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Abstract 

The tournament rules for long jump competitions have changed in recent years. Today, 
only the three athletes with the best jumps from the five initial attempts are qualified to 
make an additional sixth jump – a format called The Final Three. In the first implemented 
version of The Final Three, the top athletes sequentially make one final jump, starting 
with the athlete ranked third place from the initial attempts. The athlete with the longest 
jump in this sixth attempt wins the competition, irrespective of achieved results in 
previous attempts. In this study, we analyze the effect of the athletes’ jump order on the 
probability of winning the competition within this first implemented version of The Final 
Three. We derive the final’s symmetric subgame perfect equilibrium and compute the 
corresponding equilibrium winning probabilities, given the values assigned to the 
distributional parameters. The modelling of the game is preceded by a development of a 
stochastic model for the outcome in long jumping. An athlete affects the distribution of 
the outcome by choosing where to start her approach run. Our results indicate a last 
mover advantage, albeit small. The athlete jumping last, wins the final with a probability 
0.35, followed by the athlete jumping second with a probability 0.33 to win the final. 
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1. Introduction 
A common argument for changing rules within a given sport is that the change will make the sport 

event more exiting or increase fairness. Wright (2014) and Kendall and Lenten (2017) provide surveys 

of changes in rules from various sports and their impact upon competitors’ behaviour. Both papers 

present examples of when rule changes, aiming to increase excitement, have led to unexpected – and 

in some cases – unfair consequences. In this paper we add an additional sport to their list of examples: 

long jumping. To make the long jumping international competitions more exiting, a new tournament 

format, “The Final Three”, was introduced in 2020.  Given the number of prequalified contestants in a 

competition, the three highest placed athletes, after a sequence of attempts (in general five attempts, 

henceforth rounds), were qualified for the sixth round (the final henceforth). The medals among these 

three athletes were then distributed according to their achieved result in the final, irrespective of what 

distance they jumped in previous rounds. This rule differed from the former applied rule, where the 

winner was the one who made the single longest jump over all rounds in the competition. A 

consequence, albeit not unforeseen, of this change in tournament rule, is that the winner may not be 

the athlete who had the best overall result achieved in the competition. According to the organizer 

Diamond League, the motive for changing the rule was to award athletes who has the ability to 

perform under the most intense pressure, bringing more drama to the competition as nothing would be 

decided until the last jump.1 Alongside the criticism that the new rule was unfair because the first five 

rounds by the finalists become void in the final, objections were also raised because the rule weakened 

the athlete’s  incentive to perform her best in the first five rounds, since ending up in third place was 

as good as ending up in first place in order to reach the final. Following the consultation with athletes, 

coaches and meeting organizers, the Wanda Diamond League General Assembly decided in December 

2021 to revise The Final Three format.2 The properties of this revised Final Three format and its 

expected impact on fairness and excitement are discussed in the last section in this paper.   

Even though the format of The Final Three, as described above, likely is to be put aside in the future, 

the format’s properties are nevertheless interesting to analyse. There will probably always be a debate 

about how to build drama and excitement into the long jumping competition, which in its traditional 

format may be perceived by some as an endlessly repetitive jumping. After all, the format of the The 

Final Three bears a resemblance of the format applied today in running tournaments at track and field, 

where runners qualify to a final in a sequence of elimination heats. In this paper we try to shed some 

light on the question how beneficial it is for an athlete for having achieved the best jump in the five 

first rounds to win The Final Three. By analysing the strategic interaction between the finalists, we try 

to predict an athlete’s probability of winning the final, given her ranking from the initial five rounds.  
 

1 See https://athleticsweekly.com/athletics-news 
2 See https://world-track.org/2021/12/wanda-diamond-league-final-3-format-for-horizontal-jumps-revised-2/ 
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The design of The Final Three suggests the athlete’s placement after five rounds could have a direct 

impact on the probability of winning the competition. There are two reasons for this assertion. First, in 

case of a tie in the final, the best performance from the previous five rounds separates the athletes. 

Second, the mutual placement of the finalists after five rounds determines the order in which the 

finalists jump in the final. The athlete who is placed third after five rounds begins, the second-best 

performer is next, while the leading athlete after five rounds finishes the final. This order suggests an 

advantage for the leader after five rounds, since it is possible to adapt the risk of making a foul, an 

illegal result, depending on the other two finalists’ performance in the final. Likewise, it could be 

argued that the third placed athlete has a disadvantage of going first in that no results of the rivals yet 

exist.  

We believe the jumper adapts this risk by the position of the distance marker, from where the jumper 

starts the approach run. By moving the marker backwards, the risk of making a foul will obviously 

decline. However, this comes with the cost of lowering the probability of a good result. The reason for 

that is that the takeoff foot, most likely, will be far from the official take-off line, from which the 

distance of the jump is measured. Thus, there is a trade-off between having a low risk of making a foul 

and a high probability of making a good result. 

The way the Final Three format was designed, in combination with the elements of strategic thinking 

in long jump, i.e., deciding on where to place the distance marker, enables a game theoretic approach 

to analyse the impact of the finalist’s position after five rounds - first, second or third - on the 

probability to win the final. Such an approach could also highlight the importance of the dimension of 

strategic thinking in this type of format. 

In the paper we first present a stochastic model for the outcome of a long jump, where the derived 

distribution of the outcome depends on the position of the distance marker. Second, based on this 

stochastic model, a sub-game perfect equilibrium is characterized, and equilibrium win probabilities 

for the three finalists in The Final Three are derived. Here, the competition is viewed as a non-

cooperative rational strategic sequential-move game where the three finalists are players with 

asymmetric information about the achieved outcomes of other players’ moves.3 Their decision making 

is interdependently related and all of them aim to maximize the probability of winning the final by 

making a strategic choice of the position of the distance marker. Third, the model is used to analyse 

 
3 The old rule also implies the use of backward induction to solve for an optimal jumping strategy. However, 
the presence of more attempts for a jumper to ensure a legal jump, and the possibilities to improve the 
distance achieved in previous attempts, creates a very cumbersome sequential decision structure which is hard 
to capture in a model.  
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the importance of the strategic dimension within this format, in that a poor strategic choice might 

decline the win probability to a certain amount.  

The rest of the paper is organized as follows: In Section 2 a stochastic model for the result of a long 

jump is presented. Section 3 provides a literature overview. In Section 4 equilibrium win probabilities 

are derived, while the findings in the paper are discussed in Section 5. 

2. Literature 
 

The first part of our work is related to the literature on modeling the jumper’s problem in the long 

jump competition to decide her optimal aimed take-off line, an issue analyzed in some early papers. In 

Ladany et al. (1975), a general model is developed to determine the aimed optimal take-off line which 

maximizes the jumper’s expected distance in a competition with three rounds. In their model, the 

jumper’s choice of take-off line is not conditioned on the jumps of her competitors. Given their 

collected data from ten consecutive training sessions of an athlete, they solve the problem by 

simulation of a specific case. Assuming that both the real jumping distance, and the distance between 

the tip of the take-off foot and the take-off line aimed for, are normally distributed, that is, neglecting 

that the later distribution is truncated, the authors derive an analytical solution, which provides a valid 

approximation of the simulated result. A similar model is applied in Ladany and Singh (1978) in 

which the jumper’s objective is to maximize the probability of jumping a given distance. This policy is 

then compared with the case when the objective is to maximize the expected distance jumped. Using 

the results from the training sessions obtained in the previous study by Ladany et al. (1975), the 

finding is that the later policy – to jump the longest jump – is inconsistent with the desire to maximize 

the probability to jump a given distance. Ladany and Mehrez (1987) extend the problem of 

maximizing the probability of jumping a given distance in a single jump to a 3-trial competition case. 

They show that the optimal location of the aimed take-off line, maximizing the probability to jump a 

given distance in a single jump, also maximizes the same probability in the 3-trial case. However, to 

prevent erroneous values of the optimal location of the aimed take-off line due to the aforementioned 

truncation of the distribution of the distance between the tip of the take-off foot and the aimed take-off 

line, they solve the maximization problem by simulation, leaning on the estimates from Ladany et al. 

(1975).  Ladany and Mehrez (1987) find that when the targeted distance is relatively short in relation 

to the jumper’s ability, the jumper can select an aimed take-off line more far behind the official take-

off line and still enjoy a probability close to 1 of success. Conversely, when the targeted distance is 

relatively long, a deviation from optimal aimed take-off line, closer to the official take-off line, has a 

little effect upon the very low probability of success. 

The contribution of our work to this literature is an extension of the model by Ladany and Mehrez 

(1987). We derive a probability distribution of the jumper’s score which captures the fact that one of 



4 
 

the underlying distributions – the distance between the tip of the take-off foot and (in our model) the 

foul line – is truncated.  

The second part of our paper relates to the relatively large body of literature on the design of sporting 

contests and competitors’ performance (for a survey, see Szymanski 2003). More precisely, the 

structure of The Final Three in the long jumping final, directs our interest towards the literature on the 

effect of the order of actions on performances in sports with sequential moves. Several factors are put 

forward to explain the observed differences in competitors’ performances, e.g., psychological 

pressure, learning effects, cognitive effects, and strategic interaction. The observed performance in 

penalty shootouts in soccer, where the kicks are taken alternately by the two teams - A and B - 

according to ABAB, has attracted attention in a row of papers. A survey of empirical studies on penalty 

shootouts, provided in Csató (2021), indicates that there exists a first-mover advantage of kicking first 

due to the mental pressure the player taking the second kick is put under. Hence, even if this order of 

kicks is ex ante fair by randomly determine which team starts the shootout, the order is not ex post 

fair. Albeit not largely tested in soccer, the Prouhet-Thue-Morse sequence of order, ABBA, has been 

considered being a fairer alternative to the standard shootout format (see, e.g., Palacios-Huerta 2012, 

Brams and Ismail 2018, Vandebroek et al. 2018, Anbarcı et al. 2021, Csató 2021, Lambers and 

Spieksma 2021). Penalty shootouts are also applied in many ice-hockey leagues to determine the 

winner if a match is still drawn following overtime. The shooting is in general ordered ABAB, where 

the home team decides who will start the shootout. Kolev et al. (2015) analyse data from shootouts 

from the National Hockey League and find a lower winning frequency for the team shooting first. The 

probability of scoring a goal from a penalty shot in hockey is much lower than it is in soccer. 

Therefore, it is more likely that the team taking the first shot will be lagging when the second team 

shoots, giving the second team an advantage. The serves in tennis tiebreak have an order close to the 

Prohuet-Thue-Morse sequence. Analysing data from larger tennis tournaments, Cohen-Zada et al. 

(2018) find no systematic advantage to any player serving first or second in tiebreak.  

Brady and Insler (2019) analyse recorded data from the PGA tours on playing partners in golf to 

examine whether there is an order effect when both players’ golf balls are positioned relatively close 

to each other when playing from fairway or putting on green. They find evidence of a second-mover 

advantage, which they motivate is consistent with a learning effect. Krumer et al. (2017) analytically 

show that competing in the first round and in the last round in a round-robin tournament with three 

symmetric competitors is more advantageous than any other ordering. Winning in the first round 

affects the continuation values of the competitors, providing the winner a higher continuation value of 

winning than her opponents. Krumer and Lechner (2017) find this prediction to be in line with their 

analysis of the observed outcome in Olympic wrestling and in UEFA/FIFA soccer cups, in which the 

group stages are arranged as round-robin tournaments. González-Díaz and Palacios-Huerta (2017) 

show that most chess matches - where two players play an even number of games against each other, 
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altering the colour of pieces – is won by the player playing with the white pieces in the first game. 

Playing with the white pieces in chess confers a strategic advantage. Therefore, the player playing with 

the black pieces in the first game is more likely to lag in the match and thus being at a psychological 

disadvantage, affecting the player’s cognitive performance. 

In the sports referred to above, a competitor’s best response to an outcome, caused by her opponent’s 

move in the sequential game, is always to try to shoot a goal, hit the ball in the hole, win a new match, 

etc., irrespectively of her opponent’s outcome.  However, in the long jumping final, a competitor will 

condition her best response on the information she has about her opponents’ performances, by 

optimally positioning her distance marker.  

A similar situation can be found in many running tournaments at track and field events, where runners 

first compete in a sequence of qualification heats prior to the final. A runner advances to the final 

either by being among the top placed runners in her heat or having one of the fastest times of those 

who did not advance by place, regardless of the heat (“a lucky looser”). Therefore, in a sequence of 

qualification heats, runners in later qualification heats are better informed about times required to 

reach the final than are runners in earlier heats. Hill (2012) analyses data on runners’ performance in 

International Association of Athletics Federations (IAAF) 5,000-meters events, held 2001-2011, 

where runners compete in two separate qualification heats. Given the runners’ asymmetric 

information, the analysis does not support the hypothesis that there is an advantage or a disadvantage 

of competing in either of the two qualification heats.  

Facing a similar situation with asymmetric information in long jumping competitions, we in this study 

adopt a game theoretical approach to examine how the ordering of the three jumps in the final affects a 

competitor’s probability of winning. By deriving each jumper’s choice of expected distance from the 

tip of the take-off foot to the official take-off line, given her conjecture/information about the 

competitors’ scores, we characterize a sub-game perfect equilibrium of this game. 

3. A Stochastic Model for the Result of a Long Jump 

In this section a stochastic model for the outcome of a long jump will be presented, taking the effect of 

the athlete’s attitude towards risk of making a foul jump into account. The athlete masters the risk by 

changing the position of the distance marker indicating the start of the approach run towards the 

official take-off line (henceforth the foul line), from which the athlete tries to make as long a jump as 

possible before landing inside a sandpit.  

For a jump to be legal the toe of the athlete’s shoe needs to be behind the foul line while launching. 

Otherwise, if the toe crosses the foul line, the athlete has made a foul jump that doesn’t count. Long 

jumps are measured from the foul line to the impression in the sandpit, closest to the take-off board, 

made by any part of the athlete’s body, while landing. 
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For a certain athlete, 𝑋𝑋 is defined to be the distance of the approach run, where 𝑋𝑋 is assumed to follow 

a 𝑁𝑁(𝜇𝜇𝑋𝑋,𝜎𝜎𝑋𝑋2). We define 𝛾𝛾 + 𝜇𝜇𝑋𝑋 to be the distance from the marker to the front edge of the foul line. 

Thus, the distance from the point of take-off to the foul line, denoted by 𝑇𝑇, can be written as 𝑇𝑇 =  𝛾𝛾 +

𝜇𝜇𝑋𝑋 − 𝑋𝑋, where a fair jump requires 𝑇𝑇 ≥ 0, while 𝑇𝑇 < 0 defines a foul jump. It follows that 

𝑇𝑇~𝑁𝑁(𝛾𝛾,𝜎𝜎𝑋𝑋2).  

Furthermore, we define 𝑌𝑌 to be the entire distance of the jump, from the point of take-off to the first 

landing point of the athlete. 𝑌𝑌 is assumed to follow a 𝑁𝑁(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2). In addition, define 𝑉𝑉∗ = 𝑌𝑌 − 𝑇𝑇. Now, 

the score 𝑉𝑉 is defined by 

𝑉𝑉 = � 𝑉𝑉
∗           𝑖𝑖𝑖𝑖   𝑇𝑇 ≥ 0

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

Thus, 𝑉𝑉 can be considered a mixed random variable with a continuum of positive4 real values as 

possible outcomes as well as a qualitative outcome.  

Assuming 𝑌𝑌 and 𝑇𝑇 to be independent, the pdf of 𝑉𝑉∗| 𝑇𝑇 ≥ 0, denoted by 𝑓𝑓𝑉𝑉∗|𝑇𝑇≥0(𝑣𝑣∗), can be shown to 

be 

𝑓𝑓𝑉𝑉∗|𝑇𝑇≥0(𝑣𝑣∗) =
exp (− (𝜇𝜇𝑌𝑌 − 𝑣𝑣∗ − 𝛾𝛾)2

2(𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2) �1 + erf�(𝜇𝜇𝑌𝑌 − 𝑣𝑣∗)𝜎𝜎𝑋𝑋2 + 𝛾𝛾𝜎𝜎𝑌𝑌2

√2𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌�𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2
 ��) 

√2𝜋𝜋(1 + erf� 𝛾𝛾
√2𝜎𝜎𝑋𝑋

�)�𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2
, 

where erf (∙) is the error function. 

The probability of making a foul is given by 1 −Φ( 𝛾𝛾
𝜎𝜎𝑋𝑋

), where Φ(∙) is the cumulative distribution 

function of a standard normal. Consider the function 

g(𝑣𝑣∗) = Φ�
𝛾𝛾
𝜎𝜎𝑋𝑋
�𝑓𝑓𝑉𝑉∗|𝑇𝑇≥0(𝑣𝑣∗). 

The probability of having a score better than or equal to 𝑣𝑣0∗ is  

𝑃𝑃(𝑉𝑉 ≥ 𝑣𝑣0∗) = � 𝑔𝑔(𝑣𝑣∗)𝑑𝑑𝑣𝑣∗
∞

𝑣𝑣0∗
. 

In Figure 1 the function g(𝑣𝑣∗) is illustrated graphically for 𝜇𝜇𝑌𝑌 = 8.00, 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 = 0.1 and for two 

different values of 𝛾𝛾 (𝛾𝛾 = 0 thin line; 𝛾𝛾 = 0.20 thick line), where metre is the unit of measurement. 

Note that the function g(𝑣𝑣∗) is not a probability distribution function and the area under the graph is 

 
4 Theoretically, using our model it is possible for 𝑉𝑉 to take on negative values. However, for parameter values 
representing real-world athletes the probability for that to occur is negligible. Henceforth, we will therefore 
think of 𝑣𝑣∗ as a value always larger than zero. Also, we define a score of 𝑣𝑣∗ to be larger than a foul. 
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smaller than 1. For the thin curve the area is smaller than for the thick curve, resulting from a larger 

probability of making a foul. 

 

Figure 1. Graphical illustration of g(𝑣𝑣∗), the continuous part of the distribution for the mixed random 

variable 𝑉𝑉 for 𝜇𝜇𝑌𝑌 = 8.00, 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 = 0.1 and for two different values of 𝛾𝛾 (𝛾𝛾 = 0 thin line; 𝛾𝛾 = 0.20 

thick line). 

 

An athlete choosing a value of 𝛾𝛾 = 0 is willing to take a large risk of making a foul, here 𝑃𝑃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) =

0.5, to have a reasonable chance of making a good score, say better than or equal to 8.00. A value of 

𝛾𝛾 = 0.20 means the athlete’s risk of making a foul is small, here 0.023, and from Figure 1 it should be 

evident that the probability of making a descent result, say 7.70 or better, is quite large compared to 

the case where 𝛾𝛾 = 0. However, this comes with the cost of lowering the chance of reaching a very 

good result, since for 𝛾𝛾 = 0.20 the probability of getting a result better than or equal to 8.00 is smaller 

than for 𝛾𝛾 = 0. Thus, by choosing the value of 𝛾𝛾, i.e., by choosing the position of the distance marker, 

the athlete balances the trade-off between the risk of making a foul and the chance of a long legal 

jump.  

 

 

4. Deriving Equilibrium Win probabilities  
 

This section takes the model presented in Section 3 as a benchmark when analysing the sequential 

game and calculating equilibrium win probabilities for each of the three competitors. 
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4.1 Modelling the Sequential Game 
 

The competitors (henceforth players) are denoted by 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶, where the order in which they jump 

is descending. We assume they all aim to maximize the probability of winning the competition by 

making a strategic choice of the value of 𝛾𝛾. It is assumed that each player has full knowledge about his 

own capacity as well as the two opponents’ capacity in terms of individual specific distributions of 𝑋𝑋 

and 𝑌𝑌 along with 𝑉𝑉, being introduced above. 5 In addition, we assume all players to be aware of each 

other’s goal to maximize the probability of winning.  

Figure 2 presents the ordering of players’ jumps as a game tree. Player C starts jumping and makes 

either a foul, fC, or scores CV . Then, at each of the nodes B2, A1, A2, and A3 there exist three possible 

outcomes of a player’s jump: (i) a foul (f); (ii) a legal jump scored lower than the leading score ( )V ; 

(iii) a legal jump scored higher than the leading score ( )V . At node B1, the jump by player B will 

either be a foul or a legal jump with a leading score. The game contains seven subgames of which one 

has a trivial solution. If player C and player B make fouls, player A automatically wins the final 

irrespectively of her achieved result (A0). The last row indicates the winning player.  

 

Figure 2. The ordering of jumps and possible outcomes in the long jumping final  

 

To solve for the combination of the three players’ strategies that are a best response to each other, i.e., 

the equilibrium in such a game, the method of backward induction will be used.  

Therefore, a stagewise solution of the equilibrium probabilities is performed. A rough description is as 

follows. First, the strategy of 𝐴𝐴 is obtained, given the best score after the first two jumps by 𝐶𝐶 and 𝐵𝐵, 

where at least one of these jumps is legal corresponding to the nodes 𝐴𝐴1,𝐴𝐴2 and 𝐴𝐴3 in Figure 2. 

 
5 The assumption of all players having full information about the opponents’ capacity is just a sufficient 
condition for the validity of the derivation of win probabilities. It is not necessary for the player jumping last to 
have this kind of information about the other two players, and for the player who jumps second only 
information about the capacity of the player who finishes the final is crucial. 
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Second, the strategy of 𝐵𝐵 is derived. Two separate cases are examined depending on 𝐶𝐶 has a legal 

jump or not (nodes 𝐵𝐵1 and 𝐵𝐵2). For both cases information about 𝐴𝐴’s strategy from the first stage is 

considered as well. Third, we obtain the strategy and calculate the equilibrium win probability of 𝐶𝐶 

considering the response from 𝐵𝐵 and 𝐴𝐴 described in stage 2 and 1, respectively (node 𝐶𝐶). Fourth, the 

equilibrium win probability of 𝐵𝐵 is derived, by considering the two separate cases described in stage 2. 

Finally, in the fifth stage, 𝐴𝐴’s equilibrium win probability is derived. 

In parallel to the theoretical description of how to obtain the equilibrium win probabilities, we provide 

a numerical example to illustrate. In this example all three finalists are assumed to have identical 

capacities, with parameters 𝜇𝜇𝑌𝑌 = 8.00 and 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 = 0.1, all measured in metres. The parameter 

values are set, in discussion with a long jump coach, to represent the capacity of a male world class 

long jumper. The choice of having identical capacities is the primarily interesting case, since we would 

like to isolate the effect of the order in which the three finalists jump. 

 

4.2 Jumping Last - The Strategy of Player A 
 

Player A observes the achieved result by player C and player B and will condition her strategy on the 

best score achieved among these two players. As mentioned above, no strategy is needed for player A 

to win the final, if the other two players make fouls. Denote the best score from the previous jumps 

by 𝑣𝑣0∗. Now, the probability for 𝐴𝐴 to end up as the winner can be written as 

𝑝𝑝𝐴𝐴|𝛾𝛾𝐴𝐴 = 𝑃𝑃(𝑉𝑉𝐴𝐴 ≥ 𝑣𝑣0∗|𝛾𝛾𝐴𝐴) = � 𝑔𝑔(𝑣𝑣𝐴𝐴∗|𝛾𝛾𝐴𝐴)𝑑𝑑𝑣𝑣𝐴𝐴∗
∞

𝑣𝑣0∗
 

where the probability depends on three fixed parameters; 𝜇𝜇𝑌𝑌, 𝜎𝜎𝑋𝑋, and 𝜎𝜎𝑌𝑌, and a parameter 𝛾𝛾𝐴𝐴, whose 

value can be affected by 𝐴𝐴 by changing the position of the distance marker. Facing 𝑣𝑣0∗, 𝐴𝐴 chooses the 

value of 𝛾𝛾𝐴𝐴 that maximizes the probability of getting a score better than or equal to 𝑣𝑣0∗. That is, the 

maximization problem 

max
𝛾𝛾𝐴𝐴

� 𝑔𝑔(𝑣𝑣𝐴𝐴∗|𝛾𝛾𝐴𝐴)𝑑𝑑𝑣𝑣𝐴𝐴∗
∞

𝑣𝑣0∗
 

is solved for given values of 𝜇𝜇𝑌𝑌, 𝜎𝜎𝑋𝑋, and 𝜎𝜎𝑌𝑌, and for different values of 𝑣𝑣0∗. For 𝜇𝜇𝑌𝑌 = 8.00 and 𝜎𝜎𝑋𝑋 =

𝜎𝜎𝑌𝑌 = 0.1, the solution to the problem in terms of 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the optimal choice of 𝛾𝛾𝐴𝐴 for different values of 
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𝑣𝑣0∗ is represented by small dots in Figure 3 below, and the corresponding win probabilities, denoted by 

𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, are shown as large dots6.  

 

Figure 3. The relation between 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑣𝑣0∗ (small dots) and corresponding win probabilities (large 

dots) for 𝜇𝜇𝑌𝑌 = 8.00 and 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 = 0.1.  Note that the scale on the y-axis represents units of 

measurements for metres as well as for probabilities. 

Figure 3 reveals that if 𝐴𝐴 is to beat 7.60, for example, his best choice of 𝛾𝛾 is 0.18, resulting in a win 

probability slightly above 0.90. Instead, if the best score to beat is as good as 8.00, he needs to gamble 

in the sense that the expected distance from the point of take-off to the foul line, i.e., 𝛾𝛾𝐴𝐴, be small. 

Here, 𝛾𝛾𝐴𝐴 = 0.06 does the trick to maximize the win probability, yielding a value for 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 of about 

0.14.  

4.3 Jumping Second - The Strategy of Player B 
 

Player 𝐵𝐵 needs to be prepared to be able to solve two maximization problems, depending on 𝐶𝐶 makes 

a foul jump or not.  

Define the implicitly given function 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ℎ(𝑣𝑣0∗), presented as the solution to player 𝐴𝐴’s 

maximization problem, given in the previous subsection. Starting with the case of a foul jump made by 

player 𝐶𝐶, i.e., player B’s optimal choice is conditioned only on her conjecture about player A’s choice 

of strategy, the probability that player 𝐵𝐵 wins the final given 𝛾𝛾𝐵𝐵, denoted by 𝑝𝑝𝐵𝐵|𝛾𝛾𝐵𝐵
′ , can be written as  

 
6 Some comments: The midpoint rule with a rectangular width of 0.01 has been applied to solve definite 
integrals numerically. Calculations are done for scores in between 6.90 and 8.90, since a score outside that 
interval is almost impossible to get. Also, we have considered measurements in the long jump are rounded 
below to the nearest centimeter. Therefore, our midpoints are in the middle of two integer centimeters. 
Finally, we restrict choices of 𝛾𝛾 to be integer centimetre values, explaining the stepwise pattern in the graph. 
Determining 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with increasing accuracy would finally result in a strictly negative pattern. 
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𝑝𝑝𝐵𝐵|𝛾𝛾𝐵𝐵
′ = �(1 − ℎ(𝑣𝑣𝐵𝐵∗ ))𝑔𝑔(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵)𝑑𝑑𝑣𝑣𝐵𝐵∗

∞

0

. 

For our numerical example the integral above is solved numerically and in Figure 4 the win 

probability for 𝐵𝐵 for different choices of 𝛾𝛾𝐵𝐵 is presented. 

 

Figure 4. The probability of player B winning the final for different choices of 𝛾𝛾𝐵𝐵, 

conditioning on player 𝐶𝐶 makes a foul jump and player A maximizes his chance of winning. 

The maximum probability for B to win is about 0.472 attained at 𝛾𝛾𝐵𝐵 = 0.12. These values are the 

solution to the maximization problem 

max
𝛾𝛾𝐵𝐵

�(1 − ℎ(𝑣𝑣𝐵𝐵∗ ))𝑔𝑔(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵)𝑑𝑑𝑣𝑣𝐵𝐵∗
∞

0

 

and are denoted by 𝑝𝑝𝐵𝐵′  and 𝛾𝛾𝐵𝐵′ , respectively. The figure also reveals the importance of being strategic 

to increase the chance of winning. For example, a poor choice of 𝛾𝛾𝐵𝐵, say 𝛾𝛾𝐵𝐵 = 0.01, reduces the 

chance of winning by 0.12, compared to a perfectly strategic choice, since the win probability drops to 

0.35. 

Now, we turn to the case when player B also must respond to the score achieved by player C, besides 

conjecturing the strategic behaviour by player A. Let 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 be the score made by player 𝐴𝐴. Then, the 

probability that player B is the winner, given 𝑣𝑣𝐶𝐶∗  and 𝛾𝛾𝐵𝐵, denoted by 𝑝𝑝𝐵𝐵|𝛾𝛾𝐵𝐵 ,𝑣𝑣𝐶𝐶
∗ , can be written as 

𝑝𝑝𝐵𝐵|𝛾𝛾𝐵𝐵,𝑣𝑣𝐶𝐶
∗  

= 𝑃𝑃�𝑉𝑉𝐵𝐵 ≥ 𝑣𝑣𝐶𝐶∗ ,𝑉𝑉𝐵𝐵 > 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝛾𝛾𝐵𝐵� 

= 𝑃𝑃(𝑉𝑉𝐵𝐵 ≥ 𝑣𝑣𝐶𝐶∗|𝛾𝛾𝐵𝐵)𝑃𝑃�𝑉𝑉𝐵𝐵 > 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝛾𝛾𝐵𝐵,𝑉𝑉𝐵𝐵 ≥ 𝑣𝑣𝐶𝐶∗� 
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= 𝑃𝑃(𝑉𝑉𝐵𝐵 ≥ 𝑣𝑣𝐶𝐶∗|𝛾𝛾𝐵𝐵)𝑃𝑃�𝑉𝑉𝐵𝐵∗ > 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝛾𝛾𝐵𝐵,𝑉𝑉𝐵𝐵∗ ≥ 𝑣𝑣𝐶𝐶∗� 

= � 𝑔𝑔(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵)𝑑𝑑𝑣𝑣𝐵𝐵∗
∞

𝑣𝑣𝐶𝐶
∗

1
1 − 𝐹𝐹𝑉𝑉𝐵𝐵∗(𝑣𝑣𝐶𝐶∗|𝛾𝛾𝐵𝐵)

�(1 − ℎ(𝑣𝑣𝐵𝐵∗ ))𝑓𝑓(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵)𝑑𝑑𝑣𝑣𝐵𝐵∗
∞

𝑣𝑣𝐶𝐶
∗

, 

where 𝐹𝐹𝑉𝑉𝐵𝐵∗(∙) is the distribution function of 𝑉𝑉𝐵𝐵∗. 

Figure 5 shows the solution to the maximization problem  

max
𝛾𝛾𝑏𝑏

 𝑝𝑝𝐵𝐵|𝛾𝛾𝐵𝐵 ,𝑣𝑣𝐶𝐶
∗  

for our numerical example.  

 

Figure 5. The relation between 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑣𝑣𝐶𝐶∗  (small dots) and corresponding win probabilities (large 

dots) for 𝜇𝜇𝑌𝑌 = 8.00 and 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 = 0.1. Note, as in figure 3, that the scale on the y-axis represents 

units of measurements for metres as well as for probabilities. 

 

We represent 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , the optimal choice of 𝛾𝛾𝐵𝐵, for different values of 𝑣𝑣𝐶𝐶∗ , with small dots. The 

corresponding win probabilities, denoted by 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, are shown as large dots. 

Not surprisingly, the better score made by 𝐶𝐶, the larger risk of making a foul jump is player 𝐵𝐵 willing 

to take, to maximize the probability of winning, as 𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is decreasing in 𝑣𝑣𝐶𝐶∗ . 
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4.4 Jumping First - The Strategy of Player C 
 

Let 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 be the scores made by player 𝐴𝐴 and player 𝐵𝐵, respectively. In addition, define the 

implicit function 𝑠𝑠(𝑣𝑣𝐶𝐶∗), the relation between the probability that player 𝐵𝐵 beats player 𝐶𝐶 and the score 

by player C, 𝑣𝑣𝐶𝐶∗ . Then, the probability of player 𝐶𝐶 being the winner given 𝛾𝛾𝐶𝐶, denoted by 𝑝𝑝𝐶𝐶|𝛾𝛾𝐶𝐶,, can be 

written as 

𝑝𝑝𝐶𝐶|𝛾𝛾𝐶𝐶  

= 𝑃𝑃�𝑉𝑉𝐶𝐶 > max�𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ,𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� �𝛾𝛾𝐶𝐶�  

= �(1 − 𝑠𝑠(𝑣𝑣𝐶𝐶∗))(1 − ℎ(𝑣𝑣𝐶𝐶∗))𝑔𝑔(𝑣𝑣𝐶𝐶∗|𝛾𝛾𝐶𝐶)𝑑𝑑𝑣𝑣𝐶𝐶∗
∞

0

 

The integrals are solved numerically for our numerical example and in Figure 6 the win probability for 

player 𝐶𝐶 for different choices of 𝛾𝛾𝐶𝐶 is shown.  

 
Figure 6. The probability of C winning the final for different choices of 𝛾𝛾𝐶𝐶. 

The maximum probability for player C to win, the equilibrium win probability 𝑝𝑝𝐶𝐶, is about 0.317 

attained at 𝛾𝛾𝐶𝐶 = 0.09, and denoted by 𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Thus, there is a minor disadvantage of going first, about 

1.5 percentage points lower probability of winning compared to the case where the probability of 

winning is the same for all three finalists. Figure 6 also highlights the importance of player 𝐶𝐶 acting 

strategically. A deviation from 𝛾𝛾𝐶𝐶 = 0.09 might substantially lower her win probability. 
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4.5 The Equilibrium Win Probability of Player B  
 

As illustrated in Figure 2 𝐵𝐵 is the winner if either 𝐶𝐶 makes a foul jump and 𝐵𝐵 has a better score than 𝐴𝐴, 

or if 𝐶𝐶 makes a legal jump and 𝐵𝐵 has at least as good a score as 𝐶𝐶 and a better score than 𝐴𝐴. Thus 𝑝𝑝𝐵𝐵, 

the equilibrium win probability for player 𝐵𝐵, can be written as the sum of two probabilities. By 

defining the implicitly given function 𝑝𝑝𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑟𝑟(𝑣𝑣𝐶𝐶∗) presented in section 4.3 as the solution to player 

𝐵𝐵’s maximization problem when player 𝐶𝐶 has scored, we get 

𝑝𝑝𝐵𝐵 = �1 −Φ�
𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝜎𝜎𝑋𝑋,𝐶𝐶

��𝑝𝑝𝐵𝐵′ + � 𝑟𝑟(𝑣𝑣𝐶𝐶∗)𝑔𝑔�𝑣𝑣𝐶𝐶∗�𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑑𝑑𝑣𝑣𝐶𝐶∗
∞

0

. 

For our numerical example the first term is 0.0868 (0.184 × 0.472), while the second term is 0.244. 

This means that 𝑝𝑝𝐵𝐵 = 0.331, a somewhat larger equilibrium win probability than we got for player 𝐶𝐶. 

4.6 The Equilibrium Win Probability of Player A 
 

Finally, the win equilibrium probability for player 𝐴𝐴 is given by 𝑝𝑝𝐴𝐴 = 1 − 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝐶𝐶. For our numerical 

example we get 𝑝𝑝𝐴𝐴 = 1 − 0.331− 0.317 = 0.352. Thus, there is a last mover advantage in this play.7  

The event that player 𝐴𝐴 is the winner can occur in four mutually exclusive ways as illustrated in Figure 

2, meaning that 𝑝𝑝𝐴𝐴 can be expressed as the sum of four probabilities. Therefore, even though all 

equilibrium probabilities are derived, for completeness, we split 𝑝𝑝𝐴𝐴 into these four different parts. 

First, 𝐴𝐴 is the winner if player 𝐶𝐶 and player 𝐵𝐵 both make a foul jump.  Denote the probability for that 

event by 𝑝𝑝0. We get 

𝑝𝑝0 = �1 −Φ�
𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝜎𝜎𝑋𝑋,𝐶𝐶

���1 −Φ�
𝛾𝛾𝐵𝐵′

𝜎𝜎𝑋𝑋,𝐵𝐵
��. 

Another possibility for player 𝐴𝐴 to win is that player 𝐶𝐶 makes a foul jump and player 𝐵𝐵 has a legal 

score no better than player 𝐴𝐴. The probability for that event to occur, denoted by 𝑝𝑝1, is  

𝑝𝑝1 = �1 −Φ�
𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝜎𝜎𝑋𝑋,𝐶𝐶

��� ℎ(𝑣𝑣𝐵𝐵∗ )𝑔𝑔(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵′ )𝑑𝑑𝑣𝑣𝐵𝐵∗
∞

0

. 

 
7 The equilibrium probabilities are quite robust to deviations from the chosen parameter values. For example, 
for different combinations of  𝜎𝜎𝑋𝑋 and 𝜎𝜎𝑌𝑌, where both parameters are in between 0.05 and 0.2, the equilibrium 
probabilities do not differ much from those presented in the text, at most less than 0.01 units for a single 
probability. The last mover advantage increases slightly with 𝜎𝜎𝑋𝑋, while there is a small decrease associated with 
a larger value of 𝜎𝜎𝑌𝑌. Using the results from the training sessions obtained in the study by Ladany et al. (1975), 
where 𝜎𝜎𝑋𝑋 = 0.075 and 𝜎𝜎𝑌𝑌 = .2044 yields 𝑝𝑝𝐴𝐴 = 0.325, 𝑝𝑝𝐵𝐵 = 0.333 and 𝑝𝑝𝐶𝐶 = 0.343, there still exists a last 
mover advantage. 
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A third possibility for player 𝐴𝐴 to win is that player 𝐵𝐵 makes a foul jump and player 𝐶𝐶 has a legal 

score no better than player 𝐴𝐴. We get, by denoting the probability for that event by 𝑝𝑝2, 

𝑝𝑝2 = �1 −Φ�
𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝜎𝜎𝑋𝑋,𝐵𝐵

��� ℎ(𝑣𝑣𝐶𝐶∗)𝑔𝑔�𝑣𝑣𝐶𝐶∗�𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑑𝑑𝑣𝑣𝐶𝐶∗
∞

0

. 

Finally, player 𝐴𝐴 wins if both player 𝐵𝐵 and player 𝐶𝐶 make legal jumps no longer than player 𝐴𝐴. The 

probability for that event, denoted by 𝑝𝑝3, is given by 

𝑝𝑝3 = � � ℎ(max(𝑣𝑣𝐶𝐶∗ , 𝑣𝑣𝐵𝐵∗ ))𝑔𝑔�𝑣𝑣𝐶𝐶∗�𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑔𝑔(𝑣𝑣𝐵𝐵∗ |𝛾𝛾𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

∞

0

∞

0

)𝑑𝑑𝑣𝑣𝐶𝐶∗𝑑𝑑𝑣𝑣𝐵𝐵∗ . 

For our example we get 𝑝𝑝0 = 0.025, 𝑝𝑝1 = 0.072, 𝑝𝑝2 = 0.065, and 𝑝𝑝3 = 0.190. 

 

4.7 The Importance of having a Low Variation in the Length of the Approach Run 
  
Apart from calculating equilibrium win probabilities, this modelling approach also enables us to 

examine the necessity in this type of tournament of having a well-adapted approach run, in terms of 

low variation in its length.  

To shed light on this issue, suppose that 𝜎𝜎𝑋𝑋,𝐴𝐴 is increased to 0.2, while 𝜎𝜎𝑋𝑋,𝐵𝐵 and 𝜎𝜎𝑋𝑋,𝐶𝐶 are kept to 0.1. 

This results in a drop of the equilibrium win probability for 𝐴𝐴 by 0.135 units, from 0.352 to 0.217. 

Not surprisingly we see an increase in the win probabilities for 𝐵𝐵 and C, from 0.331 and 0.317 to 

0.404 and 0.379, respectively. Corresponding changes of 𝜎𝜎𝑋𝑋,𝐵𝐵 and 𝜎𝜎𝑋𝑋,𝐶𝐶, one at the time, result in 

similar effects. 

The intuition behind this effect is that a player, with a high standard deviation in the length of the 

approach run, will compensate for this shortcoming by moving the distance marker backwards, so that 

the probability of a foul does not become too great. This action will inevitably result in a shorter 

expected legal jump. 

5. Discussion 
 

To what extent a long jumping competition has become more exciting after the introduction of a new 

tournament format is a not a matter of question in this study. Yet, the original design of The Final 

Three has features of a tournament with a play-off: after a series of rounds  ̶  in which competitors may 

perform very mixed results  ̶  the competitors’ achieved scores are compared, and the contestants with 
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the highest scores then battle for winning in a one-shot game. Unless the two first jumpers in the final 

have not fouled, the outcome of the final hinges on the last jump.  

The single decisive jump in the final can be said to amplify two features in a long jump competition. 

First, the one-shot round generates a more transparent strategic interaction between the athletes than 

was the case in the old tournament format, where winning the competition was conditioned on the 

competitor’s best achievement in six rounds. Second, athletes may experience more psychological 

pressure being aware of that they now only have one chance to beat a rival’s prior or conjectured 

performance. Pending access to larger datasets, covering results from long jumping competitions, we 

in this study leave the second issue on psychological pressure in long jumping finals. Instead, we have 

focused on the question what effect the sequential order of jumps has upon each athlete’s probability 

of winning the final. For this purpose, we first extend previous probability models on long jumping, 

e.g., Ladany (1987), by developing a stochastic model for the outcome in long jumping which captures 

the truncation of one of the underlying probability density functions. Assuming athletes having equal 

capacities, i.e., symmetric players, we make use of backward induction to analyze the subgame perfect 

equilibrium in this sequential game. Given the values we assigned to the distributional parameters, we 

find the equilibrium probabilities of winning the final when jumping first, second and last to be 0.317, 

0.331, and 0.352 respectively. Hence, the athlete who achieves the best score in the initial rounds prior 

to the final, will have a relatively small advantage over the other athletes of jumping last.  

In the light of the competitor’s small difference in favor of being the best jumper in five rounds, it is 

easy to understand the claim that this new tournament format is not as fair as the older tournament 

format. Since the advantage of jumping last in the final rests on an ordinal ranking of each 

competitor’s best achieved result from the earlier rounds, our relatively small, estimated reward of 

jumping last in the final may appear insufficient to compensate an athlete for having made an 

outstanding performance in one or in several of the five rounds prior to the final.  

However, it should be emphasized, that the sequential one-shot jumping in the final implicates that the 

component of strategic interaction is lifted out of the last jumper’s decision process. Unlike her 

competitors, whose optimal strategies are based on their prior information about the capacities of the 

subsequent jumper(s), the last jumper’s optimal choice - where to position her distance marker - does 

not require such information. Her decision problem will only be to maximize the probability to score 

at least a given distance. If her competitors’ priors are wrong, our derived result of the last jumper's 

probability of winning the final, likely forms a lower estimate of the probability to win. As indicated 

by our numerical analysis, small deviations from the optimal choice of the parameter γ  set by the 

other two finalists, e.g., due to misjudgments of the prior of the last jumper’s capacity, significantly 

reduce their probabilities of winning the final. 
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To facilitate our analysis, it is assumed that each athlete’s objective is to win the final, that is, we have 

not incorporated athletes’ placing considerations when formulating their strategies. It goes without 

saying, that the presence of prize money in long jumping competitions likely affects the athletes’ 

choice of strategies. In such case, an analysis would be based on modelling athletes’ expected utility 

and alternative attitudes towards risk, which is a challenge for future research.  

Our prediction of a last mover advantage in The Final Three rests on two effects. First, in case of a tie 

in the final, the best performance from the previous five rounds separates the athletes. Second, the 

athlete jumping last will, unlike her competitors, condition her jump solely on the other two finalists’ 

actual performance in the final. However, we have not separated the two effects in our analysis. 

Developing approaches to split up these two effects is a theme for further research.  

As mentioned in Section 1, The Final Three format has been revised as this paper is written and the 

new format is planned to be implemented in upcoming seasons. In its revised format, two major 

changes are to be seen.  It remains that only the top three jumpers after five rounds will get a sixth 

attempt, but a jumper’s achieved results from all her sixth jumps will be counted when distributing the 

medals among the three finalists. Also, the order in which the three remaining athletes jumps in the 

sixth round is redrawn, where the best-placed athlete after round five goes first, followed by the athlete 

placed second and third, respectively.  These changes are interesting, and they invite us to reflect on 

how they may affect fairness and excitement in the long jumping final.  

The first change – the inclusion of the best result from all sixth attempts when ranking the athletes - is 

likely motivated by fairness considerations. Increasing the number of attempts, will increase the 

probability that the jumper with the highest capacity wins the final. The change also places less 

emphasis on the importance of strategic behavior in the final, i.e., the positioning of the distance 

marker. Given the achieved score after the initial five rounds, the athlete’s objective in her last attempt 

will now be trying to improve her standing score rather than to avoid making a foul and – which was 

the case in the original Final Three - facing the risk of ending up at third place. In other words, the 

expected distance from the take-off foot to the foul-line is likely to be smaller for the finalists in this 

revised form of The Final Three than was the case in its previous form. Hence, in addition to a down-

size of the strategic part, this change also comes with an expectation of an increasing number of 

extraordinary results in the final round, albeit at the prize of more fouls.  

The second change – reversing the order of the jumps of the three finalists – is a natural consequence 

of the first change, bringing excitement to the final. Letting the third placed jumper from the five 

initial attempts to jump last in the sixth attempt, will keep the uncertainty of the distribution of the 

medals to the very last jump in the competition. It is true that there may exist an advantage of jumping 

last also in the revised form of The Final Three, which thus would harm fairness. However, in the light 

of the results we have obtained in this work on equilibrium probabilities to win The Final Three, as it 
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originally was designed, the reduction in fairness, due to the reversed order of jumps, seems to be a 

low price to pay to maintain the excitement throughout the competition. 
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