contains more details on what

changes occur whenever we allow material inputs to enter production in a Cobb-Douglas
fashion. We use the same parameter values as ACF unless otherwise specified.

ACF – DGP3: FULL COBB-DOUGLAS PRODUCTION. We start out with the case in
which material inputs enter the production function in a non-Leontief fashion: i.e., Yit =

exp(ωit)K
βk
it L

βℓ
it M

βm

it with βm ∈ (0, 1). Similar to the wage process in ACF – DGP3, we
assume that prices for material inputs are idiosyncratic and follow an AR(1) process. This
introduces two additional parameters compared to Ackerberg, Caves and Frazer (2015). We
set all of the parameters in an identical fashion to the latter paper unless otherwise noted.
Obviously, we cannot do this for the parameters φM and σ2

M .

To solve this issue, we set φM = 0.799 based on evidence from Atalay (2014) and σ2
M =
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σ2
W = 0.12.63 Furthermore, we have to adjust the production function parameters to reflect

a gross output (rather than a value added) specification. We choose βk = 0.1, βℓ = 0.25,
and βm = 0.65, which reflect data from the ASM/CM. To stay close to Ackerberg, Caves
and Frazer (2015), we allow for optimization errors in labor by setting σξℓ = 0.37. The
results are not affected qualitatively by this choice, though. The simulation results of the
production function estimation procedure can be found in Table XVII.

The translog specification approximates the Cobb-Douglas production function in the best
manner. Each cross and second-order term is not statistically significant (at the 5 percent
level). Note that the parameters are estimated with some bias, but this is to be expected
since the scalar unobservable assumption is violated. Furthermore, the production func-
tion is not of the Leontief form: Ackerberg, Caves and Frazer (2015) have pointed out that
the family of proxy variable estimators then generates biased results. Nevertheless, the
estimated parameters are very close to their true values. In fact, the true parameters are
contained within the 95 percent confidence intervals generated with the Monte Carlo sim-
ulations. Somewhat surprisingly, the estimation results for the Cobb-Douglas specification
are less precisely estimated when compared to its translog counterpart.

Our simulation results also indicate that other estimators from the proxy variable family
do not perform as well. In particular, the coefficient for material inputs is always heavily
underestimated. To assess the importance of the scalar unobservable assumption, we test
the performance of the estimators mentioned in Blundell and Bond (2000) (DPD-IV) and
Hu, Huang and Sasaki (2020) (HHS).

As can be seen from the table below, the DPD-IV estimator from Blundell and Bond (2000)
performs quite poorly, even when allowing for measurement error in output. In particular,
capital coefficients are estimated to be implausibly large. This estimator is predicated upon
several layers of differencing, and we suspect this approach eliminates the variation that is
necessary for identification.

63Higher values for σ2
M will increase the standard errors of our estimates but do not affect the point esti-

mates themselves by much. All of the remaining parameters are set to their identical values in the appendix
section of Ackerberg, Caves and Frazer (2015). There are two exceptions. First, we set ρ and σ2

ω at 0.9 and
0.22 instead of 0.7 and 0.32. We believe this reflects the U.S. data in a better fashion. Second, we leave
adjustment cost parameters to be static—i.e., they do not evolve dynamically over time. However, the latter
does not affect our results much and is without much loss of generality.
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Table XVII: Monte Carlo results with ACF – DGP3 under nontrivial Cobb-Douglas
specification.† Our preferred estimator, DLW-TL, outperforms alternative estimators.

βk βℓ βm θℓ/θm
β0 0.10 0.25 0.65 0.3846

DLW-TL 0.1097
(0.0381)

0.2212
(0.0553)

0.6231
(0.0566)

0.2922
(0.4605)

βkℓ βkm βℓm

0.0428
(0.0371)

−0.0156
(0.0386)

0.0154
(0.0374)

βk2 βℓ2 βm2

0.0237
(0.0501)

−0.0167
(0.0205)

0.0493
(0.0270)

βk βℓ βm θℓ/θm
DLW-CD 0.0394

(0.0386)
0.1013
(0.01887)

0.5682
(0.0453)

0.1817
(0.0450)

LP-CD 0.1078
(0.0382)

0.2214
(0.0074)

0.1438
(0.0317)

1.6303
(0.5031)

ACF-CD 0.0689
(0.0072)

0.2219
(0.0075)

0.1005
(0.0077)

2.2255
(0.2478)

BB-CD: MA(0) 0.3538
(0.1775)

0.2137
(0.0649)

0.1069
(0.0678)

1.9722
(29.3905)

BB-CD: MA(1) 0.2976
(0.2358)

0.2254
(0.0749)

0.1061
(0.0751)

0.3362
(35.5410)

HHS-CD
(capital only)

0.1414
(0.5750)

0.1103
(0.5617)

0.4587
(0.7696)

−0.0214
(6.1008)

HHS-CD
(capital and labor)

0.0981
(0.3302)

0.2329
(0.3200)

0.6675
(0.5247)

0.1931
(2.4675)

†We estimate production function parameters through the two-step proxy variable estimator of

De Loecker and Warzynski (2012) (denoted by DLW-CD and DLW-TL), the two-step proxy

variable estimator of Levinsohn and Petrin (2003) (LP-CD), the two-step proxy variable estima-

tor of Ackerberg, Caves and Frazer (2015) (ACF-CD), the dynamic panel estimator of Blundell

and Bond (2000) (BB-CD) and the two-step GMM-IV estimator of Hu, Huang and Sasaki

(2020) (HHS-CD). Starting values of the GMM-IV minimization processes for the proxy vari-

able estimators are based on the true parameters of the DGP. Samples are generated based on

DGP3 in Ackerberg, Caves and Frazer (2015) in which input prices are serially correlated, labor

is chosen before materials and investment, and labor is subject to optimization error. However,

production is generated through a Cobb-Douglas specification in capital, labor, and material

inputs. Furthermore, capital adjustment costs are heterogeneous but static. The table displays

the mean of each estimated parameter across S = 1000 simulations. Standard errors, which

are displayed in parentheses, are based on the standard deviation of each estimated parameter

across the simulations.
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We also focus on the estimator of Hu, Huang and Sasaki (2020). It is commonly assumed
that labor is chosen simultaneously with material inputs. As a result, the policy function
for material inputs should only contain capital as a state variable. When we impose this in
our moment conditions, we see from Table XVII that the estimator from Hu, Huang and
Sasaki (2020) is quite biased; performing worse than the Cobb-Douglas specification of
De Loecker and Warzynski (2012). Note, however, that labor for production in period t

is chosen at t − b in DGP3 of Ackerberg, Caves and Frazer (2015). Thus, the model is
correctly specified whenever labor is included as a state variable. The table below shows
that the methodology of Hu, Huang and Sasaki (2020) does produce consistent estimates
under this scenario. However, its standard errors are an order of magnitude larger than our
preferred estimator.

Last, note that output elasticities are an explicit function of inputs under translog produc-
tion. Thus, it could be argued that output elasticities are incorrectly estimated despite the
small estimates for cross- and higher-order terms under the translog specification. It ap-
pears that this is not the case, as can be seen from the last column in Table XVII. In fact,
output elasticities are also most accurately estimated under the translog estimator from
De Loecker and Warzynski (2012).

ACF – DGP3: LEONTIEF PRODUCTION. For completeness, we assess the reliability
of the translog specification under the exact same DGP3 of Ackerberg, Caves and Frazer
(2015). Material inputs enter production in a Leontief fashion instead; i.e., we have Yit =

min
{

exp (ωit) β0K
βk
it L

βℓ
it , βmMit

}
. Thus, we replicate the simulated data from Ackerberg,

Caves and Frazer (2015) to the letter in this case. Most contributions in the production
function literature run their Monte Carlo simulations on value-added specifications; rather
than gross output specifications as in the previous section.

To assess the reliability of the estimator used in our paper, we adapt it to estimate value-
added production functions instead, which allows us to directly compare it to other produc-
tion function estimation methodologies in the literature. We compare the Cobb-Douglas
and translog estimators of De Loecker and Warzynski (2012) with the Cobb-Douglas es-
timators in Blundell and Bond (2000), Levinsohn and Petrin (2003), Ackerberg, Caves
and Frazer (2015), and Hu, Huang and Sasaki (2020). The results can be found in Table
XVIII.
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Table XVIII: Monte-Carlo results with ACF – DGP3 under Leontief specification: value-
added estimation.2

βk βℓ βkℓ βk2 βℓ2

β0 0.40 0.60

DLW-TL 0.4040
(0.0060)

0.6109
(0.0099)

0.0013
(0.0017)

−0.0028
(0.0028)

−0.0010
(0.0001)

DLW-CD 0.3878
(0.0170)

0.6048
(0.0077)

LP-CD 0.5839
(0.0194)

0.4732
(0.0076)

ACF-CD 0.4063
(0.0166)

0.5953
(0.0079)

BB-CD: MA(0) 0.2277
(0.1008)

0.8974
(0.0675)

BB-CD: MA(1) 0.1501
(0.1902)

0.8339
(0.0737)

HHS-CD
(capital only)

0.3161
(0.1186)

0.3634
(0.2028)

HHS-CD
(capital and labor)

0.4144
(0.0803)

0.6142
(0.1126)

2We estimate production function parameters through the two-step proxy variable estimator of

De Loecker and Warzynski (2012) (denoted by DLW-CD and DLW-TL), the two-step proxy variable

estimator of Levinsohn and Petrin (2003) (LP-CD), the two-step proxy variable estimator of Ackerberg,

Caves and Frazer (2015) (ACF-CD), the dynamic panel estimator of Blundell and Bond (2000) (BB-CD),

and the two-step estimator of Hu, Huang and Sasaki (2020) (HHS-CD). Starting values of the GMM-IV

minimization processes for the proxy variable estimators are based on the true parameters of the DGP.

Samples are generated based on DGP3 in Ackerberg, Caves and Frazer (2015), in which input prices are

serially correlated, labor is chosen before materials and investment, and labor is subject to optimization

error. Furthermore, capital adjustment costs are heterogeneous but static. The table displays the mean of

each estimated parameter across S = 1000 simulations. Standard errors, which are displayed in paren-

theses, are based on the standard deviation of each estimated parameter across the simulations.
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Unlike the results for a gross output specification, the whole family of proxy variable esti-
mators (with the exception of Levinsohn and Petrin, 2003) produces consistent estimates.
As in the previous section, we see that the DPD-IV estimator from Blundell and Bond
(2000) still performs poorly; however, its bias is less severe than before. Moreover, we see
that the estimator from Hu, Huang and Sasaki (2020) does produce consistent estimates,
but it is crucial that the model (in particular, the state variables of the policy function for
material inputs) is correctly specified. Hence, it appears that the estimator from Hu, Huang
and Sasaki (2020) is quite sensitive to model misspecification. Also, its standard errors
are an order of magnitude larger than our preferred translog estimator by De Loecker and
Warzynski (2012).

O.5.4 Derivation of ACF – DGP3 process

In the following, we adapt the DGP in Ackerberg, Caves and Frazer (2015) to allow for
material inputs to enter production in a Cobb-Douglas fashion. Conceptually, this does
not change much, but the expressions, in particular the investment function, become more
complicated. To ensure the validity of our results, we verify that the limits of our expres-
sions (in which βm → 0 holds) coincide with those presented in Ackerberg, Caves and
Frazer (2015) and Collard-Wexler and De Loecker (2020). Furthermore, we will also run
our Monte Carlo experiments with the exact same DGP in Ackerberg, Caves and Frazer
(2015).

We adapt the third data-generating process (DGP3) in Ackerberg, Caves and Frazer (2015)
and allow for material inputs to enter the production function through a Cobb-Douglas
specification. Hence, production Yit is generated through:

Yit = exp(ωit)β0K
βk
it L

βℓ
it M

βm

it . (73)

In the remainder of this section, we will set β0 = 1. In the following, we will focus
on DGP3 of Ackerberg, Caves and Frazer (2015): labor is chosen before material inputs,
without full knowledge of productivity ωit. Instead, the firm observes some intermediate
level of productivity ωit−b between time periods t− 1 and t.

Wages are idiosyncratic and stochastic. In particular, we assume that (natural log) produc-
tivity, wages, and prices for material inputs follow AR(1) processes:
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ωit = ρ · ωit−1 + εωit (74)

ln(Wit) = φW · ln(Wit−1) + εWit (75)

ln(PM
it ) = φM · ln(PM

it−1) + εMit , (76)

where εeit ∼ N(0, σ2
e) for e ∈ {ω,W,M} and all shocks are independent across firms and

time. To avoid the functional dependence problem, labor is chosen at time t − b for some
b ∈ (0, 1) when the firm observes only some intermediate productivity ωit−b. This level of
productivity evolves smoothly; i.e., it satisfies:

ωit−b = ρ1−bωit−1 + ξAit (77)

ωit = ρbωit−b + ξBit . (78)

By construction, the variances of these innovations satisfy V (ρbξAit + ξBit ) = V (εωit) = σ2
ω.

We assume that investment and material inputs are chosen at time t. To solve the firm’s
problem, we use a backward induction strategy. At time t, given a level of capital Kit and
labor Lit, a firm i chooses its optimal level of material inputs:

max
Mit≥0

Pitexp(ωit)K
βk
it L

βℓ
it M

βm

it − PM
it Mit

Assuming that output and input markets are perfectly competitive, the first order condition
for Mit characterizes its optimal level:

βmPitexp(ωit)K
βk
it L

βℓ
it M

βm−1
it = PM

it

Thus, we get:

M∗
it ≡ Mit(ωit, Kit;Lit)

= β
1

1−βm
m exp

(
ωit

1− βm

)
P

1
1−βm
it K

βk
1−βm
it L

βℓ
1−βm
it (PM

it )
− 1

1−βm (79)

At time t − b, a firm i takes ωit−b (and not the level of productivity ωit) as given and
internalizes that its labor decision affects its choice for material inputs at time t. Hence, its
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maximization problem is given by:

max
Lit≥0

PitEit−b

[
exp(ωit)K

βk
it L

βℓ
it Mit(ωit, Kit;Lit)

βm

∣∣∣∣ωit−b

]
−WitLit

= max
Lit≥0

P
1

1−βm
it Eit−b

[
exp

(
ωit

1− βm

) ∣∣∣∣ωit−b

]
K

βk
1−βm
it L

βℓ
1−βm
it β

βm
1−βm
m (PM

it )
− βm

1−βm −WitLit

The first order condition for labor is then characterized by:

βℓ

1− βm

P
1

1−βm
it Eit−b

[
exp

(
ωit

1− βm

) ∣∣∣∣ωit−b

]
K

βk
1−βm
it L

βℓ−1+βm
1−βm

it β
βm

1−βm
m (PM

it )
− βm

1−βm = Wit

Then, optimal labor L∗
it satisfies:

L∗
it ≡ Lit(ωit−b, Kit)

=

(
βℓ

1− βm

) 1−βm
1−βm−βℓ

β
βm

1−βm−βℓ
m

(
Eit−b

[
exp

(
ωit

1− βm

) ∣∣∣∣ωit−b

]) 1−βm
1−βm−βℓ

×

K
βk

1−βm−βℓ
it P

1
1−βm−βℓ
it (PM

it )
− βm

1−βm−βℓW
− (1−βm)

1−βm−βℓ
it (80)

Note that the expression for lim
βm→0

L∗
it equals:

β
1

1−βℓ
ℓ P

1
1−βℓ
it

(
Eit−b

[
exp (ωit)

∣∣∣∣ωit−b

]) 1
1−βℓ

W
− 1

1−βℓ
it K

βk
1−βℓ
it

which coincides with the term for labor on p. 2443 in Ackerberg, Caves and Frazer (2015).
To see this, note that lim

βm→0
ββm
m = 1. To simplify, we can also write the expression for labor

as:

L∗
it ≡ Lit(ωit−b, Kit)

=


(

βℓ

1−βm

)1−βm

· ββm
m · Pit ·

(
Eit−b

[
exp

(
ωit

1−βm

) ∣∣∣∣ωit−b

])1−βm

(PM
it )

βmW 1−βm

it


1

1−βm−βℓ

K
βk

1−βm−βℓ
it

(81)
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Given these optimal choices, we can define the following lemmas.

LEMMA 3. Under DGP1 of ACF and βk + βℓ + βm = 1, revenues at the optimum can be
written as:

PitY
∗
it =

(
βℓ

1− βm

) βℓ
1−βm−βℓ

β
βm

1−βm−βℓ
m exp

(
ωit

1− βm

)
Eit−b

[
exp

(
ωit

1− βm

) ∣∣∣∣ωit−b

] βℓ
1−βm−βℓ

Kit

× (PM
it )

− βm
1−βm−βℓ · P

1
1−βm−βℓ
it ·W

− βℓ
1−βm−βℓ

it (82)

Proof. We plug the optimal choices for material inputs and labor at time t and t − b,
respectively, in the revenue function. Then, we get:
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which is exactly what we wanted to show. □

LEMMA 4. Under DGP1 of ACF and βk+βℓ+βm = 1, revenues net of payments to labor
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at the optimum can be written as:
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Proof. By applying lemma 1 and the optimal equation for labor (80), we get:
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where we exploited the fact that εωit = ρbξAit + ξBit . Then, we have showed exactly what we
wanted. □

These lemmas will be extremely useful for characterizing the optimal investment function.
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This is shown in the proposition below.

PROPOSITION 7. Let the environment of DGP1 in ACF hold with Yit = exp(ωit)β0K
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Proof. By definition, a firm i’s optimal level of investment I∗it solves the following prob-
lem:
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Investment Iit is characterized by its first order condition:
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We exploit the envelope condition to characterize the partial derivative ∂V (xit+1)
∂Kit+1

. More
precisely, we have:
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where the second to the third equality follows from lemma 2 and applying Pit as the
numéraire. We go from the third to the last equality by expanding the conditional ex-
pectation and collecting common terms. Note that, by assumption, investment and material
inputs are chosen at time t after labor was determined in period t − b. Hence, we must
take revenues net of labor payments (which are a function of physical capital Kit) when
applying the envelope condition. Combining expresssions (87) and (88), we obtain:
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Iterating expression (89) forward, we get:
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Apply the expectations operators on the productivity shocks, then we have:
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The latter step is valid since it is assumed that productivity shocks are orthogonal to shocks
to input prices; across time and firms. By assumption, productivity ωit follows an AR(1)
process. Hence, we must have:
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We can apply the same logic to input prices, so we can rewrite expression (91) as:
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Collecting terms, the above expression can be rewritten as:
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which is exactly what we wanted to show. Note that the case in Ackerberg, Caves and
Frazer (2015) can be derived as a limit of βm → 0. Then, we get:
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which is the equivalent of the expression for investment in Ackerberg, Caves and Frazer
(2015) on their page 2446.64 Our expression in (93) becomes identical to the one in
Ackerberg, Caves and Frazer (2015) whenever σ2

ξℓ
→ 0 and we have β0 = 1. Note

that it is straightforward to allow for measurement error in labor. Whenever we have
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64The only components that are different are the terms containing σ2
ξA and σ2

ω . Ackerberg, Caves and
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ξA . Given that ρb is not a well-defined object and ρτ cannot appear

in those terms associated with σ2
ξA , it is relatively safe to assume that the expressions in Ackerberg, Caves

and Frazer (2015) are typos.
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Given these observations, we remain. □

Note that DGP1 in Ackerberg, Caves and Frazer (2015) with optimization error in labor is
equivalent to their DGP3. To complete the description of the data-generating process, we
need to specify how we initalize capital, productivity and wages.

Ki0 = exp(−10) ≃ 0.0000454 (95)

ωi0 = σω · εi0 (96)

Wi0 = σW · εi0 (97)

where ε ∼ N(0, 1). Note that all firms start with almost zero stock of capital. Finally, we
follow Ackerberg, Caves and Frazer (2015) and Collard-Wexler and De Loecker (2020),
and inject measurement error in output and material inputs. More precisely, we have:

ln(Yit) = ln(Y ∗
it ) + εYit (98)

ln(Mit) = ln(M∗
it) +mE · ε (99)

where εYit ∼ N(0, σ2
Y ) and m2

E is the cross-sectional variance of demeaned levels of
M∗

it.
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O.6 Counterfactual exercises

Our baseline estimates in section 3 imply median markdowns of 1.53. This is well in line
with the meta-study by Sokolova and Sorensen (2020): our results fall around the median
in their distribution of estimates for the elasticity of labor supply. Nevertheless, we further
investigate the magnitude of our estimates with two sets of counterfactual exercises in the
spirit of Brooks et al. (2021b).65

PROFIT SHARE. In our first exercise, we verify that the majority of variable profits are not
accounted for by markdowns, ensuring that our markdowns are not implausibly large. To
do this, note that variable profits as a fraction of revenues (also referred to as the profit
share) sπ are defined as:

sπ ≡ 1− αK − αℓ − αM − αE

= 1− αK − θℓ · ν−1 · µ−1 − θM · µ−1 − αE (100)

where we applied our results from proposition 1 in the second equality. Then, conditional
on profits only stemming from labor market power, the counterfactual profit share satis-
fies:

sπ|µ=1 = 1− αK − θℓ · ν−1 − θM − αE (101)

Summary statistics on profit shares and their counterfactual counterparts can be found in
table XIX.

Table XIX: Actual and counterfactual profit shares.†

PROFIT SHARE Median Mean 25% 75% SD
Actual 0.203 0.190 0.101 0.303 0.227

Counterfactual 0.081 0.072 0.004 0.159 0.203

Sample size 1.393 ·106

†Markdowns are estimated under the assumption of a translog specification for gross output. The flexible input is materi-

als. Each industry group in manufacturing corresponds to the manufacturing categorization of the BEA which approximately

follows a 3-digit NAICS specification. Actual profit shares are defined as variable profits relative to revenues whereas coun-

terfactual profit shares are constructed by setting markups to unity. By doing so, we follow the counterfactual experiments of

Brooks et al. (2021b). Source: Authors’ calculations from ASM/CM data in 1976–2014.

65We thank an anonymous referee for these helpful suggestions.
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We find that, for the median plant, the majority of variable profits are actually accounted
for by markups. Approximately 0.081/0.203 = 40 percent of the median plant’s profits are
due to labor market power which we deem as reasonable.

AGGREGATE LABOR SHARE. In the following, we evaluate the time evolution of the ag-
gregate labor share in the absence of labor market power. Following Brooks et al. (2021b)
and Kehrig and Vincent (2021), we define the labor share as payments to labor relative to
value added:

ηℓt ≡
∑

i∈Ft
witℓit∑

i∈Ft
pityit − pMit mit − pEiteit

(102)

For this empirical exercise, we implement the definition for value added from Kehrig and
Vincent (2021). The key difference, when compared to the standard definition from the
Census Bureau, lies in the use of inventories for material inputs and purchased services
used as intermediate inputs. These components are included by Kehrig and Vincent (2021)
but not by the Census Bureau. By construction, therefore, the Census Bureau’s defini-
tion for value added is smaller than that of Kehrig and Vincent (2021) which immediately
implies that labor shares under the latter must be larger. However, intermediate services
are not available at the plant level. Instead, Kehrig and Vincent (2021) impute the ratio
of purchased services to sales at the industry level. They show that including intermedi-
ate services only has an impact on the level of the labor share and does not affect its time
evolution. As a result, we will simply ignore purchased services for intermediate use.

Let a firm i’s wage bill share (relative to the national economy) be equal to:

ωℓ
it ≡

witℓit∑
k∈Ft

wktℓkt
(103)

Then, given our definitions of markups and markdowns, we can use equations (102) and
(103) to derive the economy’s aggregate labor share:

(
ηℓt
)−1

=
∑
i∈Ft

pityit − pMit mit − pEiteit∑
i∈Ft

witℓit

=
∑
i∈Ft

pityit − pMit mit − pEiteit
witℓit

· ωℓ
it
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=
∑
i∈Ft

(
1− αM

it − αE
it

αL
it

)
· ωℓ

it

=
∑
i∈Ft

(
νitµit

θLit
− νitθ

M
it

θLit
− αE

it

αL
it

)
· ωℓ

it

Hence, we can write the labor share ηℓt as:

ηℓt =

(∑
i∈Ft

[
νit ·

(
µit − θMit

θLit

)
− αE

it

αL
it

]
· ωℓ

it

)−1

(104)

According to Brooks et al. (2021b), the counterfactual labor share without monopsony

power would then be equal to:

ηℓt|ν=1 =

(∑
i∈Ft

[
µit − θMj(i)t

θLj(i)t
− αE

it

αL
it

]
· ωℓ

it

)−1

(105)

Our results are displayed in figure 14. We find that our constructed labor share declines
from about 50 percent to 33 percent from 1977 to 2012. The counterfactual series implies
that the labor share declined from about 75 percent in 1977 to 41 percent in 2012. Hence,
the fall in the labor share would be even more pronounced in the absence of monopsony
power through the lens of the counterfactual exercise in Brooks et al. (2021b). If mark-
downs were implausibly large, then we would expect the counterfactual labor share to be
unreasonably high as well. Our counterfactual exercise does not seem to indicate that this
is the case.
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Figure 14: Actual and counterfactual aggregate labor shares.
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Actual labor shares are defined as the aggregate wage bill divided by total value added. Counterfactual labor
shares are calculated according to equation (105) in which markdowns are set to unity following Brooks et
al. (2021b). Source: Authors’ own calculations from quinquennial CM data from 1977–2012.
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O.7 Labor market models with εS ≥ 0

O.7.1 Wage posting à la Burdett-Mortensen

For ease of notation, we drop a particular firm f ’s index. In the wage posting model of Bur-
dett and Mortensen (1998), a firm’s law of motion for its stock of labor is given by:

Lt = (1− s(wt))Lt−1 +R(wt) (106)

where s(·) and R(·) denote the separation and recruiting functions, respectively. Note that
these are allowed to explicitly depend on the posted wage. In a stationary setting, we must
have Lt =

R(wt)
s(wt)

. Assuming that these functions are differentiable, it is straightforward to
show that labor supply elasticities satisfy:

εS = εRw − εsw > 0

where εRw,t and εsw,t denote separation and recruiting elasticities, respectively. The above
object is strictly positive since higher wages encourage hiring and lead to fewer separations,
i.e. εRw > 0 and εsw < 0.

Formally, the separation rate is induced by some exogenous job destruction process and
poaching. In particular, we have s(w) = δ + λ(1 − F (w)). Then, −εsw = λf(w) >

0 follows directly from the fact that probability distribution functions are non-negative.
Recall that the equilibrium wage distribution function has full support on [0, w] in the
baseline framework of Burdett and Mortensen (1998). Furthermore, recruitment satisfies
R(w) = Ru + λ ·

∫ w

0
L(x)dF (x) where Ru is the stock of recruits from the pool of un-

employment. Note that this does not vary across wage levels w since workers’ values of
unemployment are normalized to zero in Burdett and Mortensen (1998). Hence, unem-
ployed workers accept any given offer. Given this structure, it is straightforward to derive
that εR = λ · f(w)L(w)w

R(w)
> 0. While we focus here on the canonical model of Burdett and

Mortensen (1998), upward-sloping labor supply curves are also present in more generalized
settings such as Bontemps, Robin and Van den Berg (2001) and Mortensen (2003).
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O.7.2 Additive Random Utility Models (ARUM)

In this section, we consider a class of additive random utility models as described in Chan,
Kroft and Mourifie (2019). We do so because their setup nests a variety of labor market
models which we will discuss below. There are K types indexed by k which each have a
mass of mk such that

∑K
k=1mk = 1. An individual worker i with type k (which is allowed

to be multidimensional) is faced with the problem of choosing among a set of employers
J = {1, 2, . . . , J}. Worker choice is informed by non-pecuniary benefits, wage compen-
sation, and some idiosyncratic term. A worker’s outside option is denoted by “employer”
0. Its maximization problem is characterized by:

max
j∈J∪{0}

ukj + wkj + εij = max
j∈J∪{0}

vkj + εij

The surplus function is defined as:

S(vk) = E
[

max
j∈J∪{0}

vkj + εij

]

Then, Chan, Kroft and Mourifie (2019) characterize the labor supply function as:

Lkj = mk · Pr (vkj + εkj ≥ vkj′ + εij′ , for all j′ ∈ J ∪ {0})

= mk ·
∂S(vk)

∂vkj
(107)

Chan, Kroft and Mourifie (2019) show that this object exists whenever εij is independent
of vkj and is absolutely continuous with respect to the Lebesgue measure. Furthermore, the
surplus function is convex in vk under those assumptions. Hence, labor supply schedules
are non-decreasing. Therefore, we have:

εkjS =
mk

Lkj

∂2S(vk)

∂2vkj
wkj ≥ 0

The generalized setting of Chan, Kroft and Mourifie (2019) is quite convenient as it nests
the setups of Card et al. (2018) and Lamadon, Mogstad and Setzler (2022). This can be
done by appropriately defining worker types and assuming that idiosyncratic shocks are
drawn from an Extreme Value Type I distribution.
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O.7.3 Monopsonistic competition

In the simplest setting, upward-sloping labor supply curves are generated purely through
preferences, even in the absence of strategic complementarities across firms. For instance,
this would be true in a setting in which a representative household supplies a bundle of
differentiated labor Lt = {Lit}Ki=1 and has preferences over some composite consumption
bundle Ct.

Suppose the household’s preferences are summarized by some function u(Ct,Lt) that is
continuously differentiable in its arguments. Then, the schedule of labor supply functions
is determined by a system of non-linear equations consisting of (K+1)K

2
+1 equations. Intu-

itively, labor supply schedules are upward sloping whenever substitution effects dominate
their income counterparts.

HORIZONTAL JOB DIFFERENTIATION. Under this class of models, workers are heteroge-
neous in their preferences over non-wage characteristics of a job. A simple way to capture
this idea is to assume that a worker’s utility is increasing in wages and decreasing in dis-
tance to work. Then, wages act as a compensating differential. Examples are Bhaskar and
To (1999) and Staiger, Spetz and Phibbs (2010) who adopt frameworks in the spirit of Salop
(1979).66

DOUBLE-NESTED CES PREFERENCES (ATKESON-BURSTEIN). Berger, Herkenhoff and
Mongey (Forthcoming) consider a monopsonistic environment in the tradition of Atkeson
and Burstein (2008). With some abuse of notation, preferences are characterized by:

u

Ct −
1

φ
1
φ

L
1+ 1

φ

t

1 + 1
φ

 with Lt =

(∫ 1

0

L
θ+1
θ

jt dj

) θ
θ+1

and Ljt =

 Fj∑
f=1

n
η+1
η

fjt


η

η+1

Thus, preferences follow the GHH specification in consumption and labor whereas la-
bor is a double-nested CES composite. This gives rise to labor supply elasticities of the

66In particular, Staiger, Spetz and Phibbs (2010) assume that firms are uniformly distributed around
a circle of measure one. Whenever the measure of firms N is fixed and workers’ utility is increasing
(decreasing) in their wage (distance to work), a firm i’s labor supply function can be characterized as
Li = α + τ−1

[
wi −

(
wi−1+wi+1

2

)]
where τ > 0 denote travel costs (denoted in units of utility) per unit

distance. Given this structure, we must have εS > 0.
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form:

εS =
1

η
+

(
1

θ
− 1

η

)
· s > 0

where s ∈ [0, 1] is a firm’s share of the industry’s total payroll. The latter is guaranteed to
be positive whenever η > θ which is the more natural assumption.
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O.8 Concentration indices

NATIONAL CONCENTRATION. We construct national employment concentration, follow-
ing Autor et al. (2020), as follows:

NATIONALt =
∑
j∈J

ωjtHHIjt

=
∑
j∈J

ωjt

 ∑
f∈Ft(j)

(
xft

XF (j)t

)2
 s.t. XF (j)t =

∑
f ′∈Ft(j)

xf ′t (108)

Hence, national concentration is a weighted average of industry-level HHIs. We implement
this measure by using employment weights and by calculating HHIjt at the 3-digit NAICS-
year level. The results are displayed in the figure below.

Figure 15: National employment concentration has been increasing since the early 1980s.
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HHI levels are normalized relative to their initial value in 1976. Source: Authors’ own calculations from
LBD data from 1976–2014.

Consistent with Autor et al. (2020), we find that national employment concentration has
been rising since the early 1980s. If we look at the whole available period of 1976 –
2014, then it is clear that national concentration has not been rising monotonically. In
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fact, it was declining from 1976 till 1981 with a particularly sharp drop in 1982 which is
consistent with Rinz (2018). While it is tempting to explain this almost continuous drop as
measurement error, it is unlikely to be the case with administrative data. Furthermore, Rinz
(2018) has argued that it is mainly driven by telecommunications industries and refers to
a Department of Justice case in 1982 in which AT&T was required to divest itself of local
telephone companies.

Regardless of the rationale behind this drop, it is clear that the time series for national
employment concentration does not follow the patterns of our constructed markdown Vt

in the least. Hence, we conclude that caution should be exercised when proxying market
power with measures of concentration.

CONCENTRATION IN VACANCIES. We use two sources of data to investigate labor market
concentration: employment data from the Longitudinal Business Database (LBD)—as seen
in the main body—and vacancy data from Burning Glass Technologies (BGT).

The BGT data is a unique source of micro-data that contains approximately 160 million
electronic job postings in the U.S. economy spanning the years 2007 and 2010–2017.
These job postings were collected and assembled by BGT, an employment analytics and
labor market information company, that examines over 40,000 online job boards and com-
pany websites to aggregate the job postings, parse, and deduplicate them into a systematic,
machine-readable form, and create labor market analytics products. With the breadth of
this coverage, the resulting database purportedly captures the near-universe of jobs posted
online, estimated to be near 80 percent of total job ads. Using BGT vacancy data allows
us to compute the concentration of job openings, thus zeroing in on concentration in local
labor demand and computing an index of concentration that reflects how many employers
are active in the hiring process in a local market.

The BGT data has both extensive breadth and detail. Unlike sources of vacancy data that
are based on a single job board such as careerbuilder.com or monster.com, BGT
data span multiple job boards and company sites. The data are also considerably richer
than sources from the Bureau of Labor Statistics (BLS), such as JOLTS (Job Openings and
Labor Turnover Survey).67 In addition to detailed information on occupation, geography,

67Although JOLTS asks a nationally representative sample of employers about vacancies they wish to fill
in the near term, the data are typically available only at aggregated levels, and do not allow for a detailed
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and employer for each vacancy, BGT data contain thousands of specific skills standardized
from open text in each job posting. BGT data thus allow for a detailed analysis of vacancy
flows within and across occupations, firms, and labor market areas, enabling us to document
trends in employers’ concentration at a very granular level.

The data, however, is not perfect. Although roughly two-thirds of hiring is replacement
hiring, we expect vacancies to be somewhat skewed towards growing areas of the economy
(Davis, Faberman and Haltiwanger, 2012; Lazear and Spletzer, 2012). Additionally, the
BGT data only covers online vacancies. Even though vacancies for available jobs have
increasingly appeared online rather than in traditional sources, it is a valid concern that
the types of jobs posted online are not representative of all openings. Hershbein and Kahn
(2018) provide a detailed description of the industry-occupation mix of vacancies in BGT
relative to JOLTS: although BGT postings are disproportionately concentrated in occupa-
tions and industries that require greater skill, the distributions are stable across time, and
the aggregate and industry trends in BGT track BLS sources closely.

Figure 16: National and local trends in the concentration of job postings.
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HHI levels are normalized relative to their initial value in 2007. Observations from the Great Recession
(2008–2009) are not available and are interpolated from 2007 to 2010. Source: BGT (2007, 2010–2017).

In the BGT data, we define a local labor market as an occupation-metro area pair. We define

taxonomy of local labor markets.
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occupations at the 4-digit SOC level, for a total of 108 groups derived from the BLS 2010
SOC system, which aggregates “occupations with similar skills or work activities” (BLS,
2010). While our definition of occupations is considerably less detailed than the job titles
available in the BGT data, we believe it offers an appropriate balance between accurately
capturing the competitiveness of a market and identifying the demand for different bundles
of skills.68 Nevertheless, our results hold true for other classifications.69 Metropolitan
areas correspond to the 2013 Core-Based Statistical Areas (CBSA) with a population over
50,000. As a result, there are 382 metro areas in our final BGT dataset. In the end, we
identify 41,256 local labor markets in the BGT data.

We regard vacancies concentration as the closest measure to the concentration faced by
job seekers in a specific (local or national) labor market. We construct local and national
concentration measures of vacancies using BGT data. Market-level HHIs are aggregated
through their respective vacancy shares.70 Figure 16 plots the time series of the aggre-
gate local and national concentration of vacancies and shows that local concentration is
markedly decreasing over time. Specifically, the local HHI of vacancies drops in the postre-
cession period 2010–2017 by approximately 20 percent. The decrease is even more dra-
matic if we consider the change between 2007 and 2017—though it is to be noted that
the BGT data is not available during 2008–2009. Note that the pattern for the national
concentration of vacancies is comparable to its employment counterpart.

68Indeed, too fine an occupational classification would mechanically lead to a small number of firms post-
ing jobs in each market. This would bias our estimates of labor market concentration upward. On the other
hand, too broad an occupational classification would erase important distinctions between heterogeneous
skills used in different occupations. Even though many studies find that broad occupational changes are not
uncommon in U.S. labor markets (Huckfeldt, 2017; Macaluso, 2019), especially for laid-off workers, we
choose the 4-digit SOC level as a useful compromise.

69Examples of 4-digit SOC occupations among Production ones are Food Processing Workers (5130),
Assemblers and Fabricators (5120), Textile, Apparel, and Furnishings Workers (5160), and Plant and System
Operators (5180).

70Our results are quantitatively unaffected whenever we use employment shares instead.
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