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Abstract 
In this paper, we analyse Okun’s law – a relation between the change in the unemployment 

rate and GDP growth – using data from Australia, the euro area, the United Kingdom and 

the United States. More specifically, we assess the relevance of non-Gaussianity when mod-

elling the relation. This is done in a Bayesian VAR framework with stochastic volatility 

where we allow the different models’ error distributions to have heavier-than-Gaussian tails 

and skewness. Our results indicate that accounting for heavy tails yields improvements over 

a Gaussian specification in some cases, whereas skewness appears less fruitful. In terms of 

dynamic effects, a shock to GDP growth has robustly negative effects on the change in the 

unemployment rate in all four economies. 
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1. Introduction 
 

Okun’s law is a key macroeconomic relation which has become a popular tool for analysis 

and forecasting since its introduction almost sixty years ago (Okun, 1962). Typically relating 

the change in the unemployment rate to GDP growth,1 a fairly large literature has analysed 

various aspects of it, such as its stability over time, its forecasting properties or its validity 

in different countries; see, for example, Knotek (2007), IMF (2010), Meyer and Tasci (2012), 

Owyang and Sekhposyan (2012), Rülke (2012), Zanin and Marra (2012), Huang and Yeh 

(2013), Valadkhani (2015), Economou och Psarianos (2016), Ball et al. (2017), Grant 

(2018), An et al. (2019), Ball et al. (2019) and Karlsson and Österholm (2020) for some 

fairly recent contributions. Conclusions regarding the properties of the relation differ some-

what depending on the country and period studied, but Ball et al. (2017, p. 1439) neverthe-

less suggest that Okun’s law “… is strong and stable by the standards of macroeconomics”. 

 

In this paper, we extend the literature on Okun’s law by investigating the importance of non-

Gaussianity when modelling the relationship between the change in unemployment rate and 

GDP growth. We consider two aspects of non-Gaussianity. The first of these is heavy tails 

(or “fat tails”) – an issue that takes its starting point in the observation that many economic 

variables seem to experience large swings more frequently than what one would expect if 

the shocks hitting the economy are drawn from a Gaussian distribution; see, for example, 

Fagiolo et al. (2008), Ascari et al. (2015), Cross and Poon (2016), Liu (2019) and Kiss and 

Österholm (2020). The second aspect is that the unconditional distribution of many variables 

appears to be characterised by skewness. Particular interest has often been paid to GDP 

growth with respect to this issue; see, for example, Neftci (1984), Acemoglu and Scott 

(1997) and Bekaert and Popov (2019). The topic of non-Gaussianity appears to have gained 

interest over time. This is perhaps not surprising in light of recent historical events; we have, 

for instance, seen both the Global Financial Crisis and the crisis associated with the corona 

pandemic in less than fifteen years. 

 

 

1 Another way to specify the relation is to connect the unemployment rate (or unemployment gap) to the output gap. 
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Heavy tails and/or skewness in the data can be caused by the disturbances of the model 

having these properties.2 Using data from Australia, the euro area, the United Kingdom and 

the Unites States, we assess the relevance of such non-Gaussianity. This is done by estimat-

ing bivariate Bayesian VAR models with stochastic volatility under three different assump-

tions regarding the error distributions: i) Gaussian, ii) Student’s t and iii) generalized hyper-

bolic skew Student’s t, also known as skew-t; see McNeil et al. (2015). Our econometric 

setting – which has been recently developed by Karlsson et al. (2021) – allows us to conduct 

formal model comparison based on the marginal likelihoods of the estimated models. We 

can accordingly make statements regarding how well the different models fit the data based 

on formal statistical criteria. By conducting this analysis, we contribute to the literature in 

two distinct ways. First, we make a general contribution concerning the importance of non-

Gaussianity when it comes to macroeconomic modelling. Second, we provide international 

empirical evidence concerning Okun’s law in a state-of-the-art econometric setting.  

 

Our main results are the following: We find that the unconditional distributions of both var-

iables for all four economies exhibit non-Gaussianity. Our main analysis is conducted using 

quarterly data up until 2019Q4, that is, we do not include data from the corona pandemic. 

The estimated models using these data suggest that allowing for error terms with heavy tails 

yields substantial improvements over a Gaussian specification for Australia and the euro 

area. Also for the United States is a t-distribution the preferred specification, but its benefits 

relative to a Gaussian distribution are minor judging by the marginal likelihoods of the esti-

mated models. For the United Kingdom, the specification with Gaussian error terms is the 

preferred specification. In no case is the model with skew-t error terms supported by the data 

and we conclude that modelling skewness appears less fruitful in this context. As a sensitiv-

ity analysis, we also estimate our models with data up until 2021Q2 to see how the large 

swings associated with the corona crisis affect our results. Results from this exercise indicate 

– not surprisingly – that support for non-Gaussianity strengthens when these observations 

are added. Regarding the dynamic relationship between the variables, we find – regardless 

 

2 Alternatively, time variation in the second moment also can result in heavier than normal tails in the unconditional distri-
bution of the variables, even if error terms are Gaussian. We account for this effect by estimating models with stochastic 
volatility. 
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of which period we study – that Okun’s law prevails: A shock to GDP growth has robustly 

negative effects on the change in the unemployment rate in all four economies. 

 

The rest of this paper is organised as follows: In Section 2, we describe the data we use in 

our analysis. The econometric framework is described in Section 3. We present our results 

in Section 4; in addition to our main results, we also provide sensitivity analysis where we 

include the period of the corona pandemic. Finally, Section 5 concludes. 

2. Data 
 

The samples we use for the four economies vary with respect to their starting point due to 

availability of data, but all have the same end date. In our main analysis, the samples are 

1978Q3-2019Q4 for Australia, 1995Q2-2019Q4 for the euro area, 1971Q3-2019Q4 for the 

United Kingdom and 1948Q2-2019Q4 for the United States. We do not include data from 

2020 and later since the corona pandemic induced movements in the variables which were 

so large that they maybe should be considered outliers. This is illustrated in Figure 1 which 

shows time series of GDP growth (𝑔𝑔𝑡𝑡) and the change in the unemployment rate (Δ𝑢𝑢𝑡𝑡).3 As 

can be seen, particularly the swings in GDP growth associated with the corona pandemic 

were of a magnitude which had never been seen before in the samples considered here. This 

is also the case for the change in the unemployment rate in the United States. However, for 

Australia, the euro area and the United Kingdom, the change in the unemployment rate was 

obviously large but not extreme by historical standards. We assess the importance of exclud-

ing the corona-related observations in a sensitivity analysis in Section 4.2. 

 

In order to assess potential non-Gaussianity of the data, we present some key descriptive 

statistics in Table 1. We also show histograms which illustrate the unconditional distribu-

tions of the variables in Figure A1 in the Appendix. The unconditional distribution of the 

variables is in all cases associated with excess kurtosis. Regarding skewness, this seems 

fairly modest for GDP growth; it is negative in three out of four economies but for both 

Australia and the United States, it is quite close to zero. Turning to the skewness of the 

 

3 GDP growth is given as the percentage change in seasonally adjusted real GDP from the previous quarter. The change in 
the seasonally adjusted harmonized unemployment rate is given in percentage points. 
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change in the unemployment rate, this is found to be positive and more substantial in all four 

economies. The Jarque-Bera test strongly rejects normality in all cases. This provides an 

initial indication that a departure from a Gaussian distribution might prove useful when mod-

elling the Okun’s law relationship empirically. 

Figure 1. Data. 

 

Note:  Percent on vertical axis for GDP growth. Percentage points on vertical axis for the change in the unemployment rate. Vertical green 
dashed line indicates the end of the sample for our main analysis. 
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Table 1. Descriptive statistics and Jarque-Bera test statistics. 

  Mean Standard 
deviation 

Skewness Excess 
kurtosis 

Jarque- 
Bera 

Start End 

Australia 𝑔𝑔𝑡𝑡 0.773 0.751 -0.053 1.151 10.060 1978Q3 2019Q4 
 Δ𝑢𝑢𝑡𝑡 -0.007 0.300 1.645 6.219 353.491 1978Q3 2019Q4 
Euro area 𝑔𝑔𝑡𝑡 0.423 0.602 -0.563 8.673 333.042 1995Q2 2019Q4 
 Δ𝑢𝑢𝑡𝑡 -0.034 0.213 1.343 3.128 74.351 1995Q2 2019Q4 
United Kingdom 𝑔𝑔𝑡𝑡 0.539 0.893 0.265 5.611 264.928 1971Q3 2019Q4 
 Δ𝑢𝑢𝑡𝑡 -0.001 0.256 0.881 1.545 45.976 1971Q3 2019Q4 
United States 𝑔𝑔𝑡𝑡 0.781 0.936 -0.017 1.602 31.968 1948Q2 2019Q4 
 Δ𝑢𝑢𝑡𝑡 -0.000 0.381 1.256 3.311 210.846 1948Q2 2019Q4 

 
Note: 𝑔𝑔𝑡𝑡 is GDP growth. Δ𝑢𝑢𝑡𝑡 is the change in the unemployment rate. The critical value at the five percent level of the Jarque-
Bera test is 5.99.  

3. Econometric framework 
 

We rely on bivariate Bayesian VAR(1) models with stochastic volatility for our analysis of 

Okun’s law.4,5 In that sense, our analysis is closely related to Karlsson and Österholm’s (2020) 

analysis on US data. Unlike Karlsson and Österholm though, we do not allow for time-variation 

in parameters and, importantly, we have flexible error term distributions that allow for heavy 

tails and skewness. Denoting 𝒚𝒚𝑡𝑡 = (𝑔𝑔𝑡𝑡,Δ𝑢𝑢𝑡𝑡)′ for 𝑡𝑡 = 1, … ,𝑇𝑇, we have 

 

𝒚𝒚𝑡𝑡 = 𝒄𝒄 + 𝑩𝑩𝒚𝒚𝑡𝑡−1 + 𝒆𝒆𝑡𝑡,     (1) 

 

where 𝒄𝒄 is a vector of intercepts and 𝑩𝑩 includes the regression coefficients of the VAR. The 

error term 𝒆𝒆𝑡𝑡 follows a multivariate skew-t distribution with the following stochastic represen-

tation, 

 

𝒆𝒆𝑡𝑡 = 𝒘𝒘𝑡𝑡𝜸𝜸 + 𝒘𝒘𝑡𝑡
1/2𝑨𝑨−1𝑯𝑯𝑡𝑡

1/2𝜺𝜺𝑡𝑡,    (2) 

 

where the lower triangular matrix 𝑨𝑨 with unit diagonal contains the structural parameters of the 

VAR model and 𝒘𝒘𝑡𝑡 is a scalar independent mixing variable drawn from an inverse-gamma 

 

4 Lag length was determined by employing the Schwarz (1978) information criterion to VARs with homoscedastic and Gauss-
ian disturbances, estimated with maximum likelihood. For all four economies, a lag length of one was found optimal. 
5 We use models with stochastic volatility since heteroskedasticity has been shown to be a relevant feature when modelling 
macroeconomic time series. In a VAR setting, important early contributions include Cogley and Sargent (2005) and Primiceri 
(2005). Recently Karlsson and Österholm (2020) pointed out that models with constant shock volatility had substantially lower 
marginal likelihood than models with stochastic volatility when modelling Okun’s law in the United States. 
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distribution with identical scale and shape parameters equal to 𝜈𝜈
2
, where 𝜈𝜈 is the degree of free-

dom; 𝜸𝜸 is the vector of skewness parameters and 𝜺𝜺𝑡𝑡~𝑁𝑁(𝟎𝟎, 𝑰𝑰). The matrix 𝑯𝑯𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(ℎ1𝑡𝑡,ℎ2𝑡𝑡) 

contains the stochastic volatilities of the variables, whose time series evolution is described as 

 

log(ℎ𝑖𝑖𝑖𝑖) = log(ℎ𝑖𝑖𝑖𝑖−1) + 𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖 ,    (3) 

 

for 𝑖𝑖 = 1,2 with 𝜎𝜎𝑖𝑖 > 0 and  𝜂𝜂𝑖𝑖𝑖𝑖~𝑁𝑁(0,1). Finally, 𝒘𝒘𝑡𝑡, 𝑯𝑯𝑡𝑡 and 𝜺𝜺𝑡𝑡 are mutually independent. The 

distribution in (2) allows for both leptokurtic and skewed distributions even after filtering out 

stochastic volatility. While the mixing variable 𝒘𝒘𝑡𝑡 captures the high frequency shock in mean 

and variance, the stochastic volatility accounts for the low frequency shocks.  

 

Our proposed specification nests several important models as special cases. Setting 𝜸𝜸 = 0, we 

get the Bayesian VAR model with stochastic volatility and Student’s t-distributed error terms 

proposed by Ni and Sun (2005), which has been a workhorse used in empirical modelling of 

heavy-tailed error terms in the Bayesian VAR context; see, for example, Cross and Poon (2016), 

Chiu et al. (2017), Chan (2020) and Carriero et al. (2021). The Gaussian distribution is also 

nested in this specification (𝜸𝜸 = 0, 𝜈𝜈 → ∞). We accordingly consider three BVAR models with 

stochastic volatility for each of the economies: the benchmark Gaussian, the Student’s t and the 

skew-t.  

 

Bayesian estimation requires specifying prior distributions for the parameters. We use a diffuse 

normal prior (with zero mean and variances 10) for the elements of the lower triangular matrix 

A. We impose a Minnesota prior for the regression coefficients (𝒄𝒄  and 𝑩𝑩) with overall shrinkage 

𝑙𝑙1 = 0.2 and cross-variable shrinkage 𝑙𝑙2 = 0.5 (Koop and Korobilis, 2010). The priors for the 

rest of the parameters are given by 𝜈𝜈~𝒢𝒢(2,0.1), 𝛾𝛾𝑖𝑖~𝑁𝑁(0,1) for 𝑖𝑖 = 1,2, and 𝜎𝜎𝑖𝑖2~𝒢𝒢(0.5,0.5), 

where 𝒢𝒢(𝑎𝑎, 𝑏𝑏) is a gamma distribution with shape and rate parameters 𝑎𝑎 and 𝑏𝑏 (Kastner and 

Frühwirth-Schnatter, 2014). 

 

As the error term is written in terms of a variance-mean mixture distribution, it is straightfor-

ward to make inference on the model parameters based on the Gibbs sampler of the VAR model 

with Gaussian stochastic volatility. For example, conditional on 𝒘𝒘𝑡𝑡 for 𝑡𝑡 = 1, … ,𝑇𝑇, the condi-

tional posteriors of parameters (𝒄𝒄, 𝑩𝑩,𝜸𝜸,𝑨𝑨,σ𝟐𝟐) are conjugate with the prior distribution (Clark, 
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2011). We sample the mixing variable 𝒘𝒘𝑡𝑡 based on the generalized inverse Gaussian distribu-

tion and sample the degrees of freedom 𝜈𝜈 based on a random walk Metropolis Hastings (Karls-

son et al., 2021). 

 

In order to compare different specifications of the VAR model with stochastic volatility, we 

calculate the marginal likelihood based on the cross-entropy method of Chan and Eisenstat 

(2018). The marginal likelihood provides us with a measure of how well the model and the 

priors agree with the data, where the model with the highest marginal likelihood is the one 

preferred by the data. The marginal likelihood requires a high dimensional integration over the 

fixed parameters θ = (𝒄𝒄, 𝑩𝑩,𝜸𝜸,𝑨𝑨,σ𝟐𝟐,ν) and the latent states ϕ = (𝒉𝒉𝟏𝟏:𝑻𝑻), 

𝑝𝑝(𝒚𝒚1:𝑇𝑇) = �𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝜽𝜽) 𝑝𝑝(𝜽𝜽)𝑑𝑑𝜽𝜽 ≈  �
𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝜽𝜽) 𝑝𝑝(𝜽𝜽)

𝑓𝑓(𝜽𝜽) , 

𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝜽𝜽) = �𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝝋𝝋,𝜽𝜽) 𝑝𝑝(𝝋𝝋 |𝜽𝜽) 𝑑𝑑𝝋𝝋 ≈�
𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝝋𝝋,𝜽𝜽) 𝑝𝑝(𝝋𝝋 |𝜽𝜽)

𝑔𝑔(ϕ)
.  

Following Chan and Eisenstat (2018), we use a two-stage importance sampling to calculate the 

marginal likelihood. In the first stage, we use the cross-entropy method to learn the proposal 

distribution of the fixed parameters 𝑓𝑓(𝜽𝜽) based on the posterior samples. Then, we obtain N = 

20,000 proposal samples from 𝑓𝑓(𝜽𝜽) and calculate the integrated likelihood 𝑝𝑝(𝒚𝒚1:𝑇𝑇| 𝜽𝜽) for each 

sample of 𝜽𝜽 based on an inner importance sampling loop. The proposal distribution of the latent 

states g(ϕ) is based on a sparse matrix representation. For further details concerning posterior 

inference and marginal likelihood calculations, see Karlsson et al. (2021) 

4. Results 
 

We initially present results based on our main sample, that is, where the last observation of each 

sample is 2019Q4. In Section 4.2, we present sensitivity analysis related to the highly volatile 

period associated with the corona pandemic. 

 
4.1 Main results 

 

The log marginal likelihoods of the estimated models are presented in Table 2 together with 

posterior means of the degrees of freedom and skewness parameters. 
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Table 2. Log marginal likelihoods and estimated key parameters. 
 Gaussian Student’s t Skew-t 

Australia -170.39  -168.04  -171.01  
ν - 14.61  24.92 
𝜸𝜸𝒈𝒈 - - 0.18 
𝜸𝜸∆𝒖𝒖 - - 0.15 

    
Euro area -5.17  -0.40  -2.71  

ν - 11.12  22.09 
𝜸𝜸𝒈𝒈 - - 0.35 
𝜸𝜸∆𝒖𝒖 - - 0.04 

    
United Kingdom -85.90  -86.20  -89.43  

ν - 29.03 38.05 
𝜸𝜸𝒈𝒈 - - 0.170 
𝜸𝜸∆𝒖𝒖 - - -0.02 

    
United States -317.58  -317.31  -319.08  

ν - 26.67 32.76 
𝜸𝜸𝒈𝒈 - - -0.07 
𝜸𝜸∆𝒖𝒖 - - 0.13 
    

 
Note: Last observation of each sample is 2019Q4. Log marginal likelihoods are calculated using the cross-entropy methods by 
Chan and Eisenstat (2018). ν is the degrees of freedom. 𝜸𝜸𝒈𝒈 and 𝜸𝜸∆𝒖𝒖 are skewness parameters for GDP growth and the change 
in the unemployment rate respectively. 
 

The log marginal likelihoods suggest that it is beneficial to take heavy tails into account for 

Australia, the euro area and the United States. For Australia, the support for the Student’s t-

distribution is “positive” against both other models when we use the scale of two times the 

difference in the log marginal likelihood and the terminology of Kass and Raftery (1995, p. 

777). For the euro area, the support for the Student’s t-distribution is “positive” against the 

skew-t distribution and “strong” against the Gaussian. For the Unites States, the support for the 

Student’s t-distribution is “not worth more than a bare mention” when compared to the Gauss-

ian and “positive” against the skew-t. Turning to the United Kingdom, we find that the Gaussian 

model is preferred. The support for it is “not worth more than a bare mention” though when 

compared to the t-distribution and “positive” relative to the skew-t. 

 

These results are also reflected in the estimates of the parameters which describe the shapes of 

the distributions. For the models with a Student’s t-distribution, the estimated degrees of free-

dom is relatively low for Australia (14.61) and the Euro-area (11.12) signalling modestly heavy 

tails for the distribution of the error terms. For the United Kingdom and the United States, the 

estimated degrees of freedom are substantially higher (29.03 and 26.67, respectively). With 

such high degrees of freedom, the distribution of the error terms is empirically indistinguishable 

from the Gaussian, which is also reflected in the results for the log marginal likelihoods. In case 
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of the skew-t models, the degrees of freedom parameters are higher for all four economies, 

hence distributions become less heavy-tailed. It suggests that the allowing for asymmetry helps 

capture some of the larger movements in the variables. Looking at the asymmetry parameter 𝜸𝜸, 

we see a positive skewness in most variables; the only exceptions are the change in the unem-

ployment rate for the United Kingdom and GDP growth for the United States, where the esti-

mated skewness of the error terms is negative. Overall though, the estimates of the asymmetry 

parameter are small in magnitude. Hence, the evidence in favour of allowing for skewness is 

weak.  

 

We conclude that it seems reasonable to rely on a Student’s t-distribution when modelling Aus-

tralia and the euro area. For the United Kingdom and the United States, both the Gaussian and 

Student’s t-distribution seem like acceptable choices.  

 

Having focused on the question of error distributions so far, we next attract our attention to a 

key aspect of Okun’s law in this framework, namely how the change in the unemployment rate 

responds to an unexpected increase in GDP growth. These impulse-response functions are pre-

sented in Figure 2. For consistency – and comparability – we have used the model based on 

Student’s t-distributed errors for all four economies when conducting this analysis (even though 

it was not the best model for the United Kingdom). 

 

As can be seen, the response is negative contemporaneously, and remains negative (or zero) 

over the entire ten-quarter horizon, in all four economies. We note though that the effect of the 

shock appears somewhat longer lasting in the euro area and the United Kingdom. In light of 

higher GDP growth than expected, we would accordingly revise our forecast of the unemploy-

ment rate downwards. This is in line with our expectations given previous research on Okun’s 

law. 

 

Figure 2 does not give any indication regarding the uncertainty associated with the impulse-

response functions. In order to illustrate this, we show the impulse-response functions for all 

economies at 2019Q4 together with the 90 percent credible interval in Figure 3. At short hori-

zons, the interval does in no case cover the zero line and we conclude that there is indeed a 

negative effect on the change in the unemployment rate from a shock to GDP growth. 
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Figure 2. Impulse-response functions. Response of change in the unemployment rate to a shock to GDP growth. 
 

Australia Euro area 

  
United Kingdom United States 

  
 

Note: The impulse response functions are based on the model with Student’s t-distributed errors. Percentage points on the 
vertical axis. Horizon is given in quarters on the horizontal axes. 
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Figure 3. Impulse-response functions at 2019Q4. Response of change in the unemployment rate to a shock to 
GDP growth. 

 
Note: The impulse response functions are based on the model with Student’s t-distributed errors. Percentage points on the 
vertical axis. Horizon is given in quarters on the horizontal axes. Coloured band gives 90 percent credible interval. 

 

Returning to Figure 2, it is striking how the magnitude of the impulse response changes con-

siderably over the sample period. Since the regression parameters of the model are constant, 

these changes are solely attributed to stochastic volatility. Since this is another important feature 

of the employed modelling framework, we present the posterior mean of the time-varying var-

iance of the shocks to both variables in Figure 4. In order to illustrate the difference between a 

Gaussian and a Student’s t-distribution, we provide the estimated variances under both assump-

tions. 
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Figure 4. Variance estimates from VAR models.  

 
 

Note:  The red solid line gives the volatility under the assumption of a Student’s t-distribution with the coloured bands showing 
the 50 percent credible interval. The black dashed line gives the volatility under the assumption of a Gaussian distribution.  

 

Regarding the time-varying variances, the patterns obviously differ across economies and var-

iables. However, some features tend to be common. For example, except for Australian GDP 

growth, there is an increase in volatility around the Global Financial Crisis in 2008. From a 

modelling perspective, we also note that there is substantial time variation in the estimates of 
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the variances. This shows that it is relevant to use models which account for heteroskedasticity, 

such as the models employed here. 

 

The variance estimates based on a Gaussian and a Student’s t-distribution show overall similar 

patterns, but substantial differences can also be observed in some cases. For example, under the 

assumption of a Student’s t-distribution the variance of the change in the unemployment rate in 

Australia is clearly smoother, and the overall level of the variance is lower in the euro area. 

Further, the spikes in output growth volatility in crisis periods are more pronounced in the euro 

area if we use Gaussian error terms. This latter observation can be attributed to the fact that, in 

the absence of flexible error distributions, the effect of larger swings in the variables appears 

through increased volatility. However, in line with what we would expect based on the results 

presented in Table 1, we can also see that some differences are minor. For the United Kingdom 

and the United States – where the marginal likelihoods of the two models were quite similar 

and the estimated degrees of freedom of the Student’s t-distribution high for both variables – 

estimated volatilities are similar for both GDP growth and the change in the unemployment 

rate. 

 

4.2 Sensitivity analysis 

 

Our results so far indicate that for some economies, there might be improvements to be made 

when it comes to modelling Okun’s law if error terms are assumed to be drawn from a Student’s 

t-distribution. However, our analysis has been based on a sample which excludes the corona 

pandemic and the economic crisis and recovery which followed it. As pointed out in Section 2, 

the swings in the variables associated with this period were very large – so large that they per-

haps should be considered outliers. These issues associated with modelling the corona pan-

demic have recently been discussed in the literature; see for example Bobeica and Hartwig 

(2021), Carriero et al. (2021) and Hartwig (2021). Seeing that these data are something that 

empirical macroeconomists will have to handle in the future, we next assess the effects that 

they have in the context of the analysis in this paper. 

 

In Table 3, we first provide descriptive statistics and results from the Jarque-Bera test for nor-

mality. The effects of the large movements in the variables around the corona pandemic affect 

higher order moments of the unconditional distribution. The standard deviation of the variables 
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increases somewhat compared to the baseline results in Table 1. A negative skewness of GDP 

growth and a positive skewness of the change in the unemployment rate also become salient 

features of the data in all economies (although skewness is overall modest in these variables). 

The most striking difference compared to the baseline sample, which excludes the corona ob-

servations, is found in the excess kurtosis of the variables which shoots up by including obser-

vations from 2020 and 2021. The increase is most striking for GDP growth in all economies 

and the change in the unemployment rate in the United States, in which cases excess kurtosis 

becomes six to ten times larger. 

Table 3. Descriptive statistics and Jarque-Bera test statistics – sample including corona pandemic. 

  Mean Standard 
deviation 

Skewness Excess 
kurtosis 

Jarque-Bera Start End 

Australia 𝑔𝑔𝑡𝑡 0.757 0.994 -2.518 20.170 3179.736 1978Q3 2021Q2 
 Δ𝑢𝑢𝑡𝑡 -0.006 0.334 1.724 6.935 442.994 1978Q3 2021Q2 
Euro area 𝑔𝑔𝑡𝑡 0.388 1.833 -0.014 33.988 5268.788 1995Q2 2021Q2 
 Δ𝑢𝑢𝑡𝑡 -0.027 0.231 1.590 3.899 116.631 1995Q2 2021Q2 
United Kingdom 𝑔𝑔𝑡𝑡 0.525 2.106 -1.684 59.661 30388.72 1971Q3 2021Q2 
 Δ𝑢𝑢𝑡𝑡 0.003 0.258 0.854 1.359 41.093 1971Q3 2021Q2 
United States 𝑔𝑔𝑡𝑡 0.770 1.165 -1.310 19.262 4686.325 1948Q2 2021Q2 
 Δ𝑢𝑢𝑡𝑡 0.008 0.717 6.712 96.729 118071.7 1948Q2 2021Q2 

 
Note: 𝑔𝑔𝑡𝑡 is GDP growth. Δ𝑢𝑢𝑡𝑡 is the change in the unemployment rate. The critical value at the five percent level of the Jarque-
Bera test is 5.99.  
 

Estimation results are also impacted by the strong increase in excess kurtosis. In Table 4, we 

present the log marginal likelihoods and estimated key parameters from the models when rely-

ing on the sample including the observations during the corona pandemic, that is, up until 

2021Q2. Considering the log marginal likelihoods first, it can be seen that the Student’s t-dis-

tribution is preferred in three cases, namely for Australia, the United Kingdom and the United 

States. The strength of the evidence varies though; comparing to the Gaussian model, we find 

that it is “very strong” for Australia and the Unites States but “not worth more than a bare 

mention” for the United Kingdom. For the euro area, the skew-t model is now the preferred one 

and the support in favour of it is “very strong” and “strong” when compared to the models 

assuming a Gaussian and a Student’s t-distribution respectively. As a general tendency, we see 

that the skew-t model is doing much better in this sample; while it is the preferred model only 

for the euro area, one should recall that for the sample excluding the corona pandemic, it is 

always the worst model (see Table 1). Not surprisingly, we also see that the support for the 

Gaussian model declines when using the sample including the corona pandemic. 
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Table 4. Log marginal likelihoods and estimated key parameters – sample including corona pandemic. 
 Gaussian Student’s t Skew-t 

Australia -213.20  -206.29  -210.59  
ν - 5.35  23.86 
𝜸𝜸𝒈𝒈 - - 0.72  
𝜸𝜸∆𝒖𝒖 - - 0.18 

    
Euro area -48.79  -46.71  -42.96  
ν - 15.84  29.09 
𝜸𝜸𝒈𝒈 - - -0.94 
𝜸𝜸∆𝒖𝒖 - - 0.24 

    
United Kingdom -135.24  -135.17  -136.01  
ν - 23.94  33.85 
𝜸𝜸𝒈𝒈 - - 0.48 
𝜸𝜸∆𝒖𝒖 - - -0.09 

    
United States -399.62  -380.73  -387.45  
ν - 3.92 4.31 
𝜸𝜸𝒈𝒈 - - -0.02 
𝜸𝜸∆𝒖𝒖 - - 0.02 

    
 
Note: Last observation of each sample is 2019Q4. Log marginal likelihoods are calculated using the cross-entropy methods by 
Chan and Eisenstat (2018). ν is the degrees of freedom. 𝜸𝜸𝒈𝒈 and 𝜸𝜸∆𝒖𝒖 are skewness parameters for GDP growth and the change 
in the unemployment rate respectively. 
 

Turning to the estimated degrees of freedom and skewness parameters, we also see an effect of 

the pandemic observations. The degrees of freedom radically decrease for Australia and the 

United States if one considers the model with Student’s t-distribution. Interestingly, for the 

United States it remains low (signalling very heavy tails) even when allowing for skewness. In 

contrast, allowing for skewness in the case of Australia helps capturing large movements as the 

degrees of freedom parameter jumps up for the skew-t specification. For the other two econo-

mies, the estimated degrees of freedom do not change substantially. The skewness parameters 

for each country also change somewhat (they tend to increase) but they retain the same sign as 

in the baseline sample. The only exception is the skewness of GDP growth in the euro area 

where the sign of the skewness parameter switches from positive to negative.  

 
Another way of illustrating the influence of the observations associated with the corona pan-

demic is by looking at the posterior distribution of the estimated degrees of freedom. This is 

shown in Figure 5. First, we can note that the posterior distributions in the euro area and the 

United Kingdom change only slightly. For the euro area, the sample including corona actually 

puts somewhat more weight on higher values of degrees of freedom, that is, the tails become 

less heavy. The changes are more drastic for Australia and the United States though, where the 
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posterior distribution becomes heavily concentrated at low values (which is also reflected in the 

radically decreased point estimate which is taken to be the posterior mean). 
 

Figure 5. Posterior distributions of the estimated degrees of freedom – samples including and excluding the corona 

pandemic. 

 
Note: The blue density gives the degrees of freedom based on data which do not include the corona pandemic, that is, the 
samples end in 2019Q4. The yellow density gives the degrees of freedom based on data which do include the corona pandemic, 
that is, the samples end in 2021Q2. All densities are based on the model with Student’s t-distributed error terms. 

 

As we established above, including the corona pandemic has implications for which model is 

preferred by the data. It also tends to affect the estimated volatilities of the models in a substan-

tial manner, particularly near the end of the sample. Figure 6 shows the estimated log volatilities 

from the models. We see that in most cases there is a sharp jump in volatility, during 2020 and 

2021, often reaching previously unprecedented levels. Note however, that using our baseline 

sample ending in 2019, the volatility estimates were on a stable low level or slightly on the way 

down in most cases, signalling tranquil times. This drastically changes when the observations 

from 2020 and 2021 are included: Not only does the volatility spike during these latter years, 

but in order to match the high volatility during the crisis associated with the corona pandemic, 

volatility is also on the rise even a few years before that during the second half of the 2010s. 

Furthermore, for the United States – where the evidence on heavy tails is also the strongest in 

the longer sample – we also see that using the Student’s t-distribution allows the model to cap-

ture the large movements around the end of the sample. Using a non-Gaussian specification 
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allows stochastic volatility for both the change in unemployment rate and GDP growth to re-

main at a modest level (in contrast to the large upward jump in the Gaussian case). A similar 

effect can be observed for Australia regarding the change in unemployment rate. The volatility 

estimates for the euro area and the United Kingdom are almost identical regardless of the dis-

tributional assumption, which is in line with the fact that the Student’s t-distribution is less 

useful for these economies. 

 

Finally, we also look at the impulse-response functions of the change in the unemployment rate 

to a shock to GDP growth; for comparability with the main specification, we continue to use 

the model based on a Student’s t-distribution. We present the impulse-response functions at 

2021Q2, that is, the end of the extended sample. These are given in Figure 7. The shape of the 

impulse responses remains similar to the ones reported in Figure 3. We still find that all the 

impulse responses start in the negative region and remain significantly negative for several 

quarters. It can be noted though that the magnitudes are quite different to those in Figure 3. This 

is of course only to be expected given the much higher volatility in 2021Q2. 
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Figure 6. Log volatility estimates from VAR models – samples including and excluding the corona pandemic.  

 
 

Note: The red (blue) solid line gives the logarithm of the volatility of the variables using a model with Gaussian (Student’s t) error terms 
up to 2021Q2, that is, including the pandemic period. The orange (green) dashed line gives the logarithm of the volatility of the variables 
using a model with Gaussian (Student’s t) error terms up to 2019Q4, that is, excluding the pandemic period. 

 



20 

 

Figure 7. Impulse-response functions at 2021Q2. Response of change in the unemployment rate to a shock to 
GDP growth – sample including corona pandemic.  

 
 

Note: The impulse response functions are based on the model with Student’s t-distributed errors. Percentage points on the 
vertical axis. Horizon is given in quarters on the horizontal axes. Coloured band gives 90 percent credible interval. 

 

Summing up this sensitivity analysis, we conclude that including the corona pandemic has non-

negligible effects on the results. The large swings in the variables during this time generally 

result in stronger evidence against Gaussianity. This is supported by the radically decreasing 

degrees of freedom for the distribution of the error terms for Australia and the United States, 

and the fact that models with non-Gaussian error terms (either with Student-t or Skew-t distri-

bution) become the preferred model based on log marginal likelihoods in all four economies. 

The cases of Australia and the United States also highlight that accounting for heavier tails in 

the error terms also helps avoiding large jumps in stochastic volatility. 
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5. Conclusion 

 

In this paper, we have analysed the relevance of taking non-Gaussianity into account when 

empirically modelling Okun’s law in Australia, the euro area, the United Kingdom and the 

United States. Our results based on Bayesian VAR models with stochastic volatility suggest 

that heavier-than-Gaussian tails find support in some cases. Taking skewness into account is, 

however, less beneficial in this context considering our baseline sample. Our results confirm 

that it is important to account for heavy tails in the distribution of macroeconomic variables, an 

argument put forward by Fagiolo et al. (2008) and Ascari et al. (2015) among others.  

 

It should be noted though that our results to some extent depend on whether data from the 

corona pandemic are included or not. We believe that including them might be problematic 

since they should probably be treated as outliers (see the discussion in Carriero et al., 2021). If 

they nevertheless are treated as regular observations, our analysis indicates that the evidence of 

non-Gaussianity strengthens. In addition, it can be noted that accounting for non-Gaussianity 

not only improves the model fit in several cases but it also captures the large swings in the 

variables without causing large swings in the stochastic volatility. 

 

Apart from the modelling perspective, our analysis has also provided updated international em-

pirical evidence concerning Okun’s law. We find that the dynamic relationship between the 

variables in all four economies is such that a shock to GDP growth has robustly negative effects 

on the change in the unemployment rate. This finding is robust to whether we include the period 

associated with the corona pandemic or not. It confirms Ball et al. (2017) and Ball et al. (2019) 

who argue that Okun’s law continues to be a robust relationship in empirical macroeconomics. 

This should be highly relevant information to the central banks of the economies studied here, 

suggesting that Okun’s law – which has been an important empirical relationship when model-

ling the economy – continues to be useful regardless of modelling choices and time periods. 
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Appendix 

Figure A1. Unconditional distributions of the data. 

 

Note: Histograms and smoothed kernel density estimates (red line) of the data series ending in 2019Q4. Frequency on vertical axis. Percent 
on horizontal axis for GDP growth. Percentage points on horizontal axis for the change in the unemployment rate.  
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