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Abstract 

We study dynamic signaling when the informed party does not observe the signals generated by her 
actions. A forward-looking sender signals her type continuously over time to a myopic receiver who 
privately monitors her behavior; in turn, the receiver transmits his private inferences back through an 
imperfect public signal of his actions. Preferences are linear-quadratic and the information structure is 
Gaussian. We construct linear Markov equilibria using belief states up to the sender's second-order belief. 
Because of the private monitoring, this state is an explicit function of the sender's past play, leading to a 
novel separation effect through the second-order belief channel. Applications to models of organizations 
and reputation are examined. 
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1 Introduction

This paper introduces a new class of dynamic signaling games featuring private signals.

These games can be seen as continuous-time versions of repeated noisy signaling games in

which the traditional receiver privately sees imperfect signals of the sender’s actions—thus,

the receiver endogenously develops a private belief about the sender’s type. In settings where

this form of private information is relevant for the sender’s behavior, a complex problem in

which players simultaneously form beliefs about each other’s beliefs arises. We offer the first

tractable treatment of this largely unexplored problem within signaling games.

Incorporating private signals of behavior is an important agenda. In the theory of or-

ganizations, the literature emanating from the statistical theory of teams of Marschak and

Radner (1972) recognizes that decision makers possess private information, albeit exogenous,

about the external environment; individuals then attempt to transmit their information, af-

ter which they take actions and the interaction typically ends.1 Organizations, however, are

dynamic, which means that now endogenous information linked to actions can be subject

to the same information frictions—dispersion, difficult transmission—a topic completely ig-

nored in the analyses of teams. Similarly, virtually all models of reputation assume that the

party interested in building a reputation is certain about the relevant audience’s perception;

but this precludes the private possession of imperfect signals of behavior that is relevant in

many markets,2 or natural features such as the subjective interpretation of information.

The scarcity of results in this area is likely related to the technical difficulties encountered

when examinining models with these characteristics. First, there is higher-order uncertainty

due to the players attempting to “forecast the forecasts of others” (Townsend, 1983). Second,

these games are inherently asymmetric: when facing a sender of a fixed type, the receiver

develops evolving private information in the form of a belief—and the latter player can signal

information back. Third, most analyses will be nonstationary due to ongoing learning effects.

In this paper, we examine a class of linear-quadratic-Gaussian games of incomplete in-

formation and private monitoring in continuous time. A forward-looking sender (she) and

a myopic receiver (he), both with quadratic preferences, interact over a finite horizon. The

sender has a normally distributed type. Our key innovation is that the receiver privately

observes a noisy signal of the sender’s action; in turn, the sender gets feedback about the

receiver via a public signal of the latter’s behavior. Using shocks that are additive and

Brownian, we construct linear Markov equilibria (LMEs) with the players’ beliefs as states.3

1See Dessein and Santos (2006) and Rantakari (2008), also relying on quadratic preferences.
2E.g., financial markets (Yang and Zhu, 2019) or for consumer data (Bonatti and Cisternas, 2020).
3We note that our receiver develops private information, and transmits it back. A forward-looking

receiver would have no impact on our construction, methods and applications—see Remark 1 and Section 6.
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Equilibrium construction and signaling. It is well known that the construction of

nontrivial equilibria in games of private monitoring can be a daunting task. In fact, to

estimate rivals’ continuation behavior under any strategy, players usually have to make an

inference about their opponents’ private histories. Not knowing what their rivals have seen,

the players will then rely on their past play, but this implies that the players’ inferences will

vary with their own private histories. Thus, (i) probability distributions over histories must

be computed, and (ii) the continuation games at off- versus on-path histories may differ.

With incomplete information, one expects this statistical inference problem to become

one of the estimation of belief states that summarize the payoff-relevant aspects of the

players’ private histories—our approach offers a parsimonious treatment of this issue. The

quadratic preferences permit equilibria in which players’ strategies are linear in their posterior

beliefs’ means (henceforth, beliefs). Conjecturing such strategies, learning is (conditionally)

Gaussian: the receiver’s belief is linear in the history of his private signals, and the sender’s

second-order belief—her belief about the receiver’s private belief—is linear in the histories

of the public signal and her past play. The estimation of histories described in (i) is thus

simplified by the fact that these are aggregated linearly.

The sender’s second-order belief is also private, as her actions depend on her type; the

receiver must therefore forecast this state. The problem of the state space expanding is

circumvented by a key representation of the second-order belief under linear Markov strate-

gies in terms of the sender’s type and the belief about it using the public signal exclusively

(Lemma 1). Performing equilibrium analysis then requires a second-order belief that is only

spanned by the other states along the path of play ((ii) above). With Markov states, the

sender’s best-response problem is one of stochastic control and we use dynamic programming.

A key property is that the sender controls her own second-order belief, generalizing the

traditional control of a public belief under imperfect public monitoring. But since this state is

now an explicit function of past play, private monitoring has novel implications for signaling.

Specifically, since different types behave differently in equilibrium, their past behavior leads

them to expect the receiver to hold different beliefs. This perception of different continuation

games across types then opens an additional channel for separation, and is encoded in the

value that the second-order belief takes in the representation.

We refer to the signaling implications of the previous separation effect as the history-

inference effect on signaling. Importantly, this effect will be at play whenever an ex ante

informed party does not see all the signals of her behavior — from this perspective, settings

in which beliefs are public are clearly an exception. Our applications then intend to illustrate

how traditional logic and forces derived in such public settings are, via this effect, altered by

the presence of higher-order uncertainty.
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Applications. In the class of games studied, different sender types may have different

incentives depending on where the belief of the follower stands: revelation motives, when

the sender wants to direct the follower’s belief towards the type; and concealment motives,

influencing the belief away from it. Our applications intentionally isolate each motive.

In Section 4.1, we analyze a novel coordination game that we use to explore the connection

between learning and performance in organizations when information frictions are present.

In our setting, a team’s performance increases with the proximity of the leader’s actions

to both a state of the world (adaptation) and to a follower’s action (coordination). The

leader maximizes the team’s performance while the follower tries to coordinate, resulting

in incentives being aligned. Thus, the leader wishes to reveal the state of the world to the

follower, but the follower’s learning is imperfect—hence, gradual—and private. The players

then engage in natural guessing of the other’s understanding as play unfolds.

In this context, when there is higher-order uncertainty, the history-inference effect can

lead to more information being transmitted relative to the public case in which the follower’s

belief is commonly known. Yet, the team’s performance is lower. Thus, organizations with

worse information channels can exhibit a better understanding of their economic environ-

ments, as measured by the follower’s terminal learning, and learning need not reflect perfor-

mance. In fact, as we show, learning is a measure of coordination costs in an organization.

At the other extreme, Section 4.2 examines concealment motives in a new model of

reputation where the informed party does not know her reputation with certainty. The

sender is a politician or regulator who finds it costly to take actions away from her bias—the

type—on a relevant issue. The concealment motive arises in that types would like to be

perceived as neutral at a terminal time (e.g., a reappointment): the sender suffers a terminal

quadratic loss in the distance between the belief of a news outlet (the receiver) and the

type’s prior (capturing the unbiased type). The politician receives feedback regarding her

reputation from the outlet’s reporting; naturally, the latter is public and imperfect.

Clearly, the direct effect of more precise public feedback is that it allows the politician

to better tailor her actions to her reputation. With higher-order uncertainty, however, there

is also a strategic effect. Specifically, since higher types take higher actions due to their

higher biases, those types will perceive their reputation to be more upward biased. Because

higher types will then attempt to offset higher beliefs, the history-inference effect reduces

the informativeness of the politician’s action, effectively enabling her to better conceal her

true type—having access to worse feedback can thus increase her payoffs.

Finally, a common element of both applications is a non-monotonic signaling coefficient

due to the history-inference at play, which we link to predictions of behavior in each case.

3



Existence of LME and technical contribution. The games studied are asymmetric,

both in terms of the players’ preferences and their private information (a fixed state versus

a changing one). Thus, the players can signal at different rates. As we explain next, this

issue is a major hurdle for showing the existence of a LME, which we address in Section 5.

Specifically, due to the Gaussian structure, the belief states that we employ are stochastic

posterior means that are also coupled with two deterministic second moments: the receiver’s

posterior variance (shaping the sensitivity of the receiver’s belief to his private signals), and

the weight of the sender’s type in the representation (linked to the sender’s learning, shaping

the history-inference effect). Using dynamic programming, one can transform the problem of

the existence of an LME to finding a solution to a boundary value problem (BVP) including

ODEs for the two aforementioned functions of time and for the coefficients in the sender’s

strategy. The two learning ODEs endow the BVP with exogenous initial conditions, while the

rest carry terminal ones arising from the static game of two-sided incomplete information

at the end of the interaction. The ODEs are obviously coupled: the learning coefficients

depend on the signaling that takes place over time, but the latter depends on the path of

the learning coefficients because these are taken as given in the best response problem.

With ODEs in both directions, proving the existence of a solution to such a BVP is a

complex “shooting” problem: not only must solutions to all ODEs exist, but they must land

at specific (potentially endogenous) values.4 Symmetric environments—the paradigm for

games of multi-sided Gaussian learning—are tractable because all players can signal at the

same rate, leading to a single learning ODE. There, the problem is one-dimensional, and the

traditional shooting method applies: one traces a candidate initial condition of the ODE to

be shot over an interval such that the intermediate value theorem ensures the target is hit.5

This intuitive continuity method clearly does not extend to settings where the target is

multidimensional. Our contribution then lies in framing the problem as a novel fixed-point

one. Specifically, given functions that proxy for solutions to our learning ODEs, we obtain

candidate equilibrium coefficients by solving their respective ODEs backwards. Equipped

with the latter tuple, we obtain solutions to the learning ODEs by solving them forward.

We can then construct an infinite-dimensional fixed-point problem over candidate learning

functions, to which Schauder’s theorem applies. Via this approach, Theorem 1 establishes

the existence of LMEs for all horizon lengths up to a threshold that is inversely proportional

to the environment’s initial uncertainty, irrespective of the discount rate.

Our approach is a major step forward in the literature, both conceptually and method-

4For instance, one must find initial values for the coefficients in the strategy so that the resulting terminal
values match the static Nash equilibrium at the end of the game, which can be endogenous due to learning.

5See Bonatti et al. (2017) studying Cournot competition. In insider trading models such as Back et al.
(2000), linear payoffs further simplify this issue because terminal conditions are pinned down by no arbitrage.
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ologically. Conceptually, the infinite-dimensional technique is in fact the best avenue for

fully exploiting the economics of the problem: namely, that learning is determined itera-

tively forward in time given conjectured behavior, while behavior is determined backward—

by backward induction—given a conjectured informativeness of the signals. Indeed, this is

demonstrated by the fact that the thresholds on the time horizon for which we can guarantee

existence have the same order as those found when the knife-edge one-dimensional shooting

method applies. Methodologically, by being able to handle multiple different learning ODEs,

our method offers a general approach for addressing linear-quadratic games with Gaussian

learning and unobserved actions at a substantially broad level, an issue that we discuss in

Section 6. Thus, the paper not only enables a tractable analysis of dynamic settings where

higher-order beliefs matter, but it also uncovers a fundamental structure to the solution of

these games while delivering new tools that are portable to new environments.

Related Literature. The literature on private monitoring has developed mostly in the

context of repeated games with complete information, a framework in which the issue of

inferences of private histories has been handled with methods that are very different to

ours. Closest in spirit is Phelan and Skrzypacz (2012), where such inferences are coarsened

into beliefs over a finite set of states. Other approaches include looking for mixed-strategy

equilibria where the inference of histories becomes irrelevant (Ely and Välimäki, 2002), or

examining the set of attainable payoffs in the patient limit case (Sugaya, 2021). Instead, in

our approach with incomplete information, we construct belief-dependent equilibria where

discount rates are fixed and the players must infer their rivals’ entire private histories.

Regarding traditional signaling models, in static (i.e., sequential-move, one-shot) noisy

signaling games (e.g., Matthews and Mirman, 1983; Carlsson and Dasgupta, 1997), the signal

realization is trivially hidden from the sender at the moment of action, but the environment

is public in that the receiver’s prior belief is common knowledge at that time. In dynamic

environments, the receiver’s belief is also public in settings with observable actions and an

exogenous, public stochastic process (e.g., Kremer and Skrzypacz, 2007; Daley and Green,

2012; Kolb, 2019; Gryglewicz and Kolb, 2021). On the other hand, beliefs can be private

when there are exogenous private signals of the sender’s type (Feltovich et al., 2002; Cetemen

and Margaria, 2020; Kolb et al., 2021). By contrast, in our setting all players’ beliefs are

private and the associated signals are actively affected by behavior.

Combining unobserved actions and private information in dynamic settings is challeng-

ing because the players develop private beliefs, and hence the need to forecast those states

can arise. In this line, linear-quadratic-Gaussian models have proven useful, provided the

environment has sufficient public information and/or symmetry. For instance, Foster and
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Viswanathan (1996), Back et al. (2000), and Bonatti et al. (2017) examine symmetric multi-

sided incomplete information when everyone learns from an imperfect public signal of behav-

ior; while first-order beliefs are private, the public signal structure eliminates the need for

higher-order ones. Bonatti and Cisternas (2020) in turn examine two-sided signaling when

firms price discriminate based on observing private signals of a consumer’s past behavior;

the prices firms set, however, effectively constitute a perfect public signal channel through

which the firms’ private beliefs are revealed. Thus, in none of these papers are higher-order

(private) beliefs needed as states; and because any imperfect learning is either symmetric

across players, or simply one-sided, the need to solve a multidimensional BVP does not arise.

To conclude, this paper contributes to a growing literature using continuous-time methods

to analyze dynamic incentives. Sannikov (2007) examines two-player games of imperfect

public monitoring; Faingold and Sannikov (2011) reputation effects with behavioral types;

Cisternas (2018) games of ex ante symmetric incomplete information; and Bergemann and

Strack (2015) dynamic revenue maximization.

2 Model

We consider two-player dynamic noisy signaling games of a linear-quadratic-Gaussian (LQG)

nature where the ex ante informed player does not directly observe the signals of her actions.

Model basics. A forward-looking sender (she) interacts with a myopic receiver (he). Time

runs continuously over a finite interval [0, T ], T < ∞. The environment is parametrized by

the realization of a random variable θ that is the sender’s private information, or her type.

We assume that θ is normally distributed with mean µ ∈ R and variance γo > 0; the latter

are exogenous parameters in the model.

We denote the sender’s chosen action at time t by at, while the receiver’s analog is denoted

by ât, t ∈ [0, T ]. Both actions take values over the real line. Given realized action paths

(at)t∈[0,T ] and (ât)t∈[0,T ], the sender’s ex post payoff is given by

ˆ T

0

e−rtu(at, ât, θ)dt+ e−rTψ(âT ), (1)

where u : R3 → R is a quadratic function and r ≥ 0 is a discount rate. For simplicity, we

assume that the terminal payoff function ψ : R → R is a concave quadratic—its dependence

on the receiver’s action resembles the sequentiality of traditional sender-receiver games.

The receiver, on the other hand, is concerned only about maximizing his flow utility at
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all instants of time. Given realized actions at and ât, his ex post time-t payoff is denoted

û(at, ât, θ) (2)

with û : R3 → R also a quadratic function. We will be interested in the case where u and

û are strictly concave in a and â, respectively; i.e., taking actions is costly for each player

according to a quadratic function. For simplicity, we set ∂2u/∂a2 = ∂2û/∂â2 = −1; with

quadratic preferences, this simply amounts to a normalization of the players’ payoffs.

Turning to the information structure, the sender knows θ before play begins. Instead,

the receiver only knows its distribution θ ∼ N (µ, γo), and this is common knowledge. There

are also two noisy signals that are linear in the players’ actions,

dXt = âtdt+ σXdZ
X
t and dYt = atdt+ σY dZ

Y
t , (3)

where ZX and ZY are orthogonal Brownian motions and σX , σY ∈ R+ are volatility pa-

rameters. Our key innovation is to make Y—which carries information about the sender’s

actions—privately observed by the receiver ; instead, X carrying the receiver’s action remains

public. This mixed private-public information structure is important for our construction,

but it is also appropriate for two reasons: it makes the departure from the existing literature

minimal, and it is natural in the applications we study.

Due to the full-support structure of (3), the players cannot observe each other’s actions.

As the sender conditions her actions on her type, the receiver will then rely on his private

signal Y to update his belief about θ. Our focus is on the cases in which the sender needs to

forecast the resulting private belief for her best response.6 The next assumption narrows the

analysis to those non-trivial cases; subscripts in utility functions denote partial derivatives.

Assumption 1. (i) uaθ ̸= 0; (ii) |ûâθ|+ |ûaâ| ̸= 0; (iii) |uaâ|+ |uââ|+ |ψââ| ̸= 0.

Parts (i) and (ii) ensure that the players condition their actions on their “first-order”

private information: the sender’s action is sensitive to her type, while the receiver’s will be

sensitive to his private belief. Part (iii) in turn guarantees the use of a second-order belief:

either a non-trivial strategic interaction term (uaâ ̸= 0), or a nonlinearity coming from the

receiver’s action (|uââ| + |ψââ| ≠ 0) will force the sender to forecast the receiver’s belief to

determine her behavior. Further technical conditions that we use to ensure the existence of

the equilibria studied are presented in Section 5.7

6The public signal X is clearly used in this forecasting exercise; but it will not be the sole input.
7These conditions are minimal in that they pertain to the existence of a non-trivial linear Bayes’ Nash

equilibrium in the static game of two-sided incomplete information that arises at the terminal time T .
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Applications. With quadratic preferences, types can only face one of two incentives de-

pending on what they perceive the receiver’s belief to be: revelation or concealment motives.

The revelation motive manifests in the sender steering the receiver’s belief in the direction

of the true type. If this motive stops before reaching the type, or continues beyond it, we

say that the concealment motive kicks in: manipulating the belief away from the type.

Our applications therefore purposely intend to isolate each of these cornerstone motives,

recognizing that all environments will display incentives that are a mix of these two extremes.

In the coordination game that we study, all types have a revelation motive, but one that is

trumped by the presence of information frictions. In the reputation game that we study, all

types generically want to conceal their identities, but this turns out to be costly. Our goal

is to understand how the presence of higher-order uncertainty can affect behavior, learning,

and payoffs relative to public analyses where beliefs are common knowledge. To this end, we

vary the volatility σX of the public feedback X: as a measure of the quality of the feedback

received by the sender, it shapes the extent of higher-order uncertainty in each setting.

Application 1: A coordination game. Our first example aims to shed light on a classic problem

faced by organizations: how to best adapt to new economic conditions when coordinating

activities is desired yet information is dispersed among decision-makers? We interpret θ as

the realized value of a new state of the world and consider the payoffs

1

4

ˆ T

0

e−rt{−(at − θ)2 − (at − ât)
2}dt and û(at, ât, θ) = −1

2
(ât − at)

2.

A “leader” (e.g., top management of an organization—the sender) and a “follower” (e.g., a

key division—the receiver) form a team. The performance of the team depends on both the

leader’s adaptation to the environment and coordination. The leader wants to maximize the

performance of this form of organization, while the follower simply wants to coordinate; we

discuss the latter assumption shortly. Finally, the scalars attached simply deliver the desired

normalization uaa = ûâa = −1.

Our starting point is the wide recognition that coordination needs are a central element

driving organizational performance (e.g., Milgrom and Roberts, 1992). Thus, while leaders

may be able to visualize how to respond to change, they will need other decision-makers to

understand the new paradigms to adapt efficiently. A leader can then begin taking actions

to move the organization in her desired direction, but the challenge is that the organization’s

inferences are likely to be subjective. A natural, yet largely unexplored, two-way inference

problem arises in those settings: both parties are trying to guess each other’s understanding

simultaneously as decisions are being made. Our approach to making progress in this area is
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via a two-player signaling game in which any attempt by the leader to signal the new state

of the world will inevitably result in the receiver developing a private belief.

In this context, how does the leader, via her signaling, manage the transition and what

are the corresponding implications on performance and learning? Because our ultimate

goal is to uncover the effects of higher-order uncertainty on outcomes, we have aligned the

players’ incentives by making the receiver simply interested in following at all times—this

choice is analogous to the common-interest assumption in the statistical theory of teams (e.g.,

Marschak and Radner, 1972) intended to isolate the effects that information frictions can

have on organizations’ performance. Thus, all leader types will happen to have a revelation

motive, which will vary with the quality of the feedback received, σX . We note that our

methods, however, can accommodate biases—and hence, concealment motives—too.8

Application 2: A reputation game. For notational simplicity, let us normalize the prior mean

µ to zero. We consider the following payoffs for our players:

1

2

[
−
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T

]
, with ψ > 0, and û(at, ât, θ) = −1

2
(ât − θ)2.

In this specification, the sender finds it costly to take actions away from her type (−(at−θ)2

term) and she benefits from the receiver’s terminal action âT being close to the prior mean

µ = 0. In turn, the receiver aims to solve a classic prediction problem at all times: he will

choose the best predictor of the type given his information.

We interpret this model as one of reputation for neutrality. Consider a politician or

expert—the sender—with θ ∼ N(0, γo) representing the intensity of her (horizontal) bias

on a relevant issue (e.g., vaccine mandates vis-à-vis individual liberties during a pandemic,

or environmental regulations vis-à-vis economic growth in light of climate change); the type

θ = 0 captures an unbiased type.9 The receiver is a news outlet that gets private signals Y

of the politician’s past behavior10 and that reports its perception of the bias. The resulting

8With aligned preferences, noiseless talk renders the problem trivial. Two remarks are then in order.
First, imperfect communication is standard in analyses of organizations, with much of the common-interest
team theory literature involving imperfect message transmission; ours can then be seen as an action-based
counterpart, a direction suggested by Marschak (1955) (p. 157). Second, conveying information verbally can
be difficult in real organizational problems, as much of the relevant knowledge there is hard to codify and
transfer (or tacit ; Garicano, 2000). This dimensionality issue—that productive know-how is more complex
than the communication channels available—is what shutting down talk delivers in our model: the channel’s
dimension shrinks to 0 while the state of the world has dimension 1. Interestingly, work in the strategic
management literature bridges both remarks: due to its complexity, tacit knowledge transmission is linked
to observing its application, and hence rooted in actions (Nonaka, 1991; Grant, 1996).

9Also in politics, but with a different motivation, Bouvard and Lévy (2019) study a horizontal model of
reputation with quadratic preferences in which uncertainty is symmetric.

10Actions such as voting, contributions, favors, statements to groups of influence, etc. often have a private
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reporting process X is naturally public; imperfect (e.g., journalist turnover, idiosyncratic

opinions, etc.); and fair on average (the shocks have zero mean on average). We are interested

in the case in which the politician wants the outlet’s time-T perception to be as close as

possible to µ = 0—that is, she wants to appear neutral at a final future date (e.g., a time at

which she is to be appointed to a high-profile position).

Unlike in the previous example, all types now have a concealment motive. Specifically,

since the prior is that the politician unbiased, all types would like to “pool” on a particular

action, or even refrain from taking actions at all, so that no information is conveyed and their

reputation remains at the prior. However, all types face short-run temptations that prevent

them from doing so (−(at − θ)2 term). Clearly, more precise reporting as measured by low

values of σX helps the politician in that she can better tailor her actions to her reputation.

But how does this better ability to tailor interact with her “commitment” problem?

Remark 1. For both applications, the equilibria we characterize remain equilibria when the

receiver becomes forward looking, due to this player solving a prediction problem in each

application. Refer to Section 6 for more details.

We close the section with the definition of strategies and equilibrium.

Strategies and Equilibrium Concept. The full-support monitoring implies that the

only off-path histories for each player are those in which that same player has deviated.

Thus, we use the Nash equilibrium concept for defining the equilibrium of the game and

leave off-path behavior unspecified at this point, as imposing sequential rationality does not

further refine the set of equilibrium outcomes in games with unobserved actions.11

A (pure, action-free) admissible strategy for the sender is any square-integrable real-

valued process (at)t∈[0,T ] that is progressively measurable with respect to the filtration gen-

erated by (θ,X). For the receiver, the measurability restriction is with respect to (X, Y ),

with the same integrability condition at play.12 Let Et[·] and Êt[·], t ∈ [0, T ], denote the

sender’s and receiver’s expectation operators, respectively.

Definition 1 (Nash equilibrium). An admissible pair (at, ât)t≥0 is a Nash equilibrium if:

(i) the process (at)t∈[0,T ] maximizes E0

[´ T

0
e−rtu(at, ât, θ)dt+ e−rTψ(âT )

]
; and (ii) for each

t ∈ [0, T ], ât maximizes Êt[û(at, ât, θ)] when (âs)s<t has been followed.

nature, and hence are likely to be leaked with error, justifying the noise in Y .
11See Mailath and Samuelson (2006) pp. 395-396. With hidden actions, a Nash equilibrium fails to be

sequentially rational only if it dictates suboptimal behavior for a player after her own deviation. Since such
off-path histories are not reached, the same outcome arises if optimal behavior is specified after the deviation.

12Square integrability refers to
´ T
0
a2tdt and

´ T
0
â2tdt being finite in expectation. This ensures that a strong

solution to (3) exists (Ch. 1.3 and 3.2 in Pham, 2009) and thus the outcome of the game is well defined.
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The LQG structure suggests looking for Nash equilibria where the strategies are linear

functions of the signals observed by each player. While this is a simple task in static settings,

it is a far more challenging enterprise in dynamic environments. Specifically, the core of the

issue is that evaluating the candidacy of an equilibrium profile requires assessing the value of

deviations; but with incomplete information and imperfect monitoring, the sender will find

it optimal to condition on more information than (θ,X) in the continuation game after she

deviated. The next section formalizes this idea by means of a belief-based recursive method

for finding linear Nash equilibria that has two key properties: first, it demonstrates that

finding such equilibria is inherently linked to imposing full sequential rationality under a

richer set of strategies (of course, not restricted to the linear or Markov classes); second,

it shows that the ensuing linear aggregation of signals is the outcome of players naturally

relying on their beliefs to guide their behavior.

3 Equilibrium Analysis: Linear Markov Equilibria

In this section we lay out our method for finding a Nash equilibrium in linear strategies.

The starting point is that any recursive approach will naturally demand the players to form

beliefs about each other’s private information in order to be able to assess the continuation

game as the interaction unfolds. The next subsection offers an overview of the belief states

employed in our construction, and it builds intuition for why a second-order belief is needed.

3.1 Belief States: An Overview

We will characterize equilibria in which, on and off the path of play, the sender and receiver

behave according to the linear Markov strategies

at = β0t + β1tMt + β2tLt + β3tθ (4)

ât = δ0t + δ1tM̂t + δ2tLt, (5)

with the coefficients βit, i = 0, 1, 2, 3, and δjt, j = 0, 1, 2, differentiable functions of time, and

M̂t := Êt[θ], Mt := Et[M̂t], and Lt := E[θ|FX
t ].

That is, M̂t is the receiver’s first-order belief, Mt the sender’s second-order counterpart, and

Lt is the belief about θ using the public information exclusively, t ∈ [0, T ]. (For brevity, we

refer to the means of posterior beliefs as simply “beliefs.”) The deterministic nature of the

coefficients will encode learning and time-horizon effects.

11



Consider our coordination game: u(θ, a, â) ∝ −(a−θ)2−(a−â)2 and û(θ, a, â) ∝ −(a−â)2.
Since the sender has an adaptation motive, θ is a relevant state; but because the receiver

wants to match the sender’s action, M̂ is relevant for this player’s behavior. The sender’s

coordination motive then forces her to forecast M̂ , and the second-order belief M appears.

More generally, (iii) in Assumption 1 ensures that M is needed as a proxy for M̂ for the

sender to compute her continuation payoff.

To guide intuition, we preview key properties of this second-order belief state that we

establish in this section. These properties illustrate: the “beliefs about beliefs” problem that

players face; how this problem interacts with the determination of optimal behavior; and

why the state space does not grow indefinitely as a result of an infinite regress problem. As

a byproduct, the appearance of the public state L is explained. Specifically:

(i) after all private histories of the sender, Mt is an explicit linear function of her past

actions (as)s<t and past realizations of the public signal (Xs)s<t, t ∈ [0, T ];

(ii) (Mt)t∈[0,T ] is the only state variable directly controlled by the sender;

(iii) Mt is a convex combination of θ and Lt, t ∈ [0, T ], if (4)–(5) are followed.

That M depends on X is intuitive: M̂ , via the receiver’s action, enters the public signal.

Due to the private monitoring, however, the sender also relies on her past play to forecast

M̂ : higher past actions are statistically informative of higher values of Y observed by the

receiver, so M should be higher for any fixed public history of X. The contrast to public

monitoring is clear: if Y were public, past behavior would be irrelevant in this forecasting

exercise, as the receiver’s belief would be uniquely determined by the realizations of Y .

The explicit dependence on past actions implies that M is controlled by the sender.

Further, this is the only state directly controlled because L, as a public state, is ultimately

a function of the history of X only, and this latter signal is not directly affected by the

sender (see (3)). Thus, finding (linear) Nash equilibria requires determining optimality of

the sender’s behavior with respect to M . This observation is important because, by (iii), if

the sender is on path, her action does not depend explicitly on M due to the latter state

becoming exclusively a function of θ and L, in turn suggesting that one could dispense with

M in the analysis. This, however, is not possible because of the need to evaluate deviations

when assessing the optimality of any (θ, L)-dependent strategy. In doing so, the sender must

rely on M to calculate her continuation value, but after deviations M is not spanned by θ

and L due to the dependence on past play. Further, as the unique controlled state, changes

in the continuation value necessarily occur via changes inM—the use of this state is critical.

A second implication of the explicit dependence on past actions is that M is private

information to the sender in equilibrium: by property (iii), the second-order belief is a

12



function of the sender’s type along the path of play, as her equilibrium actions depend on θ.

The receiver must then forecast this state itself, but the state space does not grow further

because M is linear in θ and L under the linear Markov strategy (4). Since L is used in the

receiver’s forecasting exercise, it becomes a relevant state for both players.

The next two subsections formally demonstrate properties (i)–(iii) in order to pose a

well-defined best-response problem for the sender. We begin this task with (iii): namely,

with a representation of the second-order belief under linear Markov strategies.

3.2 Belief Representation and History-Inference Effect

We begin by establishing a representation for the second-order belief M under the linear-

Markov strategies (4)–(5). (To avoid repetition, we defer an expression under deviations to

the next section.) This step is key in our analysis, both conceptually and technically.

Indeed, as different types proceed with taking different actions, their reliance on past

play to assess the continuation game will lead them to hold different beliefs—in the sender’s

strategy (4), this leads to M becoming a source of heterogeneity in addition to the direct

contribution that the type has on behavior. In equilibrium, the receiver must account for

this channel to form a correct belief about the type, but this amounts to anticipating the

form of M in a candidate linear Markov equilibrium. Conceptually, then, the representation

encodes the signaling that occurs via the second-order belief channel.

Given the LQG structure, it is natural to expect a representation of the form

Mt = χtθ + (1− χt)Lt, (6)

where Lt := E[θ|FX
t ] and (χt)t∈[0,T ] is deterministic. Intuitively, behind (6) is how the sender

balances the information conveyed by her private histories—χtθ term—with that conveyed

by the public signal—(1− χt)Lt term—in her forecasting exercise.13

A functional form like (6) is operational only if we know how (χ, L) depends on the

candidate equilibrium linear Markov strategies (4)–(5). Indeed, because the receiver must

anticipate how (χt)t∈[0,T ] will evolve in equilibrium to formulate both his belief and best-

response, the sender is forced to anticipate the same weight to evaluate her possible courses of

action. Technically, therefore, having up-front knowledge of a representation is a requirement

for being able to set up the sender’s best response problem.14

13With pure strategies, the outcome of the game should be a function of the signals available to the
players, so M must be a function of θ and X; the time-varying weights and the additive separability are
consequences of the induced Gaussian learning under linear strategies. Also, from (6) and the fact that
deviations go undetected, the receiver does not need to rely on additional states beyond L and M̂ .

14As for Lt = E[θ|FX
t ], the representation is still key in that it delivers a law of motion for this state.
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The main result of this section (Lemma 1) establishes the representation (6) where χ

and L are characterized via laws of motion. To build towards the result, it is instructive to

elaborate on how it is obtained. First, our approach is constructive: it starts by assuming

(6) with (Lt)t∈[0,T ] a general process depending only on the public information. The receiver

then always assumes that the representation holds, as deviations are never detected due to

the full support of Y . Inserting (6) into (4), the receiver expects, at all times,

at = α0t + α2tLt + α3tθ (7)

where α0t := β0t, α2t := β2t + β1t(1− χt), and α3t := β3t + β1tχt. (8)

Note that information transmission is ultimately guided by the total weight on the type,

so it is suitable to refer to α3t as the signaling coefficient. We note, however, that this

coefficient, via β1 and β3, is a mix of both non-strategic (i.e., static) and strategic (i.e.,

dynamic) motives—our choice over alternatives (such as α3 net of a myopic counterpart) is

purely for ease of exposition.

The receiver then filters θ assuming that Y is driven by (7). This problem is (condition-

ally) Gaussian (Liptser and Shiryaev, 1977, Theorems 12.6 and 12.7), so this player’s belief

is characterized by a stochastic mean (M̂t)t∈[0,T ] and a deterministic variance

γt := Êt[(θ − M̂t)
2], t ∈ [0, T ],

where we have omitted the hat symbol for notational convenience, and where the evolution

of M̂ depends on γ. Importantly, the linearity of the signal structure renders the pair (M̂,X)

under (5) (conditionally) Gaussian too. The sender’s problem of filtering M̂ using X then

yields another mean-variance pair, but with the corresponding mean Mt now depending

explicitly on her past actions: for any given history of the public signal, changes in the

sender’s history of play will shift the mean of her belief. One can then solve for Mt under

the linear strategy (4) to obtain differential equations for (χ, L).

Lemma 1. Suppose that (X, Y ) is driven by (4)–(5) and the receiver believes that (6) holds,

with (Lt)t∈[0,T ] a process that depends only on the public information.15 Then (6) holds at

all times if and only if Lt = E[θ|FX
t ] and χt = Et[(Mt − M̂t)

2]/γt, where

γ̇t = −γ
2
t (β3t + β1tχt)

2

σ2
Y

, γ0 = γo, (9)

15Formally, (Lt)t∈[0,T ] can be any square-integrable process progressively measurable w.r.t. (FX
t )t∈[0,T ].
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χ̇t =
γt(β3t + β1tχt)

2(1− χt)

σ2
Y

− γtχ
2
t δ

2
1t

σ2
X

, χ0 = 0, (10)

dLt = (l0t + l1tLt)dt+BtdXt, L0 = µ, (11)

with (l0t, l1t, Bt) deterministic and given in (A.7).

The lemma confirms that the public state satisfies Lt = E[θ|FX
t ], and characterizes the

weight χt in (6) as a ratio of the players’ posterior variances. It further offers dynamics

for their evolution that are coupled with that in (9) for γ. The latter ODE is standard

and states that the variance of the receiver’s belief decays at a deterministic rate that is

increasing in the signaling coefficient. The ODE (10) for χ on the other hand captures how

types progressively separate over time due to their gradually differing beliefs. Finally, the

linearity of L in the histories of X—by virtue of the Gaussian learning—is clear from (11).

Using these findings, we can uncover the economics behind the representation Mt =

χtθ + (1 − χt)Lt. Consider first the beginning of the game. Since there is no second-order

uncertainty at the outset, M0 = µ, an expression that is also delivered by the representation

due to χ0 = 0 and L0 = µ from the lemma. As soon as the sender conditions her actions

on her type, however, the signal Y becomes informative and the sender loses track of the

receiver’s belief (i.e., Et[(Mt − M̂t)
2] > 0). Past actions are then useful in forecasting M̂ , a

phenomenon that is readily apparent when there is non-trivial signaling at time 0: in (10),

χ̇0 = γoβ2
30/σ

2
Y > 0 if β30 ̸= 0, and the connection between M and θ present in (6) emerges.

To understand why the ODEs (9) and (10) are coupled, assume that the last term in

(10), γtχ
2
t δ

2
1t/σ

2
X , is absent. Then, it is easy to verify that any solution to (9)–(10) satisfies

χ = 1− γt
γo
.

Intuitively, if the sender has signaled more aggressively, she will expect the receiver to be

more certain about her type, so lower values of γ are inherently linked to higher values of χ.

Clearly, the rates of change of each depend on the signaling coefficient β3t + β1tχt.

The presence of a public feedback channel nevertheless alters the previous relationship.

This effect is captured by the last term in (10), where the key term is the signal-to-noise ratio

of X, δ21t/σ
2
X . Either an increase in the magnitude of δ1, which we call the receiver’s signaling

coefficient, or a reduction in the volatility σX , improves the quality of X, thereby inducing

the sender to rely more on the public information to forecast M̂ : in the χ-ODE, more

downward pressure is put on the growth of χ as δ21/σ
2
X grows. In the limit as δ21/σ

2
X ↗ ∞,

(10) cannot “take off,” and so χ ≡ 0; also, someone who has access only to the public signal

learns the receiver’s belief in real time. Thus, Mt = χtθ + (1− χt)Lt reduces Mt = M̂t, i.e.,
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the environment becomes public.

To anticipate the main phenomenon under study, notice that when the environment is

public—because Y public or because σX = 0—an LME naturally entails the sender and

receiver acting linearly in (θ, M̂) and M̂ , respectively.16 The common knowledge of M̂

implies that the extent of signaling is then solely determined by the weight attached to the

type in the sender’s strategy: for a given history of Y , all types agree on the value of M̂ .

This notion breaks with private monitoring, as reflected in the correction

β1tχt

in the signaling coefficient (8). We refer to it as the history-inference effect on signaling.

3.3 The Long-Run Player’s Best-Response Problem

The representation implies that, on the equilibrium path, the sender’s actions depend only

on his type θ and the public belief L as in (7). To perform equilibrium analysis, however,

the sender must evaluate deviations from (7); but at off-path histories, the representation

does not hold due to its reliance on (4) being followed. The sender must then account for M

and L separately: the former as an estimate of the receiver’s private belief, and the latter

because the receiver uses it in forecasting the sender’s second-order belief.17

Laws of motion for M and L for arbitrary strategies of the sender (up to technical

conditions specified shortly) are presented next.

Lemma 2 (Controlled dynamics). Suppose that the receiver follows (5) and believes that (4)

and (6) hold. Then, if the sender follows (a′t)t∈[0,T ],

dMt =
γtα3t

σ2
Y

(a′t − [α0t + α2tLt + α3tMt])dt+
χtγtδ1t
σX

dZt (12)

dLt =
χtγtδ1t

σ2
X(1− χt)

[δ1t(Mt − Lt)dt+ σXdZt], (13)

where Zt := 1
σX

[Xt −
´ t

0
(δ0s + δ1sMs + δ2sLs)ds] is a Brownian motion from the sender’s

perspective. Also, Et[(Mt − M̂t)
2] = γtχt for any such (a′t)t∈[0,T ].

16From the viewpoint of the optimality of the receiver’s behavior, this notion of LME is “perfect” when
Y is public, but only Nash when Y is private but σX = 0.

17That M is no longer spanned by θ and L after deviations reflects the divergence in the game’s structure
at on- versus off-path histories. This also happens in models of incomplete information with public signals
such as Foster and Viswanathan (1996), Bonatti et al. (2017) and Cisternas (2018), where instead exogenous
private beliefs must be accounted for after deviations. See also the survey article of (Kandori, 2002) describing
the lack of recursive structure in traditional games of private monitoring.
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The dynamics (12)–(13) are involved, so let us focus on a few economic properties. First,

revisiting (i) from Section 3.1, M is indeed an explicit function of the past actions of the

sender and past realizations of X, an issue at the heart of our construction. To see this,

we can insert the definition of Zt into the law of motion (12) of M . This yields a dynamic

that is linear in M , from which the solution Mt is a linear function of (as, Ls, Xs)s<t; but

the same procedure applied to (11) shows that Ls is an explicit function of (Xτ )τ<s.

Second, from the drifts ofM and L we confirm thatM is the only state directly controlled

by the sender. In particular, not only does this non-trivial state “appear” after deviations,

but it is through establishing optimality of this state that equilibrium behavior must be

pinned down—this justifies our expositional choice to start with an extended strategy (4)

that treats M and L differently as opposed to the outcome (7). From (12), moreover, the

sender expects the receiver to be more responsive to her actions when the receiver is more

uncertain (high γ) or when there is more signaling (high α3).

Finally, the dynamic of L—which, again, is always an exclusive function of past values

of X—reflects the predictable (drift) and unpredictable (Brownian) components from the

sender’s perspective, a distinction that matters for optimization. It is simply obtained from

(11) by using the evolution of the public signal as forecasted by the sender (who assumes the

receiver is always on path). In the predictable part, we note that M feeds into the drift of

L. This implies that the sender expects to influence the public belief despite not being able

to directly affect the public signal X: higher actions suggest higher values of the receiver’s

belief, which ultimately influences X. Changes in L then matter for the sender’s incentives

because the receiver uses this state to forecast M .18

As a technical, but important, observation, we note that the dynamics (12)–(13) depend

on solutions (γ, χ) to the ODEs (9)–(10). This dependence originates from the receiver’s

learning process: since deviations are hidden, this player always assumes that the repre-

sentation (6) holds when constructing his belief. The next result shows that the drifts and

volatilities are all well defined when the coefficients in the linear Markov strategies are con-

tinuous. To this end, we note that it can be easily verified from the receiver’s first-order

condition that his best reply attaches weight ûâθ + ûâa[β3t + β1tχt] to M̂ .

Lemma 3 (Learning ODEs). Suppose (β1, β3) is continuous and δ1t = ûâθ+ ûâa[β3t+β1tχt].

Then (9)–(10) governing (γ, χ) has a unique solution. In this solution, 0 < γt ≤ γo and

18To gain more intuition on the dynamics, note from the drift of (13) that L moves towards M on average,
i.e., someone who only observes X must gradually learn the type over time. On the other hand, the drift of
M reflects that the sender expects M̂ to be revised upward only when a′t > Et[α0t + α2tLt + α3tM̂t], i.e.,
when she expects to beat the receiver’s expectation of her own behavior. The volatility terms capture how
both states will respond to the future information conveyed by the public signal; if the latter is uninformative
(e.g., δ1/σX ≡ 0), M evolves deterministically and L ≡ µ.
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0 ≤ χt < 1 for all t ∈ [0, T ], with strict inequalities over (0, T ] if β30 ̸= 0.

We are now in a position to state the sender’s best-response problem. By the last part

of Lemma 2, the sender’s posterior variance, Et[(Mt − M̂t)
2], is independent of the strategy

followed, with a value of γtχt; intuitively, the additive structure in the signals and the

Gaussian noise imply that changes in the sender’s actions simply shift the receiver’s belief

for any realization of the shocks (ZX , ZY ).19 Using this and the definition of M , we have

Et[u(at, δ0,t + δ1,tM̂t + δ2tLt, θ)] = Et[u(at, δ0t + δ1,tMt + δ2tLt, θ)] +
1
2
uââδ

2
1tγtχt, and likewise

for the terminal payoff ψ in place of u at t = T ; in other words, no moments of higher order

are needed as additional state variables. We conclude that, up to an additive constant in

the total payoff, the sender’s best-response problem consists of maximizing

E0

[ˆ T

0

e−rtu(at, δ0t + δ1tMt + δ2tLt, θ)dt+ e−rTψ(δ0T + δ1TMT + δ2TLT )

]
(14)

subject to the dynamics (12)–(13) of (M,L) and the ODEs (9)–(10) for (γ, χ).20

The set of admissible strategies for this problem is the set of R-valued square-integrable

processes (at)t∈[0,T ] that are (θ,M,L)-progressively measurable. It is important to stress two

aspects of this set. First, it is richer than that used in the Nash equilibrium concept due

to the explicit conditioning on past behavior via M . Second, this set is extremely general,

well beyond the linear class: in particular, it allows for strategies that are non-linear in the

states, that condition on entire histories, that are discontinuous, etc.—that is, we are not

restricting the set of deviations to linear Markov strategies with differentiable coeffients in

our search for an equilibrium with those properties.

A tuple (β0, β1, β2, β3) of deterministic functions induces a linear Markov equilibrium if

β0t + β1tM + β2tL+ β3tθ is an optimal policy for the sender when the coefficients (δ0, δ1, δ2)

in the receiver’s strategy are optimal and correct, i.e., when

ât := δ0t + δ1tM̂t + δ2tLt = argmax
â′∈R

Êt[û(α0t + α2tLt + α3tθ, â
′, θ)]. (15)

This notion of equilibrium is clearly perfect in that it specifies optimal behavior by the sender

after deviations. Finally, along the path of play of such a policy, the representation (6) holds

by construction, and so the sender’s behavior is given by at = α0t + α2tLt + α3tθ, where

(Lt)t∈[0,T ] follows (11) in Lemma 1—a Nash equilibrium in linear strategies ensues.21

19If the public signal is perfectly informative, i.e., δ1/σX = +∞, we have that χ ≡ 0 and so Et[(Mt −
M̂t)

2] ≡ 0, confirming that the environment becomes public.
20The sender’s problem is, in practice, one of optimally controlling an unobserved state M̂ . We are allowed

to filter first and then optimize due to the separation principle. See the proof of Lemma 2.
21Regarding the receiver, while deviations by this player do affect L, it is clear that no additional states
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In the next section we specialize the model to the two benchmark applications from

Section 2. This allows us to illustrate the new economic insights that private monitoring—

via the history-inference effect created—brings to the analysis of noisy signaling games. The

reader interested in the question of the existence of LME can immediately skip to Section 5,

where we address the best-response problem in its general form.

4 Applications

We begin with our coordination game within organizations, which is an ideal pedagogical

example for fleshing out the new insights on behavior and outcomes that we uncover. Having

developed this application, we offer a more streamlined exposition of our reputation model.

4.1 Coordination: Learning and Performance in Organizations

Recall the coordination game of Section 2: up to positive factors, the players’ payoffs are

“leader/team”:

ˆ T

0

e−rt{− (at − θ)2︸ ︷︷ ︸
adaptation

− (at − ât)
2︸ ︷︷ ︸

coordination

}dt; “follower”: − (at − ât)
2.

That is, the leader aims to take actions adapted to the economic environment (i.e., θ) while

accounting for the need to coordinate activities; the follower simply wants to coordinate.

How does the leader guide actions towards θ, and what are the implications on learning—

captured by the follower’s terminal posterior variance γT—and on performance—captured

by the leader’s total payoff? Note that, due to the alignment of preferences, if the leader

were able to transmit her knowledge about θ, the organization would incur no losses going

forward; a more informed organization is a priori suggestive of better performance.

The public benchmark Suppose that the signal Y is public or the public signal noiseless,

i.e., σX = 0: in either case, the follower’s belief M̂ is known to the leader or to someone who

only observes the public signal, so the environment is effectively public.22 Mathematically,

M̂ =M = L at all times, so there is a single state to track, M̂ . How does play unfold?

At time T , the players face a static game given any value of the follower’s terminal

belief, M̂T—the (Bayes) Nash equilibrium of this one-shot interaction is aT = 1
2
θ + 1

2
M̂T ,

than (t, L, M̂) are needed after deviations (see (A.1) in the Appendix for the law of motion of M̂). Also,
all the payoff-relevant histories are reachable on path, so the sequential rationality requirement is trivial for
this player in an LME. All this is true if this player is forward looking.

22When σX = 0, this happens if the belief can be inverted from the action observed, which holds here.
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âT = ÊT [aT ] = M̂T . For t < T , a linear Markov equilibrium generalizes these strategies to

at = β0t + β1tM̂ + β3tθ and ât = Êt[at] = β0t + (β1t + β3t)M̂t,

where the weights will differ from their static counterparts due to the leader’s dynamic

incentives. Equipped with these strategies, the follower’s belief evolves as

dM̂t =
β3tγt
σ2
Y

{dYt − [(β0t + (β1t + β3t)M̂t)︸ ︷︷ ︸
=Êt[at]

dt]} and γ̇t = −
(
β3tγt
σY

)2

, (16)

i.e., M̂ responds to unanticipated changes in the signal Y , with an intensity that increases

with both the strength of the leader’s signaling, β3, and the degree of uncertainty of the

follower, γ. The leader’s problem is then to maximize her expected payoff when she controls

M̂ (via Y ) as above—we look for a quadratic value function that features an optimal linear

policy whose coefficients match those conjectured by the follower in (16).

Proposition 1. When σX = 0, an LME exists for all T > 0 and r ≥ 0. In any such LME,

at = (1 − β3t)M̂t + β3tθ for some strictly decreasing deterministic function β3t satisfying

β3t ∈ (1/2, 1), t ∈ [0, T ), and β3T = 1/2.

Under full information, the leader would choose at = θ at all times—from this perspective,

the leader shifts weight from the state of the world toward the follower’s belief because she

cares about coordinating with an uninformed agent. The key, however, is that the leader

does not lower the weight to the static counterpart of 1/2 on the type, except at the end of

the interaction. Indeed, stronger signaling, by generating higher signals on average, enables

the leader to steer the follower’s belief—and hence, his actions—towards θ faster, thereby

allowing her to enjoy future coordination at a lower adaptation cost. In other words, the

leader’s revelation motive manifests in gradually investing in the follower’s adaptation.

An important takeaway from Proposition 1 is that such signaling incentives fall over

time (β3 is decreasing) partly due to there being less time to enjoy the future benefits as

time progresses.23 In economic terms, a model with public signals yields the prediction that

organizations facing new environments would engage in more novel changes in the beginning

of their transition: leadership’s actions are more sensitive to its superior information early

on, decaying over time as the static coordination motive becomes stronger.

Remark 2 (Demonstrating by doing). A strategy of the form “place a large weight on

the type at time zero, and play the type otherwise” also exhibits a decreasing weight on

23There is a second force in the same direction: as learning progresses, i.e., γ falls, the belief becomes less
responsive to changes in Y , so it is more difficult to steer the belief in any direction.
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the type, and is a feasible deviation for the leader. However, it is not optimal when the

follower conjectures a linear strategy: it is costly to deviate from the type today, and it risks

miscoordination tomorrow due to placing excessive importance on a single signal conveying

the information at once. Our equilibrium smooths out that logic, and it is more in line

with the idea of “demonstrating by doing:” that learning is better achieved via a gradual

progression of challenges, rather than exposing agents to completely foreign problems.

Higher-order uncertainty The previous finding on the evolution of the leader’s signaling

motive is, however, non-generic. In fact, as long as Y is private, any finite amount of volatility

σX in the public signal will generate a non-monotonic signaling coefficient α3 = β3 + β1χ.

Proposition 2. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the coefficients satisfy

β0t = 0, β1t + β2t + β3t = 1, and α3t > 0. If, moreover, r > 0, then α3t is non-monotonic

and eventually decreasing.24

Typical signaling coefficients α3 are given by the hump-shaped dashed curves in Figure

1; the strictly decreasing signaling coefficient β3 in the public case is depicted in black.
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t

0.55

0.60

0.65

0.70

0.75

β3 Public α NF α Interior

Figure 1: Signaling coefficients for σX ∈ {0, .1, .75, 2, 10,+∞} and r > 0; “α” denotes α3.

To rationalize the initial increasing signaling phase, we now move to the polar opposite

case of the previous public benchmark: when the public signal is simply pure noise, i.e.,

σX = ∞. This no-feedback case offers the cleanest set-up for understanding how the presence

of higher-order uncertainty affects outcomes.

As argued in Section 3, the leader will now rely on her second-order belief M . And since

the public signal is uninformative, the public belief L coincides with the prior mean µ at all

24Time horizons for which we can guarantee the existence of an LME are presented in the next section.
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times. Using that β0 ≡ 0 in equilibrium, a linear Markov strategy for the leader becomes

at = β1tMt + β2tµ+ β3tθ.

Conjecturing a representation Mt = χtθ + (1 − χt)µ, the follower expects at = (β2t +

β1t(1 − χt))µ + (β3t + β1tχt)θ in equilibrium. The signaling coefficient α3t = β3t + β1tχt is

then used by this player to construct M̂ . One can then show that the leader’s belief satisfies

dMt =
α3tγt
σ2
Y

[a′t − (α2t + α3tMt)︸ ︷︷ ︸
Et[Êt[at]]

]dt, with γ̇t = −
(
α3tγ

σY

)2

and χ = 1− γt
γo
.

The controlled dynamic of M is now deterministic, reflecting that the leader’s sole source of

information to forecast M̂ is her actions. This dynamic is again coupled with the follower’s

posterior variance, γt, but the latter’s evolution now depends on the total extent of signaling

α3t = β3t + β1tχt that accounts for the history-inference effect β1χ. Finally, if the above

linear Markov strategy is followed, there is a one-to-one mapping between χ and γ.

Proposition 3. When σX = +∞, an LME exists for all T > 0 and r ≥ 0. In any such

LME, at = (1− α3t)µ+ α3tθ, where α3t ∈ (1/2, 1), t ∈ [0, T ]. Also, α3t is strictly increasing

for all r > 0 (and constant for r = 0), and αT ↗ 1 as T ↗ ∞.

The leader’s signaling here exhibits a completely different pattern: generically, the coeffi-

cient is strictly increasing, approaching 1 as the length of the interaction grows. To see why,

note that in the public case higher types take higher actions because they have both higher

(static) adaptation motives and higher (dynamic) steering motives, as they must drive their

organizations to higher states of the world. These two forces are present in the no-feedback

case, but the history-inference effects is also at play: higher types develop higher second-

order beliefs, inducing them to take even higher actions due to the desire to coordinate.

Moreover, since the coordination motive (β1) becomes stronger as the end-game approaches,

and χ grows due to a stronger reliance on past play for forecasting the continuation game,

the history-inference effect strengthens over time, overcoming any fall in β3.

We can now interpret the robust finding of a non-monotone signaling coefficient in the

leader’s strategy. Specifically, the leader starts “small” relative to the public case (the

coefficients in Figure 1 cross at t = 0, addressed shortly), and the history-inference effect

dominates in the beginning: as the leader expects the follower to gradually “get the message,”

she implements changes that better reflect the environment—the increasing phase. As time

goes by, however, the coordination motive becomes stronger. While in the no-feedback case

this further strengthened the history-inference effect, the public signal available can be used
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to coordinate: weight is shifted from β1 to β2 attached to L, thus dampening the history-

inference effect and, combined with a decreasing steering incentive, α eventually decreases.

This is a much better story of adaptation to change, in that the leadership does not begin

with drastic changes that the organization is unfamiliar with at the outset (the public case).

Rather, the leadership slowly familiarizes the organization with the new environment first,

and only implements more novel changes—as measured by the sensitivity of the leader’s

action to her private information—after more common understanding has been developed.

Outcomes: learning and payoffs Figure 1 suggests that there can be considerably more

information transmission in a setting with higher-order uncertainty than if beliefs are public.

Will this be the case, and are there any deep connections between learning and performance?

To formalize this conjecture, we contrast the public benchmark only with the no-feedback

counterpart, the latter approximated by a large σX . Further, we set r = 0, a case in which

we obtain unique analytic solutions. The use of superscripts Pub and NF should be clear.

Proposition 4. Suppose that r = 0. For all T > 0,

(i) The leader’s ex ante payoff is larger in the public case;

(ii) βPub
30 > αNF

30 and γPubT > γNF
T .

The result says two things. First, the organization is better off in the public case. Second,

there is always more total information transmission in the no-feedback case — the follower’s

terminal belief has lower variance (γPubT > γNF
T ). That is, worsening the feedback to a leader

leads to more knowledge being transmitted by the end of the game. This latter finding is

non-trivial because at the very beginning of the game, there is temporarily less information

transmission in the no-feedback case (βPub
30 > αNF

30 ) driven by an intertemporal substitution

effect: anticipating that her future actions will be highly informative due to the history-

inference effect, the leader optimally signals less aggressively early on.

Thus, this application uncovers a novel tension between learning and performance: orga-

nizations with a better understanding of the economic environment can underperform their

lesser informed counterparts. Indeed, at the core of this result is that learning is a measure

of miscoordination in that ex ante (undiscounted) coordination costs satisfy

E0

ˆ T

0

(at − ât)
2dt =

ˆ T

0

α2
t E0(θ − M̂t)

2︸ ︷︷ ︸
=γt

dt =

ˆ T

0

−σ2
Y

γ̇t
γt
dt = σ2

Y ln(γo/γT ),

which falls in γT .
25 To grasp some intuition, consider the public case. There, the leader could

25This expression for undiscounted coordination costs holds for all r ≥ 0 and all σX ∈ [0,+∞].
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opt to take the follower’s action in any period, thereby eliminating any miscoordination; but

this implies that the leader neglects her private information, and no information is transmit-

ted. It is only when the leadership introduces changes for which the organization does not

know how to respond that information then gets transmitted, but this creates miscoordina-

tion. A dichotomy between learning and performance arises in that an organization’s better

understanding of the economic environment reflects a painful struggle to coordinate.

Our comparison of signaling coefficients is useful for understanding payoffs. Clearly,

the direct effect of shutting down the public signal is negative—increased uncertainty makes

coordination more difficult. The strategic effect is that, in response to more information being

transmitted, the follower’s belief is more volatile in the no-feedback case—but this generates

even more miscoordination. Anticipating this extra responsiveness, a patient leader signals

less aggressively in the beginning, explaining why the signaling coefficients cross.

4.2 Reputation: Sustaining a Reputation for Neutrality

Recall the reputation game of Section 2: up to positive factors, the players’ payoffs are:

“politician”: −
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T , ψ > 0; “media outlet”: − (ât − θ)2.

The story behind these was that the politician/expert has a long-term career concern reflected

in the lump-sum terminal payoff −e−rTψâ2T : she wants to appear as neutral from the outlet’s

perspective at T due to ât = M̂t at all times and µ = 0 capturing the unbiased type.

To get feedback about her reputation, the politician relies on a public reporting process

dXt = M̂tdt + σXdZ
X
t . Will more accurate reporting—i.e., low σX—help the politician?

How does the politician’s effort to manage her reputation vary over time?

Having acquired intuition from the previous application, we forego a detailed reporting

of analogous results for each corner case and instead offer a more streamlined exposition

of the key economics using the interior case; we exploit the corner cases at the end of this

section when we analyze the effect of feedback on learning and payoffs. We begin with a

full characterization of the LMEs that arise in this setting for arbitrary discount rates and

precision of the public feedback X, demonstrating the tractability of the setting studied:

Proposition 5. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the politician’s strategy

satisfies β0t = 0 and β1t, β2t ≤ 0 < β3t ≤ 1 for all t ∈ [0, T ], with all inequalities strict

over [0, T ). Moreover, α3t := β3t + β1tχt ∈ (0, 1), and there exists r̄ > 0 such that for all

r ∈ (0, r̄), α3 has an interior minimum and is initially decreasing (hence non-monotonic).

A politician with a higher bias prefers to take higher actions, all else equal (β3 > 0).
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But in the interest of her reputation, the politician places lower weight on her type than is

myopically optimal (0 < β3 < 1). Further, the more she believes her reputation to be biased

(i.e., a large |Mt|), the more she wants to drive her reputation back to the neutral level

µ = 0; therefore, the weight β1 on Mt is negative. And as with traditional signal jamming,

the politician gets trapped into taking lower actions in response to public information that

her type is high (β2 < 0).

Toward understanding the payoff implications of higher order uncertainty in this setting,

note that the ex ante expectation of M̂2
T in the politician’s terminal loss is exactly the amount

of learning by the outlet, defined as γo − γT , the reduction in the posterior variance of its

belief about the politician. All else equal, the politician is better off on average when the

outlet learns less about her type. Now to quantify equilibrium learning and its relationship

with higher order uncertainty, one must first analyze the information transmission that takes

place in equilibrium.

Recall that in the public benchmark case, the signaling coefficient is given by the equilib-

rium weight on the type β3 exclusively: all types would agree on M̂ for a given public history

of Y , so β1 (the weight on M̂t = Mt = Lt in this case) is not linked to information trans-

mission. This is akin to the dismissive reaction “everyone would backtrack this way” when

seeing someone doing some form of damage control. From the lens of our model, therefore,

underlying this common reaction is the presence of public information that induces different

politician types to take the same corrective actions, thereby conveying no information.

With higher-order uncertainty, however, the signaling coefficient is α3 = β3 + β1χ—in

contrast to the coordination game, the history inference effect now has a negative sign,

introducing a new force that dampens information transmission. Intuitively, higher types

reflect on their higher past actions and expect their reputations to be more biased upward,

in turn forcing them to take more drastic corrective actions in a way that reduces separation.

Proposition 5 also speaks to rich dynamics of the politician’s reputation management,

consequent to this negative history-inference effect: as long as the discount rate is not too

high, there is an intermediate point at which separation of types—captured by the sensitivity

of the politician’s actions to her type, α3—is minimized (a phenomenon that occurs at all

public histories due to at = α3tθ + α2tLt in equilibrium). Indeed, as the politician begins

taking actions, her past actions begin haunting her: an increasing fear of being perceived

as biased, manifested in an increasingly strong history-inference effect, develops early on.

As time progresses, however, and there is less time to manage the reputation, the politician

beings catering to her bias more and more, and the signaling coefficient starts to increase.

Figure 2 illustrates this phenomenon for different values of the discount rate, an obviously

important parameter when studying reputation effects. Naturally, low (high) values of r
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Figure 2: Nonmonotonic equilibrium signaling coefficient α3 for varying discount rates.

frontload (backload) the incentives to moderate, so the minimum shifts to the left (right)—

our condition 0 < r < r̄ in Proposition 5 simply guarantees that this minimum is interior.

The robust prediction, however, is that moderation is maximized strictly after the beginning

of the politician’s career, despite there being less time to invest in the reputation.

In this game, the prior is that the politician is unbiased. Thus, if all types tied their

hands, or pooled into some action, the outlet’s belief would remain at the prior because

no information is conveyed—the long-term goal would be achieved, but this is costly. The

negative pressure on separation resulting from the history-inference effect then suggests

that the presence of higher-order uncertainty potentially alleviates this form of commitment

problem due to less information being transmitted. To explore these conjectures, we again

exploit the analytical solutions for the public and no-feedback cases without discounting.26

Proposition 6. Suppose that r = 0 and ψ < σ2
Y /γ

o. Then for all T > 0, there exists a

unique LME for the public case and no-feedback case. In the no-feedback case, the outlet

learns less about the politician’s bias, and the politician’s ex ante payoff is higher.

Ignorance can be bliss: the politician can be better off if she does not know her reputation

due to imperfect reporting. A sufficient condition for this to happen is that the direct

(negative) effect of being unable to tailor her actions to her reputation is not too large,

which occurs when the terminal payoff is not too concave (small ψ) or the outlet’s belief is

not too responsive (resulting from either low initial uncertainty or a noisy private signal).27

26Note that the learning comparison in Proposition 6 does not follow immediately from the negative
history-inference effect, since β3 varies across cases.

27This payoff comparison would hold verbatim if instead the outlet reports on what it observes at any
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5 The Main Existence Result

In this section, we transform the problem of existence of LME to a boundary value problem

(BVP), and we provide time horizons for which such a problem admits a solution.

To this end, we postulate a quadratic value function for the sender

V (θ,m, ℓ, t) = v0t + v1tθ + v2tm+ v3tℓ+ v4tθ
2 + v5tm

2 + v6tℓ
2 + v7tθm+ v8tθℓ+ v9tmℓ,

where vi·, i = 0, ..., 9 depend on time only. The Hamilton-Jacobi-Bellman (HJB) equation is

rV = sup
a′

{
ũ(a′,Et[ât], θ) + Vt + µM(a′)Vm + µLVℓ +

σ2
M

2
Vmm + σMσLVmℓ +

σ2
L

2
Vℓℓ

}
, (17)

where ũ := u + 1
2
uââδ

2
1tγtχt, µM(a′) and µL (respectively, σM and σL) denote the drifts

(respectively, volatilities) in (12) and (13), and ât is determined via (15).

Letting a(θ,m, ℓ, t) denote the maximizer of the right-hand side in the HJB equation, the

first-order condition (FOC) reads

∂u

∂a
(a(θ,m, ℓ, t), δ0t + δ1tm+ δ2tℓ, θ) +

γtα3t

σ2
Y︸ ︷︷ ︸

dMt/dat

[v2t + 2v5tm+ v7tθ + v9tℓ]︸ ︷︷ ︸
Vm(θ,m,ℓ,t)

= 0. (18)

Solving for a(θ,m, ℓ, t) in (18), the equilibrium condition becomes a(θ,m, ℓ, t) = β0t +

β1tm+β2tℓ+β3tθ, which is a linear equation. We can then solve for (v2, v5, v7, v9) directly in

terms of β⃗ and (γ, χ) (see (C.1)-(C.4)); the associated mapping is well defined provided that

α3 and γ never vanish, which will be the case in equilibrium. Next, we insert the resulting

expressions into the HJB equation along with a(θ,m, ℓ, t) = β0t + β1tm + β2tℓ + β3tθ, to

obtain a system of ODEs for the (β0, β1, β2, β3) coefficients and remaining value function

coefficients. Because the pair (γ, χ) affects the law of motion of (M,L), these ODEs are

coupled with (9)–(10). The resulting system of ODEs can be further reduced by eliminating

(v0, v1, v3, v4, β0) which are “downstream” of the remaining variables.

This procedure yields a system of ODEs for (β1, β2, β3, v6, v8, γ, χ), to which we need to

add boundary conditions. First, γ and χ satisfy exogenous initial conditions γ0 = γo > 0 and

χ0 = 0. Second, there are endogenous terminal values for the remaining variables that are

determined by the static (Bayes) Nash equilibrium played at time T . To simplify expressions,

instant (i.e., dXt = dYt + σXdZX
t ), since the information structure would be unchanged for σX ∈ {0,+∞}.
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we provide these for the case in which there are no terminal payoffs, ψ ≡ 0:

β1T =
uaâ[uaθûâa + ûâθ]

1− uaâûâaχT

, β2T =
u2aâûâa[uaθûâa + ûâθ](1− χT )

(1− uaâûâa)(1− uaâûâaχT )
, β3T = uaθ, v6T = v8T = 0.

We now introduce our technical conditions for the existence of LME. First, we require

a static equilibrium to exist for all possible histories of play, i.e., for all χT ∈ [0, 1]. This

holds as long as uaâûaâ < 1 in the denominators, which is the basic requirement that myopic

best replies in the static game of two-sided incomplete information intersect. Second, we will

require α3T ∝ uaθ + uaâûâθχT to never vanish, which is guaranteed by uaθ(uaθ + uaâûâθ) > 0

since χT ∈ [0, 1). This, in turn, will ensure that α3 never vanishes. (And since since γ never

vanishes as long as α3 is finite, we can recover (v2, v5, v7, v9) as promised.) These assumptions

are for convenience, as they allow us to discard the pathological possibility of a potential

history in which the signaling game is ill-posed. We collect them next.

Assumption 2. Flow payoffs satisfy (i) uaâûaâ < 1 and (ii) uaθ(uaθ + uaâûâθ) > 0.

Hence, we have reduced the task of finding an LME to solving a boundary value problem

(BVP) for (β1, β2, β3, v6, v8, γ, χ). The ODEs for this boundary value problem, after a change

of variables that facilitates our analysis that follows, are displayed in Appendix C.

Establishing the existence of a solution to the BVP is nontrivial because there are multiple

ODEs in both directions: (β⃗, v6, v8) is traced backward from its terminal values, while (γ, χ)

is traced forward using its initial values. In BVPs where only one variable has an initial

condition and the remaining variables have terminal conditions, a traditional approach is

a one-dimensional shooting argument: guess the terminal value of the remaining variable,

trace all variables backward, and argue via the intermediate value theorem that there is

some guess for which the target (i.e., the exogenous initial condition) is hit. In our problem,

however, two variables have initial conditions, so we must develop a new approach.28

Our approach is motivated by the observation that the problem of equilibrium existence is

fundamentally a fixed-point problem: the evolution of the learning coefficients (γ, χ) depends

on the signaling that takes place during the game, but the latter depends on the path of the

learning coefficients because these are taken as given in the best response problem. Therefore,

we translate our BVP into a fixed point equation in the space of functions (γ, χ).

Our fixed point argument is infinite dimensional. First, we choose an arbitrary pair

λ = (γ, χ) in a suitable domain Λ; this domain nests all functions (γ, χ) that can be obtained

as solutions to their coupled ODEs (9)–(10) for continuous (β1, β3) satisfying a particular

uniform bound. Taking λ as an input, we “shoot back”: we pose an initial value problem

28Special cases for which the one-dimensional shooting is applicable are discussed in Section 6.

28



0.5 1.0 1.5 2.0

-0.5

0.5

1.0

1.5

2.0

Figure 3: One iteration under our fixed-point method for the reputation game. Take as given
candidate learning coefficients (dotted curves pointing to the right). Next, working backwards,
generate candidate equilibrium coefficients (curves pointing to the left). Finally, use the latter
functions to generate solutions to the learning ODEs (solid curves pointing to the right).

for the coefficients in the strategy consisting of their ODEs (which depend on λ) in time-

reversed form and, for initial conditions, the endogenous time-T conditions (which depend

on λT ). We then derive a sufficient condition on the time horizon such that: this initial value

problem has a (unique) solution for all λ in the domain; the solution satisfies the uniform

bound referred to above; and the solution is continuous in λ. We then “shoot forward:”

we feed the resulting (β1, β3) into the ODEs for (γ, χ) to get an “output” pair denoted λ.

We show that the mapping from input pairs λ to λ is continuous, and λ lies in Λ; we then

apply Schauder’s infinite dimensional fixed-point theorem. By construction, the fixed point

and the remaining variables obtained from the procedure constitute a solution to the BVP.

Figure 3 illustrates one iteration of this procedure.

We now state our main theorem for the whole class of games studied. Recall that ψ

captures the sender’s terminal payoff function depending on the receiver’s terminal action.

Theorem 1. Suppose Assumptions 1 and 2 hold. If ψ is linear, or if ψ is not too concave,

there exists a strictly positive and decreasing function γo 7→ T (γo) of order Ω(1/γo) such that

for all r ≥ 0 and horizons less than T (γo) there exists an LME with non-trivial signaling at

all times.

The theorem states that existence is guaranteed when the curvature of the terminal payoff

and time horizon are not too large, or when there is not too much initial uncertainty, for

times that hold irrespective of the discount rate. (We note that if ψ is linear—which nests

the case of no terminal payoffs, ψ ≡ 0—there are no additional restrictions on its slope.)

29



This is a powerful and insightful result. First, the presence of terminal payoff makes

the static Nash equilibrium arising at T more complex due to “last minute” incentives; a

purely technical curvature condition on ψ (that depends on parameters) then allows us to

extract a sufficiently regular selection of static equilibria for all possible (χT , γT ) over [0, 1]×
[0, γo], which we need for our fixed-point argument. Second, as the initial uncertainty γo

increases, beliefs are naturally more responsive to new information, and hence there is more

scope for manipulating beliefs; mathematically, the ODEs for the equilibrium coefficients are

proportional to γ, so the uniform bounds for the associated solutions become tighter.

A natural question that arises is, why this infinite-dimensional approach? First, it is only

when the ODEs for the equilibrium coefficients are traced backward that greater discounting

limits their growth; we exploit this to find times for existence that apply for all r ≥ 0. Second,

the learning ODEs always admit solutions (for continuous coefficients (β1, β3)) if traced

forward, but not necessarily backwards starting from generic values. Thus, the approach

fully exploits the basic economics of the system in each direction. Moreover, note that

any bidirectional fixed-point argument necessarily employs only a subset of the ODEs at

any “shooting” step, and therefore requires candidate solutions of the remaining ODEs as

inputs, so any such argument must be infinite dimensional. Ours is the best avenue.29,30

Finally, all the steps that we have taken can be refined. We can include more general

terminal payoffs, obtain better uniform bounds depending on the game at hand (we only

use the degree of the polynomials involved), and potentially find horizons of existence that

increase with the discount rate: this is because behavior must closer to myopic as r increases,

and the equilibrium for myopic players is well defined for all T . In the next section we

discuss further properties of this method in light of the existing literature, and areas for

future applicability.

6 Discussion and Concluding Remarks

Receiver’s myopia Allowing for a forward-looking receiver has minimal impact on our

analysis. First, no additional states beyond (t, M̂ , L) are necessary to construct LMEs.

Second, the same equilibrium found in each application would arise in a non-myopic case.

29In an earlier version, we developed a finite-dimensional—hence, unidirectional—fixed-point argument.
This method guesses the boundary values for the ODEs at one end, and shoots all the ODEs only once in
the same direction. Hence, the time horizons for existence can sometimes be substantially smaller. Cetemen
(2020) applies that method to an asymmetric LQG game with multi-sided private information where no
states beyond first-order beliefs are needed.

30To exploit discounting in our proof, we perform two further modifications to the BVP before applying
our fixed point argument. For expositional ease, we defer a detailed explanation of those modifications and
the underlying motivation to the proof in Appendix C (see ‘Centering’ and ‘Auxiliary Variable’ steps).
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Consider our reputation example and suppose the outlet deviates from ât = M̂t, incurring

a cost today. While the public signal is affected, the coefficient α3 is unchanged (it is

deterministic and the deviation hidden), so the future informativeness of signals is unaffected.

Thus, there is no future benefit. And in the coordination game, any change in the leader’s

action would be offset in the next period due to the coordination motive. More generally,

this logic holds for prediction problems of the form −1
2
(c0 + c1θ + c2at − ât)

2.31

Of course, there are settings beyond this class in which non-trivial dynamic incentives for

the receiver can arise. We note two things. First, because these incentives involve affecting

a public signal, they are well understood (e.g., signal jamming). Second, our methods are

still equipped to handle the question of existence of LME these cases: the only difference is

that the new BVP incorporates ODEs for the coefficients (δ0, δ1, δ2) in the receiver’s strategy.

But our fixed point method can handle any number of ODEs in any direction.

Private-value environments and one-dimensional Shooting As argued, the presence

of two learning dynamics γ and χ severely complicates the question of finding a solution to

the final BVP. Economically, this is the reflection of the players potentially signaling at very

different rates, so it is natural to examine environments with some symmetry. We say that

an environment is of private values if ûâθ = 0, i.e., the receiver strategically cares about the

sender’s action only. The players then signal at proportional rates (δ1 = ûâaα3) due to the

receiver’s best-response ât being an affine function of Ê[at]. The environment is, therefore,

strategically symmetric.

In this case, our online appendix shows that there is a one-to-one mapping between

γ and χ of the form χt = c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

∈ [0, 1) for some positive constants c1, c2 and d.

Using this relationship, the shooting problem becomes one-dimensional going backwards, and

continuity arguments apply—see, for instance, Bonatti et al. (2017). A remarkable aspect of

our approach is that, while the multidimensional case is both conceptually and technically

considerably more challenging, the horizons for which we can guarantee the existence of LME

in Theorem 1 are of the same order as in the simpler one-dimensional case. The reason is

that the horizons found are pinned down, in both settings, by uniformly bounding the ODEs

associated with the equilibrium coefficients exclusively (i.e., the dependence of the learning

ODEs is only implicit). Consequently, our infinite-dimensional method establishes itself as

the “right” extension of the one-dimensional shooting case when it comes to LQG games.

31Formally, it suffices to show that the myopic coefficients in our analysis solve the ODEs that govern the
dynamic versions of such coefficients when the receiver is forward looking. See spm.nb in our websites.
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Further applications of the fixed-point argument Our fixed-point technique for es-

tablishing the existence of LME accommodates multiple ODEs in each direction. This tech-

nique therefore provides a way of studying settings with asymmetries or complex information

structures where multiple learning ODEs must be confronted — even if private monitoring

is absent. For instance, it can be applied to asymmetric games of multi-sided incomplete in-

formation with public signals exclusively, such as dynamic oligopolies where firms’ costs are

drawn from different distributions. Similarly, it can be applied to reputation models—i.e.,

one-sided signaling—with multidimensional types. Or it can be even extended to situations

in which several players affect a commonly observed signal, such as in trading models.32

Other signal structures Our mixed public-private information structure is useful in that

it allows us to close the state space at the level of a second-order belief. Variations allowing

for stochastic types, or even private signals for all players will certainly require more states,

and whether an infinite regress problem is at play remains to be determined—we leave

exploration of such models for future work.

Beliefs, and in particular, players’ beliefs about what others believe, are at the center of

game theory. When it comes to incomplete information, a large body of work has restricted

to settings in which only first-order beliefs are sufficient statistics, rendering environments

in which higher-order beliefs matter much less explored—and even less so if dynamics are

allowed, as the further complexity arises of those beliefs themselves evolving due to both

ongoing learning and strategic manipulation effects. From this perspective, our paper has

uncovered a complex, yet still tractable, class of games through which we can understand

how higher-order uncertainty affects strategic information transmission through actions.

To accomplish this goal, we have exploited the tractability of a linear-quadratic-Gaussian

structure. While static LQG models have been exploited in many areas due to their well-

known tractability, it is far less obvious what to expect in dynamic settings involving rich

information structures like the ones we study. This paper demonstrates that, while there

is a substantial gap in terms of difficulty when transitioning to the latter world, it is still

possible to get answers, and new economic insights arise. Moreover, it is our belief that the

stylized nature of these games is an asset for uncovering forces that are robust to other, more

nonlinear, settings.

32For example, multiple learning variables arise due to a nested information structure in the trading model
with two traders of Foster and Viswanathan (1994), who confront the problem numerically.
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Appendix A: Proofs for Section 3

Preliminary results. We state standard results on ODEs (Teschl, 2012) which we use in

the proofs that follow. Let f(t, x) be continuous from [0, T ]× Rn to Rn, where T > 0.

- Peano’s Theorem (Theorem 2.19, p. 56): There exists T ′ ∈ (0, T ), such that there is

at least one solution to the IVP ẋ = f(t, x), x(0) = x0 over t ∈ [0, T ′).

If, moreover, f is locally Lipschitz continuous in x, uniformly in t, then:

- Picard-Lindelöf Theorem (Theorem 2.2, p. 38): For (t0, x0) ∈ [0, T ) × Rn, there is an

open interval I over which the IVP ẋ = f(t, x), x(t0) = x0 admits a unique solution.

- Comparison theorem (Theorem 1.3, p. 27): If x(·), y(·) are differentiable, x(t0) ≤ y(t0)

for some t0 ∈ [0, T ), and ẋt − f(t, x(t)) ≤ ẏt − f(t, y(t)) ∀t ∈ [t0, T ), then x(t) ≤ y(t)

∀t ∈ [t0, T ). If, moreover, x(t) < y(t) for some t ∈ [t0, T ), then x(s) < y(s) ∀s ∈ [t, T ).

In what follows, and in the Online Appendix, we often abbreviate α3t to αt.

Proof of Lemma 1. Let L in (6) denote a process that is measurable with respect to X.

Inserting (6) into (4) yields at = α0t+α2tLt+α3tθ which the receiver thinks drives Y , where

α0t = β0t, α2t = β2t + β1t(1− χt), and α3t = β3t + β1tχt.

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

dŶt := dYt − [α0t + α2tLt]dt = α3tθdt+ σY dZ
Y
t ,

which are in the receiver’s information set, and where the last equalities hold from his

perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief

is Gaussian with mean M̂t and variance γ1t (simply γt in the main body) that evolve as

dM̂t =
α3tγ1t
σ2
Y

[dŶt − α3tM̂tdt] and ˙γ1t = −γ
2
1tα

2
3t

σ2
Y

. (A.1)

(These expressions still hold after deviations, which go undetected.)

The sender can affect M̂t via her choice of actions. Indeed, using that dŶt = (at − α0t −
α2tLt)dt+ σY dZ

Y
t from her standpoint,

dM̂t = (κ0t + κ1tat + κ2tM̂t)dt+BY
t dZ

Y
t , where (A.2)

κ1t = α3tγ1t/σ
2
Y , κ0t = −κ1t[α0t + α2tLt], κ2t = −α3tκ1t, B

Y
t = α3tγ1t/σY . (A.3)

On the other hand, since the sender always thinks that the receiver is on path, the public

signal evolves, from her perspective, as dXt = (δ0t+δ1tM̂tdt+δ2tLt)dt+σXdZ
X
t . Because the

dynamics of M̂ and X have drifts that are affine in M̂—with intercepts and slopes that are in
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the sender’s information set—and deterministic volatilities, the pair (M̂,X) is conditionally

Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and Shiryaev (1977),

Mt := Et[M̂t] and γ2t := Et[(Mt − M̂t)
2] satisfy

dMt = (κ0t + κ1tat + κ2tMt)dt︸ ︷︷ ︸
=Et[(κ0t+κ1tat+κ2tM̂t)dt]

+
γ2tδ1t
σ2
X

[dXt − (δ0t + δ1tMt + δ2tLt)dt] (A.4)

γ̇2t = 2κ2tγ2t + (BY
t )

2 − (γ2tδ1t/σX)
2 , (A.5)

with dZt := [dXt − (δ0t + δ1tMt + δ2tLt)dt]/σX is a Brownian motion from the sender’s

standpoint.33 Observe that since (A.4) is linear, one can solve for Mt as an explicit function

of past actions (as)s<t and past realizations of the public history (Xs)s<t.

Inserting at = β0t+β1tMt+β2tLt+β3tθ in (A.4) and collecting terms yields dMt = [κ̂0t+

κ̂1tMt+ κ̂2tLt+ κ̂3tθ]dt+ B̂tdXt, where, (i) κ̂0t = −α3tγ1tα0t/σ
2
Y +α3tγ1tβ0t/σ

2
Y −δ0t γ2tδ1tσ2

X
, (ii)

κ̂1t = α3tγ1tβ1t/σ
2
Y −α2

3tγ1t/σ
2
Y − δ1t

γ2tδ1t
σ2
X

, (iii) κ̂2t = −α3tγ1tα2t/σ
2
Y +α3tγ1tβ2t/σ

2
Y − δ2t

γ2tδ1t
σ2
X

,

(iv) κ̂3t =
[
α3tγ1t
σ2
Y

]
β3t and (v) B̂t =

γ2tδ1t
σ2
X

.

Let R(t, s) = exp(
´ t

s
κ̂1udu). Since M0 = µ, we have Mt = R(t, 0)µ + θ

´ t

0
R(t, s)κ̂3sds +´ t

0
R(t, s)[κ̂0s+κ̂2sLs]ds+

´ t

0
R(t, s)B̂sdXs. Imposing (6) yields the equations χt =

´ t

0
R(t, s)κ̂3sds

and Lt = [R(t, 0)µ+
´ t

0
R(t, s)[κ̂0s+ κ̂2sLs]ds+

´ t

0
R(t, s)B̂sdXs]/[1−χt]. The validity of the

construction boils down to finding a solution to the previously stated equation for χ that

takes values in [0, 1). Indeed, when this is the case, it is easy to see that

dLt = {Lt[κ̂1t + κ̂2t + κ̂3t]dt+ κ̂0tdt+ B̂tdXt}/(1− χt), (A.6)

from which it is easy to conclude that L is a (linear) function of X as conjectured.

We will find a solution to the χ-equation that is C1 with values in [0, 1). Differentiating

χt =
´ t

0
R(t, s)κ̂3sds then yields an ODE for χ as below that is coupled with γ1 and γ2:

γ̇1t = −γ21t(β3t + β1tχt)
2/σ2

Y

γ̇2t = −2γ2tγ1t(β3t + β1tχt)
2/σ2

Y + γ21t(β3t + β1tχt)
2/σ2

Y − (γ2tδ1t)
2 /σ2

X

χ̇t = γ1t(β3t + β1tχt)
2(1− χt)/σ

2
Y − (δ1tχt) (γ2tδ1t) /σ

2
X .

In the proof of Lemma 3 we establish that χ = γ2/γ1 ∈ [0, 1) taking the system above

as a primitive. Setting γ2 = χγ1 in the third ODE, and writing γ for γ1, the first and

33Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on (θ,X) exclusively,

but it also applies to those that condition on past play (i.e., on M). Indeed, from (A.2), M̂t = M̂†
t + At

where M̂†
t = M̂†

t [Z
Y
t ; s < t] and At =

´ t
0
e
´ s
0
κ2uduκ1sasds. Applying the theorem to (M̂†

t , Xt)t∈[0,T ], yields a

posterior mean M†
t and variance γ†

2t for M̂
† such that M† +At = Mt as in (A.4) and γ2t = γ†

2t.
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third ODEs become (9)–(10). Using (i)–(v) that define (⃗̂κ, B̂) yields that (A.6) becomes

dLt = (ℓ0t + ℓ1tLt)dt+BtdXt where

(l0t, l1t, Bt) = [σ2
X(1− χt)]

−1 × (−γtχtδ0tδ1t,−γtχtδ1t(δ1t + δ2t), γtχtδ1t). (A.7)

That Lt coincides with E[θ|FX
t ] is proved in the Online Appendix. □

Proof of Lemma 2. Using (A.3), (A.4) becomes dMt =
γtα3t

σ2
Y

(at− [α0t+α2tLt+α3tMt])dt+
χtγtδ1t
σX

dZt, where dZt := [dXt−(δ0t+δ1tMt+δ2tLt)dt]/σX a Brownian motion from the sender’s

standpoint. As for the law of motion of L, this one follows from (11) using (A.7) and that

dXt = (δ0t + δ2tLt + δ1tMt)dt+ σXdZt from the sender’s perspective.

We conclude with three observations. First, from (A.2) and (A.4), M̂t−Mt is independent

of the strategy followed, and hence so is Zt due to σXdZt = δ1t(M̂t −Mt)dt+ σXdZ
X
t under

the true data-generating process. This strategic independence enables us to fix an exogenous

Brownian motion Z and then solve the best-response problem with Z in the laws of motion

of M and L—i.e., the so-called separation principle for control problems with unobserved

states applies (see, for instance, Liptser and Shiryaev, 1977, Chapter 16).

Second, it is clear from (14), (A.4)–(A.5), and the proof of Lemma 3 that no additional

state variables are needed due to γ2t := Et[(Mt − M̂t)
2] = χtγt holding irrespective of the

strategy chosen. Third, the set of admissible strategies for the best-response problem then

consists of all square-integrable processes that are progressively measurable with respect to

(θ,M,L). This set is clearly the appropriate set, and richer than that in Definition 1. □

Proof of Lemma 3. Consider the system in (γ1, γ2, χ) from the proof of Lemma 1, and

let δ1t := ûâθ + ûaâα3t.
34 The local existence of a solution follows from Peano’s Theorem.

Suppose that the maximal interval of existence is [0, T̃ ), with T̃ ≤ T . Since the system is

locally Lipschitz continuous in (γ1, γ2, χ) uniformly in t ∈ [0, T ], its solution over [0, T̃ ) is

unique (Picard-Lindelöf). Applying the comparison theorem to the pairs {γ1, 0} and {γ1, γo},
we get γ1t ∈ (0, γo] over [0, T̃ ). Hence, γ2/γ1 is well-defined, and since it solves the χ-ODE,

χ = γ2/γ1 by uniqueness. Replacing γ2 = χγ1 in the χ−ODE then yields (10). A second

application of the comparison theorem to {χ, 0} and {χ, 1} then implies χ ∈ [0, 1), and in

turn γ2 = χγ1 ∈ [0, γo), over [0, T̃ ). Since the solution is bounded, if T̃ < T , it can be

extended to T̃ by the continuity of the RHS of the system; and then subsequently extended

beyond T̃ by Peano’s theorem, a contradiction. But if T̃ = T , it can be extended to T—the

first part of the lemma holds. If β30 ̸= 0, then γ̇10 < 0 and χ̇0 > 0, so by continuity of γ̇1 and

χ̇, there exists ϵ > 0 such that γ1t < γo and χt > 0 for all t ∈ (0, ϵ), and by the comparison

34All the results in this proof extend to δ1 being a generic continuous function over [0, T ], the latter case
arising when the receiver becomes forward looking.
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theorem, these strict inequalities hold up to time T . □

Appendix B: Proofs for Section 4

In this section, we highlight the main steps for proving Proposition 1; the no-feedback case

and the corner cases of the reputation game follow similar steps. We also prove Proposition

2. All other results and assertions made in Section 4 are proved in the online appendix.

Proof of Proposition 1. We aim to characterize an LME in which the leader backs out the

follower’s belief from his action at all times, with strategies of the form at = β0t+β1tM̂t+β3tθ

and ât = Êt[at] = β0t+(β1t+β3t)M̂t, where β1t+β3t ̸= 0, t ∈ [0, T ]. Let V : R2× [0, T ] → R
denote the leader’s value function. Given the law of motion for M̂t, the HJB equation is

rV = sup
a∈R

{1
4
[−(a−θ)2−(a−ât)2]+ β3tγt

σ2
Y
[a−β0t−(β1t+β3t)m]Vm+

β2
3tγ

2
t

2σ2
Y
Vmm+Vt}. We guess a

quadratic solution V (θ,m, t) = v0t+v1tθ+v2tm+v3tθ
2+v4tm

2+v5tθm, from which the FOC

in the HJB reads 0 = −1
2
(β0t+β1tm+β3tθ−θ)− 1

2
β3t(θ−m)+(β3tγt/σ

2
Y )[v2t+2mv4t+θv5t]

when the maximizer is a∗ := β0t + β1tm + β3tθ. Provided β3t, γt > 0 (as we verify later),

(v2t, v4t, v5t) =
(

σ2
Y β0t

2β3tγt
,
σ2
Y (β1t−β3t)

4β3tγt
,
σ2
Y (2β3t−1)

2β3tγt

)
, due to the FOC holding for all (θ,m, t) ∈ R2×

[0, T ]. And since viT = 0 for i ∈ {0, . . . , 5}, we deduce that (β0T , β1T , β3T ) = (0, 1/2, 1/2).

Inserting a∗ into the HJB equation, and using the previous expressions for (v2t, v4t, v5t)

to replace (v2t, v4t, v5t, v̇2t, v̇4t, v̇5t), yields an equation in β⃗ := (β0, β1, β3) and
˙⃗
β. Grouping

by coefficients (θ,m, θ2,..., etc.) in the latter yields the ODEs

(β̇0t, β̇1t, β̇3t) =

(
2rβ0tβ3t, β3t

[
r(2β1t − 1) +

β1tβ3tγt
σ2
Y

]
, β3t

[
r(2β3t − 1)− β1tβ3tγt

σ2
Y

])
.(B.1)

The existence of an LME thus reduces to the BVP defined by γ̇t = −γ2t β2
3t/σ

2
Y and (B.1),

with γ0 = γo and (β0T , β1T , β3T ) = (0, 1/2, 1/2). Solving this BVP delivers the remaining vi,

as their ODEs are uncoupled and linear in themselves (see Online Appendix).

To show existence, we transform this BVP into a backward IVP by reversing time and

using a parametrized initial value for γ. We then show that by the intermediate value

theorem, there is γF > 0 such that γT = γo in the backward system while all the other

ODEs admit solutions. As in Bonatti et al. (2017), it suffices to show that the solutions are

uniformly bounded when γt ∈ [0, γo] for t ∈ [0, T ]. Using the comparison theorem, we show

that β0, β1, β3 ∈ [0, 1] as long as γ does not explode, so there exists a solution to the BVP,

and hence an LME. The remaining arguments are carried out in the online appendix.

Proof of Proposition 2. As in the proof of Theorem 1, by the Picard-Lindelöf theorem applied

to the time-reversed ODEs, the strategy coefficients are pinned down by their terminal
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values. It is straightforward to check that (β0, v1, v3) = (0, 0, 0), v6 = σ2
Y [−1 + 2β1(1− χ) +

α3]/(4α3γ)−v8/2 and β2 = 1−β1−β3 satisfy their respective ODEs and terminal conditions

in any LME, so by uniqueness, we have β0 = 0 and β1 + β2 + β3 = 1.

Non-monotonicity: Note that αT = 1
2−χT

> 0, β1T = 1
2(2−χT )

, and v8T = 0. The α-ODE is

α̇t = rαt[αt(2− χt)− 1]− 2α3
tγtχt

{
σ2
Y χt[1− αt − β1t(1− χt)] + αtγtv8t

}
/(σ2

Xσ
2
Y (1− χt)).

Applying the comparison theorem to α (backward), we have α > 0 and thus β30 = α0 > 0.

Using the strict inequalities in Lemma 3, α̇T = − 2α3
T γTχT

σ2
Xσ2

Y (1−χT )

{
σ2
Y χT

1−χT

2(2−χT )

}
< 0 (i.e. α

is eventually decreasing) and αT > 1/2. Now at t = 0, we have χ0 = 0 and thus α̇0 =

rα0(2α0 − 1); it follows that α̇0 > 0 iff α0 >
1
2
. Consider two cases: (i) α0 >

1
2
and (ii)

α0 ≤ 1
2
. In case (i), we have α̇0 > 0. In case (ii), we have αT >

1
2
≥ α0, so by the mean value

theorem, α̇t > 0 for some t ∈ (0, T ). In either case, since α̇T < 0, α is non-monotonic.

Appendix C: Proofs for Section 5

Overview of approach Our overall proof strategy consists of reducing the HJB equation

(17) subject to the equilibrium condition (18) to a suitable boundary value problem that we

then solve using a fixed-point argument. The BVP will contain ODEs linked to behavior—

hence, involving terminal conditions—and also the learning ODEs for (γ, χ) that have initial

conditions. The fixed point will be over pairs of functions (γ, χ): a pair (γ∗, χ∗) that generates

mutual best responses that in turn induce learning ODEs whose solution is (γ∗, χ∗).

This overarching goal requires several intermediate steps, which we label core subsystem,

centering, auxiliary variable, fixed point and verification; we provide brief explanations of

these when they arise. Throughout the proof, we refer to the myopic equilibrium coefficients

(βm
0t , β

m
1t , β

m
2t , β

m
3t) =

(
u0 + uaâû0
1− uaâûaâ

,
uaâ(uaθûaâ + ûâθ)

1− uaâûaâχt

,
u2aâûaâ(uaθûaâ + ûâθ)(1− χt)

(1− uaâûaâ)(1− uaâûaâχt)
, uaθ

)
,

which correspond to the sender’s strategy coefficients in the unique linear Bayes Nash equilib-

rium involving states (θ,M, M̂, L) of the static game with flow utilities (u, û) if the receiver

believes Mt = χtθt + (1 − χt)Lt. By Assumption 2, (βm
0t , β

m
1t , β

m
2t , β

m
3t) is well defined and

αm
t := βm

1tχt + βm
3t ≠ 0 for all χt ∈ [0, 1]. Henceforth, given χt, we write βm

it and αm
t to refer

to these functions of χt, suppressing the dependence on χt, and we abbreviate α3 to α.

Core subsystem: We show that the problem of existence of LME reduces to a core subsystem

in (γ, χ, β⃗, v6, v8), where β⃗ := (β1, β2, β3), and perform a change of variables for (β2, v6, v8);

we denote the new system by (γ, χ, β1, β̃2, β3, ṽ6, ṽ8).
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The first thing to note is that αt := β1tχt + β3t ̸= 0 for all t ∈ [0, T ] in any LME. Indeed,

if αt = 0, it is then easy to verify from the HJB equation that βit = βm
it for i ∈ {0, 1, 2, 3}:

since the sender’s actions transmit no information, both players must be using myopic best

responses. But this implies that αt = αm
t ̸= 0 in such an LME, a contradiction. Second,

since the coefficients (β0, β1, β2, β3) and χ will be continuous, it follows that γt > 0 at all

times by Lemma 3. From the HJB equation, it is easy to see that

v2t = −σ2
Y [uac + uaâûâc − (1− uaâûaâ)β0t]/(αtγt) (C.1)

v5t = −σ2
Y [uaâûâθ + uaâûaâαt − β1t]/(2αtγt) (C.2)

v7t = −σ2
Y [uaθ − β3t]/(αtγt) (C.3)

v9t = −σ2
Y [uaâûaâβ1t(1− χt)− β2t(1− uaâûaâ)]/(αtγt). (C.4)

Expressions (C.1)-(C.4) allow us to eliminate vi and v̇i, i ∈ {2, 5, 7, 9}, in the HJB equation

to get a system of ODEs for (γ, χ, β0, β⃗, v0, v1, v3, v4, v6, v8)—as a last step we verify that our

(α, γ) satisfy |αt||γt| > 0 all t ∈ [0, T ], recovering the value function through (C.1)-(C.4).

The expressions in this system can be found in the Mathematica file spm.nb on our

websites—we omit them in favor of stating the core subsystem with which we will be working

below. The omitted system has three properties easily verified by inspection in the same file:

(i) the ODEs for (β⃗, v6, v8) do not contain (v0, v1, v3, v4, β0);

(ii) given (β⃗, v6, v8), (v0, v1, v3, v4, β0) form a non-homogeneous linear ODE system; and

(iii) (β⃗, v6, v8) carries (1− χ) in the denominator.

Parts (i) and (ii) imply that we can focus on the sub-system (β⃗, v6, v8), as any linear

system with continuous coefficients admits a unique solution for all times (Teschl, 2012,

Corollary 2.6).35 Part (iii) reflects that the dynamic for L carries a denominator of that

form; by Lemma 3, however, we know that χ ∈ [0, 1) if the coefficients are continuous.

It is then convenient to use the change of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 −
χ)2, v8γ/(1− χ)) that eliminates this denominator in the resulting system for the functions

(γ, χ, β1, β̃2, β3, ṽ6, ṽ8)—because (χ, γ) only depend on (β1, β3) directly, it follows that χ ∈
[0, 1) and γ > 0 in any solution to this system, and we trivially recover (β2, v6, v8).

36

35Intuitively, (v0, v1, v4) are the coefficients of the constant, θ- and θ2-terms in the sender’s value function,
none of which the sender controls, so they do not affect the rest of the system. The equations for (β0, v3)
are coupled and encode the deterministic component of the sender’s incentive to manipulate beliefs; they do
not enter the sub-system for (β⃗, v6, v8) but depend on the latter through the signal-to-noise ratio in Y .

36Our method for finding intervals of existence of LME relies on bounding solutions to ODEs uniformly,
and this denominator would unnecessarily complicate that task since there is no upper bound on 1/(1− χ)
that applies to all environments. This change of variables is akin to working with L̃ = (1−χ)L instead of L.
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We can now state the core subsystem of ODEs for (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) with which we

will be working. Recall that δ1t = ûâθ + ûaâ(β1tχt + β3t).

˙̃v6t = ṽ6t[r + α2
tγt/σ

2
Y + 2δ21tγtχt/σ

2
X ]− (γt/2)

{
β2
1tûaâ[2uaâ + uââûaâ]

+β̃2t(2β1t + β̃2t)[−1 + 2uaâûaâ + uââû
2
aâ]

}
˙̃v8t = ṽ8t[r + δ21tγtχt/σ

2
X ]− γt

{
(β̃2 + β1t)[uaθ + uâθûaâ]− β1tβ3t

}
β̇1t = r

αt

αm
t

[β1t − βm
1t ]− γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχt(uaθ + β1tχt) + β2

1t[σ
2
Xαt(uaθ + uaâûâθχt) + (1− 2uaâûaâ)σ

2
Y δ

2
1tχ

2
t ]

+β1tσ
2
Xαt[ûaâ(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uââûâθχt) + αt(−uaθ + uâθûaâ + 2uââûaâûâθχt)]

−β1tσ2
Y uaâδ

2
1tχt(2uaθûaâ + ûâθχt) + δ21tṽ8tαtχt(β1t − uaâûâθ)

−σ2
Xδ1tαt[uaâ(uâθûâθ − uaθαt)− uââuaθδ1t]

}
.

˙̃β2t = r
αt

αm
t

[β̃2t − β̃m
2t ]− γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)(1− uaâûaâ)]

−1×{
δ21tαtχt[2ṽ6t(uaθ + uaâûâθχt)− u2aâûaâûâθṽ8t]

+β̃2tσ
2
Xαt[ûaâ(1− uaâûaâ)(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uaâuaθ − uaâuâθûaâ + uââuaθûaâ

+[u2aâ + uââ]ûâθχt) + αt(uâθûaâ[1− uaâûaâ] + uaθ[−1 + 2uaâûaâ + uââû
2
aâ]

+ûaâûâθχt[u
2
aâ + 2uââ − uaâuââûaâ])] + δ1t[σ

2
Xuaâûaâαt(uaθuââδ1t + uaâ[uaθαt − uâθûâθ])]

−β̃2tσ2
Y (1− uaâûaâ)δ

2
1tχt[uaθ(1− 2uaâûaâ) + χt(uaâûâθ − β1t[1− 2uaâûaâ])]

+αt(1− uaâûaâ)[β̃2tṽ8tδ
2
1tχt − σ2

Xβ
2
1t(uaθ + uaâûâθχt)] + 2σ2

Y δ
2
1tβ̃

2
2tχ

2
t (1− uaâûaâ)

2

+β1tδ1t[σ
2
Xαt(uaâ + uââûaâ)(uaθ + uaâûâθχt) + σ2

Y δ1tχtuaâuaθûaâ(1− 2uaâûaâ)]
}

β̇3t = r
αt

αm
t

[β3t − βm
3t ]− γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχ

2
t (β3t − uaθ)− β2

1tχt[σ
2
Xαt(uaθ + uaâûâθχt) + σ2

Y δ
2
1tχ

2
t (1− 2uaâûaâ)]

−β1tαtσ
2
X [ûaâ(uaâ + uââûaâ)α

2
tχ

2
t + ûâθχt(uâθ + uââûâθχt)

+αt([uâθûaâ − uaâûâθ]χt − uaθ + [uaâ + 2uââûaâ]ûâθχ
2
t )]− β1tδ

2
1tχ

2
tσ

2
Y (1− 2uaâûaâ)(uaθ − αt)

+δ21tαtχtṽ8t(β3t + χtuaâûâθ) + σ2
Xδ1tαt[(uaâuâθ − uââuaθ)ûâθχt + (uaâ + uââûaâ)α

2
tχt

+αt(uâθ − χt[uaθ(uaâ + uââûaâ)− uââûâθ])]
}

γ̇t = −(β1tχt + β3t)
2γ2t /σ

2
Y , χ̇t = γt

[
(β1tχt + β3t)

2(1− χt)/σ
2
Y − δ21tχ

2
t/σ

2
X

]
.

This system has two initial conditions (γ0, χ0) = (γo, 0). It also has terminal conditions

for (β1T , β̃2T , β3T , ṽ6T , ṽ8T ) that depend on whether there are terminal payoffs. In what
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follows, we focus on the case without terminal payoffs—i.e., where the terminal conditions are

(βm
1T , β̃

m
2T , β

m
3T , 0, 0)—postponing the discussion of terminal payoffs to the end of the analysis.

We note that the remaining denominators never vanish thanks to Assumption 2, and that all

the ODEs carry r-independent terms that scale linearly in γ; this latter property will allow

us to find horizons for existence that are inversely proportional to γo.

Centering: To exploit discounting, we focus on the centered system (γ, χ, βc
1, β̃

c
2, β

c
3, ṽ6, ṽ8),

where (βc
1, β̃

c
2, β

c
3) denotes (β1, β̃2, β3) net of the myopic counterpart. The tuple (β1, β̃2, β3)

is constructed going backward in time from its terminal value as with backward induction

in discrete time. One would expect higher discount rates to pull these coefficients towards

the myopic values more strongly, thereby facilitating the existence of LME. Indeed, the

term −r α
αm (βi − βm

i ) in the time-reversed version of the βi-ODE reflects this fact as long as

α := β1χ+β3 does not change sign. To exploit the effect of discounting when finding intervals

of existence, it is then useful to introduce the centered coefficients, i.e., xcit := xit − xmit for

x ∈ {β1, β̃2, β3}, and work with the ODEs of (βc
1, β̃

c
2, β

c
3, ṽ6, ṽ8) in backward form.37

The next lemma states the key properties of this backward centered system, noting that

(i) the RHS of the ODEs for (β1, β̃2, β3) above are polynomials in (β1, β̃2, β3) = (βc
1+β

m
1 , β̃

c
2+

β̃m
2 , β

c
3+β

m
3 ), (ii) (βm

1 , β̃
m
2 , β

m
3 ) are functions of χ and are independent of r, (iii) (β̇m

1 ,
˙̃βm
2 , β̇

m
3 )

carry a factor of γ through χ̇, and (iv) αm
t = uaθ+uaâûâθχt

1−uaâûaâχt
. (The proof is straightforward and

hence omitted.) Without fear of confusion, in the lemma and in what follows we denote

the solution to the backward system by (βc
1, β̃

c
2, β

c
3, ṽ6, ṽ8) (and unless otherwise stated, we

always refer to the backward system when invoking this tuple). Also, let β⃗c := (βc
1, β̃

c
2, β

c
3).

Lemma C.1. For x ∈ {β1, β̃2, β3} and y ∈ {ṽ6, ṽ8}, the (backward) ODEs that xc and y

satisfy have the form

ẋct = −rxct
αt

αm
t

+
γthx(β⃗

c, ṽ6t, ṽ8t, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,x(1− uaâûaâχt)n2,x(1− uaâûaâ)n3,x

ẏt = −yt[r + γtRy(β⃗
c, ṽ6t, ṽ8t, χt)] +

γthy(β⃗
c, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,y(1− uaâûaâχt)n2,y(1− uaâûaâ)n3,y

,

where ni,x, ni,y ∈ N, i = 1, 2, 3, and hx, hy, and Ry ≥ 0 are polynomials.38 The initial

conditions are (β⃗c
0, ṽ60, ṽ80) = (0, 0, 0, 0, 0).

In particular, notice that (i) the terms not containing r continue scaling with γ, (ii)

37This centering step can be sometimes skipped when intervals of existence can be readily obtained
without resorting to the “worst” r = 0 case. See the proofs of Propositions 1 and 3. We also note that a
backward first-order ODE of a function f is obtained by differentiating f̃ = f(T − t), and hence only differs
with the original one in the sign. We maintain the labels to avoid further notational burden.

38More precisely, we have n1,x = 1, n1,y = 0, and n3,β1 = n3,β3 = 0.
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the denominators are bounded away from zero, and (iii) the discount rate term pushes any

solution towards zero when α does not change sign. We turn to this issue in the next step.

Auxiliary variable: To exploit discounting, we introduce an auxiliary variable α̃ ̸= 0 and

work with an ODE-system for (γ, χ, βc
1, β̃

c
2, β

c
3, ṽ6, ṽ8, α̃). Observe that α will indeed never

vanish in any solution to the centered system. In fact, a tedious but straightforward exercise

shows that in backward form, α = β1χ+ β3 satisfies

α̇t = αt

{
−r

(
αt

αm
t

− 1

)
+ γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
δ1t[β1tχt + β3t]σ

2
Xuâθ + δ1tχt[δ1tχtσ

2
Y (2β̃2t[1− uaâûaâ] + β1t[1− 2uaâûaâ])

+(β1tχt + β3t)(δ1tṽ8t + σ2
X [uââδ1t + uaâ(β1tχt + β3t)])]

}}
, (C.5)

with initial condition α0 = αm
0 = uaθ+uaâûâθχ0

1−uaâûaâχ0
(here, for consistency, χ0 is the terminal value

of χ going forward in time). By Assumption 2, αm
0 always has the same sign as uaθ because

χ0 ∈ [0, 1]. Also, the right-hand side of (C.5) is proportional to α, so it vanishes at α ≡ 0.

By the comparison theorem, α is always nonzero, as the ODE is locally Lipschitz continuous

in α uniformly in time. Moreover, since αm never changes sign, α/αm > 0.

However, our fixed point argument will input general (γ, χ) pairs into the backward ODEs

of Lemma C.1, pairs that need not solve the learning ODEs (or even be differentiable). Thus,

we will not be able to use a comparison argument like that above to show that each induced

α := β1χ+ β3 never changes sign for any (γ, χ), allowing us to exploit the discount rate.

To circumvent this difficulty, we augment the BVP with an auxiliary variable α̃ to serve

as a proxy for α in the r term in the centered system; by construction, it will share the sign

of αm and, in any solution to the BVP, will coincide with α. Specifically, observe that using

the decomposition x = xc+xm for x ∈ {β1, β̃2, β3} yields that the r-independent term inside

the outer brace of (C.5) is of the form γthα(β⃗c,ṽ6,ṽ8,χt)

σ2
Xσ2

Y (uaθ+uaâûâθχt)
n1,α (1−uaâûaâχt)

n2,α (1−uaâûaâ)
n3,α , where

hα is a polynomial and nj,α ∈ N, j = 1, 2, 3. We introduce the (backward) linear ODE

˙̃αt = α̃t

{
−r

(
αt

αm
t

− 1

)
+

σ−2
X σ−2

Y γthα(β⃗
c, ṽ6, ṽ8, χt)

(uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

}
(C.6)

with initial condition α̃0 = αm
0 . That is, the right-hand side of (C.6) is exactly as the

one in (C.5) except for α̃ now multiplying the bracket. The exact same application of the

comparison argument between α and 0 shows that α̃ never vanishes over its interval of

existence for any pair (γ, χ) Lipschitz taking values in [0, γo]× [0, 1], and α̃/αm > 0.

Our augmented BVP then consists of the ODEs of xc = βc
1, β̃

c
2, β

c
3 in Lemma C.1 with

a modified r-term of the form −rxct α̃t

αm
t
, i.e., with α̃ replacing α in the numerator of the
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fraction accompanying r. It also includes: the ODEs of y = ṽ6, ṽ8; the learning ODEs (9)-

(10); and the ODE (C.6) of α̃.39 The resulting system of ODEs—denote it żt = F (zt), where

z := (γ, χ, β⃗c, ṽ6, ṽ8, α̃)—is such that each component of F (z) is a polynomial divided by

a product of powers of 1 − uaâûaâ, 1 − uaâûaâχt, and uaθ + uaâûâθχt. Since the latter are

bounded away from zero, F is of class C1. We verify at the end of the proof that any solution

to this augmented BVP satisfies that α := β1χ+ β3 coincides with α̃ by construction.40

Fixed point: Use a fixed-point argument to show that there are horizon lengths of order

1/γo such that the augmented BVP admits a solution. We will prove the following result:

Theorem C.1. Under Assumptions 1 and 2, there is a strictly positive function T (γo) ∈
Ω(1/γo) such that if T < T (γo), there exists a solution to the BVP in z = (γ, χ, β⃗c, ṽ6, ṽ8, α̃).

Proof. The proof consists of converting the BVP into a fixed point problem over pairs λ :=

(γ, χ) in a suitable set. Specifically, for a given λ we can first solve the backward initial value

problem (IVP) in the variables (β⃗c, ṽ6, ṽ8, α̃) that takes λ as an input. Second, we can solve

the forward IVP for the two learning coefficients that takes as an input the solution from

the previous step. This procedure generates a continuous mapping from candidate λ paths

in a suitable set to itself, to which we apply Schauder’s fixed point theorem.

Step 1: Define the domain for our fixed point equation. Let C denote the Banach space

of continuous functions from [0, T ] to R, equipped with the sup norm || · ||∞ defined by

||x||∞ := sup{|xt| : t ∈ [0, T ]}. (To economize on notation, we use || · ||∞ to denote the

supremum norm for objects of all other dimensions too.) By the Arzela-Ascoli theorem (Ok,

2007, p. 198), the space of uniformly bounded functions with a common Lipschitz constant

is a compact subspace of C. In particular, for all ρ,K > 0, define Γ(ρ + K) ⊂ C as the

space of uniformly Lipschitz continuous functions γ : [0, T ] → [0, γo] with uniform Lipschitz

constant (γo)2(2[ρ +K])2/σ2
Y that satisfy γ0 = γo. Likewise, let X(ρ +K) ⊂ C denote the

space of Lipschitz continuous functions χ : [0, T ] → [0, 1] with uniform Lipschitz constant

γo [(2[ρ+K])2/σ2
Y + (|ûâθ|+ |ûaâ|2[ρ+K])2/σ2

X ] that satisfy χ0 = 0. Thus, the product

Λ(ρ+K) := Γ(ρ+K)×X(ρ+K) is a compact subspace of C2.

We note that the these Lipschitz constant are motivated by a bounding exercise of the γ

and χ ODEs that uses |βc
i | < K and |βm

i | < ρ, implying that |βi| < ρ +K, i = 1, 3. Below,

we shall construct horizons over which any solution satisfies this property.

Step 2: Given (γ, χ) ∈ Λ(ρ + K), define a backward initial value problem (IVP) for

(β⃗c, ṽ6, ṽ8, α̃), and establish sufficient conditions for this IVP to have a unique solution.

For any function x, let us use x̂(·) := xT−(·) to emphasize the time-reversed version of x

39For consistency, the αt in the r-term in (C.6) and in (9)-(10) must be written as (βc
1t+βm

1t)χt+βc
3t+βm

3t .
40In a slight abuse of notation, żt = F (zt) assumes that the ODEs have been stated in only one direction.
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whenever convenient (not to be confused with the hat notation used in the main body).

Given any λ ∈ Λ(ρ+K), where (ρ,K) ∈ R2
++, we can define a (backward) IVP consisting of

the ODEs for (β⃗c, ṽ6, ṽ8, α̃) previously stated, but where λ̂ is used in place of the solutions

of the learning ODEs. We write this problem as

ḃt = f λ̂(bt, t) s.t. b0 = (0, 0, 0, 0, 0, αm(λ̂0)), (IVPbwd(λ̂))

where the use of boldface distinguishes solutions to this IVP from those of our original BVP.

We write b(·;λ) for the solution as a functional of the input λ. The extra dependence on

time in the right hand side of (IVPbwd(λ̂)) is due to the role of λ in the system.

For all λt ∈ [0, γo]× [0, 1], let B(λt) := (βm
1 (λt), β̃

m
2 (λt), β

m
3 (λt), 0, 0, α

m(λt)). From here,

we define ρ := supλt∈[0,γo]×[0,1] ||B−6(λt)||∞ > 0, with B−i denoting as usual the vector B

excluding Bi.
41 For arbitrary K > 0, we now establish sufficient conditions for (IVPbwd(λ̂))

to have a unique solution for each λ ∈ Λ(ρ+K).

Lemma C.2. Fix γo, K > 0. There exists a threshold T (γo;K) > 0 such that if T <

T (γo;K), then for all λ ∈ Λ(ρ + K), a unique solution b(·;λ) to (IVPbwd(λ̂)) exists over

[0, T ] and satisfies ||bi(·;λ)||∞ < K for all i ∈ {1, . . . , 5}. Moreover, T (γo;K) ∈ Ω(1/γo).

Proof. Fix any λ ∈ Λ(ρ +K). Since λ is continuous in t and f λ̂ is of class C1 with respect

to bt, f
λ̂ is locally Lipschitz continuous in bt, uniformly in t. By Peano’s theorem, a local

solution exists; and by the Picard-Lindelöf theorem, solutions are unique given existence.

Given K > 0, we now construct T (γo;K) such that a solution exists over [0, T ] and satisfies

||bi(·;λ)||∞ < K for i ∈ {1, . . . , 5}.
We state two facts that hold over any interval of existence. First, using the ODEs adapted

from Lemma C.1 (using α̃ instead of α in the r terms), we have for i ∈ {1, 2, 3} and j ∈ {4, 5}

bit =

ˆ t

0

e
−r
´ t
s

α̃u
αm
u

du
γ̂shi(bs, χ̂s)ds and bjt =

ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγ̂shj(bs, χ̂s)ds.

Here, hi and hj include the denominators that were factored out of hx and hy in Lemma C.1,

and do not contain α̃; Rj is only a relabeling of Ry from the same lemma. Second, as long as

the conjectured bounds |bit| < K for i ∈ {1, 2, . . . , 5} hold, a direct bounding exercise on hi

that uses χt ∈ [0, 1] yields the existence of a scalar hi(K) such that |γ̂shi(bs, χ̂s)| ≤ γohi(K),

i ∈ {1, 2, . . . , 5}, where we have used that γt ∈ [0, γo] at all times.

Equipped with the equations above for bi and with hi(K), i ∈ {1, . . . , 5}, notice that the
bound |bit| < K clearly holds for small t. And as long as it holds, α̃ is finite because b6t has

41We exclude α̃ from the definition of ρ because it does not enter the ODEs for the learning coefficients
explicitly, and hence it does not affect the definition of Λ(ρ+K).
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the form αm
0 e
´ t
0 Gsds with |Gs| < +∞ as the latter depends only on (b−6, χ̂) at time s ∈ [0, t].

Moreover, α̃/αm
t > 0 (see ‘Auxiliary Variable’). Thus, for i ∈ {1, 2, 3} and j ∈ {4, 5},

|bit| ≤
ˆ t

0

e
−r
´ t
s

α̃u
αm
u

du
γohi(K)ds ≤

ˆ t

0

γohi(K)ds = tγohi(K)

|bjt| ≤
ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγohj(K)ds ≤

ˆ t

0

γohj(K)ds = tγohj(K),

where we have used that the exponential term is less than 1. Imposing that the right-hand

sides above are themselves smaller than K leads us to T (γo;K) := mini∈{1,...,5}
K

γohi(K)
> 0

such that (IVPbwd(λ̂)) with T < T (γo;K) by construction admits a unique solution satisfying

|b−6| < K for all λ ∈ Λ(ρ+K). Moreover, since T (γo;K) is independent of r, the statement

holds for all r ≥ 0; also T (γo;K) ∈ Ω(1/γo).42

In what follows, assume T < T (γo;K). Lemma C.2 implies that λ ∈ Λ(ρ+K) 7→ b(·;λ)
is a well-defined function linking λ paths to corresponding solutions to the backward IVP.

We can then define the functional

q(λ) := (b̂1(·;λ), b̂3(·;λ)) + (B1(λ(·)),B3(λ(·)))

that for each λ delivers the induced “total” ‘β1’ and ‘β3’ forward-looking coefficients—the

centered components delivered by the previous IVP plus the myopic counterparts—that we

will use as an input in the learning ODEs below. (Clearly, each q(λ) function is a continuous

function of time.) The continuity of this functional is key for our fixed-point argument.

Step 3: The operator λ 7→ q(λ) is continuous and ||q(λ)||∞ < ρ+K for all λ ∈ Λ(ρ+K).

Let us show, more generally, that λ 7→ b̂(·;λ) is continuous; since λ 7→ Bi(λ(·)) is clearly

continuous due to βm
i = βm

i (χ(·)) being of class C1, i ∈ {1, 3}, the result will follow. To this

end, we make use of the following lemma, proved in the Online Appendix.

Lemma C.3. Let X ⊆ Rn, Y ⊆ Rm and U ⊆ Rn be compact sets. Consider F : X×Y → U

of class C1 and ω : Y → X. Suppose Y ⊂ C([0, T ];Y ) is a collection of functions such that

for all y ∈ Y, the initial value problem IVP(y) defined by ẋt = F (xt, yt) and x0 = ω(y0)

admits a solution defined over [0, T ]. Then there exist constants k1 and k2 (depending on T )

such that for all y1, y2 ∈ Y, the corresponding solutions xi to IVP(yi) satisfy

||x1t − x2t ||∞ ≤ k1||ω(y10)− ω(y20)||∞ + k2 sup
s∈[0,T ]

||y1s − y2s ||∞, for all t ∈ [0, T ].

42It is clear from the argument that α̃ is also uniformly bounded for all λ ∈ Λ(ρ+K). Also, the linearity of
the α̃-ODE (C.6) implies that the interval of existence is constrained only by the ODEs for bi, i ∈ {1, . . . , 5}.
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Now consider any λ1, λ2 ∈ Λ(ρ+K). We apply Lemma C.3 to: x = b; yi = λ̂i, i = 1, 2;

ω(·) = (0, 0, 0, 0, 0, αm(·)); F (xt, yt) := f λ̂(bt, t); and X and Y the hypercubes defined by the

uniform bounds on b and λ, respectively. Using that ||x||∞ = ||x̂||∞, we obtain

||b̂(·;λ1)− b̂(·;λ2)||∞ = sup
t∈[0,T ]

||bt(λ
1)− bt(λ

2)||∞ ≤ k1|αm(λ1T )− αm(λ2T )|+ k2||λ1 − λ2||∞,

for some constants k1 and k2. Since λT 7→ αm(λT ) is continuous, it follows that ||b̂(·;λ1)−
b̂(·;λ2)||∞ → 0 as ||λ1 − λ2||∞ → 0, yielding the desired result.

Finally, ||q(λ)||∞ < ρ+K follows from ||b̂i(·;λ)||∞ < K and ||Bi(λT )||∞ < ρ, i = 1, 3.

Step 4: Construct a continuous self-map on Λ(ρ+K) using the IVP for the learning ODEs.

Take λ ∈ Λ(ρ+K) and define the IVP for λ = (λ1,λ2)

λ̇t = fq(λ)(λt, t) s.t. λ0 = (γo, 0), (IVPfwd(q(λ)))

consisting of the two (forward) learning ODEs (9)-(10) that use as input q(λ) = (q1(λ), q2(λ))

playing the role of (β1, β3)—here, the first (second) entry of the system corresponds to the

γ-ODE (χ-ODE), while the boldface convention aims at distinguishing between inputs λ

via q and induced solutions λ to this IVP. Importantly, because for all λ ∈ Λ(ρ + K) the

function q(λ) is continuous in time, Lemma 3 gives existence and uniqueness of a solution

to (IVPfwd(q(λ))) defined over [0, T ] that satisfies λt ∈ (0, γo]× [0, 1) for all such times.

Next, we argue that λ ∈ Λ(ρ + K). By construction, λ0 := (λ10,λ20) = (γo, 0), and

as noted above, λt ∈ (0, γo] × [0, 1) for all t ∈ [0, T ]. Moreover, from the γ-ODE, we have

that |λ̇1t| = | − λ2
1t([q2(λ)]t+[q1(λ)]tλ2t)2

σ2
Y

| ≤ (γo)2(2[ρ+K])2/σ2
Y for all t ∈ [0, T ]. Similarly, from

the χ-ODE, |λ̇2t| ≤ γo [(2[ρ+K])2/σ2
Y + (|ûâθ|+ |ûaâ|(2[ρ+K]))2/σ2

X ] . Since the Lipschitz

bounds in the definition of Λ(ρ+K) are satisfied, λ ∈ Λ(ρ+K).

Finally, by Lemma C.3 applied to (IVPfwd(q(λ))) by setting x = λ, y = q(λ), ω(y0) =

(γo, 0), F (xt, yt) = fq(λ)(λt, t), X = [0, γo]× [0, 1] and Y = [−ρ−K, ρ+K]2, we conclude that

q 7→ λ(q) is continuous. Since λ 7→ q(λ) is continuous (Step 3), it follows that g(λ) := λ(q(λ))

is a continuous map from Λ(ρ+K) to itself.

Step 5: Show that g has a fixed point. By Step 1, Λ(ρ+K) is a nonempty, compact, convex

Banach space, and by Step 4, g is a continuous map from Λ(ρ+K) to itself. By Schauder’s

Theorem (Zeidler, 1986, Corollary 2.13), there exists λ∗ ∈ Λ(ρ+K) such that λ∗ = g(λ∗). It

is clear, by construction, that (λ∗, b̂(·;λ∗)), with b(·;λ∗) the solution to (IVPbwd(λ̂)) under

λ = λ∗, is a solution to the centered-augmented BVP under study. Finally, maximizing

T (γo;K) over K > 0 yields a T (γo) > 0 that is proportional to 1/γo.

Verification: Recover first a solution to the original BVP, and then to the full HJB equation.

45



We verify that the solution to the centered-augmented BVP induces a solution to the original

BVP stated in the ‘Core subsystem’ section. To do this, we first note that any solution

to the former BVP must satisfy the identity α̃ ≡ α, where αt := β1tχt + β3t, β1t := βc
1t + βm

1t

and β3t := βc
1t+β

m
1t—consequently, (γ, χ, β⃗c, ṽ6, ṽ8) solves the centered system defined in the

‘Centering’ step. Indeed, using the definition of the myopic coefficients as well as the ODEs

for χ, βc
1t, and β

c
3t yields that α in backward form satisfies

α̇t = −rα̃t(αt/α
m
t − 1) + αt

γthα(β⃗
c, ṽ6, ṽ8, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

.

Relative to (C.6), therefore, the r-term as well as the last fraction multiplying α coincide.

Call this last term Ct—a continuous function of time—and observe that p := α− α̃ satisfies

the ODE ṗt = ptCt with initial condition p0 = 0 due to α0 = α̃0 = αm
0 (recall that time is

being reversed). By uniqueness, pt ≡ 0 for all t ∈ [0, T ], confirming that α ≡ α̃.

Given this equivalence, it follows that (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) = (λ∗, b̂−6(·;λ∗) + B−6(λ
∗))

solves by construction the BVP stated in the ‘Core subsystem’ section. Moreover, as

argued in Step 4 in the proof of Theorem C.1, γ > 0 and χ < 1, so we can invert the change

of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 − χ)2, v8γ/(1 − χ)) to obtain (β2, v6, v8). And

since α = α̃ never vanishes (see ‘Auxiliary variable’ section) and γ > 0, we can recover

the rest of the coefficients in the value function as explained in the same section.

We extend our existence result to the case of terminal payoffs in the following corollary,

proved in the online appendix. The bound on curvature ensures that we can select an

equilibrium of the static terminal game with sufficient regularity for our method.

Corollary C.2. There exist ψ ∈ [−∞, 0) and T (γo) ∈ Ω(1/γo) such that if ψââ ∈ (ψ, 0] and

T < T (γo), a linear Markov equilibrium exists for all r ≥ 0.
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Bouvard, M. and R. Lévy (2019): “Horizontal Reputation and Strategic Audience Man-

agement,” Journal of the European Economic Association.

Carlsson, H. and S. Dasgupta (1997): “Noise-proof equilibria in two-action signaling

games,” Journal of Economic Theory, 77, 432–460.

Cetemen, D. (2020): “Efficiency in Repeated Partnerships,” Available at SSRN 3724923.

Cetemen, D. and C. Margaria (2020): “Signaling What You Don’t Want,” Available

at SSRN 3732674.

Cisternas, G. (2018): “Two-sided learning and the ratchet principle,” The Review of

Economic Studies, 85, 307–351.

Daley, B. and B. Green (2012): “Waiting for News in the Market for Lemons,” Econo-

metrica, 80, 1433–1504.

Dessein, W. and T. Santos (2006): “Adaptive Organizations,” Journal of Political Econ-

omy, 114, 956–995.
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