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Preface to ”Multiple-Criteria Decision Making”

Decision-making in real-world problems, including individual process decisions, requires

an appropriate and reliable decision support system. Fuzzy set theory, rough set theory,

and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex

decision-making problems with imprecise, ambiguous, or vague data. The application of the

developed new multi-criteria decision-making (MCDM) methods can be eliminated or decreased by

decision-makers’ subjectivity, which leads to consistency or symmetry in the weight values of the

criteria. Decision making on complex engineering problems, including individual process decisions,

requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and

neutrosophic set theory that are used for MCDM techniques are very useful for modeling complex

engineering problems with imprecise, ambiguous, or vague data. Sustainability in engineering is one

of the most discussed topics in recent years and represents one of the key factors in engineering

sustainable development and optimization. Sustainable multidisciplinary approaches based on

MCDM techniques will enable easier process technology in the future.

This Special Issue on “Multiple-Criteria Decision Making” aims to incorporate recent

developments in the area of multiple-criteria decision making. Topics include, but are not limited

to, the following:

– MCDM optimization in engineering;

– Environmental sustainability in engineering processes;

– Multi-criteria production and logistics processes planning;

– New trends in the multi-criteria evaluation of sustainable processes;

– Multi-criteria decision making in strategic management based on sustainable criteria.

Engineering is the application of scientific and mathematical principles for practical objectives

such as processes, manufacture, design, and operation of products while accounting for constraints

invoked by environmental, economic, and social factors. There are various factors that need

to be considered in order to address engineering sustainability, which is critical for the overall

sustainability of human development and activity. In this regard, in recent decades, decision-making

theory has been a subject of intense research activity due to its wide applications in different areas,

such as sustainable engineering and environmental sustainability. The decision-making theory

approach has become an important means of providing real-time solutions to uncertainty problems,

especially for sustainable engineering and environmental sustainability problems in engineering

processes. We hope that this Special Issue will stimulate both theoretical and applied research in

the related field of multiple-criteria decision making. It is certainly impossible to provide in this short

editorial a more comprehensive description for all articles in this Special Issue. However, we sincerely

hope that our effort in compiling these articles will enrich our readers and inspire researchers with

regard to the common but important issue of decision-making and fuzzy decision-making approaches

for sustainable engineering processes.

Goran Ćirović, Dragan Pamučar

Editors
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Abstract: This manuscript aims to propose a new extension of the EDAS method, adapted for usage
with single-valued neutrosophic numbers. By using single-valued neutrosophic numbers, the EDAS
method can be more efficient for solving complex problems whose solution requires assessment and
prediction, because truth- and falsity-membership functions can be used for expressing the level
of satisfaction and dissatisfaction about an attitude. In addition, the indeterminacy-membership
function can be used to point out the reliability of the information given with truth- and falsity-
membership functions. Thus, the proposed extension of the EDAS method allows the use of a smaller
number of complex evaluation criteria. The suitability and applicability of the proposed approach
are presented through three illustrative examples.

Keywords: neutrosophic set; single-valued neutrosophic set; EDAS; MCDM

1. Introduction

Multicriteria decision making facilitates the evaluation of alternatives based on a set
of criteria. So far, this technique has been used to solve a number of problems in various
fields [1–6].

Notable advancement in solving complex decision-making problems has been made
after Bellman and Zadeh [7] introduced fuzzy multiple-criteria decision making, based on
fuzzy set theory [8].

In fuzzy set theory, belonging to a set is shown using the membership function
µ(x) ∈ [0, 1]. Nonetheless, in some cases, it is not easy to determine the membership to the
set using a single crisp number, particularly when solving complex decision-making prob-
lems. Therefore, Atanassov [9] extended fuzzy set theory by introducing nonmembership
to a set ν(x) ∈ [0, 1]. In Atanassov’s theory, intuitionistic sets’ indeterminacy is, by default,
1− µ(x)− ν(x).

Smarandache [10,11] further extended fuzzy sets by proposing a neutrosophic set.
The neutrosophic set includes three independent membership functions, named the truth-
membership TA(x), the falsity-membership FA(x) and the indeterminacy-membership IA(x)
functions. Smarandache [11] and Wang et al. [12] further proposed a single-valued neutro-
sophic set, by modifying the conditions TA(x), IA(x) and FA(x) ∈ [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, which are more suitable for solving scientific and engi-
neering problems [13].

1
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When solving some kinds of decision-making problems, such as problems related to
estimates and predictions, it is not easy to express the ratings of alternatives using crisp
values, especially in cases when ratings are collected through surveys. The use of fuzzy sets,
intuitionistic fuzzy sets, as well as neutrosophic fuzzy sets can significantly simplify the
solving of such types of complex decision-making problems. However, the use of fuzzy sets
and intuitionistic fuzzy sets has certain limitations related to the neutrosophic set theory.
By using three mutually independent membership functions applied in neutrosophic set
theory, the respondent involved in surveys has the possibility of easily expressing their
views and preferences. The researchers recognized the potential of the neutrosophic set
and involved it in the multiple-criteria decision-making process [14,15].

The Evaluation Based on Distance from Average Solution (EDAS) method was in-
troduced by Keshavarz Ghorabaee et al. [16]. Until now, this method has been applied
to solve various problems in different areas, such as: ABC inventory classification [16],
facility location selection [17], supplier selection [18–20], third-party logistics provider
selection [21], prioritization of sustainable development goals [22], autonomous vehicles
selection [23], evaluation of e-learning materials [24], renewable energy adoption [25],
safety risk assessment [26], industrial robot selection [27], and so forth.

Several extensions are also proposed for the EDAS method, such as: a fuzzy EDAS [19],
an interval type-2 fuzzy extension of the EDAS method [18], a rough EDAS [20], Grey
EDAS [28], intuitionistic fuzzy EDAS [29], interval-valued fuzzy EDAS [30], an extension
of EDAS method in Minkowski space [23], an extension of the EDAS method under q-rung
orthopair fuzzy environment [31], an extension of the EDAS method based on interval-
valued complex fuzzy soft weighted arithmetic averaging (IV-CFSWAA) operator and the
interval-valued complex fuzzy soft weighted geometric averaging (IV-CFSWGA) operator
with interval-valued complex fuzzy soft information [32], and an extension of the EDAS
equipped with trapezoidal bipolar fuzzy information [33].

Additionally, part of the EDAS extensions is based on neutrosophic environments,
such as refined single-valued neutrosophic EDAS [34], trapezoidal neutrosophic EDAS [35],
single-valued complex neutrosophic EDAS [36], single-valued triangular neutrosophic
EDAS [37], neutrosophic EDAS [38], an extension of the EDAS method based on mul-
tivalued neutrosophic sets [39], a linguistic neutrosophic EDAS [40], the EDAS method
under 2-tuple linguistic neutrosophic environment [41], interval-valued neutrosophic
EDAS [22,42], interval neutrosophic [43].

In order to enable the usage of the EDAS method for solving complex decision-making
problems, a novel extension that enables usage of single-valued neutrosophic numbers
is proposed in this article. Therefore, the rest of this paper is organized as follows: In
Section 2, some basic definitions related to the single-valued neutrosophic set are given. In
Section 3, the computational procedure of the ordinary EDAS method is presented, whereas
in Section 3.1, the single-valued neutrosophic extension of the EDAS method is proposed.
In Section 4, three illustrative examples are considered with the aim of explaining in detail
the proposed methodology. The conclusions are presented in the final section.

2. Preliminaries

Definition 1. Let X be the universe of discourse, with a generic element in X denoted by x. A
Neutrosophic Set (NS) A in X is an object having the following form [11]:

A = {x < TA(x), IA(x), FA(x) >: x ∈ X}, (1)

where: TA(x), IA(x), and FA(x) are the truth-membership function, the indeterminacy-membership
function and the falsity-membership function, respectively, TA(x), IA(x), FA(x) : X → ]−0, 1+[ ,
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+, and ]−0, 1+[ denotes bounds of NS.

2
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Definition 2. Let X be a space of points, with a generic element in X denoted by x. A Single-Valued
Neutrosophic Set (SVNS) A over X is as follows [12]:

A = {x < TA(x), IA(x), FA(x) >|x ∈ X}, (2)

where: TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-membership
function and the falsity-membership function, respectively, TA(x), IA(x), FA(x) : X → [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 3. A Single-Valued Neutrosophic Numbera = 〈ta, ia, fa〉 is a special case of an SVNS
on the set of real numbers ℜ, where ta, ia, fa ∈ [0, 1] and 0 ≤ ta + ia + fa ≤ 3 [12].

Definition 4. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs and λ > 0. The basic
operations over two SVNNs are as follows:

x1 + x2 =< t1 + t2 − t1t2, i1i2, f1 f2 >, (3)

x1 · x2 =< t1t2, i1 + i2 − i1i2, f1 + f2 − f1 f2 > . (4)

λx1 =< 1− (1− t1)
λ, iλ

1 , f λ
1 > . (5)

xλ
1 =< tλ

1 , iλ
1 , 1− (1− f1)

λ
> . (6)

Definition 5. Let x =< ti, ii, fi > be an SVNN. The score function sx of x is as follows [44]:

si = (1 + ti − 2ii − fi)/2, (7)

where si ∈ [−1, 1].

Definition 6. Let aj ≤ tj, ij, fj > (j = 1, . . . , n) be a collection of SVNSs and W = (w1, w2, . . . , wn)
T

e an associated weighting vector. The Single-Valued Neutrosophic Weighted Average (SVNWA)
operator of aj is as follows [40]:

SVNWA(a1, a2, . . . , an) =
n

∑
j=1

wjaj =

(
1−

n

∏
j=1

(1− tj)
wj ,

n

∏
j=1

(ij)
wj ,

n

∏
j=1

( f j)
wj

)
, (8)

where: wj is the element j of the weighting vector, wj ∈ [0, 1] and ∑
n
j=1 wj = 1.

Definition 7. Let x =< ti, ii, fi > be an SVNN. The reliability ri of x is as follows [45]:

ri =

{ |ti− fi |
ti+ii+ fi

ti + ii + fi 6= 0

0 ti + ii + fi = 0
. (9)

Definition 8. Let D be a decision matrix, dimension m x n, whose elements are SVNNs. The
overall reliability of the information contained in the decision matrix is as follows:

rd =
∑

n
j=1 rij

∑
m
i=1 ∑

n
j=1 rij

. (10)

3. The EDAS Method

The procedure of solving a decision-making problem with m alternatives and n criteria
using the EDAS method can be presented using the following steps:

3
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Step 1. Determine the average solution according to all criteria, as follows:

x∗j = (x1, x2, · · · , xn), (11)

with:

x∗j =
∑

m
i=1 xij

m
. (12)

where: xij denotes the rating of the alternative i in relation to the criterion j.
Step 2. Calculate the positive distance from average (PDA) d+ij and the negative

distance from average (NDA) d−ij , as follows:

d+ij =





max(0,(xij−x∗j ))
x∗j

; j ∈ Ωmax

max(0,(x∗j −xij))

x∗j
; j ∈ Ωmin

, (13)

d−ij =





max(0,(x∗j −xij))

x∗j
; j ∈ Ωmax

max(0,(xij−x∗j ))
x∗j

; j ∈ Ωmin

, (14)

where: Ωmax and Ωmin denote the set of the beneficial criteria and the nonbeneficial criteria,
respectively.

Step 3. Determine the weighted sum of PDA, Q+
i , and the weighted sum of NDS, Q−i ,

for all alternatives, as follows:

Q+
i =

n

∑
j=1

wjd
+
ij , (15)

Q−i =
n

∑
j=1

wjd
−
ij , (16)

where wj denotes the weight of the criterion j.
Step 4. Normalize the values of the weighted sum of the PDA and NDA, respectively,

for all alternatives, as follows:

S+
i =

Q+
i

max
k

Q+
k

, (17)

S−i = 1− Q−i
max

k
Q−k

, (18)

where: S+
i and S−i denote the normalized weighted sum of the PDA and the NDA, respec-

tively.
Step 5. Calculate the appraisal score Si for all alternatives, as follows:

Si =
1
2
(S+

i + S−i ). (19)

Step 6. Rank the alternatives according to the decreasing values of appraisal score.
The alternative with the highest Si is the best choice among the candidate alternatives.

3.1. The Extension of the EDAS Method Adopted for the Use of Single-Valued Neutrosophic
Numbers in a Group Environment

Let us suppose a decision-making problem that include m alternatives, n criteria and k
decision makers, where ratings are given using SVNNs. Then, the computational procedure
of the proposed extension of the EDAS method can be expressed concisely through the
following steps:

4
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Step 1. Construct the single-valued neutrosophic decision-making matrix for each
decision maker, as follows:

X̃k =




< tk
11, ik

11, f k
11 > < tk

12, ik
12, f k

12 > · · · < tk
1n, ik

1n, f k
1n >

< tk
21, ik

21, f k
21 > < tk

22, ik
22, f k

22 > · · · < tk
2n, ik

2n, f k
2n >

...
...

...
...

< tk
m1, ik

m1, f k
m1 > < tk

m2, ik
m2, f k

m2 > · · · < tk
mn, ik

mn, f k
mn >


 (20)

whose elements x̃ij =< tk
ij, ik

ij, f k
ij > are SVNNs.

Step2. Construct the single-valued neutrosophic decision making using Equation (8):

X̃ =




< t11, i11, f11 > < t12, i12, f12 > · · · < t1n, i1n, f1n >

< t21, i21, f21 > < t22, i22, f22 > · · · < t2n, i2n, f2n >
...

...
...

...
< tm1, im1, fm1 > < tm2, im2, fm2 > · · · < tmn, imn, fmn >


 (21)

Step 3. Determine the single-valued average solution (SVAS) x̃∗j according to all
criteria, as follows:

x̃∗j = (< t∗1 , i∗1 , f ∗1 >,< t∗2 , i∗2 , f ∗2 >, · · · ,< t∗n, i∗n, f ∗n >), (22)

where:

t∗j =
∑

m
l=1 tij

m
(23)

i∗j =
∑

m
l=1 iij

m
, and (24)

f ∗j =
∑

m
l=1 fij

m
(25)

Step 4. Calculate a single-valued neutrosophic PDA (SVNPDA), d̃+ij =< t+ij , i+ij , f+ij >,

and a single-valued neutrosophic NDA (SVNNDA), d̃−ij =< t−ij , i−ij , f−ij >, as follows:

d̃+ij =< t+ij , i+ij , f+ij >=





〈
max(0,(tij−t∗j ))

x∗j
,

max(0,(iij−i∗j ))
x∗j

,
max(0,( fij− f ∗j ))

x∗j

〉
j ∈ Ωmax

〈
max(0,(t∗j −tij))

x∗j
,

max(0,(i∗j −iij))

x∗j
,

max(0,( f ∗j − fij))

x∗j

〉
j ∈ Ωmin

(26)

d̃−ij =< t−ij , i−ij , f−ij >=





max(0,(t∗j −tij))

x∗j
,

max(0,(i∗j −iij))

x∗j
,

max(0,( f ∗j − fij))

x∗j
j ∈ Ωmax

max(0,(tij−t∗j ))
x∗j

,
max(0,(iij−i∗j ))

x∗j
,

max(0,( fij− f ∗j ))
x∗j

j ∈ Ωmin

(27)

where:

x∗j = max
(

∑
m
i=1 tij

m
,

∑
m
i=1 iij

m
,

∑
m
i=1 fij

m

)
(28)

For a decision-making problem that includes only beneficial criteria, the SVNPDA
and SVNNDA can be determined as follows:

d̃+ij =< t+ij , i+ij , f+ij >=

〈
max(0, (tij − t∗j ))

x∗j
,

max(0, (iij − i∗j ))

x∗j
,

max(0, ( fij − f ∗j ))

x∗j

〉
(29)

d̃−ij =< t−ij , i−ij , f−ij >=

〈
max(0, (t∗j − tij))

x∗j
,

max(0, (i∗j − iij))

x∗j
,

max(0, ( f ∗j − fij))

x∗j

〉
(30)
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Step 5. Determine the weighted sum of the SVNPDA, Q̃+
i =< t+i , i+i , f+i >, and

the weighted sum of the SVNNDA, Q̃−i =< t−i , i−i , f−i >, for all alternatives. Based on
Equations (5) and (8) the weighted sum of the SVNPDA, Q̃+

i , and the weighted sum of the
SVNNDA, Q̃−i , can be calculated as follows:

Q̃+
i =

n

∑
j=1

wjd̃
+
ij =

〈
1−

n

∏
j=1

(1− t+ij )
wj ,

n

∏
j=1

(i+ij )
wj ,

n

∏
j=1

( f+ij )
wj

〉
, (31)

Q̃−i =
n

∑
j=1

wjd̃
−
ij =

〈
1−

n

∏
j=1

(1− t−ij )
wj ,

n

∏
j=1

(i−ij )
wj ,

n

∏
j=1

( f−ij )
wj

〉
. (32)

Step 6. In order to normalize the values of the weighted sum of the single-valued
neutrosophic PDA and the weighted sum of the single-valued neutrosophic NDA, these
values should be transformed into crisp values. This transformation can be performed
using the score function or similar approaches. After that, the following three steps remain
the same as in the ordinary EDAS method.

Step 7. Normalize the values of the weighted sum of the SVNPDA and the single-
valued neutrosophic SVNNDA for all alternatives, as follows:

S+
i =

Q+
i

max
k

Q+
k

, (33)

S−i = 1− Q−i
max

k
Q−k

. (34)

Step 8. Calculate the appraisal score Si for all alternatives, as follows:

Si =
1
2
(S+

i + S−i ). (35)

Step 9. Rank the alternatives according to the decreasing values of the appraisal score.
The alternative with the highest Si is the best choice among the candidate alternatives.

4. A Numerical Illustrations

In this section, three numerical illustrations are presented in order to indicate the
applicability of the proposed approach. The first numerical illustration shows in detail
the procedure for applying the neutrosophic extension of the EDAS method. The second
numerical illustration shows the application of the proposed extension in the case of solving
MCDM problems that contain nonbeneficial criteria, while the third numerical illustration
shows the application of the proposed approach in combination with the reliability of the
information contained in SVNNs.

4.1. The First Numerical Illustration

In this numerical illustration, an example adopted from Biswas et al. [46] is used to
demonstrate the proposed approach in detail. Suppose that a team of three IT specialists
was formed to select the best tablet from four initially preselected tablets for university
students. The purpose of these tablets is to make university e-learning platforms easier to
use.

The preselected tablets are evaluated based on the following criteria: Features—C1,
Hardware—C2, Display—C3, Communication—C4, Affordable Price—C5, and Customer
care—C6. The ratings obtained from three IT specialists are shown in Tables 1–3.

6
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Table 1. The ratings of three tablets obtained from the first of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2> <0.9, 0.1, 0.1>
A2 <1.0, 0.0, 0.0> <0.9, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0> <0.7, 0.0, 0.0>
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 2.0, 2.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.0, 0.2>

Table 2. The ratings of three tablets obtained from the second of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.1> <0.7, 0.3, 0.2> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.8, 0.1, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.2> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1>
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.2>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.5, 0.1, 0.2>

Table 3. The ratings of three tablets obtained from the third of three IT specialist.

C1 C2 C3 C4 C5 C6

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.9, 0.2, 0.1> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.1, 0.1>
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.2> <0.5, 0.3, 0.2> <0.9, 0.2, 0.4> <0.7, 0.0, 0.0>
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.2, 0.3> <0.7, 0.0, 0.2>

After that, a group evaluation matrix, shown in Table 4, is calculated using Equation (8)
and wk = (0.33, 0.33, 0.33), where wk denotes the importance of k-th IT specialist.

Table 4. The group evaluation matrix.

C1 C2 C3 C4 C5 C6

A1 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <1.0, 0.0, 0.0> <0.9, 0.0, 0.1>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0>
A3 <0.8, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.6, 0.3, 0.3> <0.5, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.0, 0.2>

The SVNPDA and the SVNPDA, shown in Tables 5 and 6, are calculated using Equa-
tions (29) and (30).

Table 5. The SVNPDA.

C1 C2 C3 C4 C5 C6

A1 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.4, 0.0> <0.1, 0.0, 0.0> <0.1, 0.0, 0.0>
A2 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.1, 0.0, 0.3> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0>
A3 <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.1, 0.2> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>
A4 <0.0, 0.0, 0.2> <0.0, 0.3, 0.3> <0.0, 0.3, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.1>

Table 6. The SVNNDA.

C1 C2 C3 C4 C5 C6

A1 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.1> <0.0, 0.0, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>
A2 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.2> <0.0, 0.1, 0.0> <0.0, 0.0, 0.0> <0.0, 0.0, 0.1>
A3 <0.1, 0.0, 0.1> <0.0, 0.1, 0.1> <0.2, 0.0, 0.0> <0.1, 0.1, 0.1> <0.1, 0.0, 0.0> <0.1, 0.0, 0.1>
A4 <0.2, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.1, 0.1> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0>

The weighted sum of SVNPDA and the weighted sum of SVNNDA, shown in Table 7,
are calculated using Equations (31) and (32), as well as weighting vector wj = (0.19, 0.19,
0.18, 0.16, 0.14, 0.13). Before calculating the normalized weighted sums of the SVNPDA and
SVNNDA, using Equations (33) and (34), as well as appraisal score, using Equation (35),
the values of the weighted sum of SVNPDA and SVNNDA are transformed into crisp
values using Equation (7).
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Table 7. Computational details and ranking order of considered tablets.

~
Q

+

i

~
Q
−
i

S+
i S−i Si Rank

SVNN Score SVNN Score

A1 <0.168, 0.000, 0.000> 0.58 <0.000, 0.000, 0.000> 0.50 1.00 0.20 0.597 2
A2 <0.170, 0.000, 0.000> 0.59 <0.000, 0.027, 0.000> 0.47 1.00 0.24 0.620 1
A3 <0.003, 0.000, 0.000> 0.50 <0.096, 0.000, 0.000> 0.55 0.86 0.12 0.488 3
A4 <0.000, 0.000, 0.000> 0.50 <0.245, 0.000, 0.000> 0.62 0.85 0.00 0.427 4

The ranking order of considered alternatives is also shown in Table 7. As it can be
seen from Table 7, the most appropriate alternative is the alternative denoted as A2.

4.2. The Second Numerical Illustration

The second numerical illustration shows the application of the NS extension of the
EDAS method in the case of solving MCDM problems that include nonbeneficial criteria.

An example taken from Stanujkic et al. [47] was used for this illustration. In the
given example, the evaluation of three comminution circuit designs (CCDs) was performed
based on five criteria: Grinding efficiency—C1, Economic efficiency—C2, Technological
reliability—C3, Capital investment costs—C4, and Environmental impact—C5. The group
decision-making matrix, as well as the types of criteria, are shown in Table 8.

Table 8. Group decision-making matrix.

C1 C2 C3 C4 C5

Optimization Max Max Max Min Min

A1 <0.9, 0.1, 0.2> <0.7, 0.2, 0.3> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2>
A2 <0.8, 0.1, 0.3> <0.8, 0.1, 0.3> <0.8, 0.1, 0.3> <0.9, 0.1, 0.2> <0.8, 0.1, 0.3>
A3 <1.0, 0.1, 0.3> <0.9, 0.1, 0.2> <0.9, 0.1, 0.2> <0.7, 0.2, 0.5> <0.7, 0.2, 0.3>

Values of the SVNPDA and SVNPDA, calculated using Equations (26) and (27), are
shown in Tables 9 and 10.

Table 9. The SVNPDA.

C1 C2 C3 C4 C5

A1 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.4, 0.0> <0.1, 0.0, 0.0>
A2 <0.2, 0.0, 0.0> <0.1, 0.0, 0.0> <0.3, 0.0, 0.0> <0.1, 0.0, 0.3> <0.1, 0.0, 0.0>
A3 <0.0, 0.0, 0.2> <0.0, 0.3, 0.3> <0.0, 0.3, 0.1> <0.0, 0.0, 0.0> <0.0, 0.0, 0.0>

Table 10. The SVNNDA.

C1 C2 C3 C4 C5

A1 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.1> <0.0, 0.0, 0.1> <0.0, 0.0, 0.0>
A2 <0.0, 0.0, 0.1> <0.0, 0.1, 0.1> <0.0, 0.2, 0.2> <0.0, 0.1, 0.0> <0.0, 0.0, 0.0>
A3 <0.2, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.0, 0.0> <0.3, 0.1, 0.1> <0.1, 0.0, 0.0>

The weighted sum of SVNPDA and the weighted sum of SVNNDA are shown in
Table 11. The calculation was performed using the following weighting vector wj = (0.24,
0.17, 0.24, 0.21, 0.14). The remaining part of the calculation procedure, carried out using
formulas Equations (33)–(35) is also summarized in Table 11.
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Table 11. Computational details and ranking order of considered GCDs.

~
Q

+

i

~
Q
−
i

S+
i S−i Si Rank

SVNN Score SVNN Score

A1 <0.009, 0.000, 0.000> 0.50 <0.057, 0.000, 0.000> 0.53 0.910 0.005 0.458 2
A2 <0.000, 0.000, 0.000> 0.50 <0.063, 0.000, 0.000> 0.53 0.902 0.000 0.451 3
A3 <0.109, 0.000, 0.000> 0.55 <0.000, 0.000, 0.000> 0.50 1.000 0.059 0.530 1

As can be seen from Table 11, by applying the proposed extension of the EDAS method,
the following ranking order of alternatives is obtained A3 > A1 > A2, i.e., the alternative A3
is selected as the most appropriate.

A similar order of alternatives was obtained in Stanujkic et al. [45] using the Neutro-
sophic extension of the MULTIMOORA method, where the following order of alternatives
was achieved A3 > A2 > A1.

4.3. The Third Numerical Illustration

The third numerical illustration shows the use of a newly proposed approach with an
approach that allows for determining the reliability of data contained in SVNNs, proposed
by Stanujkic et al. [43]. Using this approach, inconsistently completed questionnaires can
be identified and, if necessary, eliminated from further evaluation of alternatives.

In order to demonstrate this approach, an example was taken from Stanujkic et al. [48].
In this example, the websites of five wineries were evaluated based on the following five
criteria: Content—C1, Structure and Navigation—C2, Visual Design—C3, Interactivity—C4,
and Functionality—C5.

The ratings obtained from the three respondents are also shown in Tables 12–14.

Table 12. The ratings obtained from the first of three respondents.

C1 C2 C3 C4 C5

A1 <1.0, 0.0, 0.0> <1.0, 0.2, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <0.8, 0.2, 0.2>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.9, 0.0, 0.0> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 13. The ratings obtained from the second of three respondents.

C1 C2 C3 C4 C5

A1 <0.8, 0.2, 0.2> <1.0, 0.0, 0.0> <0.7, 0.3, 0.1> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.7, 0.3, 0.2> <0.9, 0.0, 0.0> <0.7, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.7, 0.3, 0.3> <0.6, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 14. The ratings obtained from the third of three respondents.

C1 C2 C3 C4 C5

A1 <0.9, 1.0, 1.0> <0.9, 0.0, 0.2> <1.0, 0.0, 1.0> <0.7, 0.3, 0.2> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.6, 0.3, 0.2> <0.9, 0.0, 0.0> <0.5, 0.2, 0.3> <0.5, 0.3, 0.3> <0.9, 0.3, 0.4>
A4 <0.6, 0.0, 0.3> <0.5, 0.3, 0.4> <0.4, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.3, 0.3>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

The reliability of the collected information calculated using Equations (9) and (10) are
shown in Tables 15–17. In this case, the lowest value of overall reliability of information
was 0.61 which is why all collected questionnaires were used to evaluate alternatives.
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Table 15. The reliability of information obtained from the first of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 1.00 0.83 1.00 0.70 0.50 0.81
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 1.00 1.00 0.33 1.00 1.00 0.87
A4 0.40 0.31 0.33 1.00 1.00 0.61
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.82

Table 16. The reliability of information obtained from the second of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 0.50 1.00 0.55 0.42 1.00 0.69
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 0.42 1.00 0.33 1.00 1.00 0.75
A4 0.40 0.31 0.33 1.00 1.00 0.61
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.77

Table 17. The reliability of information obtained from the third of three respondents.

C1 C2 C3 C4 C5 Reliability

A1 0.03 0.64 0.00 0.42 1.00 0.42
A2 1.00 1.00 1.00 0.50 1.00 0.90
A3 0.36 1.00 0.20 0.18 0.31 0.41
A4 0.33 0.08 0.20 1.00 0.40 0.40
A5 1.00 1.00 1.00 0.56 1.00 0.91

Overall reliability 0.61

The group decision-making matrix formed on the basis of the ratings from Tables 12–14
is shown in Table 18, while the calculation details are summarized in Table 19, using the
following weight vector wj = (0.22, 0.20, 0.25, 0.18, 0.16).

Table 18. The group decision-making matrix.

C1 C2 C3 C4 C5

A1 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.3, 0.0> <1.0, 0.0, 0.0>
A2 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.6, 0.0, 0.2> <1.0, 0.0, 0.0>
A3 <0.8, 0.0, 0.0> <0.9, 0.0, 0.0> <0.6, 0.2, 0.3> <0.5, 0.0, 0.0> <0.9, 0.0, 0.0>
A4 <0.7, 0.0, 0.3> <0.6, 0.3, 0.3> <0.5, 0.4, 0.2> <0.4, 0.0, 0.0> <0.9, 0.0, 0.0>
A5 <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <1.0, 0.0, 0.0> <0.7, 0.0, 0.2> <1.0, 0.0, 0.0>

Table 19. Computational details and ranking order of considered websites.

~
Q

+

i

~
Q
−
i

S+
i S−i Si Rank

SVNN Score SVNN Score

A1 <0.141, 0.000, 0.000> 0.57 <0.000, 0.000, 0.000> 0.50 1.00 0.21 0.61 3
A2 <0.110, 0.000, 0.000> 0.56 <0.000, 0.006, 0.000> 0.47 0.97 0.26 0.62 2
A3 <0.000, 0.000, 0.000> 0.50 <0.125, 0.000, 0.000> 0.56 0.88 0.11 0.49 4
A4 <0.000, 0.000, 0.000> 0.50 <0.269, 0.000, 0.000> 0.63 0.88 0.00 0.44 5
A5 <0.141, 0.000, 0.000> 0.57 <0.000, 0.006, 0.000> 0.47 1.00 0.26 0.63 1

From Table 15 it can be seen that the following order of ranking of alternatives
was achieved A5 > A2 > A1 > A3 > A4, which is similar to the order of alternatives
A5 = A2 > A1 > A3 > A4 given in Stanujkic et al. [48].
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5. Conclusions

A novel extension of the EDAS method based on the use of single-valued neutrosophic
numbers is proposed in this article. Single-valued neutrosophic numbers enable simultane-
ous use of truth- and falsity-membership functions, and thus enable expressing the level of
satisfaction and the level of dissatisfaction about an attitude. At the same time, using the
indeterminacy-membership function, decision makers can express their confidence about
already-given satisfaction and dissatisfaction levels.

The evaluation process using the ordinary EDAS method can be considered as simple
and easy to understand. Therefore, the primary objective of the development of this
extension was the formation of an easy-to-use and easily understandable extension of the
EDAS method. By integrating the benefits that can be obtained by using single-valued
neutrosophic numbers and simple-to-use and understandable computational procedures
of the EDAS method, the proposed extension can be successfully used for solving complex
decision-making problems, while the evaluation procedure remains easily understood
for decision makers who are not familiar with neutrosophy and multiple-criteria decision
making.

Finally, the usability and efficiency of the proposed extension is demonstrated on an
example of tablet evaluation.
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Abstract: Recently, the demand for third-party logistics providers has become extremely relevant
and the key subject for businesses to enhance their service quality and minimize logistics costs.
The key success factor for an e-commerce business is product delivery, and the third-party logistics
service provider is responsible for that. Each 3PLP has its own business characteristics, meaning it is
important to select the most suitable logistics provider for the e-commerce business. This study uses
a combination of grey relational analysis (GRA) and the Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) method, assisting decision makers in choosing the best logistics service
provider for their e-business. A case study of an e-commerce company based in Faisalabad, Pakistan,
was selected to demonstrate the steps of the proposed methods. In this process, seven criteria of
logistics suppliers were considered, and then the best alternatives among four logistics provider
companies were selected using the proposed method.

Keywords: logistics provider; outsource; decision making; e-commerce; TOPSIS; GRA

MSC: 90B06; 90B50; 90C29; 90C08

1. Introduction

In today’s world, traditional businesses are moving towards online businesses.
COVID-19 introduced a major change in the buying behavior of consumers. Consumers
prefer to buy products online in the comfort of their own home, rather than physically going
to make a purchase. E-commerce means buying or selling products and services through
the internet (e.g., websites, online stores, social media). It opens a new way of conducting
business, particularly for small and medium enterprises (SMEs), because it does not require
a physical store or office, and most of the business activities are performed online [1].
Logistics are considered to be the backbone of any business. Logistics in e-commerce
involve picking up the order, storing it in the warehouse, sorting, and delivering the order
to a specific customer at a certain time and place. In online businesses, all logistics activities
are performed by third-party logistics providers (3PLPs). The goal of online businesses is
to satisfy their customers. This cannot only be achieved by offering good-quality products;
customers must also be provided with a high-quality service, which involves delivering
goods on time and to the correct location. There are different third-party logistics providers
that are available in the market, each with their own business objectives and services. The
evaluation and selection of logistics providers is a complex problem because it includes
different alternatives and selection criteria [2–4].

For developing countries such as Pakistan, with a population of 220 million and
183 million active internet users, the penetration of e-commerce business is very fast. Pak-
istan’s Ministry of Commerce revealed that the growth rate of e-commerce business is
up to 35%, with the value of Rs being 96 billion in the first four months of 2021. The
majority (98%) of e-commerce businesses in Pakistan are small and medium enterprises
(SME), meaning they are considered to be very important for Pakistan’s economy. In total,
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22 third-party logistics companies are working with e-commerce businesses in Pakistan.
This makes the selection of the appropriate logistics providers a key issue for e-commerce
business because it allows businesses to gain a competitive advantage and achieve opera-
tional efficiency and customer satisfaction. Most of the SMEs lack in resources, meaning
the evaluation and selection of a logistics service provider (LSP) are key factors, and the
area addressed in this study [5]. The aim of this study was to prioritize and select the best
third-party logistics provider that meets the criteria and requirements set by e-commerce
companies operating in Pakistan. In previous studies, we identified different criteria for the
evaluation and selection of 3PLPs, such as low delivery costs, flexibility, customization, op-
erational efficiency, lead time, service quality, reverse logistics, warehousing, order pickup,
order delivery, firm reputation, reliability, green technology, and customer satisfaction [6,7].
Due to the fact that the selection and evaluation process consists of decision makers, alter-
natives, and criteria, it is considered as a multi-criteria decision-making problem (MCDM)
that needs to be solved. Different methods have been used before for the selection of 3PL
providers, such as the fuzzy TOPSIS, AHP, SWARA, and MOORA methods [1,2,4,8–11].

In previous years, studies have been carried out on the selection of 3PLPs in different
industries and countries. For example, Adal et al. [2] checked the application of the
proposed approach on a textile company in Turkey. Aggrawal [8] checked the application
of the proposed method on a manufacturing company in India. Raut et al. [10] checked
the practical application of their approach on a mining firm. Peng [4] used an example of
a food company in regard to choosing the right logistics service provider. Ravi et al. [12]
checked the application of the proposed approach on a computer company. Bai et al. [13]
proposed the use of a model for selecting a 3PLP for an e-commerce company in China.
However, to the best of our knowledge, no previous study has focused on the selection
of 3PLPs for e-commerce businesses specifically in Pakistan. To fulfill this research gap,
this study proposes the use of the integrated TOPSIS and GRA methods for the evaluation
and selection of third-party logistics providers for e-commerce businesses in Pakistan.
Due to the decision-making process involved, and the subjectivity of qualitative criteria,
group MCDM results in uncertainty and vagueness. Grey relational analysis is a part of
grey system theory. The GRA method has been successfully used in cases where there
is uncertainty or only partial information is available. The TOPSIS method obtains a
compromised solution, with the shortest distance from the positive ideal solution and the
furthest distance from the negative ideal solution [14]. Moreover, the case of an e-commerce
company named Denim Leftover, based in Pakistan, was considered, in order to check
the application of the proposed approach. The novelty of this study can be found in its
selection criteria, as these criteria are defined by the experience of experts (decision makers)
in this field, as well as past studies, particularly regarding Pakistan’s e-commerce business
perspective. Furthermore, the main contributions of this article are as follows:

(1) This study helps e-commerce businesses, as well as new e-businesses, in Pakistan
to choose and select the best third-party logistics service provider company; the one
that is compatible with the business’s objectives will lead the company to achieving
a competitive advantage and suitable customer satisfaction, and minimizing their
logistics costs.

(2) This study highlights the 3PLPs that are lacking in regard to each criterion, allowing
3PLPs to improve their business functions, and to attract more e-businesses as their
customers.

The structure of this paper is as follows: Section 2 provides a literature review on the
selection and evaluation of 3PLPs, as well as the method selection. Section 3 defines the
methodology and the framework of the TOPSIS and GRA methods. The results analysis
of the case study in Pakistan is presented in Section 4. Finally, Section 5 includes the
discussion and conclusion of this study.
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2. Literature Review
2.1. Development Status of Third-Party Logistics Suppliers in Pakistan

The third-party logistics provider sector has become a thriving industry over the
last decade. Outsourcing logistics activities enables companies to save time and pay
more attention to other core business activities. Furthermore, third-party logistics service
providers have expertise in their field, enabling companies to minimize their logistics costs,
resolve bottleneck problems, promise the delivery of goods, and provide a high-quality
service to customers. With the 23rd largest road network in the world and one of the
fastest-growing economies in Asia, Pakistan is the key player in global third-party logistics.
Modern and advanced transport and logistics infrastructure are the key success factors of
a country. During the last two decades, Pakistan has invested a huge amount of money
in the development of the country’s logistics infrastructure and has been involved in
mega development projects under the China–Pakistan Economic Corridor (CPEC) [15].
According to the report issued by the Ministry of Commerce, Pakistan is a country that has
more than 98% of businesses that are small and medium enterprises (SMEs). Undoubtedly,
they have contracted with 3PLPs. E-commerce development has a direct impact on the
economic development of any country. As e-businesses are an interest in Pakistan, these
numbers are gradually increasing, and it is estimated that by 2040, 95% of retail sales
and purchases will be made online [16]. In e-commerce, almost all companies use the
services of 3PLPs which are responsible for collecting, warehousing, sorting, and shipping
the parcels to customers. One of the key stakeholders of an e-commerce company is its
customers, and customer satisfaction is the top priority of any company as it can only
be attained by achieving their expectations such as high-quality products and on-time
deliveries. It is important to note that every third-party logistics service provider company
has its business model and characteristics, and the choice of the best suitable 3PLP is
very important for an e-commerce company. There are different evaluation criteria set by
e-commerce companies, and different methods have been used by researchers to evaluate
and select the best alternative logistics supplier. The methods and criteria are discussed
under the next heading.

2.2. Method Selection

Various noteworthy studies have applied different multi-criteria decision-making
(MCDM) techniques according to various decision selection criteria for the evaluation and
selection of the appropriate 3PLP. For example, Raut et al. [10] proposed an integrated
data envelopment analysis (DEA) and AHP-based decision framework to evaluate and
select a 3PLP. They concluded that the DEA coefficient score is very important which
should be taken seriously by the management while making decisions on an efficient
and effective 3PLP. Ravi et al. [12] used a combination of AHP and TOPSIS methods
to solve the problem of selecting a 3PRLP in the computer industry. They considered
10 attributes in their study. Ilgin and Ali [17] proposed an integrated MCDM methodology
to solve a problem related to the return of used products which is considered reverse
logistics. They designed a 3PRLP network for efficient dealing of used products. In the
study of Bali et al. [18], they introduced an integrated DEA-TOPSIS method to evaluate
and select a 3PLP for an electrical radiator company. This method can be used for the
evaluation of alternatives in different periods. Adal et al. [2] developed a systematic and
integrated decision analysis approach for 3PLP evaluation and selection. They used an
integrated DEMATEL, ANP, and DEA approach for their study. Datta et al. [19] proposed
the six indexes for 3PL providers, which were finance performance, service level, client
relationship, management, infrastructure, and enterprise culture, using the fuzzy TOPSIS
method. Perçin et al. [20] introduced integrated fuzzy multiple-objective approaches and
proposed a model which can be useful for 3PLP selection decisions faced by the Turkish
autoparts industry. Raut et al. [21] presented a sustainable relationship framework for 3PLP
selection from an environmental sustainability perspective based on data envelopment
analysis (DEA) and the analytical network process (ANP). Choudhury et al. [22] suggested
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the following evaluation indexes that should be considered when selecting a sustainable
3PL provider: response time, transportation cost, operating cost, vehicle rejection, vehicle
capacity, corporate social responsibility, and health and safety expenses, based on the DEA
methodology. Aggarwal [8] highlighted the 14 major selection criteria for 3PL providers
based on the literature and used the DEA-AHP technique to select the most appropriate
3PL provider. Wang et al. [11] adopted the fuzzy analytical hierarchy process (fuzzy AHP)
and fuzzy TOPSIS methods to select a 3PRLP for an online business in Vietnam. They
found lead time, customer voice, cost, delivery, and service and quality to be the most
important factors when selecting a 3PRLP. Xu et al. [23] argued that five factors should
be considered by e-commerce companies when selecting a third-party logistics service
provider: logistics service quality, logistics service cost, logistics enterprise capability,
level of information, and enterprise development prospects, based on the AHP method.
Bai et al. [13] proposed an AHP model for the selection and evaluation of third-party
logistics providers for e-commerce businesses by considering cost, stability, service level,
and sustainability as an evaluation index. Nuengphasuk and Samanchuen [1] found that
location, cost, and delivery are the dominant evaluation indexes in the selection process
of 3PL providers based on the AHP and TOPSIS methods. Peng et al. [4] established an
AHP judgment matrix for third-party logistics provider evaluation with cost, operating
efficiency, service quality, and technology level.

In almost every scenario, a reliable decision requires the analysis of different criteria
and alternatives, and in more complex cases, it almost becomes difficult to make the optimal
decision. To solve these issues, different multi-criteria decision-making (MCDM) methods
were proposed in previous studies [14,24]. However, this study uses the combination of
TOPSIS and GRA methods for the selection and evaluation of the best alternative logistics
provider. The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
method is a widely used method to solve multi-criteria decision-making problems as it can
avoid some flaws of existing multi-attribute methods [25]. It was first proposed in 1981 by
Hwang and Yoon [26]. The TOPSIS method is measured by the distance between schemes,
where the shortest distance of the object from the ideal solution and the furthest distance
from the non-ideal solution are considered to represent the best scheme [27]. When the
closeness of the positive and negative ideal schemes at any point in the TOPSIS method is
equal, the pros and cons of the schemes cannot be distinguished. TOPSIS is widely used to
solve multi-criteria decision-making problems [3,24,28–30]. The grey relational analysis
(GRA) method was developed by Deng in 1982, which focuses on the decision-making
process, with partial information known and other information yet to be discovered [31].
In this method, the correlation between the reference sequence and comparability sequences
is obtained, and thereafter, the ranking is established according to this correlation [9].
Moreover, the GRA method analyzes the changing trend between alternatives and can
serialize and present the interrelationships of physical prototypes. However, this method
can only analyze the relevance of the same factors and calculate the degree of relevance of
the factors in each plan to the same ideal plan factor. Only using grey relational analysis
(GRA) as a decision-making problem tool has insufficient comprehensiveness. Therefore,
this article integrates the TOPSIS method and GRA method to solve the problem of the
selection of a third-party logistics provider.

2.3. Selection of Logistics Service Provider Criteria

The criteria for selecting the third-party logistics service provider were obtained from
previous studies; many criteria were provided and studied in previous studies according
to the nature of the business. In this study, the seven most important criteria are defined
as area of delivery (C1), delivery cost (C2), lead time (C3), payment settlement time (C4),
service quality (C5), flexibility (C6), and IT capabilities (C7). These criteria can be used
in the evaluation and selection process of third-party logistics service providers for e-
commerce businesses. The crucial factors identified through the extensive literature review
and experts are presented in Table 1. The definition of each criterion is explained as follows.
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Table 1. List of criteria used in third-party logistics provider selection.

Sr.
No.

Criteria Description References

1 Area of Delivery (C1)
This is an important factor to consider in the 3PLP

selection process. It refers to the delivery coverage area
in which logistics companies can deliver.

[1,2,6,7,18,22]

2 Delivery Cost (C2)
Cost delivery generally includes the cost for delivery of

the product to the customer.
[1,2,6–8,11,13,18,19,23]

3 Lead Time (C3)
This includes the time that is required for the delivery of

customer orders. It is also called the transit time.
[2,6,8,10,11,13,18,21–23]

4 Payment Settlement Time (C4)

This is considered an important evaluation criterion for
selecting a 3PLP because the Pakistan payment system
uses cash on delivery (COD) which means the customer

pays after receiving the order. Moreover, payment is
first transferred to the 3PLP company’s account, and
after that, it will be given to an e-commerce company.
Therefore, this is the time taken by 3PLPs to give the

order payment to the e-commerce company.

[6,13,15,22]

5 Service Quality (C5)

Service quality is related to customer satisfaction. It is
the responsibility of the company to deal with

customers during the delivery process and provide
after-sales services.

[1,4,6,11,18,21,22]

6 Flexibility (C6)

It is the responsibility of an organization to adapt to
meet the customers’ demands and changing situations
of the future. This also includes the ability to respond to

the uncertainty of customers.

[1,6–8,10,11,18,19,23]

7 IT Capabilities (C7)

This refers to an information system and tracking
system for customers to keep track of their packages

and check the delivery status via a mobile
application or website.

[1,2,7,8,18,29]

3. Model Building
3.1. Index Assignment

The seven indicators determined in Section 2 are all qualitative indicators, and the
expert survey method was used to determine the specific value of each evaluation index.
Five experts were used for subjective assignment, and the relative weight of these five
experts was determined according to their relative importance:

ω = (ω1, ω2, . . . , ω5), and
5

∑
i=1

ωi = 1 (1)

Assuming that the five-person expert group’s survey concludes on each evaluation
index, and each is divided into 7 levels, the corresponding relationship between the 7-level
linguistic evaluation value and the degree of membership is established. The specific
corresponding relationship is shown in Table 2.

Table 2. Correspondence between linguistic variable values and evaluation values.

Linguistic Variables Judgment Value

Best (F1)/Highest (W1) 0.95
Very good (F2)/Very high (W2) 0.85

Good (F3)/High (W3) 0.70
Medium (F4)/Medium (W4) 0.50

Poor (F5)/Low (W5) 0.30
Very poor (F6)/Very low (W6) 0.15
Very poor (F7)/Very low (W7) 0.05
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If the expert investigation conclusions are xi, the comprehensive evaluation index y of

each evaluation index can be expressed as y =
5
∑

i=1
ωixi.

3.2. Construction of Decision Matrix

After the preliminary screening of experts, there are still m logistics suppliers to choose
from, and there are n evaluation indicators to build a decision matrix A.

Among them,

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn


 (2)

In order to eliminate the impact of different evaluation index dimensions on the
evaluation results, firstly, the index matrix is normalized.

For the benefit index, the normalization operator is

bij =
aij

min
1≤i≤m

aij
, i = 1, 2, . . . , m; j = 1, 2, . . . , n. (3)

For the cost index, the normalization operator is

bij = 1−
min

1≤i≤m
aij − aij

max
1≤i≤m

aij
, i = 1, 2, . . . , m; j = 1, 2, . . . , n. (4)

After the data are normalized, the normalized decision matrix C can be obtained

C =




c11c12 . . . c1n

c21c22 . . . C2n

. . . . . . . . .
cm1cm2 . . . cmn


 (5)

Among them, cij =
bij

m
∑

i=1
bij

.

3.3. Determination of Evaluation Index Weight

The methods to determine the weight of each index include the subjective method,
objective method, and combined subjective and objective method. The subjective evalua-
tion method includes the AHP method and expert evaluation method, which is limited
by decision makers’ preferences, cognitive level, and experience. The common methods
of the objective assignment method include the information entropy method, deviation
method, and normal distribution method, which can better retain the objectivity of decision
making information, but it is easy to ignore the subjective bias of decision makers. Taking
into account the advantages and disadvantages of subjective and objective assignment and
improving the reliability of the weight, the combination of the subjective and objective
methods is usually used for assignment.

The subjective weight can be evaluated by the decision maker, and therefore the

weight of the j index is
→
λ j.

The entropy weight method is used to determine the objective weight of the wordlist,
the information entropy of the j index is

Hj = −
1

In m

m

∑
i=1

cij In cij (6)
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and the entropy weight is
←
λ j =

1− Hj
n

∑
j=1

(
1− Hj

) (7)

The comprehensive weight is

λj =

→
λ j

←
λ j

n

∑
j=1

→
λ j

←
λ j

, j = 1, 2, . . . , n (8)

The index matrix is weighted to obtain the weighted decision matrix D.

D =




d11 d12 . . . d1n

d21 d22 . . . d2n

. . . . . . . . . . . .
dm1 dm2 . . . dmn


 (9)

Among them, dij = ωjcij, i = 1, 2, . . . , m; j = 1, 2, . . . , n.

3.4. TOPSIS Method

The TOPSIS method realizes comparative analysis through the distance between the
alternative scheme and the ideal target. The best and worst hypothetical schemes are
drawn up through each scheme, and then the ideal distances between each scheme and
the best and worst schemes are compared for selection. The calculation distance is the
key point of this method. If a scheme is the furthest away from the unsatisfactory scheme
and closest to the optimal scheme, the optimal selection scheme can be deduced. TOPSIS
is a commonly used evaluation method of multi-objective decision making. In terms of
data processing, it can retain the most original information in each alternative for analysis.
The calculation process of this method is simple, and the idea is to achieve a clear, good
integrity, adaptability, and reliability. The calculation steps are as follows:

Step 1: Build a decision matrix A =
(
aij

)
m×n

;
Step 2: Calculate the weight value of the indicator λ;
Step 3: Construct a weighted decision matrix D =

(
dij

)
m×n

;
Step 4: Determine the ideal plan, and the positive and negative ideal plans; the

algorithm formula of the positive and negative ideal plans is as follows:

d+ =
(
d+1 , d+2 , . . . , d+m ,

)

d− =
(
d−1 , d−2 , . . . , d−m ,

)

where





d+j = max
1≤i≤x

dij

d−j = min
1≤i≤x

dij
;

Step 5: Calculate the Euclidean distance between each plan and the positive and
negative ideal plan:

D+
i =

√
n

∑
i=1

(
dij − d+j

)2

D−i =

√
n

∑
i=1

(
dij − d−j

)2

Step 6: Calculate the relative closeness:

Cj =
D+

i

D+
i + D−i
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Step 7: Sort the schemes through the calculated proximity and select the optimal
scheme.

3.5. GRA Method

By analyzing the numerical relationship between the indicators of alternative schemes,
the grey correlation master calculates the correlation degree between all indicators of each
scheme and the ideal scheme. By analyzing the situation of each scheme, the correlation
degree of its change state with time is studied. If the change degree of the correlation index
is higher, the change degree is higher; on the contrary, the degree of correlation is lower.
Therefore, the correlation between schemes can be measured by the grey correlation degree
and can be analyzed and compared by comparing the correlation degree between the ideal
scheme and other schemes. The steps are as follows:

Step 1: Construct a decision matrix A =
(
aij

)
m×n

;
Step 2: Calculate the weight value of the indicator w;
Step 3: Construct a weighted normalized decision matrix. Firstly, according to

Eqution (5), normalize the decision matrix to obtain C =
(
cij

)
x×m

, according to the for-
mula Y = w ∗ c, the weighted decision matrix D =

(
dij

)
x×m

is obtained.
Step 4: Determine the ideal solution.
Through D =

(
dij

)
x×m

identifying the ideal solution α+, α−.
Step 5: Calculate the programs with the program over α+, α−. The degree of associa-

tion is

rij =

min
i

min
j

∣∣α0j − αij

∣∣+ ρ max
i

max
j

∣∣α0j − αij

∣∣
∣∣α0j − αij

∣∣+ ρ max
i

max
j

∣∣α0j − αij

∣∣

where rij and j are the similarities of the points. Research shows that the resolution
coefficient ρ = 0.5 is the best; therefore, this paper took ρ = 0.5.

Step 6: Calculate the overall relevance of each program:

Ri =
1
n

n

∑
j=1

rij

Step 7: Calculate the closeness:

ξi =
R+

i

R+
i + R−i

Step 8: Calculate the closeness degree by the grey correlation, sort the schemes, and
select the optimal scheme.

3.6. Integrated Method Based on GRA-TOPSIS

The TOPSIS method is measured by the distance between the schemes, but when the
closeness of the positive and negative ideal schemes at any point in the TOPSIS method
is equal, the pros and cons of the schemes cannot be distinguished. The grey correlation
method analyzes the changing trend between alternatives and can serialize and present
the interrelationships of physical prototypes. However, this method can only analyze the
relevance of the same factors and calculate the degree of relevance of the factors in each plan
to the same ideal plan factor. Only with the grey correlation as a decision-making problem
tool is there a lack of comprehensiveness. Based on the advantages and disadvantages of
the two methods in decision analysis, this article combines the TOPSIS method with the
GRA method to solve the problem of the comprehensiveness of the single method in the
evaluation process and proposes a third-party logistics supplier selection model based on
GRA-TOPSIS. The model solving steps are as follows:

Step 1: Build a decision matrix;
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Step 2: Determine the weight of the evaluation index and construct a weighted
decision matrix;

Step 3: Determine the positive ideal solution and the negative ideal solution:

d+ =
(
d+1 , d+2 , . . . , d+m ,

)
(10)

d− =
(
d−1 , d−2 , . . . , d−m ,

)
(11)

where





d+j = max
1≤i≤x

dij

d−j = min
1≤i≤x

dij
;

Step 4: Calculate the Euclidean distance:

D+
i =

√
n

∑
i=1

(
dij − d+j

)2
(12)

D−i =

√
n

∑
i=1

(
dij − d−j

)2
(13)

Step 5: Calculate the grey correlation coefficient of each plan and the ideal plan
R =

(
rij

)
x×m

, where ρ = 0.5:

g+
ij =

min
i

min
j

∣∣∣d+j − dij

∣∣∣+ ρ max
i

max
j

∣∣∣d+j − dij

∣∣∣
∣∣∣d+j − dij

∣∣∣+ ρ max
i

max
j

∣∣∣d+j − dij

∣∣∣
(14)

g−ij =

min
i

min
j

∣∣∣d−j − dij

∣∣∣+ ρ max
i

max
j

∣∣∣d−j − dij

∣∣∣
∣∣∣d−j − dij

∣∣∣+ ρ max
i

max
j

∣∣∣d−j − dij

∣∣∣
(15)

Step 6: Calculate the overall grey correlation degree:

g+
i =

1
n

n

∑
j=1

r+ij (16)

g−i =
1
n

n

∑
j=1

r−ij (17)

Step 7: Normalize the Euclidean distance and the grey correlation degree:

D+
i =

d+i
maxd+i

D−i =
d−i

maxd−i
(18)

G+
i =

g+
i

maxr+i
G−i =

g−i
maxr−i

(19)

Step 8: Calculate the closeness:

C+
i =

D−i
D+

i + D−i
(20)

Q+
i =

G+
i

G+
i + G−i

(21)

T+
i = ηC+

i + (1−η)Q+
i (22)
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Decision makers can set the value of η according to their preferences.
Moreover, Figure 1 shows the flow chart of the proposed approach used for solving

the multi-criteria decision-making problem.

- -

-
- -

min max max
g

max max

1

1g 

- -

1

1g 

max max

g
max max

1-

Decision makers can set the value of 

Figure 1. Flow chart of proposed methodology.

4. Case Study

In this section, we present and explain an example by using the methodology ex-
plained above. The e-commerce company Denim Leftover, based in Faisalabad, Pakistan,
was selected. This is an SME having not more than 50 employees. For SMEs, it is important
to select the best 3PLP supplier for their business in order to achieve competitiveness,
efficiency, and customer satisfaction. For e-commerce companies, all the logistics activities
are performed by third-party logistics providers. This is a complex problem that needs
to be solved. This example was chosen to perform the selection of a third-party logistics
provider for an e-commerce company (Denim Leftover).

Five experts were selected to determine the evaluation criteria based on their expertise.
The evaluation criteria include the area of delivery, delivery costs, service quality, payment
schedule, lead time, flexibility, and IT capabilities. According to Section 2.3, the set of
evaluation criteria is defined, where C1 represents the area of delivery, C2 represents the
delivery cost, C3 represents the lead time, C4 represents the payment settlement time,
C5 represents service quality, C6 represents flexibility, and C7 represents IT capabilities.
Where C1, C4, C5, C6, and C7 are benefit indicators, the greater the index value, the
better; C2 and C3 are cost indicators. The smaller the indicator value, the better. After
pre-assessment, a list of potential logistics service providers was developed. A total of
four third-party logistics provider alternatives were selected which are Pakistan Post, TCS,
M&P, and Leopards. The hierarchical structure for third-party logistics provider selection
can be seen in Figure 2.

Step 1: Build a decision matrix and a normalized decision matrix.
The relative weight of the five experts is ω = (ω1, ω2, . . . , ω5). The expert survey

method was used for assignment, and the relative weight of the five experts is

ω = (0.21, 0.16, 0.24, 0.28, 0.11)

Five experts obtained the evaluation index assignment table of four candidate logistics
suppliers according to Table 2. The results are shown in Table 3. According to Equation (1)
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and Table 3, the decision matrix is obtained, and the results are shown in Table 4. According
to Equations (3) and (4) and Table 3, we can present Table 5.

 

5，，， 

.,.,.,.,.

Figure 2. Hierarchical structure for 3PLP selection (source: authors’ compilation).

Table 3. Summary table of decision makers’ evaluation grades.

A1 A2 A3 A4

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

C1 F1 F2 F1 F2 F1 F2 F3 F3 F1 F1 F2 F3 F3 F3 F4 F1 F1 W2 F2 F4
C2 W5 W5 W4 W6 W5 W4 W5 W5 W5 W5 W3 F5 W5 W4 W4 W6 W4 W5 W5 W4
C3 W4 W5 W5 W6 W6 W6 W5 W5 W5 W6 W5 W5 W5 W4 W5 W4 W5 W5 W5 W4
C4 F2 F2 F2 F2 F1 F1 F2 F2 F1 F3 F2 F2 F2 F1 F3 F5 F3 F3 F4 F3
C5 F3 F6 F4 F4 F3 F1 F2 F3 F3 F2 F2 F2 F3 F1 F2 F4 F4 F4 F3 F5
C6 F4 F4 F3 F3 F4 F2 F3 F2 F3 F2 F3 F4 F4 F3 F3 F5 F3 F3 F3 F4
C7 F2 F2 F2 F2 F2 F1 F1 F1 F1 F1 F1 F1 F2 F1 F1 F1 F1 F3 F2 F3

Table 4. Decision matrix for selecting third-party logistics providers.

A1 A2 A3 A4

C1 0.9060 0.8290 0.7095 0.8485
C2 0.3063 0.3420 0.4620 0.3225
C3 0.2835 0.2520 0.3550 0.3640
C4 0.8610 0.8825 0.8615 0.5600
C5 0.5080 0.7930 0.8420 0.5340
C6 0.6040 0.7840 0.6200 0.5940
C7 0.8500 0.9500 0.9260 0.8345

Table 5. The normalized decision matrix for selecting a third-party logistics provider.

A1 A2 A3 A4

C1 0.2751 0.2517 0.2155 0.2577
C2 0.2136 0.2387 0.3225 0.2251
C3 0.2258 0.2007 0.2836 0.2899
C4 0.2720 0.2788 0.2722 0.1769
C5 0.1898 0.2962 0.3145 0.1995
C6 0.2321 0.3013 0.2383 0.2283
C7 0.2387 0.2668 0.2601 0.2344
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Step 2: Determine the weight of the evaluation index and construct a weighted
normalized decision matrix.

Five decision makers returned the subjective weights for the seven indicators as
→
ω = (0.1093, 0.1639, 0.1366, 0.1913, 0.1311, 0.0984, 0.1694), and the objective weights cal-
culated by the entropy weight method were

←
ω = (0.0492, 0.1781, 0.1483, 0.1967, 0.3210,

0.0874, 0.0193) according to Equations (6) and (7). Then, the combined weights
ω = (0.0367, 0.1994, 0.1383, 0.2571, 0.2874, 0.0587, 0.0223) were calculated according to
Equation (8). According to the weighted normalized decision matrix, the results are shown
in Table 6.

Table 6. The weighted normalized decision matrix for selecting a third-party logistics provider.

A1 A2 A3 A4

C1 0.0101 0.0092 0.0079 0.0095
C2 0.0426 0.0476 0.0643 0.0449
C3 0.0312 0.0278 0.0392 0.0401
C4 0.0699 0.0717 0.0700 0.0455
C5 0.0545 0.0851 0.0904 0.0573
C6 0.0136 0.0177 0.0140 0.0134
C7 0.0053 0.0060 0.0058 0.0052

Step 3: Determine the positive ideal point and the negative ideal point.
According to Equations (10) and (11), the positive ideal point and the negative ideal

point are obtained:

d+1 = 0.0101, d+4 = 0.0717, d+5 = 0.0904, d+6 = 0.0177, d+7 = 0.0060,

d−2 = 0.0426, d−3 = 0.0278

Step 4: Calculate the Euclidean distance and the grey correlation degree.
The correlation coefficients were calculated according to Equations (12)–(19), and the

results are shown in Table 7.

Table 7. Euclidean distance and grey correlation degree for choosing a third-party logistics
provider plan.

TOPSIS
Grey Relational Analysis

Method

d+ d− D+ D− g+ g− G+ G−

A1 0.0361 0.0035 0.8514 0.1423 0.5289 0.5647 0.6659 0.8489
A2 0.0053 0.0050 0.1250 0.2033 0.6587 0.6652 0.8293 1.0000
A3 0.0046 0.0246 0.1085 1.0000 0.7943 0.5216 1.0000 0.7841
A4 0.0424 0.0126 1.0000 0.5211 0.6621 0.6525 0.8336 0.9809

Step 5: Comprehensive closeness.
The preference factors η are 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0, respectively, and the

ranking of the advantages and disadvantages of each alternative is obtained. The results
are shown in Table 8.

It can be seen from the table above that when the value changes from 0 to 1, the result
of the scheme optimization ranking is relatively stable, which shows that the reliability
and stability of the model are maintained. Alternative A3 always ranks first, indicating
that it is the best supplier. Alternative A2 holds the second position, which shows that
it is the second best alternative. Alternative A4 is the third priority, and Alternative A1
always ranks last, which means that it is the least important; therefore, Alternative A1 is
least likely to be chosen.
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Table 8. Sorting results of selecting third-party logistics providers.

Preference Factor η A1 A2 A3 A4

0 4 3 1 2
0.2 4 2 1 3
0.4 4 2 1 3
0.5 4 2 1 3
0.6 4 2 1 3
0.8 4 2 1 3
1.0 4 2 1 3

5. Discussion

In the digital era, where everything is connected through the internet, people are more
likely to buy online, especially with the advantage of it being 24/7 and in the comfort of
their own home, which allows customers to take as much time as they need rather than
leaving unsatisfied and unwillingly wanting to shop in other stores. The e-commerce
industry in Pakistan is growing swiftly. The key success factor of e-commerce business is
product delivery, which is carried out by 3PLPs. The elevation in e-commerce opens the
door for a new business type called third-party logistics providers. Third-party logistics
providers have come up with solutions to problems of e-commerce companies related to
warehousing, packing, and delivery of goods or services to their customers. As logistics are
considered as the backbone of any business, in the case of e-business, choosing the right
logistics company is the key. The selection of 3PLPs has become a critical issue that is the
roadmap to the success of e-commerce business as this will lead e-commerce companies to
achieving a competitive advantage and help to attain customer satisfaction. For a country
such as Pakistan, where almost 98% of e-commerce businesses are small and medium
enterprises, working with a suitable 3PLP provides them with benefits that ultimately help
them to run their business smoothly. There are several key third-party logistics suppliers
available in Pakistan’s market, and each 3PLP has its business models and objectives.
Therefore, there is a big issue for e-commerce companies to choose a compatible 3PLP that
can meet their business objectives. Due to the decision makers, different attributes, and
alternatives, the selection of 3PLPs is considered an MCDM problem. Moreover, the results
of this study have various implications that are as follows:

(1) The proposed model can aid decision makers in selecting the best 3PLP from various
assessable options. Moreover, this model enables decision makers to visualize the
impact of various criteria on the alternative at the final solution.

(2) The findings of this paper can assist e-commerce businesses in gaining a better
understanding of the third-party logistics supplier selection process and in finding
the best 3PLP for their business according to their defined selection criteria.

(3) This model can help logistics managers to comprehend the relative relationship and
the degree of significance among the criteria and guide them in finding their influence
on the 3PLP selection process.

6. Conclusions

Third-party logistics providers are the main part of the logistics process of a company
because they help to reduce costs, improve efficiency, and achieve customer satisfaction.
Therefore, the evaluation and selection of 3PLPs are important. The main objective of
this study was to select the most appropriate third-party logistics provider (3PLP), and
throughout the study, MCDM methods were utilized. This paper proposed an evaluation
method based on the TOPSIS and grey relational analysis (GRA) methods on the issue
of the selection of third-party logistics providers, adopted a more realistic subjective and
objective comprehensive weighting method, and introduced preference factors so that the
algorithm can be based on the individual factors of the decision maker, which are adjusted
to enhance the flexibility of the algorithm and improve the accuracy of decision making.
The proposed approach can assist decision makers in systematically evaluating trade-offs

27



Axioms 2021, 10, 208

among multiple factors and criteria, therefore helping them in settling on more informed
decisions when evaluating and selecting a 3PLP. The results show that Alternative A3
(M&P) is the best suitable third-party logistics company because A3 willingly achieved the
selection criteria set by the e-commerce company and decision makers.

There are some limitations related to this current study that can be tended to. In future
studies, the number of criteria and alternatives may change according to the needs of the
company for a 3PLP. Furthermore, other multi-criteria decision-making methods such as
AHP, DEMATEL, and DEA can be used for the evaluation and selection process of 3PLPs.
Moreover, in the construction of the algorithm model, considering the uncertainty of third-
party logistics supplier selection, the combination of fuzzy set theory and multi-criteria
decision-making methods is also a future research direction.
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2. Adalı, E.; Işık, A. Integration of DEMATEL, ANP and DEA methods for third party logistics providers’ selection. Manag. Sci. Lett.

2016, 6, 325–340.
3. Muralidhar, P.; Ravindranath, K.; Srihari, V. The influence of GRA and TOPSIS for assortment of green supply chain management

strategies in cement industry. Int. J. Supply Chain Manag. 2013, 2, 49–55.
4. Peng, J.J.E.P. Selection of logistics outsourcing service suppliers based on AHP. Energy Procedia 2012, 17, 595–601. [CrossRef]
5. Delfmann, W.; Albers, S.; Gehring, M. The impact of electronic commerce on logistics service providers. Int. J. Phys. Distrib. Logist.

Manag. 2002, 32, 203–222. [CrossRef]
6. Memari, A.; Dargi, A.; Jokar, M.R.A.; Ahmad, R.; Rahim, A.R. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy

TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [CrossRef]
7. Akman, G.; Baynal, K. Logistics service provider selection through an integrated fuzzy multicriteria decision making approach.

J. Ind. Eng. 2014, 2014, 94918. [CrossRef]
8. Aggarwal, R. Third-party logistics service providers selection using AHP-DEAHP approach. Int. J. Integr. Supply Manag. 2019, 12,

259–284. [CrossRef]
9. Ertugrul, I.; Oztas, T.; Ozcil, A.; Oztas, G.Z. Grey relational analysis approach in academic performance comparison of university:

A case study of Turkish universities. Eur. Sci. J. 2016, 7881, 128–139.
10. Raut, R.D.; Kharat, M.G.; Kamble, S.S.; Kamble, S.J.; Desai, R. Evaluation and selection of third-party logistics providers using an

integrated multi-criteria decision making approach. Int. J. Serv. Oper. Manag. 2018, 29, 373–392. [CrossRef]
11. Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A. Outsourcing reverse logistics for e-commerce retailers: A two-stage fuzzy optimization

approach. Axioms 2021, 10, 34. [CrossRef]
12. Ravi, V. Selection of third-party reverse logistics providers for End-of-Life computers using TOPSIS-AHP based approach. Axioms

2012, 11, 24–37. [CrossRef]
13. Bai, J.-F.; Wei, X.-Y.; Yan, J.-C. Research on the selection of business-to-customer e-commerce logistics model based on analytic

hierarchy process method. In Proceedings of the 23rd International Conference on Industrial Engineering and Engineering Management

March 8, 2016; Atlantis Press: Paris, France, 2017; pp. 11–15.
14. Abid, S. Pakistan Logistics and Transport: Problems and Solutions. Available online: https://www.pakistangulfeconomist.com/

2019/09/30/pakistan-logistics-and-transport-problems-and-solutions/ (accessed on 30 September 2019).
15. Anjum, S.; Chai, J. Drivers of Cash-on-Delivery Method of Payment in E-Commerce Shopping: Evidence From Pakistan.

Sage Open 2020, 10, 2158244020917392. [CrossRef]
16. Ilgin, M.A. An integrated methodology for the used product selection problem faced by third-party reverse logistics providers.

Int. J. Sustain. Eng. 2017, 10, 399–410. [CrossRef]

28



Axioms 2021, 10, 208
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Abstract: Modeling uncertainties with spherical linear Diophantine fuzzy sets (SLDFSs) is a robust
approach towards engineering, information management, medicine, multi-criteria decision-making
(MCDM) applications. The existing concepts of neutrosophic sets (NSs), picture fuzzy sets (PFSs),
and spherical fuzzy sets (SFSs) are strong models for MCDM. Nevertheless, these models have
certain limitations for three indexes, satisfaction (membership), dissatisfaction (non-membership),
refusal/abstain (indeterminacy) grades. A SLDFS with the use of reference parameters becomes an
advanced approach to deal with uncertainties in MCDM and to remove strict limitations of above
grades. In this approach the decision makers (DMs) have the freedom for the selection of above three
indexes in [0, 1]. The addition of reference parameters with three index/grades is a more effective
approach to analyze DMs opinion. We discuss the concept of spherical linear Diophantine fuzzy
numbers (SLDFNs) and certain properties of SLDFSs and SLDFNs. These concepts are illustrated
by examples and graphical representation. Some score functions for comparison of LDFNs are
developed. We introduce the novel concepts of spherical linear Diophantine fuzzy soft rough set
(SLDFSRS) and spherical linear Diophantine fuzzy soft approximation space. The proposed model of
SLDFSRS is a robust hybrid model of SLDFS, soft set, and rough set. We develop new algorithms
for MCDM of suitable clean energy technology. We use the concepts of score functions, reduct, and
core for the optimal decision. A brief comparative analysis of the proposed approach with some
existing techniques is established to indicate the validity, flexibility, and superiority of the suggested
MCDM approach.

Keywords: spherical linear diophantine fuzzy set (SLDFS); spherical linear diophantine fuzzy soft
rough set (SLDFSRS); score function; core; reduct; MCDM

1. Introduction an Literature Review

Conventional Mathematics is not always helpful to tackle real world problems due to
hesitations and ambiguities present in their nature. Zadeh [1] established the perception of
fuzzy set by assigning the satisfaction grades to alternatives from [0, 1]. Zadeh [2] estab-
lished the idea of linguistic variable to relate real world situations and verbal information
to Mathematical language and Mathematical modeling. Atanassov [3–6] presented an
advanced perception of intuitionistic fuzzy sets (IFSs) by introducing dissatisfaction grades
of alternatives with the existing satisfaction grades in fuzzy sets fulfilling the constraint
that sum of these two grades are always less than unity. After that Yager initiated the
novel perception of Pythagorean fuzzy sets (PyFS) [7,8] with q-rung orthopair fuzzy sets (q-
ROFSs) [9] as generalizations of IFSs. Smarandache [10] originated the idea of neutrosophic
set with the addition of indeterminacy grades in IFSs, satisfying the constraint that sum
of all the three grades less than 3. This structure creates an independency between all the
grades to deal real world problems more efficiently. In these applications the information
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cannot be inadequate between yes or no generally but it can be yes, no, abstain, and refusal.
Cuong [11–13] introduced picture fuzzy set (PiFS) in 2013 for these circumstances. In this
model, the alternatives can be represented by satisfaction, abstinence, dissatisfaction and
refusal degrees. A PiFS to human nature and handle uncertainties of decision-making
problems in a better way. Mahmood et al. [14] studied the notion of T-spherical fuzzy set
(T-SFS) as an advancement of spherical fuzzy set (SFS). They established these concepts
as generalizations of PFSs similar as the extension ideas of PGFSs and q-ROFSs, which
were the generalizations of IFSs. Some new AOs on cubic hesitant fuzzy numbers (CHFNs)
were introduced by Mahmood et al. [15]. Numerous extensions of fuzzy sets have been
originated for solving MCDM problems, medical diagnosis and image processing [16,17],
radar images and image segmentation analysis [18–23], fuzzy analysis [24–29], iris image
analysis [30,31], image classification [32,33].

Molodtsov [34] invented the new idea of soft sets to deal with the uncertainties
by using parameterizations. Maji et al. [35] proposed several results of soft set setting.
Rough set was first initiated by Pawlak [36] in 1982. This model gives us a new method
to handle vague ideas caused by indiscernibility with incomplete data set. Rough sets
replace vagueness with the upper and lower approximations of the assembling under an
equivalence relation After that Pawlak and Skowron [37] originated several extensions on
rough sets. Various mathematicians considered diverse hybrid fusion of rough sets, fuzzy
sets, and soft sets for applications in engineering, information management, medicine,
multi-criteria decision-making (MCDM) applications. Ali [38] developed new results of
q-ROFSs and their orbits classification. Some logical connectors listed as implications,
t-norms and t-conorms was considered by Ali and Shabir [39] for development of fuzzy
soft set and soft set as extension of crisp set theory.

Numerous results and applications on generalized IFSSs was established by Agarwal
et al. [40]. Garg [41] established various hybrid AOs using Einstein operations in the
context of PyFSs with their applications in DM. Chen and Tan [42] studies vague set theory
and investigated MCDM methods on it. Tversky and Kahneman [43] established certain
fusion in the prospect model for progressive illustration of vagueness. Jose and Kuri-
askose [44] studied and investigated some properties of aggregation operators for MCDM.
Wang et al. [45] operated on SV-neutrosophic sets and discussed it applications. Peng
and Yang [46] introduced certain novel features of PFSs. Peng and Garg [47] developed
new algorithms for IVFS-sets in emergency decision-making using new information mea-
sure and WDBA and CODAS techniques. Xu [48–50] proposed several AOs for IFSs and
HFSs. Ye [51] invented neutrosophic cubic linguistic numbers with applications in MADM
problems. In some recent years, various mathematicians established some operations
and introduced different aggregations operators on PFSs. Jana et al. [52] established PiF-
Dombi’s AOs and its applications to MADM problems. Xu et al. [53] established a method
to picture fuzzy MADM by using Muirhead mean operators. Wang et al. [54] developed
diverse methods for picture fuzzy Muirhead mean operators to solve DM-complication.
Wang and Li [55] introduced picture fuzzy hesitant set and presented its applications in
MCDM glitches. Khan et al. [56,57] introduced logarithmic aggregation operators for PiFNs
for MADM problems. They considered Einstein operations and established aggregation
operators based on PiFSs with its applications.

Zhang et al. [58] proposed the idea of covering based IFRSs. They presented various
applications related to these ideas in MADM. Zhang et al. [59] proposed the novel percep-
tion of IFSRSs with applications. Zhang et al. [60] established a consensus based MAGDM
methodology for failure mode and effect analysis. They used linguistics to present effect
analysis and failure mode. They introduced a comparative study for consensus efficiency.
Zhang et al. [61] established certain Dombi Heronian AOs by using PFSs with applica-
tions to MADM problems. Zhang et al. [62–64] defined novel concepts of the priority
weights, deriving priority weights, and multiplicative preference relations with MCGDM
applications. Zhang et al. [65] created a programmed mechanism under MCGDM method
to support consensus reaching. Feng et al. [66] suggested new concepts of generalized
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intuitionistic fuzzy soft sets. Guo [67] investigated IF-values, information behavior analysis,
ranking of IFNs. Liu and Wang [68] introduced several new AOs with q-ROFNs, related
properties, numerous results, and advanced approach to MADM.

In 2019, Riaz and Hashmi [69] established the idea of linear Diophantine fuzzy sets
(LDFSs) with the accumulation of reference or control parameters. This structure enlarge
the valuation space of existing models and categorize the problem with the help of con-
trol parameters. Riaz and Hashmi [70] introduced the idea of soft rough Pythagorean
m-PFSs. Riaz et al. [71] introduced green supplier chain management approach with q-ROF
prioritized aggregation operators. Vashist [72] developed new algorithm for detecting
the core and reduct of the consistent dataset. Wang et al. [73] presented some PiF geo-
metric AOs based MADM. Soft rough covering concept and related results introduced
by Zhan and Alcantud [74]. Riaz et al. [75] introduced various interesting properties of
topological structure on soft multi-sets and their applications in MCDM. Sahu et al. [76]
developed a career selection picture fuzzy set and rough set theory method for students
with hybridized distance measure measures. Ali et al. [77] introduced Einstein geometric
aggregation operators using a novel complex interval-valued pythagorean fuzzy setting.
Alosta et al. [78] suggested AHP-RAFSI approach for developing method for the location
selection problem. Yorulmaz et al. [79] suggested an approach economic development by
using extended TOPSIS technique. Pamucar and Ecer [80] proposed weights prioritizing
fuzziness approach for evaluation criterion. Ramakrishnan and Chakraborty [81] presented
a green supplier selection criteria with improved TOPSIS model. Kishore et al. [82] de-
veloped a framework for subcontractors selection MCDM model for project management.
Zararsiz [83] introduced similarity measures of sequence of fuzzy numbers and fuzzy risk
analysis. Zararsiz [84] developed entropy measures of QRS-complexes before and after
training program of sport horses with ECG.

The objectives and advantages of this research work are expressed as follows.

1. A spherical linear Diophantine fuzzy set (SLDFS) can not deal with the multi-valued
parameterizations, roughness of crisp data, and approximation spaces. A rough set
with lower and upper approximation spaces is a strong mathematical approach to
deal with vagueness in the data. To deal with real-life problems having uncertainties,
vagueness, abstinence of the input, lack of information, we introduce novel concept
of spherical linear Diophantine fuzzy soft rough set (SLDFSRS).

2. In fact, a SLDFSRS is a robust hybrid model of spherical linear Diophantine fuzzy set,
soft set, and rough set. Due to the effectiveness of reference parameters, the proposed
models of SLDFSs and SLDFSRSs are more productive and amenable rather than some
existing approaches. When we change the physical judgment of reference parameters
then the MCDM obstacles generate different categories. Due to the association of
reference parameters, SLDFS meets the spaces of certain existing structures and
expands the valuation space for satisfaction, abstinence, and dissatisfaction grades.

3. In some real-life circumstances, the total of satisfaction grade, abstinence grade,
and dissatisfaction grade of an alternative granted by the decision-maker (DM) may
be superior to 1 (e.g., 0.8 + 0.7 + 0.4 > 1). So PiFSs fail to hold. Likewise, the sum of
squares of these grades may also be superior to 1 (e.g., 0.82 + 0.72 + 0.42 > 1). Then the
spherical fuzzy sets (SFSs) fail in such circumstances. The generalized model of T-SFSs
overcome these deficiencies by using the condition 0 ≤ T̈n + Z̈n + S̈n ≤ 1. For very
small values of “n”, we cannot deal with these grades independently. In certain
practical applications, when all the three degrees are equal to 1 (i.e., T̈ = Z̈ = S̈ = 1 ),
we obtain 1n + 1n + 1n > 1 which opposes the constraint of T-SFS. MCDM techniques
with T-SFS fail in these circumstances. It influences the optimum judgment and
executes the MCDM restricted. Spherical linear Diophantine fuzzy set (SLDFS) can
deal with these circumstances and provides a wide range of applications to the
MCDM applications.

4. In decision analysis the membership grades are not enough to analyze objects in
the universe. The addition of reference parameters provide freedom to the decision
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makers in selecting these grades. SLDFS with associated reference parameter provides
a robust approach for modeling uncertainties.

5. Firstly, we fill the research hollow using the intended model of SLDFSs. The alterna-
tives having the characteristics like PF-value, SF-value, T-SF-value, and neutrosophic
value can be efficiently supervised by using SLDFSs with the representatives of
reference parameters. (For instance for (0.60 + 0.90 + 0.70 > 1), we can propose
control parameters such that (0.60)(0.30) + (0.90)(0.20) + (0.70)(0.10) < 1, where
〈0.30, 0.20, 0.10〉 can be taken as reference parameters for satisfaction, abstinence and
dissatisfaction grades).

6. The next purpose is to examine the role of reference parameters in SLDFSs. The PFSs,
SFSs, T-SFSs, and neutrosophic sets cannot dispense with parameterizations. The rec-
ommended structure intensifies the present methodologies and the decision-maker
(DM) can openly select the degrees without any restriction. The feature of the dynamic
sense of reference parameters classifies the difficulty.

7. Another objective is to assemble another novel structure with the combination of
SLDFSs, soft sets, and rough sets named as SLDFSRSs. This concept can deal with the
roughness, vagueness, uncertainty, and ambiguities of information data at the same
time. This hybrid idea is strong, valid, and superior as compared to some existing
models.

8. Our ultimate objective is to assemble an influential association among suggested
models and MCDM obstacles. We generate two innovative algorithms to dispense
with the vagueness in the information data following parameterizations. We utilize
core, upper and lower reducts, multiple accuracy functions and score functions,
and for the selection of feasible alternatives in the MCDM methods. It is fascinating
to record that both algorithms generate the identical optimal alternative.

The organization of this manuscript is ordered as follows: Section 2 implements
some elementary ideas of fuzzy sets, IFSs, neutrosophic sets, PFSs, SFSs, T-SFSs, soft
sets, and rough sets. In Section 3, we originate the contemporary notion of SLDFSs.
We exhibit perfection and comparison of the intended model with certain existing struc-
tures. We present various examples to relate our structure with the real-life circumstances.
In Section 4, we impersonate a comparison by using graphical representations of some
existing structures with the SLDFSs. We discuss about the drawbacks of existing oper-
ations and AOs on PFSs and establish some new operations on PFNs. We define some
operations on SLDFNs. We impersonate multiple score and accuracy functions for the
ranking of SLDFNs with distinct classifications. In Section 5, we establish another new idea
of SLDFSRSs with its upper and lower approximation operators. We present some results
on upper and lower approximation operators. In Section 6, we intend the approach of the
MCDM obstacle for the election of clean energy technology with the help of SLDFSRSs and
its approximations. We correlate the outcomes received from the suggested two innovative
algorithms. We offer a brief association between the intended theories and certain present
models. Eventually, the conclusion of this analysis is reviewed in Section 7.

2. Background

Initially, we examine some elementary ideas including fuzzy sets, IFSs, PFSs, SFSs,
and T-SFSs. In the entire article, we utilize K̈ as a fixed reference set.

Definition 1 ([1]). The mapping ḟ : K̈ → [0, 1] defines a fuzzy set F in K̈, where ḟ (D̈) represents
the satisfaction grade to which the alternative D̈ belongs to F for all D̈ ∈ K̈. Alternatively, it can
be represented as

F = {(D̈ , ḟ (D̈)) : D̈ ∈ K̈}.

The idea of satisfaction with dissatisfaction degrees was suggested by Atanassov [3]
satisfying the constraint that the total of both grades cannot be superior to 1.
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Definition 2 ([3]). An IFS I in K̈ is scripted as

I = {〈D̈ , T̈I (D̈), S̈I (D̈)〉 : D̈ ∈ K̈},

where the mappings T̈I : K̈ → [0, 1] and S̈I : K̈ → [0, 1] are called the satisfaction and
dissatisfaction functions, respectively. It is required that that 0 ≤ T̈I (D̈) + S̈I (D̈) ≤ 1 for
all D̈ ∈ K̈. The indeterminacy degree of D̈ to I is given by π̇(D̈) = 1− (T̈I (D̈) + S̈I (D̈)).
Graphically it can be characterized as Figure 1. This is basically a two dimensional idea and we can
observe the behavior of alternatives in a plane (as Figure 1).

Figure 1. Graph of satisfaction and dissatisfaction grades of IFS.

Definition 3 ([10]). A neutrosophic set Ṅ in K̈ is described by a satisfaction function T̈ , an inde-
terminacy membership function İ and a dissatisfaction function S̈. T̈ (D̈), İ(D̈) and S̈(D̈) are
elements of ]0−, 1+[. It can be scripted as

Ṅ = {(D̈ , 〈T̈ (D̈), İ(D̈), S̈(D̈)〉) : D̈ ∈ K̈}

such that 0− ≤ T̈ (D̈) + İ(D̈) + S̈(D̈) ≤ 3+.

To eradicate the drawbacks of existing models, Cuong [11–13] proposed the idea
of picture fuzzy set (PFSs). This concept is closer to human nature and handle real life
situations as compared to existing models.

Definition 4 ([11–13]). A PiFS Ṗ f in K̈ is scripted as

Ṗ f = {(D̈ , 〈T̈ (D̈), Z̈(D̈), S̈(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ T̈ (D̈), Z̈(D̈), S̈(D̈) ≤ 1 represents the satisfaction, uncertainty (or abstinence),
and dissatisfaction grades respectively, with the constraint 0 ≤ T̈ (D̈) + Z̈(D̈) + S̈(D̈) ≤ 1.
The value Ṙ(D̈) = 1− (T̈ (D̈) + Z̈(D̈) + S̈(D̈)) is called refusal grading for D̈ in K̈.

A picture fuzzy number can be written as a triplet 〈T̈ (D̈), Z̈(D̈), S̈(D̈)〉, for D̈ ∈ K̈.

Definition 5 ([14]). A SFS Ṡ in K̈ is defined by

Ṡ = {(D̈ , 〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ 〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉 ≤ 1 represents the membership, uncertainty (or abstinence),
and dissatisfaction grades, respectively, such that

0 ≤ T̈
2

s (D̈) + Z̈2
s (D̈) + S̈2

s (D̈) ≤ 1

The value

Ṙs(D̈) =
√

1− (T̈ 2
s (D̈) + Z̈2

s (D̈) + S̈2
s (D̈))
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is called refusal grading for D̈ in K̈ A spherical fuzzy number (SFN) can be expressed as a triplet
〈T̈s(D̈), Z̈s(D̈), S̈s(D̈)〉, for D̈ ∈ K̈.

Definition 6 ([14]). A T-SFS Ṫ in K̈ is scripted as

Ṫ = {(D̈ , 〈T̈t(D̈), Z̈t(D̈), S̈t(D̈)〉) : D̈ ∈ K̈}

where, 0 ≤ T̈t(D̈), Z̈t(D̈), S̈t(D̈) ≤ 1 represents the membership, uncertainty (or abstinence),
and dissatisfaction grades, respectively, such that

0 ≤ T̈
n

t (D̈) + Z̈n
t (D̈) + S̈n

t (D̈) ≤ 1; (n = 1, 2, 3, . . .)

The expression

Ṙt(D̈) = n

√
1− (T̈ n

t (D̈) + Z̈n
t (D̈) + S̈n

t (D̈))

gives the refusal grade for D̈ in K̈. A T-spherical fuzzy number (T-SFN) can be communicated as a
triplet 〈T̈t(D̈), Z̈t(D̈), S̈t(D̈)〉, for D̈ ∈ K̈.

3. Spherical Linear Diophantine Fuzzy Sets (SLDFSs)

In this section, we inaugurate the novel notion of SLDFSs. In the field of number
theory, we have the concept of linear Diophantine equation for three variables given as
ax + by + cz = d. The intended structure has a correspondence with this equation, so we
described it as SLDFS. With a comprehensive comparative study, we found that neutro-
sophic sets, T-SFSs, PiFSs, and SFSs have various restrictions on satisfaction, abstinence,
and dissatisfaction degrees. To eliminate these restrictions, we originate the notion of
SLDFS with the extension of reference parameters. Due to the impact of reference parame-
ters a decision-maker (DM) can smoothly take the degrees according to the circumstances
and suitable principles. This procedure categorizes the obstacle and provides us a variety
of alternatives and attributes. We examine the construction of SLDFS, mathematically and
graphically with the help of illustrations. In the entire article, we shall use T̈ , Z̈ and S̈ for
satisfaction, uncertainty or abstinence and dissatisfaction degrees, respectively, and α, β, η

as reference or control parameters corresponding to T̈ , Z̈ and S̈ respectively.

Definition 7. A SLDFS SK̈ in the universe K̈ is defined as

SK̈ =
{(

D̈ , 〈T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈)〉, 〈αK̈(D̈), βK̈(D̈), ηK̈(D̈)〉
)

: D̈ ∈ K̈
}

where, T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈), αK̈(D̈), βK̈(D̈), ηK̈(D̈) ∈ [0, 1] are membership, uncertainty or
abstinence, non-membership and reference parameters corresponding to these grades respectively.
These grades satisfy the constraints

0 ≤ αK̈(D̈)T̈K̈(D̈) + βK̈(D̈)Z̈K̈(D̈) + ηK̈(D̈)S̈K̈(D̈) ≤ 1 ; (∀D̈ ∈ K̈)

0 ≤ αK̈(D̈) + βK̈(D̈) + ηK̈(D̈) ≤ 1.

During the scheme of establishing or analyzing a particular system in the input information,
the reference parameters play an essential role. The system can be classified by altering the dynamic
function of these parameters. Restrictions can be excluded due to the increase in the valuation space.
The refusal part can be estimated as

πK̈(D̈)ṘK̈ = 1− (αK̈(D̈)T̈K̈(D̈) + βK̈(D̈)Z̈K̈(D̈) + ηK̈(D̈)S̈K̈(D̈)),
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where πK̈(D̈) is the reference parameter related to degree of refusal. Simply

ð̈ =

(
〈T̈K̈, Z̈K̈, S̈K̈〉, 〈αK̈, βK̈, ηK̈〉

)

is called SLDFN. Graphically SLDFS can be seen as Figure 2.

Figure 2. Graph of satisfaction, abstinence, and dissatisfaction grades of SLDFS.

Definition 8. A SLDFS in K̈ of the form

1S K̈ = {(D̈ , 〈1, 0, 0〉, 〈1, 0, 0〉) : D̈ ∈ K̈}

is called absolute SLDFS, and

0S K̈ = {(D̈ , 〈0, 1, 1〉, 〈0, 0, 1〉) : D̈ ∈ K̈}

is called empty or null SLDFS.

3.1. Digital Image Processing

There are various applications of SLDFSs in diverse fields such as engineering, medical
sciences, agriculture, artificial intelligence, business, MADM problems. The wide spectrum
of these applications can be examined in this article.

We discuss about the three main levels of image processing given below as:

• Low-Level Processes.
• Mid-Level Processes.
• High-Level Processes.

These three phases correlate to the SLDFS grades of satisfaction, abstinence, and dis-
satisfaction. The addition of reference parameters improves the procedure’s efficiency
while also providing specifics on how to deal with the associated grades.

3.2. Medication

Every medication has multi purposes and used to treat different infections due to
physical and chemical combinations of salts in it. Consider the assembling of some
medicines, which are suitable for different infections given as Q = {D̈1, D̈2, D̈3, D̈4, D̈5}.
These medicines used to cure pneumonia, sinusitis, bronchitis, ear infection and skin
infections. We can classify the data on the basis of diseases with good or bad effects of
medicines. If we select the reference parameters as:

αK̈ = suitable or effective against bronchitis

βK̈ = not highly effected to bronchitis (uneffected or neutral)

ηK̈ = having some side efffects or bad effects against bronchitis

The Table 1 shows SLDFS.
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Table 1. SLDFS.

SK̈

(
〈T̈K̈(D̈), Z̈K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)

D̈1 (〈0.952, 0.451, 0.413〉, 〈0.64, 0.13, 0.11〉)
D̈2 (〈0.873, 0.345, 0.532〉, 〈0.64, 0.11, 0.21〉)
D̈3 (〈0.631, 0.234, 0.811〉, 〈0.38, 0.12, 0.11〉)
D̈4 (〈0.684, 0.456, 0.715〉, 〈0.29, 0.24, 0.21〉)
D̈5 (〈0.882, 0.566, 0.712〉, 〈0.49, 0.11, 0.21〉)

A doctor/conslutant suggests a medicine to the patient that is exactly related to
condition or severeness of disease. We can characterize the information system with control
parameters which indicate how significant that factor is for the treatment, and their degrees
indicate the advantages of keeping those parameters in treatment. If we switch parameter
αK̈ = “best effect against skin infection”, βK̈ = “not highly affected or neutral to skin
infection”, and ηK̈ = “side effects against skin infection” or αK̈ = “less or low side effects”,
βK̈ = “medium side effects” and ηK̈ = “high side effects”, etc. then we can establish
more SLDFSs on the similar set of alternatives. This arrangement enables a physician in
recommending to a patient the most effective and appropriate medicine for his sickness.

3.3. Selection of Best Optimal Choice

The reference parameters can be used to interpret the categories of various object with
respect to advantage or disadvantage. A high value of reference parameter indicate high
significance. The characteristics of reference parameters in the selection of car, mobile,
home appliances, may expressed as follows.

αK̈ = low cost or cheap

βK̈ = affordable

ηK̈ = high cost or expensive

Suppose that a person needs to buy a mobile phone. He wants to choose the most de-
sirable phone with lots of characteristics and having a low price. Let K̈ = {D̈1, D̈2, D̈3, D̈4}
be the set of some conventional mobile phones. The SLDFS is indicated as Table 2.

Table 2. SLDFS.

SK̈

(
〈T̈K̈(D̈), Z̈ K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)

D̈1 (〈0.711, 0.452, 0.218〉, 〈0.42, 0.11, 0.34〉)
D̈2 (〈0.933, 0.653, 0.522〉, 〈0.31, 0.11, 0.47〉)
D̈3 (〈0.374, 0.677, 0.611〉, 〈0.29, 0.24, 0.27〉)
D̈4 (〈0.516, 0.345, 0.474〉, 〈0.31, 0.21, 0.33〉)

If we alter the dynamical denotation of reference parameters, then we can classify the
information data in another sense in the form of SLDFS. For second SLDFS we can utilize
the reference parameters as:

αK̈ = high battery timing

βK̈ = average or medium battery timing

ηK̈ = low battery timing

For the selected data the SLDF input information can be represented as Table 3.
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Table 3. SLDFS.

SK̈

(
〈T̈K̈(D̈), Z̈ K̈(D̈), S̈K̈(D̈)〉, 〈αK̈, βK̈, ηK̈〉

)

D̈1 (〈0.932, 0.234, 0.411〉, 〈0.54, 0.12, 0.11〉)
D̈2 (〈0.793, 0.435, 0.532〉, 〈0.34, 0.23, 0.21〉)
D̈3 (〈0.531, 0.456, 0.811〉, 〈0.38, 0.32, 0.11〉)
D̈4 (〈0.782, 0.236, 0.714〉, 〈0.29, 0.34, 0.21〉)

In this application, the control parameters present an essential role. They describe cer-
tain particular features about phones like it is cheap, affordable, expensive, high, medium
or low battery timings, easy to learn, medium to learn or difficult to learn, etc. The grades
T̈K̈(D̈), Z̈K̈(D̈) and S̈K̈(D̈) describe the grades of phone D̈ , which determines that how
much a phone is cheap, affordable or expensive, while parameters represent that how
much a machine should be cheap, affordable or expensive.

In SLDFSs three grades/indexes are assigned by the decision makers and estimated
from the uncertain data/information about alternatives while the reference parameters are
used to further analyze decision-makers opinion about three grades/indexes.

4. Graphical Representation of SLDFS

In this section, We present the graphical description of SLDFSs with reference or
control parameters. We graphically examine that how its space is larger than the space
of PFSs, SFSs, and T-SFSs. Figures 3–5 gives us the geometrical representation of PiFS,
SFS and SLDFS. Figures 6–10 shows the grap of PiFS, SFS, T-SFS with some values of “n”
and SLDFS.

Figure 3. Graph of three indexes of PiFS.

Figure 4. Graph of three indexes of SFS.
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Figure 5. Graph of three indexes of SLDFS.

Figure 6. Graph of three indexes of PFS.

Figure 7. Graph of three indexes of SFS.

Figure 8. Graph of three indexes of T-SFS with n = 5.
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Figure 9. Graph of three indexes of T-SFS with n = 100.

It can be observed form Figure 10 and the graph of three grades/indexes in SLDFS
provides a larger space than PiFS, SFS, and T-SFS. The addition of reference parameters pro-
vide freedom to the decision makers in selecting three grades/indexes. Thus a SLDFS with
addition of reference parameter provides a robust approach for modeling uncertainties.

Figure 10. Graph of three indexes of SLDFS for reference parameters αK̈ , βK̈ , ηK̈ ∈ [0, 1].

Operations on Spherical Linear Diophantine Fuzzy Numbers (SLDFNs)

In this subsection, we define some operations on SLDFNs. For the comparison of
SLDFNs, we develop various score functions and accuracy functions.

Definition 9. Let us consider ð̈℘ = (〈℘T̈K̈, ℘Z̈ K̈, ℘S̈K̈〉, 〈℘αK̈, ℘βK̈, ℘ηK̈〉) for ℘ ∈ ∆ (indexing
set) be an assembling of SLDFNs over the reference set K̈ and X > 0 then the fundamental
operations on SLDNFNs are the following

• ð̈c
℘ = (〈℘S̈K̈, 1− ℘Z̈ K̈, ℘T̈K̈〉, 〈℘ηK̈, ℘βK̈, ℘αK̈),

• ð̈1 = ð̈2 ⇔ 1T̈K̈ = 2T̈K̈, 1Z̈ K̈ = 2Z̈ K̈, 1S̈K̈ = 2S̈K̈, 1αK̈ = 2αK̈, 1βK̈ = 2βK̈,
1ηK̈ = 2ηK̈,

• ð̈1 ⊆ ð̈2 ⇔ 1T̈K̈ ≤ 2T̈K̈, 1Z̈ K̈ ≥ 2Z̈ K̈, 1S̈K̈ ≥ 2S̈K̈, 1αK̈ ≤ 2αK̈, 1βK̈ ≥ 2βK̈,
1ηK̈ ≥ 2ηK̈,

•
⋃

℘∈∆

ð̈℘ =
(
〈sup
℘∈∆

℘T̈K̈, inf
℘∈∆

℘Z̈ K̈, inf
℘∈∆

℘S̈K̈〉, 〈sup
℘∈∆

℘αK̈, inf
℘∈∆

℘βK̈, inf
℘∈∆

℘ηK̈〉
)

,

•
⋂

℘∈∆

ð̈℘ =
(
〈 inf
℘∈∆

℘T̈K̈, sup
℘∈∆

℘Z̈ K̈, sup
℘∈∆

℘S̈K̈〉, 〈 inf
℘∈∆

℘αK̈, sup
℘∈∆

℘βK̈, sup
℘∈∆

℘ηK̈〉
)

,

• ð̈1 ⊕ ð̈2 =
(
〈1T̈K̈ + 2T̈K̈ − 1T̈K̈

2T̈K̈, 1Z̈ K̈2Z̈ K̈, 1S̈K̈
2S̈K̈〉,

〈1− (1− 1αK̈)(1− 2αK̈),
1βK̈

2βK̈, (1ηK̈ + 1βK̈)(
2ηK̈ + 2βK̈)− 1βK̈

2βK̈〉
)

,

• ð̈1 ⊗ ð̈2 =
(
〈1T̈K̈

2T̈K̈, 1Z̈ K̈ + 2Z̈ K̈ − 1Z̈ K̈2Z̈ K̈, 1S̈K̈ + 2S̈K̈ − 1S̈K̈
2S̈K̈〉, 〈(1αK̈ + 1βK̈)

(2αK̈ + 2βK̈)− 1βK̈
2βK̈, 1βK̈

2βK̈, 1− (1− 1ηK̈)(1− 2ηK̈)〉
)

,
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• Xð̈1 =
(
〈1− (1− 1T̈K̈)

X, 1Z̈X
K̈, 1S̈

X
K̈〉, 〈1− (1− 1αK̈)

X, 1βK̈
X

, (1ηK̈+
1βK̈)

X− 1βK̈
X〉
)

;
X > 0,

• ð̈X1 =
(
〈1T̈

X
K̈, 1 − (1 − 1Z̈ K̈)X, 1 − (1 − 1S̈K̈)

X〉, 〈(1αK̈ + 1βK̈)
X − 1βK̈

X
, 1βK̈

X
, 1 −

(1− 1ηK̈)
X〉
)

; X > 0.

Proposition 1. Let ð̈1 = (〈1T̈K̈, 1Z̈ K̈, 1S̈K̈〉, 〈1αK̈, 1βK̈, 1ηK̈〉) and ð̈2 = (〈2T̈K̈, 2Z̈ K̈, 2S̈K̈〉,
〈2αK̈, 2βK̈, 2ηK̈〉) be two SLDFNs and X > 0, then ð̈c

1, ð̈1 ∪ ð̈2, ð̈1 ∩ ð̈2, ð̈1 ⊕ ð̈2, ð̈1 ⊗ ð̈2,Xð̈1
and ð̈X1 are also SLDFNs.

Proof. The proof follows by using Definition 9.

Example 1. Let ð̈1 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉) and ð̈2 = (〈0.83, 0.38, 0.32〉,
〈0.25, 0.26, 0.41〉) be two SLDFNs, then

• ð̈c
1 = (〈0.31, 0.75, 0.93〉, 〈0.34, 0.21, 0.38〉)

• Clearly by using Definition 9 ð̈2 ⊆ ð̈1

• ð̈1 ∪ ð̈2 = (〈0.93, 0.25, 0.31〉, 〈0.38, 0.21, 0.34〉) = ð̈1

• ð̈1 ∩ ð̈2 = (〈0.83, 0.38, 0.32〉, 〈0.25, 0.26, 0.41〉) = ð̈2

• ð̈1 ⊕ ð̈2 = (〈0.9881, 0.095, 0.0992〉, 〈0.535, 0.0546, 0.3139〉)
• ð̈1 ⊗ ð̈2 = (〈0.7719, 0.535, 0.5308〉, 〈0.2463, 0.0546, 0.6106〉)

If X = 0.1 then

• Xð̈1 = (〈0.2335, 0.7578, 0.8894〉, 〈0.0466, 0.8555, 0.0864〉)
• ð̈X1 = (〈0.9927, 0.0283, 0.0364〉, 〈0.0931, 0.8555, 0.0407〉)

Proposition 2. For two SLDFNs ð̈1 and ð̈2 with X > 0 then ð̈c
1, ð̈1 ∪ ð̈2, ð̈1 ∩ ð̈2,

ð̈1 ⊕ ð̈2, ð̈1 ⊗ ð̈2,Xð̈1 and ð̈X1 are also SLDFNs.

Proof. Proof follows by using Definition 9.

Chen and Tan [42] invented the idea of score functions for IFSs. Before that Tversky
and Kahneman [43] proposed the same concept. We extend this idea for hybrid structures
and SLDFNs. We invented different mappings to calculate the scores due to different strate-
gies of approximation operators used in the proposed algorithms. These different score
and accuracy functions determine the behavior of SLDFNs and provide us an appropriate
optimal decision.

Definition 10. Let ð̈ = (〈T̈K̈, Z̈K̈, S̈K̈〉, 〈αK̈, βK̈, ηK̈〉) be a SLDFN, then the mapping P :
SLDFN(K̈)→ [−1, 1] define a score function (SF) on ð̈ scripted as

P
ð̈
= P(ð̈) =

1
2
[(T̈K̈ − Z̈K̈ − S̈K̈) + (αK̈ − βK̈ − ηK̈)]

where SLDFN(K̈) is an assembling of SLDFNs over K̈.

Definition 11. The mapping ψ : SLDFN(K̈) → [0, 1] defines an accuracy function (AF)
scripted as

ψ
ð̈
= ψ(ð̈) =

1
2

[( T̈K̈ + Z̈K̈ + S̈K̈
3

)
+ (αK̈ + βK̈ + ηK̈)

]

Definition 12. The mapping J : SLDFN(K̈)→ [−1, 1] defines a quadratic score function (QSF)
for SLDFN defined as

J
ð̈
= J(ð̈) =

1
2
[(T̈2
K̈ − Z̈

2
K̈ − S̈2

K̈) + (α2
K̈ − β2

K̈ − η2
K̈)]
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Definition 13. The mapping φ : SLDFN(K̈)→ [0, 1] expresses the quadratic accuracy function
(QAF) for SLDFN scripted as

φ
ð̈
= φ(ð̈) =

1
2

[( T̈2
K̈ + Z̈2

K̈ + S̈2
K̈

3

)
+ (α2

K̈ + β2
K̈ + η2

K̈)
]

Definition 14. The expectation score function (ESF) on SLDFN(K̈) and scripted by the mapping
M : SLDFN(K̈)→ [0, 1] such that

M
ð̈
= M(ð̈) =

1
3

[ (T̈K̈ − Z̈K̈ − S̈K̈ + 2)
2

+
(αK̈ − βK̈ − ηK̈ + 2)

2

]

This is modified form of SF.

Definition 15. Let ð̈1 and ð̈2 be SLDFNs. The binary relation ≤(T̈,M) on SLDFN(K̈) can be

expressed as ð̈1 ≤(T̈,M) ð̈2 ⇔
(
(1T̈K̈ < 2T̈K̈) ∧ (1αK̈ < 2αK̈)

)
∨
(
(1T̈K̈ = 2T̈K̈) ∧ (1αK̈ =

2αK̈) ∧ (M
ð̈1
≤M

ð̈2
)
)
.

Definition 16. Let ð̈1 and ð̈2 be SLDFNs. The binary relation ≤(M,T̈) on SLDFN(K̈) can be

expressed as ð̈1 ≤(M,T̈) ð̈2 ⇔ (M
ð̈1

< M
ð̈2
) ∨

(
(M

ð̈1
= M

ð̈2
) ∧ (1T̈K̈ ≤ 2T̈K̈) ∧ (1αK̈ ≤

2αK̈)
)
.

5. Spherical Linear Diophantine Fuzzy Soft Rough Sets (SLDFSRSs)

Definition 17. Let K̈ be any set of objects, G̈ be the set of attributes, and take Ȯ ⊆ G̈. A spherical
linear Diophantine fuzzy soft set (SLDFSS) (δ̈, Ȯ) can be expressed by the mapping

δ̈ : Ȯ → SLDFS(K̈)

where SLDFS(K̈) is an assembling of all SLDF-subsets of K̈. A SLDFSS can be expressed as

(δ̈, Ȯ) =
{
(℘̇, δ̈(℘̇)) : ℘̇ ∈ Ȯ, δ̈(℘̇) ∈ SLDFS(K̈)

}

Definition 18. Let (δ̈, Ȯ) be a SLDFSS in K̈. Then a SLDF-subset Ë of K̈ × G̈ is called spherical
linear Diophantine fuzzy soft relation (SLDFSR) from K̈ to G̈ scripted as

Ë =

{
((D̈ , ℘̇), 〈T̈

Ë
(D̈ , ℘̇), Z̈

Ë
(D̈ , ℘̇), S̈

Ë
(D̈ , ℘̇)〉, 〈α

Ë
(D̈ , ℘̇), β

Ë
(D̈ , ℘̇), η

Ë
(D̈ , ℘̇)〉) : (D̈ , ℘̇) ∈ K̈ × G̈

}

where αT̈
Ë
(D̈ , ℘̇), αZ̈

Ë
(D̈ , ℘̇), αS̈

Ë
(D̈ , ℘̇) ∈ [0, 1] are satisfaction, uncertainty or abstinence and

dissatisfaction grades respectively, with the corresponding reference parameters α
Ë
(D̈ , ℘̇), β

Ë
(D̈ , ℘̇),

η
Ë
(D̈ , ℘̇) ∈ [0, 1] satisfying the constraints

0 ≤ α
Ë
(D̈ , ℘̇)αT̈

Ë
(D̈ , ℘̇) + β

Ë
(D̈ , ℘̇)αZ̈

Ë
(D̈ , ℘̇) + η

Ë
(D̈ , ℘̇)αS̈

Ë
(D̈ , ℘̇) ≤ 1

0 ≤ α
Ë
(D̈ , ℘̇) + β

Ë
(D̈ , ℘̇) + η

Ë
(D̈ , ℘̇) ≤ 1

If K̈ = {D̈1, D̈2, . . . , D̈n} and G̈ = {℘̇1, ℘̇2, . . . , ℘̇m}, then SLDFSR Ë on K̈ × G̈ can be
represented in tabular form as Table 4.
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Table 4. Spherical linear Diophantine fuzzy soft relation (SLDFSR).

Ë ℘̇1 . . . ℘̇m

D̈1 (〈T̈
Ë
(D̈1, ℘̇1), Z̈Ë

(D̈1, ℘̇1)S̈Ë
(D̈1, ℘̇1)〉, (〈T̈

Ë
(D̈1, ℘̇m), Z̈Ë

(D̈1, ℘̇m)S̈Ë
(D̈1, ℘̇m)〉,

〈α
Ë
(D̈1, ℘̇1), β

Ë
(D̈1, ℘̇1), η

Ë
(D̈1, ℘̇1)〉) . . . 〈α

Ë
(D̈1, ℘̇m), β

Ë
(D̈1, ℘̇m), η

Ë
(D̈1, ℘̇m)〉)

D̈2 (〈T̈
Ë
(D̈2, ℘̇1), Z̈Ë

(D̈2, ℘̇1)S̈Ë
(D̈2, ℘̇1)〉, (〈T̈

Ë
(D̈2, ℘̇m), Z̈Ë

(D̈2, ℘̇m)S̈Ë
(D̈2, ℘̇m)〉,

〈α
Ë
(D̈2, ℘̇1), β

Ë
(D̈2, ℘̇1), η

Ë
(D̈2, ℘̇1)〉) . . . 〈α

Ë
(D̈2, ℘̇m), β

Ë
(D̈2, ℘̇m), η

Ë
(D̈2, ℘̇m)〉)

D̈n (〈T̈
Ë
(D̈n, ℘̇1), Z̈Ë

(D̈n, ℘̇1)S̈Ë
(D̈n, ℘̇1)〉, (〈T̈

Ë
(D̈n, ℘̇m), Z̈Ë

(D̈n, ℘̇m)S̈Ë
(D̈n, ℘̇m)〉,

〈α
Ë
(D̈n, ℘̇1), β

Ë
(D̈n, ℘̇1), η

Ë
(D̈n, ℘̇1)〉) . . . 〈α

Ë
(D̈n, ℘̇m), β

Ë
(D̈n, ℘̇m), η

Ë
(D̈n, ℘̇m)〉)

Definition 19. For the reference set K̈ and set of decision variables G̈, if we define a SLDFSR Ë

over K̈ × G̈, then (K̈, G̈, Ë ) is called a spherical linear Diophantine fuzzy soft approximation space
(SLDFS-approximation space). If Ÿ ∈ SLDFS(Ġ), then Ë ⋆(Ÿ) and Ë⋆(Ÿ) are called upper and
lower approximations of Ÿ about (K̈, G̈, Ë ) respectively and scripted as

Ë
⋆(Ÿ) = {(D̈ , 〈T̈

Ë ⋆(Ÿ)(D̈), Z̈
Ë ⋆(Ÿ)(D̈), S̈

Ë ⋆(Ÿ)(D̈)〉, 〈α
Ë ⋆(Ÿ)(D̈), β

Ë ⋆(Ÿ)(D̈), η
Ë ⋆(Ÿ)(D̈)〉) : D̈ ∈ K̈}

Ë⋆(Ÿ) = {(D̈ , 〈T̈
Ë⋆(Ÿ)(D̈), Z̈

Ë⋆(Ÿ)(D̈), S̈
Ë⋆(Ÿ)(D̈)〉, 〈α

Ë⋆(Ÿ)(D̈), β
Ë⋆(Ÿ)(D̈), η

Ë⋆(Ÿ)(D̈)〉) : D̈ ∈ K̈}
where

T̈
Ë ⋆(Ÿ)(D̈) =

∨

℘̇∈G̈
[T̈

Ë
(D̈ , ℘̇) ∧ T̈Ÿ (℘̇)], Z̈

Ë ⋆(Ÿ)(D̈) =
∧

℘̇∈G̈
[(1− Z̈

Ë
(D̈ , ℘̇)) ∨ Z̈Ÿ (℘̇)]

S̈
Ë ⋆(Ÿ)(D̈) =

∧

℘̇∈G̈
[(1− S̈

Ë
(D̈ , ℘̇)) ∨ S̈Ÿ (℘̇)], α

Ë ⋆(Ÿ)(D̈) =
∨

℘̇∈G̈
[α

Ë
(D̈ , ℘̇) ∧ αŸ (℘̇)]

β
Ë ⋆(Ÿ)(D̈) =

∧

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∨ βŸ (℘̇)], η

Ë ⋆(Ÿ)(D̈) =
∧

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∨ ηŸ (℘̇)]

T̈
Ë⋆(Ÿ)(D̈) =

∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ T̈Ÿ (℘̇)], Z̈

Ë⋆(Ÿ)(D̈) =
∨

℘̇∈G̈
[Z̈

Ë
(D̈ , ℘̇) ∧ Z̈Ÿ (℘̇)]

S̈
Ë⋆(Ÿ)(D̈) =

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ S̈Ÿ (℘̇)], α

Ë⋆(Ÿ)(D̈) =
∧

℘̇∈G̈
[α

Ë
(D̈ , ℘̇) ∨ αŸ (℘̇)]

β
Ë⋆(Ÿ)(D̈) =

∨

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∧ βŸ (℘̇)], η

Ë⋆(Ÿ)(D̈) =
∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ ηŸ (℘̇)]

The pair (Ë⋆(Ÿ), Ë ⋆(Ÿ)) is called SLDFSRS in (K̈, G̈, Ë ). The lower and upper approxima-
tion operators are represented as Ë⋆(Ÿ) and Ë ⋆(Ÿ), respectively. If Ë⋆(Ÿ) = Ë ⋆(Ÿ), then Ÿ is
said to be definable.

Example 2. Let K̈ = {D̈1, D̈2} be the set of some famous shoe brands and G̈ = {℘̇1, ℘̇2, ℘̇3} be
the collection of some attributes, where

℘̇1 = Product quality,

℘̇2 = affordable,

℘̇3 = Recovery service.

We consider the SLDFSR, Ë : K̈ → G̈ given by Table 5.
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Table 5. SLDFSR.

Ë Numeric Values of SLDFNs

℘̇1:(〈0.684, 0.355, 0.356〉, 〈0.221, 0.325, 0.311〉)
D̈1 ℘̇2:(〈0.825, 0.836, 0.546〉, 〈0.226, 0.123, 0.421〉)

℘̇3:(〈0.826, 0.265, 0.489〉, 〈0.122, 0.323, 0.345〉)
℘̇1:(〈0.973, 0.543, 0.478〉, 〈0.246, 0.614, 0.112〉)

D̈2 ℘̇2:(〈0.822, 0.642, 0.789〉, 〈0.223, 0.524, 0.124〉)
℘̇3:(〈0.752, 0.275, 0.788〉, 〈0.122, 0.233, 0.574〉)

Consider a SLDF-subset Ÿ of G̈ given as

Ÿ = {(℘̇1, 〈0.837, 0.535, 0.785〉, 〈0.242, 0.242, 0.478〉), (℘̇2, 〈0.833, 0.635, 0.784〉, 〈0.634, 0.121, 0.211〉),
(℘̇3, 〈0.725, 0.526, 0.478〉, 〈0.625, 0.211, 111〉)}

By using Definition 19, we find the upper and lower approximations of Ÿ given by

T̈
Ë ⋆(Ÿ)(D̈1) =

∨

℘̇

[0.684, 0.825, 0.725] = 0.825, Z̈
Ë ⋆(Ÿ)(D̈1) =

∧

℘̇

[0.645, 0.635, 0.735] = 0.635,

S̈
Ë ⋆(Ÿ)(D̈1) =

∧

℘̇

[0.785, 0.784, 0.511] = 0.511, α
Ë ⋆(Ÿ)(D̈1) =

∨

℘̇

[0.221, 0.226, 0.122] = 0.226,

β
Ë ⋆(Ÿ)(D̈1) =

∧

℘̇

[0.325, 0.123, 0.323] = 0.123, η
Ë ⋆(Ÿ)(D̈1) =

∧

℘̇

[0.478, 0.421, 0.345] = 0.345

Now we can find other approximations of Ÿ as follows.

Ë
⋆(Ÿ) = {(D̈1, 〈0.825, 0.635, 0.511〉, 〈0.226, 0.123, 0.345〉), (D̈2, 〈0.837, 0.535, 0.478〉, 〈0.242, 0.233, 0.211〉)}

Ë⋆(Ÿ) = {(D̈1, 〈0.725, 0.635, 0.546〉, 〈0.242, 0.242, 0.311〉), (D̈2, 〈0.752, 0.635, 0.784〉, 〈0.246, 0.242, 0.124〉)}

Thus (Ë⋆(Ÿ), Ë ⋆(Ÿ)) is called SLDFSRS.

Theorem 1. For arbitrary Ÿ ,B ∈ SLDFS(G), the upper and lower approximation operators
Ë⋆(Ÿ), Ë⋆(B), Ë ⋆(Ÿ) and Ë ⋆(B) on SLDFS-approximation space (K̈, G̈, Ë ) satisfy the following
axioms:

(1) Ë⋆(Ÿ) =∼ Ë ⋆(∼ Ÿ),
(2) Ÿ ⊆ B ⇒ Ë⋆(Ÿ) ⊆ Ë⋆(B),
(3) Ë⋆(Ÿ ∩ B) = Ë⋆(Ÿ) ∩ Ë⋆(B),
(4) Ë⋆(Ÿ ∪ B) ⊇ Ë⋆(Ÿ) ∪ Ë⋆(B),
(5) Ë ⋆(Ÿ) =∼ Ë⋆(∼ Ÿ),
(6) Ÿ ⊆ B ⇒ Ë ⋆(Ÿ) ⊆ Ë ⋆(B),
(7) Ë ⋆(Ÿ ∪ B) = Ë ⋆(Ÿ) ∪ Ë ⋆(B),
(8) Ë ⋆(Ÿ ∩ B) ⊆ Ë ⋆(Ÿ) ∪ Ë ⋆(B).

The complement of Ÿ is represented by ∼ Ÿ .

Proof. (1) From Definition 19,
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∼ Ë
⋆(∼ Ÿ) = {(D̈ , 〈S̈

Ë ⋆(∼Ÿ)(D̈), 1− Z̈
Ë ⋆(∼Ÿ)(D̈), T̈

Ë ⋆(∼Ÿ)(D̈)〉, 〈η
Ë ⋆(∼Ÿ)(D̈), β

Ë ⋆(∼Ÿ)(D̈), α
Ë ⋆(∼Ÿ)(D̈)〉) : D̈ ∈ K̈}

= {(D̈ , 〈
∧

℘̇∈G̈
[(1− S̈

Ë
(D̈ , ℘̇)) ∨ S̈(∼Ÿ)(℘̇)], 1−

∧

℘̇∈G̈
[(1− Z̈

Ë
(D̈ , ℘̇)) ∨ Z̈(∼Ÿ)(℘̇)],

∨

℘̇∈G̈
[T̈

Ë
(D̈ , ℘̇) ∧ T̈(∼Ÿ)(℘̇)]〉,

〈
∧

℘̇∈G̈
[(η

Ë
(D̈ , ℘̇)) ∨ η(∼Ÿ)(℘̇)],

∧

℘̇∈G̈
[(β

Ë
(D̈ , ℘̇)) ∨ β(∼Ÿ)(℘̇)],

∨

℘̇∈G̈
[α

Ë
(D̈ , ℘̇) ∧ α(∼Ÿ)(℘̇)]〉)}

= {(D̈ , 〈
∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ T̈(Ÿ)(℘̇)],

∨

℘̇∈G̈
[(Z̈

Ë
(D̈ , ℘̇)) ∨ Z̈(Ÿ)(℘̇)],

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ S̈(Ÿ)(℘̇)]〉,

〈
∧

℘̇∈G̈
[(α

Ë
(D̈ , ℘̇)) ∨ α(Ÿ)(℘̇)],

∨

℘̇∈G̈
[(β

Ë
(D̈ , ℘̇)) ∨ β(Ÿ)(℘̇)],

∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ η(Ÿ)(℘̇)]〉)}

= {(D̈ , 〈T̈
Ë⋆(Ÿ)(D̈), Z̈

Ë⋆(Ÿ)(D̈), S̈
Ë⋆(Ÿ)(D̈)〉, 〈α

Ë⋆(Ÿ)(D̈), β
Ë⋆(Ÿ)(D̈), η

Ë⋆(Ÿ)(D̈)〉) : D̈ ∈ K̈}

(2) We can prove this by Definition 19.
(3) By Definition 19, we consider that

Ë⋆(Ÿ ∩ B) = {(D̈ , 〈T̈
Ë⋆(Ÿ∩B)(D̈), Z̈

Ë⋆(Ÿ∩B)(D̈), S̈
Ë⋆(Ÿ∩B)(D̈)〉, 〈α

Ë⋆(Ÿ∩B)(D̈), β
Ë⋆(Ÿ∩B)(D̈), η

Ë⋆(Ÿ∩B)(D̈)〉) : D̈ ∈ K̈}
= {(D̈ , 〈

∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ T̈(Ÿ∩B)(℘̇)],

∨

℘̇∈G̈
[Z̈

Ë
(D̈ , ℘̇) ∧ Z̈(Ÿ∩B)(℘̇)],

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ S̈(Ÿ∩B)(℘̇)]〉,

〈
∧

℘̇∈G̈
[(α

Ë
(D̈ , ℘̇)) ∨ α(Ÿ∩B)(℘̇)],

∨

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∧ β(Ÿ∩B)(℘̇)],

∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ η(Ÿ∩B)(℘̇)]〉)}

= {(D̈ , 〈
∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ (T̈Ÿ (℘̇) ∧ T̈B(℘̇))],

∨

℘̇∈G̈
[Z̈

Ë
(D̈ , ℘̇) ∧ (Z̈Ÿ (℘̇) ∨ Z̈B(℘̇))],

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ (S̈Ÿ (℘̇) ∨ S̈B(℘̇))]〉, 〈

∧

℘̇∈G̈
[(α

Ë
(D̈ , ℘̇)) ∨ (αŸ (℘̇) ∧ αB(℘̇))],

∨

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∧ (βŸ (℘̇) ∨ βB(℘̇))],

∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ (ηŸ (℘̇) ∨ ηB(℘̇))]〉)}

= {(D̈ , 〈(T̈
Ë⋆(Ÿ)(D̈) ∧ T̈

Ë⋆(B)(D̈)), (Z̈
Ë⋆(Ÿ)(D̈) ∨ Z̈

Ë⋆(B)(D̈)), (S̈
Ë⋆(Ÿ)(D̈) ∨ S̈

Ë⋆(B)(D̈))〉,
〈(α

Ë⋆(Ÿ)(D̈) ∧ α
Ë⋆(B)(D̈)), (β

Ë⋆(Ÿ)(D̈) ∨ β
Ë⋆(B)(D̈)), (η

Ë⋆(Ÿ)(D̈) ∨ η
Ë⋆(B)(D̈))〉) : D̈ ∈ K̈}

= Ë⋆(Ÿ) ∩ Ë⋆(B)

(4) By following the Definition 19, we can write that

Ë⋆(Ÿ ∪ B) = {(D̈ , 〈T̈
Ë⋆(Ÿ∪B)(D̈), Z̈

Ë⋆(Ÿ∪B)(D̈), S̈
Ë⋆(Ÿ∪B)(D̈)〉, 〈α

Ë⋆(Ÿ∪B)(D̈), β
Ë⋆(Ÿ∪B)(D̈), η

Ë⋆(Ÿ∪B)(D̈)〉) : D̈ ∈ K̈}
= {(D̈ , 〈

∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ T̈(Ÿ∪B)(℘̇)],

∨

℘̇∈G̈
[Z̈

Ë
(D̈ , ℘̇) ∧ Z̈(Ÿ∪B)(℘̇)],

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ S̈(Ÿ∪B)(℘̇)]〉,

〈
∧

℘̇∈G̈
[(α

Ë
(D̈ , ℘̇)) ∨ α(Ÿ∪B)(℘̇)],

∨

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∧ β(Ÿ∪B)(℘̇)],

∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ η(Ÿ∪B)(℘̇)]〉)}

⊇ {(D̈ , 〈
∧

℘̇∈G̈
[(1− T̈

Ë
(D̈ , ℘̇)) ∨ (T̈Ÿ (℘̇) ∨ T̈B(℘̇))],

∨

℘̇∈G̈
[Z̈

Ë
(D̈ , ℘̇) ∧ (Z̈Ÿ (℘̇) ∧ Z̈B(℘̇))],

∨

℘̇∈G̈
[S̈

Ë
(D̈ , ℘̇) ∧ (S̈Ÿ (℘̇) ∧ S̈B(℘̇))]〉, 〈

∧

℘̇∈G̈
[(α

Ë
(D̈ , ℘̇)) ∨ (αŸ (℘̇) ∨ αB(℘̇))],

∨

℘̇∈G̈
[β

Ë
(D̈ , ℘̇) ∧ (βŸ (℘̇) ∧ βB(℘̇))],

∨

℘̇∈G̈
[η

Ë
(D̈ , ℘̇) ∧ (ηŸ (℘̇) ∧ βB(℘̇))]〉)}

= {(D̈ , 〈(T̈
Ë⋆(Ÿ)(D̈) ∨ T̈

Ë⋆(B)(D̈)), (Z̈
Ë⋆(Ÿ)(D̈) ∧ Z̈

Ë⋆(B)(D̈)), (S̈
Ë⋆(Ÿ)(D̈) ∧ S̈

Ë⋆(B)(D̈))〉,
〈(α

Ë⋆(Ÿ)(D̈) ∨ α
Ë⋆(B)(D̈)), (β

Ë⋆(Ÿ)(D̈) ∧ β
Ë⋆(B)(D̈)), (η

Ë⋆(Ÿ)(D̈) ∧ η
Ë⋆(B)(D̈))〉) : D̈ ∈ K̈}

= Ë⋆(Ÿ) ∪ Ë⋆(B)

Thus Ë⋆(Ÿ ∪ B) ⊇ Ë⋆(Ÿ) ∪ Ë⋆(B).
The other axioms follows similar way.
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Proposition 3. For arbitrary Ÿ ,B ∈ SLDFS(G), the upper and lower approximation operators
Ë⋆(Ÿ), Ë⋆(B), Ë ⋆(Ÿ) and Ë ⋆(B) on SLDFS-approximation space (K̈, G̈, Ë ) satisfy the follow-
ing axioms:

(1) ∼ (Ë⋆(Ÿ) ∪ Ë⋆(B)) = Ë ⋆(∼ Ÿ) ∩ Ë ⋆(∼ B),
(2) ∼ (Ë⋆(Ÿ) ∪ Ë ⋆(B)) = Ë ⋆(∼ Ÿ) ∩ Ë⋆(∼ B),
(3) ∼ (Ë ⋆(Ÿ) ∪ Ë⋆(B)) = Ë⋆(∼ Ÿ) ∩ Ë ⋆(∼ B),
(4) ∼ (Ë ⋆(Ÿ) ∪ Ë ⋆(B)) = Ë⋆(∼ Ÿ) ∩ Ë⋆(∼ B),
(5) ∼ (Ë⋆(Ÿ) ∩ Ë⋆(B)) = Ë ⋆(∼ Ÿ) ∪ Ë ⋆(∼ B),
(6) ∼ (Ë⋆(Ÿ) ∩ Ë ⋆(B)) = Ë ⋆(∼ Ÿ) ∪ Ë⋆(∼ B),
(7) ∼ (Ë ⋆(Ÿ) ∩ Ë⋆(B)) = Ë⋆(∼ Ÿ) ∪ Ë ⋆(∼ B),
(8) ∼ (Ë ⋆(Ÿ) ∩ Ë ⋆(B)) = Ë⋆(∼ Ÿ) ∪ Ë⋆(∼ B).

Proof. Proof is obvious.

Theorem 2. For SLDFS-approximation space (K̈, G̈, Ë ), if Ë is serial, then Ë⋆(Ÿ) and Ë ⋆(Ÿ)
satisfy the following:

(1) Ë⋆(∅) = ∅, Ë ⋆(G̈) = G̈,
(2) Ë⋆(Ÿ) ⊆ Ë ⋆(Ÿ), ∀ Ÿ ∈ SLDFS(G).

Proof. Proof is obvious by following Definition 19.

Definition 20. Let Ÿ ∈ SLDFS(K̈) and let Ë⋆(Ÿ), Ë ⋆(Ÿ) are lower and upper SLDFSR-
approximation operators. Then ring sum operation of Ë⋆(Ÿ) and Ë ⋆(Ÿ) is scripted as

Ë⋆(Ÿ)⊕ Ë
⋆(Ÿ) = {(D̈ , 〈T̈

Ë⋆(Ÿ)(D̈) + T̈
Ë ⋆(Ÿ)(D̈)− (T̈

Ë⋆(Ÿ)(D̈)× T̈
Ë ⋆(Ÿ)(D̈)), Z̈

Ë⋆(Ÿ)(D̈)× Z̈
Ë ⋆(Ÿ)(D̈),

S̈
Ë⋆(Ÿ)(D̈)× S̈

Ë ⋆(Ÿ)(D̈)〉, 〈1− (1− α
Ë⋆(Ÿ)(D̈))(1− α

Ë ⋆(Ÿ)(D̈)), β
Ë⋆(Ÿ)(D̈)× β

Ë ⋆(Ÿ)(D̈),

(η
Ë⋆(Ÿ)(D̈) + β

Ë⋆(Ÿ)(D̈))(η
Ë ⋆(Ÿ)(D̈) + β

Ë ⋆(Ÿ)(D̈))− β
Ë⋆(Ÿ)(D̈)× β

Ë ⋆(Ÿ)(D̈)〉) : D̈ ∈ K̈}

6. Application of SLDFSRSs towards the Selection of Appropriate Clean
Energy Technology

Ocean energy, biomass energy, wind energy, geothermal energy, and hydropower
energy are all examples of clean energy technologies. These innovations are massive and
are used to provide energy to the entire globe. In this section, we present an application
that uses SLDFSRSs to select the most reliable and appropriate clean energy technology.
We intended to develop two new algorithms.

6.1. Numerical Example

We suppose that a country wants to initiate an appropriate clean energy technology
program for the development and to reach the industrial and social needs. They set a
committee consisting on some energy and economical experts to construct a list of some
clean energy technologies systems. The board of committee construct the set of feasible
elements given as K̈ = {D̈1, D̈2, D̈3, D̈4, D̈5, D̈6}, where

D̈1 = “Wave power plant”,

D̈2 = “Solar power plant”,

D̈3 = “Biomass power plant”,

D̈4 = “hydro power plant”,

D̈4 = “Geothermal power plant”,

D̈4 = “Wind power plant”.

Let G̈ = {℘̇1, ℘̇2, ℘̇3, ℘̇4} be the set of attributes or decision parameters, where
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℘̇1 = “Environmental: pollutant emission, land requirement, requirement for waste disposal”,

℘̇2 = “Socio-political: Government policy, labor impact, social acceptance”,

℘̇3 = “Economic: implementation cost, economic value, affordability”,

℘̇4 = “Technological and quality of energy resource: continuity and predictability of the performance,

risk, local technical knowledge, sustainability, durability”.

The sub-criterion for attributes can be further categorized as follows:

• “Environmental: pollutant emission, land requirement, requirement for waste dis-
posal” means that the alternative is “friendly”, “average” or may be “not-friendly” for
the environment.

• “Socio-political: Government policy, labor impact, social acceptance” means that the
alternative has “maximum”, “average” or “minimum” acceptance.

• “Economic: implementation cost, economic value, affordability” means that the
alternative is “expensive”, “affordable” or may be “cheap”.

• “Technological and quality of energy resource: continuity and predictability of the
performance risk, local technical knowledge, sustainability, durability” means that the
alternative is “highly”, “medium” or may be “low” technical.

The tabular representation of these sub-criteria can be seen in Table 6.

Table 6. characteristics of selected decision variables.

Decision Variables Characteristics for SLDFSR

Environmental: land requirement, pollutant emission,
requirement for waste disposal (〈membership, abstinence, non-membership〉, 〈friendly, average, not-friendly〉)

Socio-political: Government policy,
social acceptance, labor impact (〈membership, abstinence, non-membership〉, 〈maximum, average, minimum〉)
Economic: implementation cost,
economic value, affordability (〈membership, abstinence, non-membership〉, 〈expensive, affordable, cheap〉)
Technological and quality of energy resource:
continuity and predictability of the performance risk, (〈membership, abstinence, non-membership〉, 〈high, medium, low〉)
sustainability, local technical knowledge, durability

We proposed two new algorithms (Algorithms 1 and 2) by using SLDFSRSs for the
selection of best clean energy technology. The graphical view of both algorithms is given in
Figure 11.

Figure 11. Flow chart diagram of Algorithms 1 and 2.
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Algorithm 1 Selection of a best clean energy technology by using SLDFSRSs
Input:
1. Consider K̈ as an initial universe.
2. Consider G̈ as a set of attributes.
Construction:
3. Executing the efficiency of DMs, build a SLDFSR Ë : K̈ → G̈.
4. Compute SLDF-subset B of G̈ as an optimal normal decision set.
Calculation:
5. Find the SLDFSR-approximation operators Ë⋆(B) and Ë ⋆(B) as lower and upper ap-
proximations with the help of Definition 19.
6. Find the ring sum Ë⋆(B)⊕ Ë ⋆(B) and the choice SLDFS.
Output:
7. By using Definitions 10, 12, 14, calculate score, quadratic score and expectation score of
every alternative in Ë⋆(B)⊕ Ë ⋆(B).
8. By using Definition 16, find the ranking of alternatives.
Final decision:
9. An alternative with highest score function value is the required optimal alternative.

Algorithm 2 Selection of a best clean energy technology by using SLDFSRSs
Input:
1. Consider K̈ as a universe of discourse.
2. Consider G̈ as a set of attributes.
Construction:
3. Executing the efficiency of DMs, construct a SLDFSR Ë : K̈ → G̈.
4. Find SLDF-subset B of G̈ as an optimal normal decision set.
Calculation:
5. Find the SLDFSR-approximation operators Ë⋆(B) and Ë ⋆(B) as lower and upper ap-
proximations by using Definition 19.
6. For “N ” number of experts, estimate upper and lower reducts, respectively.
Output:
7. Form calculated “2N ” reducts, we get “2N ” crisp subsets of the reference set K̈.
The subsets can be constructed by using the “YES” and “NO” logic. Then “YES” gives the
optimal object.
8. Find the core by calculating the intersection of all reducts.
Final decision:
9. An alternative with highest score function value is the required optimal alternative.

6.1.1. Calculations by Algorithm 1

According to the environment of land and considering some important factors, the ex-
perts of committee give their preferences to the alternatives corresponding to the selected
criteria. The verbal information can be converted into the SLDFNs by using linguistic term
logic. The indiscernibility relation is “the selection of best clean energy technology”. This
relation can be observed by SLDFSR, Ë : K̈ → G̈ given as Table 7.

Thus Ë be a SLDFSR on K̈ × G̈. This relation gives us the numeric values in the form
of SLDFNs of each alternative corresponding to every decision variable. For example,
for the alternative D̈1 the decision variable ℘̇1 (“Environmental: pollutant emission, land
requirement, requirement for waste disposal”) has numeric value (〈0.738, 0.381.0.421〉,
〈0.431, 0.211, 0.178〉). This value shows that the alternative D̈1 is 73.8% suitable for the en-
vironment, 38.1% is abstinence and 42.1% is its falsity value. The triplet 〈0.431, 0.211, 0.178〉
represents the reference parameters for the satisfaction, abstinence and dissatisfaction
grades, where we can observe that alternative D̈1 is 43.1% friendly, 21.1% average and
17.8% is not friendly for environment.
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Table 7. SLDFSR.

Ë SLDFNs SLDFNs

℘̇1 : (〈0.738, 0.381, 0.421〉, 〈0.431, 0.211, 0.178〉) ℘̇2 : (〈0.631, 0.521, 0.438〉, 〈0.318, 0.214, 0.314〉)
D̈1 ℘̇3 : (〈0.652, 0.456, 0.531〉, 〈0.317, 0.312, 0.217〉) ℘̇4 : (〈0.748, 0.638, 0.456〉, 〈0.217, 0.318, 0.231〉)

℘̇5 : (〈0.731, 0.457, 0.431〉, 〈0.412, 0.213, 0.118〉)
℘̇1 : (〈0.218, 0.891, 0.731〉, 〈0.117, 0.213, 0.417〉) ℘̇2 : (〈0.231, 0.873, 0.731〉, 〈0.213, 0.317, 0.319〉)

D̈2 ℘̇3 : (〈0.117, 0.687, 0.734〉, 〈0.121, 0.238, 0.247〉) ℘̇4 : (〈0.218, 0.787, 0.634〉, 〈0.118, 0.413, 0.312〉)
℘̇5 : (〈0.231, 0.891, 0.896〉, 〈0.213, 0.378, 0.312〉)
℘̇1 : (〈0.456, 0.431, 0.567〉, 〈0.238, 0.241, 0.268〉) ℘̇2 : (〈0.576, 0.513, 0.417〉, 〈0.238, 0.241, 0.273〉)

D̈3 ℘̇3 : (〈0.451, 0.532, 0.511〉, 〈0.241, 0.238, 0.211〉) ℘̇4 : (〈0.518, 0.417, 0.519〉, 〈0.311, 0.217, 0.218〉)
℘̇5 : (〈0.548, 0.471, 0.436〉, 〈0.247, 0.253, 0.261〉)
℘̇1 : (〈0.731, 0.341, 0.421〉, 〈0.238, 0.347, 0.238〉) ℘̇2 : (〈0.678, 0.431, 0.373〉, 〈0.341, 0.231, 0.241〉)

D̈4 ℘̇3 : (〈0.643, 0.456, 0.321〉, 〈0.311, 0.213, 0.238〉) ℘̇4 : (〈0.731, 0.431, 0.321〉, 〈0.343, 0.231, 0.211〉)
℘̇5 : (〈0.638, 0.411, 0.311〉, 〈0.213, 0.217, 0.231〉)
℘̇1 : (〈0.917, 0.211, 0.118〉, 〈0.421, 0.117, 0.115〉) ℘̇2 : (〈0.998, 0.321, 0.211〉, 〈0.537, 0.117, 0.113〉)

D̈5 ℘̇3 : (〈0.915, 0.113, 0.114〉, 〈0.631, 0.113, 0.112〉) ℘̇4 : (〈0.912, 0.321, 0.211〉, 〈0.541, 0.211, 0.114〉)
℘̇5 : (〈0.999, 0.112, 0.121〉, 〈0.711, 0.113, 0.112〉)
℘̇1 : (〈0.513, 0.538, 0.641〉, 〈0.213, 0.341, 0.347〉) ℘̇2 : (〈0.432, 0.546, 0.538〉, 〈0.341, 0.348, 0.211〉)

D̈6 ℘̇3 : (〈0.613, 0.438, 0.541〉, 〈0.217, 0.343, 0.331〉) ℘̇4 : (〈0.447, 0.577, 0.589〉, 〈0.331, 0.238, 0.341〉)
℘̇5 : (〈0.438, 0.561, 0.437〉, 〈0.321, 0.218, 0.117〉)

The set B is SLDF-subset of G̈ and scripted as follows

B = {(℘̇1, 〈0.738, 0.421, 0.337〉, 〈0.421, 0.213, 0.318〉), (℘̇2, 〈0.918, 0.211, 0.238〉, 〈0.631, 0.113, 0.117〉),
(℘̇3, 〈0.213, 0.891, 0.793〉, 〈0.117, 0.438, 0.321〉), (℘̇4, 〈0.541, 0.538, 0.477〉, 〈0.218, 0.347, 0.321〉),
(℘̇5, 〈0.638, 0.432, 0.337〉, 〈0.321, 0.211, 0.118〉)}.

The lower and upper approximations of LDFS B on LDFSR Ë are as follows.

Ë
⋆(B) = {(D̈1, 〈0.738, 0.421, 0.337〉, 〈0.421, 0.213, 0.118〉), (D̈2, 〈0.231, 0.211, 0.269〉, 〈0.213, 0.213, 0.312〉),

(D̈3, 〈0.576, 0.487, 0.433〉, 〈0.247, 0.241, 0.261〉), (D̈4, 〈0.731, 0.569, 0.579〉, 〈0.341, 0.217, 0.231〉),
(D̈5, 〈0.918, 0.679, 0.789〉, 〈0.537, 0.117, 0.117〉, (D̈6, 〈0.513, 0.439, 0.359〉, 〈0.341, 0.218, 0.118〉)}

Ë⋆(B) = {(D̈1, 〈0.348, 0.538, 0.531〉, 〈0.218, 0.318, 0.231〉), (D̈2, 〈0.769, 0.687, 0.734〉, 〈0.121, 0.347, 0.318〉),
(D̈3, 〈0.541, 0.532, 0.511〉, 〈0.241, 0.238, 0.268〉), (D̈4, 〈0.357, 0.456, 0.337〉, 〈0.311, 0.231, 0.238〉),
(D̈5, 〈0.213, 0.321, 0.211〉, 〈0.421, 0.211, 0.115〉, (D̈6, 〈0.387, 0.538, 0.541〉, 〈0.217, 0.343, 0.321〉)}

Ë⋆(B)⊕ Ë
⋆(B) = {(D̈1, 〈0.829, 0.257, 0.288〉, 〈0.547, 0.067, 0.114〉), (D̈2, 〈0.822, 0.144, 0.197〉, 〈0.308, 0.073, 0.276〉),

(D̈3, 〈0.805, 0.259, 0.221〉, 〈0.428, 0.057, 0.197〉), (D̈4, 〈0.827, 0.259, 0.195〉, 〈0.545, 0.050, 0.197〉),
(D̈5, 〈0.935, 0.217, 0.166〉, 〈0.731, 0.024, 0.140〉, (D̈6, 〈0.701, 0.236, 0.194〉, 〈0.484, 0.074, 0.149〉)}

Now we calculate the score values, quadratic score values and expectation score
values of alternatives in Ë⋆(B)⊕ Ë ⋆(B) by using Definitions 10, 12 and 14. The calculated
data with final ranking is given in Table 8.

Table 8. Ranking of alternatives for different score values.

LDFS D̈1 D̈2 D̈3 D̈4 D̈5 D̈6 Ranking Rank Orders Final Decision

P (SF) 0.325 0.259 0.249 0.354 0.559 0.266 D̈5 ≻ D̈4 ≻ D̈1 ≻ D̈6 ≻ D̈2 ≻ D̈3 ≤(P,ψ) D̈5

J (QSF) 0.409 0.314 0.336 0.423 0.656 0.302 D̈5 ≻ D̈4 ≻ D̈1 ≻ D̈3 ≻ D̈2 ≻ D̈6 ≤(J,φ) D̈5

M (ESF) 0.775 0.739 0.749 0.784 0.853 0.755 D̈5 ≻ D̈4 ≻ D̈1 ≻ D̈6 ≻ D̈3 ≻ D̈2 ≤(M,A) D̈5
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From Table 8 we can observe that the alternative D̈5, which is “geothermal power
plant” is most suitable alternative for the final decision. The bar chart of ranking results for
alternatives is given in Figure 12.

Figure 12. Bar chart of alternatives under SLDFSRS for SF (P), QSF (J) and ESF (M).

6.1.2. Calculations by Algorithm 2

The initial 5 steps of Algorithm 1 are same as Algorithm 2. Now we compute the
upper and lower reducts from upper and lower approximations of SLDFS. Consider a
committee of three experts given as

Expert X

Expert Y

Expert Z

The reducts from approximations can be constructed by using the following terms.

T̈K̈ = Satisfaction grade,

Z̈K̈ = Abstinence grade,

S̈K̈ = Dissatisfaction grade,

αK̈ = Reference parameter corresponding to the satisfaction grade,

βK̈ = Reference parameter corresponding to the abstinence grade,

ηK̈ = Reference parameter corresponding to the dissatisfaction grade,

M = Expectation score function value of SLDFN,

L̂ = Ranking given by experts to the alternatives from crisp set {0, 1}

L
∗ = Selection of alternative by using ”YES” or “NO”.

The final decision is based on the L̂ and L ∗ given in Table 9

Table 9. The criteria for the final decision (F.D).

L̂ L
∗ F.D

0 NO NO
1 YES YES
0 YES NO
1 NO NO

For expert-X, the upper reduct of upper approximation Ë ⋆(B) (calculated in Algorithm 1)
of SLDFS B is given as Table 10. The average of score values of all the alternatives for Ë ⋆(B)
is 0.599.
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Table 10. Upper reduct for expert-X (UX) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L
∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 1 M > 0.599→ YES YES
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 0 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 1 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 0 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 1 M > 0.599→ YES YES

This implies that UX = {D̈1, D̈5, D̈6}. For expert-X, the lower reduct of lower approxi-
mation Ë⋆(B) (calculated in Algorithm 1) of SLDFS B is given as Table 11. The average of
score values of all the alternatives for Ë⋆(B) is 0.528.

Table 11. Lower reduct for expert-X (LX) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L
∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 1 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 0 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 1 M > 0.528→ YES YES
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 0 M > 0.528→ YES NO
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 1 M < 0.528→ NO NO

This implies that LX = {D̈3, D̈5}. For expert-Y, the upper reduct of upper approxima-
tion Ë ⋆(B) (calculated in Algorithm 1) of SLDFS B is given as Table 12.

Table 12. Upper reduct for expert-Y (UY) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L ∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 0 M > 0.599→ YES NO
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 1 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 0 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 1 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 1 M > 0.599→ YES YES

This implies that UY = {D̈5, D̈6}. For expert-Y, the lower reduct of lower approxima-
tion Ë⋆(B) (calculated in Algorithm 1) of SLDFS B is given as Table 13.

Table 13. Lower reduct for expert-Y (LY) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L
∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 0 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 1 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 0 M > 0.528→ YES NO
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 1 M > 0.528→ YES YES
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 1 M < 0.528→ NO NO

This implies that LY = {D̈4, D̈5}. For expert-Z, the upper reduct of upper approxima-
tion Ë ⋆(B) (calculated in Algorithm 1) of SLDFS B is given as Table 14.
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Table 14. Upper reduct for expert-Z (UZ) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L
∗ F.D

D̈1 0.738 0.479 0.544 0.421 0.213 0.118 0.634 1 M > 0.599→ YES YES
D̈2 0.231 0.211 0.269 0.213 0.213 0.312 0.573 0 M < 0.599→ NO NO
D̈3 0.576 0.487 0.433 0.247 0.241 0.261 0.566 1 M < 0.599→ NO NO
D̈4 0.731 0.569 0.579 0.341 0.217 0.231 0.579 1 M < 0.599→ NO NO
D̈5 0.918 0.679 0.789 0.537 0.117 0.117 0.625 1 M > 0.599→ YES YES
D̈6 0.513 0.439 0.359 0.341 0.218 0.118 0.619 0 M > 0.599→ YES NO

This implies that UZ = {D̈1, D̈5}. For expert-Z, the lower reduct of lower approxima-
tion Ë⋆(B) (calculated in Algorithm 1) of SLDFS B is given as Table 15.

Table 15. Lower reduct for expert-Z (LZ) from Ë ⋆(B).

(UX) T̈K̈ Z̈ K̈ S̈K̈ αK̈ βK̈ ηK̈ M L̂ L
∗ F.D

D̈1 0.348 0.538 0.531 0.218 0.318 0.231 0.491 1 M < 0.528→ NO NO
D̈2 0.769 0.687 0.734 0.121 0.347 0.318 0.467 0 M < 0.528→ NO NO
D̈3 0.541 0.532 0.511 0.241 0.238 0.268 0.538 1 M > 0.528→ YES YES
D̈4 0.357 0.456 0.337 0.311 0.231 0.238 0.567 1 M > 0.528→ YES YES
D̈5 0.213 0.321 0.211 0.421 0.211 0.115 0.629 1 M > 0.528→ YES YES
D̈6 0.387 0.538 0.541 0.217 0.343 0.321 0.476 0 M < 0.528→ NO NO

This implies that LZ = {D̈3, D̈4, D̈5}. Now we calculate the core by taking the intersec-
tion of all upper and lower reducts for all three experts.

Core = UX ∩ LX ∩UY ∩ LY ∩UZ ∩ LZ = {D̈5}
This means that “D̈5” (geothermal power plant) is the most suitable alternative for the

final decision.

6.2. Advantages, Superiority, and Novelty of Proposed Algorithms

In this subsection, we discuss the advantages, superiority, and novelty of proposed
algorithms.

1. Proposed Algorithms 1 and 2 are designed to deal with real-life problems based on
novel hybrid approach of spherical linear Diophantine fuzzy soft rough sets (SLDF-
SRSs) and to utilize the characteristics of existing models like soft sets, rough sets,
and spherical linear Diophantine fuzzy sets. A hybrid model is always more efficient,
powerful and reliable to deal with uncertain real-life problems. A hybrid model can
be utilized to handle multiple issues, multiple criterion, and multiple paradigms.

2. Algorithms 1 and 2 are developed to examine the role of reference parameters in
spherical linear Diophantine fuzzy sets. The existing algorithms based on PFSs, SFSs,
T-SFSs, and neutrosophic sets cannot deal with parameterizations. The proposed
algorithm provide freedom to the decision-maker(DM) to select grades/indexes
without any restriction. The dynamic features of reference parameters can classify
and effectively resolve uncertain multi-criteria decision-making (MCDM) problems.

3. The proposed approach is efficient and suitable for any kind of uncertain information.
The space of existing theories such as PFSs, SFSs, T-SFSs, and neutrosophic sets can be
enhanced by proposed model of spherical linear Diophantine fuzzy sets. This model
increases the valuation space of three (satisfaction, abstinence, and dissatisfaction)
indexes/degrees. The algorithms are simple to understand, easy to apply, and efficient
on diverse kinds of alternatives and attributes.

4. Various score functions has been established by Feng et al. [66] for IFSs. We developed
three different kinds of score functions named as “score function” (SF), “quadratic
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score function” (QSF), and “expectation score function” (ESF). We also establish their
associated accuracy functions to compare the SLDFNs. The slight difference in order-
ing of optimal results is due to diverse strategies of score functions in the calculations.
Table 8 implies the difference in ordering for the worst alternatives. Although it is
fascinating to examine that final result from both algorithms are equivalent for all
varieties of score functions.

6.3. Comparison Analysis

The comparison of proposed model SLDFSRSs and Algorithms 1 and 2 with some
existing models and algorithms is given to discuss advantage, superiority, and validity of
proposed approach. Table 16 represents the characteristics of suggested SLDFSRSs and
ranking of alternatives computed by different techniques.

For two proposed algorithms based on SLDFSRSs and its SLDFS-approximation
spaces, the final results for the decision-making problem of clean energy technique selection
is given in Table 17.

The optimal alternative computed by the both algorithms is exactly same. Hence the
alternative D̈1 (geothermal power plant) is the optimal selected alternative.

Table 16. Comparison analysis of proposed concepts with existing ideas.

Concepts Satisfaction Grade Abstinence Grade Dissatisfaction Grade Refusal Grade

Fuzzy set [1] X × × ×
Neutrosophic set [10] X X X ×

Rough set [36] × × × ×
Soft set [34] × × × ×

Picture fuzzy set [11–13] X X X X

Spherical fuzzy set [14] X X X X

T-spherical fuzzy set [14] X X X X

LDFS [69] X X X ×
SLDFS (proposed) X X X X

SLDFSS (proposed) X X X X

SLDFSRS (proposed) X X X X

Concepts
Reference Upper and Lower Boundary Multi-Valued

Parameterizations Approximations Region Parameterizations

Fuzzy set [1] × × × ×
Neutrosophic set [10] × × × ×

Rough set [36] × X X ×
Soft set [34] × × × X

Picture fuzzy set [11–13] × × × ×
Spherical fuzzy set [14] × × × ×

T-spherical fuzzy set [14] × × × ×
LDFS [69] X × × ×

SLDFS (proposed) X × × ×
SLDFSS (proposed) X × × X

SLDFSRS (proposed) X X X X
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Table 17. Comparison of results obtained from proposed algorithms.

Proposed Algorithm Score Function Core Optimal Decision

Algorithm 1 P × D̈5
Algorithm 1 J × D̈5
Algorithm 1 M × D̈5
Algorithm 2 × X D̈5

7. Conclusions

We studied certain fuzzy sets including PiFSs, SFSs, T-SFSs, and NSs. These extension
have a large number of applications in solving real-life problems, and many researchers
have been successfully applied these extensions. Unfortunately, these extensions have some
strict limitations on indexes/grades. In order to deal with such problems, we introduced
a robust hybrid model named as spherical linear diophantine fuzzy set which fusion of
spherical linear Diophantine fuzzy set (SLDFS), soft set, and rough set. The addition of
reference parameters in SLDFS provide freedom to the decision makers (DMs) for the
selection of indexes/grades. A SLDFS is an efficient model to deal with uncertainties due to
addition of reference parameters αK̈, βK̈ and ηK̈. We presented the graphical representation
of SLDFS to compare it with some existing extensions of fuzzy sets. We introduced various
score functions and accuracy functions to compare SLDFNs. We prolonged the idea of
SLDFSs to SLDFSRSs by joining SLDFSs, rough sets, and soft sets. We investigated some
new results for upper and lower approximation operators of SLDFSRSs. We developed
two new algorithms for multi-criteria decision making (MCDM) based on SLDFSRSs. We
presented a brief association among the recommended and existing theories and examined
the strong impact of proposed structures to the MCDM problems. To resolve the real-world
problems these findings will be fruitful and supportive for the scholars and decision-
makers. In future, we will investigate the real-life problems associated with the ideas based
on SLDF-graphs, SLDF-topology, and SLDF-information measures.
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Abstract: As q-rung orthopair fuzzy set (q-ROFS) theory can effectively express complex fuzzy
information, this study explores its application to social network environments and proposes a social
network group decision-making (SNGDM) method based on the q-ROFS. Firstly, the q-rung orthopair
fuzzy value is used to represent the trust relationships between experts in the social network, and a
trust q-rung orthopair fuzzy value is defined. Secondly, considering the decreasing and multipath of
trust in the process of trust propagation, this study designs a trust propagation mechanism by using
its multiplication operation in the q-ROFS environment and proposes a trust q-ROFS aggregation
approach. Moreover, based on the trust scores and confidence levels of experts, a new integration
operator called q-rung orthopair fuzzy-induced ordered weighted average operator is proposed to
fuse experts’ evaluation information. Additionally, considering the impact of consensus interaction
on decision-making results, a consensus interaction model based on the q-ROF distance measure
and trust relationship is proposed, including consistency measurement, identification of inconsistent
expert decision-making opinions and a personalized adjustment mechanism. Finally, the SNGDM
method is applied to solve the problem of evaluating online teaching quality.

Keywords: q-ROFS; trust propagation model; confidence level; consensus interaction model; evalua-
tion of online teaching quality

MSC: 03B52; 47S40; 90B50

1. Introduction

Online teaching is a new Internet-based teaching mode that can achieve the purpose
of teaching through online teaching platforms without face-to-face interactions. Although
online teaching is not currently the main method of teaching, it can be used as an alter-
native emergency teaching mode. For example, the COVID-19 pandemic that occurred
at the end of 2019 forced many schools to suspend the traditional classroom-based teach-
ing mode to prevent the spread of the virus. At this point, the online teaching mode
largely solves the problem of delays in teaching and ensures the progress of instruction.
However, online teaching has its own problems. For example, too many students in the
class will cause network freezes and instability of the teaching platform. At the same
time, teachers and students cannot communicate face-to-face, and teachers cannot address
students’ questions in a timely manner. The evaluation of classroom teaching quality can
help teachers to fully understand the problems existing in the teaching process and can
enhance teachers’ teaching ability and improve the quality of teaching. Therefore, it is
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necessary to propose a scientific and effective method to evaluate the quality of online
teaching. The problem of evaluating teaching quality is essentially a multi-attribute group
decision-making (MAGDM) problem, because the evaluation process involves multiple
evaluation indices, multiple decision-making experts, and multiple decision-making ex-
perts that provide the corresponding evaluation information that is used to arrive at a final
conclusion regarding the quality level. At present, many scholars have studied the problem
of evaluating teaching quality and have proposed various evaluation methods, including
offline and online assessment methods. Targeting the imperfect evaluation system used
to measure the quality of teaching in the social sports specialty, Liu [1] proposed a novel
MAGDM method based on the intuitionistic fuzzy (IF)-TOPSIS method. Carlucci et al. [2]
proposed a framework for teaching and curriculum quality evaluation combining u-control
chart and fuzzy weight ABC analysis to assess students’ evaluation of higher education
teaching quality. Using a fuzzy comprehensive evaluation method and combining a fuzzy
analytic hierarchy process (AHP) to put forward a new teaching performance evaluation
framework, Chen et al. [3] proposed five sub-evaluation factors: planning and preparation,
communication and interaction, teaching for learning, managing learning environment,
student evaluation, and professionalism. Zhang et al. [4] proposed a new evaluation
method based on heterogeneous linguistic information for the MAGDM problem faced in
the evaluation of classroom teaching quality. Yu [5] considered teaching attitude, teaching
ability, teaching content, and teaching feedback as evaluation indices and proposed a
group decision-making (GDM) method based on triangular IF to deal with the evaluation
of teaching quality in colleges and universities. Yang and Xiang [6] proposed a multi-
attribute decision-making (MADM) method based on the power aggregation operator of
fuzzy uncertain linguistic information to solve the problem of assessing teaching quality in
higher education. Specifically, the quality of music teaching in colleges and universities
was evaluated on four factors: education and teaching services, education and teaching
management services, logistics management services, and students’ further development
services. Considering that the nature of evaluating the quality of teaching is very fuzzy and
imprecise, Peng and Dai [7] used q-rung orthopair fuzzy value (q-ROFV) to deal with its
uncertainty, and used teaching attitude, teaching ability, teaching content, teaching method
and teaching effect as evaluation indices; two algorithms based on distance evaluation and
multi-parameter similarity measure based on q-rung orthopair fuzzy set (q-ROFS) were
proposed to solve the MADM problem of evaluating classroom teaching quality. Yu [8]
improved AprioriTid algorithm and constructed an online evaluation model of teaching
quality according to teaching needs and evaluated English online teaching quality through
data mining. Liu et al. [9] proposed a new MAGDM method based on the Choquet integral
operator and multi-granularity probabilistic linguistic term set, and used it to solve the
problem of evaluating the quality of online teaching. Lin et al. [10] proposed an extended
linguistic MAGDM framework to solve the problem of evaluating the quality of online
teaching. Thus, we can see that existing research mainly used MAGDM/MADM method
to solve the problem. As a scientific and effective decision-making method in a com-
plex environment, the MAGDM considers the backgrounds and experiences of multiple
decision-making experts, which avoids the subjectivity and one-sidedness presented by a
single decision-making expert [11–13].

The traditional evaluation of offline teaching quality has gained increasing attention;
however, few studies have focused on the evaluation of online teaching quality. Moreover,
in the process of evaluating teaching quality, the influence of the social network relation-
ships between decision-making experts on the evaluation results should be considered.
The emergence of the Web2.0 mode has brought decision-making experts closer, and the
corresponding social network relationships among experts have also become increasingly
prominent. The influence of the Web2.0 on GDM cannot be ignored. Thus, this study
combines the social network analysis (SNA) method with GDM method and proposes a
new q-ROFS social network group decision-making (SNGDM) method to solve the problem
of evaluating online teaching quality.
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At present, GDM methods based on social networks mainly focus on the repre-
sentation of trust, the propagation/aggregation operator of trust, the method of ob-
taining expert weights, and consensus interaction models (CIMs). The first study fo-
cused on the representation of trust. There are discrete values [14–16], continuous val-
ues [17,18], fuzzy logic values (including interval values [19–21], intuitionistic fuzzy values
(IFVs) [22–25], Pythagorean fuzzy values (PFVs) [26], interval-valued Pythagorean fuzzy
values (IVPFVs) [27]), and other trust representations. The second is the trust propaga-
tion method. At present, T-norm and T-conorm are used to design trust propagation
operators to ensure a decrease in trust and an increase in distrust during the propagation
process [24,28,29]. Some authors have designed trust propagation operators based on
the Uninorm (U) operator [30,31]. This research on trust aggregation operators is mainly
focused on studying the trust relationship integration of multiple propagation paths and
the selection of the shortest path. Most researchers select the shortest path trust relationship
as the final trust aggregation result, or assign different weights to paths of different lengths,
or assign the same weights to paths of the same length, and then integrate the trust rela-
tionship on the corresponding paths to obtain the final trust evaluation value [24,30,32,33].
The third research field is on the method of obtaining the weights of experts, which is
based mainly on the linguistic quantifier Q [30,32,34] and the SNA method [24,28,35,36]
(centrality theory, etc.) to compute the weights of experts. The fourth research topic
is the CIM; at present, the CIM focuses mainly on the identification of inconsistent ex-
perts and the adjustment of inconsistent expert decision-making opinions [28,32,34,37,38].
In considering of the differences in backgrounds and experience among experts, it is diffi-
cult for them to reach an agreement on the initial opinions of the GDM process. In other
words, experts do not reach a consensus on decision-making opinions, which will affect
the final evaluation and decision-making results, so experts must reach a consensus before
making a final decision.

However, there are some defects in the above-mentioned social network decision-
making methods: (1) using discrete values, continuous values, and interval values to
describe trust information does not consider the fuzziness, uncertainty, and subjectivity
of trust. Although IFV and PFV can describe the fuzziness and uncertainty of trust infor-
mation, they express that the scope of fuzzy information is limited (i.e., the membership
and non-membership grades are satisfied: 0 ≤ µ + υ ≤ 1 or 0 ≤ µ2 + υ2 ≤ 1); (2) using
the U operator to design trust propagation operators will increase the trust value after
propagation, which violates the principle of trust decreasing during trust propagation.
At the same time, when integrating trust information, the selection of the shortest prop-
agation path will cause a loss of trust information. Assigning the same path weight to
the same length of path will reduce the accuracy of the trust value after propagation;
(3) solving for the weights of experts ignores the importance of the confidence levels of
experts. According to the results of Guha and Chakraborty [39], the evaluation of alter-
natives by experts is related to the confidence levels of experts. Therefore, in the real
decision-making process, we cannot ignore the confidence levels of experts; (4) in the
current research on the CIM, the adjustment of expert opinions tends to be based on group
preferences, without considering the impact of trust relationships among experts on the
adjustment of expert opinions in the social networks. In fact, the experts who need to
adjust their opinions are more willing to believe the experts who have direct trust relation-
ships with them than the others. In the study of social network relationships, consider
the social network of trust relationships between individuals as a trust relationship net-
work [24,29,32]. The emergence of this network of trust relationships in decision-making
has a significant impact on the consensus among experts.

Therefore, according to the analysis of the above four defects, this study proposes
a new SNGDM method within the q-ROFS situation to solve the problem of evaluating
online teaching quality. Its innovation is reflected in the following four aspects:

(1) In view of the superiority of q-ROFV in expressing fuzzy information, this study
uses the q-ROFV to describe the trust relationship among experts in the process of
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evaluating online teaching quality, which compensates for the limitations of other
data to express trust information, to improve the reliability of decision-making results.

(2) In view of the diminishing principle of trust in the process of propagation, this study
uses the multiplication operation of q-ROFS to design the trust propagation operator
to ensure a decline in trust.

(3) Considering the importance of the confidence levels of experts in evaluating informa-
tion, this study introduces the concept of confidence level in the q-ROF environment
and uses it to obtain the weights of experts.

(4) A CIM based on trust relationships is proposed to better reflect experts’ acceptance of
opinion adjustment.

The remainder of this study is organized as follows: Section 2 presents the proposed
methods. It mainly introduces the theoretical knowledge of q-ROFS, including the defini-
tion of q-ROFS, operation rules, distance measure, score function, and q-rung orthopair
fuzzy weighted averaging operator (q-ROFWA). The representation of trust relations, trust
networks, and the operators of trust propagation and aggregation are also provided in
this section. Section 3 presents the results of this study; it develops a q-ROF aggregation
operator based on trust scores and confidence levels of experts, CIM, and decision-making
analysis, and a comparison with other methods. Section 4 discusses the results of this study
and presents the conclusions.

2. Theoretical Fundamentals
2.1. Theoretical Knowledge of Q-ROFSs

This section briefly reviews the relevant theoretical knowledge of the q-ROFSs.

Definition 1 ([40]). Let ℵ = {Y1, Y2, · · · , Yn} be a discourse, a q-ROFS defined on ℵ can then be
expressed as:

G = {〈Y, µG(Y), υG(Y)〉|Y ∈ ℵ}, (1)

where µG(Y) and υG(Y) are the membership and non-membership grades of the element Y ∈ ℵ re-
spectively, and µG(Y) and υG(Y) satisfy the constraint µ

q
G(Y) + υ

q
G(Y) ≤ 1

(µG(Y) ∈ [0, 1], υG(Y) ∈ [0, 1]) for all q ≥ 1. The hesitation grade is expressed as:

πG(Y) =
q

√(
1− (µG(Y))

q − (υG(Y))
q).

In addition, for the convenience of application, Liu and Wang [41] called 〈µG(Y), υG(Y)〉 a
q-ROFV and denoted it as G = 〈µG, υG〉.

Definition 2 ([41]). Let G1 = 〈µ1, υ1〉, G2 = 〈µ2, υ2〉 and G = 〈µ, υ〉 be three q-ROFVs. Then
their operation rules are defined as:

(i) G1 ⊕ G2 =

(
q

√(
µ

q
1 + µ

q
2 − µ

q
1µ

q
2

)
, υ1υ2

)
,

(ii) G1 ⊗ G2 =

(
µ1µ2, q

√(
υ

q
1 + υ

q
2 − υ

q
1υ

q
2

))
,

(iii) λG =

(
q
√

1− (1− µq)λ, υλ

)
, λ > 0.

(iv) Gλ =

(
µλ, q
√

1− (1− υq)λ
)

, λ > 0.

Definition 3 ([42]). Given any two q-ROFVs G1 = 〈µ1, υ1〉 and G2 = 〈µ2, υ2〉, their distances
are computed as follows:

d(G1, G2) =
1
2

(∣∣∣µq
1 − µ

q
2

∣∣∣ +
∣∣∣υq

1 − υ
q
2

∣∣∣+
∣∣∣πq

1 − π
q
2

∣∣∣
)

. (2)

62



Axioms 2021, 10, 168

Definition 4 ([43]). Given a q-ROFV G = 〈µ, υ〉, its score and accuracy functions are defined as

SV(G) = 1+µq−υq

2 and AV(G) = µq + υq respectively, and

(i) If SV(G1) > SV(G2), then G1 ≻ G2;
(ii) If SV(G1) = SV(G2), then their accuracy function should be further compared as follows:

(a) If AV(G1) > AV(G2), then G1 ≻ G2;
(b) If AV(G1) = AV(G2), then G1 ∼ G2.

Definition 5 ([41]). Let a series of q-ROFVs be Gt = 〈µt, νt〉 (t = 1, 2, · · · , n), where

ω = (ω1, ω2, · · · , ωn)
T is the weight vector, such that ωt ∈ [0, 1], ∑

n
t=1 ωt = 1. The q-rung

orthopair fuzzy weighted average (q-ROFWA) operator is then defined as:

q− ROFWA(G1, G2, · · · , Gn) =
n⊕

t=1
ωtGt = ω1G1 ⊕ω2G2 ⊕ · · · ⊕ωnGn. (3)

2.2. Representation of Trust Relationships

In light of the limitations of crisp value, IFV, and PFV in expressing fuzzy information,
this study proposes a trust q-rung orthopair fuzzy value (Tq-ROFV) to represent the
complex trust relationships, defined as follows:

Definition 6. The Tq-ROFV refers to a q-ROFV G = 〈µG, υG〉 to represent the trust relationships
between experts in a social network, where µG represents the membership grade, i.e., the trust degree.

υG represents the non-membership grade, i.e., the distrust degree. πG = q

√(
1− (µG)

q − (υG)
q)

then represents the uncertainty of trust.

It follows that when q = 1, the Tq-ROFV degenerates into the trust IF value (TIFV) [44].

Definition 7. Given a Tq-ROFV G = 〈µ, υ〉, its trust score is defined as: TS = µq−υq+1
2 , where

0 ≤ TS ≤ 1.

2.3. Q-ROF Trust Network and Trust Propagation Operator

A trust network is composed of nodes and directed edges, where in the GDM process,
nodes represent experts, and the directed edges represent the trust relationships between
experts. Therefore, the trust network based on GDM can be regarded as being composed
of expert sets and trust relationships. In this study, the q-ROFV is introduced into the trust
network, and a q-ROF trust network is constructed, a representation of which is shown in
Figure 1.
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Figure 1. Trust network graph.

In Figure 1, A, B1, B2, and C denote expert nodes, and the directed arrows denote
directed edges. For example, A→ B1 indicates that there is a trust relationship between
expert A and expert B1, which is represented by a q-ROFV. It can be seen that there is no
directed arrow directly connecting expert A with expert C, but there are directed arrows
directly connecting expert A with experts B1 and B2, and experts B1 and B2 with expert C.
We call the trust relationships between experts who are directly connected as direct trust,
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and those who are not directly connected (but indirectly connected through other experts)
as indirect trust. In other words, trust relationships between experts can be divided into
direct and indirect trust [45].

As shown in Figure 1, there is no direct trust relationship between expert A and expert
C, but there is an indirect trust relationship; that is, it is propagated through experts B1
and B2, so we need to calculate the trust relationship between expert A and expert C.
Considering the principle that trust does not increase and distrust does not decrease in the
process of trust propagation [46], and based on the multiplication operation of q-ROFS, we
propose a new trust propagation operator to calculate the indirect trust among experts.

Definition 8. Let e0, e1, e2, · · · , en−1, en be the n + 1 experts, and G1, G2, · · · , Gn−1, Gn be the n
Tq-ROFVs. The trust evaluation value of expert e0 to expert e1 is represented by a Tq-ROFV G1,
the trust evaluation value of expert e1 to expert e2 is represented by a Tq-ROFV G2, and so on. It
follows that the trust evaluation value of expert en−1 to expert en is expressed by a Tq-ROFV Gn,
and the trust evaluation value of expert e0 to expert en is expressed as:

•
q(e0, e1, · · · en−1, en) = G1 ⊗ G2 ⊗ · · · ⊗ Gn. (4)

In particular, when n = 2, we have G1 ⊗ G2 =

(
µ1µ2, q

√
υ

q
1 + υ

q
2 − υ

q
1υ

q
2

)
. When

n = 3, G1 ⊗ G2 ⊗ G3 =

(
µ1µ2µ3, q

√
1 +

(
υ

q
1 − 1

)(
υ

q
2 − 1

)(
υ

q
3 − 1

))
. Thus, according to

the recursive method, we can obtain:

•
q(e0, e1, · · · en−1, en) = G1 ⊗ G2 ⊗ · · · ⊗ Gn =

(
n

∏
t=1

µt, q

√
1 + (−1)n−1

n

∏
t=1

(
υ

q
t − 1

))
. (5)

It can be proved that
n

∏
t=1

µt ≤ min(µt), and q

√
1 + (−1)n−1 n

∏
t=1

(
υ

q
t − 1

)
≥ max(υt),

i.e., the designed trust propagation operator
•
q satisfies the principle that trust does not

increase and distrust does not decrease in the process of trust propagation.
Some special cases of the trust propagation operator can be achieved as follows:

(1) When all Gt = (1, 0), then G1 ⊗ G2 ⊗ · · · ⊗ Gn = (1, 0).
(2) If ∃Gt = (0, 1), then G1 ⊗ G2 ⊗ · · · ⊗ Gn = (0, 1). This shows that as long as there

is a complete distrust relationship on the propagation path, the final result after
propagation is complete distrust, regardless of the other trust relationships.

(3) If G1 = G2 = G3 = (0.8, 0.2), without loss of generality, suppose that q = 1, then
G1 ⊗ G2 ⊗ G3 = (0.51, 0.49). The trust value after trust propagation is 0.51 < 0.8, and
the distrust value is 0.49 > 0.2, which means that the principle of decreasing trust
and increasing distrust is satisfied in the process of trust propagation.

(4) If G1 = (0.2, 0.8), G2 = (0.8, 0.2), G3 = (0.8, 0.1), and suppose that q = 1, then
G1 ⊗ G2 ⊗ G3 = (0.13, 0.86). Although the trust values of G2 and G3 are very high,
the trust value of G1 is low (only 0.2), and so the final trust value after propagation is
also low.

The above special cases also show that the trust propagation operator based on the
q-ROF multiplication operation is reasonable.

2.4. Trust Aggregation Operator Based on q-ROFS

In the trust network shown in Figure 1, there are two propagation paths for the indirect
trust of expert A to expert C. Therefore, it is necessary to integrate the trust relationships of
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these two propagation paths in order to obtain the final trust evaluation value of expert A
with expert C. This study uses the following path weighting method:

T =∑
n

i=1 wiGi = w1G1 ⊕ w2G2 ⊕ · · · ⊕ wnGn, (6)

where Gi is a Tq-ROFV, and T is a Tq-ROF weighted average operator. wi = Q
(

i
n

)
−

Q
(

i−1
n

)
is the path weight, and i is the i-th path. In order from shortest to longest, the

shorter the path is, the closer to the front it is, and the longer the path, the further back it
is. The path with the larger trust score is at the front when the path lengths are the same.
The linguistic quantifiers Q(r) = ra(a ≥ 0), and Q : [0, 1]→ [0, 1] , Q(0) = 0, Q(1) = 1.
Among them, a = 0.5 is the fuzzy quantifier for “most” [34].

Example 1. By the end of 2019, with the emergence of COVID-19, most universities had to termi-
nate their teaching tasks offline. According to the principle of “stopping classes without stopping
teaching, and stopping classes without stopping school”, universities changed from a traditional
offline teaching mode to an online teaching mode. The evaluation of the classroom teaching quality
of large-scale online teaching is beneficial for teachers to realize a deficiency in the teaching process,
and to improve the quality of teaching. This study evaluates the online teaching quality of teachers
in four colleges and universities {Z1, Z2, Z3, Z4} during the pandemic. Based on the analysis of the
teaching quality evaluation index system in the literature [7,10,47], and by considering the three
factors of before class, during class, and after class, this study introduces five evaluation indices
to comprehensively evaluate the online teaching quality of teachers in colleges and universities:
the stability of teaching platforms C1, the pertinence of teaching resources C2, the timeliness of
answering questions and feedback C3, the strictness of teaching attitude C4, the rationality of

teaching content C5, and their corresponding index weights W = (0.20, 0.25, 0.10, 0.15, 0.30)T .
The five attributes are described as follows:

Stability of teaching platforms C1: Whether the online teaching platforms used by
schools, such as Tencent Classroom and Zoom, are stable, e.g., whether they are stuck, etc.

Pertinence of teaching resources C2: Whether the PPT courseware and teaching
materials provided by teachers before the class are aimed at teaching content in the class,
i.e., whether there are differences between the two.

Timeliness of answering questions and feedback C3: Whether the teacher solves the
students’ questions in time during and after class.

Strictness of teaching attitude C4: Whether the teacher has rational and scientific
teaching, e.g., whether the words and actions are appropriate, whether the preparation is
sufficient, etc.

Rationality of teaching content C5: Whether the content taught in the class is based
mainly on basic knowledge and supplemented by difficult knowledge.

Taking a major of four universities as an example to evaluate the online teaching
quality of teachers, we consulted some of the students who had the highest academic
achievements in this major as experts. Therefore, the evaluation problem can be regarded
as an SNGDM problem. There are five experts {e1, e2, e3, e4, e5} with a social matrix TL

based on the trust relationships between them. The listed trust values indicate that there is
direct trust among the experts, and the unlisted trust value indicates that there is no direct
trust between the experts.

TL =




− (0.6, 0.2) (0.7, 0.1)
− (0.6, 0.1)

(0.6, 0.1) (0.8, 0.1) − (0.7, 0.2)
(0.5, 0.4) − (0.6, 0.3)
(0.5, 0.2) −




.
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In this study, we complete the missing values of the trust evaluation TL based on

the proposed trust propagation operator
•
q. Taking the missing value of trust evaluation

between experts e1 and e3 as an example, for the sake of generality, we take q = 1. There is
no direct trust between experts e1 and e3, but there are three indirect trust propagation
paths, namely l1 : e1 → e5 → e3 , l2 : e1 → e2 → e4 → e3 and l3 : e1 → e2 → e4 → e5 → e3 .
Considering the importance of each path trust information, this study uses the above path
weighting method to solve the indirect trust between experts e1 and e3, namely:

•
q

l1
((0.7, 0.1), (0.5, 0.2)) = (0.35, 0.28),

•
q

l2
((0.6, 0.2), (0.6, 0.1), (0.5, 0.4)) = (0.18, 0.57),

•
q

l3
((0.6, 0.2), (0.6, 0.1), (0.6, 0.3), (0.5, 0.2)) = (0.11, 0.60),

where the weights of three paths are given by wi = Q
(

i
n

)
− Q

(
i−1

n

)
, and w1 = 0.58,

w2 = 0.24, w3 = 0.18.
Therefore, according to Equation (6), the indirect trust of expert e1 to expert e3 is:

T(e1 → e3) = 0.58 · (0.35, 0.28)⊕ 0.24 · (0.18, 0.57)⊕ 0.18 · (0.11, 0.60) = (0.27, 0.38).

Other missing trust evaluation values can be calculated similarly, so the final social
matrix TL is:

TL =




− (0.60, 0.20) (0.27, 0.38) (0.30, 0.33) (0.70, 0.10)
(0.16, 0.52) − (0.27, 0.47) (0.60, 0.10) (0.30, 0.42)
(0.60, 0.10) (0.80, 0.10) − (0.70, 0.20) (0.40, 0.27)
(0.27, 0.47) (0.30, 0.50) (0.50, 0.40) − (0.60, 0.30)
(0.30, 0.28) (0.34, 0.32) (0.50, 0.20) (0.29, 0.38) −




.

Simultaneously, the trust score matrix TShk can be obtained according to the matrix
TL:

TShk =




− 0.70 0.45 0.49 0.80
0.32 − 0.40 0.75 0.44
0.75 0.85 − 0.75 0.57
0.40 0.40 0.55 − 0.65
0.51 0.51 0.65 0.46 −




.

Therefore, according to the matrix TShk and equation TSk =
1

n−1 ∑
n
h=1 TShk, the trust

scores TSk of each expert can be obtained, thus:

TS1 = 0.495 , TS2 = 0.615 , TS3 = 0.513 , TS4 = 0.613 , TS5 = 0.615.

3. Results
3.1. Q-ROF Aggregation Operator Based on Trust Scores and Confidence Levels of Experts

To integrate the evaluation information of the experts, we propose a new q-rung
orthopair fuzzy induced ordered weighted average (q-ROFIOWA) operator based on the
trust scores and confidence levels (CL) of experts.

Definition 9. Let a series of q-ROFVs be Gt = 〈µt, νt〉 (t = 1, 2, · · · , n), where

ω = (ω1, ω2, · · · , ωn)
T is the weight vector, and ωt ∈ [0, 1], ∑

n
t=1 ωt = 1. The q-ROFIOWA

operator is then defined as:

q−ROFIOWA
((

TL1, G1

)
,
(

TL2, G2

)
, · · · , (TLn, Gn)

)
=

n⊕
t=1

ωtGσ(t) = ω1Gσ(1)⊕ω2Gσ(2)⊕ · · · ⊕ωnGσ(n), (7)

where Gσ(t) is arranged by TLσ(t) from largest to smallest, and TLσ(t−1) ≥ TLσ(t).

66



Axioms 2021, 10, 168

Suppose that there are n experts et (t = 1, 2, · · · , n), m alternatives Zi (i = 1, 2, · · · , m),
s attributes Cj (j = 1, 2, · · · , s) and the experts’ evaluation matrix is Lt (t = 1, 2, · · · , n) =(

Gt
ij

)
m×s

, then the integrated q-ROF matrix is LTL =
(

GTL
ij

)
=
(

µTL
ij , υTL

ij

)
, where

µTL
ij , υTL

ij , TL are calculated by the following equations, respectively:

µTL
ij = ϕTL

ω

((
TL1, µ1

ij

)
, · · · ,

(
TLn, µn

ij

))
= q

√
1−

n

∏
t=1

(
1− µ

q

ijσ(t)

)ωt
, (8)

υTL
ij = ψTL

ω

((
TL1, υ1

ij

)
, · · · ,

(
TLn, υn

ij

))
=

n

∏
t=1

υωt

ijσ(t)
, (9)

TL = ηTS + (1− η)CL, (10)

where ωσ(t−1) ≥ ωσ(t) (t = 2, · · · , n), and

ωt = Q

(
TL(σ(t))

TL(σ(n))

)
−Q

(
TL(σ(t− 1))

TL(σ(n))

)
. (11)

The above TL solution also needs to calculate the CL of experts, which is characterized
by attributes, alternatives, and experts.

Level 1. Attribute level: the confidence level of the expert et on the alternative Zi

under attribute Cj is:
CLt

ij = 1− πij. (12)

where πij =
q

√(
1−

(
µij

)q −
(
υij

)q
)

.

Level 2. Alternative level: the confidence level of the expert et on the alternative Zi is:

CLt
i =

1
s

s

∑
j=1

CLt
ij. (13)

Level 3. Expert level: the confidence level of the expert et is:

CLt =
1
m

m

∑
i=1

CLt
i . (14)

Thus, the confidence level of the expert et is:

CLt =
1

ms

m

∑
i=1

s

∑
j=1

CLt
ij. (15)

From Equation (12), we can see that the confidence level of the expert et is based
on the grade of hesitation when the expert et evaluates information. When πij = 0 and
CLt

ij = 1, there is no hesitation. When the q value increases, the hesitation grade increases,
and the corresponding confidence level of the expert et decreases.

Example 2 (Continuation of Example 1). Suppose that for teachers of a particular major in four
universities, there are five experts’ evaluation matrices:
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A1 =




[0.7, 0.1] [0.3, 0.5] [0.4, 0.5] [0.5, 0.3] [0.5, 0.1]
[0.5, 0.4] [0.4, 0.2] [0.6, 0.1] [0.6, 0.2] [0.5, 0.2]
[0.4, 0.3] [0.5, 0.3] [0.4, 0.2] [0.5, 0.3] [0.4, 0.4]
[0.6, 0.4] [0.3, 0.4] [0.3, 0.6] [0.6, 0.2] [0.3, 0.6]




A2 =




[0.3, 0.4] [0.5, 0.2] [0.4, 0.6] [0.7, 0.1] [0.8, 0.1]
[0.7, 0.2] [0.6, 0.4] [0.3, 0.5] [0.4, 0.3] [0.5, 0.2]
[0.5, 0.1] [0.3, 0.6] [0.8, 0.2] [0.6, 0.3] [0.5, 0.3]
[0.4, 0.3] [0.7, 0.2] [0.6, 0.3] [0.3, 0.4] [0.9, 0.1]




A3 =




[0.5, 0.2] [0.6, 0.1] [0.3, 0.5] [0.4, 0.1] [0.4, 0.5]
[0.8, 0.1] [0.3, 0.2] [0.6, 0.2] [0.5, 0.3] [0.5, 0.2]
[0.4, 0.2] [0.2, 0.5] [0.5, 0.4] [0.3, 0.4] [0.6, 0.1]
[0.7, 0.1] [0.5, 0.3] [0.4, 0.2] [0.8, 0.1] [0.3, 0.3]




A4 =




[0.5, 0.4] [0.4, 0.3] [0.3, 0.6] [0.2, 0.4] [0.5, 0.4]
[0.3, 0.5] [0.5, 0.2] [0.2, 0.5] [0.7, 0.1] [0.5, 0.3]
[0.6, 0.2] [0.7, 0.1] [0.4, 0.5] [0.3, 0.6] [0.7, 0.2]
[0.4, 0.2] [0.6, 0.1] [0.5, 0.3] [0.7, 0.2] [0.5, 0.2]




A5 =




[0.5, 0.3] [0.6, 0.2] [0.3, 0.5] [0.7, 0.1] [0.5, 0.4]
[0.6, 0.3] [0.5, 0.2] [0.4, 0.6] [0.8, 0.2] [0.7, 0.2]
[0.4, 0.5] [0.8, 0.1] [0.5, 0.5] [0.6, 0.2] [0.4, 0.5]
[0.3, 0.4] [0.7, 0.1] [0.6, 0.3] [0.4, 0.4] [0.5, 0.1]




Then the corresponding confidence levels of experts are:

CL1 = 0.78 , CL2 = 0.83 , CL3 = 0.73 , CL4 = 0.79 , CL5 = 0.85.

By combining the above TS and CL, and setting η = 0.5, TL can be obtained:

TL1 = 0.64 , TL2 = 0.72 , TL3 = 0.62 , TL4 = 0.70 , TL5 = 0.73.

Therefore, the weights of the experts can be obtained according to Equation (11):

ω1 = 0.111 , ω2 = 0.189 , ω3 = 0.095 , ω4 = 0.142 , ω5 = 0.463.

Combined with Equation (7), the comprehensive evaluation matrix A can be given as:

A =




(0.497, 0.281) (0.530, 0.220) (0.332, 0.531) (0.610, 0.138) (0.572, 0.270)
(0.606, 0.278) (0.495, 0.228) (0.408, 0.417) (0.693, 0.203) (0.605, 0.212)
(0.453, 0.281) (0.661, 0.185) (0.560, 0.372) (0.532, 0.282) (0.495, 0.334)
(0.423, 0.301) (0.641, 0.148) (0.543, 0.312) (0.518, 0.294) (0.605, 0.149)


.

3.2. CIM and Decision-Making Analysis Based on Q-ROF with the Paragraphs

Considering the influence of the CIM on the final results, this study proposes a CIM
based on q-ROF distance measure and trust relationships between experts, including
consistency measurement, identification of inconsistent expert decision-making opinions,
and a personalized adjustment mechanism (based on direct trust relationships between
experts).

3.2.1. Calculation of Consistency Degree

The consistency index is divided into three levels:
Level 1. Attribute level: the consistency degree of the expert et on the alternative Zi

under attribute Cj is:
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CEt
ij = 1− d(Gt

ij, Gij) = 1− 1
2

(∣∣∣
(

µt
ij

)q
−
(

µij

)q∣∣∣+
∣∣∣
(

υt
ij

)q
−
(
υij

)q
∣∣∣+
∣∣∣
(

πt
ij

)q
−
(
πij

)q
∣∣∣
)

. (16)

Level 2. Alternative level: the consistency degree of the expert et on the alternative Zi

is:

CAt
i =

1
s

s

∑
j=1

CEt
ij. (17)

Level 3. Expert level: the consistency degree of the expert et is:

CIt =
1
m

m

∑
i=1

CAt
i . (18)

Example 3 (Continuation of Example 2). The evaluation matrix for each expert is known.
According to Equations (16)–(18), the degree of consistency at the attribute level is calculated as:

CE1 =




0.797 0.720 0.932 0.838 0.758
0.878 0.877 0.683 0.904 0.883
0.947 0.839 0.669 0.968 0.906
0.724 0.660 0.712 0.906 0.549


, CE2 =




0.804 0.951 0.863 0.910 0.772
0.906 0.723 0.892 0.707 0.883
0.820 0.585 0.760 0.914 0.966
0.976 0.887 0.943 0.782 0.705


,

CE3 =




0.919 0.880 0.937 0.752 0.770
0.806 0.777 0.783 0.807 0.883
0.867 0.539 0.940 0.768 0.766
0.723 0.848 0.745 0.718 0.695


, CE4 =




0.878 0.870 0.931 0.590 0.870
0.694 0.972 0.792 0.897 0.895
0.853 0.915 0.840 0.682 0.795
0.876 0.913 0.945 0.818 0.895


,

CE5 =




0.978 0.930 0.937 0.910 0.870
0.978 0.972 0.817 0.893 0.905
0.781 0.861 0.872 0.918 0.834
0.877 0.940 0.943 0.882 0.846


.

The degree of consistency at the alternative level:

CA1 = (0.809, 0.845, 0.866, 0.710), CA2 = (0.860, 0.822, 0.809, 0.859),

CA3 = (0.852, 0.811, 0.776, 0.746), CA4 = (0.828, 0.850, 0.817, 0.889),

CA5 = (0.925, 0.913, 0.853, 0.898).

And the consistency at the expert level:

CI1 = 0.807 , CI2 = 0.837 , CI3 = 0.796 , CI4 = 0.846 , CI5 = 0.897.

3.2.2. Identification of Inconsistent Expert Decision-Making Opinions and a Personalized
Adjustment Mechanism

After obtaining the consistency degree of the above three levels, we need to identify the
decision-making information of inconsistent experts and then modify their corresponding
decision-making opinions. According to the literature [34], a three-level recognition method
is proposed:

Level 1. Determine all experts whose consistency is lower than the consensus thresh-
old δ, which is defined as:

EXPCH =
{

t
∣∣CIt < δ

}
.

Level 2. On the basis of obtaining all inconsistent experts, determine all alternatives
whose consistency is lower than the consensus threshold δ, which is defined as:

ALT =
{
(t, i)

∣∣t ∈ EXPCH ∧ CAt
i < δ

}
.
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Level 3. Determine all attribute evaluation information with a degree of consistency
lower than the consensus threshold δ:

APS =
{
(t, i, j)

∣∣∣(t, i) ∈ ALT ∧ CEt
ij < δ

}
.

As mentioned above, the experts who need to adjust their opinions are more willing
to trust the decision-making opinions of the experts who have a direct trust relationship
with them. Therefore, this study modifies the expert’s decision-making opinions according
to the following adjustment advice:

GGt
ij = (1− ϑ) · Gt

ij + ϑ · G̃, (19)

where G̃ =
(
µ̃ij, υ̃ij

)
, µ̃ij =

1
l ∑

l
r=1 µ̃r

ij, υ̃ij =
1
l ∑

l
r=1 υ̃r

ij, and r = 1, 2, · · · , l means the expert
et has l directly trusted experts.

Example 4 (Continuation of Example 3). Assuming δ = 0.8, the expert e3 needs to be adjusted.
The specific evaluation opinions that need to be adjusted at the attribute level are:

G3
32, G3

34, G3
35, G3

41, G3
43, G3

44, G3
45.

Let ϑ = 0.5, then the opinions of the expert e3 are modified to become:
G3

32 = (0.39, 0.36), G3
34 = (0.40, 0.39), G3

35 = (0.58, 0.17), G3
41 = (0.60, 0.17),

G3
43 = (0.44, 0.27), G3

44 = (0.70, 0.16), G3
45 = (0.52, 0.26).

3.2.3. Decision-Making Analysis after Reaching Consensus (Alternatives Ranking)

After adjusting the evaluation opinions, the new consistency degrees of the experts
are calculated as follows:

CI1 = 0.806 , CI2 = 0.838 , CI3 = 0.836 , CI4 = 0.844 , CI5 = 0.900.

The corresponding weights of experts are:

ω1 = 0.110 , ω2 = 0.189, ω3 = 0.097, ω4 = 0.142 , ω5 = 0.462.

Therefore, the adjusted aggregation evaluation matrix is:

A =




(0.496, 0.281) (0.530, 0.219) (0.332, 0.531) (0.610, 0.137) (0.572, 0.270)
(0.607, 0.277) (0.495, 0.228) (0.408, 0.417) (0.692, 0.204) (0.605, 0.212)
(0.453, 0.280) (0.669, 0.179) (0.560, 0.372) (0.538, 0.282) (0.493, 0.350)
(0.408, 0.316) (0.640, 0.148) (0.546, 0.321) (0.499, 0.307) (0.619, 0.147)


.

According to Equation (3) and attribute weights, we can get

GZ1 = [0.533, 0.250] , GZ2 = [0.579, 0.242] , GZ3 = [0.550, 0.276] , GZ4 = [0.565, 0.207].

The trust scores are thus calculated as:

TS1 = 0.642 , TS2 = 0.669 , TS3 = 0.637 , TS4 = 0.679.

Therefore, the ranking of alternatives is: Z4 ≻ Z2 ≻ Z1 ≻ Z3.
In summary, the specific steps of the proposed SNGDM method based on q-ROFS are

as follows.
Step 1: Based on the proposed trust propagation and aggregation operators in

Equations (4) and (6), the missing q-ROF trust social matrix is completed, and the corre-
sponding trust score matrix and the trust score of each expert have been calculated.
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Step 2: Calculate the confidence levels of experts based on Equations (12)–(15) and
calculate the weights of experts combined with the trust scores of experts. Based on
Equation (7), a comprehensive decision-making matrix is obtained by integrating the
expert evaluation matrices.

Step 3: Calculate the consistency degree of the three levels based on Equations (16)–(18).
If the consistency of all experts is greater than the threshold, we skip to Step 4. Otherwise,
identify the inconsistent experts and their decision-making opinions, adjust the inconsistent
decision-making opinions according to Equation (19), and then return to Step 2.

Step 4: Calculate the evaluation value of each alternative based on Equation (3) and
attribute weight and sort the alternatives according to Definition 4.

Accordingly, the SNGDM method can be represented by the following flow chart
(Figure 2):

 

1 2 3 5 10 20



1

4 2 1 3      2 3 5

4 1 2 3      10 20

4 1 3 2     

4

Figure 2. Framework of SNGDM method based on q-ROFS.

3.2.4. Analysis of the Influence of the Parameter q on Alternative Ranking

In this study, we consider the influence of the change in parameter q on the ranking
of alternatives and take q = 1, 2, 3, 5, 10 and 20, respectively. The trust scores and ranking
results of the alternatives are presented in Table 1; it can be seen that with the increase
in the parameter q, the trust score TS of each alternative Zi presents a decreasing trend.
Moreover, when q takes different values, the ranking results of the alternatives are not
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the same. Specifically, when q = 1, the ranking of the alternatives is Z4 ≻ Z2 ≻ Z1 ≻ Z3;
when q = 2, 3 and 5, the ranking of the alternatives is Z4 ≻ Z1 ≻ Z2 ≻ Z3; when q = 10
and 20, the ranking of the alternatives is Z4 ≻ Z1 ≻ Z3 ≻ Z2. Therefore, the value of
q has a definite influence on the trust scores and ranking of the alternatives. However,
regardless of how q changes, the optimal alternative does not change, that is, the alternative
Z4, which indicates that the operator q-ROFIOWA is relatively stable. At the same time, the
decision-making experts can choose an appropriate value of q to express their preferences
according to the actual situation, which highlights the flexibility of the proposed method.

Table 1. Alternative ranking under parameter q.

q TS Ranking

1 TS1 = 0.642, TS2 = 0.669
TS3 = 0.637, TS4 = 0.679

Z4 ≻ Z2 ≻ Z1 ≻ Z3

2 TS1 = 0.638, TS2 = 0.628
TS3 = 0.613, TS4 = 0.686

Z4 ≻ Z1 ≻ Z2 ≻ Z3

3 TS1 = 0.596, TS2 = 0.588
TS3 = 0.579, TS4 = 0.643

Z4 ≻ Z1 ≻ Z2 ≻ Z3

5 TS1 = 0.545, TS2 = 0.538
TS3 = 0.536, TS4 = 0.584

Z4 ≻ Z1 ≻ Z2 ≻ Z3

10 TS1 = 0.510, TS2 = 0.506
TS3 = 0.507, TS4 = 0.532

Z4 ≻ Z1 ≻ Z3 ≻ Z2

20 TS1 = 0.501, TS2 = 0.500
TS3 = 0.501, TS4 = 0.509

Z4 ≻ Z1 ≻ Z3 ≻ Z2

Note: when q = 20, TS1 = TS3, and H1 > H3, so Z1 ≻ Z3.

3.3. Comparative Analysis

3.3.1. Feasibility Analysis

It can be seen in Table 2 that the ranking results of the existing methods are not
the same as the method proposed in this study. For example, based on IFVs and Frank
operators, Zheng and Xu [24] proposed a new trust propagation operator that contains
an IF trust weighted average (IFTWA) operator and length (L-IFTWA) operator. The final
result was the same as that of the proposed method (q = 1), but different from that obtained
by q = 2 and 10. Wu et al. [30] used representable uninorm U to propagate trust, and the
final result was the same as that obtained by the proposed method (q = 2), but different
from that obtained by q = 1 and 10. Although the ranking of alternatives is different, the
optimal alternative is Z4, which shows that the proposed method is feasible.

Table 2. Different methods of alternative ranking.

Methods Ranking

IFTWA/L-IFTWA [24] Z4 ≻ Z2 ≻ Z1 ≻ Z3
Uninorm [30] Z4 ≻ Z1 ≻ Z2 ≻ Z3

q-ROFIOWA [the proposed method, q = 1] Z4 ≻ Z2 ≻ Z1 ≻ Z3
q-ROFIOWA [the proposed method, q = 2] Z4 ≻ Z1 ≻ Z2 ≻ Z3
q-ROFIOWA [the proposed method, q = 10] Z4 ≻ Z1 ≻ Z3 ≻ Z2

3.3.2. Superiority Analysis

To demonstrate the advantages of the proposed method, we carry out a detailed
comparative analysis using the methods in literatures [24,30]; the results are given in
Table 3.
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Table 3. Comparative analysis.

Methods
Method of Literature

[24]
Method of Literature

[30]
The Proposed

Method

Problems Solved SNGDM SNGDM SNGDM

The Representation
of Trust

IFVs Trust decision space q-ROFVs

Trust Paopagation
(Diminishing Trust)

Frank operator
(Decrease)

Uninorm
(Increase)

•
q

(Decrease)

Trust Aggregation L-IFTWA Shortest path T

Experts’ Weights Centrality theory Q(TS) Q(TS + CL)

CIM No considered No considered Considered

(1) Comparison with the method proposed in [24]. First, the condition 0 ≤ µ + υ ≤ 1
must always be maintained in the range of IFVs expressing the trust relationship, but in
reality, the situation of µ+ υ > 1 often appears. This study proposes a Tq-ROFV, which uses
q-ROFV to represent the trust relationships among experts and express trust information
over a wider range. Naturally, the TIFV is a special case of the Tq-ROFV; i.e., when q = 1,
the Tq-ROFV degenerates into the TIFV.

Second, when integrating the trust information of multiple propagation paths,
Zheng and Xu [24] make full use of each path, but it falls short when the lengths of
the paths are the same and the weights are the same. When the lengths of the paths are
the same, the greater the trust score, and the greater the weight. Therefore, the method
for determination of the experts’ weights based on a Q quantifier in this study is more
reasonable. Moreover, the method proposed in [24] does not consider the impact of the
CIM on the decision-making results.

(2) Comparison with the method proposed in [30]. First, the distrust values of the
previous trust relationships are not considered in [30], and only the distrust value of the
last trust relationship is considered. Simultaneously, the values of trust increase during
the trust propagation process. For example, if there are two direct trust relationships
G1 = (0.55, 0.35) and G2 = (0.75, 0.20) on the propagation path, then the U operator is
used for trust propagation, and we get:

U(G1, G2) =

(
0.55× 0.75

0.55× 0.75 + 0.45× 0.25
,

0.55× 0.20
0.55× 0.20 + 0.45× 0.80

)
= (0.79, 0.23).

It is clear that the trust value after propagation is 0.79 > 0.75 , 0.79 > 0.55; the trust
value increases, which does not conform to the principle of trust diminishing in the process
of trust propagation. Moreover, the distrust value of G1 is not used in the process of trust
propagation, and only the distrust value of G2 is considered. This study proposes a trust
propagation operator based on q-ROF multiplication operation to compensate for this
defect, that is, (assuming q = 1):

q(G1, G2) = (0.55× 0.75, 0.35 + 0.20− 0.35× 0.20) = (0.41, 0.48).

Given 0.41 < 0.75 , 0.41 < 0.55 and 0.48 > 0.35 , 0.48 > 0.20, the trust relationship after
propagation satisfies the principles of diminishing trust and increasing distrust. At the
same time, the distrust value of each trust relationship was considered.

Second, when integrating the trust information of multiple paths, Wu et al. [30] directly
selects the trust relationship of the shortest path as the ultimate indirect trust relationship,
ignoring the trust information of other paths. However, in this study, we use the trust
information of each path, taking into account and assigning the corresponding weights.
The shorter the path, the greater the weight, and the longer the path, the smaller the weight,
and when the path length is the same, the greater the trust score, the greater the weight of
the path, and so the path weighting method in this study is more reasonable.
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Third, Wu et al. [30] use the TS as the guidance to solve the weights of experts, and
the importance of experts’ confidence level in the process of GDM is ignored. This study
not only considers the trust score TS, but also considers the confidence level CL of experts,
and further enables solving for the weights of experts through the combination of the two.

Fourth, considering the difference in professional backgrounds among experts, it
is difficult to reach an agreement on the initial opinion, and a consensus needs to be
reached through mutual coordination and adjustment of opinion. Therefore, considering
the importance of consensus building, this study proposes a CIM based on the q-ROF
distance measure and trust relationship, whereas the literature [30] does not consider
the CIM.

4. Discussion and Conclusions

At present, there are many GDM methods for teaching quality evaluation [1,4,5,9,10],
but most of them do not consider the influence of trust networks among experts on the
evaluation results. This study extends the SNA method to the GDM method and proposes
a new SNGDM method based on q-ROFS for the evaluation of online teaching quality,
which makes the evaluation results more reasonable. At the same time, considering the
subjectivity, fuzziness, and uncertainty of trust and the vagueness of evaluation indices,
this study uses q-ROFV to describe them in a more comprehensive and detailed manner.
Thus, decision-makers can choose the appropriate value of the parameter q to evaluate
the indices according to the actual situation in order to minimize the loss of information.
The example presented in this study shows that the alternative ranking of different methods
varies greatly, but the optimal alternative remains unchanged. Additionally, a comparison
with the existing SNGDM methods in [24] and [30] verifies that the proposed method is
more advantageous and feasible. Specifically, the advantages and contributions of the
proposed SNGDM method can be summarized as follows:

First, this study combines q-ROF theory with the SNA method and proposes a
Tq-ROFV to express the trust relationships between experts, which can describe the sub-
jectivity, ambiguity, and uncertainty of trust more comprehensively. Second, a trust prop-
agation operator based on the q-ROF multiplication operator is proposed to obtain an
indirect trust between experts, which fully considers the principle of diminishing trust
values in the process of trust propagation. In view of the flexibility of the trust propagation
operator (including varying parameter q), decision-makers can choose the appropriate
parameters according to the actual situation, and the greater the value of q, the greater the
uncertainty. Moreover, considering the existence of multiple trust paths, a trust aggregation
operator based on q-ROFS is proposed to integrate the trust relationships of multiple
paths. Additionally, to integrate the evaluation information of experts, a q-ROFIOWA
operator is proposed, which considers the confidence levels of experts when evaluating
the information. Finally, given the impact of the CIM and the trust relationships among
experts on decision-making results, a CIM based on q-ROF distance measure and trust
relationships among experts is introduced.

The SNGDM method not only provides a new method for the evaluation of online
teaching quality, but also enables teachers to discover issues in the teaching process in time
and make improvements. However, the SNGDM method has some limitations. First, the
evaluation information of experts in the process of evaluating online teaching quality is
known, and there is no missing evaluation information. In fact, some or all experts involved
in the evaluation process may not have a thorough understanding of the issues involved, so
it is often impossible to give all the evaluation information. Therefore, we will consider the
situation in which evaluation information is missing in future work. Second, the SNGDM
method is implemented in a multi-attribute environment, and whether it can be extended
to other decision-making environments remains to be seen, such as fuzzy preference rela-
tionships [22,48–50]. At the same time, it is yet to be determined as to whether the SNGDM
method can be extended to solve evaluation decision-making problems in other industries,
such as venture capital evaluation, green supply chain management, e-learning course
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selection, selection of the best substitutes for biopesticides, site assessment, digitalization
in logistics and retail, and weapon selection decisions [27,51–57]. Third, when adjusting
expert opinions, this study takes the decision-making opinions of trusted experts as a
simple weighted average. In fact, among all trusted experts, inconsistent decision-makers
have different trust levels for different experts. That is, when the expert’s opinions are
adjusted, the adjustment of weights should be different for different levels of trust, which
is our future avenue of research.
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Abstract: Interval-valued T-spherical fuzzy set (IVTSFS) handles uncertain and vague information by
discussing their membership degree (MD), abstinence degree (AD), non-membership degree (NMD),
and refusal degree (RD). MD, AD, NMD, and RD are defined in terms of closed subintervals of [0, 1]
that reduce information loss compared to the T-spherical fuzzy set (TSFS), which takes crisp values
from [0, 1] intervals; hence, some information may be lost. The purpose of this manuscript is to
develop some Hamacher aggregation operators (HAOs) in the environment of IVTSFSs. To do so,
some Hamacher operational laws based on Hamacher t-norms (HTNs) and Hamacher t-conorms
(HTCNs) are introduced. Using Hamacher operational laws, we develop some aggregation operators
(AOs), including an interval-valued T-spherical fuzzy Hamacher (IVTSFH) weighted averaging
(IVTSFHWA) operator, an IVTSFH-ordered weighted averaging (IVTSFHOWA) operator, an IVTSFH
hybrid averaging (IVTSFHHA) operator, an IVTSFH-weighted geometric (IVTSFHWG) operator, an
IVTSFH-ordered weighted geometric (IVTSFHOWG) operator, and an IVTSFH hybrid geometric
(IVTSFHHG) operator. The validation of the newly developed HAOs is investigated, and their basic
properties are examined. In view of some restrictions, the generalization and proposed HAOs are
shown, and a multi-attribute decision-making (MADM) procedure is explored based on the HAOs,
which are further exemplified. Finally, a comparative analysis of the proposed work is also discussed
with previous literature to show the superiority of our work.

Keywords: T-spherical fuzzy set; interval-valued T-spherical fuzzy set; Hamacher aggregation
operators; multi-attribute decision-making methods

MSC: 03B52; 47S40; 90B50

1. Introduction

Multi-attribute decision making (MADM) is the most well-known branch of decision
making that aims to select the most suitable alternative from a set of alternatives in the
presence of multiple criteria that often conflict with each other. With the indecisiveness
of decision-making (DM) topics and the fuzziness of DM conditions, MADM is accepted
as an important technique due to its easy applicability. To solve such problems, where
information is uncertain, Zadeh [1] put forward the theory of fuzzy sets (FSs), which
describe (MD) information on a scale of [0, 1] and provide a flexible platform to handle
uncertainties. Atanassov [2] discovered intuitionistic FS (IFS) by coupling MD with an
NMD under a restriction that the sum of both lies in [0, 1]. Although IFS provides better
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ground for handling uncertain information, it still restricts the decision-makers to a certain
range and provides very little flexibility. Therefore, Yager [3,4] proposed the theories of
Pythagorean FS (PyFS) and q-rung Orthopair FS (q-ROPFS), which improve the restrictions
of IFSs and, hence, provide more flexible grounds in taking the MDs and NMDs. Keeping
the advantages of expressing MD and NMD in terms of intervals instead of crisp values
from [0, 1], the theory of interval-valued IFS (IVIFS) was elaborated by Atanassov and
Gargov [5] by improving the theory of interval-valued FS (IVFS), which was explored by
Zadeh [6]. Moreover, the theory of interval-valued PyFS (IVPyFS) was elaborated by Peng
and Yang [7], and the idea of interval-valued q-ROPFS (IVq-ROPFS) was introduced by
Joshi et al. [8]. Garg and Rani [9,10] and Garg and Kumar [11] established some fruitful
AOs of PyFSs and IFSs and investigated their applications in MADM. For a study on the
theory and application of these concepts, one is referred to [12–18].

Theories of IFS, PyFS, and q-ROPFS cope with uncertain and complicated information
in many practical situations of MADM and pattern recognition, but these duplets discussed
only two phases of human opinion, i.e., MD and NMD, and AD and RD are ignored, which
leads to the loss of information. To handle such issues, Cuong and Kreinovich [19] put
forward the theory of picture FS (PFS), which is based on the MD, AD, NMD, and RD
of information, with the condition that the sum of MD, AD, and NMD must lie in the
[0, 1] interval. Moreover, the theory of interval-valued PFS (IVPFS) was elaborated by
Cuong and Kreinovich [19] and was further studied by Liu et al. [20]. Several scholars have
applied the theory of IVPFS in numerous fields [21–23]. Mahmoud et al. [24] relaxed the
strict condition of PFS and introduced the notion of spherical FS (SFS) and TSFS, where the
range for assigning MD, AD, and NMD is limitless. Moreover, the theory of interval-valued
TSFS (IVTSFS) was elaborated by Ullah et al. [25], where the closed subintervals of [0, 1]
are taken as MD, AD, NMD, and RD instead of crisp numbers from [0, 1]. Several scholars
have applied the theory of TSFSs to numerous fields [26–31].

HAOs are among the most influential AOs that are discussed in fuzzy frameworks,
and a wide range of studies has been conducted on the theory of HAOs, which are based
on HTN and HTCN [32] in different fuzzy environments. Numerous HAOs have been
introduced and all these have different applications in different fields. Huang [33] intro-
duced HAOs in IFS. Garg [34] introduced intuitionistic fuzzy HAOs with entropy weight
and investigated their applications in MADM. Liu [35] studied the applications of HAOs of
IVIFSs in MADM problems. Gao [36] familiarized prioritized Pythagorean fuzzy HAOs for
MADM problems. Wei [37] established Pythagorean power HAOs and explored their appli-
cations in MADM. Darko and Liang [38] presented the notion of HAOs for q-ROPFs, while
the HAOs of IVq-ROPFS were introduced by Donyatalab et al. [39]. A study of enterprise
selection using MADM techniques was established by Jana and Pal [40]. The problems
related to search and rescue robots was discussed using TSF HAOs by Ullah et al. [41].
Some other recent work on HAOs can be found in [42–46].

Ullah et al. [25] observed that processing uncertain and ambiguous information using
IVTSFSs instead of TSFSs and defining MD, AD, NMD, and RD as an interval rather than
crisp numbers taken from [0, 1] greatly reduced information loss. The aim of this paper is
to introduce the notion of HAOs in the environment of IVTSFSs. The motivation for doing
so is that the HAOs proposed in [32–38] can describe only two aspects of human opinion
and lead to information loss. Further, the HAOs of PFSs and TSFSs proposed by Jana and
Pal [39] and Ullah et al. [40] discuss the four aspects of human opinion but the MD, AD,
NMD, and RD are described in terms of crisp numbers and, hence, lead to information loss.
The paper focuses on the following points.

1. To introduce some novel Hamacher operational laws based on IVTSFSs.
2. By using Hamacher operational laws, novel IVTSFHWA and IVTSFHWG operators

are developed.
3. An MADM procedure is explored based on the proposed HAOs using IVTSFSs.
4. To observe the consistency and validity of the presented approaches, some examples

are examined.
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5. A comparative analysis of the current and previous studies is developed.

This manuscript is organized as in Section 2; we recall some ideas like TSFS, IVTSFS,
and some relevant concepts, including HTN and HTCN. In Section 3, we investigate some
Hamacher operational laws for IVTSFSs. In Section 4, we explore the idea of an IVTSFHWA
operator, an IVTSFHOWA operator, and an IVTSFHHA operator. In Section 5, the idea of
IVTSFHWG, IVTSFHOWG, and IVTSFHHG operators is investigated and their properties
are discussed. In Section 6, the superiority of the proposed HAOs is analyzed in view
of some special cases. Section 7 is based on the MADM procedure and a comprehensive
example, where the impact of the variable parameters is examined. A comparative study
of the current and previous HAOs is set up in Section 8, while a thorough summary of the
paper is presented in Section 9.

2. Preliminaries

Some basic definitions of TSFS and IVTSFS over set X, through some remarks, are
defined in this section. Definitions of HTN and HTCN are also discussed.

Definition 1 ([26]). A TSFS on set X is defined by I = (m(x), i(x), n(x) : x ∈ X), where
m(x), i(x) and n(x) are mappings from X to [0, 1], denoting MD, AD, and NMD with the
condition 0 ≤ mq(x) + iq(x) + nq(x) ≤ 1 for q ∈ Z+. RD is defined by r(x) =

(1− (mq(x) + iq(x) + nq(x)))
1
q and the triplet (m(x), i(x), n(x)) is known as the T-spherical

fuzzy number (TSFN).

The superiority of TSFS can be understood from Remark 1.

Remark 1 ([27]). From Definition 1, some existing special fuzzy sets can be derived from TSFS as
follows:

1. q −ROPFS for i(x) = 0.
2. SFS for q = 2.
3. PyFS for q = 2 and i(x) = 0.
4. PFS for q = 1.
5. IFS for q = 1 and i(x) = 0.
6. FS for q = 1 and i(x) = 0 = n(x).

Definition 2 ([27]). An IVTSFS on set X is defined by I = (
[
ml(x), mu(x)

]
,
[
il(x), iu(x)

]
,

[
nl(x), nu(x)

]
: x ∈ X), where m(x), i(x) and n(x) are mappings from X to closed subinter-

vals of [0, 1], denoting the MD, AD and NMD with the condition 0 ≤ (mu)q(x) + (iu)q(x) +
(nu)q(x) ≤ 1 for q ∈ Z+. RD can be defined as:

r(x) =
([

rl(x), ru(x)
])

=





(
1−

(
(mu)q(x) + (iu)q(x) + (nu)q(x)

)) 1
q ,

(
1−

(
ml)q(x) + (il)

q
(x) +

(
nl
)q

(x)
)) 1

q






and the triplet
([

ml(x), mu(x)], [il(x), iu(x)], [nl(x), nu(x)
])

is defined as an interval-valued

T-spherical fuzzy number (IVTSFN).

From Definition 2, it is quite clear that existing fuzzy frameworks are derived from
IVTSFS under some restrictions, given as follows:

Theorem 1 ([27]). From Definition 2, an IVTSFS can be reduced to the following special fuzzy
sets:

1. TSFS for ml = mu, il = iu, nl = nu.
2. Interval-valued SFS (IVSFS) for q = 2.
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3. SFS for q = 2 and ml = mu, il = iu, nl = nu.
4. IVPFS for q = 1.

5. PFS for q = 1 and ml = mu, il = iu, nl = nu.

6. IVq-ROPFS for il = iu = 0.

7. q −ROPFS ml = mu, il = iu = 0, nl = nu.

8. IVPyFS for q = 2 and il = iu = 0.

9. PyFS for q = 2 and ml = mu, il = iu = 0, nl = nu.

10. IVIFS for q = 1 and il = iu = 0.

11. IFS for q = 1 and ml = mu, il = iu = 0, nl = nu.

12. IVFS for q = 1 and nl = nu = il = iu = 0.

13. FS for q = 1 and nl = nu = il = iu = 0 and ml = mu.

Proof. Trivial. �

In order to rank two or more IVTSFNs, the score function can be used given in
Definition 3.

Definition 3 ([25]). For an IVTSFN I =
([

ml , mu
]
,
[
il , iu

]
,
[
nl , nu

])
, the score function is

defined by:

SC(I) =

(
ml
)q(

1−
(

il
)q
−
(

nl
)q)

+ (mu)q(1− (iu)q − (nu)q)

3
, SC(I) ∈ [0, 1]

Definition 4 ([32]). HTN and HTCN are defined as follows, respectively:

Thn(a, b) =
a.b

γ + (1− γ)(a + b− ab)
, γ > 0, (a, b) ∈ [0, 1]2

Thcn(a, b) =
a + b− ab− (1− γ)ab

1− (1− γ)ab
, γ > 0, (a, b) ∈ [0, 1]2

Further, Thn(a, b) is also considered a Hamacher product and Thcn(a, b) is known as the
Hamacher sum. Thn(a, b) and Thcn (a, b) can be stated as follows, respectively:

a⊗ b =
a.b

γ + (1− γ)(a + b− ab)
, γ > 0 (a, b) ∈ [0, 1]2

a⊕ b =
a + b− ab− (1− γ)ab

1− (1− γ)ab
, γ > 0 (a, b) ∈ [0, 1]2

Remark 2. Hamacher product and Hamacher sum are given in Definition 4; they are converted
into algebraic product and algebraic sum for γ = 1, while they are converted into Einstein product
and Einstein sum for γ = 2.

3. Interval-Valued T-Spherical Fuzzy Hamacher Operations

The aim of this section is to develop some Hamacher operations in the framework of
IVTSFSs. The Hamacher operations, including Hamacher sum and Hamacher product, are
proposed. Then, some special cases of the TSF Hamacher operations are investigated.
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Definition 5. Let A =
([

ml
A , mu

A

]
,
[
ilA , iuB

]
,
[
nl

A, nu
A

])
and B =

([
ml

B, mu
B

]
,
[
ilB, iuB

]
,
[
nl

B, nu
B

])

be two IVTSFNs for λ, γ > 0. The novel interval-valued T-spherical fuzzy Hamacher
operations are expressed as:

A⊕ B =







q

√
ml

A
q+ml

B
q−ml

A
qml

B
q−(1−γ)ml

A
qml

B
q

1−(1−γ)ml
A

qml
B

q ,

q

√
mu

A
q+mu

B
q−mu

A
qmu

B
q−(1−γ)mu

A
qmu

B
q

1−(1−γ)mu
A

qmu
B

q







ilAilB
q
√

γ+(1−γ)(ilA
q+ilB

q−ilA
qilB

q)
,

iuAiuB
q
√

γ+(1−γ)(iuA
q+iuB

q−iuA
qiuB

q)







nl
Anl

B

q
√

γ+(1−γ)(nl
A

q+nl
B

q−nl
A

qnl
B

q)
,

nu
Anu

B
q
√

γ+(1−γ)(nu
A

q+nu
B

q−nu
A

qnu
B

q)







(1)

A⊕ B =







ml
Aml

B

q
√

γ+(1−γ)(ml
A

q+ml
B

q−ml
A

qml
B

q)
,

mu
Amu

B

q
√

γ+(1−γ)(mu
A

q+mu
B

q−mu
A

qmu
B

q)







q

√
ilA

q+ilB
q−ilA

qilB
q−(1−γ)ilA

qilB
q

1−(1−γ)ilA
qilB

q ,

q

√
iuA

q+iuB
q−iuA

qiuB
q−(1−γ)iuA

qiuB
q

1−(1−γ)iuA
qiuB

q







q

√
nl

A
q+nl

B
q−nl

A
qnl

B
q−(1−γ)nl

A
qnl

B
q

1−(1−γ)nl
A

qnl
B

q ,

q

√
nu

A
q+nu

B
q−nu

A
qnu

B
q−(1−γ)nu

A
qnu

B
q

1−(1−γ)nu
A

qnu
B

q







(2)

λA =







q

√
(1+(γ−1)ml

A
q)

λ−(1−ml
A

q)
λ

(1+(γ−1)ml
A

q)
λ
+(γ−1)(1−ml

A
q)

λ ,

q

√
(1+(γ−1)mu

A
q)

λ−(1−mu
A

q)
λ

(1+(γ−1)mu
A

q)
λ
+(γ−1)(1−mu

A
q)

λ







q
√

γ(ilA)
λ

q
√
(1+(γ−1)(1−ilA

q)
λ
+(γ−1)(ilA

q)
λ

,

q
√

γ(iuA)
λ

q
√
(1+(γ−1)(1−iuA

q)
λ
+(γ−1)(iuA

q)
λ







q
√

γ(nl
A)

λ

q
√
(1+(γ−1)(1−nl

A
q)

λ
+(γ−1)(nl

A
q)

λ
,

q
√

γ(nu
A)

λ

q
√
(1+(γ−1)(1−nu

A
q)

λ
+(γ−1)(nu

A
q)

λ







(3)
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Aλ =







q
√

γ(ml
A)

λ

q
√
(1+(γ−1)(1−ml

A
q))

λ
+(γ−1)(ml

A
q)

λ
,

q
√

γ(mu
A)

λ

q
√
(1+(γ−1)(1−mu

A
q))

λ
+(γ−1)(mu

A
q)

λ







q

√
(1+(γ−1)ilA

q)
λ−(1−ilA

q)
λ

(1+(γ−1)ilA
q)

λ
+(γ−1)(1−ilA

q)
λ ,

q

√
(1+(γ−1)iuA

q)
λ−(1−iuA

q)
λ

(1+(γ−1)iuA
q)

λ
+(γ−1)(1−iuA

q)
λ







q

√
(1+(γ−1)nl

A
q)

λ−(1−nl
A

q)
λ

(1+(γ−1)nl
A

q)
λ
+(γ−1)(1−nl

A
q)

λ ,

q

√
(1+(γ−1)nu

A
q)

λ−(1−nu
A

q)
λ

(1+(γ−1)nu
A

q)
λ
+(γ−1)(1−nu

A
q)

λ







(4)

The Hamacher operations defined in Equations (1)–(4) are more effective than earlier
Hamacher operations of IVIFSs, IVPyFSs, IVq-ROPFSs, and PFSs. The novel interval-
valued T-spherical fuzzy Hamacher (IVTSFH) operations explain MD, AD, NMD, and RD

with no restrictions because for every triplet
([

ml
A, mu

A

]
,
[
il
A, iu

A

]
,
[
nl

A, nu
A

])
, there exist

some q ∈ Z+ for which the triplet becomes an IVTSFN.
The Hamacher operations defined in Equations (1)–(4) can be reduced to some existing

fuzzy sets, which can be described as:

1. For q = 2, IVTSFH operations become the Hamacher operations of the IVSFSs.
2. For q = 1, IVTSFH operations become the Hamacher operations of the IVPFSs.
3. For i = 0, IVTSFH operations become the Hamacher operations of the IVq-ROPFSs.
4. For q = 2, and i = 0, IVTSFH operations become the Hamacher operations of

the PyFSs.
5. For q = 1 and i = 0, IVTSFH operations become the Hamacher operations of

the IVIFSs.

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging
(IVTSFHWA) Operators

The aim of this section is to develop IVTSFHWA operators based on the Hamacher op-
eration introduced in Section 3. Note that from this section onward, wj = (w1 , w2 , . . . , wl )

T

represents the weight vector, where wj > 0, and ∑
l
1 wj = 1, where j, k ∈ J = {1, 2, 3 . . . l}.

Definition 6. Suppose Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are some IVTSFNs.

Then, the IVTSFHWA operator Tl → T is defined as:

IVTSFHWA
(
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Proof. To prove, the mathematical induction method is used.
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Hence, this result is true for l = 2.
Now, let us assume that it is true for l = k and we have to prove that it is true for

l = k + 1
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It shows that it is true for l = k + 1, and, hence, it holds for all values of l. �

Here, we define some main characteristics of the IVTSFHWA operator in Theorem 3.

Theorem 3. The HAOs of IVTSFNs satisfy the following properties:

1. Idempotency. If
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≤ IVTSFHWA(P1, P2, P3, . . . Pl)

Proof. Trivial. �

The IVTSFHWA operator only evaluates IVTSFNs. To address situations where the
ordering status of IVTSFNs is important in MADM problems, the IVTSFHOWA operator is
defined as follows:
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Definition 7. Suppose that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are some

IVTSFNs. Then, the IVTSFHOWA operator Tl → T is defined as:

IVTSFHOWA
(
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Theorem 4. Consider that Tj =
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j, mu

j

]
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nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHOWA operator is an IVTSFN and given by:

IVTSFHOWA(
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Proof. Trivial. �

Remark 3. The IVTSFHOWA operator satisfies the three conditions of Idempotency, Monotonicity,
and Boundedness, as defined in Theorem 3.

The IVTSFHWA operator only evaluates IVTSFNs, while the IVTSFHOWA operator
only aggregates the ordered position of IVTSFNs. When the ordered position and weight
of the argument are important, the IVTSFHHA operator is proposed as follows:

Definition 8. Suppose that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHHA operator Tl → T is defined as:

IVTSFHHA
(
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Proof. To prove, the mathematical induction method is used. 
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1
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Theorem 5. Consider that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHHA operator is an IVTSFN and given by:

IVTSFHHA(
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Proof. Trivial. �

Remark 4. Theorem 5 reduces to the IVTSFHWA operator for wj =
(

1
l , 1

l , 1
l , . . . 1

l

)T
. Then, it

reduces into the IVTSFHOWA operator for
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Proof. Trivial. □ 

Remark 3. The IVTSFHOWA operator satisfies the three conditions of Idempotency, 
Monotonicity, and Boundedness, as defined in Theorem 3. 

The IVTSFHWA operator only evaluates IVTSFNs, while the IVTSFHOWA operator 
only aggregates the ordered position of IVTSFNs. When the ordered position and weight 
of the argument are important, the IVTSFHHA operator is proposed as follows: 

Definition 8. Suppose that = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator  →   is defined as: 

(Ҭ , Ҭ , Ҭ , … Ҭ ) = Ɩ Ҭ̇ ( )   (9) (9)

where Ҭ̇ ( ) is the ℎ largest value of the IVTSFNs Ҭ̇ = Ҭ  with  as the weight of in-
terval-valued T-Spherical fuzzy arguments  such that   [0,1] and ∑ = 1 and the 
balancing coefficient is denoted by . 

Theorem 5. Consider that  = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator is an IVTSFN and given by: 

j =
(

1
l , 1

l , 1
l , . . . 1

l

)T
.

Remark 5. The IVTSFHOWA operator satisfies the three conditions of Idempotency, Monotonicity,
and Boundedness defined in Theorem 3.

5. Interval-Valued T-Spherical fuzzy Hamacher Weighted Geometric
(IVTSFHWG) Operators

The aim of this section is to develop IVTSFHWG operators based on the Hamacher
operations introduced in Section 3. Some basic characteristics of the IVTSFHWG operators
are also investigated.

Definition 9. Suppose that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHWG operator Tl → T is defined as:

IVTSFHWG
(
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By using previous results defined in Definition 5, we can obtain the subsequent result,
as given in Theorem 6.

89



Axioms 2021, 10, 145

Theorem 6. Consider that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHWG operator is an IVTSFN and given by:

IVTSFHWG(

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

1,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

2,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

3, . . .

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

l) =





q
√

γ ∏
l
j=1 (m

l
j)

wj

q
√

∏
l
j=1 (1+(γ−1)(1−ml

j
q))

wj+(γ−1)∏
l
j=1 (m

l
j
q)

wj

,
q
√

γ ∏
l
j=1 (m

u
j )

wj

q
√

∏
l
j=1 (1+(γ−1)(1−mu

j
q))

wj+(γ−1)∏
l
j=1 (m

u
j

q)
wj







q

√
∏

l
j=1 (1+(γ−1)ilj

q)
wj−∏

l
j=1 (1−ilj

q)
wj

∏
l
j=1 (1+(γ−1)ilj

q)
wj+(γ−1)∏

l
j=1 (1−ilj

q)
wj

, q

√
∏

l
j=1 (1+(γ−1)iuj

q)
wj−∏

l
j=1 (1−iuj

q)
wj

∏
l
j=1 (1+(γ−1)iuj

q)
wj+(γ−1)∏

l
j=1 (1−iuj

q)
wj







q

√
∏

l
j=1 (1+(γ−1)nl

j
q)

wj−∏
l
j=1 (1−nl

j
q)

wj

∏
l
j=1 (1+(γ−1)nl

j
q)

wj+(γ−1)∏
l
j=1 (1−nl

j
q)

wj

, q

√
∏

l
j=1 (1+(γ−1)nu

j
q)

wj−∏
l
j=1 (1−nu

j
q)

wj

∏
l
j=1 (1+(γ−1)nu

j
q)

wj+(γ−1)∏
l
j=1 (1−nu

j
q)

wj







(12)

Proof. This result can be proven similar to Theorem 2. It can be noted that this operator
also fulfilled the conditions of Monotonicity, Idempotency, and Boundedness. �

Definition 10. Suppose that Tj =
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j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHWG operator Tl → T is defined as:

IVTSFHOWG
(
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Then, the IVTSFHOWG operator is an IVTSFN and given by:
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j=1 (1+(γ−1)nu

σ(j)
q)

wj+(γ−1)∏
l
j=1 (1−nu

σ(j)
q)

wj







(14)

Proof. Trivial. �
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Remark 6. The IVTSFHOWG operator satisfies the three conditions of Idempotency, Monotonicity,
and Boundedness defined in Theorem 3.

The IVTSFHWG operator only evaluates the IVTSFNs, while the IVTSFHOWG opera-
tor only aggregates the ordered position of the IVTSFNs. When both ordered position and
weight of the argument becomes important, the IVTSFHHG operator is as follows:

Definition 11. Suppose that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHHG operator Tl → T is defined as:

IVTSFHHG
(
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Proof. To prove, the mathematical induction method is used. 
Let =  2 

1,
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Proof. To prove, the mathematical induction method is used. 
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j

)
=

l

∑
j=1

.
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Proof. To prove, the mathematical induction method is used. 
Let =  2 

wj

σ(j) (15)

where
.
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Proof. To prove, the mathematical induction method is used. 
Let =  2 

σ(j) is the jth largest of the IVTSFNs
.
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Proof. To prove, the mathematical induction method is used. 
Let =  2 

j = l
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Proof. Trivial. □ 

Remark 3. The IVTSFHOWA operator satisfies the three conditions of Idempotency, 
Monotonicity, and Boundedness, as defined in Theorem 3. 

The IVTSFHWA operator only evaluates IVTSFNs, while the IVTSFHOWA operator 
only aggregates the ordered position of IVTSFNs. When the ordered position and weight 
of the argument are important, the IVTSFHHA operator is proposed as follows: 

Definition 8. Suppose that = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator  →   is defined as: 

(Ҭ , Ҭ , Ҭ , … Ҭ ) = Ɩ Ҭ̇ ( )   (9) (9)

where Ҭ̇ ( ) is the ℎ largest value of the IVTSFNs Ҭ̇ = Ҭ  with  as the weight of in-
terval-valued T-Spherical fuzzy arguments  such that   [0,1] and ∑ = 1 and the 
balancing coefficient is denoted by . 

Theorem 5. Consider that  = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator is an IVTSFN and given by: 

j
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Theorem 8. Consider that Tj =
([

ml
j, mu

j

]
,
[
il
j, iu

j

]
,
[
nl

j, nu
j

])
∀ j = 1, 2, 3, . . . , l are IVTSFNs.

Then, the IVTSFHHG operator is an IVTSFN and given by:

IVTSFHHG(
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Proof. To prove, the mathematical induction method is used. 
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Proof. Trivial. �

Remark 7. Equation (11) is reduced to the IVTSFHWG operator for wj =
(

1
l , 1

l , 1
l , . . . 1

l

)T
.

Then, it is reduced into the IVTSFHOWG operator for
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Proof. Trivial. □ 

Remark 3. The IVTSFHOWA operator satisfies the three conditions of Idempotency, 
Monotonicity, and Boundedness, as defined in Theorem 3. 

The IVTSFHWA operator only evaluates IVTSFNs, while the IVTSFHOWA operator 
only aggregates the ordered position of IVTSFNs. When the ordered position and weight 
of the argument are important, the IVTSFHHA operator is proposed as follows: 

Definition 8. Suppose that = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator  →   is defined as: 

(Ҭ , Ҭ , Ҭ , … Ҭ ) = Ɩ Ҭ̇ ( )   (9) (9)

where Ҭ̇ ( ) is the ℎ largest value of the IVTSFNs Ҭ̇ = Ҭ  with  as the weight of in-
terval-valued T-Spherical fuzzy arguments  such that   [0,1] and ∑ = 1 and the 
balancing coefficient is denoted by . 

Theorem 5. Consider that  = , , , , ,  ∀ = 1,2,3, … ,  are IVTSFNs. 
Then, the IVTSFHHA operator is an IVTSFN and given by: 

j =
(

1
l , 1

l , 1
l , . . . 1

l

)T
.

6. Special Cases

It can be noticed that the AOs defined for some existing fuzzy sets, such as IVIFSs,
IVPyFSs, IVq-ROPFSs, IVPFSs, and IVSFSs, can be reduced from the proposed operators.
It means that the earlier defined HAOs become special cases of the proposed IVTSFHWA
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and IVTSFHWG operators. Proposed IVTSFHWA and IVTSFHWG operators are defined
as following, respectively:

IVTSFHWA(
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Proof. To prove, the mathematical induction method is used. 
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1. If ml = mu = m, il = iu = i and nl = nu = n, then the IVTSFHWA and IVTSFHWG
operators are converted into TSFHWA and TSFHWG, given as follows:
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2. If q = 2, then aggregated operators (AOs) of the IVTSFHWA and IVTSFHWG are
converted to IVSFHWA and IVSFWG, given as follows:
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3. If q = 2, ml = mu = m, il = iu = i and nl = nu = n, then the IVTSFHWA and
IVTSFHWG operators are converted into a spherical fuzzy environment.
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4. If q = 1, then A the IVTSFHWA and IVTSFHWG are converted into interval-valued
picture fuzzy settings and can be defined as:
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5. If q = 1 and ml = mu = m, il = iu = i, nl = nu = n, then IVTSFHWA and
IVTSFHWG are converted into picture fuzzy settings, given as follows:
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6. If il = iu = i = 0, then IVTSFHWA and IVTSFHWG are converted into interval-
valued q-ROPFSs, given as follows:
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7. If ml = mu = m, il = iu = i = 0 and nl = nu = n, then the IVTSFHWA and
IVTSFHWG operators are converted into q-ring orthpair fuzzy layouts, given as
follows:

q− ROPFHWA(
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8. If q = 2 and il = iu = i = 0, then IVTSFHWA and IVTSFHWG are converted into
interval-valued Pythagorean fuzzy layouts, given as follows:

IVPyFHWA(
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9. If q = 2 and ml = mu = m, il = iu = 0, nl = nu = n, then IVTSFHWA and
IVTSFHWG are converted into PyFSs, given as follows:

PyFHWA(
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10. If q = 1 and, il = iu = i = 0, then IVTSFHWA and IVTSFHWG are converted to
interval-valued IFSs, given as follows:

IVIFHWA(
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11. If q = 1 and ml = mu = m, il = iu = 0, nl = nu = n, then IVTSFHWA and
IVTSFHWG are converted into intuitionistic fuzzy settings, given as follows.

IFHWA(

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

1,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

2,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

3, . . .

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

l) =


∏
l
j=1 (1+(γ−1)mj)

wj−∏
l
j=1 (1−mj)

wj

∏
l
j=1 (1+(γ−1)mj)

wj+(γ−1)∏
l
j=1 (1−mj)

wj

γ ∏
l
j=1 n

wj
j

∏
l
j=1 (1+(γ−1)(1−nj))

wj+(γ−1)∏
l
j=1 (nj)

wj




(37)

IFHWG(

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

1,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

2,

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

3, . . .

Axioms 2021, 10, x FOR PEER REVIEW 7 of 33 
 

5. For = 1 and = 0, IVTSFH operations become the Hamacher operations of the 
IVIFSs. 

4. Interval Valued T-Spherical Fuzzy Hamacher Weighted Averaging (IVTSFHWA) 
Operators 

The aim of this section is to develop IVTSFHWA operators based on the Hamacher 
operation introduced in Section 3. Note that from this section onward, =(  ,  , … ,  )  represents the weight vector, where > 0, and ∑ = 1, where , ∈= {1, 2, 3 … }. 

Definition 6. Suppose = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator  →   is defined as: 

 (Ҭ , Ҭ , Ҭ , … Ҭ ) = Ҭ  (5)

By using previous results defined in Definition 5, we can obtain the subsequent re-
sult, as given in Theorem 2. 

Theorem 2. Consider  = , , , , ,  ∀ = 1,2,3, … ,  are some IVTSFNs. 
Then, the IVTSFHWA operator is an IVTSFN and given by: (Ҭ , Ҭ , Ҭ , … Ҭ ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

⎣⎢⎢
⎢⎢⎢
⎢⎡ ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ
, ∏ 1 + ( − 1)  – ∏ 1 −ƖƖ∏ 1 + ( − 1)  Ɩ + ( − 1) ∏ 1 −Ɩ ⎦⎥⎥

⎥⎥⎥
⎥⎤ 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
 

⎣⎢⎢
⎢⎢⎢
⎡ √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ
, √   ∏Ɩ  ∏ 1 + ( − 1) 1 −  + ( − 1) ∏ƖƖ ⎦⎥⎥

⎥⎥⎥
⎤
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

    (6)

Proof. To prove, the mathematical induction method is used. 
Let =  2 

l) =


γ ∏
l
j=1(m

wj
j )

∏
l
j=1 (1+(γ−1)(1−mj))

wj+(γ−1)∏
l
j=1 (mj)

wj

∏
l
j=1 (1+(γ−1)nj)

wj−∏
l
j=1 (1−nj)

wj

∏
l
j=1 (1+(γ−1)nj)

wj+(γ−1)∏
l
j=1 (1−nj)

wj




(38)

7. Multi-Attribute Decision Making

The aim of this section is to utilize the HAOs of TSFSs defined in Sections 4 and 5
in a MADM problem. We propose an algorithm for MADM based on HAOs of IVTSFSs.
A numerical example to demonstrate the applicability of the HAOs and the effect of
parameters γ and q is also studied.

In MADM problems, the aim is to choose the most preferred alternative from a set
of alternatives by AOs using score functions. The information used in this process is
based on the human opinion that can be represented by IVTSFNs. IVTSFNs are enabled
to discuss four aspects of evaluations provided by experts, including MD, NMD, AD,
and RD, of an uncertain environment. Let A = {A1, A2, . . . , Ak} be a set of alternatives
and a set of attributes G =

{
G1, G2, . . . , Gj

}
where j is finite, with weight vector wj.

Dk×j = (T)k×j =
([

ml , mu
]
,
[
il , iu

]
,
[
nl , nu

])
represents the decision matrix containing

information on the alternatives concerning the attributes in the form of IVTSFNs. The
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algorithm of the MADM process based on HAOs is given below, followed by a flowchart
in Figure 1.

 

𝐴  (1 ≤ 𝑗 ≤ 4) 𝐺  (1 ≤ 𝑖 ≤ 4)𝐺 𝐺 𝐺𝐺(𝐴 , 𝐴 , 𝐴 , 𝐴 )  𝑤 =(0.2, 0.5, 0.25, 0.05)
 𝑞 = 5

Figure 1. Flowchart of the MADM algorithm.

Step 1. A decision matrix is formed from the data gathered from the decision-makers
about alternatives based on attributes. The q-values are also considered IVTSFNs.

Step 2. The decision matrix is aggregated using the IVTSFHWA and IVTSFHWG
operators.

Step 3. The score values of aggregated IVTSFNs are calculated using

SC(I) =

(
ml
)q(

1−
(

il
)q
−
(

nl
)q)

+ (mu)q(1− (iu)q − (nu)q)

3
, SC(I) ∈ [−1, 1]

Step 4. The score values of the alternative are examined to find the optimum one.

7.1. Numerical Example

This subsection aims to take a practical example for utilizing MADM based on the
HAOs of IVTSFNs. We adapt an example from [33], where the selection of optimum
enterprise is carried out using the MADM algorithm.
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In this example, we take the problem of evaluating enterprise financial performance, where
we analyze some enterprises under some attributes to get the most optimum enterprise
using the HAOs based on IVTSF information. The four possible enterprises denoted by
Aj (1 ≤ j ≤ 4), according to four attributes, are denoted by Gi (1 ≤ i ≤ 4), where G1
is the debt-paying ability, G2 is the operation capability, G3 is the earning capacity, and
G4 is the development capability. The four possible enterprises (A1, A2, A3, A4) are to
be evaluated using the IVTSFHWA and IVTSFHWG operators by the decision-maker

under the four attributes with weights wj = (0.2, 0.5, 0.25, 0.05)T .

The decision matrix is formed by IVTSFNs.

Step 1. The evaluations about enterprises are provided by the experts in Table 1. Note that
in this problem, evaluations are represented by IVTSFNs for q = 5.

Table 1. Decision matrix.

G1 G2 G3 G4

A1




[0.6, 0.8],
[0.3, 0.5],
[0.3, 0.6]







[0.4, 0.5],
[0.1, 0.6],
[0.5, 0.9]







[0.5, 0.7],
[0.4, 0.8],
[0.1, 0.3]







[0.3, 0.6],
[0.1, 0.6],
[0.4, 0.7]




A2




[0.7, 0.9],
[0.1, 0.8],
[0.3, 0.4]







[0.3, 0.6],
[0.3, 0.5],
[0.4, 0.8]







[0.1, 0.6],
[0.1, 0.5],
[0.1, 0.9]







[0.4, 0.6],
[0.2, 0.5],
[0.5, 0.6]




A3




[0.3, 0.5],
[0.2, 0.3],
[0.2, 0.8]







[0.2, 0.5],
[0.6, 0.7],
[0.2, 0.9]







[0.2, 0.4],
[0.3, 0.4],
[0.3, 0.6]







[0.2, 0.7],
[0.4, 0.6],
[0.1, 0.4]




A4




[0.2, 0.4],
[0.1, 0.3],
[0.7, 0.9]







[0.7, 0.8],
[0.3, 0.5],
[0.1, 0.2]







[0.5, 0.8],
[0.4, 0.9],
[0.2, 0.4]







[0.4, 0.7],
[0.5, 0.6],
[0.3, 0.7]




Step 2. The IVTSFHWA and IVTSFHWG operators are applied to get aggregated
information, given as in Table 2. Note that while using IVTSFHWA and IVTSFHWG
operators, we take q = 5, γ = 2 and w = (0.2, 0.5, 0.25, 0.05)T .

Table 2. Aggregated values of IVTSFHWA and IVTSFHWG operators.

IVTSFHWA Operator IVTSFHWG Operator

A1




[0.491328, 0.664195],
[0.1762, 0.6243],
[0.2990, 0.63395]







[0.4526, 0.6061],
[0.005313, 0.230905],
[0.02895, 0.586139]




A2




[0.513349, 0.721466],
[0.179335, 0.5518],
[0.270219, 0.7183]







[0.274969, 0.6558],
[0.0022, 0.160593],
[0.012486, 0.568143]




A3




[0.236636 , 0.505216],
[0.3981 , 0.5128],
[0.213815 , 0.7738]







[0.21691, 0.4812],
[0.069814, 0.158957],
[0.001449, 0.684677]




A4




[0.621815 , 0.763604],
[0.265618, 0.5357],
[0.186066 , 0.3471]







[0.4904, 0.6991],
[0.009297, 0.316949],
[0.059314, 0.247336]




Step 3. The scores of the aggregated value of data in Table 2 are computed. The score
values for each alternative are computed and shown in Table 3.

Table 3. Score values of IVTSFHWA and IVTSFHWG operators.

IVTSFHWA Operator IVTSFHWG Operator
A1 0.0439 0.03169
A2 0.0612 0.03856
A3 0.0075
A4 0.1132 0.06489
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Step 4. Alternatives are ranked using score values in decreasing order. The ranking is
handled as A4 > A2 > A1 > A3. Thus, the best enterprise from different companies is A4.
The comparison between the results using the IVTSFHWA and IVTSFHWG operators is
discussed in Table 3.

7.2. Effect of “γ” on Ranking of Alternatives

Ullah et al. [41] observed a significant change in the ranking results while dealing
with TSF HAOs for various values of q and γ. Therefore, we examined the consequence of
deviations in γ on the ranking result. Hence, we solved the MADM problem discussed in
Section 7.2 for different γ values, and the effect on the ranking of the alternatives is given
in Table 4.

Table 4. Impact of γ on the ranking results.

γ Operators Score Values of IVTSFHWA Operator and IVTSFHWG Operator Resulting Pattern
IVTSFHWA S1 = 0.0439, S2 = 0.0612, S3 = 0.0078, S4 = 0.1132 A4 > A2 > A1 > A32 IVTSFHWG S1 = 0.0317, S2 = 0.0386, S3 = 0.0075, S4 = 0.0649 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0342, S2 = 0.0456, S3 = 0.0074, S4 = 0.0824 A4 > A2 > A1 > A34 IVTSFHWG S1 = 0.0336, S2 = 0.0415, S3 = 0.0084, S4 = 0.0669 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0334, S2 = 0.04398, S3 = 0.0073, S4 = 0.0809 A4 > A2 > A1 > A35 IVTSFHWG S1 = 0.0338, S2 = 0.0418, S3 = 0.0085, S4 = 0.0673 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0328, S2 = 0.0428, S3 = 0.0073, S4 = 0.0798 A4 > A2 > A1 > A36 IVTSFHWG S1 = 0.0339, S2 = 0.0421, S3 = 0.0085, S4 = 0.0676 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0319, S2 = 0.0412, S3 = 0.0072, S4 = 0.0783 A4 > A2 > A1 > A38 IVTSFHWG S1 = 0.0341, S2 = 0.0424, S3 = 0.0086, S4 = 0.0679 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0316, S2 = 0.0406, S3 = 0.0071, S4 = 0.0777 A4 > A2 > A1 > A39 IVTSFHWG S1 = 0.0341, S2 = 0.0425, S3 = 0.0086, S4 = 0.0680 A1 > A4 > A3 > A2
IVTSFHWA S1 = 0.0306, S2 = 0.0393, S3 = 0.0070, S4 = 0.0760 A4 > A2 > A1 > A312 IVTSFHWG S1 = 0.03424, S2 = 0.0427, S3 = 0.0086, S4 = 0.0683 A1 > A3 > A4 > A2

From Table 4, we noticed that there is no significant change in the ranking results in
the case of the IVTSFHWA operator and the IVTSFHWG operator for various values of γ.
This whole scenario can be observed from Figure 2.

𝛾 𝛾 
𝛾𝜸 Operators Score Values of IVTSFHWA Operator and IVTSFHWG Operator Resulting Pattern 2 

S = 0.0439, S = 0.0612, S = 0.0078, S = 0.1132 𝐴 > 𝐴 > 𝐴 > 𝐴  S = 0.0317, S = 0.0386, S = 0.0075, S = 0.0649 𝐴 > 𝐴 > 𝐴 > 𝐴  4 
S = 0.0342, S = 0.0456, S = 0.0074, S =  0.0824 𝐴 > 𝐴 > 𝐴 > 𝐴  S = 0.0336, S = 0.0415, S = 0.0084, S = 0.0669 𝐴 > 𝐴 > 𝐴 > 𝐴5 
S = 0.0334, S = 0.04398, S = 0.0073, S = 0.0809 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0338, S = 0.0418, S = 0.0085, S = 0.0673 𝐴 > 𝐴 > 𝐴 > 𝐴6 
S = 0.0328, S = 0.0428, S = 0.0073, S =  0.0798 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0339, S = 0.0421, S = 0.0085, S = 0.0676 𝐴 > 𝐴𝟐 > 𝐴 > 𝐴8 
S = 0.0319, S = 0.0412, S = 0.0072, S = 0.0783 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0341, S = 0.0424, S = 0.0086, S =  0.0679 𝐴 > 𝐴 > 𝐴 > 𝐴9 
S = 0.0316, S = 0.0406, S = 0.0071, S = 0.0777  𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0341, S =  0.0425, S = 0.0086, S = 0.0680 𝐴 > 𝐴 > 𝐴 > 𝐴12 
S = 0.0306, S = 0.0393, S = 0.0070, S = 0.0760 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.03424, S = 0.0427, S = 0.0086, S = 0.0683 𝐴 > 𝐴 > 𝐴 > 𝐴
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Figure 2. Graphical view of Table 4. "𝑞" “𝛾” “𝑞”"𝑞" 5
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Figure 2. Graphical view of Table 4.
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7.3. Effect of Variations in “q” on Ranking Results

As we have observed the impact of variations in “γ” on the ranking result in Section 7.3,
here, we aim to analyze the effect of variations in “q” using IVTSFHWA and IVTSFHWG
operators on ranking results. In the measured problem studied in Section 7.2, if we
differentiate the values of “q” from 5 onward, then the variable ranking order of the given
alternative is as displayed in Table 5 below.

Table 5. Ranking result for various values of “q” when γ = 2.

q Operators Score Values of IVTSFHWA and IVTSFHWG Resulting Pattern
IVTSFHWA S1 = 0.0439, S2 = 0.0612, S3 = 0.0078, S4 = 0.1132 A4 > A2 > A1 > A35 IVTSFHWG S1 = 0.0317, S2 = 0.0386, S3 = 0.0075, S4 = 0.0649 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0238, S2 = 0.0429, S3 = 0.0028, S4 = 0.0679 A4 > A2 > A1 > A37 IVTSFHWG S1 = 0.0111, S2 = 0.0171, S3 = 0.0020, S4 = 0.0287 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0134, S2 = 0.0310, S3 = 0.0010, S4 = 0.0411 A4 > A2 > A1 > A39 IVTSFHWG S1 = 0.0038, S2 = 0.0072, S3 = 0.00046, S4 = 0.0130 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0077, S2 = 0.0233, S3 = 0.0004, S4 = 0.0251 A4 > A2 > A1 > A311 IVTSFHWG S1 = 0.0013, S2 = 0.0030, S3 = 0.00011, S4 = 0.0061 A4 > A2 > A1 > A3
IVTSFHWA S1 = 0.0059, S2 = 0.0205, S3 = 0.00028, S4 = 0.0197 A2 > A4 > A1 > A312 IVTSFHWG S1 = 0.0041, S2 = 0.00198, S3 = 0.0008, S4 = 5.1E− 05 A4 > A2 > A1 > A3

It can be noted that the ranking array is changed at q = 12 in the case of the IVTSFHWA
operator, but the final ranking order does not change in the case of the IVTSFHWG operator.
However, the ranking array does not change after q = 12 in both cases. This demonstrates
the consistency in ranking consequences at q = 12. The whole scenario can be seen at a
glance in Figure 3 below.

“𝑞” 𝛾 = 2𝒒5 S = 0.0439, S = 0.0612, S = 0.0078, S = 0.1132 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0317, S = 0.0386, S = 0.0075, S = 0.0649 𝐴 > 𝐴 > 𝐴 > 𝐴7 S = 0.0238, S = 0.0429, S = 0.0028, S = 0.0679 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0111, S = 0.0171, S = 0.0020, S = 0.0287 𝐴 > 𝐴 > 𝐴 > 𝐴9 S = 0.0134, S = 0.0310, S = 0.0010, S = 0.0411 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0038, S = 0.0072, S = 0.00046, S= 0.0130 𝐴 > 𝐴 > 𝐴 > 𝐴
11 S = 0.0077, S = 0.0233, S = 0.0004, S = 0.0251 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0013, S = 0.0030, S = 0.00011, S= 0.0061  𝐴 > 𝐴 > 𝐴 > 𝐴
12 S = 0.0059, S = 0.0205, S = 0.00028, S= 0.0197 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0041, S = 0.00198, S = 0.0008, S= 5.1E − 05 𝐴 > 𝐴 > 𝐴 > 𝐴

𝑞 = 12 𝑞 = 12𝑞 = 12

 

Figure 3. Graphical view of Table 5.

8. A Comparison of the Result Obtained Using Proposed and Existing Methods

The goal of this section is to set up a comparative analysis of the IVTSFHWA and
IVTSFHWG operators with existing HAOs.

To examine the reliability and effectiveness of the presented approaches, we choose
the information of the example studied in Section 7.1 and solve it by using some previously
defined operators of IVTSFSs by Ullah et al. [25]. We further show the HAOs established
in the environment of IFSs, PyFSs, q-ROPFSs, PFSs, and TSFSs cannot be applied to the
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problem where information is in the form of IVTSFNs. The relative analysis of the presented
approaches with some current approaches is discussed in Table 6 below.

Table 6. Ranking of alternatives using existing and proposed methods.

Method Reference Score Values Ranking
IVTSFWA Ullah et al. [25] S1 = 0.0463, S2 = 0.0683, S3 = 0.0081, S4 = 0.1164 A4 > A2 > A1 > A3
IVTSFWG Ullah et al. [25] S1 = 0.0203, S2 = 0.0239, S3 = 0.0048, S4 = 0.0503 A4 > A2 > A1 > A3

Proposed work WA This paper S1 = 0.0439, S2 = 0.0612, S3 = 0.0078, S4 = 0.1132 A4 > A2 > A1 > A3
Proposed work WG This paper S1 = 0.0317, S2 = 0.0386, S3 = 0.0075, S4 = 0.0649 A4 > A2 > A1 > A3

HAOs of IFSs Huang [33] Failed Cannot be specified
HAOs of IVIFSs Liu [35] Failed Cannot be specified
HAOs of PyFSs Gao [36] Failed Cannot be specified

HAOs of IVPyFSs Peng and Yang [38] Failed Cannot be specified
HAOs of q-ROPFSs Darko and Liang [39] Failed Cannot be specified

HAOS of PFSs Jana & Pal [40] Failed Cannot be specified
HAOs of TSFSs Ullah et al. [41] Failed Cannot be specified

From the above analysis, we observed that the results obtained in this paper are
compatible with that of previous work. Moreover, it is shown that the HAOs developed in
Huang et al. [33], Liu [35], Gao [36], Peng and Yang [38], Darko and Liang [39], Jana and
Pal [40], and Ullah et al. [41] cannot be applied to the problem. The comparison results are
portrayed in Figure 4.

S = 0.0463, S = 0.0683, S = 0.0081, S= 0.1164 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0203, S = 0.0239, S = 0.0048, S= 0.0503 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0439, S = 0.0612, S = 0.0078, S= 0.1132 𝐴 > 𝐴 > 𝐴 > 𝐴S = 0.0317, S = 0.0386, S = 0.0075, S= 0.0649 𝐴 > 𝐴 > 𝐴 > 𝐴

 

Figure 4. Interpretation of the information in Table 6. 
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9. Conclusions

In this paper, first, we discussed the importance of working in the setting of interval-
valued fuzzy frameworks, as such fuzzy frameworks, which reduces the loss of information
and ensures the effective modeling of human opinion. Based on this fact, we developed the
notion of IVTSFHWA and IVTSFHWG operators that can aggregate the information given
in the form of IVTSFNs. We exemplified each newly developed operator and studied its
monotonicity, boundedness, and idempotency properties for newly defined HAOs. Some
further study based on the HAOs of IVTSFNs is as follows:
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1. To meet the situations where the ordered position and weights of the information
matters, we proposed the IVTSFHOWA, IVTSFHHA, IVTSFHOWG, and IVTSFHHG
operators.

2. We comprehensively studied the special cases of the newly developed HAOs.
3. A MADM algorithm based on the HAOs of IVTSFNs was produced and applied to

the problem of the evaluation of the performance of enterprises.
4. The impact of parameters q and γ on the ranking pattern was analyzed and geometri-

cally portrayed, where it was observed that severe fluctuations may occur by varying
the values of γ and q.

5. A comparative study of the newly developed HAOs and previously established HAOs
was set up, where the advantage of using the proposed HAOs became prominent as
all the existing HAOs failed to handle some situations without information loss.

The key advantage of the proposed HAOs is that they reduce information loss due
to their ability to describe the information in terms of the closed subintervals of [0, 1].
Another advantage of the HAOs of IVTSFSs is that they describe the AD and RD of the
information along with the MD and NMD, unlike the HAOs of IFSs, PyFSs, and QROFSs.
However, these HAOs can be further generalized to the frame of complex TSFSs, so their
ability to handle uncertain information would be increased.
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Abstract: Some decision-making problems, i.e., multi-criteria decision analysis (MCDA) problems,
require taking into account the attitudes of a large number of decision-makers and/or respondents.
Therefore, an approach to the transformation of crisp ratings, collected from respondents, in grey
interval numbers form based on the median of collected scores, i.e., ratings, is considered in this
article. In this way, the simplicity of collecting respondents’ attitudes using crisp values, i.e., by
applying some form of Likert scale, is combined with the advantages that can be achieved by using
grey interval numbers. In this way, a grey extension of MCDA methods is obtained. The application
of the proposed approach was considered in the example of evaluating the websites of tourism
organizations by using several MCDA methods. Additionally, an analysis of the application of the
proposed approach in the case of a large number of respondents, done in Python, is presented. The
advantages of the proposed method, as well as its possible limitations, are summarized.

Keywords: MCDA; grey interval numbers; group decision-making; Python

1. Introduction

Multi-criteria decision-making (MCDM), or multi-criteria decision analysis (MCDA),
has so far been used for solving a large number of numerous different decision-making prob-
lems [1–4]. Therefore, MCDA is dealing with solving complex real-world problems of the
greatest interest to the organization that cannot be solved by conventional methods [5–8].
In due course of time, many multi-criteria analysis (MCA) methods were proposed, pri-
marily due to the dynamic and rapid development of the field of operational research. The
following can be mentioned as some of the most cited articles from this area: Hajkowicz
and Collins [9], Hajkowicz and Higgins [10], Kaklauskas et al. [11], Kostreva et al. [12], and
Belton and Vickers [13].

Besides this research, there are many studies in this area, such as: research and
development project portfolio selection [14] (Mavrotas and Makryvelios, 2021), assessing
national energy sustainability [15], energy consumption analysis of high-speed trains [16],
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evaluation of transport emissions reduction policies [17], planning renewable energy use
and carbon saving [18], and so forth.

MCDA has also been used successfully for solving decision-making problems that
are related to uncertainties or require a group decision-making approach for solving
them [19–25]. As some examples of such approaches, the following can be mentioned:
a grey absolute decision analysis [26], a multiple criteria decision analysis framework
for the dispersed group [27], a fuzzy multi-criteria analysis [28–30], and collaborative
decision-making in the multi-actor multi-criteria analysis [31].

From the aforestated, it is clear that some decision-making problems can be more
adequately solved if a larger number of respondents take part in solving them. In such
cases, the question that arises is how to transform the attitudes collected from respondents
into group attitudes.

The approach based on the use of a five-point Liker’s scale, or similar, can be men-
tioned as one of the probably simplest approaches for collecting the respondents’ attitudes.
So far, in numerous articles published in scientific journals, numerous approaches have
been proposed for the transformation of individual attitudes acquired in this way into
group attitudes. The results obtained, the advantages, as well as the weaknesses of these
approaches, are also presented in these journals.

In this article, an approach to the transformation of crisp ratings, collected from
respondents, as grey interval numbers form based on the median of collected scores, i.e.,
ratings, is considered. Therefore, the article proposes the transformation of individual
ratings collected from respondents into grey intervals with the aim of performing MCDA
with minimal loss of information in relation to cases when crisp ratings are transformed
into crisp group ratings. The application of the proposed approach was considered on
the example of evaluating the websites of tourism organizations by using several MCDA
methods, and also an analysis of the application of the proposed approach in the case of a
large number of respondents was done in Python and described. Additionally, the main
idea of the article was to propose a simple procedure for gathering respondent’s attitudes
instead of a complex procedure that is sometimes difficult to understand by ordinary
respondents/decision-makers who are not familiar with MCDM and fuzzy logic.

Therefore, the rest of this article is organized as follows: In Section 2, some basic
definitions about grey numbers are given, while a new approach is proposed in Section 3. In
Section 4, a numerical illustration is presented in order to highlight the basic characteristics
of the proposed approach, while in Section 5 an analysis of the obtained results is performed.
Finally, conclusions are given at the end of the article.

2. Preliminaries

Definition 1. Grey number [32]. A grey number ⊗x is such a number whose exact value is
unknown, but the range in which value can lie is known.

Definition 2. Interval grey number [32]. An interval grey number is a grey number with a known
lower bound x and upper bound x , but with the unknown value of x, and it is shown as follows:

⊗ x ∈ [x, x] = [x ≤ x ≤ x]. (1)

Definition 3. The whitening function [33–35]. The whitening function transforms an interval
grey number into a crisp number whose possible values lie between the bounds of the interval grey
number. For the given interval grey number, the whitened value x(λ) of interval grey number ⊗x is
defined as

x(λ) = (1− λ)x + λx, (2)

where ∈ [0, 1] denotes the whitening coefficient.
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In the particular case λ = 0.5, the whitened value becomes the mean of the interval
grey number, as follows:

x(0.5) = 0.5(x + x
)

. (3)

3. The Newly Proposed Approach

Suppose that the decision matrix is presented in the form

D = [xk
ij], (4)

where: xk
ij denotes the evaluation of alternative i to criterion j stated by the decision-maker

k; i = 1, . . . ,m, and m denotes the number of alternatives; j = 1, . . . ,n, and n denotes the
number of criteria; k = 1 . . . K, and K denotes the number of decision-makers.

Such a three-dimensional matrix can be transformed into a group two-dimensional
matrix as follows:

D = [x′ ij], (5)

with

x′ ij =

(
K

∑
k=1

xk
ij

)
/K. (6)

Essentially, x′ ij denotes rating of alternative i to criterion j. Such defined x′ ij is actually
the mean value of all assessments of the alternative i in relation to the criterion j.

However, the matrix shown using Equation (4) can be also transformed into a grey
group decision matrix, as follows:

D = ([xij, xij]), (7)

with

xij =

(
∑

k∈k−
xk

ij

)
/n−; (8)

xij =

(
∑

k∈k+
xk

ij

)
/n+. (9)

In (8), k− denotes the set of elements whose values are less than or equal to the median
value of xk

ij, and n− denotes the number of elements in this set. Similarly, k+ in (9) denotes

a set of elements whose values are greater than or equal to the median value of xk
ij and n+

denotes the number of elements in this set.

Example

Let S be a sequence of 10 integers from interval [1, 5] and S = (1, 2, 3, 1, 5, 3, 3, 1, 4, 5).
Then, the mean and median of S are as follows: mean = 2.80 and median = 3.00. The

mean value of a number which is less than or equal to the median (1, 2, 3, 1, 3, 3, 1) is
xl = 2.00 and the mean value of a number greater or equal to the median (3, 5, 3, 3, 4, 5) is
xu = 3.83.

The mean value of such interval [2.00, 3.83], determined using Equation (3), is 2.915,
and the distance between it and the mean is 2.915 − 2.80 = 0.115, that is in percent-
ages 4.11%.

The results obtained based on several sequences of randomly generated numbers from
interval [1, 10] are shown in Table 1. The calculation was done in Python using the seed (1).
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Table 1. Difference between the mean value of the sequence of numbers and the value obtained by
the proposed approach.

Sample Mean Median xl xu
xm = (xu −

xl)/2
d = abs(Mean
− xm)

d (%)

5 5.60 5.00 4.00 7.00 5.50 0.10 1.79
10 7.10 7.50 5.40 8.80 7.10 0.00 0.00
15 5.13 6.00 2.88 7.50 5.19 0.05 1.06
20 6.50 7.00 5.08 8.00 6.54 0.04 0.64
25 4.52 4.00 2.43 6.50 4.46 0.06 1.23
50 5.20 5.00 3.07 7.14 5.11 0.09 1.81
100 5.01 5.00 2.93 7.09 5.01 0.00 0.02
150 5.16 5.00 3.05 6.91 4.98 0.18 3.45

From Table 1, it can be seen that the difference between the mean value of the sequence
of numbers and the value obtained by the proposed approach is not large.

4. A Numerical Illustration

In this section, the use of the proposed approach is presented in the case of evaluating
websites of tourist organizations from Eastern Serbia. The evaluation was performed on
the websites of 5 tourist organizations from the Timok frontier, or more precisely tourist
organizations of the Municipalities of Boljevac, Bor, Majdanpek, Negotin and Kladovo
(It is important to state that the order of municipalities does not correspond to the order of
alternatives, because the aim of this article is not to favor any of the above-mentioned tourist
organizations.). The evaluation is performed based on the following criteria: Visual design—
C1, Structure and navigability—C2, Content—C3, Innovation—C4, Personalization—C5.

The evaluation was performed using ARAS [36], WASPAS [37], CoCoSo [38] and
WISP [39] methods. In the first case, the evaluation was performed using ordinary MCDA
methods and the mean value of the collected ratings, while in the first case, the evaluation
was performed using the proposed approach.

This illustration does not show all the possibilities that the proposed approach pro-
vides in terms of analysis. The main goal was to compare the results obtained by applying
the mean value of all assessments and the proposed approach, where the transformation of
grey numbers was performed using Equation (3) and λ = 0.5.

The rating obtained from 10 respondents is shown in Tables 2–6.

Table 2. Ratings of alternative A1 in relation to the evaluation criteria obtained from 10 respondents.

A1 I II III IV V VI VII VIII IX X

C1 1 2 3 3 5 3 3 4 3 2
C2 3 3 4 5 3 4 4 4 2 4
C3 3 3 4 3 3 4 4 5 5 4
C4 1 1 2 3 4 4 5 2 3 2
C5 2 1 2 2 1 2 3 4 3 2

Table 3. Ratings of alternative A2 in relation to the evaluation criteria obtained from 10 respondents.

A2 I II III IV V VI VII VIII IX X

C1 3 5 4 4 4 4 5 3 2 2
C2 5 5 4 5 4 5 5 4 3 4
C3 2 4 4 4 3 4 5 3 3 3
C4 4 4 5 4 2 2 5 3 5 3
C5 4 4 5 3 4 3 4 3 2 4

110



Axioms 2021, 10, 124

Table 4. Ratings of alternative A3 in relation to the evaluation criteria obtained from 10 respondents.

A3 I II III IV V VI VII VIII IX X

C1 1 2 2 2 2 2 2 3 2 1
C2 3 5 5 4 2 2 3 4 4 4
C3 1 4 4 2 2 2 4 3 2 2
C4 1 1 3 3 1 1 4 2 1 1
C5 3 5 5 3 4 4 3 4 4 4

Table 5. Ratings of alternative A4 in relation to the evaluation criteria obtained from 10 respondents.

A4 I II III IV V VI VII VIII IX X

C1 4 4 4 5 4 4 4 4 5 4
C2 5 5 4 5 3 3 4 5 5 3
C3 5 5 4 4 3 3 4 5 5 5
C4 4 4 5 5 5 3 5 5 4 3
C5 4 4 5 3 4 4 3 5 4 4

Table 6. Ratings of alternative A5 in relation to the evaluation criteria obtained from 10 respondents.

A4 I II III IV V VI VII VIII IX X

C1 4 3 5 5 5 3 5 3 4 3
C2 4 4 4 5 4 3 5 4 4 4
C3 5 4 4 4 3 3 4 4 3 5
C4 4 4 5 3 2 4 3 5 3 3
C5 3 4 4 4 4 3 4 5 4 4

The group decision matrix, formed on the basis of the responses of all respondents,
is shown in Table 7. The elements of this matrix represent the mean value of the ratings
obtained from the respondents.

Table 7. Group decision-making matrix.

Criteria Alternatives C1 C2 C3 C4 C5

A1 2.90 3.60 3.80 2.70 2.20
A2 3.60 4.40 3.50 3.70 3.60
A3 1.90 3.60 2.60 1.80 3.90
A4 4.20 4.20 4.30 4.30 4.00
A5 4.00 4.10 3.90 3.60 3.90

A similar decision matrix is shown in Table 8, where the elements of that matrix
represent the median of ratings obtained from the respondents.

Table 8. The median of ratings obtained from the respondents.

Criteria Alternatives C1 C2 C3 C4 C5

A1 2.96 3.81 3.92 2.70 2.11
A2 3.79 4.40 3.50 3.82 3.81
A3 1.95 3.79 2.31 1.40 3.96
A4 4.10 4.20 4.30 4.30 4.00
A5 4.00 4.05 3.96 3.60 3.95

The results of the evaluation performed using ordinary ARAS, WASPAS, CoCoSo and
WISP methods, weighting vector wi = (0.25, 0.24, 0.22, 0.20, 0.10), and the data from Table 7,
are shown in Table 9.
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Table 9. Ranking of alternatives using ordinary ARAS, WASPAS, CoCoSo and WISP methods.

ARAS WASPAS CoCoSo WISP

Alternatives Si Rank Si Rank Si Rank Si Rank
A1 0.73 4 0.73 4 1.80 4 0.87 4
A2 0.88 3 0.88 3 2.17 3 0.95 3
A3 0.61 5 0.60 5 1.49 5 0.81 5
A4 0.99 1 0.99 1 2.43 1 1.00 1
A5 0.92 2 0.92 2 2.25 2 0.96 2

In the second case, based on data from Table 8 as well as ratings from Tables 2–6, a
grey decision matrix was formed as shown in Table 10.

Table 10. Grey group decision-making matrix.

Criteria Alternatives C1 C2 C3 C4 C5

A1 [2.50, 3.43] [3.44, 4.17] [3.50, 4.33] [1.60, 3.80] [1.71, 2.50]
A2 [3.25, 4.33] [3.80, 5.00] [2.80, 4.20] [3.14, 4.50] [3.44, 4.17]
A3 [1.78, 2.13] [3.25, 4.33] [1.83, 2.78] [1.00, 1.80] [3.62, 4.29]
A4 [4.00, 4.20] [3.40, 5.00] [3.60, 5.00] [3.60, 5.00] [3.75, 4.25]
A5 [3.33, 4.67] [3.88, 4.22] [3.63, 4.29] [2.80, 4.40] [3.78, 4.13]

The evaluation results generated using the grey ARAS, WASPAS, CoCoSo and WISP
methods, and the data from Table 10, are shown in Table 11. It should be noted again that
the grey numbers from Table 10 were transformed into crisp values, using Equation (3) and
λ = 0.5, before the evaluation.

Table 11. Ranking of alternatives using grey WS, WP, WASPAS and CoCoSo methods.

ARAS WASPAS CoCoSo WISP

Alternatives Si Rank Si Rank Si Rank Si Rank
A1 0.76 4 0.46 4 1.90 4 0.74 4
A2 0.91 3 0.55 3 2.29 3 0.89 3
A3 0.59 5 0.36 5 1.47 5 0.62 5
A4 0.99 1 0.60 1 2.48 1 0.99 1
A5 0.92 2 0.56 2 2.32 2 0.92 2

From Tables 9 and 11, it can be seen that differences in ranking orders of alternatives
achieved on the basis of the mean value of all assessments and the proposed approach
were not observed. Of course, it should be reiterated here that the proposed approach
provides significantly greater opportunities in terms of analyzing various scenarios, such
as pessimistic or optimistic.

5. Analysis and Discussion

In order to verify the proposed approach, this section presents the results of the
evaluation based on the assessments of a number of virtual respondents. For easier
evaluation, the scores were generated as random numbers from the interval [1, 10], using
a program written in the Python programming language, in which all calculations were
also performed. In this analysis, random numbers are generated with the seed (1). The
results obtained on the basis of series of 10, 50, 100 and 150 virtual respondents are shown
in Tables 12–20. The weighting vector wi = (0.2, 0.2, 0.2, 0.2, 0.2) is used in this evaluation.

The calculation details obtained on the basis of 10 virtual respondents are shown in
Tables 12 and 13. As can be seen from Tables 12 and 13, in this case, the same ranking
orders are obtained by applying all methods and approaches.
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Table 12. Ranking of alternatives on the basis of 10 virtual respondents and crisp approach.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank
A1 0.83 5 0.75 5 0.75 5 1.77 5 0.59 5
A2 1.00 1 0.91 1 0.91 1 2.16 1 1.00 1
A3 0.98 2 0.87 2 0.88 2 2.09 2 0.88 2
A4 0.84 4 0.75 4 0.76 4 1.79 4 0.61 4
A5 0.89 3 0.80 3 0.81 3 1.91 3 0.71 3

Table 13. Ranking of alternatives on the basis of 10 virtual respondents and the proposed grey approach.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank
A1 0.82 5 0.74 5 0.75 5 1.78 5 0.58 5
A2 1.00 1 0.92 1 0.92 1 2.18 1 1.00 1
A3 0.95 2 0.84 2 0.86 2 2.04 2 0.80 2
A4 0.83 4 0.75 4 0.75 4 1.79 4 0.59 4
A5 0.88 3 0.80 3 0.81 3 1.91 3 0.69 3

Table 14. Ranking of alternatives on the basis of 50 virtual respondents and crisp approach.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Si Si Ki Rank Si Rank
A1 0.97 3 0.94 3 0.94 3 1.90 3 0.91 3
A2 0.92 4 0.89 4 0.89 4 1.80 4 0.78 4
A3 1.00 1 0.97 1 0.97 1 1.97 1 1.00 1
A4 0.91 5 0.88 5 0.89 5 1.79 5 0.77 5
A5 0.97 2 0.94 2 0.95 2 1.91 2 0.91 2

Table 15. Ranking of alternatives on the basis of 50 virtual respondents and the proposed grey approach.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank
A1 0.98 2 0.94 2 0.94 2 1.90 2 0.94 2
A2 0.92 5 0.89 5 0.89 5 1.79 5 0.80 5
A3 1.00 1 0.96 1 0.96 1 1.94 1 1.00 1
A4 0.93 4 0.89 4 0.89 4 1.81 4 0.82 4
A5 0.97 3 0.93 3 0.93 3 1.87 3 0.90 3

Table 16. Ranking orders of alternatives obtained on the basis of 50 virtual respondents.

Crisp Grey Approach

Alternatives WS WP WASPAS CoCoSo WISP WS WP WASPAS CoCoSo WISP
A1 3 3 3 3 3 2 2 2 2 2
A2 4 4 4 4 4 5 5 5 5 5
A3 1 1 1 1 1 1 1 1 1 1
A4 5 5 5 5 5 4 4 4 4 4
A5 2 2 2 2 2 3 3 3 3 3

Table 17. Ranking orders of alternatives obtained on the basis of 100 virtual respondents.

Crisp Grey Approach

Alternatives WS WP WASPAS CoCoSo WISP WS WP WASPAS CoCoSo WISP
A1 4 4 4 4 4 4 4 4 4 4
A2 3 3 3 3 3 2 2 2 2 2
A3 2 2 2 2 2 3 3 3 3 3
A4 1 1 1 1 1 1 1 1 1 1
A5 5 5 5 5 5 5 5 5 5 5
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Table 18. Ranking of alternatives on the basis of 150 virtual respondents and crisp methods.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Si Si Ki Rank Si Rank
A1 0.993 2 0.960 2 0.961 2 1.840 2 0.977 2
A2 0.975 3 0.944 3 0.944 3 1.808 3 0.927 3
A3 0.971 5 0.938 5 0.939 5 1.799 5 0.914 5
A4 1.000 1 0.968 1 0.968 1 1.854 1 1.000 1
A5 0.973 4 0.942 4 0.942 4 1.805 4 0.923 4

Table 19. Ranking of alternatives on the basis of 150 virtual respondents and grey methods.

WS WP WASPAS CoCoSo WISP

Alternatives Si Rank Pi Rank Qi Rank Ki Rank Si Rank
A1 0.988 2 0.954 2 0.955 2 1.806 2 0.965 2
A2 0.988 3 0.953 3 0.954 3 1.805 3 0.963 3
A3 0.987 4 0.952 4 0.953 4 1.804 4 0.960 4
A4 1.000 1 0.966 1 0.966 1 1.828 1 1.000 1
A5 0.985 5 0.952 5 0.952 5 1.801 5 0.958 5

Table 20. Ranking orders of alternatives obtained on the basis of 150 virtual respondents.

Crisp Grey Approach

Alternatives WS WP WASPAS CoCoSo WISP WS WP WASPAS CoCoSo WISP
A1 2 2 2 2 2 2 2 2 2 2
A2 3 3 3 3 3 3 3 3 3 3
A3 5 5 5 5 5 4 4 4 4 4
A4 1 1 1 1 1 1 1 1 1 1
A5 4 4 4 4 4 5 5 5 5 5

The calculation details obtained on the basis of 50 virtual respondents are shown in
Tables 14–16. In this case, there were some discrepancies in the order of the second and
third-placed alternatives, which can be clearly seen in Figure 1.
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Figure 1. Ranking orders of alternatives obtained on the basis of 50 virtual respondents.
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It can be seen from Tables 14 and 15 that differences between second-placed and third-
placed alternatives are not high, which is why it can be expected that the same ranking
order of alternatives could be obtained by using another weight vector.

Ranking orders of alternatives, obtained on the basis of 100 virtual respondents, are
shown in Tabe 17, and presented in Figure 2. This case is similar to the previous one.
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Figure 2. Ranking orders of alternatives obtained on the basis of 100 virtual respondents.

From Table 17 and Figure 2 it can be observed that in this case, the differences occur
only in the case of the second and third-placed alternatives.

Ranking orders of alternatives that arise from 150 virtual respondents are arranged in
Tables 18–20 and presented in Figure 3.
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Figure 3. Ranking orders of alternatives obtained on the basis of 150 virtual respondents.

Table 20 and Figure 3 clearly show that the alternative A4 is best ranked according to
all methods, with all crisp methods gave the same order of ranking A4, A1, A2, A5, A3, while
the proposed grey approach gave the following rankings order A4, A1, A2, A3, A5. However,
from Table 20 it is observable that there are very small differences in overall performance
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between the second-placed, third-placed and fourth-placed alternatives, which is why it
can be expected that different ranking orders of alternatives could be obtained by using
another weighting vector.

6. Conclusions

The advantages of using grey instead of crisp numbers in multi-criteria decision anal-
ysis have been considered and proven in a number of previously published studies. One
of the advantages which should be emphasized using grey numbers is the possibility of
considering various scenarios, such as: pessimistic, realistic, and optimistic. The proposed
approach allows the transformation of crisp ratings, collected by employing surveys based
on the use of the Likert scale, into grey numbers and thus considering different scenarios.
The proposed approach may be suitable when it is necessary to collect and analyze the
realistic attitudes of a larger number of respondents. Moreover, the proposed transforma-
tion enables greater robustness and further possibility of analysis and consideration of
different scenarios.

The results of the website evaluation based on the mean value of the ratings obtained
from all respondents and the proposed approach did not indicate a difference in the
ranking orders of alternatives. However, the results of the conducted analysis indicate
that differences may arise between the two approaches, especially in the case of the lower-
ranked alternatives.

Some differences in the results are expected because the proposed approach is not a
substitute for applying the mean value of the scores obtained from all respondents, but an
approach that further allows the possibility of analysis. Certain differences in the ranking
results using the newly proposed approach and applying the mean of the scores obtained
in all respondents can be cited as a weakness of this approach.

Finally, consideration of the transformation of a larger number of crisp ratings into
corresponding triangular fuzzy numbers or interval-valued triangular fuzzy numbers
can be mentioned as one of the possible directions for the further development of the
proposed approach.

Author Contributions: Conceptualization, P.S.S., D.K., V.N.K. and G.P.; methodology, D.K., D.S. and
F.S.; validation, A.U.; investigation, A.U.; data curation, G.P.; writing—original draft preparation,
D.S., V.N.K. and M.S.; writing—review and editing, P.S.S. and M.S.; supervision, D.K.; funding
acquisition, F.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research presented in this article was done with the financial support of the Ministry
of Education, Science and Technological Development of the Republic of Serbia, within the funding
of the scientific research work at the University of Belgrade, Technical Faculty in Bor, according to
the contract with registration number 451-03-9/2021-14/200131.

Conflicts of Interest: The authors declare no conflict of interest.

References
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Abstract: Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher
level of uncertain and imprecise information, which cannot be represented using intuitionistic fuzzy
linguistic (IFL)/Pythagorean fuzzy linguistic (PFL) sets. On the other hand, the linguistic scale
function (LSF) is the better way to consider the semantics of the linguistic terms during the evaluation
process. It is worth noting that the existing operational laws and aggregation operators (AOs) for
Fermatean fuzzy linguistic numbers (FFLNs) are not valid in many situations, which can generate
errors in real-life applications. The present study aims to define new robust operational laws and
AOs under Fermatean fuzzy linguistic environment. To do so, first, we define some new modified
operational laws for FFLNs based on LSF and prove some important mathematical properties of them.
Next, the work defines several new AOs, namely, the FFL-weighted averaging (FFLWA) operator, the
FFL-weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA) opera-
tor, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid averaging (FFLHA)
operator and the FFL-hybrid geometric (FFLHG) operator under Fermatean fuzzy linguistic environ-
ment. Several properties of these AOs are investigated in detail. Further, based on the proposed AOs,
a new decision-making approach with Fermatean fuzzy linguistic information is developed to solve
group decision-making problems with multiple attributes. Finally, to illustrate the effectiveness of the
present approach, a real-life supplier selection problem is presented where the evaluation information
of the alternatives is given in terms of FFLNs. Compared to the existing methods, the salient features
of the developed approach are (1) it can solve decision-making problems with qualitative information
data using FFLNs; (2) It can consider the attitudinal character of the decision-makers during the
solution process; (3) It has a solid ability to distinguish the optimal alternative.

Keywords: Fermatean fuzzy set; Fermatean fuzzy linguistic set; Fermatean fuzzy linguistic number;
MAGDM; supplier selection

MSC: 03E72; 62A86; 90B50

1. Introduction

The intuitionistic fuzzy set (IFS) theory was introduced by Atanassov [1] in 1983
to accommodate uncertain and vague concepts more precisely in complex real-life sit-
uations. An IFS assigns each element a degree of membership (DM) and a degree of
non-membership (DNM), whose sum is always less than or equal to one. It has become
an important and widely studied generalization of fuzzy sets [2]. Due to the applicabil-
ity and effectiveness of the IFS theory, several researchers started work in this direction
and established many significant results. For aggregating different intuitionistic fuzzy
numbers (IFNs), a large number of AOs have been defined by considering various aspects
of available information [3–6]. The Bonferroni mean operators were studied in [7–10] to
capture the interrelationship between aggregated IFNs. Verma [11] proposed prioritized
weighted aggregation operators with intuitionistic fuzzy information based on Einstein
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t-norms. Zhenghai and Xu [12–14] undertook a detailed study on intuitionistic fuzzy
calculus and explored its utility in decision-making problems. Besides, several information
measures have been proposed under an intuitionistic fuzzy environment, including dis-
tance measure [15–18], similarity measure [19–22], entropy measure [23–26], divergence
measure [27–29], and inaccuracy measure [30] and applied them in different application
areas including pattern recognition, medical diagnosis, and decision making.

1.1. Literature Review

In 2013, Yager [31] and Yager and Abbasov [32] proposed the notion of the Pythagorean
fuzzy sets (PFSs) as a new generalization to IFSs. PFSs are more effective in modeling
imperfect or vague information, which cannot be represented in terms of IFSs. For example:
suppose an expert provides the DM of an alternative corresponding to a criterion as 0.8
and the DNM as 0.5. As we see, the sum of both degrees is 1.3, which does not satisfy the
essential condition of IFS. Further, if we consider the sum of the squares of both the degrees,
i.e., 0.82 + 0.52 then we obtain 0.89 < 1; hence, this information can be represented in the
form of PFS, not in IFS. In a short span, the PFS theory has become an efficient tool for
solving various real-life problems. Zhang and Xu [33] extended the TOPSIS method under
the Pythagorean fuzzy environment. Yager [34] proposed some novel AOs for aggregating
Pythagorean fuzzy numbers (PFNs). The power AOs were studied by Wei and Lu [35]
under a Pythagorean fuzzy environment. Yang et al. [36] defined some Pythagorean
fuzzy Bonferroni mean operators using t-norms. Akram et al. [37] developed a two-
phase group decision-making approach using the ELECTRE III method with Pythagorean
fuzzy information. Ejegwa [38] defined a modified Zhang and Xu’s distance measure for
solving pattern recognition problems with Pythagorean fuzzy information. Molla et al. [39]
extended the PROMETHEE method with PFSs and utilized them in medical diagnosis.
Bakioglu and Atahan [40] conducted a detailed study on prioritizing risks in self-driving
vehicles based on hybrid approaches with Pythagorean fuzzy information.

Again, let us assume the DM as 0.9 and the DNM as 0.6 in the above-discussed
example. It is clear that we do not express this information by using IFS and PFS. To cope
with this problem, Senapati and Yager [41] proposed the concept of Fermatean fuzzy set
(FFS), where the DM and DNM are both real numbers that lie between 0 and 1 and satisfy
the condition 0 ≤ (DM)3 + (DNM)3 ≤ 1. The main advantage of the FFS is that it provides
a better tool than IFS and PFS for handling the higher level of uncertainties arising in
many real-life decision-making problems. As we obtain 0.93 + 0.63 < 1, hence FFS is an
appropriate tool to capture this uncertain information. Later on, Senapati and Yager [42]
defined some operations on FFSs and discussed their application in decision-making. To
aggregate different Fermatean fuzzy numbers (FFNs), Senapati and Yager [43] developed
some weighted averaging/geometric AOs and utilized them to solve decision-making
problems with multiple criteria. Aydemir and Yilmaz Gunduz [44] used the TOPSIS
method with Dombi AOs for solving decision-making problems with Fermatean fuzzy
information. Mishra et al. [45] formulated a Fermatean fuzzy CRITIC-EDAS approach to
select sustainable logistics providers.

In many real-life situations, due to the increase in complexities and uncertainties
in practical decision problems, an expert feels difficulty expressing his/her preference
information by exact numerical values. Besides, many attributes and criteria can be
evaluated quickly and effectively in terms of linguistic values. Firstly, Zadeh [46,47]
developed the idea of the linguistic term set (LTS) in 1975. For example—suppose an
expert evaluates the performance of a motorbike, then he/she may use the terms “good”,
“excellent”, etc., to express his/her evaluation information because linguistic terms (LTs)
are very close to human cognition. In 2010, Wang and Li [48] developed a hybrid set theory
by combining the notions of LTS and IFS in a single formulation, which is known as the
intuitionistic linguistic fuzzy sets (ILFSs). In the literature, several research studies have
been conducted under the intuitionistic linguistic fuzzy environment. Liu [49] proposed
some generalized dependent AOs with intuitionistic linguistic fuzzy numbers (ILFNs) and
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studied their application in decision-making. Liu and Wang [50] defined some intuitionistic
linguistic generalized power aggregation operators. Su et al. [51] studied ordered weighted
distance averaging operators with intuitionistic linguistic fuzzy information. Yu et al. [52]
presented an extended TODIM method for solving MAGDM problems with ILFNs.

Recently, Liu et al. [53] generalized the notion of ILFSs and introduced Fermatean
fuzzy linguistic sets (FFLS) by integrating the idea of LTS with FFS. Besides, a MCDM
approach was formulated for solving decision problems with Fermatean fuzzy linguistic
information. Further, Liu et al. [54] defined some new distance and similarity measures
between FFLSs based on linguistic scale function (LSF) and utilized them in the devel-
opment of TODIM and TOPSIS methods. In conclusion, Fermatean fuzzy linguistic set
theory has a broader scope of applications in different practical areas. However, a limited
investigation has been conducted on FFLSs and their applications. It is also worth noting
that the operational laws defined by Liu et al. [54] for FFLNs are not valid in general.
Therefore, it is significant to pay attention to the research studies under the Fermatean
fuzzy linguistic environment.

1.2. Objective and Contributions of the Work

The main objective of this work is to define the modified operational laws for Fer-
matean fuzzy linguistic numbers (FFLNs) and study different AOs based on them to
aggregate Fermatean fuzzy linguistic information. To fulfill the aim of the proposed study,
firstly, the work defines some new modified operational laws for FFLNs based on LSF,
which overcome the drawbacks of the existing operational laws. We also study several
essential properties of the proposed modified operational laws. Then, the paper develops
several new AOs for aggregating different FFLNs and discusses several properties asso-
ciated with them. Finally, a decision-making approach is formulated to solve MAGDM
problems under the Fermatean fuzzy linguistic environment. The contributions of this
paper can be summarized as follows:

1. New and improved operational laws are introduced for FFLNs with their properties.
2. Several new AOs such as the FFL-weighted averaging (FFLWA) operator, the FFL-

weighted geometric (FFLWG) operator, the FFL-ordered weighted averaging (FFLOWA)
operator, the FFL-ordered weighted geometric (FFLOWG) operator, the FFL-hybrid
averaging (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator are
defined for aggregating Fermatean fuzzy linguistic information.

3. A MAGDM method based on the proposed AOs is constructed to support the decision-
making problems under Fermatean fuzzy linguistic environment.

4. A sensitivity analysis is also conducted to analyze the impact of different AOs on the
ranking of the alternatives.

1.3. Organization of the Paper

The rest of the manuscript is organized as follows: In Section 2 we briefly review some
preliminary results on linguistic variables (LVs), LSF, FFS, FFLS and discuss some significant
drawbacks of the Fermatean fuzzy linguistic operational laws defined by Liu et al. [54].
Section 3 presents modified algebraic operational laws for FFLNs based on LSF and proves
several important properties of FFLNs using proposed operation laws. Then, we define
the FFLWA, FFLWG, FFLOWA, FFLOWG, FFLHA, and FFLHG AOs to aggregate different
FFLNs. In Section 4, based on the developed AOs, a MAGDM approach is formulated
for solving real-life decision problems with Fermatean fuzzy linguistic information. Then,
a real-life supplier selection problem is given to illustrate the decision-making steps and
effectiveness of the developed approach. In Section 5 we conclude the paper and discuss
some future works.
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2. Preliminaries
2.1. Linguistic Variables

The linguistic variable provides a useful tool to represent qualitative information in
terms of linguistic values. According to Herrera and Martínez [55], the linguistic variable
can be defined as follows:

Definition 1 ([55]). Let L̂ = {ℓd|d = 0, 1. . . . , 2t} be a totally ordered discrete LTS with the odd
cardinality. Any level ℓd denotes a possible value for a linguistic variable and t is a positive integer.
The LTS should meet the following properties:

i. ℓi ≤ ℓj ⇔ i ≤ j;
ii. neg(ℓd) = ℓ2t−d;
iii. max

(
ℓi, ℓj

)
= ℓi ⇔ i ≥ j;

iv. min
(
ℓi, ℓj

)
= ℓi ⇔ i ≤ j;

where neg denotes the negation operator.

For example, a well-known set of seven linguistic terms can be defined as:

L̂ =

{
ℓ0 = N(none), ℓ1 = VL(very low), ℓ2 = L(low), ℓ3 = M(medium),

ℓ4 = H( high ), ℓ5 = VH(very high), ℓ6 = P(perfect)

}
.

Further, Xu [56] defined the extended continuous LTS
⌢
L [0,2t] = {ℓd|ℓ0 ≤ ℓd ≤ ℓ2t,

d ∈ [0, 2t]}, where, if ℓd ∈
⌢
L , then ℓd is called the original linguistic term (OLT), otherwise

ℓd is called the virtual linguistic term (VLT). However, ℓd ∈
⌢
L is usually used by the

decision-makers to evaluate attributes/alternatives while ℓd ∈
⌢
L [0,2t] only appears in the

calculation process.

Definition 2 ([56]). Let ℓα, ℓβ ∈
⌢
L [0,2t] and λ, λ1, λ2 ∈ [0, 1], then some operational laws are

given as follows:

(i) ℓα ⊕ ℓβ = ℓα+β;

(ii) ℓα ⊗ ℓβ = ℓα×β;

(iii) λℓα = ℓλα;
(iv) λ

(
ℓα ⊕ ℓβ

)
= λℓα ⊕ λℓβ;

2.2. Linguistic Scale Function

In the evaluation process, an expert uses LTs directly rather than their corresponding
semantics. In general, the simplest way to deal with LTs is to use the levels of LTs directly.
However, in different semantics decision-making environments, LTs have some differences
in expressing evaluations. To resolve these issues, Wang et al. [57] defined the LSF to deal
with linguistic information. According to the decision-making environment, experts can
consider different LSFs, which express available linguistic information more flexibly and
precisely in different semantic situations.

Definition 3 ([57]). Let L̂ = {ℓd|d = 0, 1, 2, . . . , 2t} be a discrete LTSs with the odd cardinality
and κd ∈ [0, 1] be a real number, then the LSF ϕ can be defined as

ϕ : ℓd → κd, d = 0, 1, 2, . . . , 2t. (1)

where ϕ is a strictly monotonically increasing function with respect to subscript d.

In general, there are three different linguistic scaling functions, given as
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LSF 1 ([58]). When the semantics of linguistic terms are uniformly (balanced) distributed, i.e., the
absolute semantic gap (ASG) between any adjacent LTs is always equal.

ϕ1(ℓd) = κd =
d

2t
, d = 0, 1, 2, . . . , 2t. (2)

LSF 2 ([58]). When the ASG between two semantics of the adjacent LTs increases with the extension
from ℓt to both ends of LTS.

ϕ2(ℓd) = κd =





θt−θt−d

2(θt−1) , d = 0, 1, 2, . . . , t,
θt+θd−t−2

2(θt−1) , d = t + 1, t + 2, . . . , 2t,
(3)

where θ is a threshold, which can be determined by a subjective method according to the specific
problem, and it should be greater than or equal to 1. If the LTS is a set of seven terms, then
θ ∈ [1.37, 1.40].

LSF 3 ([58]). When the ASG between two semantics of the adjacent LTs decreases with the extension
from ℓt to both ends of LTS.

ϕ3(ℓd) = κd =

{
tρ−(t−d)ρ

2tρ , d = 0, 1, 2, . . . , t,
tτ+(d−t)τ

2tτ , d = t + 1, t + 2, . . . , 2t,
(4)

where ρ, τ ∈ [0, 1] are determined according to the specific problem. If the LTS is a set of seven
terms, then ρ = τ = 0.8.

Example 1. Let L̂ =

{
ℓ0 = N(none), ℓ1 = VL(very low), ℓ2 = L(low), ℓ3 = M(medium),

ℓ4 = H( high ), ℓ5 = VH(very high), ℓ6 = P(perfect)

}

be a LTS with seven terms. Figures 1–3 show the balanced distribution of L̂, unbalanced distribution
of L̂ in an increasing trend and the unbalanced distribution of L̂ in a decreasing trend, respectively.
Besides, Figure 4 represents the relationships between LTs of L̂ and their corresponding semantics
under different situations.

Meanwhile, to avoid an information loss and to facilitate the calculation process, the
LSF ϕ can be further generalized to an extended continuous LTS as follows:

Definition 4 ([57]). Let L̂[0,2t] = {ℓd|ℓ0 ≤ ℓd ≤ ℓ2t, d ∈ [0, 2t]} be an extended continuous LTS
and κd ∈ [0, 1] be a real number, then the LSF ϕ∗ is defined as

ϕ∗ : L̂[0,2t] → κd (5)

where ϕ∗ is also a strictly monotonically increasing function, and its inverse is expressed as ϕ∗−1.

Example 2. Let L̂[0,6] = {ℓd|d ∈ [0, 6]} be a continuous LTS, then the inverse corresponding to
the LSFs ϕ∗1 , ϕ∗2 and ϕ∗3 can be obtained as follows:

(1) If ϕ∗1(ℓd) = κd = d
6 (d = [0, 6]), then ϕ∗1

−1(κd) = ℓ6×κd
(κd ∈ [0, 1]).

(2) If ϕ∗2(ℓd) = κd =





θ3−θ3−d

2(θ3−1) , 0 ≤ d ≤ 3
θ3+θd−3−2

2(θ3−1) , 3 < d ≤ 6
, then ϕ∗2

−1(κd) =

{
ℓ3−logθ [θ

3−(2θ3−2)κd ]
, κd ∈ [0, 0.5],

ℓ3+logθ [(2θ3−2)κd−θ3+2], κd ∈ (0.5, 1].

(3) If ϕ∗3(ℓd) = κd =

{
3ρ−(3−d)ρ

2×3ρ , 0 ≤ d ≤ 3
3τ+(d−3)τ

2×3τ , 3 <d ≤ 6
, then ϕ∗3

−1(κd) =

{
ℓ

3−[3ρ−2×3ρ×κd ]
1/ρ , κd ∈ [0, 0.5],

ℓ
3+[2×3τ×κd−3τ ]1/τ , κd ∈ (0.5, 1].
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Figure 1. The uniformly distributed linguistic terms set.
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Figure 2. The semantics of the unbalanced distributed LTS in ASG increasing trend.
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Figure 3. The unbalanced distributed LTS in ASG decreasing trend.
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Figure 4. The relationships between LTs and their corresponding semantics under different situations.

2.3. Fermatean Fuzzy Linguistic Set

Definition 5 ([41]). A FFS F̂ in a fixed set X = {x1, x2, . . . , xn} is given by

F̂ =
{〈

xj, ξ F̂

(
xj

)
, ψF̂

(
xj

)〉
|xj ∈ X

}
(6)

where ξ F̂

(
xj

)
and ψF̂

(
xj

)
denote, respectively, the DM and DNM of xj ∈ X to the set F̂, with the

conditions ξ F̂ : X → [0, 1] , ψF̂ : X → [0, 1] and 0 ≤
(
ξ F̂

(
xj

))3
+
(
ψF̂

(
xj

))3 ≤ 1 ∀ x ∈ X.

For all xj ∈ X, the corresponding degree of hesitancy (DH) is defined as ζ F̂

(
xj

)
=

3
√

1−
(
ξ F̂

(
xj

))3 −
(
ψF̂

(
xj

))3. In the interest of simplicity, Senapati and Yager [41] called the
pair

〈
ξ F̂

(
xj

)
, ψF̂

(
xj

)〉
a FFLN and denoted by α = 〈ξα, ψα〉, which satisfies the conditions

ξα ∈ [0, 1], ψα ∈ [0, 1] and 0 ≤ (ξα)
3 + (ψα)

3 ≤ 1.

Definition 6 ([53]). Let X = {x1, x2, . . . , xn} be a fixed set and L̂[0,2t] = {ℓd|ℓ0 ≤ ℓd ≤ ℓ2t,
d ∈ [0, 2t]} be an extended continuous LTS, then a FFLS can be defined as

F =
{〈

xj, ℓσF(xj)
, ξF

(
xj

)
, ψF

(
xj

)〉
|xj ∈ X

}
(7)
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where ℓσF(xj)
∈ L̂[0,2t], ξF : X → [0, 1] and ψF : X → [0, 1] , satisfying 0 ≤

(
ξF

(
xj

))3
+
(
ψF

(
xj

))3 ≤ 1 ∀ xj ∈ X. The numbers ξF

(
xj

)
and ψF

(
xj

)
represent, respec-

tively, the DM and DNM of xj ∈ X to the linguistic term ℓσF(xj)
. For all xj ∈ X, if ζF

(
xj

)
=

3
√

1−
(
ξF

(
xj

))3 −
(
ψF

(
xj

))3
, then ζF

(
xj

)
is called the DH of xj ∈ X to ℓσF(xj)

.

Note that when ξF

(
xj

)
= 1 and ψF

(
xj

)
= 0 ∀ xj ∈ X, the FFLS reduces to the LTS. In

particular, when X has only one element, the FFLS is reduced into
〈
ℓσF(x), ξF(x), ψF(x)

〉
.

For convenience, the triplet
〈
ℓσF(x), ξF(x), ψF(x)

〉
is called a FFLN and simply denoted

by ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
, which meets the conditions ξ℘ ∈ [0, 1], ψ℘ ∈ [0, 1] and 0 ≤

(ξ℘)
3 + (ψ℘)

3 ≤ 1. We indicate the collection of all FFLNs by Ω.

Definition 7 ([54]). Let L̂[0,2t] be an extended continuous LTS,℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
, ℘1 =

〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
be any three FFLNs, where ℓσ(℘), ℓσ(℘1)

, ℓσ(℘2)
∈

L̂[0,2t]. Further, consider that ϕ∗ and ϕ∗−1 denote a linguistic scale function and its inverse function,
respectively. Then, by using the LSF, some algebraic operational laws on FFLNs were defined by
Liu et al. [54] as follows:

(i). ℘1 ⊕ ℘2 =
〈

ϕ∗−1
(

ϕ∗
(
ℓσ(℘1)

)
+ ϕ∗

(
ℓσ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2

, ψ℘1 ψ℘2

〉
;

(ii). ℘1 ⊗ ℘2 =
〈

ϕ∗−1
(

ϕ∗
(
ℓσ(℘1)

)
ϕ∗
(
ℓσ(℘2)

))
, ξ℘1 ξ℘2 , 3

√
ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2

〉
;

(iii). λ℘ =

〈
ϕ∗−1

(
λϕ∗

(
ℓσ(℘)

))
, 3
√

1−
(
1− ξ3

℘

)λ, (ψ℘)
λ
〉

, λ ≥ 0;

(iv). ℘λ =

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘)

))λ
)

, (ξ℘)
λ, 3
√

1−
(
1− ψ3

℘

)λ
〉

, λ ≥ 0;

(v). neg(℘) =
〈

ϕ∗−1
(

ϕ∗(ℓ2t)− ϕ∗
(
ℓσ(℘)

))
, ψ℘, ξ℘

〉
.

Definition 8 ([54]). Let ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
be a FFLN and ϕ∗ be a LSF, the score and accuracy

functions of ℘ are defined as

S(℘) = ϕ∗
(
ℓσ(℘)

)
×
(

ξ3
℘ + 1− ψ3

℘

2

)
and A(℘) = ϕ∗

(
ℓσ(℘)

)
×
(

ξ3
℘ + ψ3

℘

)
(8)

For any two FFLNs ℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
, the compari-

son rules between ℘1 and ℘2 are given as

(i). If S(℘1) > S(℘2), then ℘1 ≻ ℘2;
(ii). If S(℘1) = S(℘2), then: (a) A(℘1) > A(℘2), then ℘1 ≻ ℘2; (b) A(℘1) = A(℘2),

then ℘1 = ℘2.

Some shortcomings of the operational laws given in Definition 7

Here, we consider a numerical example in order to show the shortcomings of the
operations on FFLNs defined by Liu et al. [54].

Example 3. Let L̂[0,6] = {ℓd|d ∈ [0, 6]} be an extended continuous LTS, ℘1 = 〈ℓ3, 0.3, 0.6〉,
℘2 = 〈ℓ5, 0.5, 0.7〉 ℘3 = 〈ℓ1, 0, 0.5〉, ℘4 = 〈ℓ3, 0, 0.7〉, ℘5 = 〈ℓ4, 0.8, 0〉 and ℘6 = 〈ℓ6, 0.6, 0〉 be

six FFLNs. If ϕ∗
(
ℓσ(a)

)
= ϕ∗2

(
ℓσ(a)

)
(θ = 1.4) and λ = 4, then according to the operational

laws given in Definition 7, we have

(i). ℘1 ⊕ ℘2 =
〈

ϕ∗2
−1(ϕ∗2(ℓ3) + ϕ∗2(ℓ5)),

3
√

0.33 + 0.53 − 0.330.53, 0.6× 0.7
〉

=
〈

ϕ∗2
−1(0.5000 + 0.7752), 0.5279, 0.4200

〉
=
〈

ϕ∗2
−1(1.2752), 0.5279, 0.4200

〉
. Here, we
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see that ϕ∗2(ℓ3)+ ϕ∗2(ℓ5) = 1.2752 > 1, therefore, ϕ∗2
−1(ϕ∗2(ℓ3) + ϕ∗2(ℓ5)) = ϕ∗2

−1(1.2752)
is undefined.

(ii). ℘1 ⊗ ℘3 =
〈

ϕ∗2
−1(ϕ∗2(ℓ3)ϕ∗2(ℓ1)), 0.3× 0, 3

√
0.63 + 0.53 − 0.63 × 0.53

〉

=
〈

ϕ∗2
−1(0.5000× 0.2248), 0.0000, 0.6797

〉
= 〈ℓ0.4619, 0.0000, 0.6797〉 (9)

and

℘1 ⊗ ℘4 =
〈

ϕ∗2
−1(ϕ∗2(ℓ3)ϕ∗2(ℓ3)), 0.3× 0, 3

√
0.63 + 0.73 − 0.63 × 0.73

〉

=
〈

ϕ∗2
−1(0.5000 + 0.5000), 0.0000, 0.7856

〉
= 〈ℓ6, 0.0000, 0.7856〉

(10)

From Equations (9) and (10), it is clear that there is no effect of nonmembership values on

the membership values of ℘1 ⊗ ℘3 and ℘1 ⊗ ℘4. In general, if ℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
,

℘2 =
〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
ℓσ(℘3)

, ξ℘3 , ψ℘3

〉
are three different FFLNs satisfying,

ξ℘2 = ξ℘3 = 0, ψ℘2 6= ψ℘3 then we always obtain ξ℘1⊗℘2 = ξ℘1⊗℘3 = 0. This outcome
does not match our intuition.

(iii). ℘2 ⊕ ℘5 =
〈

ϕ∗2
−1(ϕ∗2(ℓ5) + ϕ∗2(ℓ4)),

3
√

0.53 + 0.83 − 0.53 × 0.83, 0.7× 0,
〉

=
〈

ϕ∗2
−1(0.7752 + 0.6147), 0.8306, 0.0000

〉
=
〈

ϕ∗2
−1(1.3899), 0.8306, 0.0000

〉
(11)

and

℘2 ⊕ ℘6 =
〈

ϕ∗2
−1(ϕ∗2(ℓ5) + ϕ∗2(ℓ6)),

3
√

0.53 + 0.63 − 0.53 × 0.63, 0.7× 0
〉

=
〈

ϕ∗2
−1(0.7752 + 1.0000), 0.6797, 0.0000

〉
=
〈

ϕ∗2
−1(1.7752), 0.6797, 0.0000

〉 (12)

The obtained resulting values in Equations (11) and (12) indicate that there is no effect of
the membership values on the nonmembership values of ℘2 ⊕ ℘5 and ℘2 ⊕ ℘6. In general, if

℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
, ℘2 =

〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
ℓσ(℘3)

, ξ℘3 , ψ℘3

〉
are three

different FFLNs satisfying, ξ℘2 6= ξ℘3 , ψ℘2 = ψ℘3 = 0 then we always obtain ψ℘1⊕℘2 =
ψ℘1⊕℘3 = 0. Additionally, ϕ∗2

−1(1.3899) and ϕ∗2
−1(1.7752) are undefined.

4℘1 =

〈
ϕ∗2
−1(4× ϕ∗2(ℓ3)),

3
√

1− (1− 0.33)
4, (0.6)4

〉
=
〈

ϕ∗2
−1(2.0000), 0.4698, 0.1296

〉
, (13)

4℘2 =

〈
ϕ∗2
−1(4× ϕ∗2(ℓ5)),

3
√

1− (1− 0.53)
4, (0.7)4

〉
=
〈

ϕ∗2
−1(3.1008), 0.7452, 0.2401

〉
(14)

From Equations (13) and (14), we can see that ϕ∗2
−1(2.0000) and ϕ∗2

−1(3.1008) are undefined
because here κd > 1. Hence, 4℘1 and 4℘2 are not FFLNs.

Based on the above analysis, we conclude that the operational laws defined in Defini-
tion 7 are not suitable for FFLNs. Therefore, in order to nullify the above shortcomings, it
is necessary to modify these operational laws. In the next section, we first define some new
modified operational laws for FFLNs based on LSF and discuss their properties in detail.
Then, we introduce some aggregation operators for aggregating different FFLNs.

3. Fermatean Fuzzy Aggregation Operators
3.1. Improved Operational Laws for FFLNs Based on LSF

Here, we define some improved operational laws for FFLNs, which overcome the
shortcomings of the existing operations.

Definition 9. Let L̂[0,2t] be an extended continuous LTS, ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
,

℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
and ℘2 =

〈
sσ(℘2)

, ξ℘2 , ψ℘2

〉
be three FFLNs, where ℓσ(℘), ℓσ(℘1)

, ℓσ(℘2)

126



Axioms 2021, 10, 113

∈ L̂[0,2t]. Further, consider that ϕ∗ and ϕ∗−1 denote a linguistic scale function and its inverse
function, respectively. The improved operational laws between them based on LSFs are defined as

(i) ℘1⊕̃℘2 =
〈

ϕ∗−1
(

ϕ∗
(
ℓσ(℘1)

)
+ ϕ∗

(
ℓσ(℘2)

)
− ϕ∗

(
ℓσ(℘1)

)
ϕ∗
(
ℓσ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2

, 3
√

ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2
− ψ3

℘1
ξ3
℘2
− ξ3

℘1
ψ3
℘2

〉

=
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

)))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
, 3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))〉
;

(ii) ℘1⊗̃℘2 =
〈

ϕ∗−1
(

ϕ∗
(
ℓσ(℘1)

)
ϕ∗
(
ℓσ(℘2)

))
, 3
√

ξ3
℘1

+ ξ3
℘2
− ξ3

℘1
ξ3
℘2
− ξ3

℘1
ψ3
℘2
− ψ3

℘1
ξ3
℘2

, 3
√

ψ3
℘1

+ ψ3
℘2
− ψ3

℘1
ψ3
℘2

〉

=
〈

ϕ∗−1
(

ϕ∗
(
ℓσ(℘1)

)
ϕ∗
(
ℓσ(℘2)

))
, 3
√(

1− ψ3
℘1

)(
1− ψ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ψ3

℘1

)(
1− ψ3

℘2

)〉
;

(iii) λ∗̃℘ =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ
)

, 3
√

1−
(
1− ξ3

℘

)λ, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
〉

, λ > 0;

(iv) ℘̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘)

))λ
)

, 3
√(

1− ψ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ψ3

℘

)λ
〉

, λ > 0.

Theorem 1. The numbers ℘1⊕̃℘2, ℘1⊗̃℘2, λ∗̃℘, and ℘̃̂λ are also FFLNs.

Proof. Here, we shall prove only ℘1⊕̃℘2 and λ∗̃℘ are FFLNs, while others can be shown

similarly. Since ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2) are two FFLNs, where ℓσ(℘i)

∈ L̂[0,2t],

ξ℘i
, ψ℘i

∈ [0, 1] and 0 ≤ ξ3
℘i

+ ψ3
℘i
≤ 1, i = 1, 2. For ℓσ(℘1)

, ℓσ(℘2)
∈ L̂[0,2t], based on

the definition of the LSFs, we know 0 ≤ ϕ∗
(
ℓσ(℘1)

)
, ϕ∗
(
ℓσ(℘2)

)
≤ 1. Then, 0 ≤ 1 −

(
1− ϕ∗

(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

))
≤ 1⇒ ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

)))

∈ L̂[0,2t]. Now 0 ≤ ξ℘1 , ξ℘2 ≤ 1, which implies 0 ≤
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
≤ 1 ⇔ 0 ≤

3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
≤ 1. Moreover, because 1− ξ3

℘1
≥ 1− ξ3

℘1
− ψ3

℘1
and 1− ξ3

℘2
≥

1− ξ3
℘2
− ψ3

℘2
, then 0 ≤ 3

√(
1− ξ3

℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
≤ 1.

Further

(
3

√
1−

( (
1− ξ3

℘1

)
(
1− ξ3

℘2

)
))3

+

(
3

√( (
1− ξ3

℘1

)
(
1− ξ3

℘2

)
)
−
( (

1−
(
ξ3
℘1

+ ψ3
℘1

))
(
1−

(
ξ3
℘2

+ ψ3
℘2

))
))3

= 1−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
≤ 1. Thus, it shows that the a1⊕̃a2 is a FFLN.

For any λ > 0, 0 ≤ 1 −
(

1− ϕ∗
(
ℓσ(℘)

))λ
≤ 1, which gives

ϕ∗−1
(

1−
(

1− ϕ∗
(
ℓσ(℘)

))λ
)
∈ L̂[0,2t]. Additionally, 0 ≤ ξ℘1 , ξ℘2 , ψ℘1 , ψ℘2 ≤ 1, which

implies 0 ≤ 3
√

1−
(
1− ξ3

℘

)λ ≤ 1 and 0 ≤ 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ ≤ 1.

Further
(

3
√

1−
(
1− ξ3

℘

)λ
)3

+

(
3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
)3

= 1−
(
1−

(
ξ3
℘ + ψ3

℘

))λ ≤ 1. Hence, λ∗̃℘ is also a FFLN.
This completes the proof. �

Example 4. Let L̂[0,6] = {ℓd|d ∈ [0, 6]} be an extended continuous LTS, ℘ = 〈ℓ2, 0.4, 0.5〉,
℘1 = 〈ℓ3, 0.3, 0.6〉, ℘2 = 〈ℓ5, 0.5, 0.7〉 be three FFLNs and λ = 5. Then, according to the modified
operation laws, we obtained the following results as shown in Table 1:

Table 1. Values of different operations.

Operation ϕ∗ = ϕ∗1 ϕ∗ = ϕ∗2 and θ = 1.4 ϕ∗ = ϕ∗3 and ρ = τ = 0.8

℘1⊕̃℘2 〈ℓ5.4996, 0.5297, 0.7655〉 〈ℓ5.5418, 0.5297, 0.7655〉 〈ℓ5.4896, 0.5297, 0.7655〉
℘1⊗̃℘2 〈ℓ2.5002, 0.4826, 0.7856〉 〈ℓ2.0169, 0.4826, 0.7856〉 〈ℓ2.7468, 0.4826, 0.7856〉

λ∗̃℘ 〈ℓ5.2098, 0.6149, 0.6945〉 〈ℓ5.6483, 0.6149, 0.6945〉 〈ℓ4.7348, 0.6149, 0.6945〉
℘̃̂λ 〈ℓ0.0246, 0.5355, 0.7452〉 〈ℓ0.0323, 0.5355, 0.7452〉 〈ℓ0.0157, 0.5355, 0.7452〉

Further, if we consider Example 3 again and utilize the improved operational laws
summarized in Definition 9, Table 2 presents the obtained results.
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Table 2. Calculation results of Example 3 based on the proposed operational laws.

Operation ϕ∗ = ϕ∗2 and θ = 1.4

℘1⊕̃℘2 〈ℓ5.5418, 0.5279, 0.7655〉
℘1⊗̃℘3 〈ℓ0.4582, 0.2869, 0.6797〉
℘1⊗̃℘4 〈ℓ1.1365, 0.2608, 0.7856〉
℘2⊕̃℘5 〈ℓ5.6534, 0.8306, 0.5511〉
℘2⊕̃℘6 〈ℓ6.0000, 0.6797, 0.6455〉
4∗̃℘1 〈ℓ5.7540, 0.4698, 0.8281〉
4∗̃℘2 〈ℓ5.9902, 0.7452, 0.7969〉

The obtained calculation results verify that the improved operational laws are more
reasonable and realistic as per our intuition.

Theorem 2. Let L̂[0,2t] be an extended continuous LTS, and ℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
, ℘2 =

〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
and ℘3 =

〈
ℓσ(℘3)

, ξ℘3 , ψ℘3

〉
be three FFLNs, where ℓσ(℘1)

, ℓσ(℘2)
, ℓσ(℘3)

∈
L̂[0,2t]. The following results hold:

(i). ℘1⊕̃℘2 = ℘2⊕̃℘1;
(ii). ℘1⊗̃℘2 = ℘2⊗̃℘1;
(iii).

(
℘1⊕̃℘2

)
⊕̃℘3 = ℘1⊕̃

(
℘2⊕̃℘3

)
;

(iv).
(
℘1⊗̃℘2

)
⊗̃℘3 = ℘1⊗̃

(
℘2⊗̃℘3

)
.

Proof. The results follow directly from Definition 9, so we omit the proofs of them. �

Theorem 3. Let L̂[0,2t] be an extended continuous LTS, ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉

℘1 =
〈
ℓσ(℘1)

, ξ℘1 , ψ℘1

〉
, and ℘2 =

〈
ℓσ(℘2)

, ξ℘2 , ψ℘2

〉
be three FFLNs and λ, λ1, λ2 > 0, where

ℓσ(℘), ℓσ(℘2)
, ℓσ(℘2)

∈ L̂[0,2t], then

(i). (λ∗̃℘1)⊕̃(λ∗̃℘2) = λ∗̃
(
℘1⊕̃℘2

)
;

(ii). (λ1∗̃℘)⊕̃(λ2∗̂℘) = (λ1 + λ2)∗̃℘
(iii).

(
℘1̃̂λ

)
⊗̃
(
℘2̃̂λ

)
=
(
℘1⊗̃℘2

)̃
λ̂;

(iv).
(
℘̃̂λ1

)
⊗̃
(
℘̃̂λ2

)
= ℘̃̂(λ1 + λ2);

(v). λ1∗̃(λ2∗̃℘) = (λ1λ2)∗̃℘;

(vi).
(
℘̃̂λ1

)
˜̂λ2 = ℘̃̂(λ1λ2).

(vii). neg
(
℘1⊕̃℘2

)
= neg(℘1)⊗̃neg(℘2)

(viii). neg
(
℘1⊗̃℘2

)
= neg(℘1)⊕̃neg(℘2);

(ix). (neg(℘))̃̂λ = neg(λ∗̃℘);
(x). λ∗̃(neg(℘)) = neg

(
℘̃̂λ
)

.

Proof. Here, we only prove the parts (i), (iii), (v), (vii), and (ix); the others can be proved
similarly.

(i) From Definition 9, we have

λ∗̃℘1 =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘1)

))λ
)

, 3
√

1−
(
1− ξ3

℘1

)λ, 3
√(

1− ξ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
〉

, (15)

and

λ∗̃℘2 =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘2)

))λ
)

, 3
√

1−
(
1− ξ3

℘2

)λ, 3
√(

1− ξ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
〉

, (16)

Using Equations (15) and (16), we obtain
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(λ∗̃℘1)⊕̃(λ∗̃℘2)

=

〈

ϕ∗−1




1−
(

1− ϕ∗
(

ϕ∗−1
(

1−
(

1− ϕ∗
(
ℓσ(℘1)

))λ
)))

(
1− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘2)

))λ
)))


, 3

√√√√1−
(

1−
(

3
√

1−
(
1− ξ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ξ3

℘1

)λ
)3
)

,

3

√√√√√√√√√√√√√√

(
1−

(
3
√

1−
(
1− ξ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ξ3

℘2

)λ
)3
)

−
(

1−
((

3
√

1−
(
1− ξ3

℘1

)λ
)3

+

(
3
√(

1− ξ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
)3
))

(
1−

((
3
√

1−
(
1− ξ3

℘2

)λ
)3

+

(
3
√(

1− ξ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
)3
))

〉

=

〈
ϕ∗−1

(
1−

((
1− ϕ∗

(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

)))λ
)

, 3
√

1−
((

1− ξ3
℘1

)(
1− ξ3

℘2

))λ,

3
√((

1− ξ3
℘1

)(
1− ξ3

℘2

))λ −
((

1−
(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

)))λ

〉
= λ∗̃

(
℘1⊕̃℘2

)
.

(iii) According to Definition 9, we have

℘1̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘1)

))λ
)

, 3
√(

1− ψ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ, 3
√

1−
(
1− ψ3

℘1

)λ
〉

, (17)

and

℘2̃̂λ =

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘2)

))λ
)

, 3
√(

1− ψ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ, 3
√

1−
(
1− ψ3

℘2

)λ
〉

. (18)

By Equations (17) and (18), we obtain

(
℘1̃̂λ

)
⊗̃
(
℘2̃̂λ

)
=

〈

ϕ∗−1
(

ϕ∗
(

ϕ∗−1
((

ϕ∗
(
ℓσ(℘1)

))λ
))

ϕ∗
(

ϕ∗−1
((

ϕ∗
(
ℓσ(℘2)

))λ
)))

,

3

√√√√√√√√√√√√√√√√




(
1−

(
3
√

1−
(
1− ψ3

℘1

)λ
)3
)

(
1−

(
3
√

1−
(
1− ψ3

℘2

)λ
)3
)



−





1−




(
3
√(

1− ψ3
℘1

)λ −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))λ
)3

+

(
3
√

1−
(
1− ψ3

℘1

)λ
)3








1−




(
3
√(

1− ψ3
℘2

)λ −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))λ
)3

+

(
3
√

1−
(
1− ψ3

℘2

)λ
)3










,

3

√√√√1−
(

1−
(

3
√

1−
(
1− ψ3

℘1

)λ
)3
)(

1−
(

3
√

1−
(
1− ψ3

℘2

)λ
)3
)

〉

=

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘1)

)
ϕ∗
(
ℓσ(℘2)

))λ
)

, 3
√((

1− ψ3
℘1

)(
1− ψ3

℘2

))λ −
((

1−
(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

)))λ ,

3
√

1−
((

1− ψ3
℘1

)(
1− ψ3

℘2

))λ

〉
=
(
℘1⊗̃℘2

)̃
λ̂.

(v) For two positive real numbers λ1 and λ2, we have

λ1∗̃(λ2∗̃℘) = λ1

(〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ2
)

, 3
√

1−
(
1− ξ3

℘

)λ2 , 3
√(

1− ξ3
℘

)λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ2

〉)
,

=

〈 ϕ∗−1

(
1−

(
1− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ2
)))λ1

)
, 3

√√√√1−
(

1−
(

3
√

1−
(
1− ξ3

℘

)λ2

)3
)λ1

,

3

√√√√
(

1−
(

3
√

1−
(
1− ξ3

℘

)λ2

)3
)λ1

−
(

1−
((

3
√

1−
(
1− ξ3

℘

)λ2

)3

+

(
3
√(

1− ξ3
℘

)λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ2

)3
))λ1

〉

=

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ1λ2
)

, 3
√

1−
(
1− ξ3

℘

)λ1λ2 , 3
√(

1− ξ3
℘

)λ1λ2 −
(
1−

(
ξ3
℘ + ψ3

℘

))λ1λ2

〉
= (λ1λ2)∗̃℘
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(vii) From Definitions 7 and 9, we have

neg
(
℘1⊕̃℘2

)
=

〈
ϕ∗−1

(
ϕ∗(ℓ2t)− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

)))))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
〉

=

〈
ϕ∗−1

(
ϕ∗(ℓ2t)−

(
1−

(
1− ϕ∗

(
ℓσ(℘1)

))(
1− ϕ∗

(
ℓσ(℘2)

))))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ξ3
℘1

+ ψ3
℘1

))(
1−

(
ξ3
℘2

+ ψ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
〉

=

〈
ϕ∗−1

((
ϕ∗(ℓ2t)− ϕ∗

(
ℓσ(℘1)

))(
ϕ∗(ℓ2t)− ϕ∗

(
ℓσ(℘2)

)))
,

3
√(

1− ξ3
℘1

)(
1− ξ3

℘2

)
−
(
1−

(
ψ3
℘1

+ ξ3
℘1

))(
1−

(
ψ3
℘2

+ ξ3
℘2

))
, 3
√

1−
(
1− ξ3

℘1

)(
1− ξ3

℘2

)
〉

;= neg(℘1)⊗̃neg(℘2)

(ix) (neg(℘))̃̂λ =
(〈

ϕ∗−1
(

ϕ∗(ℓ2t)− ϕ∗
(
ℓσ(℘)

))
, ψ℘, ξ℘

〉)λ

=

〈
ϕ∗−1

((
ϕ∗(ℓ2t)− ϕ∗

(
ℓσ(℘)

))λ
)

, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ξ3

℘

)λ
〉

=

〈
ϕ∗−1

(
ϕ∗(ℓ2t)− ϕ∗

(
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ
)))

, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ, 3
√

1−
(
1− ξ3

℘

)λ
〉

= neg

(〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))λ
)

, 3
√

1−
(
1− ξ3

℘

)λ, 3
√(

1− ξ3
℘

)λ −
(
1−

(
ξ3
℘ + ψ3

℘

))λ
〉)

= neg(λ∗̃℘).

This completes the proof. �
Next, by utilizing proposed improved operational laws on FFLNs, we propose some

arithmetic and geometric aggregation operators for fusing a collection of FFLNs ℘i =〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n).

3.2. FFL-Weighted Average (FFLWA) Operator

The weighted average (WA) is the most commonly used mean operator in a wide
range of application areas. Here, we extend the idea of WA to the Fermetean fuzzy linguistic
information environment and propose the following formal definition.

Definition 10. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs. The FFL-

weighted average (FFLWA) operator is a mapping FFLWA : Ωn → Ω , such that

FFLWA(℘1,℘2, . . . ,℘n) =
n

⊕̃
i=1

(wi∗̃℘i), (19)

where w = (w1, w2, . . . , wn)
T is the weight vector of ℘i with wi ∈ [0, 1],

n

∑
i=1

wi = 1. Especially

when w =
(

1
n , 1

n , . . . , 1
n

)T
, the FFLWA operator reduces to FFL-average (FFLA) operator, which

is defined as

FFLWA(℘1,℘2, . . . ,℘n) =
1
n
∗̃
( n

⊕̃
i=1

℘i

)
. (20)

Theorem 4. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of n FFLNs and w =

(w1, w2, . . . , wn)
T be the weight vector of ℘i with wi ∈ [0, 1],

n

∑
i=1

wi = 1, then the aggregated

value by using the FFLWA operator is also a FFLN and
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FFLWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
. (21)

Proof. The first result directly holds from Theorem 1. Using the principle of mathemat-
ical induction, we shall prove the result stated in Equation (21). Firstly, for n = 2, by
Definition 9, we obtain

w1∗̃℘1 =
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
ℓσ(℘1)

))w1
)

, 3
√

1−
(
1− ξ3

℘1

)w1 , 3
√(

1− ξ3
℘1

)w1 −
(
1−

(
ξ3
℘1

+ ψ3
℘1

))w1
〉

,

w2∗̃℘2 =
〈

ϕ∗−1
(

1−
(

1− ϕ∗
(
ℓσ(℘2)

))w2
)

, 3
√

1−
(
1− ξ3

℘2

)w2 , 3
√(

1− ξ3
℘2

)w2 −
(
1−

(
ξ3
℘2

+ ψ3
℘2

))w2
〉



. (22)

Hence,

FFLWA(℘1,℘2) =

〈 ϕ∗−1
(

1−
2

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

2
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
2

∏
i=1

(
1− ξ3

℘i

)wi −
2

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
(23)

Hence, the result is valid for n = 2.
Next, assume that Equation (21) is true for n = k, i.e.,

FFLWA(℘1,℘2, . . . ,℘k) =

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

k

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
. (24)

Then, for n = k + 1, by Definition 10, we have

FFLWA(℘1,℘2, . . . ,℘k,℘k+1) = FFLWA(℘1,℘2, . . . ,℘k)⊕̃(wk+1∗̃℘k+1)

=

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

k

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈
ℓσ(℘k+1)

, ξ℘k+1 , ψ℘k+1

〉

=

〈 ϕ∗−1
(

1−
k

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
(

1− ϕ∗
(
ℓσ(℘k+i)

))wk+i
)

, 3

√
1−

k

∏
i=1

(
1− ξ3

℘i

)wi
(

1− ξ3
℘k+1

)wk+1
,

3

√
k

∏
i=1

(
1− ξ3

℘i

)wi
(

1− ξ3
℘k+1

)wk+1 −
k

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
(

1−
(

ξ3
℘k+1

+ ψ3
℘k+1

))wk+1

〉

=

〈 ϕ∗−1
(

1−
k+1
∏
i=1

(
1− ϕ∗

(
ℓσ(ai)

))wi
)

, 3

√
1−

k+1
∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
k+1
∏
i=1

(
1− ξ3

℘i

)wi −
k+1
∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉

(25)

i.e., the Equation (21) holds for n = k + 1.
This proves the theorem. �

Theorem 5. The FFLWA operator, defined in Equation (21), holds the following properties:
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(P1) (Idempotency): If ℘i = ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLWA(℘1,℘2, . . . ,℘n) = ℘. (26)

(P2) (Monotonicity): Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
and ℵi =

〈
ℓσ(ℵi)

, ξℵi
, ψℵi

〉

(i = 1, 2, . . . , n) be two collections of FFLNs such that ℓσ(℘i)
≤ ℓσ(ℵi)

, ξ3
℘i
≤ ξ3

ℵi
, ξ3

℘i
+ ψ3

℘i
≥

ξ3
ℵi
+ ψ3

ℵi
∀ i, then

FFLWA(℘1,℘2, . . . ,℘n) ≤ FFLWA(ℵ1,ℵ2, . . . ,ℵn). (27)

(P3) (Boundedness): Let

℘− =

〈
min

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
, min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
, max

{
0,

(
max

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−min
(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
)} 〉

,

and

℘+ =

〈
max

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
, max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
,
(

min
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−max
(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
) 〉

,

then
℘− ≤ FFLWA(℘1,℘2, . . . ,℘n) ≤ ℘+.

(P4): If ℵ =
〈

sσ(ℵ), ξℵ, ψℵ
〉

is another FFLN, then

FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ. (28)

(P5): Let ϑ > 0 be a real number, then

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) = ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)). (29)

(P6): Let ℵ =
〈

sσ(ℵ), ξℵ, ψℵ
〉

be another FFLN and ϑ > 0 be a real number, then

FFLWA
(
(ϑ∗̃℘1)⊕̃ℵ, (ϑ∗̃℘2)⊕̃ℵ, . . . , (ϑ∗̃℘n)⊕̃ℵ

)
= (ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)))⊕̃b. (30)

(P7): Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
and ℵi =

〈
sσ(ℵi)

, ξℵi
, ψℵi

〉
, (i = 1, 2, . . . , n) be two

collections of FFLNs, then

FFLWA
(
℘1⊕̃ℵ1,℘2⊕̃ℵ2, . . . ,℘n⊕̃ℵn

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃FFLWA(ℵ1,ℵ2, . . . ,ℵn). (31)

Proof. (P1) Assume that ℘i = ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
∀ i, then
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FFLWA(℘1,℘2, . . . ,℘n) = FFLWA(℘,℘, . . . ,℘)

=

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘

)wi ,

3

√
n

∏
i=1

(
1− ξ3

℘

)wi −
n

∏
i=1

(
1−

(
ξ3
℘ + ψ3

℘

))wi

〉

=

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘)

))w1+w2+···+wn
)

, 3
√

1−
(
1− ξ3

℘

)w1+w2+···+wn ,

3
√(

1− ξ3
℘

)w1+w2+···+wn −
(
1−

(
ξ3
℘ + ψ3

℘

))w1+w2+···+wn

〉

=
〈
ℓσ(℘), ξ℘, ψ℘

〉
= ℘.

(P2) Since ℓσ(℘i)
≤ ℓσ(ℵi)

and ϕ∗ is a strictly monotonically increasing function, then

ℓσ(℘i)
≤ ℓσ(ℵi)

⇔ 1− ϕ∗
(
ℓσ(℘i)

)
≥ 1−ϕ∗

(
ℓσ(ℵi)

)

⇔ ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)
≤ ϕ∗−1

(
1−

n

∏
i=1

(
1− ϕ∗

(
ℓσ(ℵi)

))wi
)




. (32)

As ξ3
℘i
≤ ξ3

ℵi
(i = 1, 2, . . . , n) and ξ3

℘i
+ ψ3

℘i
≥ ξ3

ℵi
+ ψ3

ℵi
(i = 1, 2, . . . , n), we have

3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi ≤ 3

√
1−

n

∏
i=1

(
1− ξ3

ℵi

)wi

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi ≥ 3

√
n

∏
i=1

(
1− ξ3

ℵi

)wi −
n

∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi





. (33)

According to Definition 10, we have

FFLWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
,

and

FFLWA(ℵ1,ℵ2, . . . ,ℵn) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(ℵi)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

ℵi

)wi
,

3

√
n

∏
i=1

(
1− ξ3

ℵi

)wi −
n

∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi

〉

Now, using Definition 8, we obtain S(FFLWA(℘1,℘2, . . . ,℘n)) ≤ S(FFLWA(ℵ1,ℵ2,
. . . ,ℵn)), which gives

FFLWA(℘1,℘2, . . . ,℘n) ≤ FFLWA(ℵ1,ℵ2, . . . ,ℵn).

(P3) It directly follows from Property 2.
(P4) Since, so

℘i⊕̃ℵ =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘i)

))(
1− ϕ∗

(
ℓσ(ℵ)

)))
, 3

√
1−

(
1− ξ3

℘i

)(
1− ξ3

ℵ
)
,

3

√(
1− ξ3

℘i

)(
1− ξ3

ℵ
)
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
))

〉
(34)

Therefore,
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FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)

=

〈 ϕ∗−1
(

1−
n

∏
i=1

((
1− ϕ∗

(
ℓσ(℘i)

))(
1− ϕ∗

(
ℓσ(ℵ)

)))wi
)

, 3

√
1−

n

∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵ
))wi

,

3

√
n

∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵ
))wi −

n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
)))wi

〉

=

〈 ϕ∗−1
(

1−
(

n

∏
i=1

((
1− ϕ∗

(
ℓσ(℘i)

)))wi
)(

1− ϕ∗
(
ℓσ(ℵ)

)))
, 3

√
1−

(
n

∏
i=1

(
1− ξ3

℘i

)wi
)(

1− ξ3
ℵ
)
,

3

√(
n

∏
i=1

(
1− ξ3

℘i

)wi
)(

1− ξ3
ℵ
)
−
(

n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)(

1−
(
ξ3
ℵ + ψ3

ℵ
))

〉

=

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈
ℓσ(ℵ), ξℵ, ψℵ

〉

= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ.

(P5) For any ϑ > 0, we have

ϑ∗̃℘i =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘i)

))ϑ
)

, 3

√
1−

(
1− ξ3

℘i

)ϑ
, 3

√(
1− ξ3

℘i

)ϑ
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))ϑ
〉

. (35)

Therefore,

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

((
1− ϕ∗

(
ℓσ(℘i)

))ϑ
)wi

)
, 3

√
1−

n

∏
i=1

((
1− ξ3

℘i

)ϑ
)wi

,

3

√
n

∏
i=1

((
1− ξ3

℘i

)ϑ
)wi

−
n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))ϑ
)wi

〉

=

〈 ϕ∗−1
(

1−
n

∏
i=1

((
1− ϕ∗

(
ℓσ(℘i)

))wi
)ϑ
)

, 3

√
1−

n

∏
i=1

((
1− ξ3

℘i

)wi
)ϑ

,

3

√
n

∏
i=1

((
1− ξ3

℘i

)wi
)ϑ
−

n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)ϑ

〉

= ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n)).

(P6) From Property 4, we know

FFLWA
(
℘1⊕̃ℵ,℘2⊕̃ℵ, . . . ,℘n⊕̃ℵ

)
= FFLWA(℘1,℘2, . . . ,℘n)⊕̃ℵ, (36)

and according to Property 5, we have

FFLWA(ϑ∗̃℘1, ϑ∗̃℘2, . . . , ϑ∗̃℘n) = ϑ∗̃(FFLWA(℘1,℘2, . . . ,℘n))., (37)

From Equations (36) and (37), we obtain the desired results.
(P7) Since ℘i,ℵi ∈ Ω, then

℘i⊕̃ℵi =

〈
ϕ∗−1

(
1−

(
1− ϕ∗

(
ℓσ(℘i)

))(
1− ϕ∗

(
ℓσ(ℵi)

)))
, 3

√
1−

(
1− ξ3

℘i

)(
1− ξ3

ℵi

)
,

3

√(
1− ξ3

℘i

)(
1− ξ3

ℵi

)
−
(

1−
(

ξ3
℘i
+ ψ3

ℵi

))(
1−

(
ξ3
℘i
+ ψ3

ℵi

))
〉

. (38)

Therefore,
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FFLWA
(
℘1⊕̃ℵ1,℘2⊕̃ℵ2, . . . ,℘n⊕̃ℵn

)

=

〈 ϕ∗−1
(

1−
n

∏
i=1

((
1− ϕ∗

(
ℓσ(℘i)

))(
1− ϕ∗

(
ℓσ(ℵi)

)))wi
)

, 3

√
1−

n

∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵi

))wi
,

3

√
n

∏
i=1

((
1− ξ3

℘i

)(
1− ξ3

ℵi

))wi −
n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

ℵi

))(
1−

(
ξ3
℘i
+ ψ3

ℵi

)))wi

〉

=

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi n

∏
i=1

(
1− ϕ∗

(
ℓσ(ℵi)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi n

∏
i=1

(
1− ξ3

ℵi

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi n

∏
i=1

(
1− ξ3

ℵi

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi n

∏
i=1

(
1−

(
ξ3
ℵi
+ ψ3

ℵi

))wi

〉

=

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(ρi)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉
⊕̃
〈 ϕ∗−1

(
1−

n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘i)

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘i

)wi
,

3

√
n

∏
i=1

(
1− ξ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi

〉

= FFLWA(℘1,℘2, . . . ,℘n)⊕̃FFLWA(ℵ1,ℵ2, . . . ,ℵn).

This proves the theorem. �

3.3. FFL-Ordered Weighted Average (FFLOWA) Operator

The ordered weighted averaging (OWA) operator [59] is an aggregation operator that
provides a parameterized family of aggregation operators between the minimum and the
maximum. In this subsection, we extend the idea of the FFLWA operator into the FFLOWA
operator based on the OWA operator.

Definition 11. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, the

FFLOWA operator of dimension n is a mapping FFLOWA : Ωn → Ω , that has an associated

weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n

∑
i=1

ωi = 1, then

FFLOWA(℘1,℘2, . . . ,℘n) =
n

⊕̃
i=1

(
ωi∗̃℘φ(i)

)
, (39)

where ℘φ(i) is the ith largest value of ℘i(i = 1, 2, . . . , n).

Theorem 6. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLOWA operator is also a FFLN and

FFLOWA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(℘φ(i))

))ωi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3

℘φ(i)

)ωi
,

3

√
n

∏
i=1

(
1− ξ3

℘φ(i)

)ωi −
n

∏
i=1

(
1−

(
ξ3
℘φ(i)

+ ψ3
℘φ(i)

))ωi

〉
. (40)

Proof. The proof of this theorem is similar to Theorem 4, so it is omitted here. �

It can be easily proved that the FFLOWA operator holds the following properties.

(P1) (Idempotency): If ℘i = ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLOWA(℘1,℘2, . . . ,℘n) = ℘. (41)

(P2) (Monotonicity): Let℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
andℵi =

〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n)

be two collections of FFLNs such that ℓσ(℘i)
≤ ℓσ(ℵi)

, ξ℘i
≤ ξℵi

, ξ℘i
+ ψ℘i

≥ ξℵi
+ ψℵi

∀ i,
then

FFLOWA(℘1,℘2, . . . ,℘n) ≤ FFLOWA(ℵ1,ℵ2, . . . ,ℵn). (42)
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(P3) (Boundedness): Let

℘− =

〈
min

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
, min

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
, max

{
0,

(
max

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−min
(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
)} 〉

,

and

℘+ =

〈
max

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
, max

(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
,
(

min
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−max
(
ξ3
℘1

, ξ3
℘2

, . . . , ξ3
℘n

)
) 〉

then
℘− ≤ FFLOWA(℘1,℘2, . . . ,℘n) ≤ ℘+. (43)

P4 (Commutativity): Let (℘′1,℘′2, , . . . ,℘′n) be any permutation of (℘1,℘2, . . . ,℘n),
then

FFLOWA(℘1,℘2, . . . ,℘n) = FFLOWA
(
℘′1,℘′2, , . . . ,℘′n

)
. (44)

Further, motivated by the idea of geometric mean and ordered weighted geometric
operator [60], we develop the FFLWG operator and the FFLOWG operator.

3.4. FFL-Weighted Geometric (FFLWG) Operator

This subsection extends the notion of weighted geometric mean to the Fermetean
fuzzy linguistic information environment and defines the FFL-weighted geometric operator
as follows:

Definition 12. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs. The

FFL-weighted geometric (FFLWG) operator is a mapping FFLWG : Ωn → Ω , such that

FFLWG(℘1,℘2, . . . ,℘n) =
n

⊗̃
i=1

(
℘ĩ̂wi

)
, (45)

where w = (w1, w2, . . . , wn)
T denotes the weight vector of ℘i with wi ∈ [0, 1],

n

∑
i=1

wi = 1.

Especially, in the case of w =
(

1
n , 1

n , . . . , 1
n

)T
, the FFLWG operator is reduced into FFLG operator

expressed as

FFLG(a1, a2, . . . , an) =
n

⊗̃
i=1

(
℘ĩ̂

1
n

)
. (46)

Theorem 7. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLWG operator is also a FFLN and

FFLWG(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

n

∏
i=1

(
ϕ∗
(
ℓσ(℘i)

))wi
)

, 3

√
n

∏
i=1

(
1− ψ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
,

3

√
1−

n

∏
i=1

(
1− ψ3

℘i

)wi

〉
. (47)

Proof. Based on improved operational laws on FFLNs mentioned in Definition 9, Theorem 6
is evident from Theorems 4. �

Theorem 8. The FFLWG operator satisfies the following properties:
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(P1) (Idempotency): If ℘i = ℘ =
〈
ℓσ(℘), ξ℘, ψ℘

〉
∀ i, then

FFLWG(℘1,℘2, . . . ,℘n) = ℘. (48)

(P2) (Monotonicity): Let℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
and ℵi =

〈
ℓσ(ℵi)

, ξℵi
, ψℵi

〉
(i = 1, 2, . . . , n)

be two collections of FFLNs such that ℓσ(℘i)
≤ ℓσ(ℵi)

, ψ℘i
≥ ψℵi

, ξ℘i
+ ψ℘i

≤ ξℵi
+ ψℵi

∀ i, then

FFLWG(℘1,℘2, . . . ,℘n) ≤ FFLWG(ℵ1,ℵ2, . . . ,ℵn). (49)

(P3) (Boundedness): Let

℘− =

〈
min

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
, max

{
0,

(
min

(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−max(ψ℘1 , ψ℘2 , . . . , ψ℘n )

)}
, max(ψ℘1 , ψ℘2 , . . . , ψ℘n )

〉

and

℘+ =

〈
max

(
ℓσ(℘1)

, ℓσ(℘2)
, . . . , ℓσ(℘n)

)
,
(

max
(
ξ3
℘1

+ ψ3
℘1

, ξ3
℘2

+ ψ3
℘2

, . . . , ξ3
℘n

+ ψ3
℘n

)

−min
(
ψ3
℘1

, ψ3
℘1

, . . . , ψ3
℘1

)
)

, min
(

ψ3
℘1

, ψ3
℘1

, . . . , ψ3
℘1

)〉
,

then
℘− ≤ FFLWG(℘1,℘2, . . . ,℘n) ≤ ℘+. (50)

(P4): If ℵ =
〈
ℓσ(ℵ), ξℵ, ψℵ

〉
is another FFLN, then

FFLWG
(
℘1⊗̃ℵ,℘2⊗̃ℵ, . . . ,℘n⊗̃ℵ

)
= FFLWG(℘1,℘2, . . . ,℘n)⊗̃ℵ. (51)

(P5): If ϑ > 0 is a real number, then

FFLWG
(
℘1̃̂ϑ,℘2̃̂ϑ, . . . ,℘ñ̂ϑ

)
= (FFLWFG(℘1,℘2, . . . ,℘n))̃̂ϑ. (52)

(P6): Let ℵ =
〈
ℓσ(ℵ), ξℵ, ψℵ

〉
be another FFLN and ϑ > 0 be a real number, then

FFLWG
((

℘1̃̂ϑ
)
⊗̃ℵ,

(
℘2̃̂ϑ

)
⊗̃ℵ, . . . ,

(
℘ñ̂ϑ

)
⊗̃ℵ
)
=
(
(FFLWG(℘1,℘2, . . . ,℘n))̃̂ϑ

)
⊗̃ℵ. (53)

(P7): Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
and ℵi =

〈
ℓσ(ℵi)

, ξℵi
, ψℵi

〉
, (i = 1, 2, . . . , n) be two

collections of FFLNs, then

FFLWG
(
℘1⊗̃ℵ1,℘2⊗̃ℵ2, . . . ,℘n⊗̃ℵn

)
= FFLWG(℘1,℘2, . . . ,℘n)⊗̃FFLWG(ℵ1,ℵ2, . . . ,ℵn). (54)

Proof. Here, we prove the properties 4 and 5 only, and others can proceed likewise. �

(P4) From Definition 9, we have

℘i⊗̃ℵ =

〈
ϕ∗−1

(
ϕ∗
(
ℓσ(℘i)

)
ϕ∗
(
ℓσ(ℵ)

))
, 3

√(
1− ψ3

℘i

)(
1− ψ3

ℵ
)
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))(
1−

(
ξ3
ℵ + ψ3

ℵ
))

,

3

√
1−

(
1− ψ3

℘i

)(
1− ψ3

ℵ
)

〉
(55)

Therefore
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FFLWG
(
℘1⊗̃ℵ,℘2⊗̃ℵ, . . . ,℘n⊗̃ℵ

)

=

〈 ϕ∗−1
(

n

∏
i=1

(
ϕ∗
(
ℓσ(℘i)

)
ϕ∗
(
ℓσ(ℵ)

))wi
)

, 3

√√√√√√√

n

∏
i=1

((
1− ψ3

℘i

)(
1− ψ3

ℵ
))wi

−
n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘1

))(
1−

(
ξ3
ℵ + ψ3

ℵ
)))wi

,

3

√
1−

n

∏
i=1

((
1− ψ3

℘

)(
1− ψ3

ℵ
))wi

〉

=

〈 ϕ∗−1
(

n

∏
i=1

(
ϕ∗
(
ℓσ(℘i)

))wi
ϕ∗
(
ℓσ(ℵ)

))
, 3

√√√√√√√

(
n

∏
i=1

(
1− ψ3

℘i

)wi
)(

1− ψ3
ℵi

)

−
(

n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘1

))wi
)(

1−
(

ξ3
ℵi
+ ψ3

ℵi

)) ,

3

√
1−

(
n

∏
i=1

(
1− ψ3

℘i

)wi
)(

1− ψ3
ℵi

)

〉

=

〈 ϕ∗−1
(

n

∏
i=1

(
ϕ∗
(
ℓσ(℘i)

))wi
)

, 3

√
n

∏
i=1

(
1− ψ3

℘i

)wi −
n

∏
i=1

(
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
,

3

√
1−

n

∏
i=1

(
1− ψ3

℘i

)wi

〉
⊗̃
〈
ℓσ(ℵ), ξℵ, ψℵ

〉

= FFLWG(℘1,℘2, . . . ,℘n)⊗̃ℵ
(P5) Using Definition 9, we obtain

℘ĩ̂ϑ =

〈
ϕ∗−1

((
ϕ∗
(
ℓσ(℘i)

))ϑ
)

, 3

√(
1− ψ3

℘i

)ϑ
−
(

1−
(

ξ3
℘i
+ ψ3

℘i

))ϑ
, 3

√
1−

(
1− ψ3

℘i

)ϑ
〉

(56)

Therefore

FFLWG
(
℘1̃̂ϑ,℘2̃̂ϑ, . . . ,℘ñ̂ϑ

)

=

〈 ϕ∗−1
(

n

∏
i=1

((
ϕ∗
(
ℓσ(℘i)

))ϑ
)wi

)
, 3

√
n

∏
i=1

((
1− ψ3

℘i

)ϑ
)wi

−
n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))ϑ
)wi

,

3

√
1−

n

∏
i=1

((
1− ψ3

℘i

)ϑ
)wi

〉

=

〈 ϕ∗−1
(

n

∏
i=1

((
ϕ∗
(
ℓσ(℘i)

))wi
))ϑ

, 3

√
n

∏
i=1

((
1− ψ3

℘i

)wi
)ϑ
−

n

∏
i=1

((
1−

(
ξ3
℘i
+ ψ3

℘i

))wi
)ϑ

,

3

√
1−

n

∏
i=1

((
1− ψ3

℘i

)wi
)ϑ

〉

= (FFLWFG(℘1,℘2, . . . ,℘n))̃̂ϑ.

3.5. FFL-Ordered Weighted Geometric (FFLOWG) Operator

The ordered weighted geometric (OWG) operator [60] is a common aggregation
operator in the field of information fusion. However, the existing OWG operator cannot
aggregate FFLNs. Now, we define the FFLOWG operator based on the notion of the OWG
operator to aggregate FFLNs.

Definition 13. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, the

FFLOWG operator of dimension n is a mapping FFLOWG : Ωn → Ω , that has an associated

weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n

∑
i=1

ωi = 1, then

FFLOWG(℘1,℘2, . . . ,℘n) =
n

⊗̃
i=1

(
℘φ(i)̃̂ωi

)
, (57)
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where ℘φ(i) is the ith largest value of ℘i(i = 1, 2, . . . , n).

Theorem 9. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by the FFLOWG operator is also a FFLN and

FFLOWG(℘1,℘2, . . . ,℘n)

=

〈 ϕ∗−1
(

n

∏
i=1

(
ϕ∗
(
ℓσ(℘φ(i))

))ωi
)

, 3

√
n

∏
i=1

(
1− ψ3

℘φ(i)

)ωi −
n

∏
i=1

(
1−

(
ξ3
℘φ(i)

+ ψ3
℘φ(i)

))ωi

3

√
1−

n

∏
i=1

(
1− ψ3

℘φ(i)

)ωi

〉
(58)

Proof. We can derive the proof similar to Theorem 4, so we omit it here. �

Moreover, the FFLOWG operator also satisfies properties such as idempotency, mono-
tonicity, boundedness, and commutativity.

3.6. FFL-Hybrid Average (FFLHA) Operator and FFL-Hybrid Geometric (FFLHG) Operator

From Definitions 10 to 13, we know that the FFLWA and FFLWG AOs only weight
the FFLNs, while the FFLOWA and FFLOWG AOs weight the ordered position of the
FFLNs instead of weighting the FFLNs itself. In both cases, the weights address different
aspects during the aggregation process of the FFLNs. However, the developed aggregation
operators for FFLNs consider only one of them. The hybrid averaging (HA) operator [61]
is an aggregation operator that uses the weighted average (WA) and the ordered weighted
averaging (OWA) operator in the same formulation. In the following, we propose the
FFL-hybrid average (FFLHA) operator and the FFL-hybrid geometric (FFLHG) operator.

Definition 14. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
(i = 1, 2, . . . , n) be a collection of FFLNs, the FFL-

hybrid average (FFLHA) operator of dimension n is a mapping FFLHA : Ωn → Ω , that has an

associated weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n

∑
i=1

ωi = 1, then

FFLHA(℘1,℘2, . . . ,℘n) =
n

⊕̃
i=1

(
ωi∗̃

.
℘φ(i)

)
(59)

where
.
℘φ(i) is the ith largest number of the weighted FFLNs

.
℘i

( .
℘i = (nwi)∗̃℘i, i = 1, 2, . . . , n

)
,

w = (w1, w2, . . . , wn)
T is the weight vector of ℘i (i = 1, 2, . . . , n) such that wi ∈ [0, 1],

n

∑
i=1

wi =

1 and n is the balancing coefficient.

Theorem 10. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLHA operator is also a FFLN and

FFLHA(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(

.
℘φ(i))

))wi
)

, 3

√
1−

n

∏
i=1

(
1− ξ3.

℘φ(i)

)wi

,

3

√
n

∏
i=1

(
1− ξ3.

℘φ(i)

)wi

−
n

∏
i=1

(
1−

(
ξ3.
℘φ(i)

+ ψ3.
℘φ(i)

))wi

〉
(60)

Proof. The proof of this theorem is similar to Theorem 4. �
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Definition 15. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of n FFLNs, the

FFL-hybrid geometric (FFLHG) operator of dimension n is a mapping FFLHG : Ωn → Ω , that

has an associated weight vector ω = (ω1, ω2, . . . , ωn)
T such that ωi ∈ [0, 1] and

n

∑
i=1

ωi = 1, then

FFLHG(℘1,℘2, . . . ,℘n) =
n

⊗̃
i=1

(
.
℘φ(i)̃̂ω

)
, (61)

where
.
℘φ(i) is the ith largest number of the weighted FFLNs

.
℘i

(
.
℘i = ℘ĩ̂nwi, i = 1, 2, . . . , n

)
,

w = (w1, w2, . . . , wn)
T is the weight vector of ℘i (i = 1, 2, . . . , n) such that wi ∈ [0, 1],

n

∑
i=1

wi =

1 and n is the balancing coefficient.

Theorem 11. Let ℘i =
〈
ℓσ(℘i)

, ξ℘i
, ψ℘i

〉
, (i = 1, 2, . . . , n) be a collection of FFLNs, then the

aggregated value by using the FFLHG operator is also a FFLN and

FFLHG(℘1,℘2, . . . ,℘n) =

〈 ϕ∗−1
(

1−
n

∏
i=1

(
1− ϕ∗

(
ℓσ(

.
℘φ(i))

))wi
)

, 3

√
n

∏
i=1

(
1− ψ3.

℘φ(i)

)wi

−
n

∏
i=1

(
1−

(
ξ3.
℘φ(i)

+ ψ3.
℘φ(i)

))wi

,

3

√
1−

n

∏
i=1

(
1− ψ3.

℘φ(i)

)wi

〉
., (62)

Proof. The proof of this theorem can be obtained similar to Theorem 4. �

Note that similar to the FFLOWA and the FFLOWG operators, the FFLHA and FFLHG
operators follow the idempotent, bounded, monotonic and commutative properties.

Remark 1. If ω =
(

1
n , 1

n , . . . , 1
n

)T
, then FFLHA and FFLHG operators become the FFLWA

operator and FFLWG operator, respectively;

Remark 2. If w =
(

1
n , 1

n , . . . , 1
n

)T
, then the FFLHA and FFLHG operators are reduced into

FFLOWA operator and FFLOWG operator, respectively.

In the next section, we formulate a new decision-making method to solve MAGDM
problems under the Fermatean fuzzy linguistic environment. Then, we consider a real-life
supplier selection problem to demonstrate the decision-making steps.

4. An Approach to MAGDM Making with Fermatean Fuzzy Linguistic Information
4.1. MAGDM Problem Description

For a MAGDM problem, let F = {F1, F2, . . . , Fm} be a set of alternatives, A =

{A1, A2, . . . An} be an attribute set with the associated weighting vector (w1, w2, . . . , wn)
T ,

satisfying wj ∈ [0, 1] and
n

∑
j=1

wj = 1. Assume E = {E1, E2, . . . , Et} is a collection of s

experts whose weight vector is (ω1, ω2, . . . , ωs)
T , satisfying ωq ∈ [0, 1] and

s

∑
q=1

ωq = 1. Fur-

ther, suppose thatB(q) =
(
℘ij

(q)
)

m×n
is a decision matrix, where ℘ij

(q) =
〈
ℓ
(q)
σ(℘ij)

, ξ
(q)
℘ij

, ψ
(q)
℘ij

〉

represents an attribute evaluation value, given by the expert Eq, for the alternative Fi ∈ F

concerning the attribute Aj ∈ A such that 0 ≤
(

ξ
(q)
℘ij

)3
+
(

ψ
(q)
℘ij

)3
≤ 1 and ℓ

(q)
σ(℘ij)

∈
⌢
L [0,2t],

i = 1, 2, . . . , m; j = 1, 2, . . . , n. Then, the ranking of the alternatives is required to obtain the
best alternative(s).
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4.2. Decision Method

The decision method comprises the following steps.
Step 1: To nullify the effect of the different attributes, transform the decision matrices

B(q) =
(
℘ij

(q)
)

m×n
into the normalized form B̂(q) =

(
℘̂ij

(q)
)

m×n

=
(〈

ℓ
(q)
σ(℘̂ij)

, ξ
(q)
℘̂ij

, ψ
(q)
℘̂ij

〉)
m×n

. The elements of the normalized decision matrices B̂(q) can be

obtained as follows:

℘̂
(q)
ij =





〈
ℓ
(q)
σ(℘ij)

, ξ
(q)
℘ij

, ψ
(q)
℘ij

〉
, if Aj is benefit type attribute

〈
ℓ
(q)
2t−σ(℘ij)

, ψ
(q)
℘ij

, ξ
(q)
℘ij

〉
, if Aj is cos t type attribute

., (63)

Step 2: Aggregate all the B̂(q) =
(
℘̂ij

(q)
)

m×n
into a collective normalized decision

matrix
⌣

B̂ =

(
⌣
℘̂ ij

)

m×n

=

(〈
ℓ

σ(
⌣
℘̂ ij)

, ξ⌣
℘̂ ij

, ψ⌣
℘̂ ij

〉)
by using either FFLOWA operator

⌣
℘̂ ij = FFLOWA

(
℘̂ij

(1), ℘̂ij
(2), . . . , ℘̂ij

(s)
)
=

〈 ϕ∗−1

(
1−

s
∏

q=1

(
1− ϕ∗

(
ℓ

σ(℘̂
φ(q)
ij )

))ωq
)

, 3

√
1−

s
∏

q=1

(
1− ξ3

℘̂
φ(q)
ij

)ωq

,

3

√
s

∏
q=1

(
1− ξ3

℘̂
φ(q)
ij

)ωq

−
s

∏
q=1

(
1−

(
ξ3
℘̂

φ(q)
ij

+ ψ3
℘̂

φ(q)
ij

))ωq

〉
, (64)

or FFLOWG operator

⌣
℘̂ ij = FFLOWG

(
℘̂ij

(1), ℘̂ij
(2), . . . , ℘̂ij

(s)
)
=

〈 ϕ∗−1

(
s

∏
q=1

(
ϕ∗
(
ℓ

σ(℘̂
φ(q)
ij )

))ωq
)

, 3

√√√√1−
s

∏
q=1

(
1− ψ3

℘̂
φ(q)
ij

)ωq

−
s

∏
q=1

(
1−

(
ξ3
℘̂

φ(q)
ij

+ ψ3
℘̂

φ(q)
ij

))ωq

,

3

√√√√1−
s

∏
q=1

(
1− ψ3

℘̂
φ(q)
ij

)ωq

〉
, (65)

where ℘̂
σ(q)
ij =

〈
ℓ

φ(q)
σ(℘̂ij)

, ξ
φ(q)
℘̂ij

, ψ
φ(q)
℘̂ij

〉
is the qth largest value of ℘̂(q)

ij and (ω1, ω2, . . . , ωt)
T

represents the associated ordered position weight vector with ωq ∈ [0, 1] and
s

∑
q=1

ωq = 1.

Step 3: Aggregate all the collective preference values
⌣
℘̂ ij (j = 1, 2, . . . , n) for obtain-

ing the overall assessment values ℘̃i (i = 1, 2, . . . , m) corresponding to the alternatives
Fi(i = 1, 2, . . . , m), based on either the FFLWA operator

℘̃i= FFLWA
(
⌣
℘̂ i1,

⌣
℘̂ i2, . . . ,

⌣
℘̂ in

)
=

〈 ϕ∗−1

(
1−

n

∏
j=1

(
1− ϕ∗

(
ℓ

σ(
⌣
℘̂ ij)

))wj
)

, 3

√√√√1−
n

∏
j=1

(
1− ξ3

⌣
℘̂ ij

)wj

,

3

√√√√ n

∏
i=1

(
1− ξ3

⌣
℘̂ ij

)wj

−
n

∏
j=1

(
1−

(
ξ3
⌣
℘̂ ij

+ ψ3
⌣
℘̂ ij

))wj

〉
, (66)

or FFLWG operator

℘̃i= FFLWA
(
⌣
℘̂ i1,

⌣
℘̂ i2, . . . ,

⌣
℘̂ in

)
=

〈 ϕ∗−1

(
n
∏
j=1

(
ϕ∗
(
ℓ

σ(
⌣

℘̂ij)

))wj
)

, 3

√√√√ n
∏
j=1

(
1− ψ3

⌣

℘̂ij

)wj

−
n
∏
j=1

(
1−

(
ξ3
⌣

℘̂ij

+ ψ3
⌣

℘̂ij

))wj

,

3

√√√√1−
n
∏
j=1

(
1− ψ3

⌣

℘̂ij

)wj

〉
, (67)

Step 4. According to Definition 8, we obtain the order of the overall aggregated values
℘̃i (i = 1, 2, . . . , m).
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Step 5. Rank all the alternatives Fi (i = 1, 2, . . . , m) and hence select the most desirable
one(s).

4.3. Numerical Example

In order to illustrate the application of the developed approach in practice, we consider
a real-life decision problem about searching the global supplier with Fermatean fuzzy
linguistic information.

Example 5. Supplier selection is one of the most important processes to accomplish an effective
supply chain because a supplier comprehensively contributes to the overall supply chain performance.
Due to the involvement of a group of persons and many factors, supplier selection is typically
considered a MAGDM problem. In the last few years, the supplier selection problem has received a
considerable amount of attention from researchers working in different parts of the globe.

A Chilean company specializing in commercialized computer and office materials
wants to select a suitable material supplier to assign the raw materials’ optimum order.
After preliminary screening, five potential global suppliers {F1, F2, F3, F4, F5} were short-
listed for further evaluation. The company invites four experts {E1, E2, E3, E4} to evaluate
the shortlisted suppliers concerning five attributes: (i) overall cost of the product A1; (ii)
service performance of the supplier A2; (iii) reputation of the supplier A3; (iv) quality of
the product A4; (v) delivery time of the product A5. The attribute weight vector is given
as w = (0.20, 0.15, 0.25, 0.25, 0.15)T . The experts provide their evaluation information
corresponding to each attribute in terms of FFLNs based on the following LTS:

L =





ℓ0 = EP(extremly poor), ℓ1 = VP(very poor), ℓ2 = P( poor),
ℓ3 = SP(slightly poor), ℓ4 = F(fair), ℓ5 = SG(slightly good),
ℓ6 = G(good), ℓ7 = VG(very good), ℓ8 = EG(extremly good)



.

The experts provide the following Fermetean fuzzy linguistic decision matrices B(q) =(
℘ij

(q)
)

5×5
(q = 1, 2, 3, 4), as listed in Tables 3–6, respectively.

Table 3. Decision matrix B(1).

A1 A2 A3 A4 A5

F1 〈ℓ3, 0.8, 0.3〉 〈ℓ1, 0.5, 0.5〉 〈ℓ4, 0.6, 0.1〉 〈ℓ1, 0.2, 0.3〉 〈ℓ5, 0.4, 0.6〉
F2 〈ℓ5, 0.7, 0.2〉 〈ℓ4, 0.6, 0.4〉 〈ℓ7, 0.7, 0.3〉 〈ℓ6, 0.8, 0.1〉 〈ℓ4, 0.5, 0.7〉
F3 〈ℓ4, 0.4, 0.7〉 〈ℓ2, 0.2, 0.8〉 〈ℓ3, 0.4, 0.6〉 〈ℓ2, 0.6, 0.6〉 〈ℓ5, 0.5, 0.1〉
F4 〈ℓ1, 0.7, 0.5〉 〈ℓ3, 0.4, 0.5〉 〈ℓ4, 0.3, 0.4〉 〈ℓ4, 0.2, 0.1〉 〈ℓ2, 0.6, 0.2〉
F4 〈ℓ3, 0.3, 0.1〉 〈ℓ4, 0.7, 0.1〉 〈ℓ1, 0.8, 0.5〉 〈ℓ5, 0.5, 0.8〉 〈ℓ4, 0.9, 0.1〉

Table 4. Decision matrix B(2).

A1 A2 A3 A4 A5

F1 〈ℓ2, 0.5, 0.2〉 〈ℓ3, 0.7, 0.6〉 〈ℓ5, 0.2, 0.4〉 〈ℓ5, 0.3, 0.9〉 〈ℓ7, 0.4, 0.3〉
F2 〈ℓ4, 0.6, 0.1〉 〈ℓ7, 0.9, 0.5〉 〈ℓ6, 0.8, 0.4〉 〈ℓ8, 0.9, 0.3〉 〈ℓ3, 0.8, 0.3〉
F3 〈ℓ5, 0.9, 0.3〉 〈ℓ4, 0.5, 0.2〉 〈ℓ3, 0.4, 0.2〉 〈ℓ2, 0.4, 0.5〉 〈ℓ1, 0.7, 0.1〉
F4 〈ℓ7, 0.5, 0.4〉 〈ℓ2, 0.5, 0.1〉 〈ℓ4, 0.6, 0.7〉 〈ℓ5, 0.2, 0.8〉 〈ℓ5, 0.5, 0.3〉
F4 〈ℓ5, 0.2, 0.5〉 〈ℓ1, 0.6, 0.8〉 〈ℓ1, 0.9, 0.6〉 〈ℓ7, 0.1, 0.7〉 〈ℓ2, 0.2, 0.2〉
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Table 5. Decision matrix B(3).

A1 A2 A3 A4 A5

F1 〈ℓ1, 0.7, 0.2〉 〈ℓ4, 0.6, 0.1〉 〈ℓ3, 0.8, 0.3〉 〈ℓ1, 0.6, 0.5〉 〈ℓ2, 0.8, 0.0〉
F2 〈ℓ2, 0.6, 0.4〉 〈ℓ8, 0.9, 0.2〉 〈ℓ6, 0.6, 0.1〉 〈ℓ7, 0.9, 0.6〉 〈ℓ3, 0.7, 0.0〉
F3 〈ℓ4, 0.9, 0.6〉 〈ℓ4, 0.6, 0.7〉 〈ℓ2, 0.4, 0.4〉 〈ℓ4, 0.1, 0.8〉 〈ℓ5, 0.6, 0.2〉
F4 〈ℓ3, 0.4, 0.4〉 〈ℓ5, 0.7, 0.0〉 〈ℓ6, 0.2, 0.5〉 〈ℓ5, 0.6, 0.8〉 〈ℓ7, 0.1, 0.4〉
F4 〈ℓ7, 0.3, 0.9〉 〈ℓ3, 0.8, 0.3〉 〈ℓ1, 0.7, 0.6〉 〈ℓ6, 0.3, 0.5〉 〈ℓ1, 0.8, 0.6〉

Table 6. Decision matrix B(4).

A1 A2 A3 A4 A5

F1 〈ℓ2, 0.7, 0.1〉 〈ℓ4, 0.7, 0.0〉 〈ℓ3, 0.6, 0.6〉 〈ℓ4, 0.8, 0.2〉 〈ℓ5, 0.2, 0.9〉
F2 〈ℓ3, 0.6, 0.9〉 〈ℓ6, 0.5, 0.3〉 〈ℓ7, 0.9, 0.2〉 〈ℓ8, 0.9, 0.4〉 〈ℓ5, 0.7, 0.1〉
F3 〈ℓ4, 0.3, 0.4〉 〈ℓ3, 0.6, 0.9〉 〈ℓ4, 0.2, 0.5〉 〈ℓ5, 0.4, 0.7〉 〈ℓ4, 0.2, 0.6〉
F4 〈ℓ3, 0.3, 0.5〉 〈ℓ1, 0.3, 0.4〉 〈ℓ3, 0.7, 0.4〉 〈ℓ3, 0.8, 0.3〉 〈ℓ2, 0.6, 0.7〉
F4 〈ℓ5, 0.6, 0.4〉 〈ℓ4, 0.4, 0.8〉 〈ℓ1, 0.5, 0.5〉 〈ℓ2, 0.4, 0.7〉 〈ℓ4, 0.5, 0.6〉

Step 1: Since A1 is a cost–type attribute while A2, A3, A4 and A5 are benefit-type
attributes, so the normalized decision matrices B̂(q)(q = 1, 2, 3, 4) are obtained using
Equation (63) as follows (see Tables 7–10).

Table 7. Normalized decision matrix B̂(1).

A1 A2 A3 A4 A5

F1 〈ℓ5, 0.3, 0.8〉 〈ℓ1, 0.5, 0.5〉 〈ℓ4, 0.6, 0.1〉 〈ℓ1, 0.2, 0.3〉 〈ℓ5, 0.4, 0.6〉
F2 〈ℓ3, 0.2, 0.7〉 〈ℓ4, 0.6, 0.4〉 〈ℓ7, 0.7, 0.3〉 〈ℓ6, 0.8, 0.1〉 〈ℓ4, 0.5, 0.7〉
F3 〈ℓ4, 0.7, 0.4〉 〈ℓ2, 0.2, 0.8〉 〈ℓ3, 0.4, 0.6〉 〈ℓ2, 0.6, 0.6〉 〈ℓ5, 0.5, 0.1〉
F4 〈ℓ7, 0.5, 0.7〉 〈ℓ3, 0.4, 0.5〉 〈ℓ4, 0.3, 0.4〉 〈ℓ4, 0.2, 0.1〉 〈ℓ2, 0.6, 0.2〉
F5 〈ℓ5, 0.1, 0.3〉 〈ℓ4, 0.7, 0.1〉 〈ℓ1, 0.8, 0.5〉 〈ℓ5, 0.5, 0.8〉 〈ℓ4, 0.9, 0.1〉

Table 8. Normalized decision matrix B̂(2).

A1 A2 A3 A4 A5

F1 〈ℓ6, 0.2, 0.5〉 〈ℓ3, 0.7, 0.6〉 〈ℓ5, 0.2, 0.4〉 〈ℓ5, 0.3, 0.9〉 〈ℓ7, 0.4, 0.3〉
F2 〈ℓ4, 0.1, 0.6〉 〈ℓ7, 0.9, 0.5〉 〈ℓ6, 0.8, 0.4〉 〈ℓ8, 0.9, 0.3〉 〈ℓ3, 0.8, 0.3〉
F3 〈ℓ3, 0.3, 0.9〉 〈ℓ4, 0.5, 0.2〉 〈ℓ3, 0.4, 0.2〉 〈ℓ2, 0.4, 0.4〉 〈ℓ1, 0.7, 0.1〉
F4 〈ℓ1, 0.4, 0.5〉 〈ℓ2, 0.5, 0.1〉 〈ℓ4, 0.6, 0.7〉 〈ℓ5, 0.2, 0.8〉 〈ℓ5, 0.5, 0.3〉
F5 〈ℓ3, 0.5, 0.2〉 〈ℓ1, 0.6, 0.8〉 〈ℓ1, 0.9, 0.6〉 〈ℓ7, 0.1, 0.7〉 〈ℓ2, 0.2, 0.2〉

Table 9. Normalized decision matrix B̂(3).

A1 A2 A3 A4 A5

F1 〈ℓ7, 0.2, 0.7〉 〈ℓ4, 0.6, 0.1〉 〈ℓ3, 0.8, 0.3〉 〈ℓ1, 0.6, 0.5〉 〈ℓ2, 0.8, 0.0〉
F5 〈ℓ6, 0.4, 0.6〉 〈ℓ8, 0.9, 0.2〉 〈ℓ6, 0.6, 0.1〉 〈ℓ7, 0.9, 0.6〉 〈ℓ3, 0.7, 0.0〉
F3 〈ℓ4, 0.6, 0.9〉 〈ℓ4, 0.6, 0.7〉 〈ℓ2, 0.4, 0.4〉 〈ℓ4, 0.1, 0.8〉 〈ℓ5, 0.6, 0.2〉
F4 〈ℓ5, 0.4, 0.4〉 〈ℓ5, 0.7, 0.0〉 〈ℓ6, 0.2, 0.5〉 〈ℓ5, 0.6, 0.8〉 〈ℓ7, 0.1, 0.4〉
F4 〈ℓ1, 0.9, 0.3〉 〈ℓ3, 0.8, 0.3〉 〈ℓ1, 0.7, 0.6〉 〈ℓ6, 0.3, 0.5〉 〈ℓ1, 0.8, 0.6〉
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Table 10. Normalized decision matrix B̂(4).

A1 A2 A3 A4 A5

F1 〈ℓ6, 0.1, 0.7〉 〈ℓ4, 0.7, 0.0〉 〈ℓ3, 0.6, 0.6〉 〈ℓ4, 0.8, 0.2〉 〈ℓ5, 0.2, 0.9〉
F2 〈ℓ5, 0.9, 0.6〉 〈ℓ6, 0.5, 0.3〉 〈ℓ7, 0.9, 0.2〉 〈ℓ8, 0.9, 0.4〉 〈ℓ5, 0.7, 0.1〉
F3 〈ℓ4, 0.4, 0.3〉 〈ℓ3, 0.6, 0.9〉 〈ℓ4, 0.2, 0.5〉 〈ℓ5, 0.4, 0.7〉 〈ℓ4, 0.2, 0.6〉
F4 〈ℓ5, 0.5, 0.3〉 〈ℓ1, 0.3, 0.4〉 〈ℓ3, 0.7, 0.4〉 〈ℓ3, 0.8, 0.3〉 〈ℓ2, 0.6, 0.7〉
F5 〈ℓ3, 0.4, 0.6〉 〈ℓ4, 0.4, 0.8〉 〈ℓ1, 0.5, 0.5〉 〈ℓ2, 0.4, 0.7〉 〈ℓ4, 0.5, 0.6〉

Step 2: First, we calculate the experts’ weighting vector ω = (0.1550, 0.3450, 0.3450,
0.1550)T based on the normal distribution method [62]. Then, utilizing the FFLOWA
operator mentioned in Equation (64) (without loss of generality, we have taken the linguistic
scaling function ϕ∗ = ϕ∗2(θ = 1.4) to obtain the collective normalized decision matrix
⌣

B̂ =

(
⌣
℘̂ ij

)

5×5
. Using Equation (8), we obtain

S
(
℘̂11

(1)
)
= ϕ∗2(ℓ5)×

(
0.33+1−0.83

2

)
= 0.1469, S

(
℘̂11

(2)
)
= ϕ∗2(ℓ6)×

(
0.23+1−0.53

2

)
= 0.2953,

S
(
℘̂11

(3)
)
= ϕ∗2(ℓ7)×

(
0.23+1−0.73

2

)
= 0.2683, S

(
℘̂11

(4)
)
= ϕ∗2(ℓ6)×

(
0.13+1−0.73

2

)
= 0.2201.

Since S
(
℘̂11

(2)
)
> S

(
℘̂11

(3)
)
> S

(
℘̂11

(4)
)
> S

(
℘̂11

(1)
)

, therefore ℘̂11
(2) ≻ ℘̂11

(3) ≻
℘̂11

(4) ≻ ℘̂11
(1).

⌣
℘̂11 = FFLOWA

(
℘̂11

(1), ℘̂11
(2), ℘̂11

(3), ℘̂11
(4)
)

=

〈
ϕ∗2
−1
(

1− (1− ϕ∗2(ℓ6))
0.1550 × (1− ϕ∗2(ℓ7))

0.3450 × (1− ϕ∗2(ℓ6))
0.3450 × (1− ϕ∗2(ℓ5))

0.1550
)

,
3
√

1− (1− 0.23)
0.1550 × (1− 0.23)

0.3450 × (1− 0.13)
0.3450 × (1− 0.33)

0.1550,

3

√√√√
(
1− 0.23)0.1550 ×

(
1− 0.23)0.3450 ×

(
1− 0.13)0.3450 ×

(
1− 0.33)0.1550

−
(
1−

(
0.23 + 0.53))0.1550 ×

(
1−

(
0.23 + 0.73))0.3450 ×

(
1−

(
0.13 + 0.73))0.3450 ×

(
1−

(
0.33 + 0.83))0.1550

〉

= 〈ℓ6.3636, 0.2046, 0.7016〉.

Similarly, we can calculate other collective values. Table 11 presents the collective
normalized decision matrix.

Table 11. Collective normalized decision matrix
⌣

B̂ based on FFLOWA operator.

A1 A2 A3 A4 A5

F1 〈ℓ6.3636, 0.2046, 0.7016〉 〈ℓ3.0842, 0.6463, 0.4778〉 〈ℓ4.0947, 0.5943, 0.3966〉 〈ℓ1.9102, 0.6272, 0.5882〉 〈ℓ4.8442, 0.6262, 0.5809〉
F2 〈ℓ4.9662 , 0.5876, 0.6750〉 〈ℓ8.0000, 0.8048, 0.4686〉 〈ℓ6.6072, 0.3266, 0.3266〉 〈ℓ8.000, 0.8892, 0.5234〉 〈ℓ3.4637, 0.7244, 0.3855〉
F3 〈ℓ3.8309, 0.4735, 0.8315〉 〈ℓ3.2911, 0.5571, 0.8364〉 〈ℓ3.1444, 0.2951, 0.5097〉 〈ℓ2.6951, 0.3791, 0.6367〉 〈ℓ4.0135, 0.4683, 0.4152〉
F4 〈ℓ5.1312, 0.3942, 0.5286〉 〈ℓ2.5714, 0.5054, 0.3709〉 〈ℓ4.1499, 0.5602, 0.5041〉 〈ℓ4.4243, 0.5652, 0.6810〉 〈ℓ4.4155, 0.5367, 0.4497〉
F5 〈ℓ2.9330, 0.6195, 0.4349〉 〈ℓ3.0842, 0.6778, 0.6322〉 〈ℓ0.9998, 0.7717, 0.6001〉 〈ℓ5.9625, 0.3895, 0.7325〉 〈ℓ2.7125, 0.6724, 0.4952〉

Step 3: Utilize the FFLWA operator given in Equation (66) with w = (0.20, 0.15, 0.25, 0.25,
0.15)T to derive the overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5)
corresponding to each alternative Fi(i = 1, 2, 3, 4, 5). Using the expression mentioned in
Equation (66), we obtain
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℘̃1 = FFLWA

(
⌣
℘̂11,

⌣
℘̂12,

⌣
℘̂13,

⌣
℘̂14,

⌣
℘̂15

)

=

〈

ϕ∗2
−1
(

1− (1− ϕ∗2(ℓ6.3636))
0.20 × (1− ϕ∗2(ℓ3.0842))

0.15 × (1− ϕ∗2(ℓ4.0947))
0.25 × (1− ϕ∗2(ℓ1.9102))

0.25 × (1− ϕ∗2(ℓ4.8442))
0.15
)

,
3
√

1− (1− 0.20463)
0.20 × (1− 0.64633)

0.15 × (1− 0.59433)
0.25 × (1− 0.62723)

0.25 × (1− 0.62623)
0.15,

3

√√√√√√

(
1− 0.20463)0.20 ×

(
1− 0.64633)0.15 ×

(
1− 0.59433)0.25 ×

(
1− 0.62723)0.25 ×

(
1− 0.62623)0.15

−
(
1−

(
0.20463 + 0.70163))0.20 ×

(
1−

(
0.64633 + 0.47783))0.15 ×

(
1−

(
0.59433 + 0.39663))0.25

×
(
1−

(
0.62723 + 0.58823))0.25 ×

(
1−

(
0.62623 + 0.58093))0.25

〉

= 〈ℓ4.3017, 0.5831, 0.5647〉.

The overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5) are recorded
in Table 12.

Table 12. The overall FFL preference values ℘̃i based on the FFLWA operator.

F1 F2 F3 F4 F5

〈ℓ4.3017, 0.5831, 0.5647〉 〈ℓ8.0000, 0.7473, 0.5436〉 〈ℓ3.2991, 0.4379, 0.7336〉 〈ℓ4.2602, 0.5254, 0.5559〉 〈ℓ3.2791, 0.6571, 0.6108〉

Step 4: According to Definition 8, we have

S(℘̃1)= 0.2641, S(℘̃2)= 0.6284, S(℘̃3)= 0.1562, S(℘̃4)= 0.2511, S(℘̃5)= 0.2385

Step 5: The final ranking order of the suppliers following the score values S(℘̃i) is
F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3, thus, the most desirable supplier is F2.

Additionally, if we use the FFLOWG operator in Step 2 and the FFLWG operator in
Step 3 instead of FFLOWA and FFLWA operators, respectively, in the developed method,
then the procedure steps are as follows:

Step 1: Same as above.
Step 2: Utilizing the FFLOWG operator to aggregate all the normalized decision

matrices B̂(q)(q = 1, 2, 3, 4), the obtained results corresponding to each alternative are
shown in Table 13.

Table 13. Aggregated normalized decision matrix
⌣

B̂ based on FFLOWG operator.

A1 A2 A3 A4 A5

F1 〈ℓ6.2263, 0.2137, 0.7007〉 〈ℓ2.7656, 0.6538, 0.4637〉 〈ℓ3.9865, 0.5937, 0.3980〉 〈ℓ1.4768, 0.5857, 0.6112〉 〈ℓ3.9815, 0.5743, 0.6318〉
F2 〈ℓ4.7577 , 0.6489, 0.6190〉 〈ℓ6.4552, 0.8239, 0.4017〉 〈ℓ6.5188, 0.3211, 0.3211〉 〈ℓ7.3788, 0.9050, 0.4721〉 〈ℓ3.3857, 0.7149, 0.4160〉
F3 〈ℓ3.8103, 0.6273, 0.7881〉 〈ℓ3.1929, 0.6306, 0.7975〉 〈ℓ3.0632, 0.3571, 0.5091〉 〈ℓ2.4951, 0.4715, 0.6414〉 〈ℓ3.4022, 0.5068, 0.4347〉
F4 〈ℓ4.1466, 0.4034, 0.5233〉 〈ℓ2.2839, 0.5001, 0.3805〉 〈ℓ3.9398, 0.5654, 0.5041〉 〈ℓ4.3441, 0.5767, 0.6729〉 〈ℓ3.3720, 0.5447, 0.4377〉
F5 〈ℓ2.6262, 0.6119, 0.4495〉 〈ℓ2.7656, 0.6350, 0.6754〉 〈ℓ0.9998, 0.7958, 0.5559〉 〈ℓ5.3982, 0.4159, 0.7244〉 〈ℓ2.3979, 0.6756, 0.4893〉

Step 3: The overall Fermetean fuzzy linguistic preference values ℘̃i (i = 1, 2, 3, 4, 5) of
each alternative Fi(i = 1, 2, 3, 4, 5) using the FFLWG operator are summarized in Table 14.

Table 14. The overall Fermetean fuzzy linguistic preference values ℘̃i based on the FFLWG operator.

F1 F2 F3 F4 F5

〈ℓ3.1520, 0.5552, 0.5861〉 〈ℓ6.0409, 0.7785, 0.4727〉 〈ℓ3.0867, 0.5716, 0.6739〉 〈ℓ3.6215, 0.5375, 0.5460〉 〈ℓ2.3249, 0.6565, 0.6115〉

Step 4: The score values S(℘̃i) of the overall Fermetean fuzzy linguistic preference
values obtained during Step 3 are calculated as

S(℘̃1)= 0.2143, S(℘̃2)= 0.4602, S(℘̃3)= 0.1923, S(℘̃4)= 0.2363, S(℘̃5)= 0.1934
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Step 5. Since S(℘̃2) ≻ S(℘̃4) ≻ S(℘̃1) ≻ S(℘̃5) ≻ S(℘̃3), therefore we obtain the
final ranking order of the suppliers as F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3. Hence, F2 is the most
desirable supplier.

It is worth noting that a decision-maker can choose the appropriate aggregation
operator based on his/her behavior towards the aggregation procedure. If a decision-
maker has optimistic behavior towards the aggregation of experts’ preference information
and pessimistic behavior towards the final decision, then he/she uses the FFLOWA and
FFLWG operators in Step 2 and Step 3, respectively, of the developed approach. A complete
analysis has been conducted to analyze the effect of the decision-maker’s behavioral
attitude on the final ranking. The results are summarized in Table 15, along with the
suppliers’ ranking order. The results shown in Table 15 indicate that when we use the
FFLOWA (or the FFLOWG) operator in Step 2 and the FFLWA (or FFLHA) operator in
Step 3 then the ranking order of the alternatives is always F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3. On the
other hand, if we use the FFLOWA (or the FFLOWG) operator in Step 2 and the FFLWG
(or FFLHG) operator in Step 3 then the ranking order of the alternatives is obtained as
F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3, which is slightly different from the previous ones. It shows
the effect of the nature of varying aggregation operators on the final ranking order of
the alternatives.

Table 15. The score values S(℘̃i) and ranking order of the suppliers.

The Operator
Used in Step 2

The Operator
Used in Step 3

Score Values Ranking of the
SuppliersS(℘̃1) S(℘̃2) S(℘̃3) S(℘̃4) S(℘̃5)

FFLOWA

FFLWA 0.2641 0.6284 0.1562 0.2511 0.2385 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLWG 0.2407 0.4832 0.1679 0.2501 0.2030 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHA 0.2618 0.6245 0.1568 0.2513 0.2235 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLHG 0.2427 0.5334 0.1704 0.2484 0.2165 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3

FFLOWG

FFLWA 0.2408 0.4812 0.1765 0.2369 0.2228 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLWG 0.2143 0.4602 0.1923 0.2363 0.1934 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHA 0.2385 0.4665 0.1804 0.2366 0.2151 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLHG 0.2125 0.4236 0.1873 0.2282 0.1899 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3

Apart from the above analysis, to examine the influence of the different LSFs on the
alternatives’ ranking order, we have employed different LSFs in the calculation process of
the developed decision-making approach. Then, after applying the steps, the corresponding
results are summarized in Table 16.

From Table 16, it has been observed that although the score values of the alternatives
are entirely different when we use different LSFs; however, the best alternative is always
F2 for the considered problem. Note that the use of different LSFs shows an influence
on the final ranking order of the alternatives. It is also worth noting that, in other real-
life decision problems, the best alternative may be different depending on the use of
different aggregation operators. Our developed method provides an ability to the DMs
for choosing the appropriate LSF according to his/her personal choice and the actual
semantic environment.
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Table 16. The score values S(℘̃i) and ranking order of the suppliers based on different LSFs.

LSF
The Operator
Used in Step 2

The Operator
Used in Step 3

Score Values Ranking of the
SuppliersS(℘̃1) S(℘̃2) S(℘̃3) S(℘̃4) S(℘̃5)

ϕ∗ = ϕ∗1

FFLOWA

FFLWA 0.2813 0.6283 0.1610 0.2616 0.2414 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLWG 0.2531 0.4785 0.1702 0.2564 0.1797 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHG 0.2523 0.4719 0.1686 0.2516 0.1813 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3

FFLOWG

FFLWA 0.2368 0.5157 0.1629 0.2309 0.2074 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLWG 0.2002 0.4793 0.1752 0.2265 0.1629 F2 ≻ F4 ≻ F1 ≻ F3 ≻ F5
FFLHA 0.2373 0.5013 0.1638 0.2500 0.1929 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHG 0.2000 0.4386 0.1722 0.2373 0.1560 F2 ≻ F4 ≻ F1 ≻ F3 ≻ F5

ϕ∗ = ϕ∗3
(ρ = τ = 0.8)

FFLOWA

FFLWA 0.2913 0.6283 0.1591 0.3061 0.2448 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLWG 0.2554 0.5060 0.1669 0.2891 0.1695 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHA 0.2905 0.6120 0.1602 0.3027 0.2336 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHG 0.2569 0.4772 0.1661 0.2779 0.1718 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3

FFLOWG

FFLWA 0.2398 0.5270 0.1537 0.2319 0.2009 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLWG 0.1931 0.4864 0.1650 0.2274 0.1901 F2 ≻ F4 ≻ F1 ≻ F5 ≻ F3
FFLHA 0.2412 0.5124 0.1554 0.2337 0.1907 F2 ≻ F1 ≻ F4 ≻ F5 ≻ F3
FFLHG 0.1942 0.4455 0.1640 0.2232 0.1481 F2 ≻ F4 ≻ F1 ≻ F3 ≻ F5

4.4. Sensitivity Analysis

The decision-making approach developed in this paper uses various AOs with dif-
ferent LSFs to aggregate information data as provided by decision-makers. This section
discusses the influence of these AOs and LSFs on the decision result.

A sensitivity analysis has been conducted to better understand the impact of the
various AOs on the ranking order of the alternatives with different LSFs. Figures 5–10 have
been plotted, portraying the sensitivity of the results based on various AOs taking different
LSFs. As shown in Figures 5–10, changes in the AOs and LSFs significantly influence the
ranking of alternatives.

ϕ ϕ∗=
Figure 5. Sensitivity analysis for the alternatives based on FFLOWA operator in step 2 with ϕ∗ = ϕ∗1 .
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ϕ ϕ∗=

ϕ ϕ∗=

Figure 6. Sensitivity analysis for the alternatives based on FFLOWG operator in step 2 with ϕ∗ = ϕ∗1 .
ϕ ϕ∗=

ϕ ϕ∗=
Figure 7. Sensitivity analysis for the alternatives based on FFLOWA operator in step 2 with ϕ∗ = ϕ∗2 .
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ϕ ϕ∗=

ϕ ϕ∗=

Figure 8. Sensitivity analysis for the alternatives based on FFLOWG operator in step 2 with ϕ∗ = ϕ∗2 .
ϕ ϕ∗=

ϕ ϕ∗=
Figure 9. Sensitivity analysis for the alternatives based on FFLOWA operator in step 2 with ϕ∗ = ϕ∗3 .
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Figure 10. Sensitivity analysis for the alternatives based on FFLOWG operator in step 2 with ϕ∗ = ϕ∗3 .

4.5. A Comparative Overview of the Results Based on Different AOs

In order to compare the performance of the developed AOs with existing ones, this
paper uses the AOs and decision method formulated by Li et al. [53] to solve the above
considered MAGDM problem. The obtained values of the closeness coefficient and ranking
order of the suppliers are summarized in Table 17.

Table 17. The values of the closeness coefficient C(℘̃i) and ranking order of the suppliers.

Aggregation Operator
Used

The Closeness Coefficient Values
Ranking of the Suppliers

C(℘̃1) C(℘̃2) C(℘̃3) C(℘̃4) C(℘̃5)

FFLWA 0.3803 0.6109 0.2222 0.3317 0.3529 F2 ≻ F1 ≻ F5 ≻ F4 ≻ F3
FFLWG 0.3942 0.5856 0.2063 0.3396 0.3412 F2 ≻ F1 ≻ F5 ≻ F4 ≻ F3

From Table 17, it is inferred that the best alternative obtained by the proposed approach
agrees with the method formulated by Li et al. [53] which confirms the consistency of the
proposed operators. It is also clear from the results summarized in Table 17 that the
best alternative (F2) and the worst alternative (F3) are the same by all the approaches.
However, the complete ranking order of the suppliers is slightly different from our ranking
order because of the use of different aggregation operators for aggregating the preference
information of the decision-makers.

In addition, Spearman’s rank correlation test [63] is used for the subsequent analyses
to identify the differences between the ranking orders of the alternatives obtained by using
different AOs in the formulated approach. Spearman’s rank correlation measures the
strength of association of two variables. It can be defined as follows:

rSRC = 1−
6

m

∑
j=1

d2
j

m(m2 − 1)
,

where m is the number of alternatives and d denotes the ranking difference of alternative Fj

between two different rankings. According to [63], rSRC lies between −1 to +1. rSRC = +1
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indicates a perfect positive relationship between the two sets of rankings and rSRC = −1
implies a perfect negative relationship between the two sets of rankings. The closer rSRC is
to ±1, the stronger the relationship between the two rankings. Tables 18–20 summarize
Spearman’s rank correlation coefficient values between different rankings obtained based
on different AOs and LSFs.

From Tables 18 and 19, we can easily see that the ranking orders obtained using
FFLOWA+ FFLWA and FFLOWG+ FFLWA have a perfect positive relationship. Similarly,
Tables 19 and 20 show that the rankings obtained by the FFLOWA+ FFLWG and FFLOWA+
FFLHG also have a perfect positive relationship.

Table 18. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗1 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA
+ FFLWG

FFLOWA
+ FFLHA

FFLOWA
+ FFLHG

FFLOWG
+ FFLWA

FFLOWG
+ FFLWG

FFLOWG
+ FFLHA

FFLOWG
+ FFLHG

FFLOWA+
FFLWA

1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWA+
FFLWG

0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWA+
FFLHA

0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWA+
FFLHG

1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWG+
FFLWA

1 0.1 0.1 1 1 −0.3 0.1 −0.3

FFLOWG+
FFLWG

−0.3 0.6 0.6 −0.3 −0.3 1 0.6 1

FFLOWG+
FFLHA

0.1 1 1 0.1 0.1 0.6 1 0.6

FFLOWG+
FFLHG

−0.3 0.6 0.6 −0.3 −0.3 1 0.6 1

Table 19. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗2 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA
+ FFLWG

FFLOWA
+ FFLHA

FFLOWA
+ FFLHG

FFLOWG
+ FFLWA

FFLOWG
+ FFLWG

FFLOWG
+ FFLHA

FFLOWG
+ FFLHG

FFLOWA+
FFLWA

1 0.1 1 0.1 1 0.1 1 0.1

FFLOWA+
FFLWG

0.1 1 0.1 1 0.1 1 0.1 1

FFLOWA+
FFLHA

1 0.1 1 0.1 1 0.1 1 0.1

FFLOWA+
FFLHG

0.1 1 0.1 1 0.1 1 0.1 1

FFLOWG+
FFLWA

1 0.1 1 0.1 0.1 0.1 1 0.1

FFLOWG+
FFLWG

0.1 1 1 1 0.1 1 0.1 1

FFLOWG+
FFLHA

1 0.1 1 0.1 1 0.1 1 0.1

FFLOWG+
FFLHG

0.1 1 0.1 1 0.1 1 0.1 1
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Table 20. Results of Spearman’s rank correlation with ϕ∗ = ϕ∗3 .

ϕ∗ = ϕ∗1
FFLOWA+

FFLWA
FFLOWA+

FFLWG
FFLOWA
+ FFLHA

FFLOWA+
FFLHG

FFLOWG+
FFLWA

FFLOWG+
FFLWG

FFLOWG+
FFLHA

FFLOWG+
FFLHG

FFLOWA+
FFLWA

1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLWG

1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLHA

1 1 1 1 0.1 1 0.1 0.6

FFLOWA+
FFLHG

1 1 1 1 0.1 1 0.1 0.6

FFLOWG+
FFLWA

0.1 0.1 0.1 0.1 0.1 0.1 1 −0.3

FFLOWG+
FFLWG

1 1 1 1 0.1 1 0.1 0.6

FFLOWG+
FFLHA

0.1 0.1 0.1 0.1 1 0.1 1 −0.3

FFLOWG+
FFLHG

0.6 0.6 0.6 0.6 −0.3 0.6 −0.3 1

4.6. Some Advantages and Limitations of the Proposed Approach

1. The formulated approach can solve decision-making problems with qualitative infor-
mation data in terms of FFLNs very efficiently.

2. We can also apply this method to solve many existing decision problems with intu-
itionistic fuzzy linguistic and Pythagorean fuzzy linguistic information [48–50].

3. The main limitation of this study is that it cannot handle the situations in which the
attributes have some interaction and prioritization relationship between them.

4. The developed study opens a new door for further research under a qualitative
information environment.

5. There can be some adverse situations in which the defined operational laws for FFLNs
may not work. Then, we will need to undertake a further detailed investigation of the
operational laws of FFLNs.

5. Conclusions

In this paper, we studied the MAGDM problems under a Fermatean fuzzy linguistic
environment. To overcome the shortcomings of the existing operational laws of FFLNs, the
paper has defined four new algebraic operational laws for FFLNs based on the idea of LSF.
Several mathematical properties of the proposed operational laws have been studied in
detail. Next, we formulated some AOs, including the FFLWA operator, the FFLWG operator,
the FFLOWA operator, the FFLOWG operator, the FFLHA operator, and the FFLHG
operator to aggregate different FFLNs. Furthermore, the work has proved many important
properties of the proposed AOs, such as idempotency, monotonicity, commutativity, and
boundedness, to establish their applicability in different areas. Utilizing the proposed AOs,
the paper has developed a new decision-making approach to solve MAGDM problems
with Fermatean fuzzy linguistic information. Finally, a real-life supplier selection problem
has been considered to illustrate the steps of the proposed method.

In the future, we will employ the proposed AOs to solve some other decision-making
problems such as medical diagnosis, pattern recognition, and image processing. Further,
we will also develop some new aggregation operators such as Bonferroni mean operator,
Heronian mean operator, and Hamy mean operator to aggregate the correlative Fermatean
fuzzy linguistic information in future work.
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Abstract: Correctly allocating times to the main activities of a manager is a crucial task that directly
affects the possibility of success for any company. Decision support based on state-of-the-art methods
can lead to better performance in this activity. However, allocating times to managerial activities is not
straightforward; the decision support should provide a flexible recommendation so the manager can
make a final decision while ensuring robustness. This paper describes and assesses a novel approach
where a search for the best distribution of the manager’s time is performed by an intelligent decision
support system. The approach consists of eliciting manager preferences to define the value of the
manager’s main activities and, by using a portfolio-like optimization based on differential evolution,
obtaining the best time allocation. Aiming at applicability in practical scenarios, the approach can
deal with many activities, group decisions, cope with imprecision, vagueness, ill-determination, and
other types of uncertainty. We present evidence of the approach’s applicability exploiting a real case
study with the participation of several managers. The approach is assessed through the satisfaction
level of each manager.

Keywords: time allocation; decision support system; computational intelligence; uncertainty management

MSC: 68T20

1. Introduction

Time management is an issue that occupies the attention of individuals and society
in general. So much importance is attached to time management that several countries
have national surveys to measure it [1]. In Mexico, the National Survey on the use of time
provides statistical information on the measurement of paid and unpaid work to make
visible the importance of domestic work.

Managers’ expert knowledge is often the main way how time is allocated to activities.
These decision makers usually dominate most of the relevant information that, implicitly
and holistically, allows them to make the required set of judgments. Furthermore, expert
knowledge from other managers belonging to similar contexts could imply even better
decisions. However, managers often dedicate most of their time to the most urgent issues,
that is, day-to-day operations. This situation has the consequence that issues with the
greatest impact on strategy and the increase in business competitiveness, as time allocation,
are being relegated.

A poor time allocation by the manager of an organization can affect the person,
the organization, and society in general. That is why various proposals recognize the
importance of this managerial ability, but it is still an unsolved problem for many managers.
Stephen Covey proposed a time management matrix in 1996, in which he placed important
and urgent activities in the first quadrant, important but not urgent tasks in quadrant
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2, and, in the last quadrant, activities that are neither important nor urgent, but that by
habit the individual performs them and unconsciously steals a large amount of time [2].
“The development of time management is often divided into four generations. In the
first generation, what needs to be done (answer the question of what to do) is mainly
solved. The second generation adds the question of when it is necessary to do it. The third
generation extends the previous two by adding the question of how to perform the task.
Finally, the fourth generation focuses mainly on man, self-knowledge and management”.
The complexity of current times requires the use of information technology in this area of
knowledge [3].

Computational intelligence, defined as the technology that allows to exploit computa-
tional power to solve “hard” problems, has seen a significant increment in the number of
applications within many different fields during the last decades. Undoubtedly, computa-
tional intelligence has become a current of thought that has characteristics to help support
in the problem of deciding how managers should allocate their time.

Improvements through computational tools help with the reduction of processing
times and with optimization [4]. Tools provided by computational intelligence are useful
in problems with vital impacts, such as ranging transport models of medical emergency
services, prediction of meteorological data to minimize its economic impact, and problems
where the result is the recommendations of tourist attractions, for example [4–6].

In most cases, the manager is not able/willing to determine precise proportions of
his/her time to perform routine activities. However, the manager may wish to define
minimum and maximum acceptable proportions of time. It is also possible that, originating
in vagueness or imprecision within the manager’s mind, this minimum acceptable value is
not well defined and/or the manager does not feel comfortable in expressing it as a precise
value. Therefore, a decision support system that exploits computational intelligence to
recommend plausible proportions of time to allocate to the diverse manager’s activities
must be prepared to deal with such situations of uncertainty.

There are several ways to introduce uncertainty into modeling. Fuzzy numbers are
a plausible way to model the situation where a number x is not precisely known, but the
range where it lies and its distribution are known. This type of numbers is used in many
areas, from robotics to finance. In [7] they evaluated the risk associated with investments
and in [8] to rank alternatives. There is another way to introduce uncertainty that is
potentially simpler than fuzzy numbers, interval numbers. Interval numbers characterize
the range where an unknown quantity may be by using uniform distributions. Interval
theory allows to determine if a given interval number is greater than or equal to another
interval number in a straightforward and intuitive manner [9]. In [10], interval numbers
were used to assess risks based on the probability of fails. In [11], a drought risk model is
built and evaluated through interval numbers. Solares et al. [12] exploited the ordering
properties of interval numbers to characterize and compare investment portfolios. Similarly,
Fernandez et al. [13–15] not only characterized investment portfolios through interval
numbers, but also the preferences of the investors. Interval numbers are remarkably related
to fuzzy numbers [16–18].

Another important issue addressed in this paper is the modelling of preferences.
Modelling of preferences has been used in different ways, such as in [19], where a fuzzy
technique is applied for order preference and ranking of the alternatives concerning the
reverse logistic problem; or by [20] where preference modelling is used to generate individ-
ualized interactive narratives based on the preferences of users to improve user satisfaction
and experience. One way to model preferences is by using value functions. These types of
functions are the result of a very well-studied and well-known theory (see e.g., [21–23]).
Recently, value functions have been used to assess project portfolios [24], providers [25],
and market segmentations [26], for example. There have been important efforts in creating
effective methods to elicit the parameter values of value functions [27–30].

On the other hand, a very effective tool for optimization problems whose decision
variables are continuous is differential evolution (DE). This is a tool commonly used for
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solving engineering problems and it has become very popular among computer scientists
and practitioners [31]. Recently, this technique has been introduced in other areas such as
finance, marketing, and customer segmentation, as in [15,32].

Regarding the case study of this work, namely the time allocation for managers’
activities, some researchers have intended to analyze the impact and importance of this
issue, such as in [33], where it is shown how time allocation for sales managers affects
the sales team performance. Their findings underscore the importance of effective time
management for sales managers across a core set of leader behaviors. Moreover, they
argue that when managing more (less) experienced teams, managers should focus on
spending more time on managing people (customer interaction). In [34], the influence
of entrepreneurs’ individual entrepreneurial orientation (IEO) on their time allocation
behavior is studied. The findings indicate that proactiveness and risk-taking are associated
with specific time allocation behaviors. In [35], it is identified that a core micro-foundation
of dynamic managerial capabilities is the ability of the manager to allocate their own
time; and it is illustrated that failure to allocate time to capability enactment can lead to
capability vulnerability. In [36], it is said that time management practice can facilitate
productivity and success, contributing to work effectiveness, maintaining balance, and job
satisfaction. Furthermore, the decision support provided to managers must offer flexible
recommendations such that the manager can make a final decision according to his/her
specific context, but without affecting the approach’s effectiveness. In this work, we intend
to achieve all these goals.

To the best of our knowledge, there are not published methods that explicitly allocate
times to managerial activities. This is likely due to the difficulty for managers to follow
strict schedules in ever-changing environments. The problem is, of course, that neglecting
the support of recent advances in technology and modeling is discouraged. Traditional
approaches to this type of problem consist of mathematical models exploited by exhaus-
tive optimization methods that lead to precise output values where strict schedules are
recommended. The manager is not given the option to make a final decision where his/her
expert knowledge and that of other managers is used. The recommendation also does not
have the flexibility to adapt to unexpected situations. This implies a lack of robustness
of traditional approaches. Therefore, in this work, we aim not only to propose a time
allocation that best suits the manager (from the perspective of a given objective function),
but also to provide sufficient flexibility for the manager to adapt to real-world situations
such as considering group decisions and uncertainties. We present a novel way to hybridize
some state-of-the-art methods from some theories of the literature (see Section 2).

The paper is structured as follows. In Section 2, we describe the materials and methods
used in this work. Section 3 presents the methodology of the proposed approach and details
the design of experiments. Section 4 presents and discusses the obtained results. Finally,
Section 5 concludes this paper.

2. Materials and Methods

We propose using value functions to model the preferences of the managers (i.e., what
the value of each activity is), interval numbers to encompass the uncertainty related to
such preferences and to the ideal solution (i.e., on what range the ideal time allocation is),
and differential evolution to determine such an ideal solution.

2.1. Value Functions

Value functions [37] can be used to represent the preferences of the managers over
a set of decision alternatives regarding time allocation. Value functions are a simple yet
effective and very useful way of modeling preferences. This paradigm is particularly
relevant here because of the difficulty of defining a mathematical function whose inputs
are the times allocated to the activities. It is not straightforward to define tangible impacts
on the organizations’ objectives for such function. Therefore, the expert opinion of the
managers regarding what they consider most convenient is valuable. Value functions are
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therefore used to represent such opinions by defining “how desirable it is to spend time on
a given activity” from the perspective of experts.

The main goal of this type of function is to build a way of relating a real number with
each alternative, such that an order on the alternatives can be produced that is consistent
with the decision maker’s preferences. To achieve it, the theory of value functions assumes
the existence of a real-valued function representing the preferences of the decision maker.
This function is used to transform the attributes of each alternative into a real number.

2.2. Interval Numbers

An interval number (see [38,39]) represents a numerical quantity whose exact value is
not well defined, that is, it is not exactly known. However, it is known that the quantity
is within a range of numbers. Let r be a real value lying between r– and r+. The interval
number representing r is therefore R = [r−, r+]. A real number s can be represented by an
interval number as [s, s]. For clarity purposes, we use bold italic font to denote an interval
number.

Notice how the nature of the uncertainty modeled by interval numbers is different
from that modeled by fuzzy logic. In the former, knowing that the quantity is within a
range of numbers is the only known information; in the latter, usually more information
about the quantity and range are stated. Therefore, fuzzy logic could handle the proposed
approach information in a more sophisticated way than interval theory. However, such
sophistication comes at a price, complexity. For example, it is straightforward to determine
if an interval number is greater than or equal to another (see function Poss below), which
usually is not the case for fuzzy numbers. Here we focus on the scenario where the interval
numbers are sufficient to model the problem and defer the modeling of such information
through fuzzy logic to future research work where the authors are already working.

Basic arithmetic operations that can be performed using interval numbers are addition,
subtraction, and multiplication. Let A = [a−, a+], B = [b−, b+] be two interval numbers. The
arithmetic operations between these numbers are defined by:

A + B = [a− + b-, a+ + b+],

A − B = [a− − b+, a+ − b−],

A × B = [min{a−b−, a−b+, a+b−, a+b+}, max{a−b−, a−b+, a+b−, a+b+}].

Evidently, it is not possible to precisely define the order of two interval numbers when
there is overlap between them. Thus, a possibility function was defined in [9] to determine
the “credibility that one of the interval numbers is at least as great as the another”. The
possibility function is defined as:

Poss(A ≥ B) =





1 if pAB > 1,
pAB if 0 ≤ pAB ≤ 1,
0 if pAB < 0

where pAB = a+−b−
(a+−a−)+(b+−b−) .

When a+ = a− = a and b+ = b− = b, P(A ≥ B) =

{
1 if a ≥ b,

0 otherwise.
.

In [13,14], the value Poss(A ≥ B) is interpreted as “the credibility of a being greater
than or equal to b, where a and b are two realizations from A and B”, where a realization is a
given real number within the interval number.

2.3. Differential Evolution

Differential evolution [40] is an optimization tool highly effective and efficient when
addressing optimization problems whose decision variables are continuous. It is character-
ized by approximating the optimal solution by improving multiple possible solutions at
the same time. Differential evolution (DE) is especially convenient when the optimization
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problem does not satisfy the requirements of exhaustive mathematical optimization meth-
ods. However, it does not ensure to find the overall best solution, but only suboptimal
solutions. The found solutions are generally good enough to be accepted by the user.

DE uses a generational improvement that simulates biological evolution. At any
given moment it deals with a set of potential solutions called individuals or agents; the
set of individuals is called population. The parameters used by DE consist of a crossover
probability, CR ∈ [0, 1], a differential weight, F ∈ [0, 2], and a number of individuals in the
population, Psize ≥ 4. Each individual in the population is represented by a real-valued
vector z = [z1, z2, . . . , zm]T, where zi is the value assigned to the ith decision variable and m
is the number of decision variables.

Let y ∈ Rm be a temporary solution. DE must perform the following steps:

1. Initialize individuals placing them in a random position within the search space. This
means that a random value must be assigned to each decision variable respecting the
constraints associated with the variable.

2. Perform the following steps until a termination criterion is reached. This criterion is
defined here as a number of iterations, Niterations.

a. Perform the following steps for each individual z in the population

i. Let a, b, c be individuals from the population chosen randomly such
that z, a, b, c are all different.

ii. Randomly define r ∈ {1, . . . , m}
iii. Perform the following steps for each i ∈ {1, . . . , m}

1. Randomly define u ∈ [0, 1].
2. If u < CR or i = r, set yi = ai + F(bi − ci), otherwise set yi = zi.

iv. If f (z) ≤ f (y), then replace z for y in the population. f (·) is a given fitness
function (see Equation (1) below).

3. Select the individual z of the population with the best performance f (z).

3. Methodology

Assume the existence of a set of activities, A = {a1, a2, . . . , an}, relevant for the manager
of a given company. Let xi denote the proportion of time allocated to ai ∈ A; ∑

n
i=1 xi = 1

and xi = ti/T, where ti is the time assigned to ai and T is the total time that the manager
assigns to the activities in A. An approach based on computational intelligence that is
focused on determining the precise value of xi is unrealistic since day-to-day operations
and urgent issues may alter scheduled activities; moreover, the manager may not feel
comfortable with the advised values of xi. However, such unprevented operations and
issues usually imply significant deviations from the ideal allocation of the manager’s time.
Therefore, we describe here a hybrid approach based on computational intelligence and
multicriteria decision aid that exploits interval theory to propose a flexible allocation of the
manager’s time.

The idea is to provide the manager with the flexibility to choose, among a set of
plausible values of xi, the most convenient one according to his/her specific context
and preferences. Let xi = [x−i , x+i ] denote an interval number representing the set of
plausible values from which the manager can choose what he/she considers the most
convenient one. In order to define a plausible set of values of xi, we perform an elicitation
of preferences based on multicriteria decision aid that ensures the maximization of the
manager’s preferences.

The proposed approach consists of four main stages:

1. Determine the set of activities in A.
2. Assign a relative value vi to each ai ∈ A; this value represents “how desirable it is to

spend time on activity ai”.
3. Determine the set of constraints imposed to the time allocation.
4. Optimize the total value of the performed activities by defining xi, i = 1, . . . , n.
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3.1. Determining the Set of Activities in A

On a preliminary survey of both expert opinions and literature, we found out that activ-
ities commonly performed by managers can be assigned to, at least, the following classes:

• Supplier Management
• Marketing and Sales Management
• Strategic Planning
• General administration (Internal processes)
• Inventory Management
• Financial Capital Management (Cash Flow)
• Strategy Management
• Quality and Service Management
• Human Capital Management

Evidently, the specific context of the manager would determine if a different set of
activities is considered during the decision-making process. Therefore, a particular analysis
of the context handled should be carried out.

3.2. Assigning a Relative Value vi to Each ai ∈ A

During this stage, a value representing “how desirable it is to spend time on activity
ai” is defined relatively to the values assigned to the rest of activities in A. Different
techniques can be followed to determine such values (cf. [41,42]). The chosen technique
must define cardinal values as opposed to ordinal ones that some elicitation procedures
define (e.g., [43]). A plausible way to assign such values is then through an elicitation
procedure, such as the Swing method [27,28], where the preferences of the manager (or
a group of managers from the same sector, region or expertise) are properly defined. If a
group of managers is consulted to define the value of the ith activity, then multiple values
will be surely determined. To deal with this imprecision, the value of the activity can
be defined as an interval number vi = [v−i , v+i ] where v−i and v+i are the minimum and
maximum values assigned to the ith activity by the group of managers.

3.3. Determining the Set of Constraints Imposed to the Time Allocation

Common constraints considered when scheduling the time of managers are:

• avoid spending too little time on some activities
• avoid spending too much time on some activities
• avoid spending too much time on all the considered activities
• avoid spending too little time on all the considered activities
• address a maximum number of activities
• address at least a certain number of activities

The previous constraints can be formalized, respectively, as follows:

xi ≥ liyi

xi ≤ uiyi

∑
n

i=1 xi ≤ U

∑
n

i=1 xi ≥ L

∑
n

i=1 yi ≤ N+

∑
n

i=1 yi ≥ N−

yi = {0, 1}

where li and ui are the lowest and highest proportions of time that the manager is willing
to allocate to ith activity. L and U are the lowest and highest proportions of time that the
manager is willing to allocate to all the considered activities. N− and N+ are the minimum
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and maximum number of activities to which the manager allocates some of his/her time.
Additionally, yi = 1 if the manager allocates some time to the ith activity and yi = 0 otherwise.
Note how li, ui, L, and U are all defined as interval numbers, providing the manager with
additional flexibility when defining the optimization model.

3.4. Defining an Objective Function

Let X = (x1, x2, . . . , xn) and V = (v1, v2, . . . , vn) be the sequences of time proportions
and activity values, respectively; and let f (X, V) be a function that determines the total
value of the time allocation made by the manager. Then, solving the following general
statement implies finding the best time allocation:

maximize
x1, x2, ..., xn

f (X, V) (1)

Subject to
xi ≥ liyi

∑
n

i=1 xi ≤ U

∑
n

i=1 xi ≥ L

∑
n

i=1 yi ≤ N+

∑
n

i=1 yi ≥ N−

yi = {0, 1}

We propose to define f (X, V) as a weighted sum, that is:

f (X, V) =
n

∑
i=1

vixi

We also propose to use differential evolution to address Equation (1).

3.5. Optimizing the Total Value of the Performed Activities

Multiple alternative techniques can be used to optimize Equation (1). However,
given the interval-based feature of such equation (necessary in the approach to provide
the required flexibility) and its definition as an NP-problem (cf. [44]), a metaheuristic
optimization technique should be used. Metaheuristics are optimization techniques of
the area of computational intelligence that have shown to be reliable when addressing
hard problems and that can be flexible to adapt to situations as the stated above. It has
been proved that differential evolution (DE) (e.g., [45]), a highly efficient metaheuristic,
often outperforms other optimization techniques when addressing problems similar to that
stated in previous sections; particularly, when the optimization problem is mono-objective
and with real-valued decision variables. Therefore, we use here differential evolution to
define the most convenient values associated to the manager’s activities.

3.6. Experimental Design

To assess the proposed approach, we have applied the methodology to a set of nine
micro, small and medium-sized organizations in the commerce sector. Each of the five
steps in the methodology described above was applied to the organizations, creating a
single case study.

The application of the proposal to this case study is twofold. On the one hand, it
will allow us to show how the proposed approach can work with a group of decision
makers, and how each of them can take advantage of the other decision makers’ expert
knowledge. On the other hand, the assessment will shed light on the performance of
the proposed approach, and we will be able to determine how the proposed approach’s
recommendations satisfied each manager’s preferences. The performance of the proposed
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approach, assessed through the satisfaction level of each manager, is compared to the
performance of a benchmark.

4. Results and Discussions

This section provides (i) the general recommendations provided to the managers in
the case study, and (ii) a comparison of each manager’s satisfaction between the recom-
mendations provided by the proposed approach and an approach from the literature.

4.1. Results Obtained by the Proposed Approach

The results of the first stage of the methodology described in the previous section
showed that the managers in the case study determined the following activities as the ones
that should be prioritized when allocating resources:

1. Supplier Management
2. Marketing and Sales Management
3. Strategic Planning
4. General Administration (internal processes)
5. Inventory Management
6. Financial Capital Management (cash flow)
7. Strategy Management
8. Quality and Service Management
9. Human Resource Management

A wide description of these activities is presented in Appendix A.
Regarding stage two of the methodology, we used the so-called Swing method to

elicit from the managers the values in the additive value function denoted by Equation (1)
(See [27,46], to see a more in-depth description of the method). The results obtained are
shown in Table 1.

Table 1. Values assigned by the managers to the activities regarding “how desirable it is to spend time on activity ai”.

Activity Manager
1

Manager
2

Manager
3

Manager
4

Manager
5

Manager
6

Manager
7

Manager
8

Manager
9

Supplier Management 7% 22% 0% 9% 0% 5% 13% 11% 13%
Marketing and Sales Management 23% 2% 10% 14% 21% 5% 12% 19% 19%

Strategic Planning 10% 18% 32% 1% 19% 53% 14% 11% 9%
General administration

(internal processes) 3% 16% 6% 29% 0% 5% 13% 21% 11%

Inventory Management 7% 9% 3% 3% 0% 5% 13% 17% 10%
Financial Capital Management

(cash flow) 14% 7% 26% 3% 0% 11% 14% 14% 11%

Strategy Management 16% 2% 10% 3% 20% 11% 13% 0% 9%
Quality and Service Management 10% 11% 10% 19% 20% 3% 7% 0% 9%

Human Resource Management 10% 13% 3% 19% 20% 3% 0% 7% 11%

After defining the weights that each manager assigned to the activities regarding
“how desirable it is to spend time on activity ai”, we intend to embrace the whole set of
preferences by defining a unique interval number for each activity whose boundaries are
set by the minimum and maximum weights provided by the managers, as shown in Table 2.
The goal of this aggregation of the managers’ preferences is to deal with the whole set of
organizations (with similar characteristics in very similar contexts) as a single case study;
thus, implying that the combined experience of the managers is convenient to dictate how
the organizations’ managers should allocate their times.
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Table 2. Values assigned by the managers to the activities.

Activity Minimum Value (%) Maximum Value (%)

Supplier Management 5 22
Marketing and Sales Management 2 23

Strategic Planning 1 53
General administration

(internal processes)
3 29

Inventory Management 3 17
Financial Capital Management

(cash flow)
3 26

Strategy Management 2 20
Quality and Service Management 3 20

Human Resource Management 3 20

Stage three of the methodology in Section 3 requires determining the constraints that
the managers want to impose to the problem in Equation (1). For the case study carried
out here, we found that the managers are only interested in defining boundaries to the
proportion of times allocated to the activities. This is originated in the idea none of the nine
fundamental activities mentioned above should be performed during very short or very
long periods of time. The constraints established by the managers are shown in Table 3.

Table 3. Lowest and highest proportions of time allowed per activity.

Activity Lowest Proportion (%) Highest Proportion (%)

Supplier Management 2 25
Marketing and Sales Management 4 8

Strategic Planning 8 17
General administration

(internal processes)
4 21

Inventory Management 2 8
Financial Capital Management

(cash flow)
4 12

Strategy Management 4 8
Quality and Service Management 8 25

Human Resource Management 12 25

Finally, an effective optimization tool based on metaheuristics, differential evolution,
was used to determine the best allocation of times. Common parameter values were
assigned to this optimizer. The crossover probability, CR, was set to 0.9; the differential
weight, F, was set to 0.8; the population size, Psize, was set to 200; and the number of
iterations, Niterations, was set to 100. Table 4 shows the results obtained when exploiting the
proposed approach regarding the case study.

Table 4. Recommendations of the system. If the manager spends a proportion of time indicated by
the corresponding interval on a given activity, the manager would be maximizing the total value of
the time allocation.

Activity Best Time Recommended (%)

Supplier Management [12, 21]
Marketing and Sales Management [4, 6]

Strategic Planning [10, 13]
General administration (internal processes) [15, 18]

Inventory Management [6, 7]
Financial Capital Management (cash flow) [4, 9]

Strategy Management [6, 7]
Quality and Service Management [19, 25]

Human Resource Management [15, 17]
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As can be seen from Table 4, the summatory of lowest values is lower than 100%, that
is, ∑vi

− < 100. Similarly, the summatory of highest values is greater than 100%, that is,
∑vi

+ > 100. This is a desirable feature of the proposed approach regarding pragmatism.
When exploiting a decision support system, it is convenient for the manager to have a
sufficiently flexible recommendation to generate the final decision. Furthermore, such final
decision still must ensure robustness. Through recommendations provided in the form
of ranges, where 100% of the time dedicated by the manager to the activities is within the
recommended boundaries, the proposed approach satisfies both requirements allowing
the manager to decide the precise times dedicated to the activities.

4.2. Comparison with a Benchmark Approach

Once the proposed approach outputted general recommendations for the group of
managers (Table 4), the recommendations and the individual preferences stated in Table 1
are used to create a “satisfaction level” per manager by exploiting Equation (1). Such satis-
faction level is compared to that obtained by an optimizer from the literature addressing a
simplified version of the problem. (Note that there are not published methods that can ad-
dress the whole complexity of the problem stated in Section 4 in a straightforward manner,
so we built a simplified version of the problem so it could be addressed by methods from
the literature whose results could be used as a benchmark.) The simplified version of the
problem is defined as follows.

Since, it can be shown that, for any interval numbers E and D, if e and d are, respec-
tively, the middle points of E and D, then E > D⇔ e > d and D = E⇔ d = e (dictatorship
of the middle point), we redefine the problem in the case study so now the values “as-
signed” by the managers to the activities correspond to the middle points of those actually
provided by the managers and shown in Table 2. Such values must be normalized. The
new values are shown in Table 5.

Table 5. Simplification of the values assigned by the managers to the activities. The middle points of
the original intervals have been normalized.

Activity Value (%)

Supplier Management 11
Marketing and Sales Management 10

Strategic Planning 21
General administration (internal processes) 13

Inventory Management 8
Financial Capital Management (cash flow) 11

Strategy Management 8
Quality and Service Management 9

Human Resource Management 9

The original set of activities and constraints are maintained to ensure fairness. The
objective function and the decision variables are now precise; that is, they are real-valued.

Applying the Simplex method to this simplified version of the problem provides the
recommendations shown in Table 6.

We now compare the satisfaction level of each manager produced by the recommen-
dations in Tables 4 and 6. This comparison will shed light on the performance of the
proposed approach to encompass and exploit the expert knowledge of a group of decision
makers from the perspective of each manager. With this purpose, the value function in
Equation (1) is used to aggregate the value assigned by each manager in Table 1 with the
recommendations of Table 4 first (to create the satisfaction level produced by the proposed
approach), and with the recommendations of Table 6 later (to create the satisfaction level
produced by the benchmark approach). Such satisfaction levels are shown in Table 7 (note
that, since the recommendations provided by the proposed approach consist of interval
numbers, the satisfaction levels are given also as interval numbers).
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Table 6. Best solution found by a benchmark approach to a simplified version of the problem.

Activity Best Time Recommended (%)

Supplier Management 25
Marketing and Sales Management 4

Strategic Planning 17
General administration (internal processes) 21

Inventory Management 2
Financial Capital Management (cash flow) 7

Strategy Management 4
Quality and Service Management 8

Human Resource Management 12

Table 7. Satisfaction level of each manager regarding the recommendations provided by the bench-
mark and proposed approaches.

Manager Benchmark Proposal

1 8.76 [8.55, 11.76]
2 15.19 [11.9, 16.32]
3 10.54 [8.67, 12.1]
4 12.26 [13.03, 16.75]
5 8.87 [10.74, 13.53]
6 13.42 [9.27, 12.51]
7 11.16 [8.84, 12.44]
8 11.95 [8.96, 12.3]
9 11.22 [9.81, 13.46]

From Table 7, we can see that each satisfaction level provided by the benchmark
approach is contained within the corresponding satisfaction level provided by the proposed
approach (except for Managers 4 and 6). This means that the recommendations of the
proposed approach combined with good final decisions by the manager could imply
better satisfaction levels for him/her. Of course, this combination could also imply worse
satisfaction levels. So, here is where the synergy between the expert knowledge of each
manager and the advances in computational intelligence and decision support systems
can take place. The proposed approach exploits the experience of the group through
computational intelligence and gives the opportunity for each manager to provide a final
decision where his/her particular knowledge and preferences could lead to better results.

Finally, note how the simplified version of the problem is unrealistic. The managers
would never be satisfied following recommendations of strict schedules; so, an approach
that depends on the managers following such schedules would lack pragmatism.

Since the paper’s goal is to present a novel approach to deal with the realistic problem
through the exploitation of a computational intelligence-based system for the first time,
it is out of the scope of this work to perform in situ experiments to capture indicators of
the organizations.

5. Conclusions

This work presents a novel idea to allocate the times of managers to their main
activities. The idea exploits the so-called computational intelligence within a decision
support system that provides recommendations about how managers should allocate
their times.

Even when computational intelligence has been widely exploited in a plethora of
fields, to the best of our knowledge, it has never been applied to the problem of supporting
organization managers to allocate their times. We believe this is due to the “hardness”
often imposed to models that would represent this problem. That is, models based on
computational intelligence usually provide strict recommendations that would not allow
the manager to deviate from such recommendations with robustness of effectivity. This is
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not ideal since managers usually make decisions on the progress of the activities. Therefore,
here, a novel hybrid approach that integrates value function theory, interval theory and
evolutionary algorithms, intends to give the manager flexibility regarding the times that
he/she should dedicate to his/her activities. Furthermore, we ensure that the effectiveness
of the approach is maintained as long as the actual allocated times remain within the
recommended slack.

The proposed approach was applied in a case study to the managers of nine micro,
small and medium-size organizations that participated during the whole process of the
methodology described in Section 3. Tables 1–3 show the information provided by the man-
agers that worked as inputs to our approach. Table 4 provides the results obtained. Such
results proved to fulfill the constraints imposed by the managers and to maximize the total
value of time allocated to the activities from the perspective of group decision. Tables 5–7
show a comparison between the results of our approach and those of a method from the
literature. Since the benchmark method is not able to deal with the whole complexity of
the case study’s problem, a simplified version of the problem was created. The results of
both approaches are assessed from the perspective of each manager within the group. The
comparison shed light on how the proposed approach could provide a higher satisfaction
level to the managers if they make a convenient final decision. Therefore, we conclude that
the proposed approach could be of pragmatical relevance to support the decisions of the
managers; at least of those in charge of micro-, small- and medium-sized organizations.

Future research lines include (i) provide more in-depth analysis of the approach’s
impact by assessing the organizations’ performances before and after implanting the
approach; (ii) use more sophisticated techniques to model the manager’s preferences, for
example, exploiting the so-called outranking approach (see [47]) and Fuzzy Logic [48]; (iii)
follow a statistical procedure to define the parameter values of the approach.
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Appendix A. Complete Descriptions of the Activities Selected by the Managers

Appendix A.1. Supplier Management

The certainty that a trading company has that its products will be sold are based on
the conditions negotiated with its suppliers, which include:

- The Purchase Price: Obtaining the best purchase price in the market guarantees
the trading company that its sales price will not only be competitive, but also will get the
widest Margin on sales, giving them a competitive advantage. If eventually there is a need
for a price reduction, this can be done more easily than its competition.

- The Selling Margin: By obtaining the best purchase price, the best selling margin
is obtained.

- Credit: Obtaining the longest credit term provides room for maneuver if the trading
company grants the necessary credentials required by the market.

- Quality: The trading company must review and confirm that the supplier has imple-
mented qualities systems that guarantees that it complies with the technical specifications
of the product offered, guarantee supply, and meets delivery times by reviewing its sources
of supply or at least an investigation that shows that the raw materials used are available
in time and form in the market.
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- Supply: This means that the supplier must have the capacity to supply the quantities
required by the trading company promptly to avoid the damage caused by losing the sale
due to shortages in the customer’s inventory.

- Warranty and Service: The supplier must offer immediate response to customer
claims for defects in the product, the replacement of the same, and bear all costs of handling
and freight in the process of return and replacement of products.

- Marketing: Nowadays, all suppliers, manufacturers, and distributors have in their
budget a sufficient amount to support their customers with financial resources, and in-kind
for marketing actions, since these represent the indispensable distribution channel to move
their products making them reach the final consumer.

The money support can go from the rent of spaces, for exhibition, or preferential
positions, payment of advertising, exclusivity, etc., in-kind can be with promoters person-
nel to restock the sales floor with merchandise, demonstration-saleswomen to move the
merchandise, POP material, exhibitors, promotional campaigns, and others.

- Strategic Alliances: This is the highest level that can be reached in the relationship
with suppliers, it is reached when the purchase volumes of the commercial company
represent an important percentage of the supplier’s sales in such a way that if the supplier
were to lose the client, this would cause disruptions in its operation that would eventually
translate into losses.

The benefits of an alliance for the commercial company includes: preferential prices,
guaranteed supply, free replacement of merchandise, promotional and advertising support,
cashing-kind payments, prizes and incentives, exclusivity in product lines, and market
territories, etc. They are frequently formalized with the signing of the corresponding
contracts, which are renewable from time to time.

Appendix A.2. Marketing and Sales Management

- Sales Management: The sales generate the income of the commercial enterprise, the
security to a great extent that these are given, has its origin in the quality of the negotiation
with suppliers, but the other part is complemented with a deep knowledge of the product,
the market, and the competition. Among the most important points that the general
manager must attend to are the following:

- In-Depth Knowledge of the Wants and Needs of His Customers: There are mul-
tiple software tools known as CRM (Customer Relationship Management) that provide
all the information regarding the tastes, needs, frequency, and buying habits of the cus-
tomers in addition to providing complementary valuable and personal information about
them such as, names, birth dates, anniversaries, number, and ages of children, etc., which
facilitates the company to have personal and close communication with its customers.

- Sales Force: To create, develop, and maintain the quantity and quality of elements
necessary for the generation of sales is a fundamental task of the general manager, whether
it is a linear or pyramidal structure, on-site or virtual, must maintain permanent attention to
the performance of each and every one of its members, always taking care, not only to cover
the established objectives but also to meet the needs expressed by its members, through
adequate dynamic retribution of performance that includes the granting of incentives to
maintain high motivation and satisfaction for their work.

The permanent training in the sales technique, the method and work plan whose
objective is the increasing attention of prospects and the coverage of the sales quota must
be permanently attended by the General Manager.

- Marketing: The general manager must know and define the customer and consumer
profile, what it is like, where is located, where it moves, what places frequents, what is it
socioeconomic level, this leads to identifying the target market and to quantify potential
market with which will be able to implement.

- The Communication Plan: The target market must know the existence of the com-
mercial company, its products, offer, and service it provides. The quantity, quality, fre-
quency, and intensity of the messages received by the target market will largely determine

169



Axioms 2021, 10, 104

the level of response to the offer provided by the commercial company, which is trans-
lated into: traffic of potential customers (prospects) to the company’s sales floor, phone
calls, emails, and other digital media, requesting information and quotations, increasing
acceptance of visits from the company’s salesperson, increase in orders and consequently
higher sales.

The implementation of a CRM in the company is of great help for the success of the
communication plan.

- Media Plan: The selection of the media to be used for communication is very im-
portant, so the general manager must apply himself to investigate which are the ones that
have a greater impact on the target market depending on the objective of the communica-
tion, which may be to provoke immediate sales, increase traffic on the sales floor, fix the
commercial brand in the customer’s mind, create loyalty, etc.

Traditional media; press, radio, television, billboards, specialized magazines, flyers,
direct mail, tabloids.

Digital Media; websites, social networks, web search engines, influencers, sales chats,
and others.

- Competitor Analysis: Daily monitoring of the competition will allow the general
manager to know promptly the commercial and promotional actions which will allow him
to react adequately to avoid the loss of customers and eventually anticipate better actions,
counteracting its main competitors.

- The Selling Price: The determination of the selling price is fundamental for the
commercial company as it fixes its competitive position in the market since it can be a low
price, equal to or higher than the competition, it impacts directly on the volume of sales
and the most important part, it contributes to the gross profit margin that must be sufficient
to cover its operating expenses and provide the profit desired by the company.

Appendix A.3. Strategic Planning

The company define well its goals, its aspirations, and how far it wants to go in
the medium–long term. It is up to the general manager to visualize the scope, coverage,
growth, the position it wishes to have in the market, and the time frame in which it wishes
to achieve it.

Setting the direction, determining the objectives, formulating the strategies, allocat-
ing the resources, executing the action plan, and inspiring the team is the role of the
general manager.

Appendix A.4. General Management

In the broadest sense, the general manager applies the administrative process of
planning, organization, direction, and control in all areas of the company implicit in the
value chain in what Michael Porter defines as primary activities and costs, as well as
the support activities and their costs. The common thread is represented by its internal
processes, which must be formulated in a clear, complete, and updated manner at all times.

- The Value Chain: Every commercial enterprise shares the same value chain, starting
in the suppliers’ market for the purchase and supply of the goods to be sold, the trans-
portation of the products to the company’s warehouses and the inherent logistics, the
safekeeping, rotation, and, if necessary, the movement to the sales floor for display, sale,
invoicing and collection, packaging, physical delivery to the sales floor or home delivery
and the corresponding logistics, to conclude with warranty support and after-sales service.

In the whole chain, there are several activities that the general manager must be
personally involved in, some of them being executed in their totality and permanently, that
is to say, they cannot be delegated, for example, the negotiation with the suppliers, while
some roles can be delegated, he cannot stop being personally involved.

In each of the processes derived from these activities, the general manager must be
involved by executing, delegating, or supervising their correct and timely application.
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Appendix A.5. Inventory Management

The commercial enterprise must deliver to the customer a quality product, the product
must be at the beginning of its life period, whether it is of short duration such as perishables
or long life such as furniture, machinery, and capital goods.

Some long-life products, however, only have a short period of time to be sold, as in
the case of fashion items or those that are replaced by the next year’s model, as in the case
of automobiles.

Long stays in warehouses or on the sales floor makes them obsolete and discontinued,
in addition to the natural deterioration due to the passage of time.

The constant review of rotation, proper management of inventories, and their replen-
ishment to maintain adequate levels and avoid shortages that cause loss of sales is an
obligatory function of the general manager.

Appendix A.6. Financial Capital Management (Cash Flow)

The company must have at all times the availability of financial resources to meet its
operating needs, the timely payment even in advance to suppliers, the emergency purchase
of assets such as the replacement of computer equipment or the repair of transporta-
tion equipment, the payment of taxes, personnel settlements and similar require having
the liquid capital on hand to cover any requirement; therefore, the planning, collection,
application, and control of resources is a daily task of the general manager.

- Operating Expenses: These are disbursements intended to keep the company in
operation; they enable the various activities and daily operations to be carried out, without
which it would not be possible to achieve the company’s objectives.

The expense is necessary and unavoidable and the resources necessary for this pur-
pose come from the margin provided by sales, so the higher the expense, the lower the
margin, hence the importance of maintaining strict control and vigilance in the amount
and destination of the expense.

Appendix A.7. Strategy Management

The strategy is how the company decides to compete in the market, it represents the
specific actions it takes to serve the market, face the competition, and offer greater value to
the customer.

How is it going to differentiate itself from the competition, how is it going to make
the market perceive greater value when selecting its offer, how is it going to obtain a
competitive advantage?

The strategy for a company as such does not exist, it is created, it is the result of the
creativity, ingenuity, knowledge, and experience of the general manager who many times
is the same entrepreneur. Of course, many managers decide to imitate the actions of the
market leaders, but that makes them followers, places them always behind the competition,
and generally in last place.

The planning, design, and implementation of the strategy is a very personal function
of the general manager.

Appendix A.8. Quality and Service Management

Delivering quality products implies impeccable execution in every process along the
value chain. It is the general manager’s role to ensure that he and his team of collaborators
carry out the assigned activities promptly. Planning, process implementation, resource
allocation, and close supervision is the task of the general manager.

Appendix A.9. Human Capital Management

The company is its people, the customer deals with people who represent the company
and are responsible for fulfilling the company’s promise to the customer by exceeding
their expectations.
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This is only possible if the team of collaborators is kept at a high level of motivation,
committed, and willing to provide solutions.

The primary need is the perception of adequate and sufficient remuneration, but
it is not the only one, it also seeks to satisfy the needs of professional development,
belonging to a team, recognition, and security of permanence, and growth in the company,
among others.

The general manager must create working conditions that meet the expectations of all
employees, motivate them, inspire them, and focus on the vision.
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ment Index formulation in combination to aggregations operators presented above is proposed the
prioritized induced ordered weighted geometric average (PIOWGA) operator. A mathematical appli-
cation is carried out to estimate the Human Development Index and compare it with the traditional
method and other existing methods. Finally, it is noted that decision makers have an influence on
the order given in the ranking by its attitude and criterion, and method can capture the subjective
information prioritized by them.
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1. Introduction

Human Development Index (HDI) is a social-economic indicator that shows the status
of the countries in terms of progress and human development [1]. This index was proposed
by Mahub ul Haq [1], and functions as a social-economic indicator that allows us to observe
the status of countries in terms of progress and human development. However, before
this index, economist Amartya Sen X presented a more inclusive method that defines it
as development as freedom. This index takes an approach related to the inequality of
capabilities, which prioritizes people as the real wealth of a nation and their capabilities for
assessing its development [2]. Although the two proposals may seem distant, they have a
common element of aggregating information and obtaining averages that allow for ranking
of countries. As the HDI is accepted by the international community, it emphasizes that
people, their capabilities and expending human choices should be the ultimate criteria for
assessing the development of a country, not only economic progress (UNIDP, 2020)

HDI is composed of three key dimensions; human development, long and healthy
life, knowledge, and a decent standard of living, which consider several indicators and
are measured between maximum and minimum values, and it is calculated through the
geometric mean of normalized indices for each of the three key dimensions of human
development. This index is apparently reliable but still needs to be improved, as inequalities
and development are different from one nation to another. Thus, the index is susceptible to
improvement as there are components that change over time, where dominant positions
are reinforced, and new inequalities are emerging. This becomes a challenge to generate
new ways of assessing the changes, inequality and inequity faced in the new context.
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One of the problems that can be seen in the formulation of the HDI is in the way the
index considers each key dimension. The results of each country are based on a geometric
average where the relative importance of each component is the same (1/n). Due to that,
the analysis that has been conducted with the data is limited. Based on that, there is a
possibility of generating different analyses using the same information but considering a
different relative importance for each of the components, based on the realities experienced
by each of the countries or the expectations of different decision makers or experts. The
purpose is to be able to visualize how the ranking behaves using different data analysis,
allowing us, in turn, to generate new positions in the countries and thus be able to confirm
whether they have a high or low human development.

Based on the above, with the development of information science and mathematics,
new ways of making closer approximations to reality have emerged. Of these advances,
aggregation operators stand out, which allow information from different sources and
types to be aggregated to obtain a single significant value [3]. Of all the methodologies
proposed, the Ordered Weighted Average Operator (OWA) stands out [4]. This operator
has the characteristic of taking into account the attitude of the decision maker (subjective
information) [5]. Among its developments are the following operators: OWA Induced [6],
OWA Heavy [7], OWA Prioritized [8], OWA Probabilistic [9], OWA Bonferroni [10], OWA
Logarithmic [11], OWA Pythagorean [12], etc. Applications have also been developed
in entrepreneurship [13], finance [14–17], management [18–20], as well as proposals for
indices such as transparency [21,22]. In this sense, using these new methodologies can
improve the index by being able to include more variables to generate a better assessment.

The main aim is to propose a new method for estimating the Human Development
Index using ordered weighted average. For this purpose, we study the characteristics and
properties of the following aggregation operators: ordered weighted geometric average
(OWGA), and induced OWGA prioritized OWA (POWA) operator. In combination of
the studied operators and the formula for determining the Human Development Index,
a new method is proposed, called the prioritized induced ordered weighted geometric
average (PIOWGA) operator. Using this new method, a mathematical application is made
to estimate the Human Development Index and compare it with the traditional method
and other existing methods. Finally, it is noted that decision makers have an influence on
the order given in the ranking by its attitude and criterion, since they prioritize the three
elements according to different resources, different developments and more or less stable
political and economic systems throughout the subjective information prioritized by them.

This work is structured as follows: Section 2 presents in a concrete way the theoretical
concepts related to the Human Development Index. Section 3 reviews the aggregation
operators that will be useful to construct the proposed method. Section 4 presents the
mathematical application of the HDI. Finally, the conclusions are presented in Section 5.

2. Theoretical Framework

The following are the most important aspects of the Human Development Index and
the definitions of the three variables used for its calculation.

2.1. Human Development Index

For a long time, and during the last few years of the 20th century, economists and
policymakers debated and questioned the so “classical” theory of economic development,
where the Gross National Income (GNI) per capita as the only measure for national and
social development, as it fails to capture the distribution of the benefits of economic
growth [23], and key social outcomes for humans. For this matter, and since 1990, the
United Countries Development Program (UNDP) uses the Human Development Index
(HDI), developed and guided by the economist Mahub ul Haq [1], as a social-economic in-
dicator that shows the status of the countries in terms of progress and human development

The economist Amartya Sen developed a new approach to human development, with
inequalities and people’s capabilities [24] and presented the concept of development as
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freedom [2]. Sen´s work argues about the freedom and capability to make life choices
as fundamental for human development. In this sense, Sen´s approach for inequality of
capabilities, the Human Development Index (HDI) prioritizes people as the real wealth
of a nation and their capabilities for assessing its development. In other words, human
development is a “process of enlarging people´s choices” [1], and its main purpose is to
ensure an enabling environment for people to enjoy long, healthy, productive, and creative
lives, to be educated and to have easy access to resources for a decent standard of living.
Additionally, there are some valued choices as social, economic and political freedom,
protection of human rights, security, environmental sustainability, self-esteem, gender
equity, among others [25,26].

HDI is a composite index that summarized and measures the average achievements
in three key dimensions of human development; long and healthy life, knowledge, and a
decent standard of living. In the first dimension, the health dimension is determined by life
expectancy at birth. The second dimension is knowledge or education attainment and is
assessed by two criteria: expected years of schooling for children of school entering age and
average of years of adult schooling (25 years and more). The third dimension, the standard
of living or income dimension, is estimated by GNI per capita on a natural logarithmic
scale, to reflect the diminishing importance of income with increasing GNI. Thus, each
dimension has its indicator as it is shown in Figure 1. The three HDI dimension indices are
aggregated into a composite index as a geometric mean of normalized indices [27].

Figure 1. Graphical presentation of the Human Development Index (HDI).

A long and healthy life is undeniably a very valuable capacity; in this sense, a high
life expectancy of birth indicator represents a significant measure of human development,
which leads to guaranteed physical and mental health, a healthy environment and lifestyle.
Access to knowledge allows individuals´ freedom and self-sufficiency. A person without
a good education these days finds it more difficult to have security, self-determination,
opportunities and a productive life that human development demands. As income in-
creases, people have access to shelter, medical care, food, education, and a higher standard
of life. Improvement in HDI is correlated with economic growth and the incrementation of
a healthy and educated populations, leading to a virtuous cycle [28].

The Human Development Report Office (HDRO) has been using HDI to rank coun-
tries every year since 1990, as an objective metric for human development that relies on
indicators that can be compared independently from the development of the countries.
Since its creation the HDI has had important adjustments in its methods and has been
criticized by some authors because of its formula or calculation [29], its limitations as the
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absence of sustainability indicator [30,31], social and freedom dimension [28,31], and of
these dimensions are the top priority for the 2030 Agenda on Sustainable Development
Goals (SDGs) [30].

As mentioned before, HDI has evolved and has gradually been improved for more
realistic measures [32], and the main changes in calculation technicalities were made in 2010
and 2015. For example, the index aggregation formula has changed from the arithmetic
mean to the geometric mean of the three-dimension indices, and equally assigns weightings
to each dimension. Furthermore, the HDI is a simple index that captures only a part of
human development. Therefore, there are more Human Development Indices developed
by UNDP that broader proxy on some more key aspects of human development such as
inequality, gender disparity, and poverty [32]: Inequality-adjusted Human Development
Index (IHDI) [33], Gender Development Index (GDI), Gender Inequality Index (GII) [34],
and Multidimensional Poverty Index (IMPI) [35].

Human Development Index has become the internationally most prominent and
widely used composite indicator for human development [30]. Human development
creates fair opportunities, freedom and improves human welfare, allowing people to lead
the kind of life they choose and value the most. For this matter, the HDI emphasizes that
people, their capabilities and expending human choices should be the ultimate criteria for
assessing the development of a country, not only economic progress (UNIDP, 2020). HDI is
a starting point to understand how countries respond to different social, economic, and
environmental challenges. This index can be used for national policy analysis, identifying
countries with the same level of income per capita but with a large discrepancy in human
development outcomes, stimulating political and priorities changes, benchmarking and
evaluating country´s progress through time [36].

There is a notable improvement in all HDI components over time on average, which
seems to highlight the idea that the world is becoming less unequal; in other words, more
people have escaped poverty and disease, and have progressed to better living standards.
Nevertheless, inequalities and disparities remain or even have increased within countries,
hurting society, economy, and the environment, and preventing people from reaching
their full potential. For this reason, the last HDI report in 2019 emphasizes that human
development goes beyond income, averages and time. The key message in this report is that
disparity remains widespread and extreme deprivations have decreased; new inequalities
are emerging, and the old ones accumulate through life, reinforcing the demand for a
revolution in measurement to assessed and responded to this inequalities and changes,
and finally be able to act now (UNPD, 2019).

2.2. HDI Calculation

The current HDI is the geometric mean of normalized indices for each of the three key
dimensions of human development: a long and healthy life, access to knowledge and a
decent standard of living.

The normalizing parameters scale component indices (Table 1), mapping the three
statistics in the unit interval (0, 1). They also debunk any part of a statistic that is above its
prescribed range. It is not necessary to scale each component since it affects the classifica-
tion, and it is not necessary that any subscript falls in the unit interval [32].

Table 1. Variables and parameters of the most recent Human Development Index HDI.

Dimension Indicator Minimum Maximum

Health Life expectancy (years) 20 85

Education
Expected years of schooling (years) 0 18

Mean years of schooling (years) 0 15

Standard of living Gross national income per capita (2011 PPP $) 100 75,000
Source: Based on UNDP [27].
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2.2.1. Life Expectancy at Birth

Life expectancy at birth contributes to human development without any upper limit
(“having a long and healthy life”).

Progress in many factors such as lifestyle, nutrition, social equality, advancement in
the medical sciences, accident prevention, etc., should, in the not too distant future, make it
possible for most people in advanced countries live beyond the age that is now the highest
life expectancy at birth, more than 80 years, aimed at reaching a level of 100 years and
more [37].

Based on historical evidence, it is observed that no 20th century country has a life
expectancy below the age of 20 years, which is why it is used as a natural zero in this
indicator [38]. For the maximum value of life expectancy, 85 years of age are defined, which
is a realistic goal for many economies worldwide due to constant improvements in living
conditions and health [27].

2.2.2. Education: Expected Years of Schooling Mean Years of Schooling

The expected years of schooling is defined as the “number of years of schooling that
a child of school entrance age can expect to receive if prevailing patterns of age specific
enrolment rates persist throughout the child’s life” [27]. Education and income have no
upper limits and will always contribute to “human development".

The mean years of schooling is the “average number of years of education received
by people ages 25 and older, converted from education attainment levels using official
durations of each level” [27].

There are societies that can subsist without formal education, and 0 years is defined
as the lower limit in the item expected years of schooling (years); as the upper limit, we
have 18 years, which is equivalent to the years of formal education if a graduate degree is
obtained. For the item mean years of schooling (years), the lower limit is defined as 0 years
and the upper limit is 15 years, which is the average number of years that formal education
is received in most countries [27].

2.2.3. Gross National Income

To justify the upper limit on the income variable, Anand and Sen [37] states “that
there is virtually no gain in human development” beyond USD 75,000. Kahneman and
Deaton [39] studied two aspects of well-being: emotional well-being and life evaluation.
They conclude that high income buys life satisfaction but not happiness, and that low
income is associated both with low life evaluation and with low emotional well-being. The
low minimum value for gross national income (GNI) per capita, USD 100, is justified by the
considerable amount of unmeasured subsistence and nonmarket production in economies
close to the minimum, which is not captured in the official data.

Once we have defined the minimum and maximum values, the dimension indices are
calculated as:

Dimension index =
actual value−minimum value

maximum value−minimum value

3. Methodology
3.1. Basic Formulations

This section explains the different formulations that will be used in the paper. The
first one to be explained will be the actual formula that use UNPD (2019) to calculate the
final score for each country that is based on a geometric mean. The definition is as follows:

Definition 1. The HDI is the geometric mean of three-dimensional indices as follows.

HDI = (IHealth · IEducation · IIncome)
1/3 (1)
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where HDI is Human Development Index, IHealth is health index, IEducation is education
index and IIncome is income index. It is important to note that the formulation can be change
its representation to include a weight associated to each value as follows.

HDI =
(

IHealth
1
3 · IEducation

1
3 · IIncome

1
3

)
. (2)

The actual formulation of HDI index will be expanded using the OWA operator (Yager,
1988). The main idea is to include the knowledge and expectations of the decision maker
in the results through the weighting vector and by adding a reordering step generate the
minimum and the maximum scenario [40,41]. As the formulation is based geometric means,
the extension of the OWA operator that will be used is the ordered weighted geometric
average (OWGA) operator [42]. The definition is as follows

Definition 2. A OWGA operator of dimension n is a mapping R+n → R+ that has
associated with it a weighting vector w = (w1, . . . , wn)

T, with wi ∈ [0, 1] and ∑ n
i=1wi = 1,

such that.

OWGA(α1, . . . ,αn) =
n

∏
j=1

bj
wj , (3)

where bj is the jth largest of the αi (i = 1, 2, . . . , n).
Another extension that will be used is the induced OWGA (IOWGA) operator [43].

The main idea of this operator is that the reordering step will be done based on induced
variables determined by the decision maker, by doing this, is possible to add some weights
to certain attributes instead of only taking into account the value of the attribute. The
formulation is as follows.

Definition 3. An induced OWGA (IOWGA) operator is defined as.

IOWGA(〈u1,α1〉, . . . , 〈un,αn〉) =
n

∏
j=1

bj
wj , (4)

where w = (w1, . . . , wn)
T is the associated exponential weighting vector such that wj ∈ [0, 1],

∑ n
j=1wj = 1, and bj is a value of 〈ui, ai〉 having the jth largest u value. The term ui is referred

as the ordered inducing variable and ai is referred as the argument variable.
An extension that will be also included in the paper is the prioritized OWA (POWA)

operator. This operator is important in group decision making when not all the decision
makers have the same importance in the decision. Usually, this operator is important when
different experts are questioned about the situations and each of them give different values
and to everyone to be included in the results each one of them are given a weight based on
their experience and importance in the decision [44,45]. The formulation is as follows.

Definition 4. Assume that we have a collection of criteria portioned into q distinct
groups, H1, H2, . . . , Hq for which Hi = (Ci1, Ci2, . . . , Cin) denotes the criteria of the ith
category (i = 1, . . . ,q) and ni is the number of criteria in the class. Furthermore, we have
a prioritization between the groups as H1 > H2 > . . . > Hq. That is, the criteria in the
category Hi have a higher priority than those in Hk for all i < k and i, k ∈ (1, . . . , q). Denote
the total set of criteria as C = Uq

i=1Hi and the total number of criteria as n = ∑
q
i=1 ni.

Additionally, suppose X = (x1, . . . , xm) indicates the set of alternatives. For a given
alternative x, let Cij(x) measure the satisfaction of the jth criteria in the ith group by
alternative x ∈ X, for each i = 1, . . . , q, j = 1, . . . , ii. The formula is as follows:

POWA
(

C(x)

)
=

q

∑
i=1

ni

∑
j=1

wijCij(x), (5)

where wij, is the corresponding weight of the jth criteria in the ith category, i = 1, . . . , q,
j = 1, . . . , ii. If wi = 1/n for all i, the PrOWA becomes the prioritized average (PrA).
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3.2. Prioritized Induced Ordered Weighted Geometric Average

The paper introduces a new extension of the OWGA operator that includes in the same
formulation the idea of a reordering step based on induced value of the IOWGA operator
and includes the contribution of the POWA operator for group decision making where
not all the decision makers have the same importance in the result. This new operator is
called the prioritized induced ordered weighted geometric average (PIOWGA) operator.
The formulation is as follows.

Definition 5. Assume that we have a collection of criteria portioned into q distinct
groups, H1, H2, . . . , Hq for which Hi = (Ci1, Ci2, . . . , Cin) denotes the criteria of the ith
category (i = 1, . . . ,q) and ni is the number of criteria in the class. Furthermore, we have
a prioritization between the groups as H1 > H2 > . . . > Hq. That is, the criteria in the
category Hi have a higher priority than those in Hk for all i < k and i, k ∈ (1, . . . , q). Denote
the total set of criteria as C = Uq

i=1Hi and the total number of criteria as n = ∑
q
i=1 ni.

Additionally, suppose X = (x1, . . . , xm) indicates the set of alternatives. For a given
alternative x, let Cij(x) measure the satisfaction of the jth criteria in the ith group by
alternative x ∈ X, for each i = 1, . . . , q, j = 1, . . . , ii. The formula is as follows:

PIOWGA
(

C(x)

)
=

q

∑
i=1

ni

∏
j=1

bj
wj Cij(x), (6)

where w = (w1, . . . , wn)
T is the associated exponential weighting vector such that wj ∈ [0, 1],

∑ n
j=1wj = 1, and bj is the a value of 〈ui, ai〉 having the jth largest u value. The term ui is

referred as the ordered inducing variable and ai is referred as the argument variable.
Additionally, note that if the induced values are ui = 1/n the PIOWGA operator

becomes the POWGA operator and its formulation is the following.
Definition 6. Assume that we have a collection of criteria portioned into q distinct

groups, H1, H2, . . . , Hq for which Hi = (Ci1, Ci2, . . . , Cin) denotes the criteria of the ith
category (i = 1, . . . ,q) and ni is the number of criteria in the class. Furthermore, we have
a prioritization between the groups as H1 > H2 > . . . > Hq. That is, the criteria in the
category Hi have a higher priority than those in Hk for all i < k and i, k ∈ (1, . . . , q). Denote
the total set of criteria as C = Uq

i=1Hi and the total number of criteria as n = ∑
q
i=1 ni.

Additionally, suppose X = (x1, . . . , xm) indicates the set of alternatives. For a given
alternative x, let Cij(x) measure the satisfaction of the jth criteria in the ith group by
alternative x ∈ X, for each i = 1, . . . , q, j = 1, . . . , ii. The formula is as follows:

POWGA
(

C(x)

)
=

q

∑
i=1

ni

∏
j=1

bj
wjCij(x), (7)

where bj is the jth largest of the αi (i = 1, 2, . . . , n).
The PIOWGA operator is monotonic, bounded, and idempotent (Blanco-Mesa et al.,

2019; 2020).
Theorem 1 (Monotonicity). Assume f is the PIOWGA operator; if ai ≥ ei, for all

ai, then
f (〈u1,a1〉, . . . ,〈un,an〉) ≥ f (〈u1,e1〉, . . . ,〈un,en〉), (8)

Theorem 2 (Boundedness). Assume f is the PIOWGA operator; then,

min(ai) ≤ f (〈u1, a1〉, . . . ,〈un, an〉) ≤max(ai), (9)

Theorem 3 (Idempotency). Assume f is the PIOWGA operator; if ai = a, for all ai, then

f (〈u1, a1〉, . . . ,〈un, an〉) = a, (10)
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3.3. Numerical Example

As the paper will use the PIOWGA operator in calculating the HDI value for 189 coun-
tries in the world, the numerical example will serve as an example of how the calculus
are done and how it is different from the traditional formulation. The country that will
be used to make the example will be Norway (see Table 2). The data for this country is
the following.

Table 2. Information for calculating HDI index for Norway.

Country
Life Expectancy

at Birth
Expected Years
of Schooling

Mean Years of
Schooling

Gross National Income
(GNI) per Capita

Norway 82.3 18.1 12.6 68,059

The formula to calculate IHealth, IEducation and IIncome we used the information pro-
vided by [27] and explained in Section 2 of the paper. Note that in calculating the HDI
value, expected years of schooling is capped at 18 years and GNI per capita is capped at
USD 75,000.

The results are the following.

IHealth =
82.3− 20
85− 20

= 0.9580

IEducation =
18− 0
18− 0

+
12.60− 0

15− 0
= 0.9189

IIncome =
ln(68059− ln(100)
ln(75000)− ln(100)

= 0.9853

With the use of the traditional formulation (Definition 1) the result is HDI = 0.9580
1
3 ·

0.9189
1
3 ·0.9580

1
3 = 0.9537.

For the use of the PIOWGA operator and other operators the information provided by
one expert will be used. In this case, the weights that the expert provided are
W = (0.40, 0.30, 0.030), the induced values are U = (5, 10, 15) and for the prioritized
operators the results of the traditional formulation and the expert will be unified by
traditional = 40% and expert = 60%. With this information, the results are the following:

OWGA =
(

0.98530.40 · 0.95800.30 · 0.91890.30
)
= 0.9572

IOWGA =
(

0.95800.40 · 0.98530.30 · 0.91890.30
)
= 0.9541

POWGA = (0.9537 · 0.40) + (0.9572 · 0.60) = 0.9558

IPOWGA = (0.9537 · 0.40) + (0.9541 · 0.60) = 0.9539

As can be seen with the different results, the importance of each index can drastically
change the result of the HDI. A further analysis of the results and the importance of the
use of aggregation operators instead of traditional ones will be discussed at the end of
results section.

4. The Human Development Index by Using PIOWGA Operator

Having presented the arguments on the Human Development Index and using the
aggregation operators for the development of the new methodological proposal for its
calculation called prioritized induced ordered weighted geometric average, we proceed
to apply it to the calculation of the HDI. To carry out the application of the new HDI
estimation method, a 4-step process is established, which is explained below:

Step 1. Initially taken into account is the information of IHealth, IEducation and IIncome,
which is obtained by UNDP [46], then the experts must be selected. In this step, the experts
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will be determined based on their experience in the topic. It is recommended that they
have worked in different governmental organizations that work in the different fields that
the HDI considers, that is, health, education, and income, and that also have experience in
public policy making. These two aspects are very important because in that way they will
know at first-hand how the different elements of how HDI works and how public policies
are enacted to improve in that field.

Step 2. In this step, the weighting vector, induced and prioritized values are established.
For the weighting vector, for expert 1 W = 0.40, 0.30, 0.20, expert 2 W = 0.25, 0.25, 0.50 and
expert 3 W = 0.30, 0.40, 0.30. In the case of the induced values, for expert 1 U = 5, 10, 15,
expert 2 U = 10, 15, 5 and expert 3 U = 10, 5, 15. Finally, the prioritized importance of each
experts is e1 = 0.30, e2 = 0.50 and e3 = 0.20. These last values are determined based on
the expertise and research time in the field.

Step 3. The calculations are done for each country following the same process ex-
plained in Section 3.3. All the results for the OWGA, IOWGA, POWGA and PIOWGA
operator are found in Appendix A.

Step 4. All results are obtained. To present the results, three different tables were
produced, organized into the Top 10 countries (evaluation from position 1 to 10, see
Table 3), Middle 10 countries (evaluation from position 91 to 100, see Table 4) and Worst 10
(evaluation from position 180 to 189, see Table 5). As can be seen, with the analysis made
from Top 10, Middle 10, and Worst 10 is possible to visualize how much the ranking can
change depending in the weights assigned to each dimension of the HDI calculation.

Table 3. Top 10 countries.

R T OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA IPOWGA

1 NOR NOR NOR NOR NOR NOR NOR NOR NOR
2 CHE CHE SGP SGP CHE SGP DEU FIN AUS
3 IRL SGP CHE CHE HKG CHE IRL NLD SWE
4 HKG IRL HKG HKG IRL HKG CHE DNK DEU
5 DEU HKG IRL IRL AUS IRL AUS SWE LIE
6 ISL ISL LIE LIE ISL LIE ISL ISL ISL
7 AUS DEU ISL ISL SWE ISL SWE AUS IRL
8 SWE AUS DEU SWE DEU DEU DNK CHE HKG
9 SGP SWE SWE NLD SGP SWE NLD IRL CHE
10 NLD NLD NLD LUX NLD NLD FIN DEU SGP

Source: Own elaboration. R: Rank; T: Traditional; NOR: Norway; CHE: Switzerland; IRL: Ireland; HKG: Hong Kong, China (SAR); DEU:
Germany; ISL: Iceland; AUS: Australia; SWE: Sweden; SGP: Singapore; NLD: The Netherlands; LIE: Liechtenstein; LUX: Luxembourg,
DNK: Denmark; FIN: Finland.

Table 4. Middle 10 countries.

R T OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA IPOWGA

91 TUN TUN TUN ARM TUN TUN TON MNG TUN
92 MNG LBN LBN TUN LBN MNG DOM FJI BWA
93 LBN BWA MDV BWA DMA UKR LCA TON LEB
94 VCT MNG UKR PRY MNG VCT VEN VEN MDV
95 BWA MDV MNG VCT JAM LBN BWA BWA MNG
96 VEN VCT VCT DMA VCT TKM ZAF TUN VCT
97 JAM PRY TKM TKM MDV SUR TUN JAM PRY
98 PRY DMA PRY SUR PRY PRY JAM VCT SUR
99 DMA SUR SUR UKR JOR MDV VCT SUR TKM

100 FJI VEN DMA MNG VEN GAB SUR JOR DMA

Source: Own elaboration. R: Rank; T: Traditional; TUN: Tunisia; MNG: Mongolia; LBN: Lebanon; VCT: Saint Vincent and the Grenadines;
BWA: Botswana; VEN: Venezuela; JAM: Jamaica; PRY: Paraguay; DMA: Dominica; FJI: Fiji; MDV: Maldives; SUR: Suriname; UKR:
Ukraine; TKM: Turkmenistan; ARM: Armenia; JOR: Jordan; GAB: Gabon; TON: Tonga; DOM: Dominican Republic; LCA: Saint Lucia; ZAF:
South Africa.
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Table 5. Worst 10 countries.

R T OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA IPOWGA

180 MOZ ZAR BFA LBR MOZ ERI MOZ MOZ BFA
181 SLE BFA MLI MLI ERI BFA YDR YEM MLI
182 ERI MOZ MOZ MOZ BFA SLE BDI BDI COD
183 BFA MLI ZAR ZAR SLE MOZ BFA BFA MOZ
184 MLI SLE SLE SLE MLI ZAR MLI MLI SLE
185 BDI BDI SSD SSD BDI SSD ERI ERI SSD
186 SSD SSD TCD TCD SSD TCD SSD SSD TCD
187 TCD TCD BDI BDI TCD BDI TCD TCD BDI
188 CAF NER NER NER NER NER CAF CAF NER
189 NER CAF CAF CAF CAF CAF NER NER CAF

Source: Own elaboration. R: Rank; T: Traditional; MOZ: Mozambique; SLE: Sierra Leone; ERI: Eritrea; BFA: Burkina Faso; MLI: Mali; BDI:
Burundi; SSD: South Sudan; TCD: Chad; CAF: Central African: NER: Niger: ZAR; LBR: Liberia; COD: Congo; YDR: Yemen.

The first analysis is performed based on Top 10 countries. With this information, it is
possible to detect that Norway is the country with the highest score even when different
aggregation operators were used. After that, Switzerland and Singapore are usually
between number 2 and 3 in many of the operators. An interesting case can be Germany
because in the traditional formulation, its position is number 5 and within the IOWGAe3 it
is number 2. Additionally, Liechtenstein is not considered in the traditional Top 10 but can
be in the ranking according to the OWGAe2, OWGAe3, IOWGAe2 or POWGA operators.
Hence, it is possible to visualize that even when the weights of the dimension are changed,
Norway is always number 1, but after that, some important changes in the ranking can
be seen.

In the Middle 10 countries, it is possible to find some notorious changes, for example,
Fiji is presented in the traditional and IPOWGA operator only. Botswana presents important
changes, being in position 95 in the traditional score and number 91 in the POWGA operator.
Another example can be Jamaica, which is just presented in 4 of the 9 operators that are
being compared. The ranking with more changes is Middle 10. This is because the ranking
in that section is sensitive to changes, and because of that, if a dimension has more weight
than another one, the results can change drastically. Additionally, we observe the ultimate
idea that the aggregation operators, such as the IPOWGA operator, can help to generate
new scenarios.

Finally, the Worst 10 countries is the ranking that present fewer changes. In the case of
position 188–189, there is always Niger or Central Africa; Chad goes from rank 187–186,
South Sudan from 186–185 and in some cases, for example, Congo can be in or out of the
ranking. The Worst 10 presented the least changes in comparison to another two rankings
because even when the weights to each dimension are changed, they are usually the lowest
score in all of them. In this sense, it is a must that the politics that are assigned to these
countries and the help that they receive from other ones improve, in a general way, the
three dimensions.

The following figures show a graphical comparison of the results obtained from
the traditional ranking (T) and the rankings generated by the proposed POWGA and
IPOWGA operators (see Figures 2–4). Initially, the radials for all methods show a spiral
shape and their desiccant sequence is clockwise. Secondly, it is observed that the results
for the proposed operators have two main changes; the order of the ranking where they
change position and enter and leave countries according to their results; the distance of the
results as their distances are wider and the spirals are steeper. The results for the POWGA
and IPOWGA operators show that the countries within the ranking vary according to
the traditional one. The shape of the graph is easier to see these changes, as it differs at
different points, showing lower results in a more concave manner and higher results in
a more convex manner, while the traditional graph has straighter aspects. Likewise, the
lowest scores are even more pronounced in the 10 worst-ranked countries. These changes
are due to the amount of information that is aggregated. Here, in the proposed methods,
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the shape of the radial marks a more pronounced spiral, which indicates that the distances
between each of the countries’ results. Hence, the influence that the different criteria of
those evaluated can have on the levels of development of the countries is evident.

Figure 2. Comparison of the proposed methods for the top 10 countries.

Figure 3. Comparison of the proposed methods for the middle 10 countries.

  

Source: Own elaboration 
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Figure 4. Comparison of the proposed methods for Worst 10 countries.

These results lead us to address aspects related to the notion of average. The mean
is most commonly understood as the average value of a set of numerical data, which is
calculated by dividing the sum of the set of values by the amount of data. For the topic
under discussion, the geometric mean is used, which is the calculation of the n-th root of
a joint product, and its characteristic is to have positive numbers. For our proposal, we
take into account the ordered weighted average (OWA) as an operator that provides a
parameterized family of aggregation operators between maximum and minimum values,
allowing us to over or underestimate the information according to the attitude of the
decision maker in the studied problem [4,5,47]. This operator has the versatility to allow
aggregation of those degrees of truth or optimism in a formal method, i.e., it has the ability
to model in a linguistic way through instructions that aggregate subjective information to
obtain a single representative value [4].

In this sense, averaging and geometric averaging allow you to efficiently measure the
data you aggregate in your operation, although it is quite complicated to give meaning to a
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broad mass valuation to a mere numerical value. With the OWA operator being able to
follow subjective instructions for the aggregation of arguments, it has a greater versatility in
responding to situations in the environment that link individual’s reasoning and situations
that deserve to be explained in terms of their meaning [48]. Likewise, it allows us to propose
wider extensions that help to take into account data that is not possible with traditional
methods. Comparing the three methods, it is evident that the OWA operator has more
advantages by being able to add in its formulation soft aspects (approximate reasoning
and degrees of truth) that have an influence on the final result. Thus, the two proposed
methods contain the characteristics of the mean, geometric mean and OWA operator and
additionally, the characteristics of the induced and prioritized variables. The latter two
aspects are closely related to the judgement and subjectivity of the individuals. Finally, the
figures presented show those nuances, some more prominent than others, but which can
help to give meaning to the information by the origin of the data, i.e., one can always turn
to the expert or individual who provided the initial judgement (soft information).

Based on the above, the main idea of the HDI is to generate a vision to each country
and that in results can improve and generate new politics, but not all the countries have
the same amount of resources to make changes in all three dimensions at the same time
and, because of that, a ranking based on dimensions that have different weights will
make them visualize if the politics that are being implemented are changing their position
in the ranking and, also, not all the countries have the same problems and, because of
that, the prioritization of one dimension above another is something that has to be taken
into account.

It is important to note that this type of operator has some limitations. First, the
weighting vector is proposed by the experts or decision makers and, because it is an
essential element for the calculation, if different weights are proposed, the results can vary.
Additionally, this flexibility has a positive effect because the results can change depending
on the attitude and expectations of the decision maker. Second, these operators are useful
when the relative importance of each of the variables that compose the HDI is not the same,
if the expert considers that each variable should weight 1

n there is no reason to use the
different aggregation operators. Finally, with the use of these operators, different results
can be obtained and, because of that, it is not possible to assume that only one result is
correct, because each result is based on the weighting vector proposed, and if there is not a
consensus, it is possible to obtain as many different results as there are decision makers,
making it difficult to achieve only one result; however, the idea of this type of operator is
that they produce different scenarios based on the aptitude, expectations and knowledge
of the decision makers that can be considered in the decision making process, and, with
that, there is a better understating and general vision of the phenomenon to study.

Another limitation of the paper is that the study is based on the OWA operator and
its extensions, but there are many other operators whose formulation is interesting and
can be useful in this type of analysis of information. Such is the case of the Hami means
that are used to aggregate values, simultaneously including mutual correlation among
multiple arguments [49,50], Bonferroni means that are an averaging aggregation function
that allows capturing the interrelationship between arguments [51,52], the use of different
Dombi operators [53–55], among others.

5. Conclusions

This paper has reviewed the main aspects of the Human Development Index and its
components. By revising the general formula for determining the HDI, a new method
is proposed using the aggregation operators [3]. The proposed method is called the
prioritized induced ordered weighted geometric average (PIOWGA) operator. The main
idea of this operator is that the reordering step will be performed based on induced
variables determined by the decision maker, and allows for considering different values
and to everyone to be included in the results. Each one of them are given a weight based
on their experience and importance in the decision [44,45]. Thus, by having induced
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variables and decision-prioritizing aspects in a group of experts, it is possible to consider
both the information derived from the data and the opinions of the decision makers in
group decisions.

The mathematical application developed follows a 4-stage process that considers
objective input information on education, health and standard of living and subjective
information that allows different scenarios to be considered to observe the usefulness and
applicability of the methodological proposal. In this sense, three different levels, Top 10,
Middle 10 and Worst 10 are shown. For the Top 10, comparing the traditional method with
IPOWGA, there are significant variations in general, and the ten countries only move a
little in the ranking from position 5 to position 10. For Middle 10, changes are evident,
such as Fiji being present in the traditional and IPOWGA operator only. Botswana presents
important changes, being in position 95 in the traditional score and position 91 in the
POWGA operator. Ranking in this section is sensitive to changes, because it is a dimension
that has more weight than another one; therefore, the results can change drastically. For
Worst 10, the rankings show no major alterations, only a change of positions in the country
of Niger, Central Africa, Chad, and South Sudan. This smaller variation is because when
the weight to each dimension is changed, they are usually the lowest score in all of them.
In addition, looking at the results graphically, it can be seen that the proposed new method
leads to changes in the rankings, the order of countries and the exit and entry of countries
in the three boundaries presented. These changes are due to the amount of information
that is aggregated. Hence, the influence that the different criteria of those evaluated can
have on the levels of development of the countries is evident. Thus, with these results, it
can be assumed that the valuation given by the different decision makers has an influence
on the order given in the ranking, either by extreme positions of pessimism or optimism.
This can occur because of how decision makers prioritize the three elements that make
up the HDI, given that each country has different resources, different developments, and
more or less stable political and economic systems. Hence, the proposed method brings us
closer to the reality that each country has in terms of human development because of the
importance given to the subjective information prioritized by decision makers.

Additionally, it is important to visualize the different applications that the IPOGWA
operator can has, because any problem that is analyzed by the geometric average (GA) and
where the relative importance of each variable that compose the GA is considered by the
decision maker that should not be the same these operators can be done. For example, The
OGWA operator can be used when only one decision maker is considered, and the weights
are ordered based on maximum or minimums; the IOGWA operator is useful when the
ordering between weights and attributes want to be induced by specific values and the
POWGA operator can be used when more than one decision maker is considered and their
importance in the results is not the same. Additionally, the IPOWGA operator is used
when the complexity of the problem requires it, that is, in a group decision making problem
where the problem is analyzed by a geometric average where the variables that compose it
do not have the same relative importance and the reordering of the weights is based on
induced values. Thus, the two proposed methods contain the characteristics of the mean,
geometric mean and OWA operator and additionally, the characteristics of the induced
and prioritized variables. The latter two aspects are closely related to the judgement and
subjectivity of the individuals. Finally, the figures presented show those nuances, some
more prominent than others, but which can help to give meaning to the information by the
origin of the data, i.e., one can always turn to the expert or individual who provided the
initial judgement (soft information).

Finally, the research provides a different vision of how to approach the evaluation of
the different indices that measure and provide reliable information for decision making at
the governmental level in each country. In addition, it shows the usefulness of aggregation
operators to consider different types of information. For future lines of research, new
proposals can be made with indices such as the happiness, GINI, or competitiveness indices.
Likewise, in the development of methodological proposals, these tools can be improved
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by complementing them with Bonferroni means [56], multi-person aggregation [57], soft
multi-set [58], among others.
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Appendix A

Table A1. Results of the HDI index using different aggregation operators.

R Traditional OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA PIOWGA

1 Norway 0.9537 0.9572 0.9619 0.9638 0.9541 0.9615 0.9462 0.9609
2 Switzerland 0.9459 0.9484 0.9512 0.9553 0.9492 0.9506 0.9326 0.9512
3 Ireland 0.9425 0.9439 0.9457 0.9476 0.9438 0.9456 0.9362 0.9455
4 Germany 0.9388 0.9379 0.9364 0.9362 0.9390 0.9364 0.9400 0.9368

4
Hong Kong,
China (SAR)

0.9388 0.9433 0.9472 0.9540 0.9443 0.9457 0.9171 0.9474

6 Australia 0.9384 0.9368 0.9340 0.9365 0.9418 0.9337 0.9318 0.9353
6 Iceland 0.9385 0.9380 0.9368 0.9393 0.9413 0.9367 0.9315 0.9377
8 Sweden 0.9366 0.9364 0.9358 0.9382 0.9393 0.9356 0.9294 0.9364
9 Singapore 0.9348 0.9439 0.9533 0.9602 0.9389 0.9507 0.9104 0.9519

10
The

Netherlands
0.9335 0.9342 0.9350 0.9375 0.9357 0.9348 0.9258 0.9353

11 Denmark 0.9299 0.9305 0.9313 0.9321 0.9305 0.9313 0.9273 0.9312
12 Finland 0.9252 0.9240 0.9219 0.9237 0.9276 0.9218 0.9207 0.9229
13 Canada 0.9221 0.9221 0.9214 0.9248 0.9257 0.9211 0.9122 0.9223
14 New Zealand 0.9209 0.9177 0.9123 0.9140 0.9243 0.9119 0.9178 0.9143

15
United

Kingdom
0.9204 0.9188 0.9162 0.9175 0.9225 0.9160 0.9174 0.9172

16 United States 0.9199 0.9239 0.9293 0.9296 0.9185 0.9289 0.9172 0.9277
17 Belgium 0.9188 0.9191 0.9190 0.9217 0.9215 0.9188 0.9109 0.9196
18 Liechtenstein 0.9167 0.9276 0.9396 0.9448 0.9182 0.9369 0.8967 0.9371
19 Japan 0.9147 0.9157 0.9144 0.9215 0.9221 0.9130 0.8941 0.9162
20 Austria 0.9138 0.9156 0.9175 0.9212 0.9169 0.9171 0.9020 0.9177
21 Luxembourg 0.9087 0.9190 0.9291 0.9368 0.9133 0.9260 0.8818 0.9276
22 Israel 0.9062 0.9044 0.9001 0.9046 0.9121 0.8993 0.8944 0.9023

22
Korea

(Republic of)
0.9058 0.9054 0.9032 0.9085 0.9118 0.9024 0.8910 0.9050

24 Slovenia 0.9016 0.8991 0.8945 0.8970 0.9055 0.8941 0.8960 0.8964
25 Spain 0.8928 0.8940 0.8925 0.9001 0.9008 0.8908 0.8708 0.8944
26 Czechia 0.8908 0.8888 0.8855 0.8865 0.8928 0.8854 0.8890 0.8867
26 France 0.8911 0.8947 0.8967 0.9043 0.8979 0.8950 0.8677 0.8976
28 Malta 0.8853 0.8868 0.8864 0.8935 0.8924 0.8849 0.8644 0.8879
29 Italy 0.8826 0.8861 0.8867 0.8958 0.8914 0.8844 0.8553 0.8884
30 Estonia 0.8815 0.8799 0.8771 0.8782 0.8835 0.8770 0.8794 0.8782
31 Cyprus 0.8730 0.8746 0.8749 0.8812 0.8790 0.8738 0.8543 0.8761
32 Greece 0.8720 0.8698 0.8637 0.8698 0.8799 0.8622 0.8562 0.8667
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Table A1. Cont.

R Traditional OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA PIOWGA

32 Poland 0.8718 0.8697 0.8663 0.8680 0.8746 0.8661 0.8678 0.8677
34 Lithuania 0.8693 0.8685 0.8672 0.8655 0.8681 0.8671 0.8747 0.8673

35
United Arab

Emirates
0.8664 0.8832 0.8998 0.9070 0.8687 0.8942 0.8383 0.8962

36 Andorra 0.8568 0.8714 0.8819 0.8941 0.8657 0.8756 0.8162 0.8812
36 Saudi Arabia 0.8570 0.8667 0.8784 0.8810 0.8559 0.8762 0.8451 0.8754
36 Slovakia 0.8569 0.8580 0.8592 0.8621 0.8594 0.8589 0.8476 0.8594
39 Latvia 0.8539 0.8528 0.8509 0.8498 0.8534 0.8508 0.8579 0.8513
40 Portugal 0.8502 0.8535 0.8531 0.8627 0.8598 0.8504 0.8218 0.8551
41 Qatar 0.8484 0.8755 0.8963 0.9095 0.8558 0.8840 0.8001 0.8927
42 Chile 0.8469 0.8452 0.8401 0.8459 0.8543 0.8387 0.8316 0.8428

43
Brunei

Darussalam
0.8446 0.8680 0.8900 0.8977 0.8458 0.8810 0.8129 0.8850

43 Hungary 0.8447 0.8452 0.8454 0.8482 0.8474 0.8451 0.8362 0.8459
45 Bahrain 0.8378 0.8477 0.8575 0.8646 0.8418 0.8545 0.8127 0.8560
46 Croatia 0.8373 0.8368 0.8343 0.8394 0.8432 0.8334 0.8231 0.8360
47 Oman 0.8338 0.8429 0.8513 0.8591 0.8389 0.8483 0.8073 0.8503
48 Argentina 0.8301 0.8259 0.8185 0.8198 0.8340 0.8176 0.8286 0.8210

49
Russian

Federation
0.8240 0.8252 0.8267 0.8254 0.8222 0.8266 0.8275 0.8260

50 Belarus 0.8171 0.8135 0.8072 0.8074 0.8193 0.8066 0.8187 0.8091
50 Kazakhstan 0.8172 0.8171 0.8169 0.8170 0.8174 0.8169 0.8170 0.8170
52 Bulgaria 0.8157 0.8141 0.8114 0.8134 0.8186 0.8112 0.8107 0.8126
52 Montenegro 0.8159 0.8133 0.8078 0.8116 0.8215 0.8069 0.8066 0.8102
52 Romania 0.8156 0.8177 0.8193 0.8242 0.8199 0.8185 0.8003 0.8198
55 Palau 0.8142 0.8107 0.8044 0.8035 0.8154 0.8038 0.8192 0.8061
56 Barbados 0.8133 0.8109 0.8034 0.8102 0.8224 0.8012 0.7962 0.8070
57 Kuwait 0.8084 0.8399 0.8653 0.8767 0.8126 0.8508 0.7637 0.8600
57 Uruguay 0.8078 0.8085 0.8064 0.8136 0.8155 0.8048 0.7872 0.8085
59 Turkey 0.8065 0.8122 0.8157 0.8243 0.8139 0.8132 0.7795 0.8164
60 Bahamas 0.8055 0.8116 0.8185 0.8229 0.8076 0.8172 0.7900 0.8173
61 Malaysia 0.8042 0.8111 0.8170 0.8245 0.8097 0.8147 0.7796 0.8167
62 Seychelles 0.8014 0.8055 0.8103 0.8137 0.8033 0.8095 0.7893 0.8095
63 Serbia 0.7993 0.7962 0.7900 0.7939 0.8051 0.7890 0.7902 0.7927

63
Trinidad and

Tobago
0.7990 0.8062 0.8141 0.8188 0.8012 0.8124 0.7820 0.8127

65
Iran (Islamic
Republic of)

0.7975 0.7978 0.7958 0.8021 0.8044 0.7946 0.7795 0.7977

66 Mauritius 0.7964 0.8001 0.8034 0.8091 0.8010 0.8021 0.7782 0.8035
67 Panama 0.7951 0.7997 0.8004 0.8104 0.8047 0.7972 0.7650 0.8022
68 Costa Rica 0.7935 0.7941 0.7875 0.7979 0.8057 0.7836 0.7656 0.7916
69 Albania 0.7914 0.7880 0.7778 0.7849 0.8016 0.7748 0.7747 0.7823
70 Georgia 0.7864 0.7797 0.7646 0.7631 0.7901 0.7608 0.7960 0.7688
71 Sri Lanka 0.7801 0.7764 0.7667 0.7726 0.7890 0.7642 0.7665 0.7708
72 Cuba 0.7777 0.7716 0.7527 0.7584 0.7895 0.7460 0.7687 0.7595

73
Saint Kitts and

Nevis
0.7768 0.7880 0.7974 0.8063 0.7829 0.7932 0.7464 0.7963

74
Antigua and

Barbuda
0.7762 0.7854 0.7905 0.8015 0.7855 0.7860 0.7412 0.7912

75
Bosnia and

Herzegovina
0.7692 0.7688 0.7626 0.7713 0.7797 0.7596 0.7459 0.7662

76 Mexico 0.7674 0.7715 0.7731 0.7812 0.7750 0.7709 0.7427 0.7742
77 Thailand 0.7646 0.7693 0.7691 0.7796 0.7751 0.7654 0.7335 0.7712
78 Grenada 0.7634 0.7608 0.7559 0.7585 0.7675 0.7553 0.7575 0.7579
79 Brazil 0.7612 0.7625 0.7600 0.7684 0.7702 0.7576 0.7374 0.7624
79 Colombia 0.7609 0.7621 0.7574 0.7672 0.7719 0.7541 0.7340 0.7608
81 Armenia 0.7600 0.7550 0.7432 0.7475 0.7681 0.7403 0.7518 0.7476
82 Algeria 0.7590 0.7612 0.7581 0.7679 0.7696 0.7548 0.7312 0.7610

189



Axioms 2021, 10, 87

Table A1. Cont.

R Traditional OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA PIOWGA

82
North

Macedonia
0.7594 0.7595 0.7552 0.7633 0.7686 0.7529 0.7375 0.7581

82 Peru 0.7591 0.7593 0.7539 0.7628 0.7695 0.7510 0.7351 0.7573
85 China 0.7576 0.7636 0.7643 0.7755 0.7684 0.7601 0.7242 0.7663
85 Ecuador 0.7579 0.7555 0.7459 0.7538 0.7688 0.7424 0.7383 0.7503
87 Azerbaijan 0.7539 0.7558 0.7564 0.7624 0.7596 0.7552 0.7358 0.7574
88 Ukraine 0.7497 0.7435 0.7299 0.7300 0.7546 0.7267 0.7541 0.7340

89
Dominican
Republic

0.7446 0.7490 0.7504 0.7590 0.7527 0.7479 0.7185 0.7517

89 Saint Lucia 0.7449 0.7461 0.7413 0.7510 0.7559 0.7379 0.7184 0.7447
91 Tunisia 0.7392 0.7406 0.7347 0.7453 0.7513 0.7306 0.7107 0.7386
92 Mongolia 0.7347 0.7323 0.7281 0.7296 0.7376 0.7277 0.7316 0.7296
93 Lebanon 0.7301 0.7375 0.7333 0.7484 0.7460 0.7255 0.6878 0.7376
94 Botswana 0.7278 0.7330 0.7385 0.7433 0.7308 0.7372 0.7116 0.7378

94
Saint Vincent

and the
Grenadines

0.7279 0.7292 0.7276 0.7347 0.7354 0.7259 0.7074 0.7295

96 Jamaica 0.7257 0.7227 0.7123 0.7196 0.7361 0.7088 0.7086 0.7169

96
Venezuela
(Bolivarian
Republic of)

0.7258 0.7230 0.7160 0.7211 0.7331 0.7143 0.7134 0.7191

98 Dominica 0.7238 0.7278 0.7205 0.7342 0.7392 0.7136 0.6871 0.7254
98 Fiji 0.7237 0.7202 0.7138 0.7120 0.7242 0.7129 0.7310 0.7153
98 Paraguay 0.7243 0.7279 0.7265 0.7365 0.7345 0.7232 0.6956 0.7289
98 Suriname 0.7237 0.7254 0.7249 0.7315 0.7304 0.7234 0.7043 0.7263

102 Jordan 0.7234 0.7214 0.7123 0.7202 0.7341 0.7089 0.7038 0.7166
103 Belize 0.7202 0.7167 0.7047 0.7121 0.7312 0.7005 0.7035 0.7098
104 Maldives 0.7187 0.7317 0.7314 0.7483 0.7352 0.7215 0.6693 0.7349
105 Tonga 0.7174 0.7109 0.6946 0.6951 0.7236 0.6897 0.7216 0.6996
106 Philippines 0.7119 0.7112 0.7074 0.7134 0.7190 0.7060 0.6956 0.7097

107
Moldova

(Republic of)
0.7115 0.7068 0.6953 0.6998 0.7196 0.6924 0.7027 0.6997

108 Turkmenistan 0.7101 0.7186 0.7272 0.7328 0.7130 0.7247 0.6902 0.7258
108 Uzbekistan 0.7105 0.7053 0.6927 0.6964 0.7184 0.6894 0.7041 0.6972
110 Libya 0.7076 0.7132 0.7142 0.7244 0.7173 0.7104 0.6770 0.7159
111 Indonesia 0.7069 0.7105 0.7110 0.7194 0.7150 0.7085 0.6818 0.7126
111 Samoa 0.7068 0.7020 0.6876 0.6934 0.7172 0.6828 0.6953 0.6931
113 South Africa 0.7049 0.7068 0.7090 0.7067 0.7019 0.7087 0.7112 0.7078

114
Bolivia

(Plurinational
State of)

0.7028 0.6988 0.6888 0.6937 0.7110 0.6862 0.6922 0.6928

115 Gabon 0.7016 0.7097 0.7189 0.7226 0.7025 0.7169 0.6870 0.7169
116 Egypt 0.6997 0.7042 0.7046 0.7141 0.7089 0.7014 0.6716 0.7064

117
Marshall
Islands

0.6976 0.6925 0.6736 0.6797 0.7097 0.6660 0.6875 0.6805

118 Viet Nam 0.6927 0.6926 0.6812 0.6924 0.7071 0.6748 0.6649 0.6869

119
Palestine, State

of
0.6900 0.6869 0.6724 0.6809 0.7028 0.6664 0.6715 0.6784

120 Iraq 0.6888 0.7031 0.7127 0.7238 0.6971 0.7061 0.6515 0.7121
121 Morocco 0.6764 0.6853 0.6797 0.6958 0.6936 0.6702 0.6323 0.6846
122 Kyrgyzstan 0.6742 0.6686 0.6453 0.6481 0.6849 0.6345 0.6750 0.6528
123 Guyana 0.6703 0.6718 0.6689 0.6772 0.6793 0.6663 0.6471 0.6714
124 El Salvador 0.6667 0.6713 0.6662 0.6788 0.6804 0.6602 0.6322 0.6703
125 Tajikistan 0.6560 0.6511 0.6320 0.6375 0.6677 0.6238 0.6478 0.6388
126 Cabo Verde 0.6507 0.6573 0.6529 0.6666 0.6653 0.6457 0.6126 0.6570
126 Guatemala 0.6510 0.6626 0.6604 0.6765 0.6672 0.6507 0.6052 0.6643
126 Nicaragua 0.6511 0.6540 0.6424 0.6558 0.6675 0.6338 0.6175 0.6485
129 India 0.6469 0.6507 0.6486 0.6587 0.6574 0.6447 0.6180 0.6513
130 Namibia 0.6450 0.6512 0.6578 0.6620 0.6472 0.6562 0.6298 0.6566
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R Traditional OWGAe1 OWGAe2 OWGAe3 IOWGAe1 IOWGAe2 IOWGAe3 POWGA PIOWGA

131 Timor-Leste 0.6259 0.6371 0.6397 0.6528 0.6380 0.6325 0.5860 0.6416
132 Honduras 0.6230 0.6320 0.6211 0.6383 0.6425 0.6084 0.5789 0.6278
132 Kiribati 0.6232 0.6208 0.6097 0.6172 0.6341 0.6052 0.6060 0.6145
134 Bhutan 0.6173 0.6392 0.6448 0.6623 0.6329 0.6308 0.5631 0.6466
135 Bangladesh 0.6137 0.6192 0.6092 0.6238 0.6306 0.5996 0.5763 0.6151

135
Micronesia
(Federated
States of)

0.6142 0.6120 0.6009 0.6087 0.6253 0.5962 0.5960 0.6058

137
Sao Tome and

Principe
0.6086 0.6076 0.5922 0.6024 0.6232 0.5837 0.5859 0.5989

138 Congo 0.6085 0.6115 0.6118 0.6189 0.6154 0.6097 0.5872 0.6132

138
Eswatini

(Kingdom of)
0.6081 0.6184 0.6296 0.6329 0.6079 0.6266 0.5942 0.6269

140
Lao People’s
Democratic

Republic
0.6041 0.6144 0.6164 0.6290 0.6158 0.6095 0.5660 0.6183

141 Vanuatu 0.5968 0.5973 0.5817 0.5932 0.6126 0.5721 0.5711 0.5887
142 Ghana 0.5957 0.5943 0.5887 0.5944 0.6030 0.5868 0.5811 0.5915
143 Zambia 0.5915 0.5886 0.5806 0.5855 0.5988 0.5783 0.5803 0.5840

144
Equatorial

Guinea
0.5884 0.6225 0.6492 0.6567 0.5887 0.6319 0.5551 0.6427

145 Myanmar 0.5843 0.5968 0.5994 0.6128 0.5967 0.5912 0.5434 0.6013
146 Cambodia 0.5815 0.5882 0.5803 0.5947 0.5975 0.5711 0.5438 0.5856
147 Kenya 0.5786 0.5783 0.5679 0.5773 0.5908 0.5624 0.5560 0.5729
147 Nepal 0.5795 0.5834 0.5696 0.5834 0.5967 0.5586 0.5465 0.5765
149 Angola 0.5745 0.5804 0.5848 0.5912 0.5796 0.5824 0.5534 0.5847
150 Cameroon 0.5627 0.5599 0.5545 0.5563 0.5662 0.5538 0.5595 0.5565
150 Zimbabwe 0.5631 0.5589 0.5484 0.5516 0.5698 0.5454 0.5575 0.5522
152 Pakistan 0.5604 0.5782 0.5813 0.5972 0.5750 0.5693 0.5124 0.5835

153
Solomon
Islands

0.5573 0.5662 0.5476 0.5648 0.5788 0.5296 0.5184 0.5567

154
Syrian Arab

Republic
0.5489 0.5634 0.5527 0.5718 0.5697 0.5360 0.5003 0.5598

155
Papua New

Guinea
0.5431 0.5517 0.5506 0.5631 0.5555 0.5435 0.5071 0.5534

156 Comoros 0.5378 0.5390 0.5295 0.5396 0.5505 0.5232 0.5127 0.5344
157 Rwanda 0.5360 0.5417 0.5263 0.5409 0.5543 0.5129 0.5022 0.5339
158 Nigeria 0.5341 0.5417 0.5503 0.5524 0.5335 0.5484 0.5248 0.5482

159
Tanzania
(United

Republic of)
0.5283 0.5360 0.5306 0.5441 0.5428 0.5220 0.4918 0.5350

159 Uganda 0.5282 0.5259 0.5104 0.5177 0.5402 0.5025 0.5139 0.5165
161 Mauritania 0.5271 0.5419 0.5428 0.5578 0.5413 0.5321 0.4830 0.5456
162 Madagascar 0.5207 0.5229 0.5022 0.5135 0.5377 0.4872 0.4987 0.5107
163 Benin 0.5198 0.5192 0.5097 0.5178 0.5306 0.5048 0.5004 0.5142
164 Lesotho 0.5180 0.5188 0.5199 0.5203 0.5180 0.5198 0.5163 0.5196
165 Côte d’Ivoire 0.5157 0.5212 0.5245 0.5313 0.5215 0.5219 0.4943 0.5249
166 Senegal 0.5138 0.5359 0.5343 0.5534 0.5324 0.5168 0.4596 0.5386
167 Togo 0.5127 0.5096 0.4944 0.5000 0.5232 0.4872 0.5028 0.5001
168 Sudan 0.5075 0.5321 0.5361 0.5538 0.5236 0.5192 0.4537 0.5384
169 Haiti 0.5027 0.5050 0.4917 0.5030 0.5175 0.4820 0.4767 0.4979
170 Afghanistan 0.4960 0.5019 0.4902 0.5038 0.5122 0.4791 0.4629 0.4965
171 Djibouti 0.4954 0.5256 0.5282 0.5484 0.5141 0.5065 0.4357 0.5314
172 Malawi 0.4854 0.4878 0.4682 0.4789 0.5016 0.4536 0.4644 0.4762
173 Ethiopia 0.4698 0.4880 0.4792 0.4980 0.4897 0.4609 0.4213 0.4856
174 Gambia 0.4657 0.4715 0.4609 0.4737 0.4809 0.4506 0.4343 0.4667
174 Guinea 0.4655 0.4793 0.4773 0.4920 0.4801 0.4661 0.4240 0.4809
176 Liberia 0.4647 0.4698 0.4505 0.4630 0.4822 0.4341 0.4392 0.4588
177 Yemen 0.4627 0.4778 0.4652 0.4833 0.4829 0.4468 0.4187 0.4726
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178 Guinea-Bissau 0.4614 0.4632 0.4557 0.4648 0.4725 0.4502 0.4383 0.4598

179
Congo

(Democratic
Republic of the)

0.4587 0.4604 0.4360 0.4423 0.4728 0.4173 0.4518 0.4446

180 Mozambique 0.4460 0.4498 0.4364 0.4478 0.4608 0.4255 0.4200 0.4427
181 Sierra Leone 0.4385 0.4378 0.4309 0.4372 0.4467 0.4276 0.4231 0.4342
182 Burkina Faso 0.4335 0.4515 0.4477 0.4643 0.4503 0.4323 0.3878 0.4521
182 Eritrea 0.4336 0.4642 0.4583 0.4802 0.4553 0.4323 0.3753 0.4644
184 Mali 0.4272 0.4464 0.4469 0.4624 0.4418 0.4328 0.3822 0.4499
185 Burundi 0.4229 0.4298 0.4057 0.4165 0.4404 0.3832 0.4052 0.4151
186 South Sudan 0.4128 0.4255 0.4220 0.4359 0.4269 0.4107 0.3745 0.4258
187 Chad 0.4012 0.4149 0.4173 0.4290 0.4119 0.4080 0.3656 0.4189

188
Central African

Republic
0.3807 0.3812 0.3692 0.3768 0.3916 0.3615 0.3645 0.3743

189 Niger 0.3766 0.4017 0.3904 0.4104 0.3975 0.3654 0.3280 0.3978
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Abstract: Logistics is an important service sector, contributing to improving the competitiveness of
the economy. Therefore, along with increasing the application of technology and effective business
models, it is necessary to increase the connectivity of the infrastructure systems of industrial parks,
roads, and seaports of regions and the country. Over the past decades, Vietnamese businesses have
been step-by-step going through many stages from production, packaging, quality, hygiene, and
safety to grasping new stages in the domestic and global value chain. In many industries, businesses
are increasing the content of their own designs, exploiting brands, and approaching consumption
networks in the target market. The role of the distribution center is becoming more and more
important in ensuring a seamless and flawless supply chain. In particular, the distribution center
is the most sensitive contact point between supply and demand in each enterprise. Therefore, the
key mission of a distribution center is to reconcile supply and demand requirements. Distribution
center location selection problems usually involve multiple quantitative and qualitative criteria that
the decision maker must take into account for assessing the symmetrical impact of the criteria to
reach the most accurate result. In this study, the authors propose a hybrid MCDM model based
on Spherical Fuzzy Analytic Hierarchy Process (SF-AHP) and Combined Compromise Solution
(CoCoSo) Algorithm to support the distribution location selection problem of perishable agricultural
products. The proposed model is then applied to the numerical case study of the sweet potato
product of the Mekong Delta region of Vietnam to demonstrate the feasibility of the model. The
contribution of this research is to propose an MCDM model for improving the efficiency of the
agricultural supply chain through selecting a location distribution center. This proposed model can
be applied to the agricultural supply chain around the world.

Keywords: multicriteria decision making model (MCDM); location selection; Spherical Fuzzy Ana-
lytic Hierarchy Process (SF-AHP); Combined Compromise Solution (CoCoSo); distribution center

1. Introduction

Most perishable supply chains in the Mekong Delta Region of Vietnam are inefficient,
which contributes to low production and productivity of the agricultural sector of the region
as a whole. Among many agriculture products of the region, sweet potato is considered as
one of the major products. However, the majority of sweet potato growers are small-scale
farmers who are not able to produce and distribute their produce efficiently due to the
inefficiency of the current supply chain [1]. One of the reasons is the lack of a proper
distribution center to service the largest domestic market region and international logistics
gateway of the country—the metropolitan part of the South East region of Vietnam [2]. As

195



Axioms 2021, 10, 53

the local government has put a focus on improving the livelihood of the small-scale farmers
by improving the inefficiency, by improving the design of the current supply chain, the
problem of choosing the optimal location for a dedicated distribution center is becoming
an important question to solve in order to improve these farmers′ livelihood, as well as
the overall profitability of the whole sweet potato supply chain. Multiple criteria in both
quantitative and qualitative forms must be considered in a systematic approach in order
to ensure the efficiency of the final design of the supply chain. Therefore, the distribution
center location selection problem can be considered as a multicriteria decision-making
problem under uncertain environments. Mekong Delta Region and South East Region of
Vietnam is shown in Figure 1.

—

′

 

Figure 1. Mekong Delta Region and South East Region of Vietnam [3].

Distribution center location selection problems usually involve multiple quantitative
and qualitative criteria. A feasible approach to such problems is the use of multicriteria
decision-making (MCDM) methods to develop specialized MCDM models. These models
differ from each other by having different criteria or employing different MCDM methods.
There are multiple MCDM methods that can be employed to support the decision makers
such as Analytical Hierarchy Process (AHP), Analytical Network Process (ANP), Multicri-
teria Optimization and Compromise Solution (VIKOR), Technique for Order Preference
Similarity to the Ideal Solution (TOPSIS), etc. In the cases where the decision-making
problem involves an uncertain decision-making environment, fuzzy theory is employed
in combination with MCDM methods to create fuzzy MCDM models to effectively solve
the problems. In this study, the authors propose a hybrid MCDM model based on Spher-
ical Fuzzy Analytic Hierarchy Process (SF-AHP) and Combined Compromise Solution
(CoCoSo) Algorithm to support the distribution location selection problem of perishable
agricultural products. The proposed model is then applied to the numerical case study
of the sweet potato product of the Mekong Delta region of Vietnam to demonstrate the
feasibility of the model.
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2. Literature Review

Over the years, many decision support systems based on MCDM methods have been
developed to assist decision makers in solving complex decision-making problems in differ-
ent sectors, such as computer science, environmental science, manufacturing engineering,
energy and fuels, etc. Among these, supply chain management is an increasingly frequent
topic of research with numerous MCDM models developed to support the optimization of
different supply chains. Common decision-making problems in the supply chain manage-
ment field include sustainable supplier selection, sustainable innovation selection, facility
location selection, and many more.

Supplier selection is one of the most demanding multicriteria decision-making prob-
lems, especially in cases where sustainability is a concern. Fallahpour et al. [4] proposed a
fuzzy AHP-TOPSIS method to support the supplier ranking and selection process. The
author applied the fuzzy preference programming technique to calculate the relative fuzzy
weights of the ranking criteria, while fuzzy TOPSIS is employed to determine the ranking
of the potential suppliers. Govidan et al. [5] introduced the fuzzy TOPSIS-based MCDM
model to support the sustainable supplier evaluation process. Dai and Blackhurst [6]
utilized the AHP and Quality Function Deployment (QFD) methods to develop a MCDM
model for the sustainable supplier selection problem. Luthra et al. [7] introduced a sustain-
able supplier selection method based on AHP and VIKOR methods. The proposed model
has 22 criteria for the three pillars of sustainability. Wang et al. [8] developed a hybrid
fuzzy ANP-PROMETHEE II to assist the supplier evaluation and selection process in the
textile industry. The selection criteria of the proposed model are based on the popular
Supply Chain Operation Reference (SCOR) model.

Sustainable innovation is also an important part of supply chain management where
MCDM models are frequently employed. Gupta and Sarkis [9] introduced a Best-Worst
Method based theoretical framework for ranking sustainable assessment criteria. Enteza-
minia et al. [10] developed an AHP-based decision support system to assist the evaluation
of potential products of the supply chain based on sustainability criteria. Facility loca-
tion selection is another aspect of supply chain management where MCDM methods are
frequently applied to support the decision makers. Chien et al. [11] proposed a hybrid
fuzzy ANP-TOPSIS model to support the location selection problem of hydroelectric plant
projects. The model is applied to a hydroelectric plant development project in Vietnam to
verify its feasibility. Tadić et al. [12] utilized the Delphi method, AHP, and Combinative
Distance-based Assessment (CODAS) to develop a decision support system under grey en-
vironment to support the location selection process of a dry port terminal. Budak et al. [13]
utilized Interval-valued Intuitionistic Fuzzy sets theory in combination with the Decision-
Making Trial and Evaluation Laboratory (DEMATEL) method to create a real-time location
system (RTLSs) to support the asset location management problem of humanitarian relief
efforts. Deveci et al. [14] combined a fuzzy COPRAS-based MCDM model with Geograph-
ical Information Systems (GIS) to solve a factory location selection problem. In order
to solve a stacker’s selection problem in a logistics system, Ulutaş et al. [15] employed
correlation coefficient and the standard deviation to determine the objective weights of
criteria, the Indifference Threshold-based Attribute Ratio Analysis (ITARA) method to
calculate the semi-objective weights of criteria. Finally, the compromise solution method
(MARCOS) is applied to calculate the alternative ranking. The proposed model provided
a comprehensive and easy approach to the problem. Ulutaş et al. [16] developed a novel
MULTIMOOSRAL approach to the supplier selection problem. Ulutaş [17] developed a
grey MCDM model based on grey Step-wise Weight Assessment Ratio Analysis (SWARA)
and Multi-Objective Optimization Method by Ratio Analysis (MOORA) to evaluate the
logistics performance of transition economies. The model suggests that the most influential
criterion is “infrastructure” and Serbia is the country with the best logistics performance
among the transition economies.

There are multiple literatures on the development of MCDM models supporting distri-
bution center (DC) location selection problems. Yilmaz and Kabak [18] developed a type—2
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fuzzy AHP-TOPSIS approach to identify the criteria for a disaster response distribution
center. Liu and Li [19] developed a MCDM model utilizing 2-dimensional linguistic (2DL)
information to ensure the effective decision-making process under uncertain environments
to support a DC location selection problem. Quynh et al. [20] developed a fuzzy TOPSIS-
based model to assist the DC location selection process. Kuo [21] introduced a utilized
fuzzy AHP/ANP and fuzzy DEMATEL to support the international DC selection problem.
The proposed approach is employed to solve an international DC selection problem in
Pacific Asia to demonstrate the model and its feasibility. Yang et al. [22] proposed a novel
MCDM-based approach to solve the logistics center location selection process for FMCG
supply chains in China.

While the application of MCDM methods in solving DC selection problems of various
supply chains has been studied in multiple literatures, only a few focus on solving the
problem under uncertain decision-making environments by incorporating fuzzy theory to
existing MCDM methods. Among these models, none are dedicated to the DC selection
problem of agriculture perishable supply chains. Therefore, this research aims to develop a
comprehensive MCDM model to support the DC selection process of agricultural supply
chains under uncertain decision-making environments. The proposed model is based
on a hybrid SF-AHP and CoCoSo approach and is applied to a real-world case study of
sweet-potato produced in the Mekong Delta Region of Vietnam.

3. Methodology
3.1. Research Graph

Distribution center location selection is an important decision-making issue that has a
profound impact on the performance of any supply chains. However, the decision-making
process usually involves not only quantitative criteria but also qualitative ones, which
increases the complexity of the process. Thus, fuzzy set theory is frequently integrated into
MCDM models, which allows the ambiguity of the decision-making process to be reflected.
While there are multiple methods to calculate the weighting of the criteria, such as BWM,
LBWA, FAHP, FUCOM, and FANP. There are few applications of three dimensions fuzzy
sets on the developments of MCDM modes. Therefore, this paper aims to create a hybrid
MCDM model based on SF-AHP and CoCoSo methods to solve the DC location selection
problem.

The application of the proposed approach includes four steps shown in Figure 2 below:
Step 1: Analyzing the current statuses of the product distribution system. Next, the

decision-making criteria set, and sub-criteria set are established based on the relevant
literatures and industry expert interviews.

Step 2: Applying the SF-AHP method to calculate the weights of the criteria. The
weight of the criteria is also the input data of CoCoSo method in Step 4.

Step 3: Checking the consistency of the results of the SF-AHP model.
Step 4: Employing the CoCoSo method to calculate the ranking of the alternatives

based on the criteria weights calculated using the SF-AHP model.

3.2. Theoretical Basis

3.2.1. Spherical Fuzzy Sets Theory

The spherical fuzzy sets theory has been applied in multiple MCDM models. Sharaf [23]
applied spherical fuzzy sets in combination with the VIKOR method to solve a supplier
selection problem. The implementation of spherical fuzzy sets provides the decision makers
with a larger preference domain [23]. Otay and Atik [24] created an MCDM model to solve a
real-world oil station location evaluation problem using spherical fuzzy sets and the WASPAS
method. Sensitivity analysis showed that the proposed model is robust [24]. Gül [25] developed
a spherical fuzzy extension of the DEMATEL method. The proposed model was applied to
a building contractor selection problem [25]. In this research, a hybrid SF-AHP and CoCoSo
approach is developed to solve a DC location selection problem.
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Figure 2. Research Graph.

Spherical fuzzy sets theory was introduced recently by Gundogdu and Kahraman [26] as
a synthesis of Pythagorean fuzzy sets [27] and Neutrosophic sets theories [28]. Pythagorean
fuzzy sets′ membership functions are defined by membership, non-membership, and hesitancy
parameters; Neutrosophic fuzzy sets membership functions are also composed of truthiness,
falsity, and indeterminacy parameters. Spherical fuzzy sets theory is based on the idea that
by defining a membership function on a spherical surface, decision makers can generalize
different types of fuzzy sets [26].

The membership function of a spherical fuzzy set is defined by three parameters: the
degree of membership, the degree of non-membership, and the degree of hesitancy. Each
of these parameters can have a value between 0 and 1 independently and the sum of the
squared values of these parameters is at most 1.

A spherical fuzzy set ÃS of the universe of U1 is defined as:

ÃS =
{

x,
(

µÃS
(x), vÃS

(x), πÃS
(x)
)
|xǫU1

}
(1)
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with:
µÃS

(x) : U1 → [0, 1], vÃS
(x) : U1 → [0, 1], and πÃS

(x) : U1 → [0, 1]

and
0 ≤ µ2

ÃS
(x) + v2

ÃS
(x) + π2

ÃS
(x) ≤ 1 (2)

with ∀x ∈ U1, µÃS
(x) as the degree of membership, vÃS

(x) as the degree of non-membership,

and πÃS
(x) as the hesitancy of x to ÃS.

Basic arithmetic operations—such as union, intersection, addition, multiplication,
and power—of spherical fuzzy sets are defined and demonstrated in the work of Gun-
dogdu and Kahraman [29]. For these spherical fuzzy sets ÃS = (µÃS

, vÃS
, πÃS

) and

B̃S = (µB̃S
, vB̃S

, πB̃S
), basic arithmetic operations are performed as follows:

ÃS ∪ B̃S =

{
max

{
µ

ÃS
, µB̃S

}
, min

{
v

ÃS
, vB̃S

}
, min

{[
1−

((
max

{
µ

ÃS
, µB̃S

})2
+
(

min
{

v
ÃS

, vB̃S

})2
)]0.5

, max
{

π
ÃS

, πB̃S

}}}
(3)

• Intersection of ÃS and B̃S:

ÃS ∩ B̃S =
{

min
{

µÃS
, µB̃S

}
, max

{
vÃS

, vB̃S

}
, max{[1

−
((

min
{

µÃS
, µB̃S

})2
+
(

max
{

vÃS
, vB̃S

})2
)
]0.5 , min

{
πÃS

, πB̃S

}}
}

(4)

• Addition of ÃS and B̃S:

ÃS + B̃S =

{(
µ2

ÃS
+ µ2

B̃S
− µ2

ÃS
µ2

B̃S

)0.5
, vÃS

vB̃S
,
((

1− µ2
B̃S

)
π2

ÃS
+
(

1− µ2
ÃS

)
π2

B̃S
− π2

ÃS
π2

B̃S

)0.5
}

(5)

• Multiplication of ÃS and B̃S:

ÃS × B̃S =

{
µÃS

µB̃S
,
(

v2
ÃS

+ v2
B̃S
− v2

ÃS
v2

B̃S

)0.5
,
((

1− v2
B̃S

)
π2

ÃS
+
(

1− v2
ÃS

)
π2

B̃S
− π2

ÃS
π2

B̃S

)0.5
}

(6)

• Multiplication of ÃS and a scalar (λ > 0) :

λ× ÃS =

{(
1−

(
1− µ2

ÃS

)λ
)0.5

, vλ
ÃS

,
((

1− µ2
ÃS

)λ
−
(

1− µ2
ÃS
− π2

ÃS

)λ
)0.5

}
(7)

• Power of ÃS, with λ > 0:

Ãλ
S =

{
µλ

ÃS
,
(

1−
(

1− v2
ÃS

)λ
)0.5

,
((

1− v2
ÃS

)λ
−
(

1− v2
ÃS
− π2

ÃS

)λ
)0.5

}
(8)

3.2.2. Spherical Fuzzy Analytic Hierarchy Process (SF-AHP) Model
The SF-AHP method is introduced by Gundogdu and Kahraman [29] is an extension of AHP

with spherical fuzzy sets. In this paper, SF-AHP is employed to determine the DC selection criteria
weights. The SF-AHP method has seven steps [29]:

Step 1: Build the model hierarchical structure.
A hierarchical structure with three levels is constructed. Level 1 is the goal of the model based

on a score index. The score index is determined with n criteria, which is represented in Level 2 of the
structure. A set of m alternative A (m ≥ 2), is defined in Level 3 of the structure.

Step 2: Build pairwise comparison matrices of the criteria using spherical fuzzy judgement
based on linguistic terms (Table 1):
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Table 1. Linguistic measures of importance [29].

Definition (µ, v, π) Score Index

Absolutely more importance (AM) (0.9, 0.1, 0.0) 9
Very high importance (VH) (0.8, 0.2, 0.1) 7

High importance (HI) (0.7, 0.3, 0.2) 5
Slightly more importance (SM) (0.6, 0.4, 0.3) 3

Equally importance (EI) (0.5, 0.4, 0.4) 1
Slightly lower importance (SL) (0.4, 0.6, 0.3) 1/3

Low importance (LI) (0.3, 0.7, 0.2) 1/5
Very low importance (VL) (0.2, 0.8, 0.1) 1/7

Absolutely low importance (AL) (0.1, 0.9, 0.0) 1/9

Equation (9) and (10) are applied to calculate the score indices (SI) of each alternative.

SI =

√∣∣∣∣100 ∗
[(

µ
Ãs
− π

Ãs

)2
−
(

v
Ãs
− π

Ãs

)2
]∣∣∣∣ (9)

for AM, VH, HI, SM, and EI.

1
SI

=
1√∣∣∣∣100 ∗

[(
µ

Ãs
− π

Ãs

)2
−
(

v
Ãs
− π

Ãs

)2
]∣∣∣∣

(10)

for SL, LI, VL, and AL.
Step 3: Check the consistency of each pairwise comparison matrix.
The classical consistency check is applied with the threshold of the Consistency Ratio (CR)

value of 10%:

CR =
CI

RI
(11)

With CI as Consistency Index calculated as:

CI =
λmax − n

n− 1
(12)

where λmax is the maximum eigenvalue of the matrix, and n is the number of criteria.
The Random Index (RI) is determined based on the number of criteria.
Step 4: Obtain the fuzzy weights of criteria and alternatives.
Each alternative′s weight with respect to each criterion is obtained using the following equation:

SWMw

(
ÃSi1

, . . . , ÃSin

)
= w1 ÃSi1

+ · · ·+ wn ÃSin

=<

[
1−

n
∏
j=1

(
1− µ2

Ãsij

)wj
]0.5

,
n
∏
j=1

V
wj

Ãsij

,

[
n
∏
j=1

(
1− µ2

Ãsij

)wj

−
n
∏
j=1

(
1− µ2

Ãsij

− π2
Ãsij

)wj
]0.5

>
(13)

where w = 1/n.
Step 5: Obtain the global weights using hierarchical layer sequencing.
The final ranking of the alternatives is estimated by aggregating the spherical weights at each

level of the hierarchical structure. There are two feasible ways to perform the computation at
this point.

The first way is using the score function in Equation (14) to defuzzify the criteria weights:

S
(

w̃S
j

)
=

√√√√
∣∣∣∣∣100 ∗

[(
3µ

Ãs
−

π
Ãs

2

)2
−
( v

Ãs

2
− π

Ãs

)2
]∣∣∣∣∣ (14)

Then, the criteria weights are normalized using Equation (15) and spherical fuzzy multiplication
in Equation (16) is applied:

ws
j =

S
(

w̃s
j

)

∑
n
j=1 S

(
w̃s

j

) . (15)
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ÃSij
= ws

j ∗ ÃSi
= <

(
1−

(
1− µ2

ÃSi

)ws
j

)1/2

, v
ws

j

ÃSi

,

((
1− µ2

ÃSi

)ws
j

−
(

1− µ2
ÃSi

− π2
ÃSi

)ws
j

)1/2

> (16)

The final ranking score (F̃) for each alternative Ai is calculated using Equation (17):

F̃ =
n

∑
j=1

ÃSij
= ÃSi1

+ ÃSi2
+ · · ·+ ÃSin

(17)

Another option is to continue the calculation without the defuzzification of the criteria weights.
The spherical fuzzy global weights are calculated as:

n

∏
j=1

ÃSij
= ÃSi1

∗ ÃSi2
∗ . . . ∗ ÃSin

(18)

Then, the final ranking score (F̃) of each alternative is calculated using Equation (17).

3.2.3. Combined Compromise Solution (CoCoSo)
CoCoSo is an MCDM method developed by Yazdani et al. [30], combining simple additive

weighting method and exponentially weighted product model. In this research, the CoCoSo method is
used to obtain the ranking of the potential DC locations. A typical CoCoSo model with m alternatives
and n criteria has 5 steps:

Step 1: Determine the decision-making matrix X =
(

xij

)
m×n

for the ith alternative and the jth

criterion:

xij =




x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .
xm1 xm2 . . . xmn


 (19)

With i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Step 2: Normalizing the decision-making matrix [30]:
For beneficial criterion:

rij =

xij −
minxij

i

maxxij

i
− minxij

i

(20)

For non-beneficial criterion:

rij =

maxxij

i
− xij

maxxij

i
− minxij

i

(21)

Step 3: The power weight of comparability (Si) and the total of the power weight of comparabil-
ity (Pi) sequence for each alternative is calculated using Equation (22) and (23):

Si =
n

∑
j=1

(
wjrij

)
(22)

Pi =
n

∑
j=1

(
rij

wj

)
(23)

Step 4: Calculate three aggregated performance scores. With kia as the relative performance
scores of the ith alternative calculated as the arithmetic mean of sums of Si and Pi scores:

kia =
Pi + Si

∑
m
i=1(Pi + Si)

, (24)
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kib is the relative performance scores of the ith alternative calculated as the sum of relative
scores of Si and Pi scores in comparison to the ideal performance values.

kib =
Si

minSi

i

+
Pi

minPi

i

(25)

kic is the relative performance scores of the ith alternative calculated as the compromise of Si

and Pi performance scores. In Equation (20), the λ value is selected by the decision makers and has a
value between 0 and 1 (usually λ = 0.5).

kic =
λ(Si) + (1− λ)Pi

λmaxSi

i
+

(1− λ)maxPi

i

(26)

Step 5: Obtain each alternative′s performance score (ki):

ki = (kiakibkic)
1
3 +

1
3
(kia + kib + kic) (27)

The final ranking of the alternatives is based on the calculated performance scores with the
optimal alternative having the highest score.

4. Case Study
4.1. Model Application

In order to increase the objectivity for the determination of the location of the distribution center,
as well as to match the actual situation and the socio-economic development of the region, interviews
were conducted to ask for opinions of experts, including scientists, managers, and local representative
leaders, who are directly involved in the DC development project, for options according to the criteria
as well as the importance between the criteria. Then, a list of DC location selection criteria is identified
as shown in Table 2:

Table 2. List of DC location selection criteria.

Criteria Symbol Sub Criteria

Cost A
Land Cost (A1)

Logistics Cost (A2)

Available Infrastructure B

Proximity to Airport (B2)

Proximity to Highway (B3)

Proximity to Railway (B4)

Service Level C

Transportation Time (C1)

Distance to Markets (C2)

Distance to
Manufacturers(C3)

Sustainability Factors D

Distance to forest area (D1)

Distance to surface water (D2)

Ethical Factors (D3)

In the first stage of this research, the author applied the Spherical Fuzzy Analytic Hierarchy
Process (SF-AHP) for determining the weight of eleven criteria. The results are shown in Table 3.
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Table 3. Results from the SF-AHP model.

Spherical Fuzzy Weights

Crisp WeightsDegree of
Membership

Degree of
Non-Membership

Degree of Hesitancy

0.433 0.540 0.318 0.067
0.325 0.660 0.254 0.049
0.422 0.589 0.241 0.067
0.443 0.583 0.229 0.071
0.472 0.554 0.229 0.076
0.564 0.459 0.219 0.092
0.634 0.390 0.182 0.106
0.667 0.343 0.202 0.111
0.705 0.302 0.174 0.118
0.707 0.295 0.196 0.118
0.741 0.256 0.177 0.125

Then, Combined Compromise Solution (CoCoSo) Algorithm is applied at this step to calculate
the ranking of the potential locations of the DC. The normalized matrix, weighted comparability
sequence and Si, and exponentially weighted comparability sequence and Pi, are shown in Tables 4–6.

Table 4. Normalized matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A1 0.6667 1.0000 1.0000 0.0000 0.3333 0.5000 0.0000 1.0000 0.5000 0.5000 0.8000
A2 1.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.3333 0.7500 0.0000 0.0000 0.0000
A3 0.0000 0.0000 0.5000 0.5000 1.0000 0.5000 0.6667 0.0000 1.0000 1.0000 0.6000
A4 0.6667 0.5000 0.0000 1.0000 0.3333 1.0000 0.6667 0.2500 0.5000 0.0000 1.0000
A5 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.2500 0.5000 0.0000 0.8000

Table 5. Weighted comparability sequence and Si value.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A1 0.0447 0.0490 0.0670 0.0000 0.0253 0.0460 0.0000 0.1110 0.0590 0.0590 0.1000
A2 0.0670 0.0000 0.0335 0.0355 0.0000 0.0000 0.0353 0.0833 0.0000 0.0000 0.0000
A3 0.0000 0.0000 0.0335 0.0355 0.0760 0.0460 0.0707 0.0000 0.1180 0.1180 0.0750
A4 0.0447 0.0245 0.0000 0.0710 0.0253 0.0920 0.0707 0.0278 0.0590 0.0000 0.1250
A5 0.0670 0.0000 0.0670 0.0710 0.0000 0.0920 0.1060 0.0278 0.0590 0.0000 0.1000

Table 6. Exponentially weighted comparability sequence and Pi values.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A1 0.9732 1.0000 1.0000 0.0000 0.9199 0.9382 0.0000 1.0000 0.9215 0.9215 0.9725
A2 1.0000 0.0000 0.9546 0.9520 0.0000 0.0000 0.8901 0.9686 0.0000 0.0000 0.0000
A3 0.0000 0.0000 0.9546 0.9520 1.0000 0.9382 0.9579 0.0000 1.0000 1.0000 0.9381
A4 0.9732 0.9666 0.0000 1.0000 0.9199 1.0000 0.9579 0.8574 0.9215 0.0000 1.0000
A5 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.8574 0.9215 0.0000 0.9725

In the final stage, an aggregated multiplication rule is employed to release the ranking of the
alternatives and end the decision process. As the results from Table 7, alternative A1 (location A1)
is the optimal location. Findings: the authors described a real case of choosing optimal location for
distribution center in Mekong Delta, Vietnam from an agricultural supply chain project.
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Table 7. Final Aggregation and Ranking.

Alternatives Ka Ranking Kb Ranking Kc Ranking Ki

A1 0.2301 1 4.0181 1 0.9969 1 2.7215
A2 0.1254 5 2.0000 5 0.5435 5 1.4043
A3 0.2077 4 3.8739 4 0.9001 4 2.5586
A4 0.2283 2 3.9248 3 0.9892 2 2.6747
A5 0.2084 3 3.9432 2 0.9031 3 2.5903

4.2. Sensitivity Analysis

In this section, a sensitivity analysis is performed to validate the result of the model. A sensitivity
analysis can allow the decision makers to validate the outcome of their decision-making process by
changing parameters of the original model. In this study, different λ values between 0 and 1 are used
to perform the sensitivity test. The performance scores of each alternative with different λ values are
shown in Table 8.

Table 8. Final performance score (Ki) with different λ values.

Alternative
Final Performance Score (Ki)

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 0.10

A1 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.71 2.69

A2 1.41 1.41 1.41 1.41 1.40 1.40 1.40 1.39 1.38 1.33

A3 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.57 2.57 2.61

A4 2.68 2.68 2.68 2.68 2.67 2.67 2.67 2.67 2.66 2.65

A5 2.59 2.59 2.59 2.59 2.59 2.59 2.60 2.60 2.61 2.63

Based on the result of Table 8, the rankings of each alternative with different λ values are
unchanged as shown in Figure 3 below:
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Figure 3. Ranking of the alternatives with different λ values.

According to Table 8 and Figure 3, the result of the proposed model is robust with different
values of λ. Alternative 1 (A1) is consistently the optimal location for the given DC selection problem.

205



Axioms 2021, 10, 53

Therefore, it can be concluded that the proposed model’s performance is adequate and can be applied
to real-world cases.

Distribution center (DC) location evaluation and selection process is a crucial issue in modern
supply chain design and management. An effective DC location selection method, which allows
the decision makers to consider multiple quantitative and qualitative criteria, can help improve
the performance of supply chains. In this research, a comprehensive MCDM-based approach is
proposed. After the relevant criteria are identified and evaluated, the SF-AHP method is employed
to calculate the weights of the criteria. Then, the CoCoSo method is applied to calculate the ranking
of the alternative. The proposed model is verified by applying to a DC location selection problem of
a sweet potato supply chain in Southern Vietnam. A sensitivity analysis is also performed to verify
the reliability of the model. The results show that the optimal location is Alternative 1 (A1) and the
model performs consistently with different values of the parameter λ. Therefore, it can be concluded
that the proposed model is feasible and can be applied to real-world DC location selection problems.

5. Conclusions
In recent years, the global market has been volatile in order to survive and grow, companies

must focus on building business strategies that help reduce costs, continually improve quality, and
increase satisfaction customer performance and on-time delivery. Therefore, the identification of an
optimal location for the construction of a distribution center is one of the most important decision-
making problems. This decision requires achieving all the above objectives. In this research, the
authors propose a MCDM-based approach, utilizing spherical fuzzy analytic hierarchy process
(SF-AHP) and Combined Compromise Solution (CoCoSo) Algorithm to support the distribution
location selection problem of perishable agricultural products.

A real problem of distribution center’s assessment in Vietnam is handled to examine the
performance of the proposed algorithm. By some comparative analysis and through the evidence,
the stability of the CoCoSo algorithm is also approved. The proposed model can be applied to the
agricultural supply chain around the world. Implementing and applying this new-born technique not
only increases the accuracy of the decision-making system, but also aids company policies, accredits
the global objectives, and delivers the beneficial consequences to the management control.

The future scope of this research can be extended by comparing the relative performance of the
other MCDM methods, like Multi-attributive Ideal-Real Comparative Analysis (MAIRCA), Complex
Proportional Assessment (COPRAS), and Linear Programming Technique for Multi-dimensional
Analysis of Preference (LINMAP) while solving the facility location selection problems.
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1. Introduction

Aggregation functions [1–8] find wide applications in almost all branches of engineer-
ing. Typical fields include mathematics and information sciences, especially in decision-
making and the fusion of information problems. The aim of an aggregation function is
to summarize an n-tuple of information by means of a single representative value. The
fundamental axiom of an aggregation function is the non-decreasing monotonicity. An-
other axiomatic constraint of an aggregation function is that the aggregating of minimal or
maximal inputs are, respectively, minimal and maximal outputs.

The prototypical example of aggregation functions is the arithmetic mean, which
is the first modern definition of mean. The concept of arithmetic mean seems to have
been proposed first by Cauchy in 1821 [9]. Since then, a large variety of aggregation
functions have been proposed. The conjunctive, the disjunctive, the internal, and the mixed
aggregation functions are four main classes of aggregation functions based on many-valued
logics connectives [10]. The algebraic and analytical properties of an aggregation function
are proposed and analyzed in the literature [1–8]. Associativity, symmetry, bisymmetry,
idempotency, neutral element, and annihilator element are algebraic properties. Continuity,
Lipschitzian, and additivity are analytical properties. A first review of papers reporting
aggregation function results was undertaken by Xu and Da [8]. More details can be seen
in the excellent reviews on the state of the art by Grabisch et al. [3–5], group decision
making by Mohd and Abdullah [7] and Del Moral et al. [2], and construction methods by
Khameneh and Kilicman [6]. Recently, many papers have been dedicated to an aggregation
function in group decision making [11–13], multi-criteria decision making [14], two-side
matching decision making [15], and others [16,17].

One characterization of the mean is the Chisini′s equation [9], described as follows:
a mean M, with respect to the function F, is that each input of F can be replaced with
M without changing the overall aggregation. When F is considered as the sum and the
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product, the solution of Chisini′s equation is the arithmetic mean and the geometric mean,
respectively. For the analytical properties, an aggregation function, which satisfies the
Lipschitz condition is a continuous one. More details can be found in [1,3]. This paper
analyzes and compares the Lipschitz behaviors between the sum and the arithmetic mean,
and those of the product and the geometric mean. The Lipschitz constants for the sum,
the arithmetic mean, the product, and the geometric mean can be obtained analytically
by the triangular inequality and the Hölder inequality [1,3]. However, the best Lipschitz
constants, which are the greatest lower bound of the Lipschitz constants, may or may not
be attainable. The reason is that the feasible region of constraints for the mathematical
programming model of the best Lipschitz constant is not compact. To the best knowledge of
the authors, such a problem has not been considered in the literature. For the best Lipschitz
constant, a mathematical model with non-Archimedean numbers is proposed. We also
propose a discrete approximation of the mathematical model. We adopt an exhaustive
analysis to empirically find and compare the optimal solutions and the empirical best
Lipschitz constants for the sum and the arithmetic mean, and for the product and the
geometric mean. The multiple optimal solutions and the empirical best Lipschitz constants
are presented explicitly.

The organization of this paper is as follows. Section 2 briefly reviews an aggregation
function. We analyze and compare the optimal solutions and the best Lipschitz constants
between the sum function and the arithmetic mean in Section 3, and between the product
function and the geometric mean in Section 4. Finally, some concluding remarks and future
research are presented.

2. An Aggregation Function

We now recall the definition of an aggregation function [1–4,6,7]. Let I ⊂ R be the
closed unit interval [0,1], and I n = {x = (x1, x2, . . . , xn)|xi ∈ I, i = 1, 2, . . . , n}. Further-
more, x ≤ y if and only if xi ≤ yi, i = 1, 2, . . . , n.

Definition 1. An n-ary aggregation function A (n) : I n → I satisfies:

• A (1) (x) = x, for n = 1 and x ∈ I;
• If x ≤ y, then A (n)(x) ≤ A (n)(y) for x, y ∈ In;
• A (n) (0, 0, . . . , 0) = 0 and A (n) (1, 1, . . . , 1) = 1.

The generalized inputs I of an aggregation function are a subdomain of the extended
real line [−∞, ∞]. They can be any type (open, closed, . . . ) of interval. For simplicity, we
deal with the closed unit interval [0,1]. An extended aggregation function is a mapping
A : ∪ n∈N I n → I whose restriction to I n is the n-ary aggregation function A (n) for any
n ∈ N . When no confusion can arise, we use the convenient notation A to represent A (n).

For xi ∈ I, i = 1, 2, . . . , n, some well-known examples of aggregation functions [1–4,6,7]
are as follows:

1. Median Md defined by Md(x1, x2, . . . , xn) = x ( n+1
2 ) if n is odd and Md(x1, x2, . . . , xn) =

1
2

(
x ( n

2 )
+ x ( n

2 +1)

)
if n is even where x (1) ≤ x (2) ≤ . . . ≤ x (n).

2. Arithmetic mean (AM) AM(x1, x2, . . . , xn) =
1
n ∑

n
i=1 xi.

3. Weighted arithmetic mean (WAM) WAM(x1, x2, . . . , xn) =
1
n ∑

n
i=1 wixi, where wi ∈ I,

i = 1, 2, . . . , n, ∑
n
i=1 wi = 1.

4. Geometric mean (GM) GM(x1, x2, . . . , xn) = (∏n
i = 1 xi)

1/n.

5. Harmonic mean (HM) HM(x1, x2, . . . , xn) =
n

∑
n
i=1 1/xi

.

6. Minimum (min) min(x1, x2, . . . , xn) = min n
i=1xi and maximum (max) max(x1, x2, . . . , xn) =

max n
i=1xi.

7. Product function ∏ (x1, x2, . . . , xn) = ∏
n

i=1 xi.

8. Projection function to the kth coordinate Pk(x1, x2, . . . , xn) = xk.
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9. The weakest aggregation function Aw(x1, x2, . . . , xn) ={
1, if (x1, x2, . . . , xn) = (1, 1, . . . , 1)

0, else.
10. The strongest aggregation function As(x1, x2, . . . , xn) ={

0, i f (x1, x2, . . . , xn) = (0, 0, . . . , 0)
1, else.

11. Operator Ac(x1, x2, . . . , xn) = max(0, min(1, c + ∑
n
i=1(xi − c)) for c ∈ I.

For all x1, x2, . . . , xn ∈ [0, 1], the relationship between the arithmetic mean, the geo-
metric mean, the harmonic mean, the minimum, the maximum, the product function, the
weakest aggregation function, and the strongest aggregation function is

Aw(x1, x2, . . . , xn) ≤ ∏(x1, x2, . . . , xn) ≤ Min(x1, x2, . . . , xn) ≤ HM(x1, x2, . . . , xn) ≤
GM(x1, x2, . . . , xn) ≤ AM(x1, x2, . . . , xn) ≤ Max(x1, x2, . . . , xn) ≤ As (x1, x2, . . . , xn).

The algebraic and analytical properties of aggregation functions [1–4,6,7] are described
as follows:

Definition 2. An aggregation function A : I n → I is called

• having a neutral element e ∈ I, if for i = 1, 2, . . . , n, we have A(x1, . . . , xi−1, e, xi+1, . . . , xn) =
A (x1, . . . , xi−1, xi+1, . . . , xn).

• having an annihilator element a ∈ I, if for i = 1, 2, . . . , n, we have
A (x1, . . . , xi−1, a, xi+1, . . . , xn) = a.

• additive, if for any x, y, x + y ∈ In, we have A(x + y) = A(x) + A(y).
• associative, if for all (x1, x2, x3) ∈ I3, we have A (A (x1, x2), x3) = A(x1, A(x2, x3)).
• idempotent, if for all x ∈ I, we have A(x, x, . . . , x) = x.
• symmetric, if for all (x1, x2, . . . , xn) ∈ In and for any permutation σ of {1, 2, . . . ,n}, we have

A(x1, x2, . . . , xn) = A
(

xσ (1), xσ (2), . . . , xσ (n)

)
.

• bisymmetric, if for all xij ∈ I, i, j ∈ {1, 2, . . . , n}, we have
A(A(x11, x12, . . . , x1n), . . . , A(xn1, xn2, . . . , xnn)) =
A(A(x11, x21, . . . , xn1), . . . , A(x1n, x2n, . . . , xnn)).

• continuous,∀ε > 0, ∃δ > 0, if |xi − yi| < δ for i ∈ {1, 2, . . . , n}, then

|A(x1, x2, . . . , xn)− A(y1, y2, . . . , yn)| < ε.
• c-Lipschitzian with respect to the norm ‖.‖, if for some constant c ∈ (0,+∞), we have the

Lipschitz condition |A(x1, x2, . . . , xn)− A(y1, y2, . . . , yn)| ≤ c‖(x1, x2, . . . , xn)−
(y1, y2, . . . , yn)‖ for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ In and ‖.‖ : R n → [0,+∞) .

The Minkowski norm of order p ∈ [1, ∞), Lp-norm, defined by

‖x‖p =
(
∑

n

i = 1|xi| p
)1/p

is a well-known norm. When p = ∞,

‖x‖∞ = max n
i=1|xi|

is called the Chebyshev norm. Since

max n
i=1|xi − yi| ≤

(
∑

n

i=1|xi − yi|p+1
) 1

p+1 ≤
(
∑

n

i = 1|xi − yi|p
) 1/p

for all xi, yi ∈ I, i ∈ {1, 2, . . . , n} and p ∈ [1, ∞), it follows that each d-Lipschitzian with
respect to L∞-norm implies d-Lipschitzian with respect to Lp-norm, p ∈ [1, ∞). Addition-
ally, each d-Lipschitzian with respect to Lp+1-norm implies d-Lipschitzian with respect to
Lp-norm, p ∈ [1, ∞).

The best Lipschitz constant is the greatest lower bound d of b such that A (x1, x2, . . . , xn)
is d-Lipschitzian but A (x1, x2, . . . , xn) is not b–Lipschitzian for any b ∈ (0, d). Two types of
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best Lipschitz constant are considered: theoretical best Lipschitz constant and empirical
best Lipschitz constant. Theoretical best Lipschitz constant is obtained analytically by the
triangular inequality and the Hölder inequality [1,3,4]. Empirical best Lipschitz constant is
obtained by finding the maximum value of

|A (x1, x2, . . . , xn)− A (y1, y2, . . . , yn)|
‖(x1, x2, . . . , xn)− (y1, y2, . . . , yn)‖

for (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn), xi, yi ≤ 1 and xi, yi ≥ 0, i ∈ {1, 2, . . . , n}. For an aggre-
gation function A(x1, x2, . . . , xn), the mathematical programming model of the empirical
best Lipschitz constant with respect to Lp-norm is

Maximize |A(x1,x2,...,xn)−A(y1,y2,...,yn)|
(∑

n
i=1|xi−yi | p) 1/p

subject to
(
∑

n
i=1|xi − yi| p) 1/p

> 0

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(1)

The feasible region of constraints for the mathematical programming model (1) is not
compact. The denominator of the objective function is required to be greater than a small
positive number ε. Following the data envelopment analysis, this small number ε is called
a non-Archimedean number [18]. The mathematical programming model (1) becomes

Maximize |A(x1,x2,...,xn)−A(y1,y2,...,yn)|
(∑

n
i=1|xi−yi | p) 1/p

subject to (∑n
i=1|xi − yi| p) 1/p ≥ ε

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(2)

It follows that the largest objective function of the mathematical programming model
(2) is the empirical best Lipschitz constant. If (∑n

i = 1|xi − yi| p) 1/p ≥ ε is a binding
constraint, the value of objective function is dependent of the non-Archimedean number
ε. Since the empirical best Lipschitz constants are the actual best Lipschitz constants, the
analytical behaviors of the aggregation function can be analyzed by the behaviors of the
empirical best Lipschitz constants.

The following definition establishes that a non-idempotent aggregation function can
be transformed into an idempotent one [1,3,4].

Definition 3. Let A : I n → I be an aggregation function such that δA (x) = A (x, x, . . . , x) is
strictly increasing and

{δA (x)|x ∈ I} = {A(x1, x2, . . . , xn)|xi ∈ I, i = 1, . . . , n},

then the idempotent aggregation function is given by AI (x1, x2, . . . , xn) = δ−1
A (A (x1, x2, . . . , xn)),

which is called idempotized A.

To characterize the mean M : I n → I , the first one is Cauchy’s internality prop-
erty [9]. A mean M is an internal function, i.e., Min(x1, x2, . . . , xn) ≤ M(x1, x2, . . . , xn) ≤
Max(x1, x2, . . . , xn). The second is the Chisini′s equation. A mean M with respect to the
function F : I n → I is a number M such that

F(M, M, . . . , M) = F(x1, x2, . . . , xn).

The Chisini′s equation can be rewritten as

δF(M) = F(x1, x2, . . . , xn).
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Under some constraints, the mean that is obtained from the solution of Chisini’s
equation can fulfill Cauchy’s internality property [1,3,4], described as follows:

Definition 4. A function M : I n → I is an average associated with F in I n if there exists a
nondecreasing and idempotizable function F : I n → ℜ satisfying δF(M) = F.

From Definitions 3 and 4, it is implied that M is the idempotized F if and only if M
is an average associated with F. When F is considered as the sum and the product, the
idempotized F is the arithmetic mean and the geometric mean, respectively. The following
sections will analyze and compare the optimal solutions and the best Lipschitz constants
between an aggregation function and associated idempotized aggregation function.

3. The Best Lipschitz Constants of the Sum and Arithmetic Mean Functions

This section deals with the sum function ∑(x1, x2, . . . , xn) = ∑
n
i=1 xi and the arith-

metic mean AM(x1, x2, . . . , xn). The arithmetic mean is the idempotized sum function.
Additionally, the arithmetic mean is an average associated with the sum function. The
domain of the arithmetic mean is [0, 1], so the domain of the sum function is [0, ∞). The
arithmetic mean is an aggregation function with minimal Lipschitz constant with respect
to L1-norm, we will show related results for the other Lp-norms. It is evident that the
sum function satisfies additive, associative, symmetric, bisymmetric, continuous, and
Lipschitzian but non-idempotent. The sum function has neutral element e = 0 but no
annihilator element [1,3,4].

A variant of the sum function is the bounded sum ∑L(x1, x2, . . . , xn) = min (∑n
i=1 xi, 1).

The bounded sum preserves some properties of the original sum function, such as the asso-
ciativity, symmetry, bisymmetry, continuity, Lipschitzian, non-idempotency and neutral ele-
ment e = 0. Two different properties exist between ∑(x1, x2, . . . , xn) and ∑L(x1, x2, . . . , xn).
The sum function possesses additivity and no annihilator element, while the bounded sum
function dissatisfies additive and has annihilator element a = 1.

We now present the optimal solutions and the empirical best Lipschitz constant of an
aggregation function empirically. This paper conducts some computational experiments
to empirically study the influence of the number of variables, the Minkowski norm, the
number of steps, and the type of aggregation function on the optimal inputs and the
empirical best Lipschitz constant performance.

The first numerical experiment is conducted to find the forms of optimal solutions
x and y, and the empirical best Lipschitz constant for ∑(x1, x2, . . . , xn). For Lp-norm, the
mathematical programming model is

Maximize |∑(x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑

n
i = 1|xi − yi | p)

1/p

subject to (∑n
i=1|xi − yi| p) 1/p ≥ ε

xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}.

(3)

Since the sum function is a symmetric one, without loss of generality, let ε = 1/m,
m ∈ {1000, 10,000, 100,000}, the mathematical programming model (3) becomes

Maximize |∑ (x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑

n
i = 1|xi − yi | p)

1/p

subject to yk ≥ xk + ε, for some k ∈ {1, 2, . . . , n}
xi, yi ≤ 1, i ∈ {1, 2, . . . , n}
xi, yi ≥ 0, i ∈ {1, 2, . . . , n}

(4)
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Let m = 1/ε be the number of steps, the discrete approximation of the mathematical
programming model (4) is

Maximize |∑ (x1,x2,...,xn)−∑ (y1,y2,...,yn)|
(∑

n
i=1|xi −yi | p) 1/p

subject to xi, yi ∈
{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n}
(x1, x2, . . . , xn) 6= (y1, y2, . . . , yn)

(5)

For the number of variables n ∈ {2, 3}, Lp-norm, p ∈ {1, 2, 3, ∞} and the number
of steps m ∈ {1000, 10,000, 100,000}, we perform an exhaustive search for all xi, yi ∈{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n} and (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn) with the objective
function

Maximize
|∑(x1, x2, . . . , xn)−∑(y1, y2, . . . , yn)|

(∑n
i = 1|xi − yi| p) 1/p

For the two-variable ∑(x1, x2) and L1-norm, the optimal value for the objective func-
tion (5) is

|x1 + x2 − (x1 ± α1 + x2 ± α2)|
α1 + α2

= 1

and is attained at the multiple solutions x = (x1, x2) and y = (x1 ± α1, x2 ± α2), xi, αi, xi ±
αi ∈ [0, 1], i = 1, 2. For Lp-norm, p ∈ {2, 3, ∞}, the multiple optimal solutions x = (x1, x2)
and y = (x1 ± α, x2 ± α), xi, α, xi ± α ∈ [0, 1], i = 1, 2 yield the largest objective function

|x1 + x2 − (x1 ± α + x2 ± α)|
(αp + αp) 1/p

= 2 1−1/p.

These optimal solutions are verified by applying the popular modelling language
LINGO [19], which utilizes the power of linear and nonlinear optimization to solve math-
ematical problems (4). When the Chebyshev norm L∞, the empirical best Lipschitz con-
stant becomes 2. The empirical best Lipschitz constant 2 1–1/p will increase as the order
p increases.

For the three-variable ∑(x1, x2, x3), the multiple optimal solutions are x = (x1, x2, x3)
and y = (x1 ± α1, x2 ± α2, x3 ± α3), xi, αi, xi ± αi ∈ [0, 1], i = 1, 2, 3 and x = (x1, x2, x3) and
y = (x1 ± α, x2 ± α, x3 ± α), xi, α, xi ± α ∈ [0, 1], i = 1, 2, 3 with the associated empirical
best Lipschitz constant 1 and 31−1/p for p = 1 and p ∈ {2, 3, ∞}, respectively. These optimal
solutions are verified by applying LINGO with ε = 1/m, m ∈ {1000, 10,000, 100,000}. If
p = ∞, we find the empirical best Lipschitz constant 3.

Theoretically, applying the triangular inequality and the Hölder inequality, the result
of a more general n-ary sum function ∑(x1, x2, . . . , xn) is described as follows.

Theorem 1. For the sum function ∑(x1, x2, . . . , xn), the theoretical best Lipschitz constant
is n1−1/p and n for p ∈ [1, ∞) and p = ∞, respectively. The associated optimal solutions
are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ± αi ∈ [0, 1], i =
1, 2, . . . , n and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α), xi, α, xi ± α ∈ [0, 1],
i = 1, 2, . . . , n for p = 1 and p ∈ [2, ∞], respectively.

Proof of Theorem 1. From the triangular inequality, we have
∣∣∣∑

n

i=1 xi −∑
n

i=1 yi

∣∣∣ =
∣∣∣∑

n

i=1(xi − yi)
∣∣∣ ≤ ‖x− y‖1

for xi, yi ∈ [0, 1], i = 1, 2, . . . , n [2,3,5]. From the Hölder inequality, for 1
p + 1

q = 1, p, q ∈
[1, ∞), we obtain

∣∣∣∑
n

i=1 xi −∑
n

i=1 yi

∣∣∣ ≤ ‖x− y‖1 ≤ (1, 1, . . . , 1)q × x− y1 = n 1−1/p‖x− y‖p
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It follows that the theoretical best Lipschitz constant is n 1−1/p. The theoretical best Lipschitz con-
stants of the solutions x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ±
αi ∈ [0, 1], i = 1, 2, . . . , n and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α),
xi, α, xi ± α ∈ [0, 1], i = 1, 2, . . . , n, are 1 and n1−1/p for p = 1 and p ∈ [2, ∞], respectively.
Therefore, these solutions are the optimal ones. �

From Theorem 1, it is implied that the theoretical best Lipschitz constants are the same
as those of the empirical best Lipschitz constants. Therefore, the theoretical and empirical
best Lipschitz constant of the sum function is n 1−1/p. The best Lipschitz constant n1−1/p

increases with increases in either the order p, or the number of variables n. Moreover, our
numerical experiment indicates that the optimal solutions are multiple and the theoretical
best Lipschitz constants are attainable.

According to the experiment we perform on a bounded sum function, the empirical
best Lipschitz constants and associated optimal solutions x and y of the sum function and
those of the bounded sum function coincide.

For the arithmetic mean AM(x1, x2, . . . , xn), it is evident that AM fulfills additive,
idempotent, symmetric, bisymmetric, continuous, and Lipschitzian, but non-associative
and has no neutral element and no annihilator element.

We now present the optimal values of x and y and the empirical best Lipschitz constant
of AM(x1, x2, . . . , xn). Since

Maximize
|AM (x1, x2, . . . , xn)− AM (y1, y2, . . . , yn)|

(∑n
i = 1|xi − yi| p) 1/p

= Maximize
1
n

|∑(x1, x2, . . . , xn)−∑(y1, y2, . . . , yn)|
(∑n

i = 1|xi − yi| p) 1/p
(6)

for (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn), xi, yi ≤ 1 and xi, yi ≥ 0, i ∈ {1, 2, . . . , n}. The
result of AM (x1, x2, . . . , xn) are directly linked to related results of the sum function
described as follows.

For the AM(x1, x2, . . . , xn), the theoretical best Lipschitz constant is n−1/p and 1
for p ∈ [1, ∞) and p = ∞, respectively. The associated multiple optimal solutions
are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn), xi, αi, xi ± αi ∈ [0, 1],
i ∈ {1, 2, . . . , n} and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . , xn ± α), xi, α, xi ± α ∈
[0, 1], i ∈ {1, 2, . . . , n} for p = 1 and p ∈ [2, ∞], respectively.

It implies that the theoretical best Lipschitz constants, which are the same as those
of the empirical best Lipschitz constants. Therefore, the theoretical and empirical best
Lipschitz constant is n−1/p. The best Lipschitz constant n−1/p increases for either the
number of variables n increasing or the order p increasing. Moreover, the optimal solutions
are multiple and the theoretical best Lipschitz constants are attainable.

We compare the algebraic and analytical properties of ∑(x1, x2, . . . , xn) and AM(x1, x2,
. . . , xn) head to head. The differences of both kinds of aggregation functions exist among
the idempotency, associativity, and neutral element. The sum function satisfies associative
and non-idempotent, and has neutral element e = 0. While the arithmetic mean satisfies
non-associative and idempotent and has no neutral element. For the sum and arithmetic
mean functions, the associated multiple optimal solutions of the empirical best Lipschitz
constants are identical and are x = (x1, x2, . . . , xn) and y = (x1 ± α1, x2 ± α2, . . . , xn ± αn),
xi, αi, xi ± αi ∈ [0, 1], i ∈ {1, 2, . . . , n} and x = (x1, x2, . . . , xn) and y = (x1 ± α, x2 ± α, . . . ,
xn ± α), xi, α, xi ± α ∈ [0, 1], i ∈ {1, 2, . . . , n} for p = 1 and p ∈ [2, ∞], respectively.
For Lp-norm, p ∈ [1, ∞], the empirical best Lipschitz constant is n1−1/p for the sum
function and n −1/p for the arithmetic mean, which are the same as those of analytical
method. The ratio of the best Lipschitz constant of the sum to that of the arithmetic
mean is n, which is independent of p. Moreover, our numerical experiments indicate
that the optimal solutions are multiple, and the theoretical best Lipschitz constants are
attainable. The multiple optimal solutions can be expected, since ∑(x1, x2, . . . , xn) and
AM (x1, x2, . . . , xn) satisfy symmetry. More precisely, if (x1, x2, . . . , xn) and (y1, y2, . . . , yn)

is an optimal solution, then
(

xσ(1), xσ(2), . . . , xσ(n)

)
and

(
yσ(1), yσ(2), . . . , yσ(n)

)
is also an

optimal solution for any permutation σ of {1, 2, . . . ,n}. The AM(x1, x2, . . . , xn) is a kernel
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aggregation function, which is a maximally stable aggregation function with respect to
possible input errors [20]. The theoretical best Lipschitz constants of AM(x1, x2, . . . , xn)
and associated ∑(x1, x2, . . . , xn) are attainable.

4. The Best Lipschitz Constants of the Product and Geometric Mean Functions

This section is devoted to the product function ∏(x1, x2, . . . , xn) and the geometric
mean GM (x1, x2, . . . , xn). The geometric mean is the idempotized product function. Addi-
tionally, the geometric mean is an average associated with the product function. The do-
mains of the product function ∏(x1, x2, . . . , xn) and the geometric mean GM (x1, x2, . . . , xn)
are [0, 1]n. Evidently, the product function satisfies associative, symmetric, bisymmetric,
continuous and Lipschitzian, but non-additive and non-idempotent. The product function
has neutral element e = 1 and annihilator element a = 0.

The second experiment is concerned with an exhaustive search for a product func-
tion ∏(x1, x2, . . . , xn), with the objective of maximizing the empirical Lipschitz constant
performance. For the number of variables n ∈ {2, 3}, Lp-norm, p ∈ {1, 2, 3, ∞} and the
number of steps m ∈ {1000, 10,000, 100,000}, we perform an exhaustive search for all

xi, yi ∈
{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n} and (x1, x2, . . . , xn) 6= (y1, y2, . . . , yn) to find the
optimal value of the objective function

Maximize
|∏(x1, x2, . . . , xn)−∏(y1, y2, . . . , yn)|(

∑
n
i = 1|xi − yi| p) 1/p

(7)

Consider the two-variable programming problem. For L1-norm, the optimal value of
the objective function (7) is

|x1 − y1|
|x1 − y1|

= 1

and the associated multiple optimal solutions are x =
(
x1, 1

)
and y = (y1, 1), x1, y1 ∈ [0, 1].

For Lp-norm, p ∈ {2, 3, ∞}, the unique optimal solution x =
(
1− 1

m , 1− 1
m

)
and y = (1, 1),

m ∈ {1000, 10,000, 100,000}, yields the largest objective function
∣∣∣
(
1 − 1

m

)(
1 − 1

m

)
− 1
∣∣∣

(( 1
m

) p
+
( 1

m

)p
) 1/p

= 2 1−1/p − 2−1/p

m
.

These optimal solutions are verified by adopting LINGO with ε = 1/m, m ∈
{1000, 10,000, 100,000}. The limit of the largest objective function is equal to 2 1−1/p as the

number of steps m approaches ∞. Since 2 1−1/p − 2
− 1

p

m < 2 1−1/p, m ∈ N , the limit of the
empirical best Lipschitz constant 2 1−1/p is unattainable. The value of 2 1−1/p grows with
increases in p. When p = 1, the limit value 1 is the same as that of L1-norm. Furthermore,
if p = ∞, the limit of the empirical best Lipschitz constant becomes 2.

For the three-variable product function ∏(x1, x2, x3), we get the multiple optimal
solutions x = (x1, 1, 1), y = (y1, 1, 1), x1, y1 ∈ [0, 1] and the unique optimal solution

x =
(

1− 1
m , 1− 1

m , 1− 1
m

)
, y = (1, 1, 1), m ∈ {1000, 10,000, 100,000} with the associated

empirical best Lipschitz constant 1 and 3 1−1/p − 3
1− 1

p

m + 3−1/p

m 2 for p = 1 and p ∈ {2, 3, ∞},
respectively. These optimal solutions are verified by adopting LINGO with ε = 1/m,
m ∈ {1000, 10,000, 100,000}. For p ∈ {2, 3, ∞}, we can make the empirical best Lipschitz
constant as close to 3 1−1/p as we please, provided we choose m sufficiently close to ∞.
When p = 1, the limit of the empirical best Lipschitz constant becomes 1, which is the same
as that of L1-norm. Furthermore, if p = ∞, the limit of the empirical best Lipschitz constant
is 3.

By induction on n, the empirical best Lipschitz constant is 1 and n 1−1/p +n −1/p ∑
n
i=2

Cn
i

(
− 1

m

)i−1
for p = 1 and p ∈ (1, ∞], respectively. The associated optimal solutions are
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x = (x1, 1, . . . , 1) and y = (y1, 1, . . . , 1), x1, y1 ∈ [0, 1] and x =
(

1− 1
m , 1− 1

m , . . . , 1− 1
m

)

and y = (1, 1, . . . , 1), m ∈ N for p = 1 and p ∈ (1, ∞], respectively. The empirical best
Lipschitz constant of p ∈ (1, ∞] can be made close to n1−1/p by taking m sufficiently close
to ∞.

Theoretically, the result of a more general n-ary product function ∏(x1, x2, . . . , xn) is
presented as follows.

Theorem 2. For an n-ary product function ∏(x1, x2, . . . , xn), the theoretical best Lipschitz
constant is n 1−1/p for p ∈ [1, ∞].

Proof of Theorem 2. From the triangular inequality, the Hölder inequality and xi, yi ∈ [0, 1],
i = 1, 2, . . . , n, we have

|x1x2 . . . xn − y1y2 . . . yn| = |xn(x1x2 . . . xn−1 − y1y2 . . . yn−1) + y1y2 . . . yn−1(xn − yn)|
≤ |x1x2 . . . xn−1 − y1y2 . . . yn−1|+ |xn − yn|

= |xn−1(x1x2 . . . xn−2 − y1y2 . . . yn−2) + y1y2 . . . yn−2(xn−1 − yn−1)|+ |xn − yn|
≤ |x1x2 . . . xn−2 − y1y2 . . . yn−2|+ |xn−1 − yn−1|+ |xn − yn|

≤ ‖x− y‖1 ≤ n 1 −1/p‖x− y‖p.

It follows that the theoretical best Lipschitz constant is n 1−1/p. �

From Theorem 2, the theoretical best Lipschitz constant n 1−1/p increases for either the
number of variables n increasing or the order p increasing. The theoretical best Lipschitz
constant coincides with the limit of the empirical best Lipschitz constant. However, our
numerical experiment indicates that the theoretical best Lipschitz constant n 1−1/p, p ∈
(1, ∞], is unattainable because n 1−1/p + n−1/p ∑

n
i=2 Cn

i

(
− 1

m

) i−1
< n 1−1/p for all m ∈ N .

Therefore, the actual best Lipschitz constant of the product function is 1 and n 1−1/p +

n−1/p ∑
n
i=2 Cn

i

(
− 1

m

) i−1 for p = 1 and p ∈ (1, ∞], respectively.
The geometric mean GM (x1, x2, . . . , xn) satisfies idempotent, symmetric, bisymmetric,

and continuous, but non-associative, non-additive, and non-Lipschitzian. The geometric
function has annihilator element a = 0 but no neutral element.

The third computational experiment is empirically studying the empirical best Lip-
schitz constant of GM (x1, x2, . . . , xn). For the number of variables n ∈ {2, 3}, Lp-norm,
p ∈ {1, 2, 3, ∞}, and the number of steps m ∈ {1000, 10,000, 100,000}, we perform an

exhaustive search for all xi, yi ∈
{

0, 1
m , 2

m , . . . , 1
}

, i ∈ {1, 2, . . . , n}, and (x1, x2, . . . , xn) 6=
(y1, y2, . . . , yn) with the objective of maximizing the Lipschitz constant

Maximize
|GM(x1, x2, . . . , xn)−GM(y1, y2, . . . , yn)|(

∑
n
i = 1|xi − yi|p

) 1/p
(8)

For the two-variable GM (x1, x2), the optimal value for the objective function (8) is√
m. For Lp-norm, p ∈ {1, 2, 3}, the associated unique optimal solution is x = (0, 1)

and y =
(

1
m , 1

)
, m ∈ {1000, 10,000, 100,000}. For L∞-norm, the associated multiple

optimal solutions are x = (0, 1), y =
(

1
m , 1

)
and x =

(
0, 1− 1

m

)
, y =

(
1
m , 1

)
, m ∈

{1000, 10,000, 100,000}. These optimal solutions are verified by applying LINGO with
ε = 1/m, m ∈ {1000, 10,000, 100,000}. The empirical best Lipschitz constant

√
m tends

to infinity as m takes on arbitrarily large positive value. Therefore, the two-variable
GM(x1, x2) does not satisfy the Lipschitz condition.

For the three-variable GM(x1, x2, x3), the unique optimal solution x = (0, 1, 1) and

y =
(

1
m , 1, 1

)
, m ∈ {1000, 10,000, 100,000}, has the largest Lipschitz constant m 2/3 for
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Lp-norm, p ∈ {1, 2, 3}. For L∞-norm, the multiple optimal solutions are x = (0, 1, 1),

y =
(

1
m , 1, 1

)
, and x =

(
0, 1− 1

m , 1− 1
m

)
, y =

(
1
m , 1, 1

)
, m ∈ {1000, 10,000, 100,000}with

associated empirical best Lipschitz constant m 2/3. These optimal solutions are verified by
applying LINGO with ε = 1/m, m ∈ {1000, 10,000, 100,000}. For p ∈ {1, 2, 3, ∞}, we can
make the empirical best Lipschitz constant m 2/3 as close to ∞ as we please, provided we
choose m sufficiently close to ∞. It implies that the three-variable GM (x1, x2, x3) does not
fulfill the Lipschitz condition.

By induction on n, the empirical best Lipschitz constant of an n-ary geometric mean
function GM (x1, x2, . . . , xn) is m 1−1/n for all p ∈ [1, ∞]. The associated optimal solutions

are x = (0, 1, . . . , 1), y =
(

1
m , 1, . . . , 1

)
, m ∈ N for p ∈ [1, ∞] and x = (0, 1, . . . , 1),

y =
(

1
m , 1, . . . , 1

)
and x =

(
0, 1− 1

m , . . . , 1− 1
m

)
, y =

(
1
m , 1, . . . , 1

)
, m ∈ N for p = ∞.

For n ≥ 2 and Lp-norm p ∈ [1, ∞], the best Lipschitz constant m 1−1/n approaches plus
infinity as m approaches plus infinity. This can be expected since GM (x1, x2, . . . , xn),
n ≥ 2, is not differentiable at x = (0, 0, . . . , 0). Additionally, GM (x1, x2, . . . , xn), n ≥ 2,
is not uniformly continuous on [0, 1] n. Note that the best Lipschitz constant, m 1−1/n is
independent of order p.

Comparing the algebraic and analytical properties of ∏(x1, x2, . . . , xn) and GM (x1, x2,
. . . , xn), the differences of the adopted properties exist among the associativity, idem-
potency, Lipschitzian, and neutral element. The product function satisfies associative,
non-idempotent, Lipschitzian, and has neutral element e = 1. While the geometric mean
satisfies non-associative, idempotent, non-Lipschitzian, and has no neutral element. The as-
sociated optimal solutions of the product function and those of the geometric mean function
are different. The associated optimal solutions of the product function are x = (x1, 1, . . . , 1),

y = (y1, 1, . . . , 1), x1, y1 ∈ [0, 1] and x =
(

1− 1
m , 1− 1

m , . . . , 1− 1
m

)
, y = (1, 1, . . . , 1),

m ∈ N for p = 1 and p ∈ (1, ∞], respectively. The associated optimal solutions of the geo-

metric mean function are x = (0, 1, . . . , 1), y =
(

1
m , 1, . . . , 1

)
, m ∈ N for p ∈ [1, ∞) and

x = (0, 1, . . . , 1), y =
(

1
m , 1, . . . , 1

)
, and x =

(
0, 1− 1

m , . . . , 1− 1
m

)
, y =

(
1
m , 1, . . . , 1

)
,

m ∈ N for p = ∞. The empirical best Lipschitz constant of the product function is 1 and

n 1−1/p + n−1/p ∑
n
i=2 Cn

i

(
− 1

m

) i−1
for p = 1 and p ∈ (1, ∞], respectively. The empirical

best Lipschitz constant of the geometric mean function is m 1−1/n for all p ∈ [1, ∞]. As m
approaches infinity, the empirical best Lipschitz constant approaches n 1−1/p and infinity
for the product function and the geometric mean function, respectively. Moreover, our
numerical experiments indicate that the limits of the empirical best Lipschitz constants of
the product and geometric mean functions are unattainable as m approaches infinity. The
reason is because the non-kernel aggregation functions of the product and geometric mean
functions. Moreover, the product function do not fulfill the Lipschitz condition.

5. Conclusions and Future Research

This paper analyzes and compares the optimal solutions and the theoretical and empir-
ical best Lipschitz constants between an aggregation function and associated idempotized
aggregation function. We conduct some computational experiments to empirically study
the influence of the number of variables, the Minkowski norm, the number of steps and
the type of aggregation function on the optimal solutions and the theoretical and empirical
best Lipschitz constant performance.

For the sum function and the arithmetic mean, the differences of the adopted algebraic
and analytical properties exist among the idempotency, associativity, and neutral element.
Our numerical experiments indicate that for both sum and arithmetic mean functions,
the associated optimal solutions are multiple and identical. For Lp-norm, p ∈ [1, ∞], the
theoretical and empirical best Lipschitz constant is n 1−1/p for the sum function and n −1/p

for the arithmetic mean. These theoretical best Lipschitz constants are attainable. The
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ratio of the best Lipschitz constant of the sum to that of the arithmetic mean is n, which is
independent of p.

For the product function and geometric mean, the differences exist among the associa-
tivity, idempotency, Lipschitzian, and neutral element. Our numerical experiments indicate
that the associated optimal solutions of the product function and those of the geometric
mean are different and dependent of m. The empirical best Lipschitz constant of the product

function is 1 and n 1−1/p + n−1/p ∑
n
i=2 Cn

i

(
− 1

m

) i−1
for p = 1 and p ∈ (1, ∞], respectively.

The empirical best Lipschitz constant of the geometric mean function is m 1−1/n for all
p ∈ [1, ∞]. As the number of steps m approaches ∞, the empirical best Lipschitz constant
approaches n 1−1/p and ∞ for the product function and the geometric mean function,
respectively. These limits of the empirical best Lipschitz constants are unattainable.

For an aggregation function and associated idempotized aggregation function, the
differences of the adopted algebraic and analytical properties always exist among the
associativity, idempotency, and neutral element. However, the associated optimal solutions
of the best Lipschitz constant for the product function and those of the geometric mean
are different. It follows that the product function satisfies Lipschitzian, but the geometric
mean do not. While the optimal solutions of the sum and arithmetic mean functions are
multiple and identical. Both sum and arithmetic mean functions satisfy Lipschitzian and
attain the theoretical best Lipschitz constant.

The results of this paper can be considered to apply in group decision making or two-
sided decision making matching problems. For a group decision making problem, a group
of experts are usually required to express preference information over a set of alternatives
according to their knowledge and experience. By adopting the results of this paper, we
aggregate the individual preference information to obtain collective preference information.
Then, a solution is obtained. By considering the leadership and bounded confidence
levels of experts, Zhang et al. [13] proposed a new consensus reaching algorithm for social
network group decision making problems with interval fuzzy preference relations. For a
two-sided matching decision making (TSMDM) problem, people aim to find an appropriate
matching between two sets of objects, such as marriage matching, colleges admissions,
person–job matching, and knowledge service matching. Due to the imprecise knowledge
of matching objects and the different culture of decision makers, TSMDM problems with
different preference structures are proposed. It is natural that matching objects will provide
linguistic assessments. Aggregation of the linguistic assessments is the main process,
especially for the multi-criteria TSMDM problems with multi-granular hesitant fuzzy
linguistic term sets and incomplete criteria weight information [15].

In the future, we will analyze the best Lipschitz constants for all aggregation functions
theoretically and empirically. In particular, the theoretical and empirical analysis can be
extended to the conjunctive, the disjunctive, and the mixed aggregation functions. Thus,
the Lipschitz analysis for the conjunctive, the disjunctive, and the mixed aggregation
functions is a subject of considerable ongoing research.
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Abstract: On the heels of the online shopping boom during the Covid-19 pandemic, the electronic
commerce (e-commerce) surge has many businesses facing an influx in product returns. Thus, relevant
companies must implement robust reverse logistics strategies to reflect the increased importance of
the capability. Reverse logistics also plays a radical role in any business’s sustainable development as
a process of reusing, remanufacturing, and redistributing products. Within this context, outsourcing
to a third-party reverse logistics provider (3PRLP) has been identified as one of the most important
management strategies for today’s organizations, especially e-commerce players. The objective of
this study is to develop a decision support system to assist businesses in the selection and evaluation
of different 3PRLPs by a hybrid fuzzy multicriteria decision-making (MCDM) approach. Relevant
criteria concerning the economic, environmental, social, and risk factors are incorporated and taken
into the models. For obtaining more scientific and accurate ranking results, linguistic terms are
adopted to reduce fuzziness and uncertainties of criteria weights in the natural decision-making
process. The fuzzy analytic hierarchy process (FAHP) is applied to measure the criteria’s relative
significance over the evaluation process. The fuzzy technique for order preference by similarity to an
ideal solution (FTOPSIS) is then used to rank the alternatives. The prescribed method was adopted for
solving a case study on the 3PRLP selection for an online merchant in Vietnam. As a result, the most
compatible 3PRLP was determined. The study also indicated that “lead time,” “customer’s voice,”
“cost,” “delivery and service,” and “quality” are the most dominant drivers when selecting 3PLRLs.
This study aims to provide a more complete and robust evaluation process to e-commerce businesses
and any organization that deals with supply chain management in determining the optimized reverse
logistics partners.

Keywords: reverse logistics; recycling; outsource; e-commerce; triangular fuzzy number; FAHP;
FTOPSIS; decision making; sustainability

MSC: 90B50; 03E72; 74P05; 74P20; 90B06

1. Introduction

In recent years, reverse logistics has become a key component of any successful
streamlined supply chain. Today’s global value chains require greater resilience and
efficiencies in the flow of goods between and within countries. Sustainability in the supply
chain has become a strategic intent for almost all businesses, and reverse logistics practice
is key to the effort. In maximizing the value recovery and safe disposal of waste, reverse
logistics expands products at the end of their life cycles through some activities such as
resell, refurbish, remanufacture, and recycle, to name a few [1]. Besides optimizing value
and sustainability for businesses, the reverse logistics issue that directly impacts supply
chains the most is to manage the return of products from the end consumer back to the
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manufacturer. With online shopping becoming increasingly prevalent, the reverse loop
has never been so prominent in global supply chains. In an e-commerce-focused era in
which customers are returning products at an increasing rate in various industry sectors,
e-merchants and other retailers are at a critical juncture, as any continued lack of focus on
reverse logistics will be unsustainable. Online purchases are being returned three times
more often than store purchases [2]. This statistic means reverse logistics supply chain
management has become a necessity for online merchants to maintain a balanced inventory
turn and operating expenses. Additionally, the unprecedented crisis by the Covid-19
pandemic has brought inexorable growth to the e-commerce sector, which is expected to
lead to an even higher volume of returned goods. Undoubtedly, this trend will endure in a
post-Covid-19 world. Accordingly, reverse logistics has a significant effect on customer
relationships and, most significantly, leads to sustainability and long-term profitability of
business operations.

Expected to reach 603.9 billion USD by 2025 [3], reverse logistics, when optimized,
can increase customer satisfaction and return on investment (ROI). Simply put, reverse
logistics in e-commerce refers to the return process, which is the collection of all activities
of goods that move in the reverse direction, i.e., from their point of consumption back
to the business. The most critical processes are customer support, physical movement
of goods, warehousing, triage, repairs, and after-sales support [4]. An easy and hassle-
free return process can gain customer engagement and loyalty. As a result, functional
and efficient reverse logistics has become a pivotal element for e-commerce businesses.
However, most companies are not able to manage their reverse logistics networks. Due to
the complicated process and resource constraints, more and more businesses choose to
outsource third-party companies to handle their reverse e-commerce services and optimize
the return process. Third-party reverse logistics providers (3PRLP) are delegated to help
companies productively manage returned currents of products at optimal cost. Hence,
evaluating and selecting the best 3PRLP is an imperative and complicated task that must
be undertaken prudently [5] for businesses, especially e-commerce merchants and other
retailers, to facilitate an effective reverse logistics process and retain customers.

Given the abovementioned importance of reverse logistics outsourcing to the indus-
tries, the relevant literature on potential sectors in developing countries is sparse, taking
the e-commerce sector in Vietnam as a good example. This gap has formed our research
motivation. The current study aims to address this gap by investigating reverse logistics
outsourcing practices in Vietnam. According to Google, Vietnam is ranked the second-
fastest-growing e-commerce market in Southeast Asia, following Indonesia [6]. Vietnam’s
e-commerce has been growing from about 28 percent in 2017 to nearly half of the popula-
tion in 2020 [7]. It is also forecast that the country’s e-commerce market will hit 15 billion
USD by 2025 [8]. While e-commerce giants in Vietnam such as Tiki, Lazada, and Grab
have already developed their own logistics sector (warehousing, packing, shipping, and
reverse logistics), most other online merchants (including some major players like Shopee
and Sendo) are not able to operate an in-house logistics, therefore opt to delegate these
activities to third-party logistics providers. Thus, it creates great opportunities and a
promising market for e-commerce logistics. According to the 2017 logistics report of the
Ministry of Industry and Trade, Vietnam has about 50 enterprises providing e-logistics
services [9]. With the need for fast, immediate, and on-demand delivery from customers
who shop online, more and more e-logistics startups have entered this market. Providing
the volume of e-commerce transactions increasing, logistics providers have to handle large
volumes of returned goods. In Vietnam, wrong shipping addresses (especially in rural
areas) and unsuccessful orders are daunting challenges faced by both e-commerce retailers
and e-logistics businesses. Moreover, competition in terms of delivery speed and costs are
factors that can distinguish the best third-party logistics providers.
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Moreover, the literature on outsourcing 3PRLP is still limited because of its recent
emergence and demand from stakeholders. This lack, therefore, attracted our attention.
In this paper, the authors aim to efficiently assist the decision-makers in evaluating and
selecting the most sustainable 3PRLP by proposing a robust hybrid multicriteria decision-
making (MCDM) approach. Among MCDM methods, the analytic hierarchy process (AHP)
and the technique for order preference by similarity to an ideal solution (TOPSIS) are two
classical and most commonly used techniques. Conventional AHP and TOPSIS have been
combined in different ways and investigated in many studies. In these methods, the criteria
weights are often determined by AHP, and TOPSIS ranks the alternatives. Some exemplary
studies are as follows. In the basic combination of the AHP-TOPSIS approach, the eval-
uations about criteria and alternatives are all supposed to be deterministic numbers [10].
In the integration of AHP and the fuzzy TOPSIS method applied in [11], the criteria weights
determined by AHP are real numbers, and the evaluations of alternatives with respect
to different criteria are in linguistic terms. Meanwhile, linguistic terms are adopted to
evaluate criteria, and real numbers are used to assess alternatives in [12]. As a further
improvement to the existing literature of reverse logistics outsourcing in terms of method-
ologies, this paper combines fuzzy AHP (FAHP) and fuzzy TOPSIS (FTOPSIS), by which
linguistic terms in evaluations of both criteria and alternatives are adopted. This adoption’s
motive is that experts are often reluctant or unable to assign accurate values during the
decision-making process. Thus, they prefer to provide their evaluations in linguistic terms,
reflecting their uncertain, ambiguous, and vague judgment. In light of this, fuzzy set theory
is a useful method for dealing with uncertainty. The decision model may include unknown,
incomplete, and inaccessible information and partially ignorant data. During the whole
evaluation process, the linguistic terms are converted into triangular fuzzy numbers.

The research procedure is described as follows. In the first stage, FAHP is applied
for determining the fuzzy preference weights of the criteria. The evaluation process’s
criteria concern economic factors (quality, cost, lead time, delivery and service, R&D capa-
bility), environmental factors (recycle, disposal, reproduction, and reuse, green technology,
CO2 emissions), social factors (health and safety, customer’s voice, reputation), and risk fac-
tors (operation risk, financial risk). In the next stage, FTOPSIS is used to rank all alternatives,
offering the optimized 3PRLPs. An application of selecting 3PRLPS for an e-commerce
business in Vietnam is presented, simultaneously demonstrating the suggested method.
In doing so, this study makes novel contributions to the field by providing a complete and
robust evaluation process for 3PRLP selection in the e-commerce sector for a developing
country in Asia which is almost neglected in the literature. As a result, this paper provides a
holistic framework for businesses with theoretical and managerial implications as a robust
decision support system in solving the reverse logistics outsourcing problem.

The paper unfolds as follows. In the next section, a literature review on reverse
logistics outsourcing is reviewed. Section 3 summarizes the materials and methods of
FAHP and FTOPSIS used in the paper. Result analysis of a case study in Vietnam is shown
in Section 4. Finally, Section 5 offers the managerial insights and conclusions of the paper.

2. Literature Review

Concerning the well-developed status of research on outsourcing 3PRLP, multiple
criteria decision-making (MCDM) techniques that simultaneously consider various de-
sired selection criteria in different dimensions have appeared to be promising for this
task. Literature and practice show that economic, environmental, and social factors are
dominant decision-making variables in selecting a sustainable provider of reverse logistics
services [13–15]. Sustainable development (economic, environmental, and social aspects)
lead organizations to reverse logistics practices (Figure 1) [16]. To determine a qualified
provider in the outsourcing process, the proposed evaluation approach and the set of crite-
ria are two quintessential parts [17]. Many notable studies have applied various MCDM
techniques that consider different criteria to evaluate and select the best 3PRLP. For exam-
ple, Tavana et al. [18] proposed an integrated intuitionistic fuzzy AHP and SWOT method
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for solving the reverse logistics outsourcing problem faced by a company. Their findings
indicated that when delegating reverse logistics activities to 3PRLPs, it is the most signifi-
cant priority for a firm to focus on its core business; meanwhile, reducing costs constitutes
one of its least important priorities. In the study of Zarbakhshnia et al. [5], a multiple
attribute decision making (MADM) model to rank and select the sustainable third-party
reverse logistics providers in the presence of risk factors was proposed, and a realistic case
study in the automotive industry was applied to demonstrate the model’s effectiveness.
Bai and Sarkis [19] first introduced the use of neighborhood rough set, TOPSIS, and VIKOR
as a proper and realistic modeling approach for 3PRLPs evaluation and selection using
economic/business, environmental, and social (sustainability) factors.

 

Figure 1. Three pillars of sustainable development [16].

In the management science and decision-making literature, discussing reverse lo-
gistics outsourcing issues has become an increasingly important topic. Various criteria
and approaches have been considered in the literature. In terms of criteria, businesses
traditionally examine cost, quality, and flexibility [19]. For organizations that seek long-
term resilience of reverse supply chains, social and environmental concerns are considered
sustainability factors [20–22]. Regarding methodologies, numerous evaluation models
based on MCDM techniques for outsourcing 3PRLP have been introduced ranging from
analytical hierarchy process (AHP) [23–27], fuzzy AHP [28,29], analytic network pro-
cess (ANP) [30–32], fuzzy ANP [33], technique for order preference by similarity to ideal
solution (TOPSIS) [19,27,34,35], fuzzy TOPSIS [36], visekriterijumska optimizacija i kom-
promisno resenje (VIKOR) method [19,31,33,37], step-wise weight assessment ratio analysis
(SWARA) [38,39], quality function deployment (QFD) model [28,40], data envelopment
analysis (DEA) [26,35,41,42], other MCDM methods [30–34,38,39,43], exact methods (mathe-
matical programming) [26,37,43–45], and statistical approaches [40,46–48]. Table 1 presents
a summary of the literature review on proposed approaches for 3PRLP selection and
evaluation problems.
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Table 1. Summary of method approaches in reverse logistics provider’s selection.

No. Authors [Citation] Year

Methodologies Problems
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1 Korpela and Tuominen [23] 1996 x x

2 Moberg and Speh [46] 2004 x x

3 Sinkovics and Roath [47] 2004 x x

4 Thakkar et al. [30] 2005 x x x x

5 So et al. [24] 2006 x x

6 Bottani and Rizzi [36] 2006 x x

7 Sahay et al. [44] 2006 x x

8 Göl and Çatay [25] 2007 x x

9 Yang et al. [48] 2008 x x

10 Zhou et al. [41] 2008 x x

11 Hamdan and Rogers [42] 2008 x x

12 Kannan et al. [34] 2009 x x x

13 Liu and Wang [45] 2009 x x

14 Liou et al. [31] 2010 x x x x

15 Sasikumar and Haq [37] 2011 x x x x

16 Ho et al. [28] 2012 x x x

17 Falsini et al. [26] 2012 x x x x

18 Hsu et al. [32] 2013 x x x

19 Perçin and Min [40] 2013 x x x

20 Jayant et al. [27] 2014 x x x x

21 Tadić et al. [33] 2014 x x x x

22 Ilgin [29] 2017 x x x

23 Zarbakhshnia et al. [38] 2018 x x x

24 Bai and Sarkis [19] 2019 x x x x

25 Govindan et al. [43] 2019 x x x x

26 Wang et al. [35] 2019 x x x x

27 Agarwal et al. [39] 2020 x x x x

28 This paper 2021 x x x x

Note: analytical hierarchy process (AHP), analytical network process (ANP), technique for order of preference by similarity to ideal solution
(TOPSIS), visekriterijumska optimizacija i kompromisno resenje (VIKOR), step-wise weight assessment ratio analysis (SWARA), quality
function deployment (QFD), multi-criteria decision making (MCDM), data envelopment analysis (DEA).

Given several methodologies used in the evaluation and selection of 3PRLPs, it can be
observed that AHP and TOPSIS methods are the two typical and most commonly used due
to their applicability. The foundation of the AHP is a set of axioms that carefully delimits
the scope of the problem environment [49]. Among mathematical weighting methods,
the pairwise comparison method in the AHP is an effective procedure to determine the
importance of different attributes to the objective. Its understandability in theory, simplicity
in application, and robustness of its outcomes have been proven in practice and validated
by a diverse range of decision-making problems. The TOPSIS method, first introduced
in [50], is one of the most well-known classical MCDM methods. Simply stated, in a
geometrical sense, the TOPSIS method simultaneously considers the distance to the ideal
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solution and negative-ideal solution of each alternative and choosing the closest relative
to the ideal solution as the best alternative [27]. In this paper, the authors aim to solve
the fuzzy information during the whole evaluation and selection process by considering
linguistic terms in both criteria and alternatives, which thereby are converted into triangular
fuzzy numbers using the fuzzy set theory. Thus, the gaps in the existing literature are
addressed in this paper as follows: (1) methodologically, this is the first study to suggest a
hybrid fuzzy decision support system that combines the fuzzy AHP (FAHP) and the fuzzy
TOPSIS (FTOPSIS) for the field of reverse logistics outsourcing; (2) in terms of applications,
the prescribed approach is used for a case study in Vietnam to support an e-commerce
business determining their compatible and sustainable partners for reverse logistics among
eight candidates; (3) the managerial implications of this paper provide a comprehensive
insight that enables decision analysts to better understand the complete evaluation and
selection process of 3PRLPs considering well-rounded aspects. From a broader standpoint,
this study can assist e-commerce businesses or any organization to expedite their reverse
logistics strategies in this era.

3. Materials and Methods
3.1. Research Process

Decision-making in real-world problems, especially in the evaluation and selection
of third-party reverse logistics providers (3PRLP), involves not only quantitative criteria
(i.e., cost, lead time) but also quantitative criteria (i.e., the voice of customers, reputation).
Fuzzy set theory is useful for handling complex decision-making problems with numerous
associated factors. In this paper, among many MCDM models, FAHP and FTOSPS are
chosen to select the most efficient providers among alternatives because they are available
in decision-making software and allow decision-makers to practice effectively. The process
of the paper includes two stages, as can be seen in Figure 2.

 

Figure 2. Research process.
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In the first stage, FAHP is applied to identify fuzzy preference weights of criteria in
the outsourcing reverse logistics problem. The list of criteria used in this paper is selected
from the relevant literature review (Table 2) and industrial experts’ survey. There are
four main criteria and 15 criteria including economic (quality, cost, lead time, delivery
and service, R&D capability), environment (recycle, disposal, reproduction and reuse,
green technology, CO2 emissions), social (health and safety, customer’s voice, reputation),
and risk (operational risk, financial risk). In the second stage, FTOPSIS is applied to rank
all alternatives. This paper proposed a hybrid approach by combining two MCDM models
that can improve the decision-making process. Besides, the problem of outsourcing reverse
logistics for e-commerce retailers is addressed under uncertainty environment using fuzzy
theory that can enhance the robust results.

Table 2. List of criteria used in reverse logistics provider’s selection.

Main Criteria Criteria Target Authors [Citation]

Economic (C1)

C11. Quality Max
Bottani and Rizzi [36], Spencer et al. [51], Tsai et al.

[52], Zarbakhshnia et al. [38], Mavi et al. [53],
Govindan et al. [43], Sasikumar and Haq [37]

C12. Cost Min

Bottani and Rizzi [36], Spencer et al. [51], Tsai et al.
[52], Zarbakhshnia et al. [38], Mavi et al. [53],
Govindan et al. [43], Sasikumar and Haq [37],

Efendigil et al. [54]

C13. Lead time Min
Zarbakhshnia et al. [38], Mavi et al. [53],
Govindan et al. [43], Efendigil et al. [54]

C14. Delivery and service Max

Bottani and Rizzi [36], Spencer et al. [51], Tsai et al.
[52], Zarbakhshnia et al. [38], Mavi et al. [53],
Govindan et al. [43], Sasikumar and Haq [37],

Efendigil et al. [54]

C15. R&D capability Max Bottani and Rizzi [36], Goebel et al. [55], Ni et al. [56]

Environment (C2)

C21. Recycle Max
Zarbakhshnia et al. [38], Mavi et al. [53],

Sasikumar and Haq [37], Guimarães and Salomon [57]

C22. Disposal Max
Zarbakhshnia et al. [38], Mavi et al. [53],

Sasikumar and Haq [37]

C23. Reproduction and
reuse

Max
Goebel et al. [55], Zarbakhshnia et al. [38],
Mavi et al. [53], Sasikumar and Haq [37]

C24. Green technology Max
Zarbakhshnia et al. [38], Sasikumar and Haq [37],

Guimarães and Salomon [57]

C25. CO2 emissions Min Zarbakhshnia et al. [38], Govindan et al. [43]

Social (C3)

C31. Health and safety Max
Zarbakhshnia et al. [38], Govindan et al. [43],

Mavi et al. [53]

C32. Customer’s voice Max
Zarbakhshnia et al. [38], Mavi et al. [53],

Efendigil et al. [54]

C33. Reputation Max Spencer et al. [51], Mavi et al. [53], Efendigil et al. [54]

Risk (C4)
C41. Operational risk Min

Zarbakhshnia et al. [38], Mitra et al. [58],
Mavi et al. [53]

C42. Financial risk Min
Bottani and Rizzi [36], Tsai et al. [52], Ni et al. [56],

Mavi et al. [53]

Note: identified by the researchers.
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3.2. Triangular Fuzzy Number (TFN)

Fuzzy set theory was introduced by Zadeh [59] to deal with uncertainty problems.
A triangular fuzzy number (TFN) is defined as (a, b, c) which denotes pessimistic, most
likely, and optimistic values, as shown in Equation (1), and as can be seen in Figure 3.

µ

(
x

F̃

)
=





(x− a)/(b− a), a ≤ x ≤ b

(c− x)/(c− b), b ≤ x ≤ c
0, otherwise

(1)𝐹 = (𝐹 ( ), 𝐹 ( )) = 𝑎 + (𝑏 − 𝑎)𝑦, 𝑐 + (𝑏 − 𝑐)𝑦 , 𝑦 ∈ 0, 1𝐹 ( ), 𝐹 ( )

 

𝑀 = ⎝⎜
⎛𝑒 𝑒 ⋯ 𝑒𝑒 ⋯ ⋯ 𝑒⋯𝑒 ⋯𝑒 ⋯⋯ ⋯𝑒 ⎠⎟

⎞
𝑒  𝐾

𝑀 = 𝑒 𝑒 ⋯ 𝑒𝑒 ⋯ ⋯ 𝑒⋯𝑒 ⋯𝑒 ⋯⋯ ⋯𝑒  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒 = ∑ 𝑒  𝐾

Figure 3. The membership function of triangular fuzzy number (TFN).

The representative of each level of membership function is denoted, as can be seen in
Equation (2).

F̃ = (Fl(y), Fr(y)) = [a + (b− a)y, c + (b− c)y], y ∈ [0, 1] (2)

where Fl(y), Fr(y) denote two sides of the fuzzy number.

3.3. Fuzzy Analytical Hierarchy Process (FAHP)

FAHP is an extension of AHP, which overcomes the drawbacks of AHP, and solves
such problems under fuzzy environment. The linguistic expression for fuzzy scale and
allocated TFN is shown in Table 3. The procedure of FAHP includes six steps as follows [60].

Table 3. Linguistic rating level and allocated TFN in the fuzzy AHP (FAHP) model.

Fuzzy Number Linguistics Rating Level Allocated TFN

1 Equal importance (1, 1, 1)
2 Weak importance (1, 2, 3)
3 Not bad (2, 3, 4)
4 Preferable (3, 4, 5)
5 Importance (4, 5, 6)
6 Fairly importance (5, 6, 7)
7 Very important (6, 7, 8)
8 Absolute (7, 8, 9)
9 Perfect (8, 9, 10)

Step 1: Build a fuzzy pairwise comparison matrix, as can be seen in Equation (3).

M̃k =




ẽk
11 ẽk

12 · · · ẽk
1n

ẽk
21 · · · · · · ẽk

2n
· · ·
ẽk

n1

· · ·
ẽk

n2

· · ·
· · ·

· · ·
ẽk

nn




(3)
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where ẽk
ij denotes the important level from kth decision-maker with respect to the ith

criterion over the jth criterion using TFN membership function.
Step 2: Assume that a decision group has K experts. An integrated fuzzy pairwise

comparison matrix can be calculated as Equation (4).

M̃k =




ẽ11 ẽ12 · · · ẽ1n

ẽ21 · · · · · · ẽ2n

· · ·
ẽn1

· · ·
ẽn2

· · ·
· · ·

· · ·
ẽnn


 such that ẽij =

∑
K
k=1 ẽk

ij

K
(4)

Step 3: The fuzzy geometric mean of each criterion is calculated as Equation (5),
as follows.

r̃i =

(
n

∏
j=1

ẽij

)1/n

such that i = 1, 2, . . . , n (5)

where r̃i denotes the fuzzy geometric mean and ẽij denotes the important level from group
of decision-maker with respect to the ith criterion over the jth criterion.

Step 4: Calculate the fuzzy weights of each criterion using Equation (6).

w̃i = r̃i (×) (r̃1 (+) r̃2 (+) . . . (+) r̃n)
−1 (6)

Step 5: Defuzzify the fuzzy weight using the average weight criteria Mi, as can be
seen in Equation (7).

Mi =
w̃1 (+) w̃2 (+) . . . (+) w̃n

n
(7)

Step 6: Calculate the normalized weight criteria Ni as Equation (8).

Ni =
Mi

∑
n
i=1 Mi

(8)

3.4. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS)

FTOPSIS is a very useful MCDM model, which is applied to rank different alternatives
based on the distance between the fuzzy positive ideal solution (FPIS) and the fuzzy
negative ideal solution (FNIS). The process of FTOPSIS includes seven steps below [61].

Step 1: Identify the fuzzy weights of criteria.
In FTOPSIS model, the fuzzy weights of criteria are obtained from FAHP model.
Step 2: Based on the linguistic rating value in Table 4, develop the fuzzy decision

matrix, as can be seen in Equations (9) and (10).

M̃ =




x̃11 x̃11 · · ·
x̃21 x̃22 · · ·

x̃11
x̃2n

...
...

...
x̃m1 x̃m2 · · ·

...
x̃mn


 such that i = 1, 2, . . . , m; j = 1, 2, . . . , n (9)

x̃ij =
1
k

(
x̃1

ij (+) x̃2
ij (+) . . . (+) x̃k

ij

)
(10)

where x̃k
ij denotes the fuzzy rating of alternative Ai with respect to criteria Cj by kth expert,

and x̃k
ij =

(
ak

ij, bk
ij, ck

ij

)
.

Step 3: In this step, the fuzzy decision matrix is normalized, as shown in Equa-
tions (11)–(13).

S̃ =
[
s̃ij

]
m×n

such that i = 1, 2, . . . , m; j = 1, 2, . . . , n (11)
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s̃ij =

(
aij

c∗j
,

bij

c∗j
,

cij

c∗j

)
, c∗j = maxi

{
cij

∣∣i = 1, 2, . . . , m
}

f or bene f it criteria (12)

s̃ij =

(
a′j
cij

,
a′j
bij

,
a′j
aij

)
, a′j = mini

{
aij

∣∣i = 1, 2, . . . , m
}

f or cost criteria (13)

Step 4: Construct the weighted normalized fuzzy decision matrix ũij, Equations (14)
and (15).

Ũ =
[
ũij

]
m×n

such that i = 1, 2, . . . , m; j = 1, 2, . . . , n (14)

ũij = s̃ij (×) w̃j (15)

Step 5: Determine fuzzy positive ideal solution (FPIS) Q∗ and fuzzy negative ideal
solution (FNIS) Q′ based on Equations (16) and (17).

Q∗ =
(

ũ∗1 , . . . , ũ∗j , . . . , ũ∗n
)

(16)

Q′ =
(

ũ′1, . . . , ũ′j, . . . , ũ′n
)

(17)

where ũ∗j = (1, 1, 1), ũ′j = (0, 0, 0), j = 1, 2, . . . , n.

Step 6: Calculate the distance (D̃∗i and D̃′i) of each alternative from FPIS and FNIS, as
can be seen in Equations (18) and (19).

D̃∗i =
n

∑
j=1

d
(

ũij, ũ∗j
)

, i = 1, 2, . . . , m (18)

D̃′i =
n

∑
j=1

d
(

ũij, ũ′j
)

, i = 1, 2, . . . , m (19)

Step 7: Calculate the closeness coefficient (i.e., relative gaps-degree) of each alternative,
Equation (20). The optimal alternative is closer to the FPIS and farther from the FNIS as
C̃Ci approaches to 1.

C̃Ci =
D̃′i

D̃∗i + D̃′i
= 1− D̃∗i

D̃∗i + D̃′i
, i = 1, 2, . . . , m (20)

where D̃′i
D̃∗i +D̃′i

is fuzzy satisfaction degree, D̃∗i
D̃∗i +D̃′i

is fuzzy gap degree which presents how

fuzzy gaps can be improved to obtain the aspiration levels of decision-makers.

Table 4. Linguistics rating level of alternatives in the fuzzy TOPSIS (FTOPSIS) model.

Linguistics Rating Level Allocated TFN

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

4. Numerical Application and Results Analysis
4.1. Problem Description

Amid the Covid-19 online sales boom, the e-commerce industry has accelerated in
every corner of the world [62], including in Vietnam. For this country, the e-commerce
industry is rapidly expanding, thanks to increasing foreign investments, a favorable regula-
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tory environment, and enhanced internet access. Investment and development of logistics
are among the premises for the expansion and resilience of e-commerce. Among key strate-
gies, outsourcing logistics has been the first choice. Selecting the most suitable partner is
the most convenient and economical solution for any e-commerce merchant in Vietnam.

In this paper, a numerical application of an e-commerce business in Vietnam is used
to test the effectiveness of the proposed fuzzy MCDM model. After preliminary evaluation,
eight potential third-party reverse logistics providers (3PRLP) were selected based on the
requirements of the company in order to select a compatible 3PRLP and to ensure a long-
term healthy relationship between the two firms. The list of criteria was selected from the
relevant literature review and industrial experts’ survey. In the numerical application, a to-
tal of 10 experts (head of logistics and relevant departments in this e-commerce business)
were consulted by interviews to assess the effect of these criteria on the 3PRLP selection.
All experts had more than 10 years’ working experiences in the area of logistics and supply
chain. Figure 4 presents the decision hierarchy for outsourcing reverse logistics including
all criteria and the list of eight potential 3PRLP. There are four main criteria and 15 criteria
including economic (quality, cost, lead time, delivery and service, R&D capability), environ-
ment (recycle, disposal, reproduction and reuse, green technology, CO2 emissions), social
(health and safety, customer’s voice, reputation), and risk (operational risk, financial risk).

 

C1. Economic C13. Lead time

C14. Delivery and service

C12. Cost

C11. Quality
3PRLP-01

3PRLP-02

3PRLP-03

3PRLP-04

3PRLP-05

3PRLP-06

3PRLP-07

3PRLP-08

0

Outsourcing 
Reverse Logistics

C15. R&D capability

C23. Reproduction and reuse

C24. Green technology

C22. Disposal

C21. Recycle

0

C25. CO2 emissions

C33. Reputation

C32. Customer's voice

C31. Health and safety

C42. Financial risk

C41. Operational risk

C2. Environment

C3. Social

C4. Risk

Figure 4. The decision hierarchy for outsourcing reverse logistics.
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4.2. Results of Fuzzy AHP

The following FAHP procedure shows an example of the calculation of the four main
criteria (economic, environment, social, risk). Other criteria are calculated using the same
procedures. The initial and integrated fuzzy comparison matrix of the main criteria are
presented in Tables 5 and 6, respectively.

Table 5. Initial comparison matrix of the main criteria.

Criteria

Linguistics Rating Level

Criteria

(8
,9

,1
0)

(7
,8

,9
)

(6
,7

,8
)

(5
,6

,7
)

(4
,5

,6
)

(3
,4

,5
)

(2
,3

,4
)

(1
,2

,3
)

(1
,1

,1
)

(1
,2

,3
)

(2
,3

,4
)

(3
,4

,5
)

(4
,5

,6
)

(5
,6

,7
)

(6
,7

,8
)

(7
,8

,9
)

(8
,9

,1
0)

C1 x C2
C1 x C3
C1 x C4
C2 x C3
C2 x C4
C3 x C4

Note: economic (C1), environment (C2), social (C3), risk (C4).

Table 6. Integrated fuzzy comparison matrix of the main criteria.

Criteria Economic (C1) Environment (C2) Social (C3) Risk (C4)

Economic (C1) (1, 1, 1) (2, 3, 4) (3, 4, 5) (2, 3, 4)
Environment (C2) (1/4, 1/3, 1/2) (1, 1, 1) (1, 2, 3) (1/3, 1/2, 1)

Social (C3) (1/5, 1/4, 1/3) (1/3, 1/2, 1) (1, 1, 1) (1/4, 1/3, 1/2)
Risk (C4) (1/4, 1/3, 1/2) (1, 2, 3) (2, 3, 4) (1, 1, 1)

Note: identified by the researchers.

In order to check the consistency ratio (CR) of the rating score, the fuzzy number
is converted to a real number using lower bound (pessimistic value) and upper bound
(optimistic value) values of the fuzzy comparison matrix [60,63,64]. Table 7 shows the
non-fuzzy comparison matrix of the main criteria.

Table 7. Non-fuzzy comparison matrix of the main criteria.

Criteria Economic (C1) Environment (C2) Social (C3) Risk (C4)

Economic (C1) 1 2.8284 3.8730 2.8284
Environment (C2) 0.3536 1 1.7321 0.5774

Social (C3) 0.2582 0.5774 1 0.3536
Risk (C4) 0.3536 1.7321 2.8284 1

Sum 1.9653 6.1378 9.4335 4.7593
Note: calculated by the researchers.

To get the priority vector of the main criteria, the normalized matrix of pairwise
comparison is calculated by dividing each number in a column of the comparison matrix
by its column sum. In addition, the priority vector is determined by averaging the row
entries in the normalized matrix, which are shown in Table 8.
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Table 8. Normalized comparison matrix of the main criteria.

Criteria Economic (C1) Environment (C2) Social (C3) Risk (C4) Priority Vector

Economic (C1) 0.5088 0.4608 0.4106 0.5943 0.4936
Environment (C2) 0.1799 0.1629 0.1836 0.1213 0.1619

Social (C3) 0.1314 0.0941 0.1060 0.0743 0.1014
Risk (C4) 0.1799 0.2822 0.2998 0.2101 0.2430

Sum 1 1 1 1 1
Note: calculated by the researchers.

In this step, the largest eigenvector (λmax) is calculated to determine the consistency
index (CI), the random index (RI), and the consistency ratio (CR), as follows.




0.5088 0.4608 0.4106 0.5943
0.1799 0.1629 0.1836 0.1213
0.1314 0.0941 0.1060 0.0743
0.1799 0.2822 0.2998 0.2101


×




0.4936
0.1619
0.1014
0.2430


 =




2.0318
0.6524
0.4083
0.9849







2.0318
0.6524
0.4083
0.9849


/




0.4936
0.1619
0.1014
0.2430


 =




4.1161
4.0291
4.0253
4.0530




This paper considers four main criteria. Hence, we get n = 4. Consequently, λmax and
CI are calculated as follows.

λmax =
4.1161 + 4.0291 + 4.0253 + 4.0530

4
= 4.0559

CI =
λmax − n

n− 1
=

4.0559− 4
4− 1

= 0.0186

where n = 4, we get RI = 0.9, and the consistency ratio (CR) is calculated as follows:

CR =
CI

RI
=

0.0186
0.9

= 0.0207

From the result, CR = 0.0207 < 0.1, therefore, the pairwise comparison matrix is
consistent, and the results are satisfactory. Consequently, other criteria are calculated using
the same methodology. The integrated fuzzy comparison matrix of 15 criteria is presented
in Table A1 (Appendix A).

The results of the fuzzy weights of all criteria from the FAHP model are calculated
based on the fuzzy geometric mean concept, shown in Table 9. Each fuzzy weight includes
three values, which are pessimistic value (the lowest weight), most likely value (the middle
weight), and optimistic value (the highest weight). For example, the fuzzy weight of criteria
quality (C11), has the pessimistic weight at 0.0357, the most likely weight of 0.0750, and
the most optimistic weight of 0.1545. The remaining criteria have the same demonstration.
These fuzzy preference weights will be used in the next stage of the FTOPSIS model.
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Table 9. Results of fuzzy weights from the FAHP model.

Main Criteria Criteria Target Fuzzy Geometric Mean Fuzzy Weights

Economic
(C1)

C11. Quality Max 0.7654 1.1409 1.6597 0.0357 0.0750 0.1545
C12. Cost Min 0.8479 1.2247 1.7031 0.0395 0.0805 0.1585

C13. Lead time Min 0.8834 1.2901 1.8245 0.0412 0.0848 0.1698
C14. Delivery and service Max 0.7785 1.1502 1.6611 0.0363 0.0756 0.1546

C15. R&D capability Max 0.6999 0.9744 1.3549 0.0326 0.0640 0.1261

Environmental
(C2)

C21. Recycle Max 0.6329 0.8985 1.2983 0.0295 0.0591 0.1208
C22. Disposal Max 0.5795 0.8318 1.2241 0.0270 0.0547 0.1139

C23. Reproduction and reuse Max 0.7801 1.0897 1.4672 0.0364 0.0716 0.1366
C24. Green technology Max 0.7869 1.0865 1.4525 0.0367 0.0714 0.1352

C25. CO2 emissions Min 0.6196 0.8559 1.2218 0.0289 0.0563 0.1137

Social
(C3)

C31. Health and safety Max 0.5680 0.7661 1.0838 0.0265 0.0504 0.1009
C32. Customer’s voice Max 0.9029 1.2784 1.7677 0.0421 0.0840 0.1645

C33. Reputation Max 0.6239 0.8631 1.2284 0.0291 0.0567 0.1143

Risk
(C4)

C41. Operational risk Min 0.5917 0.8153 1.1728 0.0276 0.0536 0.1092
C42. Financial risk Min 0.6831 0.9483 1.3387 0.0318 0.0623 0.1246

Note: calculated by the researchers.

Figure 5 depicts the influence levels of criteria. As can be seen, “lead time”, “cus-
tomer’s voice”, “cost”, “delivery and service”, and “quality” criteria have the most in-
fluence percentages, at 8.4559%, 8.3087%, and 7.9628%, 7.6185%, and 7.58%, respectively.
Regarding economic factors in choosing 3PRLPs in the e-commerce sector, the results rec-
ommend that “lead time” is more critical in experts’ evaluation than other cost and quality
issues. For e-commerce businesses, lead times are a significant measure when figuring out
inventory management strategy, which is the primary estimator for when the managers
reorder stock. It is also an especially concerning factor when adding new product lines to
the online store. The new products will have their lead times that may be separate from
regularly scheduled deliveries. “Customer’s voice” (as a social criterion) is also positioned
second in the expert ranking. This result shows that information sharing, and customer
engagement are key determinants of reverse logistics in the e-commerce industry [5].
In the booming e-commerce market of Vietnam, e-commerce businesses are attempting to
survive and thrive by focusing more on economic aspects. However, green and resilient
strategies towards sustainable development have come into focus. In order to enhance
the competitiveness of Vietnamese businesses, the government encourages enterprises to
participate effectively in the global value chain by embracing and integrating sustainable
business strategies [65]. Thus, the criteria ranking results indicate that economic criteria
were ranked high, but the other criteria from the three pillars of sustainable development
(social and environmental factors) were also noteworthy. Among environmental factors,
“reproduction and reuse” and “green technology” ranked sixth (6.9908%) and seventh
(6.9550%) among 15 criteria. These figures elaborate that social and environmental drivers
are of tremendous importance in reverse logistics systems besides economic aspects.
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Figure 5. Influence level of criteria from FAHP model.

4.3. Results of Fuzzy TOPSIS

In FTOPSIS model, the fuzzy preference weights of criteria are obtained from FAHP
model. According to the FTOPSIS process in Section 3.4, fuzzy normalized decision
matrix and fuzzy weighted normalized decision matrix are shown in Tables A2 and A3
(Appendix A). Table 10 and Figure 6 show the top three potential third-party reverse
logistics providers, which are 3PRLP-05, 3PRLP-07, and 3PRLP-01, ranked first, second,
and third with scores of 0.0590, 0.0506, and 0.0513, respectively.

Table 10. Closeness coefficient of each alternative.

3PRLP D*
i D

′
i

Gap Degree Satisfaction Degree Rank

3PRLP-01 14.3560 0.7756 0.9487 0.0513 3
3PRLP-02 14.5155 0.6184 0.9591 0.0409 6
3PRLP-03 14.4158 0.7260 0.9521 0.0479 4
3PRLP-04 14.5380 0.5851 0.9613 0.0387 8
3PRLP-05 14.2550 0.8943 0.9410 0.0590 1
3PRLP-06 14.5211 0.6152 0.9594 0.0406 7
3PRLP-07 14.3579 0.8446 0.9444 0.0556 2
3PRLP-08 14.5020 0.6222 0.9589 0.0411 5

Note: calculated by the researchers.
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Figure 6. Final ranking of the FTOPSIS model.

5. Discussion and Conclusions

As online shopping volumes grow, so do return volumes. Product return rates are
rising in the e-commerce industry. The cost of doing e-commerce business is facilitating
a simple and seamless return processes as part of the increase in customer expectations.
This is where reverse logistics comes into its unique role, which is to handle many inevitable
situations regarding e-commerce transactions, including deliveries of incorrect products,
customer behaviors, damaged products, delays in order fulfillment, to name just a few [66].
It cannot be failed to mention that reverse logistics systems, in essence, provide businesses
with numerous opportunities to integrate the three drivers of sustainable development,
such as remanufacturing, repair, recycle, and disposal. There is no question that proficient
reverse logistics not only handles the e-commerce returns problem but also enables any
business to gain customer retention, reduced costs, and higher achievement of sustainability
goals. However, managing reverse logistics in-house means the supply chain of moving
goods must be amplified, which leads companies to significant issues. For this reason,
more and more e-commerce retailers consider reverse logistics outsourcing as an inevitable
part of their business. Thus, the evaluation and selection problem of 3PRLP has never been
so prominent in this era.

Methodologically, the authors elaborate that in using the proposed hybrid MCDM
approach (combining FAHP and FTOPSIS), this has so far been the first study to fill the
gap of the existing literature that lacks 3PRLP evaluation and selection practices for several
industries within a developing countries context, and especially to address the increased
demand of reverse logistics outsourcing in the e-commerce sector. The use of linguistic
expressions for the whole evaluation process will mitigate the risk of fuzzy and uncertain
judgment when weighing criteria, as well as improving the robustness of the ranking
results and the overall computation efficiency. Proper transformations of linguistic terms
also ensures that the approach has a broad range of applications.

E-commerce has been on the rise in Vietnam. By 2025, e-commerce purchases are
projected to be used by over 70 percent of the 100 million population. Regarding the
e-commerce logistics sector, it has contributed to approximately 20–25% of the GDP of
Vietnam, according to Vietnam Logistics Business Association [67]. This industry is also
predicted to grow by roughly 12 percent every year. Thus, more and more logistics compa-
nies and investors are flooding into this untapped potential market. On the other hand,
the dilemma of outsourcing logistics services and the decision to select a provider based on
quality management and financial performance criteria are sure to be a headache facing
e-commerce retailers. Within this context, our paper aims to provide significant insights
for online merchants on the methods of evaluation and selection of 3PRLP. In doing so, the
proposed approach is applied to illustrate a case study of the reverse logistics outsourcing
problem in Vietnam. From the FAHP stage, results show that “lead time,” “cost,” “delivery
and service,” and “quality” (economic factors) and “customer’s voice” (social factor) are
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the most impactful criteria according to expert evaluation. Environmental drivers such as
“reproduction and reuse” and “green technology” were also ranked high, indicating the
other aspect from the three pillars of sustainable development were noteworthy in reverse
logistics outsourcing of e-commerce in Vietnam. In the next stage, FTOPSIS indicates that
3PRLP-05 was the optimized partner with the final ranking score of 0.059. For practical
implications, these findings can help e-commerce businesses or any firms to gain a bet-
ter understanding of the 3PRLP selection process. Thus, the companies can devise their
strategies accordingly to better control their reverse logistics activities.

For future studies involving qualitative and quantitative criteria, new factors concern-
ing today’s situation (i.e., post-Covid-19 world) should be upgraded to obtain well-rounded
results. Regarding theoretical limitations, this paper calculated the consistency ratio using
lower bound (pessimistic value) and upper bound (optimistic value) values of the fuzzy
comparison matrix, hence, future studies should approach the procedure of defuzzification
according to the derivate fuzzy AHP [68]. Moreover, future studies should target other
MCDM techniques (i.e., VIKOR, PROMETHEE II) for ranking alternatives and compare
the results using ranking similarity reference coefficients [69], and/or combine with the
exact methods [70]. In terms of applications, further studies might therefore investigate
reverse logistics outsourcing practices in other countries than Vietnam to improve the
findings’ external validity. Moreover, the procedure and criteria presented in this pa-
per can also be considered in other related industries, such as supplier selection or any
decision-making problems.
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Appendix A

Table A1. Integrated fuzzy comparison matrix of 15 criteria (FAHP).

Criteria C11 C12 C13 C14

C11 1 1 1 1.0592 1.6632 2.4208 0.7192 1.0414 1.5337 0.5234 0.7800 1.2457
C12 0.4131 0.6012 0.9441 1 1 1 0.9883 1.4902 2.1074 0.9221 1.4310 2.0477
C13 0.6520 0.9603 1.3904 0.4745 0.6711 1.0118 1 1 1 1.2671 1.9896 2.7808
C14 0.8027 1.2821 1.9105 0.4884 0.6988 1.0845 0.3596 0.5026 0.7892 1 1 1
C15 0.5086 0.7490 1.1623 0.4745 0.6711 1.0118 0.5086 0.7490 1.1623 0.2928 0.4131 0.6520
C21 0.4131 0.6012 0.9441 0.4131 0.5610 0.8459 0.4131 0.6012 0.9441 0.4131 0.6012 0.9441
C22 0.4131 0.6012 0.9441 0.4131 0.5610 0.8459 0.4131 0.6012 0.9441 0.4131 0.6012 0.9441
C23 0.5086 0.7490 1.1623 0.4745 0.6711 1.0118 0.9221 1.4310 2.1550 1.7617 2.6531 3.4783
C24 0.9221 1.4310 2.1550 0.7892 1.0592 1.3653 0.2131 0.2732 0.3854 0.5086 0.7490 1.1623
C25 0.5086 0.7490 1.1623 0.8262 1.2457 1.8346 0.2928 0.4131 0.6520 0.5086 0.7490 1.1623
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Table A1. Cont.

Criteria C11 C12 C13 C14

C31 0.9221 1.4310 2.1550 0.3596 0.4690 0.7071 0.2378 0.2928 0.3854 0.5086 0.7490 1.1623
C32 0.5086 0.7490 1.1623 0.8262 1.2457 1.8346 0.9221 1.4310 2.1550 0.9221 1.4310 2.1550
C33 0.5086 0.7490 1.1623 0.8262 1.2457 1.8346 0.9221 1.4310 2.1550 0.5086 0.7490 1.1623
C41 0.5086 0.7490 1.1623 0.4745 0.6711 1.0118 0.9221 1.4310 2.1550 0.5086 0.7490 1.1623
C42 0.9221 1.4310 2.1550 0.4745 0.6711 1.0118 0.5086 0.7490 1.1623 0.2928 0.4131 0.6520

Criteria C15 C21 C22 C23

C11 0.8604 1.3351 1.9663 1.0592 1.6632 2.4208 1.0592 1.6632 2.4208 0.8604 1.3351 1.9663
C12 0.9883 1.4902 2.1074 1.1822 1.7826 2.4208 1.1822 1.7826 2.4208 0.9883 1.4902 2.1074
C13 0.8604 1.3351 1.9663 1.0592 1.6632 2.4208 1.0592 1.6632 2.4208 0.4640 0.6988 1.0845
C14 1.5337 2.4208 3.4154 1.0592 1.6632 2.4208 1.0592 1.6632 2.4208 0.2875 0.3769 0.5676
C15 1 1 1 0.6988 1.0718 1.5971 0.6988 1.0718 1.5971 2.1074 2.7922 3.4154
C21 0.6261 0.9330 1.4310 1 1 1 0.9221 1.3351 1.8346 0.2875 0.3769 0.5676
C22 0.6261 0.9330 1.4310 0.5451 0.7490 1.0845 1 1 1 1.5337 2.4208 3.4154
C23 0.2928 0.3581 0.4745 1.7617 2.6531 3.4783 0.2928 0.4131 0.6520 1 1 1
C24 0.2928 0.3581 0.4745 1.7617 2.6531 3.4783 1.7617 2.6531 3.4783 0.5086 0.6520 0.9330
C25 0.6261 0.8706 1.2821 0.4973 0.7277 1.1161 0.9221 1.4310 2.1550 0.9221 1.2457 1.7299
C31 0.6261 0.8706 1.2821 0.4884 0.7117 1.0845 0.5086 0.7490 1.1623 0.5086 0.6520 0.9330
C32 1.6917 2.4307 3.0837 0.5234 0.7800 1.2457 0.5086 0.7490 1.1623 0.9221 1.2457 1.7299
C33 0.6261 0.8706 1.2821 0.6335 0.8604 1.1623 0.5086 0.7490 1.1623 0.2928 0.3854 0.5842
C41 0.6261 0.8706 1.2821 0.2928 0.4131 0.6520 0.9221 1.4310 2.1550 0.5086 0.6520 0.9330
C42 1.0718 1.4727 1.9744 0.5086 0.7490 1.1623 0.9221 1.4310 2.1550 0.9221 1.2457 1.7299

Criteria C24 C25 C31 C32

C11 0.4640 0.6988 1.0845 0.8604 1.3351 1.9663 0.4640 0.6988 1.0845 0.8604 1.3351 1.9663
C12 0.7325 0.9441 1.2671 0.5451 0.8027 1.2104 1.4142 2.1324 2.7808 0.5451 0.8027 1.2104
C13 2.5946 3.6606 4.6932 1.5337 2.4208 3.4154 2.5946 3.4154 4.2049 0.4640 0.6988 1.0845
C14 0.8604 1.3351 1.9663 0.8604 1.3351 1.9663 0.8604 1.3351 1.9663 0.4640 0.6988 1.0845
C15 2.1074 2.7922 3.4154 0.7800 1.1487 1.5971 0.7800 1.1487 1.5971 0.3243 0.4114 0.5911
C21 0.2875 0.3769 0.5676 0.8960 1.3741 2.0107 0.9221 1.4051 2.0477 0.8027 1.2821 1.9105
C22 0.2875 0.3769 0.5676 0.4640 0.6988 1.0845 0.8604 1.3351 1.9663 0.8604 1.3351 1.9663
C23 1.0718 1.5337 1.9663 0.5781 0.8027 1.0845 1.0718 1.5337 1.9663 0.5781 0.8027 1.0845
C24 1 1 1 1.0718 1.5337 1.9663 0.5781 0.8027 1.0845 1.0718 1.5337 1.9663
C25 0.5086 0.6520 0.9330 1 1 1 0.7490 1.0718 1.4902 0.4640 0.6084 0.8706
C31 0.9221 1.2457 1.7299 0.6711 0.9330 1.3351 1 1 1 0.4040 0.5086 0.7277
C32 0.5086 0.6520 0.9330 1.1487 1.6438 2.1550 1.3741 1.9663 2.4754 1 1 1
C33 0.4040 0.5451 0.8123 0.6711 0.9330 1.3351 1.1487 1.6438 2.1550 0.6711 0.9330 1.3351
C41 0.4040 0.5451 0.8123 0.6711 0.9330 1.3351 0.6711 0.9330 1.3351 0.4040 0.5451 0.8123
C42 0.6711 0.9330 1.3351 1.1487 1.6438 2.1550 0.6711 0.9330 1.3351 0.2732 0.3517 0.5086

Criteria C33 C41 C42

C11 0.8604 1.3351 1.9663 0.8604 1.3351 1.9663 0.4640 0.6988 1.0845
C12 0.5451 0.8027 1.2104 0.9883 1.4902 2.1074 0.9883 1.4902 2.1074
C13 0.4640 0.6988 1.0845 0.4640 0.6988 1.0845 0.8604 1.3351 1.9663
C14 0.8604 1.3351 1.9663 0.8604 1.3351 1.9663 1.5337 2.4208 3.4154
C15 0.7800 1.1487 1.5971 0.7800 1.1487 1.5971 0.5065 0.6790 0.9330
C21 0.8604 1.1623 1.5784 1.5337 2.4208 3.4154 0.8604 1.3351 1.9663
C22 0.8604 1.3351 1.9663 0.4640 0.6988 1.0845 0.4640 0.6988 1.0845
C23 1.7118 2.5946 3.4154 1.0718 1.5337 1.9663 0.5781 0.8027 1.0845
C24 1.2311 1.8346 2.4754 1.2311 1.8346 2.4754 0.7490 1.0718 1.4902
C25 0.7490 1.0718 1.4902 0.7490 1.0718 1.4902 0.4640 0.6084 0.8706
C31 0.4640 0.6084 0.8706 0.7490 1.0718 1.4902 0.7490 1.0718 1.4902
C32 0.7490 1.0718 1.4902 1.2311 1.8346 2.4754 1.9663 2.8435 3.6606
C33 1 1 1 0.4640 0.6084 0.8706 0.7490 1.0718 1.4902
C41 1.1487 1.6438 2.1550 1 1 1 0.4640 0.6084 0.8706
C42 0.6711 0.9330 1.3351 1.1487 1.6438 2.1550 1 1 1

Note: calculated by the researchers.
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Table A2. Fuzzy normalized decision matrix of all alternatives (FTOPSIS).

3PRLP Quality Cost Lead Time Delivery and Service

3PRLP-01 0.5054 0.6882 0.8280 0.0800 0.0952 0.1277 0.0779 0.0938 0.1277 0.4409 0.6237 0.7957
3PRLP-02 0.1505 0.2796 0.4731 0.1500 0.2500 0.4286 0.1579 0.3000 0.7500 0.1720 0.3011 0.4839
3PRLP-03 0.3441 0.5376 0.7419 0.0923 0.1250 0.1875 0.1017 0.1500 0.2727 0.3656 0.5591 0.7527
3PRLP-04 0.1505 0.2796 0.4516 0.1429 0.2308 0.4286 0.1429 0.2308 0.4286 0.1505 0.2796 0.4516
3PRLP-05 0.6237 0.8387 1.0000 0.0645 0.0769 0.1034 0.0645 0.0769 0.1034 0.6237 0.8387 1.0000
3PRLP-06 0.0645 0.1613 0.3441 0.1875 0.4000 1.0000 0.1875 0.4000 1.0000 0.0645 0.1613 0.3441
3PRLP-07 0.5161 0.7097 0.8817 0.0732 0.0909 0.1250 0.0732 0.0909 0.1250 0.5161 0.7097 0.8817
3PRLP-08 0.2688 0.4409 0.6452 0.1000 0.1463 0.2400 0.1000 0.1463 0.2400 0.2688 0.4409 0.6452

3PRLP R&D Capability Recycle Disposal Reproduction and Reuse

3PRLP-01 0.5269 0.6989 0.8280 0.5054 0.6882 0.8280 0.5054 0.6882 0.8280 0.5165 0.7033 0.8462
3PRLP-02 0.1505 0.2796 0.4731 0.1505 0.2796 0.4731 0.1505 0.2796 0.4731 0.1538 0.2857 0.4835
3PRLP-03 0.3656 0.5484 0.7419 0.3441 0.5376 0.7419 0.3441 0.5376 0.7419 0.3516 0.5495 0.7582
3PRLP-04 0.1505 0.2796 0.4516 0.1505 0.2796 0.4516 0.1505 0.2796 0.4516 0.1538 0.2857 0.4615
3PRLP-05 0.6237 0.8387 1.0000 0.6237 0.8387 1.0000 0.6237 0.8387 1.0000 0.6154 0.8352 1.0000
3PRLP-06 0.0645 0.1613 0.3441 0.0645 0.1398 0.3011 0.0645 0.1398 0.3011 0.0220 0.1209 0.3077
3PRLP-07 0.5161 0.7097 0.8817 0.5161 0.7097 0.8817 0.5161 0.7097 0.8817 0.4835 0.6813 0.8571
3PRLP-08 0.2688 0.4409 0.6452 0.2688 0.4301 0.6237 0.2688 0.4301 0.6237 0.1648 0.3407 0.5495

3PRLP Green Technology CO2 Emissions Health and Safety Customer’s Voice

3PRLP-01 0.5402 0.7356 0.8851 0.0779 0.0938 0.1277 0.5281 0.7191 0.8652 0.5949 0.8101 0.9747
3PRLP-02 0.1609 0.2989 0.5057 0.1364 0.2308 0.4286 0.1573 0.2921 0.4944 0.1772 0.3291 0.5570
3PRLP-03 0.3678 0.5747 0.7931 0.0870 0.1200 0.1875 0.3596 0.5618 0.7753 0.4051 0.6329 0.8734
3PRLP-04 0.1839 0.3218 0.5057 0.1429 0.2308 0.4286 0.1011 0.2360 0.4270 0.3797 0.5316 0.7089
3PRLP-05 0.5977 0.8276 1.0000 0.0645 0.0723 0.0882 0.6180 0.8315 1.0000 0.3291 0.5823 0.8228
3PRLP-06 0.1149 0.2184 0.4138 0.1875 0.4000 1.0000 0.2022 0.4045 0.6292 0.1772 0.2911 0.4810
3PRLP-07 0.5287 0.7356 0.9195 0.0732 0.0938 0.1364 0.4270 0.5730 0.7416 0.6076 0.8354 1.0000
3PRLP-08 0.3563 0.5402 0.7586 0.1000 0.1463 0.2400 0.1910 0.3596 0.5843 0.4684 0.6709 0.8481

3PRLP Reputation Operational Risk Financial Risk

3PRLP-01 0.5054 0.6882 0.8280 0.1818 0.2188 0.2979 0.1818 0.2188 0.2979
3PRLP-02 0.1505 0.2796 0.4731 0.3182 0.5385 1.0000 0.2857 0.4118 0.6364
3PRLP-03 0.3441 0.5376 0.7419 0.2029 0.2800 0.4375 0.1918 0.2414 0.3500
3PRLP-04 0.1505 0.2796 0.4516 0.3333 0.5385 1.0000 0.2500 0.3333 0.4667
3PRLP-05 0.6237 0.8387 1.0000 0.2414 0.3684 0.6087 0.2154 0.3043 0.5385
3PRLP-06 0.1613 0.2903 0.4731 0.2090 0.2545 0.3415 0.3684 0.6087 1.0000
3PRLP-07 0.2903 0.4516 0.6237 0.1707 0.2121 0.2917 0.1772 0.2121 0.2917
3PRLP-08 0.0860 0.2258 0.4301 0.1892 0.2456 0.3590 0.2090 0.2642 0.3784

Note: calculated by the researchers.

Table A3. Fuzzy weighted normalized decision matrix (FTOPSIS).

3PRLP Quality Cost Lead Time Delivery and Service

3PRLP-01 0.0180 0.0516 0.1279 0.0032 0.0077 0.0202 0.0032 0.0079 0.0217 0.0160 0.0471 0.1230
3PRLP-02 0.0054 0.0210 0.0731 0.0059 0.0201 0.0679 0.0065 0.0254 0.1274 0.0062 0.0228 0.0748
3PRLP-03 0.0123 0.0403 0.1146 0.0036 0.0101 0.0297 0.0042 0.0127 0.0463 0.0133 0.0423 0.1164
3PRLP-04 0.0054 0.0210 0.0698 0.0056 0.0186 0.0679 0.0059 0.0196 0.0728 0.0055 0.0211 0.0698
3PRLP-05 0.0222 0.0629 0.1545 0.0025 0.0062 0.0164 0.0027 0.0065 0.0176 0.0226 0.0634 0.1546
3PRLP-06 0.0023 0.0121 0.0532 0.0074 0.0322 0.1585 0.0077 0.0339 0.1698 0.0023 0.0122 0.0532
3PRLP-07 0.0184 0.0532 0.1362 0.0029 0.0073 0.0198 0.0030 0.0077 0.0212 0.0187 0.0537 0.1363
3PRLP-08 0.0096 0.0331 0.0997 0.0040 0.0118 0.0380 0.0041 0.0124 0.0408 0.0098 0.0333 0.0997

3PRLP R&D Capability Recycle Disposal Reproduction and Reuse

3PRLP-01 0.0172 0.0448 0.1044 0.0149 0.0406 0.1001 0.0136 0.0376 0.0943 0.0188 0.0504 0.1156
3PRLP-02 0.0049 0.0179 0.0597 0.0044 0.0165 0.0572 0.0041 0.0153 0.0539 0.0056 0.0205 0.0660
3PRLP-03 0.0119 0.0351 0.0936 0.0101 0.0317 0.0897 0.0093 0.0294 0.0845 0.0128 0.0394 0.1035
3PRLP-04 0.0049 0.0179 0.0570 0.0044 0.0165 0.0546 0.0041 0.0153 0.0515 0.0056 0.0205 0.0630
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Table A3. Cont.

3PRLP R&D Capability Recycle Disposal Reproduction and Reuse

3PRLP-05 0.0203 0.0537 0.1261 0.0184 0.0495 0.1208 0.0168 0.0459 0.1139 0.0224 0.0598 0.1366
3PRLP-06 0.0021 0.0103 0.0434 0.0019 0.0083 0.0364 0.0017 0.0076 0.0343 0.0008 0.0087 0.0420
3PRLP-07 0.0168 0.0455 0.1112 0.0152 0.0419 0.1066 0.0139 0.0388 0.1005 0.0176 0.0488 0.1171
3PRLP-08 0.0088 0.0282 0.0814 0.0079 0.0254 0.0754 0.0073 0.0235 0.0711 0.0060 0.0244 0.0750

3PRLP Green Technology CO2 Emissions Health and Safety Customer’s Voice

3PRLP-01 0.0198 0.0525 0.1197 0.0023 0.0053 0.0145 0.0140 0.0362 0.0873 0.0250 0.0681 0.1604
3PRLP-02 0.0059 0.0213 0.0684 0.0039 0.0130 0.0487 0.0042 0.0147 0.0499 0.0075 0.0277 0.0916
3PRLP-03 0.0135 0.0410 0.1072 0.0025 0.0068 0.0213 0.0095 0.0283 0.0782 0.0170 0.0532 0.1437
3PRLP-04 0.0067 0.0230 0.0684 0.0041 0.0130 0.0487 0.0027 0.0119 0.0431 0.0160 0.0447 0.1166
3PRLP-05 0.0219 0.0591 0.1352 0.0019 0.0041 0.0100 0.0164 0.0419 0.1009 0.0138 0.0489 0.1354
3PRLP-06 0.0042 0.0156 0.0559 0.0054 0.0225 0.1137 0.0054 0.0204 0.0635 0.0075 0.0245 0.0791
3PRLP-07 0.0194 0.0525 0.1243 0.0021 0.0053 0.0155 0.0113 0.0289 0.0748 0.0256 0.0702 0.1645
3PRLP-08 0.0131 0.0386 0.1026 0.0029 0.0082 0.0273 0.0051 0.0181 0.0589 0.0197 0.0564 0.1395

3PRLP Reputation Operational Risk Financial Risk

3PRLP-01 0.0147 0.0390 0.0947 0.0050 0.0117 0.0325 0.0058 0.0136 0.0371
3PRLP-02 0.0044 0.0159 0.0541 0.0088 0.0289 0.1092 0.0091 0.0257 0.0793
3PRLP-03 0.0100 0.0305 0.0848 0.0056 0.0150 0.0478 0.0061 0.0150 0.0436
3PRLP-04 0.0044 0.0159 0.0516 0.0092 0.0289 0.1092 0.0080 0.0208 0.0581
3PRLP-05 0.0181 0.0476 0.1143 0.0067 0.0197 0.0664 0.0069 0.0190 0.0671
3PRLP-06 0.0047 0.0165 0.0541 0.0058 0.0136 0.0373 0.0117 0.0379 0.1246
3PRLP-07 0.0084 0.0256 0.0713 0.0047 0.0114 0.0318 0.0056 0.0132 0.0363
3PRLP-08 0.0025 0.0128 0.0492 0.0052 0.0132 0.0392 0.0067 0.0165 0.0471

Note: calculated by the researchers.
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Abstract: In recent decades, Vietnamese labeling and packaging has been widely recognized as being
one of the fastest developing industries in Vietnam, supported by the tremendous demand of domes-
tic production and the exportation of its packaged goods. The emerging packaging technology trends
and the participation of foreign direct investment (FDI) companies have led to fierce competition
between all packaging enterprises in Vietnam. This paper aims to calculate the productivity perfor-
mance of 10 packaging companies in Vietnam from the past to the future by combining the additive
Holt-Winters (LTS(A,A,A)) model to predict key variables in the financial statement for the next
4 years (2020–2023) and an epsilon-based measure of efficiency (EBM) model of data envelopment
analysis (DEA) to define the developing trend, efficiency, and ranking of packaging operations. The
empirical results will assist packaging enterprises to identify their positions, suggest feasible solutions
to overcome shortcomings and catch up with the global trends, and propose superior partnerships
for manufacturers, which have packaging service demands and support investment decisions for
investors. Overall, all the enterprises in the packaging industry have high productivity. In particular,
SIVICO JSC is identified as the most efficient packaging company in Vietnam, as it continuously
maintains the first ranking over the observation time, followed by Agriculture Printing & Packing
JSC and Bien Hoa Packaging Company. In the past, Tan Dai Hung Plastic JSC was identified as the
most unproductive unit, while in the future term, the inefficient decision-making units (DMUs) are
Tan Tien Plastic Packaging JSC, Sai Gon Packaging JSC, Dong A JSC, and PetroVietnam Packaging
JSC. The suggestion for incompetent enterprises is changing the value of inputs proportionally to
optimize for better performance.

Keywords: data envelopment analysis (DEA); additive Holt-Winters model (LTS(A,A,A)); epsilon-
based measurement (EBM); packaging industry

MSC: 60K10; 62-07; 62P20

1. Introduction

Although packaging is an auxiliary industry for many manufacturing industries, it
plays a key role, contributing significantly to the development of the economy. It is also
widely considered to be one of the most important parts of logistic systems. The purpose
of the earliest and most basic packaging was containing products, serving the stages of
transportation, preservation, and display. The second benefit of packaging is protecting
products from damage, deformation, theft, or reduction of quality due to external and
environmental impacts such as air, humidity, water, and light. Furthermore, providing
information on products on stamps, labels, or the cover is a legal requirement for packaging
to help consumers better understand the product before making a purchasing decision.
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Furthermore, packaging has long been recognized as the silent salesperson and has been
the focus of much recent regulation [1]. It contributes to product positioning and brand
identity. It is also a marketing and sales support tool. Product packaging with innovative
designs and unique colors outstanding and suitable for brand identity publications will
easily impress consumers and help them associate and remember products and brands
more. Research and packaging design is a vital part of the product development strategy
of most businesses that cannot be replaced.

Understanding the important role of packaging, as stated by the Vietnam Packaging
Association (VINPAS), over the last 10 years, the packaging industry has been recognized
as one of the fastest growing economic sectors in both size and the number of enterprises
established in Vietnam [2]. Currently, Vietnam has more than 900 packaging factories,
and the numbers of companies is still increasing, about 70% of which are concentrated
in the southern provinces [3]. The Association of Vietnam Retailers (AVR) explained
the first reason behind this development. The population of Vietnam is over 97 million,
leading to the rise of domestic demand in the food and beverage industry, as well as
for industrial and pharmaceutical product packaging [4]. The Vietnamese food market
is on an upward trend and is expected to grow annually by 13.05% (compound annual
growth rate (CAGR) 2021–2025) [5]. Besides that, Vietnam is one of the 17 countries
with the highest pharmaceutical growth rate in the world, with a market size of about
USD 5.1 billion (as stated by IMS Health) [6]. Specifically, in the packaging industry, the
proportion of food packaging is approximately one third to a half, while the percentage for
electronics packaging is 5–10% and pharmaceutical and chemistry packaging is estimated
to be 5–10% [4].

Moreover, recently, the urbanization process has been developing quickly, along with
the appearance of a series of foreign supermarkets that invested in Vietnam such as Big
C, Aeon, and Lotte Mart. In addition, the habit of using packaged products has given
the packaging industry many development opportunities. In addition, the high export
market requirement in packing services is stimulating the development of this industry.
The Vietnam packaging industry has a high average growth rate of 15–20% per year [5].
In recent years, the attractiveness of the packaging industry in Vietnam has been proven,
as many overseas manufacturers have selected Vietnam as an ideal destination to supply
machines, devices, and goods and to invest in building factories. The market for packaging
materials can be divided into a series of main segments, including paper and cardboard,
plastic, metal, glass, wood, textiles, and other suitable materials such as foam and leather.
Based on the statistical data from Thongke [7], Figure 1 summarizes the levels of some
imported input materials for packaging production in Vietnam from 2010 to 2019.
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Figure 1. Import levels of some input materials for packaging production in Vietnam in 2010–2019
(Source: thongke.idea.gov.vn [7]).

244



Axioms 2021, 10, 33

In addition, in 2015, greenhouse gas (GHG) emissions from plastics accounted for
3.5 percent of the global annual GHG emissions [8], and in 2018, Laura Parker emphasized
that around 40 percent of the plastic created was for the packaging industry, which means
this industry would also be responsible for the world’s pollution [9]. Particularly, plastic
packaging in Vietnam achieved a growth rate of 25 percent per year and accounted for
the highest proportion in structural plastic (38–39%) [10]. In 2019, the total consumption
of paper material reached 3818 million tons, while the percentage of paper packaging
production attained was over 80% [10].

The packaging industry is undoubtedly considered a potential industry with high
growth rate in Vietnam, but according to the National Steering Committee for Clean Water—
Ministry of Natural Resources and Environment [11], the paper manufacturing industry
that includes the paper packaging industry is one of the most serious environmental
polluting industries today, especially for water resources.

To face concerns about environmental pollution with a high amount of plastic waste,
the global packaging operation is looking forward to producing active, intelligent [12],
and green packaging in the future. Some preliminary work was carried out in 2001,
showing that various executives perceive how influential a strategy on how associated
social responsibility affects the social and financial performance of an enterprise [13].
Following the global trend, Vietnamese consumers are gradually switching to using green
packaging to ensure their health and safety.

These packaging technologies are also known as the trend of environmentally friendly
and sustainable development packaging. The solutions are integrating packaging with
Internet of things (IoT) technology, recycling materials, reusable packaging products, and
using fast decomposition packaging. All these actions aim to reduce hazardous waste
in the environment, sustain materials, expand product storage life, and improve safety,
management, and cost-effectiveness. At the same time, governments have been aware of
and set out regulations to improve the environment. These commitments were agreed upon
by worldwide governments. This tendency enhances tough technological competition
among all enterprises in the packaging industry. Therefore, the biggest challenge now for
this industry is not only finding customers but also investing in technological innovation
that has the minimum impact on the environment by using eco-friendly materials and
manufacturing processes to compete and catch up with the ever-growing production and
sustain business. When the production process is not optimized, the waste of raw materials,
fuel, and emissions will also create significant environmental impacts.

Moreover, in the new development context, Vietnam joined the World Trade Organi-
zation (WTO) in 2007 and attracted many foreign companies and corporations to come
to Vietnam to seek investment opportunities. At this time, the Vietnam government has
also allowed 100% foreign-owned companies to operate in the packaging industry [14].
Considering some aspects of competitiveness and production materials, foreign direct
investment (FDI) enterprises have shown superiority. Their machines and technology are
very modern, have closed production lines, are mostly automated so their costs are low,
and their productivity is very high. Vietnamese packaging enterprises also revealed many
shortcomings, such as a lack of vision, unclear long-term strategy, poor governance, low
productivity, lack of high-quality human resources, weak financial positions, and so on.
In addition, the market still requires businesses in the industry to constantly research and
create unique and more effective personalization and interaction. There is a major concern
that the profit margins of packaging companies will be reduced more than before due
to the increase in production costs, and the obstacle to technology transfer is one factor
that inhibits the development of the green packaging market. Besides that, the number
of consumers aware of the need to use green packaging is still not in the majority, so it is
not enough for packaging companies to completely switch to supplying green packaging.
If packaging enterprises do not utilize their competitive advantages and update the tech-
nology to adapt to growth trends, they will go backward and lose customers. To initiate a
sustainable strategy in an operation, different administration systems, such as commodity
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expense, capital budgeting, information, and performance assessment, must be composed
and defined [13].

According to all these facts mentioned above, the purpose of this study is to identify
and evaluate the performance and ranking of 10 packaging companies in Vietnam in each
period from 2012 to 2023, by integrating the additive Holt-Winters (LTS(A,A,A)) forecasting
model in Tableau and an epsilon-based measure of efficiency (EBM) in data envelopment
analysis (DEA). Due to the fact that financial reporting plays an important role in the
process of strategic decision-making, specifically decisions of an investment nature [15],
while all the packaging companies are trying to meet the market demands and sustain
development and increase their competitive advantages or minimize weaknesses, the
financial performance forecasting analysis in this study can show how financial variables
change over time and hence support packaging companies to make strategic decisions,
whether they should align their budgets or determine expenses to invest in new technology,
materials, processes, and consultancy to adapt to global trends, because green supply
chain management (GSCM) practices in the packaging industry contain the risks of high
investment costs and low returns [16]. Besides that, the results will also assist manufactur-
ers, which need packaging services to find the most suitable partners and investors, who
need to make investment decisions in this industry. This investigation is expected to add
substantially to the understanding of applying EBM to DEA, the model which can give the
score and ranking for each decision-making unit (DMU) performance in the experiment
years and its implementation, contributing to the specific solution to improve the efficiency
for the identified company.

There are five parts in this paper, and they are as follows. Section 1 is an overview of
the study that includes the packaging industry background, motivation, objectives, and
the process of the research. Section 2 reviews the literature of the packaging industry, the
additive Holt-Winters model (LTS(A,A,A)), and an epsilon-based measure of efficiency
(EBM) in DEA, proposes the data sources and figures out the input and output that would
be applied for the methods. Section 3 presents the empirical results, indicates assessed
values, and calculates and discusses the outcomes. Section 4 provides the conclusions,
describes some elements that may affect the findings, and recommends future studies.

2. Theoretical Foundations and Methodology
2.1. Literature Review

As mentioned above, packaging plays an important role in every industry. It is not
only the thing that is protecting the products, but also the tool that is supporting overall
sales. Package design has a huge impact on the decision-making stage of customers.
Nielsen demonstrated that more than 60% of buyers try a new product just because the
package attracts their eye, and over 40% will consume a product continuously because of its
impressive design [17]. Nowadays, traditional packaging is not sufficient to meet the need
of the development of consumer experience expectations over time and increasing product
complexity. Moreover, recently, national and international have aimed to promote a circular
economy and reduce the carbon footprint of manufactured products [18]. Hence, with the
growth trend of smart packaging in the Industry 4.0 era, in 2018, Dirk Schaefer and Wai
M. Cheung conducted a general overview of smart packaging and defined its underlying
base technologies with opportunities and challenges, hence finding out the solutions for
smart packaging to minimize its shortcomings and to get its full potential [19]. Gareth
R.T. White et al. investigated the decision’s complication around the interorganizational
green packaging design in an automotive manufacturer. The author noticed that despite
the enterprise generating considerable attempts to enhance its environmental effectiveness,
the most important aspects in the form of packaging are the operational matters [20]. In
this study, the performance of packaging companies in Vietnam is measured by integrating
the LTS(A,A,A) model and the EBM model.

The Holt-Winters (HW) theory was one of the favorable variants of the exponen-
tial smoothing (ES) forecasting method variations, first introduced by Holt [21]. It is a
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well-known concept that is used to predict the future data value and performance of an
undefined system in diversified interdisciplinary fields, capable of accommodating the
changing trends and seasonal adjustments based on a selection of time interval data [22].
The HW model includes mathematical equations that are calculated to create accurate
forecasts. It divides into two forms based on the nature of the seasonal element. The first
variant is the additive method, suitable for obtaining the seasonality changes in data that
are stable during the series, and the second is the multiplicative method which, on the
contrary, is suitable for catching up the seasonality changes in data that are raised all over
the observation time [23]. For example, in 2015, Eimutis Valakevicius and Mindaugas
Brazenas used the seasonal Holt-Winters model to forecast the exchange rate volatility [24].
Vicky Chrystian Sugiarto et al. applied the HW method to predict goods demands from
consumers for enterprise resource planning at a sales and distribution module [25]. Fur-
thermore, Maciej Szmit and Anna Szmit proposed a modified HW version to forecast the
anomaly detection of network traffic [26]. The HW method is integrated and can be used in
Tableau, an analytic forecasting platform that was created from a computer science project
at Stanford in 2003 [27]. Tableau is a beneficial business intelligence (BI) platform that
supports analysis and gives data visualization for organizations from diverse fields and
countries to utilize their decision-making procedures. Tableau accommodates with most
data forms and gives out-of-the-box combinations with a diversified range of big data
platforms, including Hadoop. Tableau integrates with R, the BI statistical language that
many data experts manipulate for progressive analytics [28]. There are different Tableau
manners that have been introduced for linear and branching time point-based temporal
logics [29]. One of the most practical functions in Tableau is predicting future data by
applying exponential smoothing throughout the past statistics. It contains multiplicative
and additive methods and enables highly precise results [30]. Its application was reported
in the study of Anita S. Harsoor and Anushree Patil, who proposed sales forecasting for
Walmart by using the Holt-Winters method in Tableau [30]. In order to forecast the future
value of all subjects, this research will conduct the additive Holt-Winters method (LTS
(A,A,A)) in the Tableau software.

Data envelopment analysis (DEA) is a decision-making support method that was
first introduced in 1978 by Charnes, Cooper, and Rhodes [31], based on the fundamental
theory of the nonparametric method for assessing the technical efficiency of Farrel [32],
whose domain of inquiry is a group of decision-making units (DMUs) which can obtain
multiple inputs and declare multiple outputs [33]. Over four decades, DEA was developed
for various models and was utilized by a large number of worldwide researchers and
scholars in multiple fields. Since the first Charnes, Cooper, and Rhodes (CCR) model was
introduced, there have been many upgraded DEA models which shortened the limitations
of previous models, such as the variable returns-to-scale Banker, Charnes, and Cooper
(BBC) model (1984) [34], which improved the shortcomings of the constant returns to scale
of the CCR model, the slacks-based measure (SBM) considering the change in proportion
between the inputs and outputs, and directly dealing with the slacks gap (Tone, 2001) [35].
A highlighted case study confirmed the usefulness of the fuzzy analytic network process
(FANP) and data envelopment analysis (DEA), which includes the CCR model, BCC model,
and SBM model in order to rank and evaluate the suppliers in the rice supply chain, through
the efforts of Wang, C.N et al. in 2018 [36]. DEA normally has two assessments of technical
efficiency with different attributes: radial and nonradial [37]. To solve the issue related
to radial and nonradial models concerning the proportionality between the input and
output changes, the epsilon-based measure (EBM) model was invented in 2010 by K. Tone
and M. Tsutsui [37], which has both radial and non-radial attributes in an undetermined
structure. In 2018, Chia-Nan Wang, Jen-Der Day, and Thi-Kim-Lien Nguyen used the EBM
model and gray forecasting to assess the efficiency of 10 third-party logistics providers [38].
Li Yang, Ke-Liang Wang, and Ji-Chao Geng assessed China’s regional ecological energy
efficiency and energy saving and pollution abatement potentials with the exploited EBM
model [39]. QiangChen et al. applied the EBM model for marketization and calculated the
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water resource utilization efficiency based on provincial panel data in China during the
span of 2008–2013 [40].

2.2. Method of Research

2.2.1. Research Process

This research applied the additive Holt-Winters model to predict the future values
of performance indicators in financial statements and the EBM model to estimate the
performance of each DMU. The final analysis results show the efficiency and inefficiency of
10 packaging companies for every year during the period from 2012 to 2023. The process
was divided into even stages, shown in Figure 2:

• Stage 1: With the background knowledge about the packaging industry, the authors
defined the importance of assessing the performance of packaging companies and
identified the research objectives, target, and scope;

• Stage 2: Based on the overview of the background of previous studies of the packaging
industry and the LTS(A,A,A) and EBM methods, the authors found that the research
topic was new and necessary. Hence, the researcher established the methodology of
the study;

• Stage 3: All suitable packaging companies were chosen from Vietstock [41] to meet
the research target, and the models were designed after reviewing the theory of
the additive Holt-Winters method and the EBM model. The study collected ten
packaging companies;

• Stage 4: Input and output factors were selected to assess the performance of packaging
companies. If the input and output indicators were not appropriate, they would be
replaced by other factors;

• Stage 5: The study used the series of historical collected data to forecast the future
values by using the additive Holt-Winters model. The results of the forecasting data
would be examined by the mean absolute percent error (MAPE) indicator. If the
MAPE index was accurate and appropriate, the next step would be applied, but if not,
the data and factors would need to be retested;

• Stage 6: Following the previous step, an epsilon-based measurement model in DEA
would be conducted to measure the performance of 10 enterprises from 2012 to 2023.
The Pearson’s coefficient would be tested to define the correlation among the input
and output variables. According to the EBM model, the Pearson’s coefficient was
adjusted and formulated by the values of affinity and diversity. The suitable index
would need to be between 0 and +1;

• Stage 7: The authors analyzed the performance and ranking of all DMUs from the
past to the future. The recommendations for unproductive units to improve their
effectiveness based on the EBM model results would be represented. Then, the
empirical results and conclusions would be discussed.

2.2.2. Data Sources

There are many companies in the packaging industry, and each company has different
sizes, technology, and target products. It is quite difficult to access all companies’ data when
not all of them provide public financial reports. Firms that have negative values in their
financial statements were also not selected for this study. This research aims to calculate
the productivity performance of packaging industry companies in Vietnam. Therefore, the
authors collected 10 packaging companies in Vietnam that were listed in Vietstock [41]
from 2012 to 2019. The name of each DMU is shown in Table 1.
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Figure 2. Research framework.
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Table 1. List of packaging companies.

DMUs Company Name Headquarters

DMU1 Agriculture Printing & Packing Joint Stock Company Hanoi, Vietnam
DMU2 Tan Tien Plastic Packaging JSC Ho Chi Minh City, Vietnam
DMU3 Sai Gon Packaging Joint Stock Company Ho Chi Minh City, Vietnam
DMU4 Bien Hoa Packaging Company Dong Nai Province, Vietnam
DMU5 SIVICO JSC Hai Phong City, Vietnam
DMU6 Tan Dai Hung Plastic Joint Stock Company Ho Chi Minh City, Vietnam
DMU7 Dam Phu My Packaging Joint Stock Company Vung Tau City, Vietnam
DMU8 Dong A Joint Stock Company Khanh Hoa Province, Vietnam
DMU9 Do Thanh Technology Corporation Ho Chi Minh City, Vietnam
DMU10 PetroVietnam Packaging JSC Bac Lieu City, Vietnam

Source: Vietstock.vn [41].

Finding the input and output factors plays an important role for applying DEA. One
of the most beneficial features of DEA is allowing users to choose the variable inputs
and outputs. However, these elements must correspond. Experiments on the pricing
strategy in the European packaging industry were performed in 2017 by Niklas L.Hallberg,
which revealed how asset specificity and routines impacted the pricing strategy and finally
enterprise effectiveness [42]. In an economic value-added tree, according to Pohlen and
Goldsby, performance indicators including the cost of goods sold, expenses, net profit,
sales, fixed assets, and working capital were affected by supply chain activities [43]. Besides
that, Roland T. Rust et al. highlighted that the cost determination focused on the efficiency
of the operation’s processes [44].

Regarding the purpose of the research, this study selected input and output factors for
10 packaging companies during the period from 2012 to 2019 to estimate their performance
as mentioned below.

Input variables:
The total assets (TA) was defined as the total amount of assets owned by a person,

group, or operation.
The cost of goods sold (CGS) presented the direct costs attributable to the production

of the goods sold in a company.
The operating expenses (OE), also called operating expenditures or opex, were the

ongoing costs for running a product, business, or system.
Output variables:
The revenue (RE) was the income that a business had from its normal business

activities, usually from the sale of goods and services to customers.
The gross profit (GP) was the profit that an operation made after subtracting the cost

of goods sold from its revenue.

2.3. Mathematical Modeling

2.3.1. Additive Holt-Winters Method

The additive Holt-Winters method is one of the most favorable forecasting tools among
the HW methods, in which the seasonal component is indicated in constant terms in the
scale in the time series. The LTS(A,A,A) method has been widely adopted by researchers
due to its ease of comprehension, moderate data storage conditions, and ability to be
effortlessly automated [22]. This research will exploit the Tableau software to obtain the
additive Holt-Winters prediction values for 10 packaging companies in Vietnam from 2020
to 2023, based on the historical data from 2012 to 2019.

Let us indicate that X0 is the units of packaging enterprises, calculated by applying the
primary time series T1, Tt+1, . . . , Tt+n (with t = 0, 1, 2, . . . n) and the evaluated prediction
values P1, Pt+1, . . . , Pt+n (with t = 0, 1, 2, . . . n).
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The sequence of examination for the primary time series and forecasting values begins
at t = 0 as the first period. The standard formula for exponential smoothing is formulated by

P0 = T0
P1 = α× T1 + (1− α)× Pt−1
0 ≤ α ≤ 1

(1)

In the additive Holt-Winters method, the overall approach form is described as

P1 = α× (Tt − St−k) + (1− α)× (Pt−1 + Rt−1)
Rt = β× (P1 − Pt−1) + (1− β)× Rt−1
St = γ× (Tt − Pt) + (1− γ)× St−k

(2)

The forecasted value of the data elements Tt is given by

Tt = Pt−1 + Rt−1 + St−k (3)

The prediction for the next period n is identified by

Tt(n) = Pt + n× Rt + St+n−k (4)

where α, β, and γ correspond to the smoothing constants for the level of the series
(0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1), k is the rate of occurrence span of the seasonality, Tt

is the particular value at the past time series t, Pt is the approximate smoothing of the
deseasonalized level at the termination of span t, Rt is the approximate smoothing of the
trend factor at the termination of span t, St is the approximate smoothing of the seasonal
factor at the termination of span t, n is the number of spans in the forecasting lead time,
and t is the time indicator.

Actually, the gap between the predicted data value and the actual data value always
remains. As proposed by Stekler [45,46], an ideal forecast can be sorted out through
calculation of the root mean square errors (RMSEs) and mean absolute percentage errors
(MAPEs). Both are the most favorable prediction estimation measures used [47,48]. The
RMSE is the square root of the second sample moment of the differences between the
forecasted and observed values [49] and is non-negative. The lower the RMSE, the better
the regression model is. The RMSE and is defined by [50]

RMSE =

√
1
n

n

∑
t=1

(Pt − Tt)2 (5)

The mean absolute percent error (MAPE) is an index that is used to define the accuracy
of the forecasting values. It gives an intuitive interpretation in terms of the relative error
and can be commonly used in many cases [48,51]. It expresses the accuracy as a percentage.
The MAPE indicator is interpreted as

MAPE =
100
n

n

∑
t=1

∣∣∣∣
Tt − Pt

Tt

∣∣∣∣ (6)

where: Tt is the actual value in time t and Pt is the forecasted value in the time t.
The forecasting values estimated by the additive Holt-Winters method must be exam-

ined by the MAPE indicator. If the MAPE index is lower than 50%, it means the predicted
value is appreciable. Conversely, if it is higher than 50%, it means the forecasting values
have a lot of noise, and then another forecasting model can be retested. The MAPE index
was divided into four categories as presented in Table 2.
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Table 2. The parameters of the mean absolute percent error (MAPE).

MAPE Value Ranking

MAPE < 10% Excellent
10% < MAPE < 20% Good
20% < MAPE < 50% Reasonable

MAPE > 50% Poor

2.3.2. An Epsilon-Based Measure (EBM) Model
An Epsilon-Based Measure of Efficiency

According to DEA, there are two different measurement types for technical efficiency:
radial and nonradial. The radial measurement only focuses on the proportionate change
of the input or output and ignores the appearance of slacks. In contrast, the nonradial
measurement faces slacks directly and is not concerned with the proportion of inputs and
outputs changing. As a result, both can lead to inappropriate evaluation in some cases.
The epsilon-based measure (EBM) was invented as a solution for this shortcoming. The
model combines both radial and nonradial features. Two parameters, one scalar and one
vector, are contained in this framework, determined by affinity index with regards to the
inputs and outputs. These two parameters are defined to integrate the radial and nonradial
models into a unified model to assess the efficiency of DMUs.

By indicating the input-oriented EBM (EBM I-C) for DMU0 = (x0, y0), we then
calculate it as

γ∗ = min
θ,λ,s−

θ − εx

s

∑
i=1

w−i s−i
xi0

(7)

This is subject to
θx0 − Xλ− s− = 0

Yλ ≥ y0, λ ≥ 0, s− ≥ 0

where the weight (relative importance) of input (i) is w−i and
s

∑
i=1

w−i = 1
(
w−i ≥ 0∀i

)
and

εx is the parameter that integrates the radial θ and nonradial slacks terms.

Diversity Index and Affinity Index

Generally, in DEA, the Pearson’s correlation plays an essential role in clarifying the
relationship between two variables. It translates the initial data to estimate the correlation.
If the Pearson’s index is high, it means the two variables associate with each other. On the
other side, if the correlation coefficient is low, it means the input and output relation is
unappropriated. The value of the Pearson’s correlation coefficient ranges from −1 to +1.

In addition, the weight is also one of the most important factors in DEA. The weight
determines how much the input will impact the output [52]. If the weight is close to 0, it
shows that there is no change in the output even if the input changes. Nonpositive weights
indicate the opposite relationship between the input and output, such that if the input
grows, the output will decline.

Regarding the EBM model, the values of x and wi have a major impact on estimating
the efficiency of DMUs. However, instead of using the Pearson’s correlation coefficient as
another model, the EBM model will use the affinity index between two vectors.

Let a ∈ Rn
+ and b ∈ Rn

+ be two non-negative vectors with a dimension n. They display
the examined values for a definite input component in n DMUs. S (a,b) is the affinity index
between two vectors a and b with the following features:

S(a, a) = 1(∀a) Identical
S(a, b) = S(a, b) Symmetric
S(ta, b) = S(a, b)/(∀t > 0) Units-invariant

1 ≥ S(a, b) ≥ 0/(∀a, b)
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Let us define
cj = ln

bj

aj
(j = 1, . . . , n)

c = 1
n

n

∑
j=1

cj

cmax =
max

j

{
cj

}
, cmin =

min
j

{
cj

}
(8)

The diversity index of vectors (a,b) as the deviation of
{

cj

}
from the average c will be

identified as follows:

D(a, b) =
∑

n
j=1|cj−c |

n(cmax−cmin)
= 0 i f cmax = cmin

And : 0 ≤ D(a, b) = D(b, a) ≤ 1
2

(9)

D(a, b) = 0 only if vector a and vector b are proportional.
If we denote the affinity index between vector a and vector b as S(a,b), then

S(a, b) = 1− 2D(a, b) (10)

If 1 ≥ S(a, b) ≥ 0, S(a,b) is accomplished with properties (7) and (8).
In DEA, the Pearson’s correlation coefficient (P(a,b)) will be calculated by the follow-

ing equation:

P(a, b) =
∑

n
j=1(aj − a)(bj − b)

∑
n
j=1 (aj − a)2(bj − b)

2 (11)

where: a and b are the average of aj and bj, respectively.
However, in the EBM model, the affinity index will replace the Pearson’s correlation

coefficient (P(a,b)). As mentioned above, the Pearson’s index range is −1 ≤ P(a, b) ≤ 1.
Thus, when analyzing the fundamental factor, there is no assurance for the principal vector
only including positive components. Therefore, it will be adjusted to 0 ≤ P(a, b) ≤ 1.

3. Results
3.1. Additive Holt-Winters Forecasting

3.1.1. Forecasting’s Results

In this section, through the data of 10 packaging companies from the period of 2012–
2019 that were collected, the additive Holt-Winters additive model in Tableau will be
applied to calculate the future data from 2020 to 2023. From the past data sequence, in
applying the method, forecasting values for the inputs and outputs of all 10 DMUs from
2012 to 2023 are described in Tables A1 and A2.

3.1.2. Forecasting Accuracy

According to the additive Holt-Winters forecasting model, there is a difference that
exists between the predicted data value and the actual data value. In this research, the
authors utilized the root mean square error (RMSE) and mean absolute percent error
(MAPE) to calculate the accuracy of the forecasting values.

Table 3 illustrates the RMSE index per DMU. It can be seen from the table that all
RMSE results were positive values and could be accepted.

As mentioned in Table 2, for the MAPE parameter, if the MAPE index was under 20%,
it meant the accuracy of the forecasted value was highly appreciable. Table 4 identifies the
average MAPE of each DMU.

It is apparent from Table 4, all DMUs had MAPE indexes under 36%, and their mutual
average was 10.56%. As such, all DMU predicted values had good accuracy and were close
to the actual values. Furthermore, all predicted values for all DMUs from 2020 to 2023 in
Table A2 were non-negative values and acceptable to use in EBM analysis.
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Table 3. Root mean square error of the decision-making units (DMUs).

DMU TA COGS OE RV GP

DMU10 9299 22,475 1142 24,231 3622
DMU9 4583 9399 1183 10,882 3641
DMU8 15,812 8755 2242 10,464 2786
DMU7 23,760 42,656 2533 45,992 3609
DMU6 48,677 28,471 5974 30,089 7180
DMU5 13,996 12,353 1833 18,976 8786
DMU4 49,316 107,923 4705 93,504 31,286
DMU3 19,964 25,163 3066 29,994 6167
DMU2 176,835 139,673 24,194 114,024 36,453
DMU1 42,930 53,109 13,693 61,806 13,769

Table 4. The average MAPEs of the DMUs.

DMU TA CGS OE RE GP

DMU10 8.30% 16.90% 7.40% 16.20% 14.80%
DMU9 2.40% 8.10% 9.30% 7.80% 36.00%
DMU8 11.20% 3.20% 9.80% 3.20% 6.60%
DMU7 15.60% 15.50% 7.70% 13.90% 6.90%
DMU6 6.80% 3.40% 10.90% 3.40% 11.90%
DMU5 12.00% 7.90% 10.90% 8.30% 14.70%
DMU4 5.90% 7.50% 4.10% 6.10% 13.60%
DMU3 12.10% 13.10% 9.50% 12.10% 14.50%
DMU2 17.10% 9.40% 15.60% 6.60% 18.30%
DMU1 9.20% 8.00% 15.80% 8.10% 10.20%

Average 10.56%

3.1.3. Smoothing Coefficients

According to the condition of smoothing coefficients in the additive Holt-Winters
method, an acceptable α, β, γ index ranged from 0 to 1. The three smoothing constants
were applied to forecast the future performance of packaging enterprises. The results of the
alpha, beta and gamma that are shown in Table A3 confirmed our data were appreciable
when their values were accounted for from 0 to 0.5.

3.2. Assessing the Performance of DMUs

In this part, the EBM-I-C (input-oriented under constant returns-to-scale assumption)
in DEA will be applied to assess the efficiency of each packaging company, based on
the historical data (2012–2019) in Table A1 and forecasted data (2020–2023) in Table A2
obtained from the additive Holt-Winters forecasting results. The efficiency of each year
will be presented in Tables 8 and 9 below.

One of the biggest concerns before assessing the efficiency of the DMUs through
EBM was defining whether the data value was positive. Besides that, the relation between
the input and output data was isotonic. The correlation coefficient would be used to
define the relationship among two variables, and it would be ranged from −1 to +1. If the
index was near +1, it meant the two variables had a strong correlation. In contrast, if the
correlation coefficient was close to −1, it meant the input and output correspondence was
low. Table A4 presents the Pearson’s correlation coefficient of the DMUs for each year. As
can be observed from the results, the correlation coefficient minimum was 0.6889. This
means all the data variables were closely connected and acceptable to run EBM.

As stated in the EBM model, two parameters that combine the radial and nonradial
models were established by an affinity index. The affinity index between two vectors was
calculated to replace the Pearson’s correlation coefficient. Their appropriated values had to
meet the requirement 0 ≤ P(a, b) ≤ 1.

The diversity index of the vectors was determined as the deviation of variables and
0 ≤ D(a,b) = D(b,a) ≤ 1/2. It was only equal to 0 when the two vectors were proportional.
Both the affinity and diversity indicators were utilized to assure that the correspondence of
the input and output variables was suitable for evaluating the efficiency of the DMUs with
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EBM. It can be seen from Tables 5 and 6 the data variables satisfied the condition of the
EBM model.

Table 5. Affinity index.

TA CGS OE TA CGS OE

Year 2012 2013

TA 1 0.56183 0.50585 1 0.69466 0.54117
COGS 0.56183 1 0.62592 0.69466 1 0.69653
OPEX 0.50585 0.62592 1 0.54117 0.69653 1

Year 2014 2015

TA 1 0.58307 0.58106 1 0.58916 0.64542
COGS 0.58307 1 0.66894 0.58916 1 0.3793
OPEX 0.58106 0.66894 1 0.64542 0.3793 1

Year 2016 2017

TA 1 0.46081 0.41815 1 0.51481 0.43663
COGS 0.46081 1 0.50503 0.51481 1 0.54862
OPEX 0.41815 0.50503 1 0.43663 0.54862 1

Year 2018 2019

TA 1 0.43808 0.36851 1 0.49053 0.58637
COGS 0.43808 1 0.61053 0.49053 1 0.55946
OPEX 0.36851 0.61053 1 0.58637 0.55946 1

Year 2020 2021

TA 1 0.40351 0.4343 1 0.42414 0.30355
COGS 0.40351 1 0.47663 0.42414 1 0.55016
OPEX 0.4343 0.47663 1 0.30355 0.55016 1

Year 2022 2023

TA 1 0.38145 0.42825 1 0.46037 0.36986
COGS 0.38145 1 0.46722 0.46037 1 0.57605
OPEX 0.42825 0.46722 1 0.36986 0.57605 1

Table 6. Diversity index.

TA CGS OE TA CGS OE

Year 2012 2013

TA 0 0.21908 0.24708 0 0.15267 0.22941
COGS 0.21908 0 0.18704 0.15267 0 0.15173
OPEX 0.24708 0.18704 0 0.22941 0.15173 0

Year 2014 2015

TA 0 0.20847 0.20947 0 0.20542 0.17729
COGS 0.20847 0 0.16553 0.20542 0 0.31035
OPEX 0.20947 0.16553 0 0.17729 0.31035 0

Year 2016 2017

TA 0 0.26959 0.29092 0 0.2426 0.28168
COGS 0.26959 0 0.24749 0.2426 0 0.22569
OPEX 0.29092 0.24749 0 0.28168 0.22569 0

Year 2018 2019

TA 0 0.28096 0.31574 0 0.25473 0.20681
COGS 0.28096 0 0.19473 0.25473 0 0.22027
OPEX 0.31574 0.19473 0 0.20681 0.22027 0

Year 2020 2021

TA 0 0.29824 0.28285 0 0.28793 0.34823
COGS 0.29824 0 0.26168 0.28793 0 0.22492
OPEX 0.28285 0.26168 0 0.34823 0.22492 0

Year 2022 2023

TA 0 0.30928 0.28588 0 0.26981 0.31507
COGS 0.30928 0 0.26639 0.26981 0 0.21198
OPEX 0.28588 0.26639 0 0.31507 0.21198 0
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The weight of the inputs and outputs and the epsilon indicator played an essential
role in eliminating the EBM score for each DMU. A weight index defines the proportional
effect the input will have on the output. Table 7 indicates that the entirety of the weight
indexes were positive. In this case, this means that changing the input factors would have
an impact on the outputs, and if the values of the input increased, the values of the output
would grow.

Table 7. Weight to input or output.

Year TA CGS OE

2012 0.32093 0.34465 0.33442
2013 0.32474 0.35017 0.32509
2014 0.32246 0.33894 0.3386
2015 0.36319 0.31142 0.32539
2016 0.32258 0.34353 0.3339
2017 0.32247 0.34689 0.33063
2018 0.29778 0.35773 0.34448
2019 0.33084 0.32498 0.34418
2020 0.32334 0.33465 0.34201
2021 0.29858 0.36348 0.33795
2022 0.32227 0.33315 0.34458
2023 0.30633 0.35596 0.3377

The results of the epsilon for the EBM through the years in Table A5 satisfied the
condition 0 ≤ epsilon index ≤ 1. The efficiencies of 10 packaging enterprises were obtained
based on the factors of weight and epsilon for EBM. Tables 8 and 9 indicate the efficiency
scores for the DMUs from the past to the future.

Table 8. The efficiency scores for DMUs in the past years (2012–2019).

DMUs 2012 2013 2014 2015 2016 2017 2018 2019

DMU1 0.89705 0.96757 0.9784 0.99872 1 1 1 0.93651
DMU2 1 1 0.87235 0.92132 1 1 1 1
DMU3 0.86749 0.90359 0.89433 0.87861 0.89172 0.91656 0.92816 0.88593
DMU4 0.88807 0.8649 0.94419 0.99352 1 1 1 1
DMU5 1 1 1 1 1 1 1 1
DMU6 0.77576 0.82786 0.95611 0.89414 0.98359 0.97447 0.8957 0.86206
DMU7 0.85263 0.85531 0.99586 1 1 1 0.95107 0.87843
DMU8 1 1 1 1 1 0.95604 0.93866 0.91156
DMU9 0.68077 0.73016 0.821 0.77799 0.85843 0.842 0.87313 0.86069
DMU10 0.77112 0.8618 0.94475 0.92874 0.91311 0.92236 0.9592 0.89168

Table 9. The efficiency scores for DMUs in the prediction years (2020–2023).

DMUs 2020 2021 2022 2023

DMU1 1 1 1 1
DMU2 1 0.96085 0.94435 0.95079
DMU3 0.96805 0.91031 0.99711 0.93022
DMU4 1 1 1 1
DMU5 1 1 1 1
DMU6 0.88965 0.91612 0.88826 0.91979
DMU7 0.92741 0.93248 0.91575 0.92693
DMU8 0.91389 0.91726 0.8986 0.91106
DMU9 0.93047 0.93126 0.97919 0.96635
DMU10 0.92496 0.93115 0.91512 0.92765

In general, all the enterprises in the packaging industry had high productivity, while
there was no company with an efficiency score below 0.681 in the observation time from
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2012 to 2023. As reported by Tables 8 and 9, there were five DMUs with efficiency scores
increasing over time from the past to the future. Specifically, they were DMU1, DMU4,
DMU5, and DMU9. In contrast, only DMU8 showed a downward trend compared with
the first period; however, its efficiency index remained high. Other DMUs presented the
fluctuation trend over the same time span. Figure 3 indicates the ranking positions of all
companies from past to future (2012–2023).

 

Figure 3. Ranking positions of the DMUs. 

θ

θ

θ

θ

θ

−
− −

0

2

4

6

8

10

12

2010 2012 2014 2016 2018 2020 2022 2024

DMU1 DMU2 DMU3 DMU4 DMU5

DMU6 DMU7 DMU8 DMU9 DMU10

Figure 3. Ranking positions of the DMUs.

Once a DMU gained the first ranking, that meant its theta index (θ) needed to be equal
or closest to one, and all slacks for each variable needed to be the lowest and nearest to
zero. Conversely, if the slack was high and the theta index was far from one, the DMU
could not reach a high position. In the case where θ was higher than one, this meant the
DMU was inefficient, and the values of the inputs needed to change accordingly to increase
the efficiency and values of the outputs. Table A6 describes theta (θ) and slack (s) in the
solution for each unit.

It is interesting to note that in the past data sequence, DMU6 was the most inefficient
unit, even with high efficiency scores of 0.95611 (in 2014), 0.98359 (in 2016), and 0.97447
(in 2017) while compared with the efficient unit (score = 1). Particularly, DMU6 had
the theta θ = {1.044; 1.064; 1.005} (>1) in 2014, 2016, and 2017, respectively. The input
value, theta and slack (s1, s2, and s3) indicators of DMU6 in 2014 in Tables A1 and A6
were picked as a sample for the ideal suggestion emphasized for the inefficient unit. All
input indexes were multiplied by θ = 1.044 without the slack. Furthermore, the total
assets was reduced by the slack s1 = 384,480. The estimated input for the total assets was
650,097 × 1.044 − 384,480 = 294,221.268. Calculated accordingly, the optimal cost of goods
sold was 692,997 × 1.044 − 71,033.5 = 652,455.368, and 47,851 × 1.044 − 0 = 49,956.444
for the operating expenses. DMU6 was advised to reduce the amount of total assets from
650,097 to 294,221.268 and the cost of goods sold from 692,997 to 652,455.368 and increase
the operating expenses from 47,851 to 49,956.444 to have better performance.

It is apparent from Table A6 that the incompetent DMUs in each period were different.
Except for DMU6 mentioned above, DMU7 was unproductive in 2014, and so was DMU4
in 2015. In the future term, DMU2, 3, 8 and 10 were predicted to be inefficient. With a few
exceptions, the years 2015, 2016, and 2017 illustrated that DMU7 got pretty good scores
and rankings. In another year, DMU7 showed fluctuating results in its efficiency score,
ranking around the fifth to eighth positions. DMU2 showed a high performance, but it
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was unstable. In 2012 and 2013, it had the highest rank at first with the score also being
one. One year later, its position dropped significantly to ninth and seventh in 2014 and
2015. Between 2016 and 2010, it gained the first ranking with a score of one again. From
2021 to 2023, with its forecast value, it was predicted to fall to the fourth, sixth, and fifth
positions, respectively. As can be seen from Tables 8 and 9 and Figure 3, compared with
the other DMUs, based on the efficiency score and ranked in the order of DMU3, DMU6,
and DMU10, these three DMUs were determined to be the most ineffective enterprises.
In the same period, three companies’ scores fluctuated below one, and their ranks stayed
around the last positions. As opposed to the developing companies, DMU8 was the most
efficient enterprise from the initial years. It obtained the first position with the highest
point of one in the first five years (2012–2016). Nevertheless, they could not remain stable
from 2017 to 2023. It was predicted to be in the last group of low efficiency, with DMU8
falling to the last two positions—the ninth and tenth ranking—in 2022 and 2023 with scores
of 0.8986 and 0.9110, respectively. The projected input values that were recommended
for each inefficient DMU would not be the same based on the efficiency score, theta, and
slack index calculations. However, in general, following the estimated instructions as with
DMU6, we can see the common solutions for these DMUs were lowering the input values’
total assets and operating expenses to improve the values of the outputs, including the
revenue and gross profit.

Overall, DMU5 started with the highest score of one, and it ranked first in 2012 and
continuously maintained the same the same level until 2023. Its theta was always equal
to one and the slacks were zero. DMU5 was defined as the most efficient unit over time.
Following that, DMU1 presented steady growth for the whole time. Its position was fourth
from 2012 to 2015. One year after, it increased rapidly to be the first leader among the
DMUs. In 2019, its position fell to the fourth ranking again with a score of 0.9365. Then, it
reversed positions to first with the highest score for the next four years. DMU4 denoted a
slight change in its score and position for the first four years, from 2012 to 2015. Noticeably,
its beginning position was fifth with a score of 0.888 and ranked sixth, seventh, and fifth
in 2013, 2014, and 2015, respectively. It was even mentioned that it was inefficient in
2015 based on the theta and slack indexes. However, starting from 2016, it climbed to
the dominant position together with DMU5 with an efficiency score of one and a ranking
of first.

DMU9’s score substantially grew within 12 years, but due to it having the lowest
score (0.6807) from the beginning, it still held the last ranking (tenth) among ten packaging
companies between the year 2012 and 2019. Their position only changed from sixth to
fourth, with a score from 0.9312 to 0.9663 from 2020 to 2023, respectively.

3.3. Discussion

The development potential of the packaging industry is expanding. However, Viet-
namese packaging companies are facing a lot of pressure and great competition from many
FDI enterprises. Specifically, following the global packaging trends combined with high
technology and eco-friendly practices together with the COVID-19 pandemic, packaging
enterprises need to deal with changes in consumer behavior. When customers turn to
attain their fundamental priorities, which are food, shelter, water, and healthcare and
pharmaceutical products, they are not focused on luxury order desires [53]. In terms of the
packaging materials, packaging companies all faced common difficulties under the impact
of the crisis, such as breaking the supply chain in business, difficulty in approaching new
customers, and not being able to implement a sales plan. However, packaging businesses
also have many opportunities such as Vietnam’s e-commerce scale, which will continue to
grow [54]. Under the EU–Vietnam Free Trade Agreement (EVFTA), the import tax on Viet-
nam’s plastic bags into the EU market will be removed, creating a significant competitive
advantage for the packaging industry [55].

To have a deeper understanding not only of the investment and cooperation oppor-
tunities, but also the performance effectiveness of each firm in the packaging industry in
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Vietnam, based on the historical financial statements of 10 determined packaging compa-
nies from 2012 to 2019, this research evaluated the developing trends from the past, present,
and future of all units by integrating the additive Holt-Winters model and epsilon-based
measurement (EBM) of DEA. Throughout the analysis, manufacturer managers can find the
most suitable company to collaborate with to sustain their business strategy and catch up
with global trends. According to the empirical results, generally, all packaging companies
had productivity from medium to high. DMU1, DMU4, and DMU5 were evaluated as the
three most efficient units and ideal suppliers which reached the first rank and remained at it
over time. In contrast, DMU3, DMU6, and DMU8 presented fluctuations and a downward
trend and kept the last positions. Formulated on the calculation of feasible solutions of
EBM, the inefficient and unstable units could change the input value for better performance
of the output value. Besides that, they should have policies to improve their competi-
tiveness in quality, reduce waste in the production process, attach value to maintaining
long-term relationships with large customers, strengthen after-sales and customer care
services, adjust the selling prices reasonably while ensuring profit, and finally invest in
technical machinery and equipment to meet the strict requirements from the market.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Conclusions

The packaging industry has an important role in a developing economy, especially in
Vietnam, where the demand for producing products is increasing day by day, leading to an
increase in the need for packaging. Packaging’s values are not only protecting products,
but also its role as a sales and marketing tool. Along with the Fourth Industrial Revolution
and high customer requirements, packaging companies are under pressure to deal with
challenges to improve their core competencies through technology and associated services
as suppliers. However, to adapt with the growth trends, which are being fast, flexible,
convenient, good, cheap, and environmentally friendly, changing technology will be a big
task for companies when it requires strong capital ability. With uncertain circumstances,
financial forecasting and performance evaluation are necessary for packaging companies.

This research aimed to construct the efficiency and developing trends of 10 packaging
operations from the past to the future by integrating the additive Holt-Winters model, an
extended variation of Holt’s exponential smoothing that captures seasonality in Tableau and
the EBM of DEA. Based on the collected original data from 2012 to 2019 for the packaging
companies, the LTS(A,A,A) approach was employed to forecast the value of the data for the
next four years (2019–2023), with the chosen inputs and outputs being total assets, cost of
goods sold, operating expenses, revenues, and gross profit. The mean absolute percent error
(MAPE) estimated the accuracy of the forecasting values. With the MAPE under 10.56%,
the predicted data value in this research had good accuracy. Subsequently, the EBM model
was applied to assess the decision-making unit (DMU) productivity by giving efficiency
scores with rankings and then providing suggestions through the calculation of the theta
and slack indexes for incompetent companies in order to improve their performance. The
empirical results will first assist packaging company’s managers in defining their positions
in the market and making long-term sustainable advancement decisions. Secondly, it will
be valuable support for investors and manufacturers for choosing the best supplier for
their business and making investment decisions. This finding also validates the usefulness
of the Holt-Winters forecasting model and epsilon-based measure of efficiency (EBM) in
data envelopment analysis (DEA), as the model can measure the performance of a decision-
making unit (DMU) and contribute solutions for companies over the observation period,
specifically for cases in the packaging industry. These frameworks’ combination can be
adopted in multiple fields and different projects.

Although the research was successful, some limitations still remain. Since a com-
pany’s strategic decision-making process and performance can be defined and affected by
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diversified variations, including internal and external factors not be presented in a finan-
cial statement such as human resources and environmental factors, the study estimated
the efficiency of packaging companies based on input and output indicators in financial
reports. Accordingly, future investigations can address greater clarity on the links between
other factors and their effects on the performance of the industry. The research models
that were applied in this study are not the only methods for predicting and assessing the
productivity of decision-making units. Future research can employ other frameworks and
models to achieve their objectives and have a comparative measurement. Besides that,
because many firms have not published their financial reports, the sample size was limited
and less comparative. Hence, future studies can expand the research target and scope in
other regions and other industries.
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Appendix A

Table A1. Historical data of all DMUs from 2012 to 2019.

DMUs TA CGS OE RE GP TA CGS OE RE GP

2012 2013

1 225,416 340,331 38,933 416,943 76,612 274,489 464,002 40,906 560,700 96,698
2 668,890 1,395,761 54,114 1,492,420 96,659 1,056,549 1,380,548 74,396 1,502,907 122,358
3 160,851 259,660 26,390 298,989 39,329 158,167 263,520 37,208 311,871 48,350
4 549,662 728,958 65,569 851,749 122,791 610,872 854,393 81,818 1,003,373 148,980
5 52,861 94,134 9817 124,178 30,044 74,832 108,153 8925 143,966 35,813
6 613,666 575,399 52,258 607,377 31,978 659,919 639,476 48,231 697,931 58,455
7 85,926 112,173 19,925 139,762 27,589 117,109 153,832 23,847 187,198 33,367
8 85,821 195,900 16,682 224,146 28,246 98,168 199,944 16,068 228,837 28,892
9 130,541 61,722 8149 63,934 2212 135,051 89,090 7923 93,198 4107

10 75,970 63,329 10,801 74,106 10,777 90,478 121,727 11,578 142,961 21,233

2014 2015

1 341,105 519,131 50,759 627,524 108,392 397,805 629,962 58,670 762,977 133,015
2 1,178,560 1,349,670 124,823 1,514,504 164,834 813,781 1,199,197 127,930 1,392,908 193,711
3 154,407 195,163 23,177 227,823 32,660 128,275 185,389 25,771 213,096 27,707
4 669,385 975,754 85,333 1,130,701 154,947 758,795 1,170,064 93,132 1,341,383 171,319
5 114,886 115,157 11,523 154,670 39,513 153,226 152,150 18,119 219,307 67,156
6 650,097 692,997 47,851 741,824 48,827 534,730 658,109 53,171 707,016 48,907
7 109,409 190,702 26,730 228,455 37,752 124,503 253,216 29,901 294,832 41,616
8 99,367 220,428 16,878 250,700 30,272 130,624 247,714 20,324 283,429 35,715
9 147,895 96,769 8907 107,445 10,676 149,944 102,962 13,251 123,154 20,193

10 94,615 133,418 12,483 156,913 23,496 85,418 120,657 14,001 144,477 23,820
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Table A1. Cont.

DMUs TA CGS OE RE GP TA CGS OE RE GP

2016 2017

1 491,379 714,851 82,110 882,745 167,894 554,368 804,222 79,506 978,153 173,931
2 925,723 1,176,364 90,554 1,405,264 228,901 1,089,353 1,300,812 83,663 1,459,899 159,087
3 125,184 146,857 26,553 179,511 32,654 136,676 155,664 29,137 194,254 38,590
4 749,980 1,199,774 95,752 1,381,740 181,966 936,962 1,370,666 107,416 1,554,386 183,719
5 164,648 119,490 16,115 167,652 48,161 199,119 140,997 18,421 196,151 55,153
6 599,823 649,998 42,523 702,107 52,109 643,818 674,064 41,945 735,337 61,273
7 142,893 245,138 28,506 286,394 41,255 196,875 347,340 35,998 396,111 48,770
8 156,247 263,115 24,429 303,369 40,255 196,681 277,142 27,955 324,829 47,688
9 157,994 104,988 12,415 125,975 20,987 158,356 104,128 13,035 122,352 18,224

10 116,449 125,837 17,292 153,299 27,461 121,774 159,485 18,877 186,927 27,442

2018 2019

1 653,755 976,249 94,511 1,164,601 188,352 792,415 1,073,852 135,016 1,309,529 235,677
2 1,247,892 1,566,783 90,360 1,704,119 137,337 1,348,780 1,536,620 101,103 1,763,523 226,903
3 154,904 168,339 24,290 204,135 35,796 184,592 176,278 27,793 216,420 40,142
4 922,925 1,594,683 113,093 1,780,171 185,488 904,496 1,404,516 112,349 1,703,555 299,039
5 218,140 149,617 17,891 194,421 44,804 227,599 143,197 22,743 195,523 52,326
6 662,377 645,763 53,968 713,685 67,922 666,365 710,317 57,558 781,061 70,744
7 237,719 396,920 40,416 447,932 51,012 219,920 312,037 38,074 356,255 44,218
8 212,062 292,097 33,075 340,094 47,998 214,670 314,913 33,194 364,964 50,052
9 177,527 124,191 13,163 143,492 19,301 168,725 140,759 16,597 166,938 26,179

10 135,686 204,770 20,944 236,603 31,833 138,740 196,867 20,361 223,738 26,870

Table A2. Forecasting data of all DMUs from 2020 to 2023.

2020 2021

DMU TA CGS OE RE GP TA CGS OE RE GP

DMU1 850,040 1,196,789 138,220 1,440,914 245,096 950,126 1,281,480 147,732 1,558,944 267,450
DMU2 1,374,361 1,597,270 105,622 1,823,640 204,782 1,368,105 1,554,814 117,317 1,821,797 232,070
DMU3 175,830 129,146 19,810 168,189 32,505 188,005 126,189 26,516 167,267 34,539
DMU4 996,251 1,637,435 118,693 1,876,436 260,157 1,066,083 1,780,077 129,827 2,038,766 288,901
DMU5 261,082 156,042 22,871 204,316 48,378 288,472 181,496 25,529 246,528 65,084
DMU6 680,308 706,044 54,344 780,796 65,853 645,751 720,639 54,991 808,669 78,104
DMU7 251,207 405,412 41,817 458,543 53,231 274,346 453,014 44,925 510,812 57,963
DMU8 241,088 331,934 37,875 384,130 54,348 262,890 347,643 38,781 406,668 57,687
DMU9 181,861 135,863 16,041 164,526 29,677 184,060 150,650 17,949 184,694 35,383

DMU10 153,283 207,356 23,097 239,495 35,705 155,938 226,242 24,245 263,363 34,249

2022 2023

DMU1 1,007,751 1,404,417 163,168 1,690,329 286,882 1,007,751 1,489,108 172,680 1,808,358 309,237
DMU2 1,484,175 1,651,786 116,115 1,902,359 228,986 1,477,920 1,609,330 127,809 1,900,516 256,274
DMU3 179,243 99,386 17,891 136,472 30,548 191,418 96,429 24,597 135,549 32,582
DMU4 1,096,442 1,838,949 129,923 2,110,224 295,616 1,166,274 1,981,591 141,057 2,272,553 324,360
DMU5 308,559 171,025 26,133 224,616 53,591 335,949 196,478 28,791 266,828 70,297
DMU6 689,501 729,578 56,184 812,369 71,837 654,944 744,173 56,830 840,242 84,088
DMU7 293,641 470,269 46,726 528,806 58,764 316,780 517,871 49,834 581,076 63,496
DMU8 281,545 365,746 43,462 426,143 61,167 303,347 382,355 44,367 448,680 64,505
DMU9 193,144 150,899 18,021 185,439 36,204 195,343 165,686 19,929 205,607 41,910

DMU10 171,279 235,558 26,251 271,358 40,154 173,935 254,475 27,399 295,226 38,698
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Table A3. Forecasting parameters of all DMUs from 2020 to 2023.

DMU
TA CGS OE RE GP

α β γ α β γ α β γ A β γ α β γ

DMU10 0.5 0 0 0.1 0.5 0 0.5 0 0 0.1 0.5 0 0 0 0.5
DMU9 0.2 0.5 0 0.2 0.5 0 0.1 0.5 0 0.1 0.5 0 0 0.2 0
DMU8 0.5 0 0 0.5 0 0.1 0.5 0 0.5 0.5 0 0.2 0.5 0 0
DMU7 0.5 0 0 0.1 0.5 0 0.2 0.4 0 0.1 0.5 0 0 0.5 0
DMU6 0.1 0 0 0 0 0 0.3 0 0 0 0 0 0.1 0.5 0
DMU5 0.2 0.4 0 0 0.5 0 0.1 0.5 0 0 0 0 0 0 0
DMU4 0.1 0.5 0 0.1 0.5 0 0.1 0.5 0 0.2 0.4 0 0.2 0 0.1
DMU3 0.5 0 0.5 0 0 0 0 0 0 0.5 0 0 0.1 0 0
DMU2 0.1 0.5 0 0.5 0 0.2 0 0 0 0.5 0 0.4 0 0.1 0
DMU1 0.5 0 0.5 0.5 0 0.5 0.5 0 0.1 0.5 0 0.5 0.5 0 0

Table A4. Pearson’s correlation coefficient from 2012 to 2020.

TA CGS OE RE GP TA CGS OE RE GP

Year 2012 2013

TA 1 0.8995 0.9214 0.8983 0.6889 1 0.9765 0.8682 0.9682 0.7643
COGS 0.8995 1 0.8203 0.9984 0.7635 0.9765 1 0.9108 0.9986 0.8525
OPEX 0.9214 0.8203 1 0.8389 0.8564 0.8682 0.9108 1 0.9267 0.9441
REV 0.8983 0.9984 0.8389 1 0.7983 0.9682 0.9986 0.9267 1 0.8792
GP 0.6889 0.7635 0.8564 0.7983 1 0.7643 0.8525 0.9441 0.8792 1

Year 2014 2015

TA 1 0.9795 0.9572 0.9716 0.8403 1 0.9852 0.9584 0.9809 0.8849
COGS 0.9795 1 0.9861 0.9989 0.9175 0.9852 1 0.9742 0.9986 0.9208
OPEX 0.9572 0.9861 1 0.9896 0.9445 0.9584 0.9742 1 0.9775 0.9317
REV 0.9716 0.9989 0.9896 1 0.9349 0.9809 0.9986 0.9775 1 0.9400
GP 0.8403 0.9175 0.9445 0.9349 1 0.8849 0.9208 0.9317 0.9400 1

Year 2016 2017

TA 1 0.9719 0.9023 0.9687 0.8896 1 0.9758 0.8901 0.9701 0.8555
COGS 0.9719 1 0.9614 0.9983 0.9261 0.9758 1 0.9615 0.9989 0.9163
OPEX 0.9023 0.9614 1 0.9710 0.9641 0.8901 0.9615 1 0.9709 0.9696
REV 0.9687 0.9983 0.9710 1 0.9463 0.9701 0.9989 0.9709 1 0.9342
GP 0.8896 0.9261 0.9641 0.9463 1 0.8555 0.9163 0.9696 0.9342 1

Year 2018 2019

TA 1 0.9587 0.8824 0.9522 0.8058 1 0.9717 0.8562 0.9619 0.8640
COGS 0.9587 1 0.9599 0.9990 0.8972 0.9717 1 0.9187 0.9986 0.9431
OPEX 0.8824 0.9599 1 0.9701 0.9716 0.8562 0.9187 1 0.9307 0.9491
REV 0.9522 0.9990 0.9701 1 0.9161 0.9619 0.9986 0.9307 1 0.9595
GP 0.8058 0.8972 0.9716 0.9161 1 0.8640 0.9431 0.9491 0.9595 1

Year 2020 2021

TA 1 0.9624 0.8729 0.9599 0.8710 1 0.9596 0.9141 0.9634 0.9185
COGS 0.9624 1 0.9367 0.9993 0.9484 0.9596 1 0.9497 0.9991 0.9629
OPEX 0.8729 0.9367 1 0.9472 0.9789 0.9141 0.9497 1 0.9597 0.9811
REV 0.9599 0.9993 0.9472 1 0.9588 0.9634 0.9991 0.9597 1 0.9716
GP 0.8710 0.9484 0.9789 0.9588 1 0.9185 0.9629 0.9811 0.9716 1

Year 2022 2023

TA 1 0.9543 0.8796 0.9540 0.8892 1 0.9475 0.8951 0.9518 0.9145
COGS 0.9543 1 0.9365 0.9994 0.9598 0.9475 1 0.9459 0.9992 0.9689
OPEX 0.8796 0.9365 1 0.9465 0.9761 0.8951 0.9459 1 0.9562 0.9782
REV 0.9540 0.9994 0.9465 1 0.9685 0.9518 0.9992 0.9562 1 0.9769
GP 0.8892 0.9598 0.9761 0.9685 1 0.9145 0.9689 0.9782 0.9769 1
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Table A5. Epsilon for the EBM in each year.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Epsilon
Indicator 0.43475 0.35458 0.3885 0.45829 0.53821 0.49927 0.52371 0.45406 0.56151 0.57004 0.57388 0.52865

Table A6. Theta and slack(s) index of inputs for all DMUs.

θ s1 s2 s3 θ s1 s2 s3 θ s1 s2 s3

DMUs TA CGS OP TA CGS OP TA CGS OP

2012 2013 2014

DMU1 0.929 31,857.3 0 3195.4 0.976 0 0 3041.67 0.995 0 0 6376.4
DMU2 1 0 0 0 1 0 0 0 0.879 61674.2 0 0
DMU3 0.880 13,990.3 0 0 0.950 0 0 14,933.2 0.922 0 0 4962.6
DMU4 0.924 141,796 0 0 0.882 17,388.9 0 9979.64 0.945 0 0 717.87
DMU5 1 0 0 0 1 0 0 0 1 0 0 0
DMU6 0.833 250,021 0 0 0.859 176,739 0 0 1.044 384,480 71,033.5 0
DMU7 0.945 21,662.3 0 7770.2 0.914 9755.52 0 10,195.4 1.067 0 12,693.5 12,587
DMU8 1 0 0 0 1 0 0 0 1 0 0 0
DMU9 0.785 75,288.1 0 1344.4 0.786 57,690.6 0 448.829 0.872 60,551.9 0 0
DMU10 0.887 35,843.9 0 3722.6 0.882 5517.84 0 1352.41 0.953 0 0 749.08

2015 2016 2017

DMU1 1 0 0 503.37 1 0 0 0 1 0 0 0
DMU2 0.938 0 0 14,575 1 0 0 0 1 0 0 0
DMU3 0.922 0 0 7567.8 0.990 23,990.9 0 9586.41 1 9019.53 0 12,853
DMU4 1.034 163,592 40128 0 1 0 0 0 1 0 0 0
DMU5 1 0 0 0 1 0 0 0 1 0 0 0
DMU6 0.953 184,021 9580 0 1.064 175,678 103,835 0 1.005 98,118.2 21,995.2 0
DMU7 1 0 0 0 1 0 0 0 1 0 0 0
DMU8 1 0 0 0 1 0 0 0 0.964 5435.88 0 536.3
DMU9 0.830 38,383 0 821.22 1 73,793.2 0 4178.29 0.863 20,932.3 0 0
DMU10 0.953 0 0 2306 1 24,775.6 0 4807.43 0.964 11,407.2 0 2997.1

2018 2019 2020

DMU1 1 0 0 0 1 57,216.4 0 45,477.8 1 0 0 0
DMU2 1 0 0 0 1 0 0 0 1 0 0 0
DMU3 1 17,622 0 7283.9 1 54,888.6 0 12,343 1.051 45,456.5 0 3759.5
DMU4 1 0 0 0 1 0 0 0 1 0 0 0
DMU5 1 0 0 0 1 0 0 0 1 0 0 0
DMU6 0.990 285,762 0 8089.8 0.907 189,408 0 669.823 0.965 241,965 0 3054.2
DMU7 1 2253.92 0 10,630 0.941 17,857.2 0 12,343.9 0.987 4486.41 0 12,268
DMU8 0.976 16,061.5 0 4681.9 0.955 11,340.6 0 7647.54 1.005 36,412.6 0 12,651
DMU9 0.969 91393.4 0 1104.2 0.978 76344 0 5219.01 0.994 63710.1 0 0
DMU10 1 7665.27 0 3713.5 0.937 11,205.9 0 4322.7 0.992 20,175.1 0 5160.4

2021 2022 2023

DMU1 1 0 0 0 1 0 0 0 1 0 0 0
DMU2 1.023 446,999 0 4009.5 1.009 508,648 8349.4 0 1.030 546,525 0 13,645
DMU3 1.061 54,696.9 0 13,954 1.066 26,314.5 0 3772.2 1.066 57,073.2 0 12,006
DMU4 1 0 0 0 1 0 0 0 1 0 0 0
DMU5 1 0 0 0 1 0 0 0 1 0 0 0
DMU6 0.980 209,830 0 2383.2 0.970 246,953 0 4501.22 0.985 213,602 0 3797.4
DMU7 0.985 2990.18 0 11,701 0.980 12,985.1 0 13,230.1 0.978 11,725.8 0 12,690
DMU8 1.021 55,483.7 0 13,686 1.010 59,100.6 0 15,919 1.021 78,770.5 0 16,905
DMU9 1.002 39,098.6 0 3220 0.993 14,513 0 0 0.997 11,595.1 0 2335.1
DMU10 1.016 20,777 0 7871.2 0.991 23,287.3 0 6794.24 1.012 24,443 0 9392.2
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Abstract: There are many sub-tour elimination constraint (SEC) formulations for the traveling
salesman problem (TSP). Among the different methods found in articles, usually three apply more
than others. This study examines the Danzig–Fulkerson–Johnson (DFJ), Miller–Tucker–Zemlin (MTZ),
and Gavish–Graves (GG) formulations to select the best asymmetric traveling salesman problem
(ATSP) formulation. The study introduces five criteria as the number of constraints, number of
variables, type of variables, time of solving, and differences between the optimum and the relaxed
value for comparing these constraints. The reason for selecting these criteria is that they have the
most significant impact on the mathematical problem-solving complexity. A new and well-known
multiple-criteria decision making (MCDM) method, the simultaneous evaluation of the criteria
and alternatives (SECA) method was applied to analyze these criteria. To use the SECA method
for ranking the alternatives and extracting information about the criteria from constraints needs
computational computing. In this research, we use CPLEX 12.8 software to compute the criteria value
and LINGO 11 software to solve the SECA method. Finally, we conclude that the Gavish–Graves
(GG) formulation is the best. The new web-based software was used for testing the results.

Keywords: sub-tour elimination constraint (SEC); asymmetric traveling salesman problem (ATSP);
multiple-criteria decision making (MCDM); simultaneous evaluation of criteria and alternatives
(SECA)

1. Introduction

The traveling salesman problem (TSP) is one of the most well-known combinational
optimization problems studied in the operation research literature. It consists of determin-
ing a tour that starts and ends at a given base node after visiting a set of nodes exactly
once while minimizing the total distance [1]. Solving the TSP problem is crucial because
it belongs to the class of non-polynomial (NP)-complete. In this class of problems, no
polynomial–time algorithm has been discovered. If someone finds an efficient TSP algo-
rithm, it can be extended to other NP-complete class issues. Unfortunately, to date, no one
has been able to do it. The TSP is divided into two categories, symmetric and asymmetric,
based on the distance between any two nodes. In asymmetric TSP (ATSP), the distance
from one node to another is different from the inverse distance, and in symmetric TSP
(STSP), this distance is the same. As previously mentioned, the TSP consists of determining
a minimum-distance circuit passing through each vertex once and only once. Such a circuit
is known as a tour or Hamiltonian circuit (or cycle) [2].

A large number of exact algorithms have been proposed to solve the TSP problem.
In addition to exact algorithms, some heuristic algorithms are used to provide high-quality
solutions, but not necessarily optimal. The importance of identifying effective heuristics
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to solve large-scale TSP problems prompted the ‘8th DIMACS Implementation Challenge,
organized by Johnson et al. [3] and solely dedicated to TSP algorithms [4]. Lin and
Kernighan’s heuristic algorithm appears so far to be the most effective in terms of solution
quality, particularly with the variant proposed by Helsgaun (2000) [5]. Potvin (1996) [6]
proposed a genetic algorithm to the TSP, and Aarts et al. (1988) [7] analyzed the TSP
problem with the simulated annealing algorithm [8]. All of the traveling salesman problems
have a similar structure by one difference. The basic model is as follows:

min
n

∑
i=1

n

∑
j=1

cij ∗ yij (1)

subject to Equation (2)
n

∑
i=1

yij = 1, i = 1, . . . , n (2)

n

∑
j=1

yij = 1, j = 1, . . . , n (3)

yij ∈ {0, 1}, i, j = 1, . . . , n (4)

In this formulation, Equation (1) is the objective function that minimizes the to-
tal distance and cij is distance or weight of arc (i,j), Equations (2) and (3) are the as-
signment constraint, which ensures that each node is visited and left exactly once, and
Equations (4) and (5) indicate that yij is a binary variable and equals to 1 if arc (i,j) partici-
pates in the tours.

The basic model that is mentioned above is not complete because it does not support
the Hamiltonian circuit. Suppose there are six nodes and a traveler wants to visit all of
them, he can do this in the two ways shown in Figure 1:

1 1
min *

1
1,

1
1,

{0,1}

 

Figure 1. Number (1) does not have a Hamiltonian circuit, and number (2) has a Hamiltonian circuit.

In the above graphs (1 and 2), all of the nodes are visited, but in (1), we do not have
a Hamiltonian circuit. This figure indicates that the basic formulation is not complete
and should use a constraint that omits graph (1). For that, researchers add a constraint to
the basic formulation for eliminating these sub-tours. Researchers have proposed many
constraints for sub-tour breaking, but it is not clear which one is better. Therefore, in
this research, an attempt has been made to compare the three methods most used in
articles. This study used a multi-criteria decision-making method for the evaluation and
comparison of these three constraints. Since the purpose of the research is to survey
the three formulations, it is proposed to use the simultaneous evaluation of criteria and
alternatives (SECA) method for decision making and ranking. One of this method’s
properties is that it does not need experts’ opinions for weighting criteria. The SECA
method can compute weights of criteria by mathematical methods.
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2. Description of Three Sub-Tour Elimination Constraints (SECs)
2.1. The Danzig–Fulkerson–Johnson (DFJ) Formulation

Danzig, Fulkerson, and Johnson proposed the first integer linear programming (ILP)
formulation in 1954 as an SEC [9]. The DFJ constraints are

∑
i∈Q

∑
j∈Q

yij ≤ |Q| − 1 for all Q ⊂ {1, 2, . . . , n} and 2 < |Q| ≤ n− 1 (5)

In each subset Q, sub-tours are prevented, ensuring that the number of arcs selected in
Q is smaller than the number of Q nodes [10]. yij is a binary variable and is equal to 1 when
the nodes of i,j are visited. Q is a set of vertices whose cardinalities are between 3 and n − 1
because two nodes cannot take a tour, and the minimum number for making a tour is 3.

2.2. The Miller–Tucker–Zemlin (MTZ) Formulation

The earliest known extended formulation of the TSP was proposed by Miller in
1960 [11]. It was initially proposed for a vehicle routing problem (VRP), where each
route’s number of vertices is limited [12]. The VRP can be simply defined as the problem
of designing least-cost delivery routes from a depot to a set of geographically scattered
customers, subject to side constraints. This problem is central to distribution management
and must be routinely solved by carriers. In practice, several variants of the problem
exist because of the diversity of operating rules and constraints encountered in real-life
applications [13]. The capacitated vehicle routing problem (CVRP) is one of the variants of
the VRP. The CVRP consists, in its basic version, of designing a set of minimum cost-routes
for several identical vehicles having a fixed capacity to serve a set of customers with known
demands [14]. The MTZ constraints are

ui − uj + nyij ≤ n− 1 for all j 6= 1 and i 6= j (6)

In this formulation ui and uj are integer variables that define the order of vertices
visited on a tour. yij is a binary variable and is equal to 1 when the nodes of i,j are visited.
Constraint acts on the basis of node labeling. This means each node receives a number
label, and these numbers should be sequential. Figure 2 shows that each number is greater
than the previous one except in the last one (1 is not greater than 4). This simple rule helps
prevent the TSP from making arc i,l and eliminate taking a tour.

1 {1,2,..., } 2 1

−

1 1𝑢

 

Figure 2. The Miller–Tucker–Zemlin (MTZ) number labeling that does not allow to construct arc i,l.

2.3. The Gavish–Graves (GG) Formulation

A large class of extended ATSP formulations is known as commodity flow formu-
lations, where the additional variables represent commodity flows through the arcs and
satisfy additional flow conservation constraints. These models belong to three classes:
single-commodity flow (SCF), two-commodity flow (TCF), and multi-commodity flow
(MCF) formulations. The earliest SCF formulation is due to Gavish and Graves. The ad-
ditional continuous non-negative variables zij describe a single commodity’s flow vertex
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1 from every other vertex [12]. The GG [15] formulation for a single commodity problem
that has sub-tour elimination constraints in it is

∑
j=1

zij −∑
j 6=1

zij = 1 i = 2, . . . , n (7)

zij ≤ (n− 1)yij, i = 2, . . . , n and j = 1, . . . , n (8)

zij ≥ 0 for all i, j (9)

In this formulation, z is a positive variable. yij is a binary variable and is equal to 1
when the nodes of i,j are visited. Constraint (7) ensures that the flow variable (Zij) exists
between nodes with one unit following. Constraint (8) assures that a flow is possible when
the nodes are connected (yij = 1).

3. Research Gap

As indicated, there are many SECs of the TSP formulation in literature. Researchers
prefer using one of them based on their previous experiences. Consequently, if someone
enters this field, they do not know which one is more related to their work. Sometimes
new researchers use one method that is not proper for their research. For example, when
the number of nodes increases, using the DFJ method is not suitable because it is an
exponential growth of constraints that make it complicated for the software to achieve a
result. Nevertheless, some researchers use the DFJ method in problems with a high number
of nodes. However, there has been no research attending to all aspects or details. Some
researchers select SECs just for their lower constraints or variables. Others work on the
relaxation to get better answers, which are nearer to the optimum. So far, researchers have
not considered all related criteria that impact the selection of SECs. This study attempted
to cover the criteria that have the most impact on the selection of SECs. Consider someone
who wants to use SECs for sub-tour elimination. He faces DFJ and realizes that DFJ gets an
answer nearer to an optimum value, but it has many constraints and needs more time for
running, and for the exponential growth of constraints, it needs a more powerful computer.
With these properties of DFJ, is its selection suitable or not? The MTZ method gets results
comparable to an optimum value, but it generates integer variables and incredibly increases
the problem’s complexity. The GG method does not get a result near the optimum value,
but it has fewer constraints than DFJ and has no integer variable. With these properties,
which one of them is better than the others?

Accordingly, it was decided to convey three SECs used more than others in research
and determine which of them is better and related to our work.

4. Methodology

The core of operations research is the development of approaches for optimal decision
making. A prominent class of such problems is multi-criteria decision making (MCDM) [16].
There are many MCDM methods in the literature. These approaches are classified according
to the type of data (deterministic, stochastic, and fuzzy) and to the number of decision-
makers (single, group). In the decision-making process, usually three steps are followed
for numerical analysis of alternatives:

(1) Specifying the relevant criteria and alternatives
(2) Assigning numerical measures to the criteria under the impact of alternatives
(3) Ranking each alternative

According to these steps, various methods have been proposed. In continuation, some
prevalent MCDM methods introduced recently are explained.

The best–worst method (BWM) was proposed by Rezaee (2015). In this method,
decision-makers first determine some decision criteria and then identify the best (most
desirable) and the worst (least desirable). These criteria (best and worst) are compared to
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other criteria (pairwise comparison). A maximin problem is then formulated and solved to
determine the weights of different criteria [17].

With the aid of some aggregation strategies, Yazdani et al. (2018) introduced a new
method, which is a combined compromise decision-making algorithm [18]. They called
it CoCoSo, which is an abbreviation of combined compromise solution. This method
is used to compromise normalization, which was proposed by Zeleny (1973) [19]. The
CoCoSo weight of alternatives is determined by three equations achieved by the aggregated
multiplication rule.

Stevic et al. (2019) proposed a new method: measurement alternatives and ranking
according to compromise solution (MARCOS). This method is based on defining the
relationship between alternatives and reference values (ideal and anti-ideal alternatives).
Based on the defined relationships, the utility functions of alternatives are determined
and compromise ranking is made in relation to ideal and anti-ideal solutions. Decision
preferences are defined on the basis of utility functions. Utility functions represent the
position of an alternative concerning an ideal and anti-ideal solution. The best alternative is
the one that is closest to the ideal and at the same time furthest from the anti-ideal reference
point [20].

This study uses the SECA method for decision making and ranking [21]. One of the
reasons for selecting this method is that experts, like most other methods, do not need to
allocate weights of criteria. This study compares three mathematical constraints and does
not need expert opinion for scoring the criteria. It recommends two reference points (the
standard deviation and correlation) and then minimizes the deviation of criteria weights
from the reference point. The score of each alternative and the weight of each criterion are
determined with software. The SECA model is multi-objective non-linear programming,
which uses some techniques for optimization, and the formulation is equal to

maxz = λa − β(λb + λc) (10)

subject to
λa ≤ Si, ∀i ∈ {1, 2, . . . , n} (11)

Si =
m

∑
j=1

wjxij
N , ∀i ∈ {1, 2, . . . , n} (12)

λb =
m

∑
j=1

(wj − σj
N)

2
(13)

λc =
m

∑
j=1

(wj − πj
N)

2
(14)

m

∑
j=1

wj = 1, (15)

wj ≤ 1, ∀j ∈ {1, 2, . . . , m} (16)

wj ≥ ε ∀j ∈ {1, 2, . . . , m} (17)

where xij denotes the performance value of i-th alternative on j criterion and wj is the
weight of each unknown criterion. Moreover,σj, each vector elements’ standard deviation
πj, shows the degree of conflict between j-th criterion and other criteria. In addition, ε,
a small positive parameter, is equal to 10−3 as a lower bound for criteria weights. The
coefficient β is used for minimizing deviation from reference points. In the source paper,
it is mentioned that when the values of β are greater than 3 (β ≥ 3), the performance of
alternatives is more stable. Therefore, β is taken to be 3 in this study. Si shows the overall
performance score of each alternative.
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The SECA method also is used in the evaluation of sustainable manufacturing strate-
gies. In this decision model, SECA is combined with a weighted aggregated sum product
assessment (WASPAS) [22].

5. Selection of Related Criteria by Reviewing Articles

Defining related criteria is the essence of using the MCDM methods. The MCDM
methods indeed evaluate multiple conflicting criteria, but this does not mean that the
criteria are not related to the issue. So, selecting proper criteria is an essential step in
decision making. There are two ways to choose criteria. One way is to review some articles
and convey on them to select the right criteria. The other way is to consult with experts
and use what they opt for. This study used both methods for selecting related criteria.
Further research that deals with this issue was undertaken, and a summary is provided in
the following content.

ATSP formulations are shown in Table 1, and the order of their variables and con-
straints will be determined like this [12]:

Table 1. Classification of asymmetric traveling salesman problem (ATSP) formulations.

Category Formulations Variables Constraints

Exponential size DFJ O (n2) O (2n)

Miller–Tucker–Zemlin-based MTZ O (n2) O (n2)

Single commodity flow GG O (n2) O (n2)
DFJ, Danzig–Fulkerson–Johnson; MTZ, Miller–Tucker–Zemlin; and GG, Gavish–Graves.

To complete their comparative study, they tested the LP relaxation of these models.
The result of this comparison shows that DFJ is better than GG, and GG is better than MTZ,
which means the result of LP relaxation of the DFJ model is closer to the optimal value.
Their results are similar to Wong’s research [23].

Orman and Williams classified models into four groups: conventional (C), sequential
(S), flow-based (F), and time-staged (T) [24]. They extracted the following information:

(1) DFJ is located in the C group, and the combination of the base model with this sub-
tour elimination has 2n + 2n− 2 constraints and n(n − 1) 0–1 variables, because the
exponential number of constraints cannot solve this practically.

(2) MTZ is located in the S group, and the combination of the base model with this
sub-tour elimination has n2 − n + 2 constraints, n(n − 1) 0–1 variables, and (n − 1)
continuous variables.

(3) GG is located in the F1 group, and the combination of the base model with this
sub-tour elimination has n(n + 2) constraints, n(n − 1) 0–1 variables, and n(n − 1)
continues variables.

(4) To demonstrate the relative strengths of LP relaxations of these SECs, they provide
the following results (Table 2) for 10 cities’ TSP.

Table 2. Computational results.

Model Size LP.obj Iterations Time (s) IP.obj Nodes Time (s)

C 502 × 90 766 37 1 766 0 1
S 92 × 99 773.6 77 3 881 665 16

F1 120 × 180 794.22 148 1 881 449 13

Benhida and Mir [25] compared DFJ and MTZ sub-tour elimination and declared that
the DFJ formulation of the TSP contains n(n− 1) variables and 2n + 2n− 2 constraints. MTZ
contains (n − 1)(n + 1) variables and n2 − n + 2 constraints. To compare this method, they
randomly generated 10 complete graphs from 10 to 950 nodes. These nodes were randomly
taken between 0 and 99 coordinates. The distances between the nodes are Euclidean
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distances (d), and they calculated the relaxation value (R) by relaxing the integrality
constraints. They reported the results in a table and showed the R values of DFJ and MTZ
for 10 to 950 nodes. This final result of the research was that the DFJ relaxation value is
better than the MTZ relaxation value, and MTZ is charming because it is easy to implement
but gives a low continuous relaxation.

By reviewing the above articles and consulting with experts, six criteria that have a
significant impact on the selection of SECs are chosen and listed below:

(1) Number of constraints: when this criterion increases, the time to solve increases, too.
(2) Number of variables: these criteria affect the solution time.
(3) Relaxation value: whatever is closer to an optimum value is better.
(4) Number of nodes: it affects solution time and SEC performance.
(5) Type of variable: integer variables increase the complexity of a problem.
(6) Time in second: the time to find a solution is a significant issue in selecting a method.

6. Computational Results

After defining related criteria, the three sub-tour elimination constraints should be
evaluated. In this evaluation, the number of nodes is considered constant in each step
of comparison. Optimization software is needed to assess these SECs. This study uses
CPLEX 12.8 for coding these three sub-tour eliminations (codes attached in Appendix A).
In this code, we calculated the optimal answer for different nodes with a random distance
(rand (10) + rand (200)), and we reported the results in Table 3. When the number of
nodes increases, the difficulty of a problem also increases. In mathematical optimization,
relaxation is a modeling strategy. Solving problems by a relaxation variable provided
useful information about the original problem. DFJ relaxation gets the best answer from
others because it has one type of variable (binary). MTZ gets the worst solution for its two
types of variables (integer and binary).

For relaxation in CPLEX, we changed the type of variable to float+ and added a
constraint (0 ≤ yij ≤ 1).

Table 3. Results reported by CPLEX.

Instances SEC Constraints Variables Type-V Time (s) Vopt R

Inst-10 DFJ 987 100 B 0 462 462

Inst-10 MTZ 111 100 + 10 B + I 0 462 462

Inst-10 GG 119 100 + 90 B + P 0 462 462

Inst-15 DFJ 32,676 225 B 5 371 371

Inst-15 MTZ 241 225 + 15 B + I 0 371 354.73

Inst-15 GG 254 225 + 210 B + P 0 371 369.57

Inst-16 DFJ 65,430 256 B 11 425 425

Inst-16 MTZ 273 256 + 16 B + I 0 425 425

Inst-16 GG 287 256 + 240 B + P 0 425 425

Inst-17 DFJ 130,951 289 B 34 451 450

Inst-17 MTZ 307 289 + 17 B + I 0 451 416.4

Inst-17 GG 322 289 + 272 B + P 0 451 416.56

Inst-18 DFJ 262,007 324 B 72 352 352

Inst-18 MTZ 343 324 + 18 B + I 0 352 335

Inst-18 GG 359 324 + 306 B + P 0 352 336.76

Inst-19 DFJ 524,134 361 B - - 421

Inst-19 MTZ 381 361 + 19 B + I 0 421 394.68

Inst-19 GG 398 361 + 342 B + P 0 421 394.78
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Table 3. Cont.

Instances SEC Constraints Variables Type-V Time (s) Vopt R

Inst-20 DFJ 1,048,194 400 B - - -

Inst-20 MTZ 421 400 + 20 B + I 0 399 350.6

Inst-20 GG 439 400 + 380 B + P 0 399 350.68

Inst-50 DFJ - - - - - -

Inst-50 MTZ 2551 2500 + 50 B + I 0 516 502.16

Inst-50 GG 2599 2500 + 2450 B + P 1 516 502.25

Inst-100 DFJ - - - - - -

Inst-100 MTZ 10,100 10,000 + 100 B + I 2 665 656.08

Inst-100 GG 10,119 10,000 + 9900 B + P 8 665 656.08

Inst-500 DFJ - - - - - -

Inst-500 MTZ 250,501 250,000 + 500 B + I 44 1173 1173

Inst-500 GG 250,999 250,000 + 249,500 B + P 115 1173 1173

SEC, sub-tour elimination constraint; B, binary; I, integer; P, positive; S, second; and R, the objective value when variables were relaxed.

7. Using the SECA Method for Ranking Computational Results

With the information in Table 4, which is achieved by comparing the criteria, it is
possible to use the MCDM method. As mentioned before, among the decision-making
methods, SECA is selected in this research. Now, in this section, we implement the stages
of this method. At first, like other MCDM methods, define a decision matrix for a problem
and normalize it. In the decision matrix, xij denotes the performance value of alternatives (i)
on each criterion column (j). Use linear normalization for normalizing. In this, the criteria
are divided into two sets, beneficial and non-beneficial. Linear normalization formulation is

xN
ij =





xij

maxkxkj
I f j ie Bene f icia

minkxkj

xij
I f j ie Non−

(18)

Table 4. Decision matrix.

Nodes = 15 Constraint Variable Type Time Gap

NB NB NB NB NB
DFJ 32,676 225 1 6 1

MTZ 241 240 16 1 16.27
GG 254 435 1 1 1.43

NB, non-beneficial.

After normalization, this formulation should be used to calculate the degree of conflict
between the criteria. rjl is the correlation between j and l vectors.

πj =
m

∑
l=1

(1− rjl) (19)

After calculating the standard deviation of the elements of each vector (σj), we nor-
malize πj and σj by these formulations:

πj
N =

πj
m

∑
l=1

πl

(20)
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σj
N =

σj
m

∑
l=1

σl

(21)

In our problem, there are three alternatives and five criteria. The score of the nodes
should be calculated for the ranking of alternatives. It should be considered that it is
not possible to use xij = 0 in the SECA model. For this reason, the cells that are zero are
converted to 1. One may ask why it is allowed to substitute 0 with 1 in the decision matrix.
As mentioned above, the minimum amount of x in SECA method is 1 and cannot use a
smaller number. The significant number of nodes (100 and 500) in which there are no
criteria values less than 1 are calculated to confirm this research result. In the table given
below, gap is the difference between the optimal and the relaxed value, and the less the
value, the better and beneficial it is. An example of the decision matrix is used to show the
case of Node = 15 in Table 4.

After implementing the stages for calculating σ and π (the steps are provided in
Appendix B), each alternative’s computing score should be calculated using optimization
software. This work used LINGO 11 software for coding the SECA optimization model
(exist in Appendix C). We got the following results for each node (Table 5). Their ranking is
shown in Table 6.

Table 5. Scoring alternatives by LINGO 11.

Node 10 15 16 17 18 19 20 50 100 500

DFJ 0.6655 0.6233 0.37 0.605 0.6 - - - - -
MTZ 0.6655 0.6233 0.81 0.605 0.6 0.62 0.67 0.64 0.59 0.57
GG 0.84 0.8356 0.88 0.685 0.7 0.85 0.84 0.85 0.69 0.73

Table 6. Ranking of alternatives.

Node 10 15 16 17 18 19 20 50 100 500

DFJ 2 2 3 2 2 - - - - -
MTZ 2 2 2 2 2 2 2 2 2 2
GG 1 1 1 1 1 1 1 1 1 1

By looking at the ranking table, we understand that GG is the best method between
the three SEC formulations. For testing, the SECA method’s scoring used the website
www.mcdm.app (accessed on 25 December 2020), which has a powerful calculation engine
and covers many MCDM methodologies. As seen, the GG method has some features that
lead it to the first place. One reason making it better from the MTZ method is the type of
variables. GG has no integer variable that increases the complexity of a problem. When
the number of nodes increases, the DFJ method’s constraints extend exponentially, and an
optimum computing value is more challenging for a computer. As we see in the above
tables, when the number of nodes is more significant than 19, typically, personal computers
will not be able to compute an optimum value for DFJ and to report the result, because
estimating this large volume of calculations, personal computers run out of random access
memory (RAM). RAM is short-term storage that holds programs and processes running
on a computer. Behinda and Mir calculated the DFJ method for many cities, which is in
contrast to the paper’s result. This may occur for several reasons; for example, they might
use powerful computers with high RAM (they do not refer to the system’s information).
This study uses a usual computer (the system used for this research had an 8 GB RAM
and a CPU with seven cores). One of the reasons may be due to the ATSP, because in this
type of problem, the route between two cities is different from the return route, and this
issue increased the complexity of the solution. Using parallel computing or changing the
amount of rand can get an answer for many cities. For these reasons, the codes used in this
study are attached in the Appendix C for readers.
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Applegate et al. [26] decided to solve various TSP instances and constructed a library
named TSPLIB. They used DFJ sub-tour elimination. The size of cities ranged from 17 to
85,900. For the largest, of 85,900 nodes, they used 96 workstations for a total of 139 years of
CPU time [8].

8. Conclusions

One of the usual problems for a researcher in using TSP formulation is to select the
best sub-tour elimination constraint. As everyone may know, many SEC formulations are
presented, but it is not specified which of them is most suited to our work. So, they should
be compared to each other to determine which of them is superior. This study analyzes
three SECs of the TSP formulation (DFJ, MTZ, and GG), which are used more than others
in research. For comparison using MCDM methods, some criteria needed to be introduced.
By reviewing research papers, five criteria were concluded: the number of constraints,
the number of variables, type of variables, time of solving, and the differences between
optimum and relaxed value, and that was the main research gap of the study. These SEC
formulations are non-linear. When the number of nodes rises, solving problems with
non-linear variables is hard. For this reason, these variables are turned into linear variables,
because linear problems are solved quickly. This conversion is named LP relaxation.
Therefore, the lower value of the gap is more suitable because the relaxation value is closer
to its optimum value. It should be mentioned that the relaxation value gets a lower bound
of a problem. Whenever this lower bound is more comparable to an optimum value, the
result reaches the optimum by fewer iterations in the optimization software.

This research aimed to analyze the three sub-tour elimination formulations of the
ATSP by an MCDM method. This study used the simultaneous evaluation of criteria and
alternatives (SECA) method for multiple decision making and ranking the alternatives.
The computation of this method shows that GG SEC is better than others. Comparison
between DFJ and MTZ does not show a distinct difference, but as shown, the DFJ SEC’s
computing is time-consuming because, as the number of nodes increases, the constraints
grow exponentially. This particular reason drives us to use MTZ SEC in the ATSP problem,
especially when the number of nodes increases.

If we look at Table 4, we may ask why GG is better than MTZ, while MTZ has fewer
variables and constraints and takes less time to solve. To answer this question, it is better
said, as mentioned before, that MTZ has a charming face. One of the criteria considered in
this study is the type of variables. MTZ generates integer variables, and as we know, these
variables increase the complexity of solving. The real traveling salesman problem could
not reach the exact answer in polynomial time because this is an NP_hard problem.

Thus, researchers used heuristic methods to obtain an upper bound and relaxation to
earn a lower bound for these problems. They know the answer is in this interval. Relaxation
of the MTZ constraint should get two types of variables, binary and integer. Most of the
times, the relaxation variable is not an integer, and other methods should be used to convert
it into an integer, but GG does not have this problem because it has binary and positive
variables and gets a relaxation value that is closer to the optimum value. Therefore, the
type of variable is a crucial criterion and significantly affects the ranking of alternatives. So,
the main reason for this ranking is this criterion. Covering all aspects, this study proposes
that GG is the best sub-tour elimination.
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Appendix A

CPLEX code:

DFJ:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index

//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//in this section define set and subset
range ss = 1..ftoi(round(2ˆnbnode));
{int} sub [s in ss] = {i | i in 1..nbnode: (s div ftoi(2ˆ(i-1))) mod 2 == 1};

//model
dvar boolean y[nodes][nodes]; // y is decision variable
which

is binary.
minimize sum(i,j in nodes)c[i][j]*y[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (s in ss: 2<card(sub[s])<nbnode) sum(i, j in sub[s]) y[i][j] <= card(sub[s])-1;

}
MTZ:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index

//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//model
dvar boolean y[nodes][nodes]; //y is binary variable
dvar int+ u[nodes]; // u is integer variable

minimize sum(i,j in nodes)c[i][j]*x[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (i,j in nodes: j!=1) u[i]-u[j]+nbnode*y[i][j]<=nbnode-1;
}
GG:
//define number of nodes
int nbnode=10; // define parameter
range nodes=1..nbnode; // define index
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//c is the distance between nodes
float c[i in nodes][j in nodes]=rand(10)+rand(200);

//model
dvar boolean y[nodes][nodes]; //y is binary variable
dvar float+ z[nodes][nodes]; //z is positive variable

minimize sum(i,j in nodes)c[i][j]*y[i][j]; //objective function
subject
to{ //constraints
forall (j in nodes) sum(i in nodes)y[i][j]==1;
forall (i in nodes) sum(j in nodes)y[i][j]==1;
forall (i in nodes: i>=2 ) sum(j in nodes)z[i][j]-sum(j in nodes: j!=1)z[j][i]==1;
forall (i,j in nodes: i!=1) z[i][j]<=(nbnode-1)*y[i][j];

}

Appendix B

Table A1. Normalized decision matrix.

Normalize Constraint Variable Type Time Gap

DFJ 0.007375 1 1 0.166667 1
MTZ 1 0.9375 0.0625 1 0.061463
GG 0.948819 0.517241 1 1 0.699301

Table A2. Standard deviation of criteria.

STD 0.456343 0.214367 0.441942 0.392837 0.39131

STD-N 0.240598 0.113021 0.233006 0.207116 0.206311

Table A3. Correlation of criteria.

rij Constraint Variable Type Time Gap

Constraint 1 −0.5622 −0.53913 0.998951 −0.77613
Variable −0.56225 1 −0.39336 −0.59953 −0.08508

Type −0.53913 −0.3933 1 −0.5 0.949517
Time 0.998951 −0.5995 −0.5 1 −0.74644
Gap −0.77613 −0.0850 0.949517 −0.74644 1

Table A4. Calculate π = Σ (1 − rij).

1 − rij Constraint Variable Type Time Gap Sum Each Row Πn

Constraint 0 1.562251 1.539128 0.001049 1.77613 4.878559 0.199069
Variable 1.56225 0 1.393365 1.599526 1.085082 5.640223 0.230148

Type 1.53913 1.39336 0 1.5 0.050483 4.482973 0.182927
Time 0.001049 1.59953 1.5 0 1.746444 4.847023 0.197782
Gap 1.77613 1.08508 0.050483 1.74644 0 4.658133 0.190074

Table A5. Ranking of alternatives by score.

SCORE Ranking

DFJ 0.6233 2
MTZ 0.6233 2
GG 0.8356 1
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Appendix C

Code of SECA in LINGO 11 for node=15:
MODEL:

SETS:
AL/1..3/:S; #AL is alternatives and s is score
CR/1..5/: W,zig,p; # CR is criteria
LINK (AL, CR): X; # X denoted the performance value of

alternatives on each criterion column
ENDSETS

#read data from excel file
DATA:
B=3; #B is beta in the SECA method
#zig is the normalization of standard deviation
#p is the normalization of sum (1- correlation) of each row
X, zig, p=@OLE(‘C:\MATRIX.XLSX’,‘DECISION’,‘SIG’,‘PI’);
ENDDATA

@FOR (AL (I):
s(I)=@SUM (CR(J):W(J)*X(I,J));
LA <=S (I);

);
@FOR(CR (J):

W (J) <=1;
W (J) >=0.001; # W shouldn’t be zero

);

@sum(CR(J):W(J))=1;

LB=@SUM (CR (J):((W (J)- zig (J))ˆ2 ));

LC=@SUM(CR(J):((W (J)- p (J))ˆ2 ));

Z=LA-(B*(LB+LC)); #x2003; #objective function

@FREE(Z); #x2003; # Z is free variable

MAX=Z;

END
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Abstract: In this manuscript, we extend the traditional multi-attributive border approximation area
comparison (MABAC) method for the multiple-criteria group decision-making (MCGDM) with
triangular fuzzy neutrosophic numbers (TFNNs) to propose the TFNNs-MABAC method. In the
proposed method, we utilize the TFNNs to express the values of criteria for each alternative in MCGDM
problems. First, we briefly acquaint the basic concept of TFNNs and describe its corresponding some
operation laws, the functions of score and accuracy, and the normalized hamming distance. We then
review two aggregation operators of TFNNs. Afterward, we combine the traditional MABAC method
with the triangular fuzzy neutrosophic evaluation and provide a sequence of calculation procedures
of the TFNNs-MABAC method. After comparing it with some TFNNs aggregation operators and
another method, the results showed that our extended MABAC method can not only effectively handle
the conflicting attributes, but also practically deal with incomplete and indeterminate information
in the MCGDM problem. Therefore, the extended MABAC method is more effective, conformable,
and reasonable. Finally, an investment selection problem is demonstrated as a practice to verify the
reasonability of our MABAC method.

Keywords: triangular fuzzy neutrosophic sets (TFNSs); MABAC method; MCGDM problems;
TFNNs-MABAC method; invested technology enterprise

1. Introduction

The MABAC (multi-attributive border approximation area comparison) approach has been widely
utilized to investigate multiple-criteria group decision-making (MCGDM) problems and has been
extensively applied in various case studies by many fabulous researchers. In many existing prestigious
pieces of literature, many original MCGDM approaches have been continually discussed, such as the
TODIM model [1–3], the PROMETHEE model [4–6], the TOPSIS model [7–9], SAW model [10,11],
the ELECTRE model [12,13], the VIKOR model [14], and the EDAS model [15].

In reality, many real-life MCGDM problems cannot easily interpret the criteria and linguistic
values with appropriate values as a consequence of the complexity and fuzziness of the alternatives.
These values should be described in the form of fuzzy to be more useful, rational, and feasible.
The theory of the fuzzy set (FS), initially apprised by Zadeh in [16], has been frequently utilized as
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a worthy instrument for MCGDM [17,18] problems. This theory can capture objects into members
of the set through a degree of membership that can be presented by arbitrary values within the
real-number interval from 0 to 1. Atanassov [19] then introduced the intuitionistic fuzzy set (IFS) that
characterizes each element of an object not only in the form of a membership degree but also in the term
of non-membership. Thus, it can describe the fuzzy information more definitively and specifically than
the FS. However, it can only manage uncertainty and incomplete information but not the inconsistent
and indeterminacy information that occurs usually in practice. Therefore, Smarandache [20] initiated
the neutrosophic, a branch of philosophy, to propose the theory of neutrosophic sets (NSs). To be
more helpful for applying the NSs in real-case studies, Wang et al. [21] defined a sub-class of NSs,
the single-valued neutrosophic sets (SVNSs), in which each element of an object is depicted by the
degrees of truth-membership, indeterminacy-membership, and falsity-membership spreading over
in the real-number interval. Ye [22] introduced the simplified neutrosophic sets (SNSs) to solve a
multicriteria decision-making (MCDM) problem. Afterward, Ye [23] offered the idea of a single-valued
neutrosophic linguistic set (SVNLS) combined with the TOPSIS method. Ye also explored two
aggregation operators of SVNLS to an environment of SVNLS. Deli and Braumi [24] exposed the
neutrosophic soft matrix (NSM) and investigated their operators to store NSs in computer memory.
Deli et al. [25] first developed the concept of NSs by introducing bipolar NSs for MCDM problems.
Based on the bipolar NSs, the functions of a score of accuracy can evaluate the values of alternatives and
select the best one. Stanujkic et al. [26] proposed a novel MCDM approach based on bipolar NSs and
the Hamming distance for assessing the quality of the websites. Stanujkic et al. [27] utilized SVNSs to
extend the MULTIMOORA method for handling complex problems through prediction and judgment.
Biswas et al. [28] innovated the idea of a triangular fuzzy neutrosophic number (TFNN) by combining
the concepts of NS and triangular fuzzy number (TFN). Deli and Şubaş [29] integrated the TFN and
triangular intuitionistic fuzzy numbers (TIFN) for reviewing several MCDM problems. Aal et al. [30]
explored two ranking means through information system quality under the TFN information. Liu [31]
studied the operators of SVNs weighted averaging and SVNs weighted geometric to implement a
decision-making problem.

Additionally, many recent MCGDM problems have actively involved a group of decision-makers
(DMs) in the process of decision-making to minimize the subjectivity of the DMs’ judgment. They tend
to have their own different opinions to assess alternatives and criteria and usually give their evaluation
opinions using the linguistic variables term. To deal with this, there are some studies of hesitant fuzzy
linguistic term sets (HFLTSs) [32] in MCGDM. Zhang et al. [33] introduced three novel algorithms
for solving MCGDM problems with multi granular unbalanced hesitant fuzzy linguistic information.
The first algorithm was utilized to express a linguistic distribution assessment (LDA) using a hesitant
linguistic distribution (HLD). Two others were used to modify an unbalanced HFLTS into a balanced
LDA and to modify a balanced LDA into an unbalanced LDA. Yu et al. [34] proposed a novel consensus
reaching model in MCGDM with multi-granular HFLTSs. This optimization model was established
to minimize the overall adjustment amount of DMs’ preference and to be very simpler than the use
of HFLTSs.

Many researchers have extensively developed applications of SVNs in MCGDM
problem. However, in uncertain and complex situations, the degrees of truth-membership,
indeterminacy-membership, and falsity-membership of SVNs cannot be used to delineate an element
with precise real-numbers. Meanwhile, TFN can effectively manage fuzzy information rather than the
real-number interval. Therefore, the combination of TFN with SVNs, or TFNNs, will be a suitable tool
to handle incomplete, indeterminacy, and uncertain information occurring in MCGDM problems.

The MABAC approach was first conveyed by Pamučar and Ćirović [35] in solving a selection
problem of transportation and resource distribution at a logistic center. The basic concept of this
approach is to look at many ideal attributes respond to criteria located at the border approximation area
(BAA). It can consider the conflicting attributes. Consequently, the MABAC takes the advantages of BAA
in concerning the inconsistency of decision maker and uncertainty conditions, whereas other traditional
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decision-making approaches cannot conduct it. Additionally, this approach has an uncomplicated
computation procedure and can reveal the decision theory in logical and systematic ways. Later on,
Pamučar et al. [36] improved the MABAC by utilizing interval-valued fuzzy-rough numbers (IVFRNs).
Pamučar et al. [37] integrated AHP (Analytical Hierarchy Process) and MABAC in developing a
software to assess some official university websites. Jia et al. [38] have utilized analytically the concept
of FS to develop a new MABAC model for MCGDM based on rough numbers (RNs). Alluding the
advantages of interval type-2 fuzzy set (IT2FS), Dorfeshan and Mousavi in [39] developed a novel
MABAC to determine the attribute path of beneficial projects under MCGDM process in a case study of
aircraft maintenance industries. Yu et al. [40] proposed a MABAC based on an improvement of type-1
fuzzy sets (T1FSs), interval type-2 fuzzy sets (IT2FSs) to handle intrinsic and extrinsic uncertainties.
Zhang et al. [41] extended MABAC for MCGDM cases with picture 2-tuple linguistic in evaluating the
project of renewable energy power. Mishra et al. [42] utilized interval valued intuitionistic fuzzy sets
(IVIFSs) to develop an extension of MABAC method for a programming language assessment.

In recent years, there are several MCGDM methods which can enhance the methods’ adaptability.
As far as we know, there have been no studies regarding the MABAC approach under TFNNs
environment for MCGDM problems. Therefore, we emphasize our attention to enlarging the MABAC
method to support the TFNN environment and implement it for evaluating an investment selection
problem. Later on, we summarize some contributions and motivations of this study as follows:

1. There are at least two motivations for using TFNNs. Firstly, TFNNs which are adopted by
TFN with NSs can effectively support uncertain information. In real practical cases, the same
judgment in the form of the linguistic variable may express different meanings for various people.
TFNNs provide DMs freedom decisions in defining the membership function and it can better
explain and handle inaccurate information. Secondly, TFNNs are a proper instrument to deal
with incomplete and indeterminacy information in MCGDM problems.

2. Because the computational complexity of TFNN, especially the loop performance in using some
aggregation operators of TFNNs, is relatively a bit slow, we require a simple and uncomplicated
method to determine decisions. Compared with some other methods, the MABAC has not only
abilities to effectively handle the conflicting attributes, but also logically reveal the decision-making
theory with uncomplicated and systematic computation procedures.

The remaining of our paper is managed systematically as follows: Section 2 discusses things
related to TFNNs, such as the definition of TFNNs, some operation laws, the functions of score and
accuracy, and the normalized hamming distance between two TFNNs. Later on, in Section 2, we also
depict the operators of triangular fuzzy neutrosophic number weighted averaging (TFNNWA) and
triangular fuzzy neutrosophic number weighted geometric (TFNNWG). Section 3 modifies the original
MABAC method to triangular fuzzy neutrosophic environment and shows a sequence of calculation
procedures of TFNN-MABAC model. Section 4 demonstrates an illustrative-example to select a
possible invested technology enterprise to investigate the proposed MABAC method and performs a
comparative analysis between our proposed MABAC and some other aggregation operators. Section 5
recapitulates our paper conclusions and discuses all possible future studies and researches.

2. Preliminaries

In this section, we re-discuss the definition of TFNNs, operation laws of TFNNs, the functions of
score and accuracy of TFNNs, and the normalized hamming distance between two arbitrary TFNNs.
We also recall the definition of TFNNWA and TFNNWG operators.

2.1. Triangular Fuzzy Number Neutrosophic Sets

Based on the concepts of single-valued neutrosophic sets and triangular fuzzy number intuitionistic
fuzzy sets (TFNIFSs), Biswas et al. [28] first developed the triangular fuzzy number neutrosophic
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(TFNNSs) by presenting the truth-membership degree (TMD), the indeterminacy-membership degree
(IMD), and the falsity-membership degree (FMD) in the form of triangular-fuzzy numbers.

Definition 1 ([28]). Let X be the universal set, the TFNNSs µ can be represented as:
µ =

{(

x,αµ(x), βµ(x),γµ(x)|x ∈ X
)}

where αµ(x), βµ(x),γµ(x) ∈ [0, 1] describe the truth-membership
degree, the indeterminacy-membership degree, and the falsity-membership degree respectively that
can be formulated by TFNs as follows.

αµ(x) =
(

αL
µ(x),α

M
µ (x),α

U
µ (x)

)

, 0 ≤ αL
µ(x) ≤ α

M
µ (x) ≤ α

U
µ (x) ≤ 1 (1)

βµ(x) =
(

βL
µ(x), β

M
µ (x), β

U
µ (x)

)

, 0 ≤ βL
µ(x) ≤ β

M
µ (x) ≤ β

U
µ (x) ≤ 1 (2)

γµ(x) =
(

γL
µ(x),γ

M
µ (x),γ

U
µ (x)

)

, 0 ≤ γL
µ(x) ≤ γ

M
µ (x) ≤ γ

U
µ (x) ≤ 1 (3)

For notational convenience, we assume that µ =
((

αL
µ(x),α

M
µ (x),α

U
µ (x)

)

,
(

βL
µ(x), β

M
µ (x), β

U
µ (x)

)

,
(

γL
µ(x),γ

M
µ (x),γ

U
µ (x)

))

is a TFNN, it has to satisfy the
condition 0 ≤ αU

µ (x) + β
U
µ (x) + γ

U
µ (x) ≤ 3.

Definition 2 ([28]). Let µ1 =
((

αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)

,
(

βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)

,
(

γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))

,

µ2 =
((

αL
µ2
(x),αM

µ2
(x),αU

µ2
(x)

)

,
(

βL
µ2
(x), βM

µ2
(x), βU

µ2
(x)

)

,
(

γL
µ2
(x),γM

µ2
(x),γU

µ2
(x)

))

, and µ3 =
((

αL
µ3
(x),αM

µ3
(x),αU

µ3
(x)

)

,
(

βL
µ3
(x), βM

µ3
(x), βU

µ3
(x)

)

,
(

γL
µ3
(x),γM

µ3
(x),γU

µ3
(x)

))

be three TFNNs, the following
mathematical operation laws are satisfied as:

µ1 ⊕ µ2 =





























(

αL
µ1
(x) + αL

µ2
(x) − αL

µ1
(x)αL

µ2
(x),αM

µ1
(x) + αM

µ2
(x) − αM

µ1
(x)αM

µ2
(x),αU

µ1
(x) + αU

µ2
(x) − αU

µ1
(x)αU

µ2
(x)

)

,
(

βL
µ1
(x)βL

µ2
(x), βM

µ1
(x)βM

µ2
(x), βU

µ1
(x)βU

µ2
(x)

)

,
(

γL
µ1
(x)γL

µ2
(x), γM

µ1
(x)γM

µ2
(x), γU

µ1
(x)γU

µ2
(x)

)





























(4)

µ1 ⊗ µ2 =
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µ1
(x)αL

µ2
(x), αM

µ1
(x)αM

µ2
(x), αU

µ1
(x)αU
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)

,
(

βL
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(x)βL

µ2
(x), βM
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(x) + βM
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(x)βM

µ2
(x), βU

µ1
(x) + βU

µ2
(x) − βU

µ1
(x)βU

µ2
(x)

)

,
(

γL
µ1
(x) + γL
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(x)γL

µ2
(x),γM
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(x) + γM

µ2
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(5)

λµ3 =
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, 1−
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(x)

)λ
, 1−
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(x)

)λ
,
(

βU
µ3
(x)
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)λ
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, forλ > 0 (6)
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(x)
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(x)
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,
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(x)
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,
(

1−
(

1− βL
µ3
(x)

)λ
, 1−

(

1− βM
µ3
(x)

)λ
, 1−
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1− βU
µ3
(x)
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,
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1−
(
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µ3
(x)

)λ
, 1−

(

1− γU
µ3
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)λ
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, forλ > 0 (7)

According to the properties of the real-number system, the operators mentioned in Definition 2 has
satisfied clearly as all TFNN properties follows.

µ1 ⊕ µ2 = µ2 ⊕ µ1, µ1 ⊗ µ2 = µ2 ⊗ µ1; (8)

λ(µ1 ⊕ µ2) = λµ2 ⊕ λµ1, (µ1 ⊗ µ2)
λ = (µ1)

λ
⊗ (µ2)

λ, f or λ > 0 (9)

λ1µ1 ⊕ λ2µ1 = (λ1 + λ2)µ1, µ1
λ1 ⊕ µ1

λ2 = µ1
(λ1+λ2), f or λ1,λ2 > 0. (10)
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Definition 3 ([28]). Let µ1 =
((

αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)

,
(

βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)

,
(

γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))

be a TFNN, the functions of score S(µ1) and accuracy A(µ1) can be respectively calculated by:

S(µ1) =
1

12

[

8 +
(

αL
µ1
(x) + 2αM

µ1
(x) + αU

µ1
(x)

)

−
(

βL
µ1
(x) + 2βM

µ1
(x) + βU

µ1
(x)

)

−
(

γL
µ1
(x) + 2γM

µ1
(x) + γU

µ1
(x)

)]

, f or S(µ1) ∈ [0, 1]
(11)

A(µ1) =
1
4

[(

αL
µ1
(x) + 2αM

µ1
(x) + αU

µ1
(x)

)

−
(

γL
µ1
(x) + 2γM

µ1
(x) + γU

µ1
(x)

)]

, f or A(µ1) ∈ [−1, 1] (12)

Consider two TFNNs in the real-number set: µ− = ((0, 0, 0), (1, 1, 1), (1, 1, 1)) and
µ+ = ((1, 1, 1), (0, 0, 0), (0, 0, 0)), then the values of score function µ− and µ+ are S(µ−) = 0 and
S(µ+) = 1, respectively. Moreover, the values of accuracy function A(µ−) is −1 for the TFNN µ− and
A(µ+) is 1 for the TFNN µ+. The accuracy function A(µ1) ∈ [−1, 1] states the discrepancy between
truth and falsity [28]. Larger the discrepancy indicates the most affirmative of the TFNNs.

Assume that there are two TFNNs µ1 and µ1, then, according to Definition 3, the following
conditions reach a true value.

i f S(µ1) < S(µ2), then µ1 < µ2;
i f S(µ1) > S(µ2), then µ1 > µ2;

i f S(µ1) = S(µ2) and A(µ1) < A(µ2), then µ1 < µ2;
i f S(µ1) = S(µ2) and A(µ1) > A(µ2), then µ1 > µ2;
i f S(µ1) = S(µ2) and A(µ1) = A(µ2), then µ1 = µ2;

(13)

Definition 4 ([28]). Let µ j =
((

αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)

,
(

βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)

,
(

γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))

be a TFNNs group and W =
{

w j

}

be a set of the weighted criteria for j = 1, 2, 3, . . . , n in the group
of real-numbers respectively, the operator of TFNNWA notated by TFNNWA(µ1,µ2,µ3, . . . ,µn) is
determined by:

TFNNWA(µ1,µ2,µ3, . . . ,µn) = w1µ1 ⊕w2µ2 ⊕w3µ3 ⊕ . . .⊕wnµn =

n

⊕

j = 1
w jµ j (14)

Theorem 1 ([28]). Let µ j =
((

αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)

,
(

βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)

,
(

γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))

be
a TFNNs group in the real-numbers set, the aggregated value of TFNNWA operator is also a TFNN as
the form as follows.

TFNNWA(µ1,µ2,µ3, . . . ,µn) =

n

⊕

j = 1
w jµ j =
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)w j
)







































































(15)

Definition 5 ([28]). Let µ j =
((

αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)

,
(

βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)

,
(

γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))

be a TFNNs group and W =
{

w j

}

be a set of the weighted criteria for j = 1, 2, 3, . . . , n in the group
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of real-numbers respectively, the operator of TFNNWG notated by TFNNWG(µ1,µ2,µ3, . . . ,µn) is
presented by:

TFNNWG(µ1,µ2,µ3, . . . ,µn) = µ1
w1 ⊗ µ2

w2 ⊗ µ3
w3 ⊗ . . .⊗ µn

wn =

n

⊗

j = 1
µ j

w j (16)

Theorem 2 ([28]). Let µ j =
((

αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)

,
(

βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)

,
(

γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))

be
a TFNNs group in the real-numbers set, the aggregated value of TFNNWG operator is also a TFNN as
the form as follows:

TFNNWG(µ1,µ2,µ3, . . . ,µn) =

n

⊗

j = 1
µ j

w j =
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(17)

2.2. The Distance of Normalized Hamming between Any Two TFNNs

In many practical and theoretical issues, once we have two fuzzy sets in the same finite universe
of discourse, the way to measure a difference between them can be reflected by a distance. In this
paper, we reconsider the normalized Hamming distance for the fuzzy sets in an TFN circumstance
for MCGDM problem. The normalized Hamming distance of two TFNNs was initially identified by
Wang et al. [43] by adopting the basic concept of Hamming distance for triangular intuitionistic fuzzy
numbers (TIFN) [44].

Definition 6 ([43]). Assume that there are two TFNNs: µ1 =
((

αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)

,
(

βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)

,
(

γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))

and µ2 =
((

αL
µ2
(x),αM

µ2
(x),αU

µ2
(x)

)

,
(

βL
µ2
(x), βM

µ2
(x), βU

µ2
(x)

)

,
(

γL
µ2
(x),γM

µ2
(x),γU

µ2
(x)

))

; the normalized Hamming
distance H(µ1,µ2) between these two TFNNs can be depicted precisely by:

H(µ1,µ2) =
1
9
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∣

∣αL
µ1
(x) − αL

µ2
(x)

∣

∣

∣+
∣

∣

∣αM
µ1
(x) − αM

µ2
(x)

∣

∣

∣+
∣

∣

∣αU
µ1
(x) − αU

µ2
(x)

∣

∣

∣+
∣

∣

∣βL
µ1
(x) − βL

µ2
(x)

∣

∣

∣+
∣

∣

∣βM
µ1
(x) − βM

µ2
(x)

∣

∣

∣

+
∣

∣

∣βU
µ1
(x) − βU

µ2
(x)

∣

∣

∣+
∣

∣

∣γL
µ1
(x) − γL

µ2
(x)

∣

∣

∣+
∣

∣

∣γM
µ1
(x) − γM

µ2
(x)

∣

∣

∣+
∣

∣

∣γU
µ1
(x) − γU

µ2
(x)

∣

∣

∣

+
∣

∣

∣γU
µ1
(x) − γU

µ2
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∣

∣
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(18)

3. The Proposed MABAC Method for MCGDM Problems under TFNNs Environment

In recent MCGDM problems, the MABAC model has become one of the prospective
decision-making approaches, due to its ability to consider conflicting attributes. It makes many
scholars frequently innovate in venturing to utilize it in many fuzzy set circumstances. We also attempt
to blend the MABAC model with the TFNNs environment by revealing the assessment values in the
term of TFNNs. To be more specific, we provide the calculation procedures for our proposed MABAC
method as follows and also show it in Figure 1.
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Figure 1. Flow diagram of the calculation procedures for our proposed MABAC method.

Let {E1, E2, . . . , Em} be a number of alternatives, {d1, d2, . . . , ds} be a group of decision makers
with weighting-vector for each decision maker being {v1, v2, . . . , vs}, and {c1, c2, . . . , cn} be a number of
criteria with weighting-vector for each criterion being {w1, w2, . . . , wn}, which thus satisfies wi ∈ [0, 1],

vk ∈ [0, 1],
n
∑

j=1
w j = 1, and

s
∑

k=1
vk = 1.

Step 1. Build the fuzzy decision-matrix µ(k) =
[

µk
i j

]

m x n
of each decision-maker, in which

µk
i j

=

((

(

αL
ij

)k

,
(

αM
ij

)k

,
(

αU
ij

)k
)

,
(

(

βL
ij

)k

,
(

βM
ij

)k

,
(

βU
ij

)k
)

,
(

(

γL
ij

)k

,
(

γM
ij

)k

,
(

γU
ij

)k
) )

, and assume that
(

(

αL
ij

)k

,
(

αM
ij

)k

,
(

αU
ij

)k
)

∈ [0, 1] is the TMD,
(

(

βL
ij

)k

,
(

βM
ij

)k

,
(

βU
ij

)k
)

∈ [0, 1] is the IMD,
(

(

γL
ij

)k

,
(

γM
ij

)k

,
(

γU
ij

)k
)

∈ [0, 1] is the FMD, and 0 ≤

(

αU
ij

)k

+
(

βU
ij

)k

+
(

γU
ij

)k

≤ 3 where

i = 1, 2, 3, . . . , m, j = 1, 2, 3, . . . , n, and k = 1, 2, 3, . . . , s.
Step 2. Determine the group TFNNs decision-making matrix F =

[((

αL
fi j

,αM
fi j

,αU
fi j

)

,
(

βL
fi j

, βM
fi j

, βU
fi j

)

,
(

γL
fi j

,γM
fi j

,γU
fi j

))]

m x n
in which F =

[

fi j

]

m x n

where for TFNNWA Operator

fi j =





















































(

1−
s
∏

k=1

(

1−
(

αL
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

αM
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

αU
ij

)k
)vk

)

,

(

s
∏

k=1

(

(

βL
ij

)k
)vk

,
s
∏

k=1

(

(

βM
ij

)k
)vk

,
s
∏

k=1

(

(

βU
ij

)k
)vk

)

,

(

s
∏

k=1

(

(

γL
ij

)k
)vk

,
s
∏

k=1

(

(

γM
ij

)k
)vk

,
s
∏

k=1

(

(

γU
ij

)k
)vk

)





















































(19)
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or for TFNNWG Operator

fi j =





















































(

s
∏

k=1

(

(

αL
ij

)k
)vk

,
s
∏

k=1

(

(

αM
ij

)k
)vk

,
s
∏

k=1

(

(

αU
ij

)k
)vk

)

,

(

1−
s
∏

k=1

(

1−
(

βL
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

βM
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

βU
ij

)k
)vk

)

,

(

1−
s
∏

k=1

(

1−
(

γL
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

γM
ij

)k
)vk

, 1−
s
∏

k=1

(

1−
(

γU
ij

)k
)vk

)





















































(20)

Step 3. Transform the group TFNNs decision making F =
[

fi j

]

m x n
into the normalized group TFNNs

decision matrix N =
[((

αL
ni j

,αM
ni j

,αU
ni j

)

,
(

βL
ni j

, βM
ni j

, βU
ni j

)

,
(

γL
ni j

,γM
ni j

,γU
ni j

))]

m x n
in which N =

[

ni j

]

m x n
where nij can be reached by using Equation (22) or (23). We then calculate the minimum and the
maximum values of TFNNs for each criterion C j ( j = 1, 2, 3, . . . , n).

αL−
fi j

= min
1 ≤ i ≤m

{

αL
fi j

}

, βL−
fi j

= min
1 ≤ i ≤m

{

βL
fi j

}

, γL−
fi j

= min
1 ≤ i ≤m

{

γL
fi j

}

, αU+
fi j

= max
1 ≤ i ≤m

{

αU
fi j

}

,

βU+
fi j

= max
1 ≤ i ≤m

{

βU
fi j

}

, and γU+
fi j

= max
1 ≤ i ≤m

{

γU
fi j

}

.
(21)

If C j is a benefit criterion, each element of the matrix F can be normalized as follows.

ni j =

















































αL
fi j
− αL−

fi j

αU+
fi j
− αL−

fi j

,
αM

fij
− αL−

fi j

αU+
fi j
− αL−

fi j

,
αU

fij
− αL−

fi j

αU+
fi j
− αL−

fi j

























βU+
fi j
− βU

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βM

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βL

fi j

βU+
fi j
− βL−

fi j













,













γL
fi j
− γL−

fi j

γU+
fi j
− γL−

fi j

,
γM

fij
− γL−

fi j

γU+
fi j
− γL−

fi j

,
γU

fij
− γL−

fi j

γU+
fi j
− γL−

fi j

















































(22)

If C j is a cost criterion, each element of the matrix F can be normalized as follows.

ni j =



















































αU+
fi j
− αU

fij

αU+
fi j
− αL−

fi j

,
αU+

fi j
− αM

fij

αU+
fi j
− αL−

fi j

,
αU+

fi j
− αL

fi j

αU+
fi j
− αL−

fi j













,













βU+
fi j
− βU

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βM

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βL

fi j

βU+
fi j
− βL−

fi j













,













γU+
fi j
− γU

fij

γU+
fi j
− γL−

fi j

,
γU+

fi j
− γM

fij

γU+
fi j
− γL−

fi j

,
γU+

fi j
− γL

fi j

γU+
fi j
− γL−

fi j



















































(23)

Step 4. Utilize Equation (24) to calculate the weighted matrix

P =
[((

αL
pi j

,αM
pi j

,αU
pi j

)

,
(

βL
pi j

, βM
pi j

, βU
pi j

)

,
(

γL
pi j

,γM
pi j

,γU
pi j

))]

m x n
in which P =

[

pi j

]

m x n
and

n
∑

j=1
w j = 1.

pi j = w j ∗ ni j =

































(

1−
(

1− αL
ni j

)w j , 1−
(

1− αM
ni j

)w j , 1−
(

1− αU
ni j

)w j
)

,
((

βL
ni j

)w j ,
(

βM
ni j

)w j ,
(

βU
ni j

)w j
)

,
((

γL
ni j

)w j ,
(

γM
ni j

)w j ,
(

γU
ni j

)w j
)

































(24)
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Step 5. Based on Equation (25), the border-approximation-area (BAA) matrix

Q =
[((

αL
q j

,αM
q j

,αU
q j

)

,
(

βL
q j

, βM
qi j

, βU
qi j

)

,
(

γL
q j

,γM
q j

,γU
q j

))]

1 x n
in which Q =

[

q j

]

1 x n
can be constructed

and q j stands for the BAA for criterion j.

q j =



















































(

m
∏

i=1

(

(

αL
pi j

)1/m
)

,
m
∏

i=1

(

(

αM
pi j

)1/m
)

,
m
∏

i=1

(

(

αU
pi j

)1/m
)

)

,
(

1−
m
∏

i=1

(

1−
(

βL
pi j

)1/m
)

, 1−
m
∏

i=1

(

1−
(

βM
pi j

)1/m
)

, 1−
m
∏

i=1

(

1−
(

βU
pi j

)1/m
)

)

,
(

1−
m
∏

i=1

(

1−
(

γL
pi j

)1/m
)

, 1−
m
∏

i=1

(

1−
(

γM
pi j

)1/m
)

, 1−
m
∏

i=1

(

1−
(

γU
pi j

)1/m
)

)



















































(25)

Step 6. Based on Equation (13) and Definition 6, calculate the distance matrix D =
[

di j

]

m x n
. The element

di j is called the alternatives’ distance from BAA and is depicted by using Equation (26).

di j =



























H
(

pi j, q j

)

, i f pi j > q j

0, i f pi j = q j

−H
(

pi j, q j

)

, i f pi j < q j

(26)

where H
(

pi j, q j

)

is the normalized Hamming distance between the alternative pi j and the BAA q j.

According to the traditional MABAC’s principle, we can see that if di j = 0, the alternative Ei will
be a part of the border approximation area (G); if di j > 0 (di j has a positive value), the alternative Ei will
be a part of the upper approximation area (G+); and if di j < 0 (di j has a negative value), the alternative
Ei will be a part of the lower approximation area (G−).

Since the ideal alternative E+
i

and the non-ideal alternative E−
i

are spread across the upper
approximation border (G+) and the lower approximation border (G−), respectively, in order to decide
the best alternative, we should have as many the criterion of the alternative as possible located on the
upper approximation border (G+).

Step 7. Compute the final score value V(Ei) by using Equation (27).

V(Ei) =
n
∑

j=1
di j, (i = 1, 2, 3, . . . , m) . (27)

Step 8. Based on the value of V(Ei), rank all the alternatives in descending order. In MCGDM problems
for a selection case study, the alternative Ei will be the best alterative when the final score value
V(Ei) has the highest value.

4. Numerical Example and Discussion

This section separated into two subsections. Firstly, we present calculating steps of the proposed
TFNNs-MABAC model for MCGDM, in this case, we illustrate an invest selection problem. Secondly,
we compare our proposed TFNNs-MABAC method with TFNNWA Operator, TFNNWG Operator,
and VIKOR method.

4.1. Calculating Steps of the Proposed TFNNs-MABAC Method for MCGDM Problems

This sub-section demonstrates an illustrative example for evaluating an invest selection problem
under the TFNNs environment to show the proposed MABAC method. Suppose that a growth
investor wants to provide a sum of money to invest in one of the five technology enterprise candidates
Ei(i = 1, 2, . . . , 5). The investor has assigned three decision-makers dk(k = 1, 2, 3) to evaluate these
five technology enterprises. Each technology enterprise will be assessed based on four prerequisite
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criteria C j( j = 1, 2, 3, 4), which are the market-growth analysis (C1), the market-risk analysis (C2),
the employee’s analysis (C3), and the environmental impact analysis (C4), where C1, C2, and C3 are
benefit criteria, and C4 is a cost criterion. The weighting-vector for each criterion w j = {w1, w2, w3, w4}

has been given as w = {0.41, 0.14, 0.25, 0.20} and the weighting-vector for each decision-maker
vk = {v1, v2, v3} has been determined as v = {0.35, 0.40, 0.25}. Based on the decision-makers’ experience
and knowledge, the evaluation process will be conducted in the form of TFNNs.

In order to determine the best technology enterprise, we present the proposed calculation
procedure step by step as follows.

Step 1. Build the fuzzy decision-matrix µ(k) =
[

µk
i j

]

m x n
based on the evaluation of the decision makers

dk for each alternative Ei into each criterion C j that can be illustrated in Tables 1–3.

Step 2. Utilize Equation (19) to determine the group TFNNs decision-making matrix F =
[

fi j

]

m x n
using TFNNWA Operator and the results are presented in Table 4.

Step 3. Use Equation (22) or (23) to transform the group TFNNs decision making F =
[

fi j

]

m x n
into the

normalized group TFNNs decision matrix N =
[

ni j

]

m x n
and the results are shown in Table 5.

Step 4. Utilize Equation (24) to calculate the weighted TFNNs matrix P =
[

pi j

]

m x n
. The elements of

matrix P can be listed sequentially in Table 6.
Step 5. Construct the BAA matrix Q =

[

q j

]

1 x n
by using Equation (25) as seen in Table 7.

Step 6. Determine the distance matrix D =
[

di j

]

m x n
by using Equation (26) and the elements of matrix

D can be seen in Table 8.
Step 7. Calculate V(Ei) by using Equation (27) as listed in Table 9.
Step 8. Based on the results of V(Ei), all alternatives can be sorted in descending order. The alternative

Ei that has maximum value is the most possible selected alternative. Obviously, the result in term
of the ranking order of those alternatives is E1 > E5 > E4 > E2 > E3. Thus, the selected technology
enterprise in which the investment company invest to is the alternative E1.

Table 1. TFNNs judgement matrix by the decision maker d1.

C1 C2 C3 C4

E1

















(0.5, 0.7, 0.9),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.3)

































(0.2, 0.4, 0.6),
(0.3, 0.4, 0.5),
(0.1, 0.3, 0.4)

































(0.4, 0.5, 0.6),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)

































(0.3, 0.6, 0.9),
(0.4, 0.5, 0.7),
(0.1, 0.3, 0.5)

















E2

















(0.4, 0.5, 0.6),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.4)

































(0.1, 0.3, 0.5),
(0.2, 0.4, 0.6),
(0.1, 0.2, 0.4)

































(0.4, 0.5, 0.9),
(0.5, 0.6, 0.7),
(0.4, 0.5, 0.6)

































(0.3, 0.4, 0.6),
(0.2, 0.3, 0.5),
(0.4, 0.5, 0.7)

















E3

















(0.2, 0.4, 0.5),
(0.1, 0.3, 0.4),
(0.4, 0.5, 0.7)

































(0.1, 0.2, 0.3),
(0.3, 0.4, 0.5),
(0.5, 0.6, 0.7)

































(0.6, 0.7, 0.9),
(0.2, 0.4, 0.5),
(0.1, 0.3, 0.4)

































(0.3, 0.4, 0.7),
(0.4, 0.6, 0.9),
(0.1, 0.2, 0.3)

















E4

















(0.1, 0.4, 0.6),
(0.2, 0.5, 0.7),
(0.1, 0.2, 0.3)

































(0.4, 0.6, 0.7),
(0.2, 0.3, 0.4),
(0.1, 0.4, 0.6)

































(0.3, 0.5, 0.7),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.5)

































(0.4, 0.6, 0.9),
(0.3, 0.5, 0.7),
(0.1, 0.2, 0.4)

















E 5

















(0.6, 0.7, 0.9),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)

































(0.4, 0.6, 0.7),
(0.3, 0.4, 0.7),
(0.1, 0.3, 0.4)

































(0.4, 0.5, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.3, 0.5)

































(0.2, 0.3, 0.9),
(0.1, 0.3, 0.4),
(0.1, 0.4, 0.5)
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Table 2. TFNNs judgement matrix by the decision maker d2.

C1 C2 C3 C4

E1

















(0.4, 0.6, 0.7),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)

































(0.1, 0.3, 0.5),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.3)

































(0.3, 0.4, 0.5),
(0.1, 0.3, 0.4),
(0.2, 0.4, 0.6)

































(0.2, 0.4, 0.7),
(0.3, 0.4, 0.6),
(0.2, 0.3, 0.4)

















E2

















(0.3, 0.4, 0.6),
(0.2, 0.5, 0.7),
(0.3, 0.5, 0.6)

































(0.2, 0.3, 0.4),
(0.1, 0.3, 0.5),
(0.2, 0.3, 0.4)

































(0.3, 0.4, 0.6),
(0.4, 0.5, 0.9),
(0.2, 0.3, 0.5)

































(0.1, 0.3, 0.5),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.4)

















E3

















(0.3, 0.6, 0.9),
(0.2, 0.4, 0.7),
(0.5, 0.7, 0.9)

































(0.1, 0.2, 0.4),
(0.1, 0.3, 0.6),
(0.4, 0.7, 0.9)

































(0.1, 0.3, 0.4),
(0.2, 0.4, 0.6),
(0.1, 0.3, 0.5)

































(0.3, 0.4, 0.6),
(0.4, 0.7, 0.9),
(0.1, 0.2, 0.5)

















E4

















(0.2, 0.3, 0.6),
(0.2, 0.6, 0.9),
(0.1, 0.3, 0.4)

































(0.1, 0.7, 0.9),
(0.3, 0.4, 0.5),
(0.3, 0.4, 0.6)

































(0.4, 0.6, 0.9),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.3)

































(0.3, 0.4, 0.5),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)

















E5

















(0.4, 0.5, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.5)

































(0.5, 0.6, 0.9),
(0.3, 0.4, 0.6),
(0.2, 0.3, 0.4)

































(0.4, 0.5, 0.7),
(0.2, 0.3, 0.4),
(0.3, 0.4, 0.5)

































(0.2, 0.3, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.5)

















Table 3. TFNNs judgement matrix by the decision maker d3.

C1 C2 C3 C4

E1

















(0.4, 0.5, 0.7),
(0.1, 0.2, 0.5),
(0.1, 0.2, 0.3)

































(0.2, 0.3, 0.5),
(0.3, 0.4, 0.6),
(0.1, 0.2, 0.3)

































(0.3, 0.4, 0.7),
(0.2, 0.3, 0.4),
(0.2, 0.5, 0.7)

































(0.3, 0.5, 0.7),
(0.3, 0.5, 0.6),
(0.2, 0.3, 0.4)

















E2

















(0.3, 0.4, 0.5),
(0.4, 0.5, 0.6),
(0.4, 0.5, 0.6)

































(0.2, 0.3, 0.5),
(0.1, 0.3, 0.4),
(0.2, 0.3, 0.4)

































(0.2, 0.4, 0.6),
(0.1, 0.5, 0.9),
(0.2, 0.3, 0.6)

































(0.2, 0.3, 0.5),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.4)

















E3

















(0.4, 0.6, 0.7),
(0.3, 0.4, 0.6),
(0.6, 0.7, 0.9)

































(0.1, 0.2, 0.4),
(0.1, 0.3, 0.4),
(0.4, 0.6, 0.9)

































(0.2, 0.3, 0.4),
(0.2, 0.3, 0.5),
(0.1, 0.3, 0.4)

































(0.2, 0.4, 0.6),
(0.4, 0.6, 0.9),
(0.1, 0.2, 0.3)

















E4

















(0.2, 0.3, 0.4),
(0.2, 0.7, 0.9),
(0.1, 0.3, 0.4)

































(0.1, 0.4, 0.7),
(0.3, 0.4, 0.9),
(0.3, 0.5, 0.6)

































(0.4, 0.5, 0.9),
(0.2, 0.3, 0.5),
(0.1, 0.2, 0.4)

































(0.2, 0.4, 0.6),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.3)

















E5

















(0.4, 0.5, 0.7),
(0.1, 0.3, 0.5),
(0.1, 0.2, 0.4)

































(0.5, 0.6, 0.7),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.4)

































(0.4, 0.5, 0.6),
(0.2, 0.3, 0.5),
(0.3, 0.4, 0.6)

































(0.2, 0.3, 0.4),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.3)

















Table 4. The group TFNNs decision matrix F by TFNNWA Operator.

C1 C2 C3 C4

E1

















(0.437, 0.6175, 0.7957),
(0.1, 0.2, 0.3769),
(0.1, 0.2, 0.3)

































(0.161, 0.3367, 0.5375),
(0.255, 0.3565, 0.4786),
(0.1, 0.2304, 0.3317)

































(0.3367, 0.437, 0.593),
(0.1189, 0.260, 0.3616),
(0.1569, 0.3318, 0.4892)

































(0.262, 0.5025, 0.7957),
(0.3317, 0.4573, 0.633),
(0.1569, 0.3, 0.4324)

















E2

















(0.3367, 0.437, 0.577),
(0.274, 0.4624, 0.5987),
(0.2797, 0.4181, 0.5206)

































(0.1663, 0.3, 0.4621),
(0.1274, 0.3317, 0.504),
(0.1569, 0.2603, 0.4)

































(0.3142, 0.437, 0.7537),
(0.3058, 0.5329, 0.824),
(0.2549, 0.3587, 0.5578)

































(0.1996, 0.337, 0.5375),
(0.1274, 0.230, 0.3854),
(0.162, 0.2756, 0.4865)

















E3

















(0.2942, 0.539, 0.7688),
(0.1736, 0.362, 0.5537),
(0.484, 0.6222, 0.8242)

































(0.1, 0.2, 0.3667),
(0.1468, 0.3317, 0.509),
(0.4324, 0.6381, 0.8242)

































(0.342, 0.4796, 0.6795),
(0.2, 0.3722, 0.5378),
(0.1, 0.3, 0.4373)

































(0.2762, 0.4, 0.6383),
(0.4, 0.6381, 0.9),
(0.1, 0.2, 0.368)

















E4

















(0.166, 0.3367, 0.5573),
(0.2, 0.585, 0.8242),
(0.1, 0.2603, 0.3616)

































(0.219, 0.6054, 0.8066),
(0.260, 0.3616, 0.5356),
(0.2042, 0.4229, 0.6)

































(0.3667, 0.5426, 0.8531),
(0.2, 0.3, 0.4229),
(0.1, 0.2, 0.3854)

































(0.314, 0.4793, 0.7307),
(0.1468, 0.276, 0.4336),

(0.1, 0.2, 0.3317)

















E5

















(0.479, 0.5818, 0.7708),
(0.1, 0.2603, 0.3824),
(0.1, 0.2, 0.3954)

































(0.467, 0.6, 0.8066),
(0.3, 0.4, 0.605),
(0.1569, 0.3, 0.4)

































(0.4, 0.5, 0.6434),
(0.1569, 0.3, 0.4229),

(0.2042, 0.3616, 0.5233)

































(0.2, 0.3, 0.7275),
(0.1, 0.3, 0.4),

(0.1, 0.2549, 0.44)
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Table 5. The normalized TFNNs decision matrix N.

C1 C2 C3 C4

E1

















(0.4301, 0.7168, 1),
(0, 0.138, 0.3824),
(0, 0.138, 0.2761)

































(0.0868, 0.335, 0.6191),
(0.267, 0.4796, 0.7353),

(0, 0.1801, 0.32)

































(0.0417, 0.2279, 0.517),
(0, 0.2004, 0.3442),

(0.1243, 0.5064, 0.8502)

































(0, 0.4918, 0.8961),
(0.3334, 0.5533, 0.710),
(0.1398, 0.4825, 0.8527)

















E2

















(0.2707, 0.430, 0.6525),
(0.240, 0.5004, 0.6886),
(0.2481, 0.4392, 0.5807)

































(0.0938, 0.283, 0.5124),
(0, 0.4278, 0.7884),

(0.0785, 0.2213, 0.4142)

































(0, 0.2779, 0.8156),
(0.2649, 0.587, 1),
(0.3393, 0.5651, 1)

































(0.4331, 0.77, 1),
(0.643, 0.8368, 0.9656),
(0, 0.5456, 0.8384)

















E3

















(0.2032, 0.592, 0.9572),
(0.1017, 0.361, 0.6265),

(0.5302, 0.721, 1)

































(0, 0.1415, 0.3774),
(0.0406, 0.4278, 0.798),

(0.5491, 0.743, 1)

































(0.052, 0.3069, 0.6778),
(0.1149, 0.359, 0.5939),
(0, 0.4368, 0.7368)

































(0.264, 0.6639, 0.8715),
(0, 0.3272, 0.625),
(0.3066, 0.7412, 1)

















E4

















(0, 0.2707, 0.6211),
(0.138, 0.6697, 1),
(0, 0.2213, 0.3613)

































(0.1684, 0.7152, 1),
(0.278, 0.4904, 0.8546),
(0.1439, 0.4459, 0.6904)

































(0.974, 0.4239, 1),
(0.1149, 0.2567, 0.431),
(0, 0.2184, 0.6235)

































(0.109, 0.531, 0.8078),
(0.5829, 0.7804, 0.941),
(0.4003, 0.7412, 1)

















E5

















(0.497, 0.6601, 0.9604),
(0, 0.2213, 0.3899),
(0, 0.138, 0.4079)

































(0.5194, 0.7075, 1),
(0.3612, 0.5706, 1),

(0.0785, 0.2761, 0.4142)

































(0.159, 0.3447, 0.6109),
(0.0538, 0.2567, 0.431),
(0.2276, 0.5716, 0.9246)

































(0.1145, 0.832, 0.9994),
(0.625, 0.75, 13),
(0.1202, 0.5992, 1)

















Table 6. The weighted normalized TFNNs decision matrix P.

C1 C2 C3 C4

E1

















(0.2059, 0.4039, 1),
(0, 0.444, 0.6743),
(0, 0.444, 0.59)

































(0.0126, 0.0555, 0.126),
(0.831, 0.9022, 0.9578),
(0, 0.7866, 0.8525)

































(0.0106, 0.063, 0.1664),
(0, 0.6691, 0.7659),

(0.5938, 0.844, 0.9602)

































(0, 0.1266, 0.3642),
(0.803, 0.8883, 0.9338),
(0.6747, 0.8644, 0.9686)

















E2

















(0.1214, 0.2059, 0.3516),
(0.5574, 0.7529, 0.8581),
(0.5647, 0.7137, 0.8002)

































(0.014, 0.0455, 0.0956),
(0, 0.8879, 0.9672),

(0.7004, 0.8096, 0.8839)

































(0, 0.0626, 0.3447),
(0.7174, 0.8753, 1),
(0.7626, 0.867, 1)

































(0.1073, 0.2547, 1),
(0.9155, 0.965, 0.993),
(0, 0.8859, 0.9653)

















E3

















(0.0889, 0.3076, 0.7253),
(0.3917, 0.6587, 0.8255),

(0.7709, 0.8745, 1)

































(0, 0.0211, 0.0641),
(0.639, 0.8879, 0.9689),
(0.8967, 0.9592, 1)

































(0.013, 0.0875, 0.2466),
(0.582, 0.7741, 0.8778),
(0, 0.8129, 0.9265)

































(0.0595, 0.1959, 0.337),
(0, 0.7998, 0.9102),
(0.7894, 0.9418, 1)

















E4

















(0, 0.1214, 0.3283),
(0.444, 0.8484, 1),
(0, 0.5388, 0.6587)

































(0.0255, 0.1612, 1),
(0.8359, 0.905, 0.9782),
(0.7623, 0.893, 0.9494)

































(0.0252, 0.1288, 1),
(0.582, 0.7118, 0.8102),
(0, 0.6836, 0.8886)

































(0.023, 0.1404, 0.2809),
(0.8976, 0.952, 0.9879),
(0.8327, 0.9418, 1)

















E5

















(0.2457, 0.3575, 0.7339),
(0, 0.5388, 0.6797),
(0, 0.444, 0.6923)

































(0.0974, 0.1581, 1),
(0.8671, 0.9244, 1),

(0.7004, 0.8351, 0.8839)

































(0.042, 0.1002, 0.2102),
(0.4817, 0.7118, 0.81),
(0.6907, 0.8695, 0.9806)

































(0.024, 0.2998, 0.7807),
(0.9102, 0.944, 1),
(0.6546, 0.9026, 1)

















Table 7. The TFNNs-BAA matrix Q
[

q j

]

1 x 4
.

C1 C2 C3 C4

qj

















(0, 0.2565, 0.5724),
(0.316, 0.6815, 1),
(0.3694, 0.6517, 1)

































(0, 0.0671, 0.2388),
(0.7341, 0.9025, 1),
(0.7058, 0.8761, 1)

































(0, 0.085, 0.3124),
(0.5197, 0.7613, 1),
(0.5047, 0.8257, 1)

































(0, 0.1927, 0.4852),
(0.8274, 0.9267, 1),
(0.6692, 0.9126, 1)

















Table 8. The distance between the matrix N and the matrix Q.

C1 C2 C3 C4

E1 0.294133218 0.135433717 0.13017763 0.044585725
E2 −0.14492263 0.127541677 −0.073960167 0.17199896
E3 −0.132228984 −0.070633077 0.096657248 0.156082795
E4 −0.166411125 0.125660975 0.201853503 −0.064361377
E5 0.241339491 0.140794649 0.076253482 0.061268628

Table 9. The final score values of alternatives.

E1 E2 E3 E4 E5

V(Ei) 0.60433029 0.08065784 0.049877982 0.096741976 0.51965625
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4.2. Compare the TFNNs-MABAC Method with Some TFNNs Aggregation Operators and VIKOR Method

This sub-section demonstrates the comparison between our proposed TFNNs-MABAC with
TFNNWA operator and TFNNWG operator to examine the effectiveness of our proposed MABAC
method in the TFNN environment. Based on the obtained results of Table 4 and weighting-vector for
each criterion w j = {0.41, 0.14, 0.25, 0.20}, the operators of TFNNWA and TFNNWG can be used to
calculate overall fi j to fi (See Table 10). The use of these two operators aims to fuse overall the weighted
input data that are expressed as TFNNs into a single TFNN (see Theorem 1 and 2). In other words,
the aggregation result of both TFNNWA or TFNNWG operators is still in terms of fuzzy information.
Moreover, to look at an exact number or a crips value representing the aggregation result for each
alternative, we will easily find them through the score function value of TFNNs. After calculating the
values of the TFNNs score function S( fi), we can generate the results of alternatives score as presented
in Table 11. Afterward, the alternatives’ ranking order by these two TFNNs aggregation operators can
be seen in Table 13 and Figure 2.

Analyzing the results of our proposed TFNNs-MABAC method with TFNNWA and TFNNWG
operators, we confirm that the results of our proposed MABAC method are the same as the results
generated by the TFNNWA operator but insignificantly changed with the TFNNWG operator.
The proposed TFNNs-MABAC method showed that the alternatives E1 and E5, respectively, placed in
the first position and the second position, whereas the TFNNWG advised vice versa. Since the results
in terms of ranking order provided by both aggregation operators are different, we then investigated
further the discrepancy between truth and falsity of the TFNNWA and TFNNWG results for each
alternative through the accuracy function of TFNNs. After calculating the accuracy function values of
the TFNNs A( fi) for each aggregation operator, as seen in Table 12, we obtain the accuracy function
values for all alternatives determined by TFNNWA have a bit larger than TFNNWG. It indicates that
the ranking order suggested by TFNNWA is more affirmative in this aggregate comparison.

Nevertheless, in terms of the computational complexity, those two aggregation operators need
relatively shorter computations to obtain decision-making by evaluating overall alternatives with their
operators. Considering the abovementioned TFNNWA’s advantage and from its result, as shown in
Table 4, we then continued to perform the procedures of our proposed TFNNs-MABAC method for
selecting the best alternative. The TFNNs-MABAC method evaluates ideal and non-ideal alternatives
by spreading as many the criterion of the alternative as possible located on the upper approximation
border. Although the TFNNs-MABAC takes a bit more time in returning the decision, it considers
the conflicting attribute to avoid the inconsistency and uncertainty of DMs. Therefore, our proposed
TFNNs-MABAC can be more scientific and reasonable in real-life MCGDM applications.

Furthermore, comparing our TFNNs-MABAC method with the TFNNs-VIKOR [43] method,
as displayed in Table 13 and Figure 2, the best alternative selected by the VIKOR method is similar;
however, the result of ranking order is slightly different to our proposed method. The VIKOR method
advised the alternative E3 and the alternative E2, respectively, placed in the fourth position and the
fifth position, whereas the proposed method suggested vice versa. Additionally, the alternatives’
evaluation process in the VIKOR method is based on distance measures from the positive and negative
ideal solutions in terms of each criterion like set-pair Analysis and TOPSIS. In contrast to other
decision-making methods, the VIKOR method chooses an alternative with the lowest final score as the
best alternative.

Table 10. The overall alternative values by using some TFNNs aggregation operators.

f1 f2 f3 f4 f5

TFNNWA

















(0.34, 0.52, 0.72),
(0.15, 0.27, 0.42),
(0.12, 0.25, 0.36)

































(0.28, 0.4, 0.61),
(0.21, 0.39, 0.57),
(0.22, 0.34, 0.5)

































(0.27, 0.45, 0.68),
(0.2, 0.4, 0.59),
(0.23, 0.41, 0.59)

































(0.25, 0.46, 0.72),
(0.19, 0.39, 0.57),
(0.11, 0.24, 0.38)

































(0.41, 0.51, 0.74),
(0.13, 0.29, 0.42),
(0.12, 0.25, 0.43)

















TFNNWG

















(0.32, 0.49, 0.69),
(0.17, 0.29, 0.45),
(0.12, 0.25, 0.38)

































(0.27, 0.39, 0.58),
(0.23, 0.42, 0.63),
(0.23, 0.35, 0.5)

































(0.25, 0.42, 0.64),
(0.22, 0.42, 0.66),
(0.32, 0.49, 0.69)

































(0.23, 0.44, 0.68),
(0.19, 0.43, 0.65),
(0.11, 0.25, 0.4)

































(0.38, 0.49, 0.73),
(0.14, 0.29, 0.43),
(0.13, 0.26, 0.43)
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Table 11. The score function value of alternatives S( fi).

S( f1) S( f2) S( f3) S( f4) S( f5)

TFNNWA 0.6661 0.5566 0.5505 0.6129 0.6641

TFNNWG 0.6476 0.5393 0.5010 0.5868 0.6511

(0.34, 0.52, 0.72),(0.15, 0.27, 0.42),(0.12, 0.25, 0.36) (0.28, 0.4, 0.61),(0.21, 0.39, 0.57),(0.22, 0.34, 0.5) (0.27, 0.45, 0.68),(0.2, 0.4, 0.59),(0.23, 0.41, 0.59) (0.25, 0.46, 0.72),(0.19, 0.39, 0.57),(0.11, 0.24, 0.38) (0.41, 0.51, 0.74),(0.13, 0.29, 0.42),(0.12, 0.25, 0.43)(0.32, 0.49, 0.69),(0.17, 0.29, 0.45),(0.12, 0.25, 0.38) (0.27, 0.39, 0.58),(0.23, 0.42, 0.63),(0.23, 0.35, 0.5) (0.25, 0.42, 0.64),(0.22, 0.42, 0.66),(0.32, 0.49, 0.69) (0.23, 0.44, 0.68),(0.19, 0.43, 0.65),(0.11, 0.25, 0.4) (0.38, 0.49, 0.73),(0.14, 0.29, 0.43),(0.13, 0.26, 0.43)
( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

−

> > > >> > > >> > > >> > > >
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2

1 1

4 4
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4
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Figure 2. Flow diagram of the calculation procedures for our proposed MABAC method.

Table 12. The accuracy function value of alternatives S( fi).

A( f1) A( f2) A( f3) A( f4) A( f5)

TFNNWA 0.2799 0.0680 0.0546 0.2309 0.2779

TFNNWG 0.2479 0.0480 −0.0603 0.1937 0.2476

Table 13. The results of ranking order of alternatives.

Ranking Order

TFNNWA E1 > E5 > E4 > E2 > E3
TFNNWG E5 > E1 > E4 > E2 > E3

TFNNs-VIKOR method [43] E1 > E5 > E4 > E3 > E2
TFNNs-MABAC method E1 > E5 > E4 > E2 > E3

5. Conclusions

In this article, we proposed the TFNNs-MABAC method based on some fundamental theories
in TFNNs and the traditional MABAC model for MCGDM. Firstly, we reviewed the concepts,
some essential operators, and operation laws of TFNNs, and then encapsulated the score and
accuracy functions of TFNNs. Afterward, we discussed two aggregation operators regarding
TFNNs and reviewed the definition of normalized Hamming distance among two TFNNs. Secondly,
we developed the TFNNs-MABAC method by integrating the traditional MABAC with TFNNs.
We demonstrated the steps of calculating the procedure of our proposed TFNNs-MABAC in
detail through a numerical-example for an invest selection problem. Eventually, we performed
a comparative-analysis to underline the benefits of the proposed TFNNs-MABAC. The proposed
method verified conformity, effectiveness, and reasonableness for implemented to MCGDM problems.

In practice decision-making real-life time, the TFNNs are an effective instrument to solve the
impreciseness and incompleteness of DMs. However, there is a limitation of the proposed method.
Due to the number of functions for each membership degree of TFNNs, increasingly, the computational
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complexity in particular to calculate the overall value of some aggregation TFNN operators for a
large of TFNNs group will be a bit slower and more complex. Therefore, it needs a high-performance
computing technology or a database indexing technique to retrieve the overall aggregated value fast in
the decision-making process.

Future works can utilize our proposed TFNNs-MABAC method to risk assessment for MCGDM
cases, such as [45–50], many other uncertain and fuzzy circumstances [51–60]. The neutrosophic sets,
such as [61–69], can be many possible chances to improve our proposed MABAC method for further
studies. Other interesting future studies are to develop a novel decision-making model based on
the TFNNs in social network group decision making [70] or apply the model to two-sided matching
decision-making problems [71].
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53. Bozanic, D.; Tešić, D.; Milić, A. Multicriteria decision making model with Z-numbers based on FUCOM and
MABAC model. Decis. Mak. Appl. Manag. Eng. 2020, 3, 19–36. [CrossRef]

54. Li, P.; Ji, Y.; Wu, Z.; Qu, S.-J. A new multi-attribute emergency decision-making algorithm based on
intuitionistic fuzzy cross-entropy and comprehensive grey correlation analysis. Entropy 2020, 22, 768.
[CrossRef]

55. Chen, C.-H. A novel multi-criteria decision-making model for building material supplier selection based on
entropy-AHP weighted TOPSIS. Entropy 2020, 22, 259. [CrossRef]

56. Irvanizam, I.; Syahrini, I.; Afidh, R.P.F.; Andika, M.R.; Sofyan, H. Applying fuzzy multiple-attribute decision
making based on set-pair analysis with triangular fuzzy number for decent homes distribution problem.
In Proceedings of the 2018 6th International Conference on Cyber and IT Service Management (CITSM),
Parapat, Indonesia, 7–9 August 2018; IEEE: Piscataway NJ, USA, 2018. [CrossRef]
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