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Abstract

We propose a modified version of the augmented Kalman filter (AKF) to evaluate the like-
lihood of linear and time-invariant state-space models (SSMs). Unlike the regular AKF,
this augmented steady-state Kalman filter (ASKF), as we call it, is based on a steady-state
Kalman filter (SKF). We show that to apply the ASKF, it is sufficient that the SSM at hand
is stationary. We find that the ASKF can significantly reduce the computational burden to
evaluate the likelihood of medium- to large-scale SSMs, making it particularly useful to
estimate dynamic stochastic general equilibrium (DSGE) models and dynamic factor mod-
els. Tests using a medium-scale DSGE model, namely the 2007 version of the Smets and
Wouters model, show that the ASKF is up to five times faster than the regular Kalman
filter (KF). Other competing algorithms, such as the Chandrasekhar recursion (CR) or a
univariate treatment of multivariate observation vectors (UKF), are also outperformed by
the ASKF in terms of computational efficiency.
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1 INTRODUCTION

Since their introduction in the 1980s, dynamic stochastic general equilibrium (DSGE) models

have become a cornerstone of modern macroeconomics. While the first class of DSGE mod-

els mainly consisted of small-scale models with a handful of equations and only a few shocks

(e.g., Hansen, 1985; King et al., 1988), the complexity of these models has increased signif-

icantly over the past decades (see, e.g., Leeper et al., 2010; Gadatsch et al., 2016; Drygalla

et al., 2020). In particular, New-Keynesian models, such as those of Christiano et al. (2005)

or Smets and Wouters (2003, 2007), are no longer used only for academic purposes but also

for monetary policy analysis.1 A popular approach to specify the parameters of a (log-) lin-

earized DSGE model is to treat its policy function as a linear (and time-invariant) state-space

model (SSM), and estimate this SSM using likelihood-based methods (e.g., Ireland, 2004; An

and Schorfheide, 2007; Chari et al., 2007). However, as the complexity of the model increases,

the repeated evaluation of the likelihood function can become time-consuming.2 This paper

proposes an algorithm to evaluate the likelihood of linear and time-invariant SSMs. We find

that this augmented steady-state Kalman filter (ASKF), as we call it, can significantly reduce

the time required to evaluate the likelihood of (log-) linearized DSGE models, such as the one

introduced by Smets and Wouters (2007). Although we focus mainly on DSGE models in this

paper, the ASKF may also be useful for estimating other linear and time-invariant SSMs such

as, e.g., dynamic factor models.

There are two likelihood-based approaches to estimate the parameters of DSGE models,

namely the frequentist and the Bayesian approach. The frequentist approach considers the

set of unknown parameters as fixed and estimates them by maximum-likelihood. The number

of likelihood evaluations within this approach remains manageable for a limited amount of

unknown parameters and a well-shaped likelihood function. However, even for well-identified

models, due to the curse of dimensionality, maximization of the likelihood function often be-

comes a difficult task as the dimension of the parameter space rises. Thus, problems with a

high-dimensional parameter space often require global search routines, such as simulated an-

nealing, to locate the global maxima (see, e.g., Andreasen, 2010; Šustek, 2011). However,

exploring a high-dimensional parameter space usually also requires a considerable amount of

likelihood evaluations. Hence, efficient techniques to evaluate the likelihood function become

essential as the number of parameters increases.

In contrast to the frequentist approach, Bayesian econometricians treat the unknown param-

eters as random variables. By combining the information contained in the data (likelihood

1E.g., the European Central Bank uses an open-economy extension of the model by Smets and Wouters (2007),
the so-called New Area-Wide Model, for macroeconomic projection exercises.

2Herbst (2015) reports that the likelihood is sometimes evaluated up to several million times, for both classical
and the Bayesian approach.
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function) with their prior beliefs about the parameters (prior density), the Bayesian approach

seeks to gain information about the (posterior) density of the unknown parameters for a given

set of data. From a technical perspective, modern sampling techniques, like the random walk

Metropolis-Hasting (RWMH) algorithm used by Smets and Wouters (2007), the tailored ran-

domized block Metropolis-Hastings (TaRBMH) algorithm suggested by Chib and Ramamurthy

(2010), or the Sequential Monte Carlo sampler by Herbst and Schorfheide (2014), provide

easily accessible ways to generate draws from the posterior distribution, that are often in some

ways less challenging than maximizing the likelihood function. However, all three samplers

mentioned above require a considerable amount of likelihood evaluations. For example, esti-

mating a medium-scale DSGE model, such as the model by Smets and Wouters (2007), requires

up to several million likelihood evaluations, depending on the selected sampling algorithm.3

Thus not surprisingly, Herbst (2015) reports that, especially in medium to large-scale DSGEs

models, the likelihood evaluation eventually becomes one of the bottlenecks in the estimation

process.

As mentioned above, we can treat the policy function of (log-) linearized DSGE models as

a linear SSM, where we assume that the behavior of a set of time series links to the dynamics

of some potentially unobserved states. In the case of linear SSMs with Gaussian disturbances,

we may use the so-called Kalman filter (KF) to recursively determine these states’ mean vec-

tor and variance matrix for a given set of observed data. Consequently, the KF also provides

the means to evaluate the likelihood function of the model. However, this recursive algorithm

quickly becomes computationally demanding as the model’s complexity increases. To reduce

the computational burden of the KF, we might exploit the fact that for time-invariant and sta-

tionary SSMs, the uncertainty about the model’s states converges towards an equilibrium as

the number of observations increases. Hence, after a certain number of observations, it is no

longer necessary to update the states’ variance matrix, and we can replace the regular KF with

a stationary recursion, which we refer to as a steady-state Kalman filter (SKF). However, the

convergence process of the states’ variance matrix can take many periods, especially when esti-

mating DSGE models. Therefore, in this paper, we propose a variant of the KF based on a SKF

augmented in the manner of de Jong (1988, 1991). We show that the additional computations

caused by augmenting the filter require fewer arithmetic operations than those necessary to

update the states’ variance matrix. We find that this ASKF can significantly reduce the compu-

tational burden of the likelihood evaluation in medium- to large-scale SSMs. Furthermore, we

show that for DSGE models without measurement error, where the number of exogenous state

3Note that Smets and Wouters (2007) generate only 250000 draws from the posterior distribution using the Ran-
dom Walk Metropolis-Hastings sampler, where each draw is equivalent to one likelihood evaluation. However,
as mentioned by Chib and Ramamurthy (2010), a careful exploration of the parameter space to find the mode
of the posterior distribution needed to tune the Random Walk Metropolis-Hastings algorithm often requires a
large amount of additional likelihood evaluations.
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variables equals the number of the observable time series, it is usually possible to determine

the equilibrium variance matrix of the model’s states analytically.

The ASKF adds to a strand of literature that attempts to evaluate the likelihood of linear SSMs

more efficiently. For models where the number of observed time series exceeds the number

of states, Jungbacker and Koopman (2014) suggest a model transformation that reduces the

dimensionality of the observation vector to the dimension of the state vector. This „collapsing of

large observation vectors,“ as Durbin and Koopman (2012) call it, is particularly helpful in the

context of dynamic factor models, where we attribute the common dynamics from a typically

large number of time series to the movement in a small number of unobserved factors.

Koopman and Durbin (2000) propose a version of the KF in which they do not treat obser-

vations as vectors but consider each element of the observation vector as a new observation.

Durbin and Koopman (2012, Chapter 6.4.4) show that this univariate treatment of multivariate

observation vectors (UKF) requires fewer arithmetic operations than the regular KF, especially

when the number of observed time series is large. Further, the UKF has proven particularly

helpful when dealing with diffuse initialization problems.

Using the generic SSM of Chib and Ramamurthy (2010) – a simulation model with ten ob-

servable time series and five state variables – to compare the ASKF with the UKF, we find that

the former eventually will outperform the latter, provided that the convergence process of the

states’ variance matrix lasts for at least 50 periods. Additionally, we use the model transforma-

tion by Jungbacker and Koopman (2014) to collapse the dimension of the observation vector,

finding that, in this case, the ASKF becomes profitable after about 75 periods. The ASKF needs

some periods to acclimatize because it requires determining the equilibrium variance matrix of

the model’s states prior to the actual recursion. However, since the convergence speed of the

states’ variance matrix typically cannot be determined ex-ante and the likelihood evaluation is

usually relatively cheap in cases where the convergence process lasts only for a couple of peri-

ods, we consider the ASKF a valid option to evaluate the likelihood of SSMs, where the number

of observed time series exceeds the number of states.

If, on the other hand, the number of states is significantly larger than the number of ob-

servable variables, as is often the case for structural DSGE models, the techniques mentioned

above become less valuable. For this reason, Herbst (2015) suggests using the Chandrasekhar

recursion (CR) developed by Morf (1974) and Morf et al. (1974) when estimating medium to

large-scale DSGE models. Compared to the regular Kalman recursion, this algorithm replaces

the Riccati difference equation (RDE), typically used to update the state variance matrix by

another set of difference equations. When the number of state variables is significantly larger

than the dimension of the observation vector, this set of “Chandrasekhar-type“ difference equa-

tions can be shown to require fewer arithmetic operations than the original algorithm. We

compare FORTRAN and MATLAB® implementations of the CR and the ASKF using the DSGE
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model introduced by Smets and Wouters (2007) as a benchmark. Even considering a variant of

the Smets and Wouters (2007) model, in which all model variables are considered to be states,

which is favorable for the CR, the FORTRAN implementation of the ASKF is almost twice as

fast as the FORTRAN implementation of the CR. The ASKF performs even better in MATLAB®,

being about three times quicker than the CR. Compared to the regular KF and the UKF, we find

that the ASKF reduces the computational burden by 60 to 80 percent, depending on whether

we consider all model variables as states or not.

The remainder of the paper reads as follows. The following section revisits some basic con-

cepts necessary for the derivation of the ASKF. In Section 3, we will outline the basic idea of

the ASKF and present an efficient algorithm to compute the log-likelihood of linear and time-

invariant SSMs. Furthermore, we compare the additive and multiplicative operations of the

regular KF and the ASKF for each additional observation and discuss the latter’s implementa-

tion. In the subsequent section, we apply the ASKF to the generic SSM by Chib and Ramamurthy

(2010) and the DSGE model introduced by Smets and Wouters (2007) and compare it in terms

of speed and accuracy to the regular KF, the UKF, and the CR. The last section concludes the

paper.

2 STATE-SPACE MODELS AND THE KALMAN FILTER

In the following, we revisit some basic concepts and tools relevant throughout this paper. First,

we introduce the class of linear and time-invariant state-space models (SSMs) and a textbook

version of the Kalman filter (KF). Then we analyze the asymptotic properties of the filter and

the concept of a steady-state Kalman filter (SKF). Finally, we introduce the augmented Kalman

filter (AKF), which will form the foundation for deriving the augmented steady-state Kalman

filter (ASKF) in the subsequent section.

2.1 State-space representation

As a general framework for our analysis, let us assume we have the following time-invariant,

linear, and Gaussian SSM:4

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1,2, . . . , N (1a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1,2, . . . , N (1b)

where yt ∈ Rny and wt ∈ Rnw are vectors containing the observed data and the potentially

unobserved states at time t. The system matrices F ∈ Rnw×nw , H ∈ Rny×nw , Q ∈ Rnw×nw , R ∈
4We refer to Durbin and Koopman (2012, Chapter 4) for a textbook treatment of the KF with respect to SSMs,

where the system matrices are allowed to change over time. However, note that most (log-) linearized DSGE
and a variety of other time series models can be represented in terms of a time-invariant SSM.
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Rny×ny , and the vector h ∈ Rny may be functions of a potentially uncertain vector θ of time-

invariant deep parameters. The normally distributed disturbances ut ∈ Rny and vt ∈ Rnw are

assumed to be serially independent and uncorrelated with each other, i.e.,

E[uiu
T
j ] =







R, i = j,

0, i 6= j.
, E[viv

T
j ] =







Q, i = j,

0, i 6= j.
, E[uiv

T
j ] = 0, ∀ i, j = 1, 2, . . . , N .

Furthermore, they shall be uncorrelated to the initial state vector w0, so that

E[ut(w0 −µ0)
T ] = E[vt(w0 −µ0)

T ] = 0, ∀t = 1, 2, . . . , N .

If all eigenvalues of the matrix F lie within the unit circle, we will call (1) a stationary SSM.

Throughout this paper, we will use the SSM (1) as a flexible and general framework for the

derivation and analysis of the ASKF. However, in some situations it will be convenient to con-

sider the special case of the SSM (1) without the measurement error ut , i.e., ut = 0, ∀t =

1, 2, . . . , N and R= 0, resulting in

yt = h+H ·wt , ∀t = 1,2, . . . , N (2a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1,2, . . . , N (2b)

Further, we will assume the system matrices H, F, and Q of SSM (2) to take the form

H=
�

Hz Hx

�

, (2c)

F=

�

Fz

Fx

�

, (2d)

Q=

�

Qz 0

0 0

�

, (2e)

and that the quantities wt and vt define as

wt :=
�

zT
t xT

t

�T
, vt :=

�

vT
t,z 0

�T
, ∀ t = 1, 2, . . . , N ,

where xt ∈ Rnx represents the vector of the predetermined states already known from period t−
1. In contrast, the vector zt ∈ Rnz collects the exogenous states of the model, whose realization

is affected by the stochastic innovations vector vt,z ∈ Rnz . The framework described by SSM

(2) will meet the design requirements of a large number (log-) linearized DSGE models, such

as the model introduced by Smets and Wouters (2007).
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2.2 The Kalman filter

Both Bayesian and frequentist estimation techniques often require the evaluation of the likeli-

hood function. A suitable tool for this purpose is the KF. Since the SSM (1) is Gaussian, for a

given initialization (µ0,C0) and a set of observations YN = {y1,y2, . . . ,yN} generated by SSM (1),

the KF represents a recursive algorithm to compute the mean vectors — wt|t−1 := E[wt |Yt−1]

and µt := E[wt |Yt]— and variance matrices — Pt|t−1 := Var[wt |Yt−1] and Ct := Var[wt |Yt]—

of wt given Yt−1 and wt given Yt , respectively, for all periods t = 1, 2, . . . , N . If we define

Kt := Pt|t−1HT
�

HPt|t−1HT +R
�−1

, ∀t = 1, 2, . . . , N , (3)

and let et := yt − h − Hwt|t−1 and Ut := HPt|t−1HT + R denote the forecast error of yt given

Yt−1 and its corresponding variance matrix, respectively, we receive the Kalman recursion for

t = 1, 2, . . . , N as

wt|t−1 = F µt−1, (4a) Pt|t−1 = F Ct−1 FT +Q, (4b)

et = y(h)t −H wt|t−1, (4c) Ut = H Pt|t−1 HT +R, (4d)

µt = wt|t−1 +Kt et , (4e) Ct = Pt|t−1 −Kt H Pt|t−1, (4f)

where y(h)t := yt − h for all t = 1, 2, . . . , N . A detailed derivation of recursion (4) is provided in

Appendix A. Throughout this paper we will follow Lütkepohl (2007) and refer to the matrix Kt

as the so-called Kalman gain.5

To avoid confusion, note that alternatively to the initialization (µ0,C0) the KF may also be

initialized at (w1|0,P1|0) with w1 ∼ N(w1|0,P1|0). In this case the state equation (1b) for t = 1

becomes redundant so that the corresponding SSM reduces to

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1,2, . . . , N , (5a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w1|Y0 ∼ N(w1|0,P1|0), ∀t = 2,3, . . . , N . (5b)

The Kalman recursion for the SSM (5) is identical to recursion (4), apart from the fact that in

t = 1 steps (4a) and (4b) are redundant, since w1|0 and P1|0 are already known. Thus, if we

choose w1|0 = Fµ0 and P1|0 = FC0FT +Q, the quantities computed by the KF are the same as

the ones computed for the SSM (1). Although the Kalman filter is often derived based on the

alternative SSM (5) (see e.g., Hamilton (1994, pp. 372-408), Durbin and Koopman (2012) or

DeJong and Dave (2011)), hereafter we will focus on the SSM (1) presented at the beginning

5Note that some authors, e.g., Hamilton (1994) and Durbin and Koopman (2012), define the Kalman gain as
Kt := FPt|t−1HT

�

HPt|t−1HT
�−1

. In this case the Kalman gain defines the gain matrix with respect to wt+1
given Yt , while in the current paper it is treated as the gain matrix with respect to wt given Yt .
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of this subsection, since it is more convenient for the derivation of the ASKF in Section 3.

As an important by-product the KF provides a possibility to evaluate the likelihood function

of the SSM (1) for a given set of parameters θ and a given initialization (µ0,C0). To see this,

note that yt given Yt−1 is normally distributed for all t = 1, 2, . . . , N , with corresponding mean

vector h+Hwt|t−1 and variance matrix Ut . Hence using the forecast-error decomposition the

log-density of YN yields:

log
�

fYN

�

= −
ny N

2
log(2π) −

1
2

N
∑

t=1

log |Ut | −
1
2

N
∑

t=1

eT
t U−1

t et . (6)

It is well-known (see e.g., Durbin and Koopman (2012, pp. 185)) that under quite general regu-

larity conditions the distribution of the maximum-likelihood estimator for the deep parameters

θ , defined by

θ̂ := argmax
θ

log
�

fYN

�

,

is for large N approximately normally distributed with mean vector θ̂ and variance matrix

ÓVar
�

θ̂
�

=

�

∂ log
�

fYN

�

∂ θ ∂ θ T

�−1

.

For a more detailed treatment of the asymptotic properties of the maximum-likelihood estima-

tor, see e.g Hamilton (1994) and Harvey (1990a).

Taking the Bayesian perspective the density fYN
for a given parameter vector θ is also impor-

tant, since it is required to generate draws from posterior distribution fθ |YN
∝ fYN |θ · fθ .

Note that the quantities of the KF, and therefore the log-likelihood defined by (6), are con-

ditional on the distribution of the initial state vector w0, which itself is determined by (µ0,C0).

The probably most common initialization strategy for stationary SSMs, is to specify µ0 and C0

as the unconditional mean vector µ and the unconditional variance matrix C of the state vector

wt (see e.g., Hamilton (1994, pp. 378) or Durbin and Koopman (2012, pp. 123,137-138)).

These are obtainable from the state equation (1b) as

µ= 0 (7a)

and as the positive semi-definite matrix C solving the discrete Lyapunov equation

0= FCFT +Q−C. (7b)

This means that µ0 and C0 are determined by F and Q, which in turn are determined by the
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vector of deep parameters θ . Consequently, using this initialization (6) represents the exact or

unconditional log-likelihood of the model.

2.3 The steady-state Kalman filter

Within the class of time-invariant and linear SSMs, it is a well-known feature of the KF that

under certain circumstances the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge towards fixed ma-

trices. In this case we call the KF asymptotically time-invariant. To establish conditions for

an asymptotically time-invariant filter, first note that in a time-invariant SSM like (1), the se-

quences {Ct}Nt=1 and {Pt|t−1}Nt=1, obtained by the Kalman recursion (4) do not depend on the

data itself. This becomes obvious if we use (4b), (4d), and (4f) to obtain the law of motion of

the sequence {Ct}Nt=1 as

Ct = FCt−1FT +Q−
�

FCt−1HT +G
� �

HCt−1HT +R
�−1 �

HCt−1FT +GT
�

, (8a)

with H := HF, G := QHT and R := HQHT + R. Analogously, we can also obtain the law of

motion of the sequence {Pt|t−1}Nt=1 as

Pt+1|t = FPt|t−1FT − FPt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1FT +Q. (8b)

Furthermore, both (8a) and (8b) belong to the class of Riccati difference equations (RDEs),

which convergence properties have been intensively studied by the literature (see e.g., Caines

and Mayne (1970), Chan et al. (1984), de Souza et al. (1986) or De Nicolao and Gevers

(1992)). In what follows, we give a brief summary of their results by establishing some well-

known sufficient conditions under which the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge against

fixed matrices.6

We shall introduce some basic notions in advance: First, we call non-negative definite matri-

ces C+ and P+ solutions of RDEs (8a) and (8b), respectively, if they satisfy the discrete algebraic

Riccati equations (DAREs)

C+ = FC+FT +Q−
�

FC+HT +G
� �

HC+HT +R
�−1 �

HC+FT +GT
�

, (9a)

P+ = FP+FT − FP+HT
�

HP+HT +R
�−1

HP+FT +Q, (9b)

corresponding to (8a) and (8b), respectively. Furthermore, if C+ and P+ = FC+FT + Q are

solutions to RDE (8a) and (8b), respectively, we call them stabilizing / strong solutions, if and

6For a more general discussion on the convergence of time-invariant RDEs see Appendix B.
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only if all eigenvalues of the matrix

F̃ = F
�

I− P+HT
�

HP+HT +R
�−1

H
�

(10)

are inside / inside or on the unit circle.7 Consequently, every stabilizing solution is also a strong

solution, while a strong solution is not necessarily also a stabilizing solution. Further, we may

show that RDEs such as (8a) or (8b) have at most one (and therefore unique) strong solution

(see e.g., de Souza et al., 1986).

Using this terminology we may establish three sufficient conditions under which the KF be-

comes asymptotically time-invariant:

Proposition 2.1 Suppose C0 ∈ Rnw×nw is an arbitrary, but symmetric and positive-definite matrix.

Then in case of SSM (1) the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge towards fixed matrices C+
and P+, i.e.

lim
N→∞

{Ct}Nt=1 = C+ and lim
N→∞

{Pt|t−1}Nt=1 = P+,

if at least one of the following statements is true:

(i) The matrix R is non-singular and all eigenvalues of the matrix F are inside the unit-circle. In

this case C+ and P+ are stabilizing solutions of the RDEs (8a) and (8b), respectively.

(ii) The matrix R is non-singular and all eigenvalues of the matrix F = F − GR−1H are inside

the unit-circle. In this case C+ and P+ are stabilizing solutions of the RDEs (8a) and (8b),

respectively.

(iii) The matrix C0 satisfies the discrete Lyapunov equation

0= FC0FT +Q−C0

and the all eigenvalues of the matrix F are inside the unit-circle. In this case C+ and P+ are

strong solutions of the RDEs (8a) and (8b), respectively. Moreover, we may state that the

matrices C0 −C+ and P1|0 − P+ are positive-semi-definite.

We postpone the formal proof of Proposition 2.1 to Appendix B. From statement (i) of Proposi-

tion 2.1 follows that for all SSMs relying on a stationary process for wt the KF becomes asymp-

totically time-invariant if the variance matrix of the measurement error ut is non-singular. These

assumptions are often met, for example, in the context of dynamic factor models (see e.g., Stock

and Watson, 2016). There are however situations where R might be singular, but R has full

7Note that some authors, e.g., Bini et al. (2012); Chiang et al. (2010), use the term almost stabilizing solution
as synomym for a strong solution.
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rank. This is often the case in the DSGE context (see e.g., Chari et al., 2007), as measurement

errors are often omitted in these models. In this case we may use statement (ii) of Proposition

2.1, to investigate the convergence of (8a). If neither the conditions of statement (i) nor the

conditions of statement (ii) are satisfied, statement (iii) will at least ensure that for any sta-

tionary SSM, both the matrix sequences, {Ct}Nt=1 and {Pt|t−1}Nt=1, converge to an equilibrium,

provided they are initialized at the unconditional variance matrix C of the state vector.

As mentioned before, all three statements of Proposition 2.1 provide sufficient conditions for

the convergence of the matrix sequences {Ct}Nt=1 and {Pt|t−1}Nt=1. However, statements (i) and

(ii) of Proposition 2.1 imply that C+ and P+ are stabilizing solutions of the RDEs (8a) and (8b),

while statement (iii) guarantees only convergence to a strong solution. Note that convergence

to a stabilizing solution has the major advantage that we may use standard methods, such

as the Schur algorithm (Bini et al., 2012, Chapter 3.2), the Newton algorithm (Bini et al.,

2012, Chapter 3.3) or the doubling algorithm (Anderson and Moore, 1979, Chapter 6.7), to

numerically solve (9a) for its stabilizing solution. Although there are iterative algorithms for

determining a strong solution, such as the structured doubling algorithm described by Bini et al.

(2012, Chapter 5), these algorithms are potentially less efficient from a computational point of

view (see e.g., Chiang et al., 2010).

One of the advantages of an asymptotically time-invariant filter is that at a certain period τ,

when Cτ has converged sufficiently close to C+, i.e., Cτ ≈ Cτ−1, the Kalman recursion (4) for

µt might be replaced by

µt,+ = K+ y(h)t + J+ µt−1,+, ∀ t = τ+ 1,τ+ 2, . . . , N , (11a)

with

P+ = FC+FT +Q, (11b)

U+ = HP+HT +R, (11c)

K+ = P+HT U−1
+ , (11d)

J+ = (I−K+H)F. (11e)

This usually reduces the computational burden significantly, since (11) does not involve the

computationally expensive steps (4b), (4d) and (4f) of the original recursion. Furthermore,

from (4a) and (4c) follows that the quantities et and wt|t−1 for t = τ+ 1,τ+ 2, . . . , N may be

received in vectorized form as

�

wτ+1|τ,+ · · · wN |N−1,+

�

= F
�

µτ,+ · · · µN−1,+

�

, (11f)
�

eτ+1,+ · · · eN ,+

�

=
�

y(h)τ+1 · · · y(h)N

�

−H
�

µτ,+ · · · µN−1,+

�

, (11g)

11



Throughout this paper, we will refer to the time-invariant filter described by (11) as the SKF.

A detailed derivation of (11) is given in Appendix C.

Note that Hansen and Sargent (2013, pp. 160) suggest to initialize the KF at the stabilizing so-

lution of (8a) or (8b), respectively, i.e., µ0 = µ0,+ and C0 = C+.8 This initialization is often used

in the context of maximum-likelihood estimation, since despite the fact that the log-likelihood

calculated on the basis of this initialization usually does not reflect the exact or unconditional

log-likelihood, the determined maximum-likelihood estimator may (under certain precondi-

tions, see e.g., Harvey, 1990b, pp. 119, 129) have the same large-sample properties as the

unconditional maximum-likelihood estimator. Although, the maximum-likelihood estimators

based on an initialization different from the exact or unconditional initialization is in generally

less efficient, the steady-state initialization has the advantage that the resulting log-likelihood

can be computed using the quicker SKF (11) with τ = 0. Furthermore, given C0 = C+ we can

rewrite (6) in a more compact way:

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

eT
1:N ,+ U−1

+ e1:N ,+

��

, (12)

where e1:N ,+ :=
�

e1,+ · · · eN ,+

�

.

2.4 The augmented Kalman filter

There may be situations where we want to investigate how the initial state vector (or some

components of it) affects the quantities obtained by the KF. For instance, consider a SSM

with several non-stationary states. A typical approach to initialize such a model is to consider

the non-stationary elements of state vector as diffuse, which means that their variance will

tend towards infinity. In such situations, it might be worth considering another variant of

the KF, which goes back to influential work by de Jong (1988, 1991). In what follows, we

briefly describe a version of what Durbin and Koopman (2012) call the augmented Kalman

filter (AKF).9

Let us assume that w0 ∈ Rnw̄ and d ∈ Rnd with nw̄, nd ≤ nw are two independent random

vectors, such that we may write the initial state vector as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0), (13)

where aw ∈ Rnw , Aw ∈ Rnw×nw̄ and Ad ∈ Rnw×np . Note that (13) implies that w0 has the mean

vector µ0 = aw + Awµ0 + Adδ0 and the variance matrix C0 = AwC0AT
w + AdD0AT

d . By choosing

aw, Aw and Ad appropriately, we may use (13) to decompose w0 into multiple components

8Note that in this context µ0,+ is usually chosen to be unconditional mean vector µ= 0.
9A similar treatments of the AKF with respect to the alternative state-space representation (5) are given by Durbin

and Koopman (2012, Chapter 5.7).
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of interest. Durbin and Koopman (2012), for instance, choose aw, Aw and Ad, such that aw

represents the fixed (and observable) elements, w0 the stationary elements, and d the diffuse

elements of w0.

Now suppose, we specified w0 according to (13) and want to examine how the distribution

of the random vector d affects the quantities µt and Ct of the KF. As we show in Appendix

D, denoting the time t quantities generated by the Kalman recursion (4) initialized at (µ̃0, C̃0),

with

µ̃0 = aw +Aw µ0, (14a)

C̃0 = Aw C0 AT
w, (14b)

by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t , we may express µt and Ct as

µt = µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

, ∀ t = 1, 2, . . . , N , (15a)

Ct = C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t , ∀ t = 1, 2, . . . , N , (15b)

where we may obtain st , St and Mt recursively as

st = st−1 + (HFMt−1)
T Ũ−1

t ẽt , ∀ t = 1, 2, . . . , N , (15c)

St = St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1), ∀ t = 1, 2, . . . , N , (15d)

Mt =
�

I− K̃tH
�

F Mt−1, ∀ t = 1, 2, . . . , N , (15e)

with s0 = 0, S0 = 0 and M0 = I. Furthermore, we may write the log-density of YN as

log( fYN
) = log

�

fYN |d=0

�

−
1
2

log |I+D0 AT
d SN Ad | −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ), (16)

where log
�

fYN |d=0

�

represents the log-density of YN given d = 0.10 Thus, using the AKF (15)

we can directly examine the effect of δ0 and D0 on µt , Ct and log( fYN
) from (15a), (15b), and

(16). This allows us to study the special cases in which parts of w0 are considered to be fixed

(i.e., D0 → 0) or diffuse (i.e., D0 →∞). In Appendix D we provide a digression on how to

incorporate initialization strategies for non-stationary SSMs within the AKF (15).

10Note that the recursion for st , St and Mt can be incorporated in the Kalman recursion used to compute µ̃t ,
C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t . A detailed derivation of equations (15)-(16) and how these steps can be
incorporated in the Kalman recursion (4) is provided in Appendix D. A similar treatment of the AKF with
respect to the alternative state-space representation (5) is given by Durbin and Koopman (2012, pp. 141-146).
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3 AUGMENTED STEADY-STATE KALMAN FILTER

Equipped with the concepts introduced in the previous section, we now turn our attention to

the derivation of the ASKF. For this purpose, we will first outline the basic idea of an ASKF and

obtain a general algorithm to evaluate the likelihood function of a linear and time-invariant

SSM. We show that compared to the standard KF this algorithm lowers the computational bur-

den associated with each additional observation. Finally, we provide conditions for applicability

of the ASKF which we show are satisfied for all stationary SSMs. Further, we show that for the

SSM (2) with ny = nz the algorithm can be additionally optimized, since in this case there is

an analytical solution to RDE (8a).

3.1 Basic idea

Suppose we want to evaluate the log-density log( fYN
) of the SSM (1) for a given initialization

(µ0,C0). Furthermore, suppose that the RDE (8a) has a solution C+ such that C0 − C+ is a

positive semi-definite matrix.

As mentioned earlier, we can determine the log( fYN
) for this initialization using the KF (4)

and equation (6). However, we could also employ the AKF (15) along with equation (16) to

determine log( fYN
). To do so, we need to specify the model (13) for the initial state vector w0

such that

µ0 = aw +Aw µ0 +Ad δ0, (17a)

C0 = Aw C0 AT
w +Ad D0 AT

d , (17b)

ensuring that w0 ∼ N(µ0,C0). There are several possible specifications of (13) which satisfy

(17a) and (17b). The basic idea of the ASKF is to choose the model (13) for the initial state

vector w0 in a way that makes the Kalman recursion, on which the AKF is based, time-invariant.

To do so, we will specify (13) as follows: First, we will set

aw = 0, (18a)

Aw = I, (18b)

µ0 = µ0, (18c)

C0 = C+, (18d)

so that from (14a) and (14b) follows µ̃0 = µ0 and C̃0 = C+, respectively. Second, in order to
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satisfy (17a) and (17b), we set

δ0 = 0, (18e)

D0 = I, (18f)

and choose Ad such that

AdAT
d = C0 −C+. (18g)

Hence, the fully specified version of (13) yields

w0 =w0 +Ad d, w0 ∼ N(µ0,C+), d ∼ N(0, I). (19)

In the current paper, we use the singular value decomposition of C0−C+ to obtain Ad . However,

note that in the cases where C0−C+ is non-singular, one might also set Ad = I and D0 = C0−C+.

In either way, we need to ensure that D0 is positive definite.

Specifying (13) this way, the quantities µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t corresponding to

the KF (4) initialized at (µ̃0, C̃0) become

µ̃t = µt,+, w̃t|t−1 =wt|t−1,+, ẽt = et,+,

C̃t = C+, P̃t|t−1 = P+, Ũt = U+, K̃t = K+, ∀ t = 1,2, . . . , N ,

where µt,+, C+, wt|t−1,+, P+, et,+, U+ and K+ are the quantities computed by the SKF based on

the initialization (µ0,+,C+), with µ0,+ = µ0. This reduces the computational burden of the AKF

in two ways: First, instead of the regular KF we may use the faster SKF to compute the quantities

µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt , K̃t and log
�

fYN |d=0

�

. Second, we can simplify the recursion (15c)-

(15e), since the expression
�

I− K̃tH
�

F becomes time-invariant and identically to J+. Thus, the

quantity Mt reduces to

Mt = Jt
+, ∀ t = 0,1, . . . , N . (20)

3.2 Likelihood evaluation

Furthermore, suppose our interest lies exclusively in the evaluation of the log-density log
�

fYN

�

.

If we specify (13) according to (18), we can simplify (16) to

log( fYN
) = log

�

fYN

�

+ −
1
2

log |I+AT
d SN Ad |+

1
2

sT
N Ad (I+AT

d SN Ad)
−1 AT

d sN , (21)
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where log
�

fYN

�

+ = log
�

fYN |d=0

�

represents the log-density obtained from the SKF based on the

initialization (µ0,+,C+), with µ0,+ = µ0. Hence, the log-density log
�

fYN

�

is fully determined by

log
�

fYN

�

+, sN , SN , and Ad .

It turns out that we may further optimize the computation of sN , SN , and log
�

fYN

�

+, in terms

of the required arithmetic operations. To do so, let us define

bt := VT et,+, ∀ t = 1,2, . . . , N , (22a)

Bt :=
�

Jt
+

�T
HT V, ∀ t = 0,1, . . . , N − 1, (22b)

with V satisfying U−1
+ = VVT , so that we may obtain sN and SN as

sN = B0:N−1 vec (b1:N ), (23a)

SN = B0:N−1 BT
0:N−1, (23b)

with B0:N−1 :=
�

B0, · · · ,BN−1

�

and b1:N :=
�

b1, · · · ,bN

�

. It follows from (22) that b1:N yields

b1:N = VT e1:N ,+, (24)

and that B0:N−1 is recursively defined by

Bt := JT
+ Bt−1 ∀ t = 1,2, . . . , N − 1, (25)

with B0 = HT V. Hence, using (24) to rewrite (12) as

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

b1:N bT
1:N

��

, (26)

the log-density log
�

fYN

�

+ is obtainable by performing the steps displayed in Algorithm 1.

The ASKF described in Algorithm 1 has several advantages compared to the regular KF, where

the probably most important is that, although the initial setup (Steps (1)-(3)) of the filter is

more expansive, it requires fewer arithmetic operations for each additional observation, so that

the recursive part of the algorithm is more efficient. To see this, suppose we implement the

KF and the ASKF using standard matrix multiplication, ignoring the advantages which may

arise from the symmetrical nature of variance matrices. For this case, Table 1 lists the number

of additional additive and multiplicative operations that result if we increase the number of

observations from N to N + 1. It turns out that the ASKF saves n2
y + nw(n2

w − 1) + nw(nw − 1) +

nw(nw−1)2+2ny(ny−1)(nw−1) additive and 2n3
w+ny+n2

y(nw−1)+ny(ny−1)nw multiplicative

operations for each additional observation. Further, and almost more importantly, the ASKF

does not require the repeated computation of the inverse and the determinant of the ny × ny
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Algorithm 1: Using the ASKF to compute log
�

fYN

�

for the SSM (1)

Input : µ0, C0 and C+, where C0 −C+ is positive semi-definite;

Execute: Steps (1)-(7);

(1) Choose aw, Aw, µ0, C0, δ0, D0, and Ad according to (18);

(2) Obtain P+, U+, K+ and J+ from (11b)-(11e);

(3) Obtain V such that U−1
+ = VVT and set B0 = HT V;

(4) for t = 1 to N − 1 do

Obtain µt,+ (with µ0,+ = µ0) and Bt from (11a) and (25);

(5) Obtain e1:N ,+ and b1:N from (11g) and (24);

(6) Obtain sN , SN and log
�

fYN

�

+ from (23a), (23b) and (26);

(7) Obtain log
�

fYN

�

from (21);

Output : log
�

fYN

�

;

matrix Ut . Finally, the ASKF offers more room for parallelization since only the computation of

µt,+ and Bt are strictly sequential.

3.3 Requirements to apply the augmented steady-state Kalman filter

To apply Algorithm 1 to the SSM (1) for a given initialization (µ0,C0), we need to satisfy the

following assumptions:

Assumption 3.1 We assume that

(i) there is a solution C+ to the RDE (8a),

(ii) such that the matrix C0 −C+ is positive semi-definite.

While Assumption 3.1(i) is needed to use the SKF at all, Assumption 3.1(ii) is necessary to sat-

isfy (17b), since D0 is positive-definite by definition, so that AdD0AT
d must be at least positive-

semi-definite. Although it is not necessary in theory, in practice, it is advisable to ensure that C+
represents a strong solution of RDE (8a). Otherwise the matrix J+ possesses explosive eigen-

values, making Algorithm 1 numerically unstable.11

11Note that we show in Appendix B and C that the matrices F̃ and J+ share the same set of eigenvalues.
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Table 1: Computational expanse of an additional observation

augmented steady-state Kalman filter
Eqn. Additional Matrix Operations Multiplications Additions
(11a) (nw × ny)[(ny × 1)− (ny × 1)] + (nw × nw)(nw × 1) ny nw + n2

w ny nw + n2
w + ny − nw

(25) (nw × nw)(nw × ny) ny n2
w ny n2

w − ny nw
(11g) (ny × 1)− (ny × nw)(nw × 1) ny nw ny nw
(24) (ny × ny)(ny × 1) n2

y n2
y − ny

(23a) (nw × 1) + (nw × ny)(ny × 1) ny nw ny nw
(23b) (nw × nw) + (nw × ny)(ny × nw) ny n2

w ny n2
w

(26) (ny × ny) + (ny × 1)(1× ny) n2
y n2

y

mASKF 2n2
y + n2

w + 2ny n2
w + 3ny nw

aASKF 2n2
y + n2

w − nw + 2ny n2
w + 2ny nw

Kalman filter
Eqn. Additional Matrix Operations Multiplications Additions
(4a) (nw × nw)(nw × 1) n2

w n2
w − nw

(4b) (nw × nw)(nw × nw)(nw × nw) + (nw × nw) 2n3
w 2n3

w − n2
w

(4c) (ny × 1)− (ny × 1)− (ny × nw)(nw × 1) ny nw ny nw + 2ny − nw
(4d) (ny × nw)(nw × nw)(nw × ny) + (ny × ny) ny n2

w + n2
y nw ny n2

w + n2
y nw − ny nw

(3) (nw × ny)(ny × ny) n2
y nw n2

y nw − ny nw

(4e) (nw × 1) + (nw × ny)(ny × 1) ny nw ny nw
(4f) (nw × nw)− (nw × ny)(ny × nw) ny n2

w ny n2
w

(6) (1× 1) + (1× ny)(ny × ny)(ny × 1) n2
y + ny n2

y

mKF 2n3
w + n2

y + n2
w + ny + 2n2

y nw + 2ny n2
w + 2ny nw

aKF 2n3
w + n2

y + 2ny − 2nw + 2n2
y nw + 2ny n2

w

Comparison
mKF −mASKF 2n3

w + ny + n2
y(nw − 1) + ny(ny − 1)nw

aKF − aASKF n2
y + nw(n2

w − 1) + nw(nw − 1) + nw(nw − 1)2 + 2ny(ny − 1)(nw − 1)

We count nm(l − 1) additive and nml multiplicative operations for product of a m× l and a l × n matrix. Further, nm additive
operations are counted for the sum/difference of two m×n matrices. The aKF and aASKF denote the number additive operations
of the corresponding filter, while mKF and mASKF denote their required number of multiplicative operations.

Stationary state-space models: To check how restrictive the conditions of Assumption 3.1

are, let us first consider the class of stationary SSMs. Thus, we consider models where all the

eigenvalues of the transition matrix F lie within the unit circle, or in other words where F is

stable. Thus, from Corollary 2.1(iii), we know that for stationary SSMs, the preconditions for

the usage of the ASKF will be satisfied, provided we use the unconditional variance of wt to

initialize the SSM (1), i.e., C0 = C. To obtain C+, which in this case is a strong solution to (8a),

we could use an iterative algorithm, such as the structured doubling algorithm described by

Bini et al. (2012, Chapter 5). It is convenient to consider two special cases where C+ we may

obtain in a different manner.

Case 1: If we consider a stationary SSM, where the variance matrix R of the measurement

error is positive-definite, it follows from Corollary 2.1(i) that the RDE (8a) converges to a stabi-

lizing solution C+ for any positive-definite initialization C0. Furthermore, C+ can be considered

the only non-negative-definite solution of the RDE (8a).12 Thus, using the unconditional ini-

12This follows from Proposition B.1(ii) in Appendix B.
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tialization, i.e., C0 = C, we may apply the classic techniques discussed in the previous section to

obtain the stabilizing solution C+ of RDE (8a). The same argumentation applies to stationary

SSMs, where R is positive-definite and where F is stable.

Case 2: Now, let us consider SSMs of the form (2), where the number of observable variables

ny equals the number of exogenous states variables nz. In the following Proposition, we will

show that in this case, we may obtain C+ = 0 as a solution to the RDE (8a) if the matrix Hz is

non-singular.

Proposition 3.1 Suppose there is a SSM of the form described by (2) where

(i) the number of observable variables ny equals the number of (state-) disturbances nz,

(ii) and where the matrix Hz is non-singular.

Then C+ := 0 is a solution to the RDE (8a).

Proof:

To prove that C+ := 0 is a solution to the RDE (8a), it is sufficient to show that C+ := 0 satisfies

the DARE

C+ = FC+FT +Q − FC+HT
�

HC+HT +R
�−1

HC+FT . (27)

with F := F − GR−1H and Q := Q − GR−1GT , which, due to Lemma B.1 in Appendix B, is

equivalent to the DARE (9a) corresponding to the RDE (8a). To see that C+ := 0 is a solution

to (27), note that for the SSM (2)

R = HQHT =
�

Hz Hx

�

�

Qz 0

0 0

��

HT
z

HT
x

�

=
�

HzQz 0
�

�

HT
z

HT
x

�

= HzQzH
T
z .

Thus, from the definition of Q follows that

Q = Q−GR−1GT = Q−QHT
�

HzQzH
T
z

�−1
HQ

=

�

Qz 0

0 0

�

−

�

Qz 0

0 0

��

HT
z

HT
x

�

�

Hz Qz HT
z

�−1 �

Hz Hx

�

�

Qz 0

0 0

�

=

�

Qz 0

0 0

�

−

�

QzH
T
z

0

�

(HT
z )
−1 Q−1

z H−1
z

�

HzQz 0
�

=

�

Qz 0

0 0

�

−

�

Qz

0

�

Q−1
z

�

Qz 0
�

=

�

Qz 0

0 0

�

−

�

Qz 0

0 0

�

= 0.
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This, however, means that (27) simplifies to

C+ = FC+FT − FC+HT
�

HC+HT +R
�−1

HC+FT ,

which is clearly satisfied if we set C+ = 0.

�

This result is convenient since C+ = 0 satisfies Assumption 3.1(ii) for any positive semi-definite

C0.13 This means for ny = nz = rk(Hz), we do not even have to obtain C+ numerically and may

use Algorithm 1 to compute log
�

fYN

�

for an arbitrary initialization (µ0,C0).

At this point, it is appropriate to discuss why most DSGE models without measurement errors

will meet the preconditions of Proposition 3.1. To see this, first, consider the scenario where

ny > nz. This, in general, will lead to a model that is unable to match the data.14 Consequently,

we will have to include an appropriate number of measurement disturbances into our SSM.

However, adding zeros to the corresponding entries in the transitions matrix F we may treat

these measurement disturbances as state disturbances and get yet a SSM without measurement

error satisfying condition (i) of Proposition 3.1. Thus ny > nz is less of a problem. Now con-

sider the opposite case where ny < nz, which usually implies that our model can replicate the

data with more than one set of state disturbances. Admittedly this does not necessarily pose a

problem in estimating the model using the common KF (4). However, in this case, it is often

possible to include additional observable data series to increase the information used to esti-

mate the model’s parameters. This is especially true in the DSGE context since the observation

vector yt often reflects only a fraction of the potentially observable variables for these models.

Assuming nz = ny holds, we will usually find that condition (ii) of Proposition 3.1 is also

satisfied. To see this, note that there are only two possible scenarios where the model might

not satisfy condition (ii) of Proposition 3.1: In the first scenario, we have the trivial case with

rk(Hz) ≤ rk(H) < ny , indicating that a fraction of the observations vector yt can be written as

a linear combination of the remaining set of observations in yt and thus contains redundant

information. More interesting is the second scenario, where rk(Hz)< rk(H) = ny . In this case,

a fraction of yt contains information that, from the model’s perspective, was already determined

in the previous period t −1. To see this, note that we can reorder the observations vector yt so

that we can write

yt =

�

y(1)t

y(2)t

�

=

�

H(1)x

H(2)x

�

xt +

�

H(1)z

H(2)z

�

zt (28)

13As mentioned before, in practice, we might have to check if C+ = 0 represents a strong solution.
14We exclude the trivial case with redundant observations that are linear combinations of the remaining set of

data.
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with rk(H(1)z ) = rk(Hz). This, however, means there is a matrix Γ satisfying

H(2)z = Γ H(1)z ,

and we can rewrite (28) to

�

y(1)t

y(2)t

�

−

�

0

Γ

�

y(1)t

︸ ︷︷ ︸

:=ỹt=

�

ỹ(1)t

ỹ(2)t

�

=

�

H(1)x

H(2)x − Γ H(1)x

�

︸ ︷︷ ︸

:=H̃x

xt +

�

H(1)z

0

�

︸ ︷︷ ︸

:=H̃z

zt . (29)

It becomes obvious from (29) that ỹ(2)t , which is the lower part of the transformed observations

vector ỹt , only depends on xt , which was determined in the previous period t − 1. Hence

information on ỹ(2)t , from the model’s perspective, is already available in t − 1. A possible

solution to this problem might be to replace ỹ(2)t with ˜̃y(2)t := ỹ(2)t+1. However, in summary, we

can state that a singular Hz matrix in most cases is due to a misspecified observations vector yt .

Non-stationary state-space models: In cases where the initial state vector w0 contains non-

stationary elements, there is typically no stabilizing solution to the RDE (8a), and it remains

unclear if we can meet the preconditions of Assumption 3.1. However, this does not mean

that Algorithm 1 is impractical for non-stationary SSMs. To see this, remember that it follows

from Proposition 3.1 that for the SSM (2) with ny = nz = rk(Hz), there is a solution C+ = 0

satisfying Assumption 3.1. This can be seen as an advantage compared to the CR discussed by

Herbst (2015), which strictly requires the transition matrix F to be stable.

4 APPLICATION

In this section, we illustrate the usage of the ASKF and compare it in terms of speed and per-

formance to three competitors. As a benchmark algorithm, we use the regular KF (4), repre-

senting one of the most basic versions of the filter. The second competitor is a version of the

Chandrasekhar recursion (CR) developed by Morf (1974) and Morf et al. (1974). Compared to

the regular KF, this algorithm replaces the RDE (8a) or (8b), respectively, with another set of

difference equations. Herbst (2015) points out that this set of “Chandrasekhar-type“ difference

equations requires fewer arithmetic operations than the regular KF, if the number of states nw

is large compared to the dimension ny of the observation vector yt . Therefore, Herbst (2015)

suggests using the CR when estimating medium to large-scale DSGE models since these models

typically possess a large number of state variables and only a handful of observable variables.

The implementation of the CR follows the procedure described by Herbst (2015). As the last
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competitor, we choose a version of the KF based on the univariate treatment of multivariate

observation vectors (UKF) by Koopman and Durbin (2000). To briefly recapitulate the basic

idea of this method, suppose that Hi represents the ith row of the matrix H and that yt,i, ut,i,

and hi denote the ith element of the vectors yt , ut , and h, respectively. Under the assumption

that R is a diagonal matrix, with R = diag
�

R2
1, . . . , R2

ny

�

, Koopman and Durbin (2000) suggest

replacing the multivariate measurement equation (1a) with its univariate equivalent

yt,i = hi +Hi ·wt,i + ut,i, ut,i ∼ N(0, R2
i ) ∀i = 1, 2, . . . , ny , ∀t = 1,2, . . . , N , (30a)

where wt,i−1 =wt for all i = 1,2, . . . , ny .15 Subsequently, the corresponding version of the state

equation yields

wt,i =







F ·wt−1,ny
+ vt , i = 1,

wt,i−1, i = 2, 3, . . . , ny ,
, ∀t = 1, 2, . . . , N . (30b)

Note that (30) can be interpreted as an univariate SSM with nw states and N · ny observations,

whose log-likelihood function is obtainable employing the KF.16 Durbin and Koopman (2012,

Chapter 6.4.4) show that compared to the multivariate treatment, this univariate approach can

significantly reduce the number of arithmetic operations. This is especially true for models

where ny is large since the UKF avoids the inversion of the ny × ny matrix Ut . Instead, the

UKF will compute ny times the inverse of a scalar. For a textbook treatment of the UKF and its

implementation, we refer to Durbin and Koopman (2012, Chapter 6.4)

To compare the four filters, we use two frameworks: First, we analyze the generic SSM by

Chib and Ramamurthy (2010) as an example of a classic stationary SSM with measurement

error. This simulation model essentially represents the SSM (1) with ny = 10 observation vari-

ables and nw = 5 state variables, where 60 of the parameters are estimated while treating the

remaining parameters as fixed. We use the same (arbitrary) chosen set of data generating pa-

rameters as Chib and Ramamurthy (2010). While this generic SSM has no particular economic

interpretation, it is an example of a SSM where the number of observable time series (ny = 10)

exceeds the number of unobserved states (nw = 5). Therefore, we will also consider the model

transformation suggested by Jungbacker and Koopman (2014), which collapses the initially

10× 1 observation vector into a new 5× 1 observation vector.17

Second, we consider the medium-scale DSGE model introduced by Smets and Wouters (2007)

as an example for a SSM without measurement error, where we may use Proposition 3.1 to

15Note that the UKF is not restricted to cases where R is a diagonal matrix (see e.g., Durbin and Koopman, 2012,
Chapter 6.4.3).

16At this point it should be mentioned that the system matrices of (30) depend on the index i. To deal with this
the Kalman recursion (4) must be slightly adjusted.

17Briefly summarized, the idea behind this procedure is to find matrices A∗ ∈ Rnw×nw and A+ ∈ Rny−nw×nw to
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obtain C+. Since both the generic SSM by Chib and Ramamurthy (2010) as well as the model by

Smets and Wouters (2007) represent stationary models, we use the unconditional initialization

strategy to obtain (µ0,C0).

To obtain the steady-state variance matrix C+ in the case of the generic SSM by Chib and

Ramamurthy (2010), we will use the Schur algorithm described by Bini et al. (2012, Chapter

3) to solve the DARE (9a) corresponding to RDE (8a). We use the same algorithm to solve the

discrete Lyapunov equation (7b) for the unconditional variance matrix C of the state vector wt .

All computations in this section were coded in MATLAB® 2019a or FORTRAN (using the

Intel® IFORT compiler) and executed on a Window 10 64-bit machine with a 3.60 GHz Intel®

Core™i7-7700 CPU and 32 GB of RAM. Further, it is worth mentioning that the FORTRAN

code makes extensive use of the BLAS and LAPACK routines, such as dsymm or dsryk, that

come with Intel®’s Math Kernel Library to exploit the symmetric nature of variance matrices

wherever possible.

To compare the different filters, we consider a Bayesian setup and use the tailored random-

ized block Metropolis-Hastings (TaRBMH) sampler to generate 11000 draws from the posterior

distribution fθ |Yt
∝ fYt |θ × fθ , where we discard the first 1000 draws as burn-ins. Subsequently,

we compare the speed and accuracy of each filter by recomputing each of the 10000 remaining

parameter sets using the regular KF as the benchmark.

In a nutshell, we may summarize the TaRBMH sampler by Chib and Ramamurthy (2010) as

follows: With each draw from the posterior distribution, we partition the parameter vector θ

into multiple blocks. Thereby, both the number of blocks and the allocation of the parameters

into the blocks are random. The parameters of each block are then sequentially updated by

a Metropolis-Hastings step, where we draw the proposals from a multivariate student-t den-

sity with ν degrees of freedom. To parameterize the proposal density, we follow Chib and

Ramamurthy (2010) and detect the conditional posterior mode (with respect to the block-

parameters) by means of simulated annealing based on a linear cooling schedule. The proposal

density’s mean vector and scaling matrix then reflect the conditional posterior mode and the

linearly transform yt to

�

y∗t
y+t

�

:=
�

A∗

A+

�

yt ,

such that we may write the transformed measurement equation as

�

y∗t
y+t

�

=
�

h∗

h+

�

+
�

H∗

0

�

wt +
�

u∗t
u+t

�

,
�

u∗t
u+t

�

∼ N
��

0
0

�

,
�

R∗t 0
0 R+t

��

, ∀t = 1,2, . . . , N .

Thus, the collapsed measurement equations yields

y∗t = h∗ +H∗ wt + u∗t , u∗t ∼ N(0,R∗t ), ∀t = 1,2, . . . , N .

The vector y+t = h+ + u+t with u+t ∼ N(0,R+t ), however, is independent of wt and u∗t and can therefore be
treated separately. For a textbook treatment we refer to Durbin and Koopman (2012, Chapter 6.5).
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corresponding Hessian matrix.

The tuning parameters of the TaRBMH sampler and the corresponding simulated annealing

algorithm (see Table 2) used to specify the proposal density are identical to the setup by Chib

and Ramamurthy (2010).

Table 2: TaRBMH and simulated annealing settings

TaRBMH
Parameter Description GSSMa SW07b

pB Probability for a new block 0.15 0.15
M Number of draws 10000 10000
n0 Number of burn-ins 1000 1000
ν Degrees of freedom of the proposal densitya 15 10

Simulated annealing with linear cooling schedule
t0 Initial temperature 5 5
a Cooling constant 0.4 0.4
K Number of stages in cooling schedule 8 4
b Stage expansion factor 8 6
s Scaling factor for new proposals 0.02 0.02
a GSSM: The generic SSM introduced by Chib and Ramamurthy (2010).
b SW07: The DSGE model introduced by Smets and Wouters (2007).

4.1 Generic state-space model

We may express the generic SSM by Chib and Ramamurthy (2010) in terms of the SSM (1) by

defining the system matrices h, H, F, Q, and R as

h=







h1
...

h10






∈ R10×1, H=







1 H2,1 · · · H10,1
. . . . . .

...

1 H6,5 · · · H10,5







T

∈ R10×5,

F= diag(F1,1, . . . , F5,5) ∈ R5×5, Q= I ∈ R5×5, R= diag(eσ
2
1 , . . . , eσ

2
10) ∈ R10×10.

Further, the vector

θ =
�

F1,1 . . . F5,5 h1 . . . h10 H2,1 . . . H10,5 σ2
1 . . . σ2

10

�T

collects the 60 uncertain parameters of the model. To estimate the model, we follow Chib and

Ramamurthy (2010) and simulate a set of 200 observations using the data generating param-

eters presented in Table 3. In choosing the prior distributions fθ of the uncertain parameters

displayed in Table 3, we once again follow Chib and Ramamurthy (2010). We report the esti-

mation results for each of the four filters in Table 4. The whole estimation procedure requires
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about 46 million likelihood evaluations.18

Table 5 shows the time needed by each filter to reevaluate the log-densities fYt |θ and fθ for

all 10000 draws from the posterior distribution. To get an intuition for the numerical accuracy

of each filter, Table 5 also provides the l2-Norm of the deviations between the log-likelihood

computed with a particular filter and the log-likelihood evaluated using the regular KF.

For MATLAB® implementation of the full model, we see that, in comparison to the regular

KF or the UKF, the ASKF requires less than half of the time. In FORTRAN, the ASKF reduces

the computational burden, even more, requiring only about 12 percent and 33 percent of the

time compared to the KF and UKF, respectively. Unsurprisingly, the slowest filter for both

implementations is the CR. In line with the results of Herbst (2015), we find that the CR

becomes inefficient compared to the regular KF when ny ≥ nw.

The lower part of Table 5 displays the results obtained when using the technique described

by Jungbacker and Koopman (2014) to collapse the observations vector to the dimension of the

state vector. Except for the ASKF, this model transformation significantly reduces the computa-

tional burden of all filters. However, the ASKF remains the fastest filter in both the MATLAB®

and the FORTRAN implementation.

Overall, the FORTRAN implementation of the generic SSM by Chib and Ramamurthy (2010)

seems to be twice as fast as its MATLAB® counterpart. The numerical deviation of the filters

compared to the standard KF are similar, with the CR being closest to the KF.

At this point, we have to mention that all results considered so far were under the hypothesis

that the convergence process from C0 to C+ stretches over the complete observation interval

(N = 200). However, in practice, there might be some period τ where Cτ has converged

sufficiently close to C+ so that we can switch from the filter at hand to the SKF described in (11).

Thus, if the convergence process lasts only a few periods, it could be that the additional effort

to solve the RDE (8a) for C+ outweighs the efficiency gains from the more efficient recursive

part of the ASKF. To get an intuition of how many periods are necessary so that the ASKF

outperforms the other filters in terms of speed, depending on the number of observations N ,

Figure 1 displays the computation time of each of the filters relative to the computation time

of the KF.

As expected, Figure 1 shows that for a low number of observations (N < 10), the ASKF is out-

performed by the other filters but becomes faster as N rises. For the MATLAB® implementation

of the full model, the ASKF becomes the fastest option to compute the log-likelihood in cases

where the convergence process takes more than 25 periods, while in FORTRAN, it takes the

ASKF about 50 periods to outperform the UKF. When using the collapsed model, where the ef-

ficiency gains from the ASKF are smaller, in both MATLAB® and the FORTRAN implementation,

18A large part of these likelihood evaluations stem from the repeated numerical evaluation of the conditional
Hessian matrix, which is required to specify the proposal density of a random block.
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it takes about 75 periods for the ASKF to become the fastest option.

Since, depending on the model’s parameter values, the convergence speed of the matrix se-

quence {Ct}Nt=1 may vary, in practice, it is often impossible to determine ex-ante in which period

a switch to SKF is possible. Thus, using the ASKF to evaluate the log-likelihood is probably not

a bad choice, especially considering that in cases where we may switch early to the SKF, the

choice of the filter might become secondary for the overall time needed to evaluate the log-

likelihood.

Table 3: Data generating parameters and prior density – Generic state-space model

Parameter Data generating parameters Priora

h1, . . . , h5 0.20 1.40 1.80 0.10 0.90 0.50 0.50 0.50 0.50 0.50
(5.00) (5.00) (5.00) (5.00) (5.00)

h6, . . . , h10 1.00 2.00 0.10 2.20 1.50 0.50 0.50 0.50 0.50 0.50
(5.00) (5.00) (5.00) (5.00) (5.00)

H2,1 0.50 0.00
(5.00)

H3,1, H3,2 0.60 0.00 0.00 0.00
(5.00) (5.00)

H4,1, . . . , H4,3 0.00 0.20 −0.10 0.00 0.00 0.00
(5.00) (5.00) (5.00)

H5,1, . . . , H5,4 −0.20 0.00 −0.70 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00)

H6,1, . . . , H6,5 0.00 0.00 −0.40 −0.50 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H7,1, . . . , H7,5 0.30 0.20 0.00 0.00 −0.30 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H8,1, . . . , H8,5 −0.50 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H9,1, . . . , H9,5 0.00 −0.50 0.30 −0.10 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H10,1, . . . , H10,5 0.00 0.00 0.20 0.00 −0.40 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

F1,1, . . . , F5,5 0.80 0.20 0.75 0.60 0.10

σ2
1, . . . ,σ2

5 log(1.00) log(0.30) log(1.00) log(0.20) log(0.60) −1.00 −1.00 −1.00 −1.00 −1.00
(1.00) (1.00) (1.00) (1.00) (1.00)

σ2
6, . . . ,σ2

10 log(0.50) log(1.00) log(1.00) log(0.75) log(0.60) −1.00 −1.00 −1.00 −1.00 −1.00
(1.00) (1.00) (1.00) (1.00) (1.00)

a All parameters are normally distributed. The first parameter denotes the prior mean, while the second parameter (in parentheses)
denotes the prior variance.

4.2 Smets and Wouters model

The model introduced by Smets and Wouters (2003, 2007) is at the core of most medium- to

large-scale DSGE models used to analyze monetary policy. To put it in the words of Herbst and

Schorfheide (2016, pp. 12): „By now, the SW model has become one of the workhorse models

in the DSGE model literature and in central banks around the world.“

Among other features, the model includes sticky prices and wages, investment adjustment

costs, habit formation, and variable capital utilization. In what follows, we use the Smets and
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Table 4: Estimation results – Generic state-space model

θ
Mean 5 percent quantile 95 percent quantile

KF CR UKF ASKF KF CR UKF ASKF KF CR UKF ASKF
F1,1 0.74 0.74 0.74 0.74 0.64 0.64 0.64 0.64 0.84 0.83 0.84 0.84
F2,2 0.36 0.36 0.36 0.36 0.19 0.19 0.19 0.19 0.53 0.53 0.53 0.53
F3,3 0.70 0.70 0.70 0.70 0.58 0.58 0.58 0.58 0.81 0.81 0.81 0.81
F4,4 0.41 0.41 0.42 0.42 0.27 0.27 0.28 0.28 0.55 0.56 0.56 0.56
F5,5 0.06 0.06 0.06 0.06 −0.15 −0.15 −0.15 −0.15 0.28 0.27 0.27 0.28
h1 0.15 0.16 0.14 0.15 −0.40 −0.38 −0.43 −0.41 0.69 0.68 0.70 0.71
h2 1.20 1.21 1.20 1.20 0.88 0.88 0.86 0.87 1.51 1.52 1.53 1.52
h3 1.65 1.68 1.64 1.66 1.11 1.04 1.02 1.06 2.25 2.30 2.26 2.27
h4 0.22 0.22 0.22 0.21 −0.06 −0.07 −0.06 −0.06 0.49 0.50 0.50 0.48
h5 0.89 0.88 0.90 0.89 0.52 0.48 0.51 0.50 1.27 1.30 1.29 1.26
h6 0.94 0.94 0.95 0.95 0.72 0.71 0.71 0.72 1.17 1.17 1.18 1.18
h7 1.90 1.90 1.90 1.90 1.67 1.66 1.67 1.67 2.12 2.12 2.12 2.12
h8 0.33 0.32 0.33 0.32 0.07 0.07 0.07 0.06 0.57 0.59 0.59 0.57
h9 2.10 2.10 2.10 2.10 1.89 1.88 1.88 1.89 2.32 2.32 2.32 2.32
h10 1.50 1.50 1.50 1.50 1.36 1.35 1.35 1.36 1.64 1.65 1.65 1.65
H2,1 0.44 0.44 0.44 0.44 0.28 0.29 0.29 0.28 0.60 0.60 0.60 0.60
H3,1 0.69 0.69 0.70 0.69 0.46 0.46 0.47 0.46 0.92 0.93 0.93 0.92
H4,1 0.14 0.14 0.14 0.13 −0.02 −0.03 −0.05 −0.04 0.31 0.31 0.31 0.30
H5,1 −0.30 −0.30 −0.31 −0.30 −0.48 −0.50 −0.50 −0.49 −0.11 −0.11 −0.12 −0.12
H6,1 −0.08 −0.08 −0.08 −0.08 −0.22 −0.21 −0.22 −0.21 0.05 0.06 0.06 0.06
H7,1 0.31 0.31 0.31 0.31 0.20 0.20 0.20 0.20 0.42 0.42 0.43 0.42
H8,1 −0.27 −0.28 −0.28 −0.28 −0.42 −0.43 −0.43 −0.43 −0.13 −0.13 −0.12 −0.13
H9,1 0.07 0.07 0.07 0.08 −0.06 −0.05 −0.05 −0.05 0.20 0.20 0.20 0.20
H10,1 0.03 0.03 0.03 0.03 −0.06 −0.06 −0.06 −0.06 0.13 0.13 0.13 0.13
H3,2 −0.06 −0.06 −0.06 −0.05 −0.32 −0.33 −0.33 −0.33 0.20 0.22 0.21 0.22
H4,2 0.21 0.21 0.21 0.22 −0.00 −0.01 −0.01 0.00 0.44 0.44 0.45 0.46
H5,2 −0.00 −0.00 −0.00 −0.01 −0.26 −0.28 −0.27 −0.28 0.25 0.26 0.26 0.26
H6,2 0.18 0.18 0.18 0.17 0.01 0.00 −0.01 −0.00 0.36 0.35 0.36 0.35
H7,2 0.14 0.14 0.14 0.14 −0.04 −0.04 −0.04 −0.04 0.31 0.32 0.31 0.31
H8,2 −0.05 −0.05 −0.05 −0.05 −0.26 −0.26 −0.26 −0.25 0.16 0.15 0.16 0.16
H9,2 −0.57 −0.57 −0.57 −0.57 −0.75 −0.75 −0.75 −0.75 −0.39 −0.39 −0.39 −0.39
H10,2 −0.11 −0.10 −0.11 −0.10 −0.25 −0.25 −0.25 −0.25 0.03 0.04 0.04 0.04
H4,3 −0.21 −0.20 −0.20 −0.19 −0.39 −0.39 −0.39 −0.39 −0.01 −0.01 −0.02 −0.00
H5,3 −0.63 −0.63 −0.63 −0.63 −0.80 −0.80 −0.80 −0.81 −0.46 −0.46 −0.46 −0.46
H6,3 −0.34 −0.34 −0.34 −0.35 −0.48 −0.47 −0.47 −0.49 −0.22 −0.21 −0.21 −0.22
H7,3 −0.11 −0.11 −0.11 −0.11 −0.23 −0.24 −0.24 −0.23 0.01 0.01 0.01 0.01
H8,3 −0.14 −0.14 −0.14 −0.14 −0.30 −0.30 −0.30 −0.30 0.03 0.03 0.02 0.03
H9,3 0.28 0.28 0.28 0.28 0.17 0.17 0.17 0.17 0.39 0.39 0.39 0.39
H10,3 0.17 0.17 0.17 0.17 0.08 0.07 0.07 0.07 0.27 0.27 0.26 0.27
H5,4 0.09 0.08 0.09 0.09 −0.12 −0.11 −0.11 −0.11 0.28 0.28 0.28 0.29
H6,4 −0.58 −0.58 −0.58 −0.58 −0.70 −0.70 −0.70 −0.70 −0.47 −0.46 −0.47 −0.47
H7,4 −0.00 0.00 0.00 0.00 −0.14 −0.13 −0.14 −0.13 0.14 0.14 0.14 0.14
H8,4 0.61 0.61 0.61 0.61 0.47 0.47 0.47 0.47 0.76 0.76 0.76 0.76
H9,4 −0.11 −0.11 −0.11 −0.11 −0.23 −0.23 −0.23 −0.23 0.01 0.01 0.01 0.01
H10,4 −0.01 −0.01 −0.01 −0.01 −0.13 −0.12 −0.12 −0.12 0.10 0.10 0.10 0.10
H6,5 0.19 0.19 0.19 0.19 0.05 0.05 0.05 0.05 0.33 0.33 0.33 0.33
H7,5 −0.41 −0.42 −0.42 −0.42 −0.61 −0.61 −0.61 −0.61 −0.23 −0.23 −0.23 −0.23
H8,5 −0.03 −0.02 −0.03 −0.02 −0.22 −0.21 −0.22 −0.21 0.16 0.17 0.16 0.17
H9,5 −0.18 −0.18 −0.18 −0.18 −0.34 −0.33 −0.34 −0.34 −0.02 −0.02 −0.02 −0.02
H10,5 −0.49 −0.49 −0.49 −0.49 −0.64 −0.65 −0.65 −0.65 −0.34 −0.34 −0.34 −0.34
σ2

1 0.08 0.09 0.09 0.08 −0.23 −0.23 −0.23 −0.24 0.39 0.40 0.40 0.38
σ2

2 −0.69 −0.70 −0.70 −0.68 −1.31 −1.34 −1.30 −1.28 −0.21 −0.22 −0.22 −0.21
σ2

3 −0.34 −0.35 −0.35 −0.34 −0.81 −0.83 −0.82 −0.81 0.07 0.05 0.05 0.07
σ2

4 −1.44 −1.45 −1.43 −1.44 −2.30 −2.31 −2.24 −2.29 −0.81 −0.81 −0.80 −0.80
σ2

5 −0.15 −0.14 −0.15 −0.15 −0.58 −0.57 −0.56 −0.56 0.20 0.21 0.21 0.21
σ2

6 −0.97 −0.96 −0.97 −0.97 −1.29 −1.28 −1.29 −1.29 −0.68 −0.68 −0.69 −0.68
σ2

7 −0.10 −0.10 −0.10 −0.10 −0.33 −0.34 −0.33 −0.34 0.12 0.12 0.11 0.12
σ2

8 0.07 0.07 0.07 0.07 −0.13 −0.13 −0.13 −0.13 0.27 0.28 0.28 0.27
σ2

9 −0.48 −0.48 −0.48 −0.49 −0.75 −0.75 −0.75 −0.76 −0.23 −0.23 −0.24 −0.24
σ2

10 −0.72 −0.73 −0.72 −0.73 −1.00 −1.02 −1.01 −0.99 −0.47 −0.48 −0.48 −0.49

Wouters (2007) model, which is a slightly adjusted version of the original model described by

Smets and Wouters (2003). The model consists of 62 equations in 35 endogenous variables,

20 predetermined, and 7 endogenous state variables. We give a complete description of the
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Table 5: Speed comparison – Generic state-space model

Full MATLAB® FORTRAN
ny = 10, nw = 5 KF CR UKF ASKF KF CR UKF ASKF
Elapsed time: 43s 82s 35s 17s 17s 19s 6s 2s
l2-Norm: - 2.1e−09 2.2e−09 2.1e−09 - 0.5e−10 0.6e−09 0.2e−09

Collapsed MATLAB® FORTRAN
ny = 5, nw = 5 KF CR UKF ASKF KF CR UKF ASKF
Elapsed time: 32s 46s 22s 16s 9s 9s 4s 2s
l2-Norm: - 1.1e−09 1.2e−09 1.1e−09 - 0.3e−10 0.2e−09 0.1e−09

Figure 1: Speed comparison – Generic state-space model
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(a) MATLAB® - Full model
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(b) FORTRAN - Full model
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(c) MATLAB® - Collapsed model
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model’s implementation in Appendix E. To fit the model to the data, we follow Smets and

Wouters (2007) and use quarterly time series of the log difference of real GDP, the log difference

of real consumption, the log difference of real investment, and the log difference of real wages,

the log of hours worked, the log difference of GDP deflator, and the federal funds rate for the

U.S. from 1966 : 1 to 2004 : 4.

To obtain the model’s linear policy function, we use the general Schur decomposition in the

manner of Klein (2000). We then transform the solved model into a SSM without a measure-

ment error. We consider two different state-space representations of the model: (i) A reduced

SSM with ny = 7 and nw = 27, including only the predetermined and endogenous state vari-

ables in the state vector, and (ii) the full SSM with ny = 7 and nw = 62, treating all of the model’s

variables as state variables.19 Further, as shown in Appendix E, the log-linearized model satis-

fies the preconditions of Proposition 3.1, and thus we may obtain the solution of the RDE (8a)

as C+ = 0.

To estimate the model, we use the same prior densities as Smets and Wouters (2007). In

Table 6, we report these prior densities together with the estimation results of the four different

filters. All results of Table 6 refer to the reduced SSM and were computed in MATLAB®. Again,

the posterior statistics obtained by the different filters are similar. Each filter requires about

15 million likelihood evaluations to generate the 10000 draws from the posterior distribution.

The filters also perform similarly in terms of the percentages of failed tries, where the particular

algorithm could not evaluate the objective function.

The most significant differences between the filters occur in the total time required to estimate

the model. The ASKF is about one-third faster than the standard KF and reduces the overall

estimation time by more than 11 hours. Moreover, compared to the UKF, which represents

the second fastest option in this setup, the ASKF is still 6 hours ahead. This is despite the

fact that the evaluation of the log-likelihood now also includes the computation of the policy

function so that the actual filtering process only accounts for a part of the total evaluation time.

Surprisingly, the CR performs even slower than the KF, which leads to the conclusion that in

the reduced version of the Smets and Wouters model, nw is too small compared to ny for the

CR to be efficient.

Table 7 shows the results of the reevaluation of the 10000 draws from the posterior distribu-

tion. In addition to the time required for the actual filtering process, we also report the times

required to compute the policy function, the unconditional initialization, and the prior density.

Considering the reduced model, we again see that the ASKF significantly reduces the compu-

tational time required in both MATLAB® and FORTRAN. In MATLAB®, the ASKF reduces the

actual filtering time compared to the KF, the CR, and the UKF by about 73, 79, and 60 percent,

19Note that using the full SSM will result in a singular unconditional variance matrix C of the state vector wt ,
since in this case wt contains redundant states.
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respectively. In FORTRAN, the computation time is reduced by 82 and 69 percent, respectively,

compared to the KF and the UKF. Compared to its MATLAB® implementation, the CR performs

better in FORTRAN. Nevertheless, compared to the ASKF, the computational burden is almost

four times higher.

The lower part of Table 7 displays the results of the speed comparison in case we include

all 62 variables of the Smets and Wouters model as states in the SSM. The main difference in

this setup is the performance of the CR, which is now about twice as fast as the KF and UKF,

respectively, in both MATLAB® and FORTRAN. The CR also gets closest to the ASKF in terms of

speed, but it is still three times faster in MATLAB® and almost twice as fast in FORTRAN.

In all four implementations considered in Table 7, the ASKF reduces the portion of the actual

filtering process on the total computing time to less than one-fifth. Furthermore, it is worth

mentioning that in the case of the Smets and Wouters model, the performance of the ASKF

is also less dependent on the convergence speed of the matrix sequence {Ct}Nt=1, since due to

Proposition 3.1, we do not have to determine C+ numerically.

Table 6: Prior and estimation results – Smets and Wouters model

θ
Prior Posterior

Densitya Mean Std. Dev.
Mean 5 percent quantile 95 percent quantile

KF CR UKF ASKF KF CR UKF ASKF KF CR UKF ASKF
ϕ Normal 4.000 1.500 5.60 5.47 5.54 5.48 3.63 3.40 3.60 3.40 8.04 7.91 7.93 7.98
σc Normal 1.500 0.375 1.33 1.32 1.31 1.33 1.11 1.09 1.10 1.11 1.59 1.57 1.56 1.59
h Beta 0.700 0.100 0.72 0.72 0.72 0.71 0.63 0.63 0.64 0.62 0.79 0.80 0.80 0.80
ξw Beta 0.500 0.100 0.70 0.69 0.70 0.69 0.57 0.57 0.57 0.57 0.81 0.80 0.82 0.80
σl Normal 2.000 0.750 1.83 1.84 1.85 1.79 0.82 0.79 0.84 0.77 3.13 3.15 3.08 3.05
ξp Beta 0.500 0.100 0.64 0.63 0.64 0.64 0.54 0.54 0.55 0.54 0.75 0.73 0.75 0.74
ιw Beta 0.500 0.150 0.59 0.58 0.58 0.58 0.34 0.34 0.36 0.33 0.80 0.82 0.80 0.80
ιp Beta 0.500 0.150 0.24 0.25 0.24 0.25 0.10 0.11 0.10 0.11 0.41 0.44 0.42 0.42
ψ Beta 0.500 0.150 0.56 0.57 0.56 0.56 0.34 0.35 0.36 0.35 0.77 0.77 0.75 0.76
Φ Normal 1.250 0.125 1.60 1.60 1.60 1.60 1.46 1.46 1.46 1.46 1.75 1.74 1.74 1.75
rπ Normal 1.500 0.250 2.03 2.05 2.03 2.06 1.71 1.75 1.72 1.73 2.39 2.38 2.37 2.40
ρ Beta 0.750 0.100 0.80 0.80 0.80 0.80 0.75 0.75 0.75 0.75 0.84 0.84 0.84 0.85
ry Normal 0.125 0.050 0.08 0.08 0.08 0.09 0.05 0.05 0.05 0.05 0.13 0.13 0.13 0.13
r∆y Normal 0.125 0.050 0.22 0.22 0.22 0.22 0.17 0.17 0.17 0.17 0.27 0.27 0.27 0.27
π̄ Gamma 0.625 0.100 0.71 0.70 0.71 0.71 0.51 0.52 0.52 0.52 0.91 0.91 0.91 0.91
β̃ Gamma 0.250 0.100 0.16 0.16 0.17 0.16 0.07 0.07 0.08 0.07 0.28 0.27 0.27 0.27
l̄ Normal 0.000 2.000 0.73 0.84 0.84 0.74 −1.87 −1.60 −1.71 −1.77 3.30 3.29 3.22 3.31
γ̄ Normal 0.400 0.100 0.42 0.42 0.42 0.42 0.39 0.38 0.39 0.39 0.45 0.45 0.45 0.45
α Normal 0.300 0.050 0.19 0.19 0.19 0.19 0.16 0.16 0.16 0.16 0.22 0.22 0.22 0.22
ρa Beta 0.500 0.200 0.96 0.96 0.96 0.96 0.93 0.94 0.93 0.94 0.98 0.98 0.98 0.98
ρb Beta 0.500 0.200 0.24 0.25 0.24 0.26 0.08 0.09 0.08 0.08 0.48 0.45 0.46 0.51
ρg Beta 0.500 0.200 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.96 0.99 0.99 0.99 0.99
ρi Beta 0.500 0.200 0.71 0.72 0.72 0.71 0.60 0.60 0.61 0.60 0.82 0.83 0.83 0.82
ρr Beta 0.500 0.200 0.16 0.16 0.16 0.16 0.06 0.06 0.06 0.05 0.29 0.29 0.28 0.28
ρp Beta 0.500 0.200 0.90 0.90 0.89 0.90 0.79 0.80 0.78 0.79 0.97 0.97 0.97 0.98
ρw Beta 0.500 0.200 0.97 0.97 0.97 0.97 0.94 0.95 0.94 0.94 0.99 0.99 0.99 0.99
µp Beta 0.500 0.200 0.69 0.70 0.68 0.70 0.45 0.46 0.45 0.49 0.84 0.87 0.85 0.86
µw Beta 0.500 0.200 0.85 0.85 0.84 0.84 0.72 0.71 0.70 0.70 0.94 0.94 0.93 0.94
ρga Beta 0.500 0.250 0.52 0.52 0.51 0.52 0.34 0.35 0.34 0.34 0.69 0.69 0.69 0.69
σa Inv. Gamma 0.100 2.000 0.46 0.46 0.46 0.46 0.41 0.41 0.41 0.41 0.51 0.51 0.51 0.51
σb Inv. Gamma 0.100 2.000 0.24 0.24 0.24 0.23 0.18 0.19 0.19 0.18 0.28 0.28 0.29 0.28
σg Inv. Gamma 0.100 2.000 0.53 0.53 0.53 0.53 0.48 0.48 0.48 0.48 0.58 0.59 0.59 0.59
σi Inv. Gamma 0.100 2.000 0.45 0.45 0.45 0.45 0.37 0.37 0.36 0.37 0.54 0.55 0.54 0.56
σr Inv. Gamma 0.100 2.000 0.25 0.25 0.25 0.25 0.22 0.22 0.22 0.22 0.28 0.28 0.28 0.28
σp Inv. Gamma 0.100 2.000 0.14 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.17 0.17 0.17 0.17
σw Inv. Gamma 0.100 2.000 0.25 0.25 0.25 0.25 0.21 0.21 0.21 0.21 0.29 0.29 0.29 0.29

KF CR UKF ASKF
Overall - Estimation time: 35h 05m 23s 38h 43m 02s 30h 11m 23s 23h 46m 24s
Value of Ojc.Fct at Posterior Mode:b −858.14 −858.26 −857.97 −856.63
Number of likelihood evaluations: 15174679 15173491 15193695 15190701
Percentage of failed evaluations: 0.49 0.50 0.47 0.49
Acceptance rate (in %): 49.86 50.12 49.77 49.85

a Inv. Gamma denotes the Inverse Gamma type-1 distribution.
b Refers to the highest value of the object function for all 10000 draws.
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5 CONCLUSION

The objective of this paper was to propose the ASKF as an efficient algorithm to evaluate the

likelihood of linear and time-invariant SSMs. The results concerning the performance of the

ASKF are promising. It performs well regardless of whether the number of observable time

series ny outweighs the number of states nz or vice versa. The basis for its efficiency is the –

compared to the regular KF – faster recursive part of the ASKF, reducing the cost per additional

observation. The ultimate performance of the ASKF is mainly determined by two factors: The

length of the filtering period and the time needed to determine the equilibrium variance matrix

of the model’s states, where the former is determined by the number of observations N of the

available data set and the required periods τ until it might be possible to switch to the SKF. The

larger the filtering period, the less the additional computational effort to solve RDE (8a) for C+
will weigh compared to the total filtering time. Furthermore, as we show in Proposition 3.1, for

many DSGE models, such as the model introduced by Smets and Wouters (2007), it is not even

necessary to solve RDE (8a) numerically, since for SSMs of the form (2) with ny = nz = rk(Hz)

an analytic solution for C+ is available. This feature makes the ASKF for these kinds of model

even more attractive.

Table 7: Speed comparison – Smets and Wouters model

Reduced MATLAB® FORTRAN
ny = 7, nw = 27 KF CR UKF ASKF KF CR UKF ASKF
Filtering time: 37s 47s 25s 10s 22s 15s 13s 4s
l2-Norm: - 3.0e−08 3.0e−09 1.2e−10 - 0.8e−07 0.1e−08 0.2e−09

Policy function 17s 33s
Initialization 18s 18s
Prior density 13s 0s

Full MATLAB® FORTRAN
ny = 7, nw = 62 KF CR UKF ASKF KF CR UKF ASKF
Filtering time: 101s 57s 92s 18s 79s 28s 65s 15s
l2-Norm: - 1.8e−08 2.1e−09 2.2e−09 - 0.9e−08 0.9e−09 0.4e−09

Policy function 18s 33s
Initialization 74s 71s
Prior density 13s 0s
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APPENDIX
An Augmented Steady-State Kalman Filter to Evaluate the

Likelihood of Linear and Time-Invariant State-Space Models

The Appendix of this paper is structured as follows: The first section contains the formal deriva-

tion of the standard Kalman filter (KF) and, in particular, of the difference equations that deter-

mine the sequence {Ct}Nt=1 of the states’ conditional variance matrix. In Section B, we establish

the formal foundation to address the question under which conditions the sequence {Ct}Nt=1

converges to a long-run equilibrium. Given this long-term equilibrium, we derive the set of

equations determining the steady-state Kalman filter (SKF) in Section C. In Section D, we pro-

vide the formal derivation of the augmented Kalman filter (AKF), which, together with the SKF,

builds the basis of the augmented steady-state Kalman filter (ASKF) proposed in this paper. The

last section of the Appendix outlines the implementation of the dynamic stochastic general equi-

librium (DSGE) model by Smets and Wouters (2007) that we employ as an application in this

paper.
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A DERIVATION OF THE KALMAN FILTER

This appendix contains the formal derivation of the Kalman recursion (4) with respect to the

state-space model (SSM) (1), where for the most part, we will follow the textbook treatments

by Durbin and Koopman (2012, Chapter 4) and Harvey (1990b, Chapter 3). For convenience,

let us restate the linear, time-invariant, and Gaussian SSM (1) introduced in Section 2:

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1,2, . . . , N

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1,2, . . . , N

with

E[uiu
T
j ] =







R, i = j,

0, i 6= j.
, E[viv

T
j ] =







Q, i = j,

0, i 6= j.
, E[uiv

T
j ] = 0, ∀ i, j = 1, 2, . . . , N ,

and

E[ut(w0 −µ0)
T ] = 0, E[vt(w0 −µ0)

T ] = 0, ∀t = 1,2, . . . , N .

Before turning to the derivation of recursion (4), it is appropriate to discuss some implica-

tions arising from the assumptions made regarding the SSM (1), which are essential for the

subsequent derivation of the Kalman recursion. First, since yt−1 is a linear combination of

u1, . . . ,ut−1, v1, . . . ,vt−1, and w0, and since vt is independent of u1, . . . ,ut−1, v1, . . . ,vt−1 and

w0, it is straightforward that vt is independent of Yt−1 = {y1,y2, . . . ,yN}, i.e., vt given Yt−1

equals vt . Second, since the initial state vector w0 and the disturbances u1, . . . ,uN , v1, . . . ,vN

are normally distributed, it follows from the linearity of equations (1a) and (1b) that w1, . . . ,wN

and y1, . . . ,yN are normally distributed as well. Consequently, wt and yt given Yt−1 as well as

wt given Yt are also normally distributed for t = 1, 2, . . . , N . This directly follows from a

well-known Lemma about the conditional distribution of jointly normally distributed random

vectors.

Lemma A.1 Suppose the random vectors x ∈ Rn and y ∈ Rm are jointly normally distributed with

mean vector and variance matrix:

E

�

x

y

�

=

�

µx

µy

�

and Var

�

x

y

�

=

�

Σxx Σxy

Σyx Σyy

�

,

where Σyy has rank m. Then the conditional distribution of x given y is normal with mean vector
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and variance matrix:

E[x|y] = µx +ΣxyΣ
−1
yy (y−µy) and Var[x|y] = Σxx −ΣxyΣ

−1
yy Σxy

T .

Proof:

See Durbin and Koopman (2012, pp. 77-78).

�

Lemma A.1 is also a fundamental element of the Kalman filter (KF) in the context of a linear

SSM with normally distributed disturbances. Starting in t = 1, for each period t = 1,2, . . . , N

the KF performs two steps:

Prediction step: First we use equation (1b) to obtain the mean vector

wt|t−1 = E[wt |Yt−1]

= E[F wt−1 + vt |Yt−1]

= F E[wt−1|Yt−1] + E[vt |Yt−1]

= F µt−1, (A.1)

and variance matrix

Pt|t−1 = Var[wt |Yt−1]

= Var[F wt−1 + vt |Yt−1]

= F Var[wt−1|Yt−1] FT + Var[vt |Yt−1]

= F Ct−1 FT +Q, (A.2)

of wt given Yt−1, where µt−1 and Ct−1 are known from a previous iteration or in case of t = 1

directly through the initialization (µ0,C0).

Updating step: In this second step, we use Lemma A.1 and the new information derived from

yt to compute µt = E[wt |Yt] and Ct = Var[wt |Yt]. Note that given Yt−1, the random vector

�

wt

yt

�

=

�

wt

h+Hwt + ut

�

=

�

0

h

�

+

�

I 0

H I

� �

wt

ut

�
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is jointly normally distributed since it is linear in wt given Yt−1 and ut . Thus wt given Yt−1 and

yt given Yt−1 are jointly normally distributed with mean vector and variance matrix:

E

�

wt

yt

�

�

�Yt−1

�

=

�

wt|t−1

h+Hwt|t−1

�

and Var

�

wt

yt

�

�

�Yt−1

�

=

�

Pt|t−1 Xt

XT
t Ut

�

.

with

Ut := Var [yt |Yt−1] = Var [h+H wt + ut |Yt−1]

= H Var [wt |Yt−1] HT + Var [ut |Yt−1]

= H Pt|t−1 HT +R,

Xt := Cov [wt ,yt |Yt−1] = E
�

(wt − E[wt |Yt−1]) (yt − E[yt |Yt−1])
T
�

�Yt−1

�

= E
��

wt −wt|t−1

�

(h+Hwt + ut − E[h+Hwt + ut |Yt−1])
T
�

�Yt−1

�

= E
�

�

wt −wt|t−1

� �

wt −wt|t−1

�T �
�Yt−1

�

HT + E
��

wt −wt|t−1

�

uT
t

�

�Yt−1

�

= Var [wt |Yt−1]H
T +Cov [wt ,ut |Yt−1]

= Pt|t−1 HT .

Hence, the mean vector µt and the variance matrix Ct of wt given Yt follow directly from

Lemma A.1 as

µt = E[wt |Yt] = E[wt |yt ,Yt−1]

=wt|t−1 +Xt U−1
t (yt − E[yt |Yt−1])

=wt|t−1 + Pt|t−1HT
�

HPt|t−1HT +R
�−1 �

yt − h−Hwt|t−1

�

(A.3)

Ct = Var[wt |Yt] = Var[wt |yt ,Yt−1]

= Pt|t−1 −Xt U−1
t XT

t

= Pt|t−1 − Pt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1. (A.4)

If we define Kt for all t = 1,2, . . . , N as in (3) and replace yt − h with y(h)t , the Kalman

recursion (4) follows directly from (A.1) – (A.4).

B CONVERGENCE PROPERTIES OF THE RICCATI DIFFERENCE EQUATION

The purpose of this appendix is to give the reader a general idea under which conditions the

Riccati difference equations (RDEs)

Ct = FCt−1FT +Q−
�

FCt−1HT +G
� �

HCt−1HT +R
�−1 �

HCt−1FT +GT
�

,

Pt+1|t = FPt|t−1FT − FPt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1FT +Q,
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with H := HF, G := QHT , and R := HQHT + R, described by equations (8a) and (8b), have

a fixed-point and for which initialization they converge to this fixed-point. To this end, the

first part of this appendix deals with cases where either the matrix R or at least the matrix R

is non-singular, drawing from the convergence results provided by de Souza et al. (1986).20

Since the results of de Souza et al. (1986) are fairly general, we shall also discuss some more

frequently consulted conditions — namely stability, observability and reachability, detectability

and stabilizability — sufficient for convergence of RDEs, such as (8a) or (8b). The second part

of this appendix contains the formal proof of Proposition 2.1.

B.1 Results by de Souza et al. (1986)

De Souza et al. (1986) provide some general convergence results related to (ordinary) RDEs of

the form

Σt = FΣt−1FT − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT +Q, ∀t = 1, 2, . . . , N , (B.1)

with F ∈ Rn×n, H ∈ Rm×n, Q ∈ Rn×n, and R ∈ Rm×m. Further, they assume that Q and R are

symmetric matrices with Q = DDT ≥ 0, D ∈ Rn×n and R > 0.21 Thus, their results are directly

transferable to RDE (8b) if the variance matrix R of the measurement error ut is non-singular.

On the other hand, if R is singular, we can use their results to study the convergence properties

of RDE (8a), which is sometimes called a generalized RDE, provided at least R is non-singular.

To do so, we can transform the general RDE (8a) into an ordinary RDE of the form (B.1) using

the following lemma:

Lemma B.1 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n and G ∈ Rn×m, as well as the variances

matrices Q ∈ Rn×n and R ∈ Rm×m with R > 0 refer to the generalized RDE

Σt = FΣt−1FT +Q−
�

FΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +GT
�

, (B.2)

that generates the matrix sequence {Σt}Nt=0 with a variance matrix Σ0 ≥ 0. Then the RDE

Σt = FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT ,

with F := F−GR−1H and Q := Q−GR−1GT , is equivalent to (B.2).

Proof:

The statement follows from the fact that we may rewrite the right-hand side of (B.2) to

FΣt−1FT +Q−
�

FΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +GT
�

20Note that the non-singularity of R implies that R must be also non-singular.
21Note that the notation A> 0 (or A≥ 0) means that the matrix A is positive-definite (or positive-semi-definite).
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=
�

F +GR−1H
�

Σt−1

�

F +GR−1H
�T
+Q +GR−1GT

−
��

F +GR−1H
�

Σt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1

�

F +GR−1H
�T
+GT

�

= FΣt−1FT + FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1HΣt−1HT R−1GT +Q +GR−1GT

−
�

FΣt−1HT +GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +HΣt−1HT R−1GT +GT
�

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1HΣt−1HT R−1GT +GR−1GT

− FΣt−1HT
�

HΣt−1HT +R
�−1 �

HΣt−1HT R−1GT +GT
�

−
�

GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1

HΣt−1FT

−
�

GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1HT R−1GT +GT
�

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1
�

HΣt−1HT +R
�

R−1GT

− FΣt−1HT
�

HΣt−1HT +R
�−1 �

HΣt−1HT +R
�

R−1GT

−GR−1
�

HΣt−1HT +R
� �

HΣt−1HT +R
�−1

HΣt−1FT

−GR−1
�

HΣt−1HT +R
� �

HΣt−1HT +R
�−1 �

HΣt−1HT +R
�

R−1GT

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1
�

HΣt−1HT +R
�

R−1GT

− FΣt−1HT R−1GT −GR−1HΣt−1FT −GR−1
�

HΣt−1HT +R
�

R−1GT

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT .

�

Stabilizing and strong solutions: Note that if the RDE (B.1) converges to a fixed matrix Σ,

we may state that Σ is a solution to the discrete algebraic Riccati equation (DARE)

Σ= FΣFT − FΣHT
�

HΣHT +R
�−1

HΣFT +Q. (B.3)

We call (B.3) the DARE corresponding to the RDE (B.1). Considering the convergence of (B.1),

two types of solutions to the DARE (B.3) are of particular importance.

Definition B.1 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, Q ∈ Rn×n and R ∈ Rm×m refer to the

RDE (B.1) that generates the matrix sequence {Σt}Nt=0 with a variance matrix Σ0 ≥ 0. Further

suppose that (B.3) is the DARE corresponding to the RDE (B.1), then a real symmetric matrixΣ≥ 0

satisfying the DARE (B.3) is called a stabilizing / strong solution, if and only if the eigenvalues

of the matrix

F̃ = F
�

I−ΣHT
�

HΣHT +R
�−1

H
�
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are inside / inside or on the unit circle.22

As we will see, (B.1) often converges towards its strong (stabilizing) solution, provided this

solution exists. Furthermore, to show that the DAREs

C+ = FC+FT +Q−
�

FC+HT +G
� �

HC+HT +R
�−1 �

HC+FT +GT
�

, (B.4)

P+ = FP+FT − FP+HT
�

HP+HT +R
�−1

HP+FT +Q, (B.5)

corresponding to the RDEs (8a) and (8b) have strong (stabilizing) solutions, it is sufficient to

show that one of the DAREs (B.4) and (B.5) has a strong (stabilizing) solution. To see this we

propose the following Lemma:

Lemma B.2 The matrix C+ is a stabilizing / strong solution to (B.4), if and only if P+ is a strong

/ stabilizing solution to (B.5).

Proof:

From Definition B.1 follows that P+ is a stabilizing / strong solution to (B.5), if and only if the

eigenvalues of the matrix

F̃P+ = F
�

I− P+HT
�

HP+HT +R
�−1

H
�

are inside / inside or on the unit circle. Analogously, using Lemma B.1 we may state that C+
is a stabilizing / strong solution to (B.4), if and only if the eigenvalues of the matrix

F̃C+ = F
�

I−C+HT
�

HC+HT +R
�−1

H
�

are inside / inside or on the unit circle. Thus, to prove the claim of Lemma B.2 we will show

that F̃P+ and F̃C+ share the same set of eigenvalues. To see this, note that using the definitions

of F, H, and R as well as (4b), we may write

F̃C+ = F
�

I−C+HT
�

HC+HT +R
�−1

H
�

=
�

F−GR−1H
�

�

I−C+FT HT
�

HFC+FT HT +HQHT +R
�−1

HF
�

=
�

F−QHT
�

HQHT +R
�−1

HF
��

I−C+FT HT
�

HFC+FT HT +HQHT +R
�−1

HF
�

=
�

F−QHT
�

HQHT +R
�−1

HF
��

I−C+FT HT
�

HP+HT +R
�−1

HF
�

=
�

I−QHT
�

HQHT +R
�−1

H
��

F− FC+FT HT
�

HP+HT +R
�−1

HF
�

=
�

I−QHT
�

HQHT +R
�−1

H
��

F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF
�

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

22This definition is taken from Chan et al. (1984) and de Souza et al. (1986).
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+QHT
�

HQHT +R
�−1

HP+HT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

HQHT
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1

HP+HT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

HQHT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

R
�

HP+HT +R
�−1

HF

+QHT
�

HQHT +R
�−1

R
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1 �

HP+HT +R
� �

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1 �

HQHT +R
� �

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1

HF−QHT
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF

=
�

I− P+HT
�

HP+HT +R
�−1

H
�

F

Since F and
�

I− P+HT
�

HP+HT +R
�−1

H
�

are both square matrices, the matrix F̃C+ must have

the same set of eigenvalues as the matrix F̃P+ .
23 This completes the proof.

�

Some concepts of linear systems theory: To eventually obtain conditions under which RDE

(B.1) converges to a fixed matrix Σ , we introduce the concepts of stability, observability, and

reachability from linear system theory:24

Definition B.2 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with Q =

DDT , D ∈ Rn×n, refer to the RDE (B.1) that generates the matrix sequence {Σt}Nt=0 with a variance

matrix Σ0 ≥ 0. Further suppose that (B.3) is the DARE corresponding to the RDE (B.1), then

(i) The matrix F is called stable, if and only if for any eigenvalue λ of the matrix F it holds that

|λ|< 1.

(ii) The pair (H,F) is called observable, if and only if

rk
�

HT FT HT · · · (FT )n−1 HT
�

= n.
23Note that from A,B ∈ Rn×n follows that the matrices C= AB and D= BA share the same set of eigenvalues. See

e.g. Theorem 6.12 by Searle and Khuri (2017, pp. 140).
24See also (Gu, 2012, Chapter 3).
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(iii) The pair (F,D) is called reachable, if and only if

rk
�

D F D · · · Fn−1 D
�

= n.

With respect to the SSM (1), a stable transition matrix F ensures that wt follows a stationary

process so that the unforced system

wt = Fwt−1, w0 6= 0,

is asymptotically stable, i.e., lim
t→∞

wt = 0. Observability and reachability are dual concepts,

i.e., for an observable pair (H,F), we may claim that the pair (FT ,HT ) is reachable and vice

versa. Observability of the pair (H,F) can also be understood in the sense that, in the case of

an unforced system

yt = Hwt , wt = Fwt−1,

there is some l ∈ N, such that the initial state vector w0 may be obtained from {yt}lt=1 (see

Gu, 2012, pp. 70). Reachability of the pair (F,D), on the other hand, can be interpreted in the

sense that there is a bounded control input {vt}lt=1, l ∈ N, so that the system

wt = Fwt−1 +Dvt ,

can reach a state w∗, i.e., wl = w∗, for a given initial state w0 (see Gu, 2012, pp. 75). As

we will see, observability and reachability are sufficient conditions for (B.1) to converge to a

stabilizing solution for Σ 0 > 0. However, since especially the assumption of reachability does

not hold for a variety of econometric models,25 somewhat weaker concepts than observability

and reachablility are detectability and stabilizability:

Definition B.3 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with Q =

DDT , D ∈ Rn×n, refer to the RDE (B.1) that generates the matrix sequence {Σ t}Nt=0 with a variance

matrix Σ 0 ≥ 0. Further suppose that (B.3) is the DARE corresponding to the RDE (B.1), then

(i) The pair (H,F) is called detectable, if for any eigenvalue λ of the matrix F with |λ| ≥ 1, there

does not exist a n-dimensional eigenvector q 6= 0 such that

Fq= λq, Hq= 0.

25See e.g. Harvey (1990b, pp. 118) who illustrates that a non-invertible moving average process of order one will
always be observable, but never be reachable.
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(ii) The pair (F,D) is called stabilizable, if for any eigenvalue λ of the matrix FT with |λ| ≥ 1,

there does not exist a n-dimensional eigenvector q 6= 0 such that

FT q= λq, DT q= 0.

(iii) Further an eigenvalue λ of the matrix F is said to be (F,D)-unreachable (of rank p) if and

only if there exists a set of (p) n-dimensional generalized eigenvectors qi 6= 0 with i = 1, . . . , p

and q0 = 0 such that

FT qi = λqi + qi−1, DT qi = 0.

In the following lemma, we postulate some well-known links from detectability and stabiliz-

ability to the concepts in Definition B.2:

Lemma B.3 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with Q =

DDT , D ∈ Rn×n, refer to the RDE (B.1) that generates the matrix sequence {Σt}Nt=0 with a variance

matrix Σ0 ≥ 0. Further suppose that (B.3) is the DARE corresponding to the RDE (B.1), then we

may state that:

(i) If the matrix F is stable, then the pair (H,F) is detectable.

(ii) If the matrix F is stable, then the pair (F,D) is stabilizable.

(iii) If the pair (H,F) is observable it is also detectable.

(iv) If the pair (F,D) is reachable it is also stabilizable.

(v) The pair (F,D) is stabilizable, if and only if the matrix F has no (F,D)-unreachable eigenval-

ues on or outside the unit circle, i.e. λ≤ 1.

(vi) The pair is (F,D) is reachable, if and only if the matrix F has no (F,D)-unreachable eigen-

values.

Proof:

(i) Note that the stability of F implies that there are no eigenvalues λ of the matrix F with

|λ| ≥ 1. Consequently, for all eigenvalues with |λ| ≥ 1 (where there are none), there does

not exist an n-dimensional vector q 6= 0 such that

Fq= λq, Hq= 0.
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(ii) Note that the stability of F implies that there are no eigenvalues λ of the matrix FT with

|λ| ≥ 1. Consequently, for all eigenvalues with |λ| ≥ 1 (where there are none), there does

not exist an n-dimensional vector q 6= 0 such that

FT q= λq, DT q= 0.

(iii) The statement follows from the fact that observability of the pair (H,F) implies that the

matrix F has no eigenvector q (corresponding to an eigenvalue λ) such that

Fq= λq, Hq= 0.

This is true, since otherwise we could write

qT
�

HT FT HT · · · (FT )n−1 HT
�

=
�

qT HT qT FT HT · · · qT (FT )n−1 HT
�

=
�

(H q)T (H F q)T · · · (H Fn−1 q)T
�

=
�

(H q)T λ (H q)T · · · λn−1 (H q)T
�

=
�

0 0 · · · 0
�

= 0,

so that

rk
�

HT FT HT · · · (FT )n−1 HT
�

< n.

(iv) The statement follows from the fact that reachability of the pair (F,D) implies that the

matrix FT has no eigenvector q (corresponding to an eigenvalue λ) such that

FT q= λq, DT q= 0.

This is true, since otherwise we could write

qT
�

D F D · · · Fn−1 D
�

=
�

qT D qT F D · · · qT Fn−1 H
�

=
�

(DT q)T (DT FT q)T · · · (DT (FT )n−1 q)T
�

=
�

(DT q)T λ (DT q)T · · · λn−1 (DT q)T
�

=
�

0 0 · · · 0
�

= 0,

so that

rk
�

D F D · · · Fn−1 D
�

< n.
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(v) Follows directly from Definition B.3 (ii)-(iii).

(vi) Follows from Theorem 3.10. Gu (2012, pp. 77).

�

Roughly speaking, we may describe detectability / stabilizability as the claim that all parts, or

more precisely all eigenvalues of the transition matrix F, are either (H,F) observable / (F,D)

reachable or stable. Please note that some authors, e.g., Harvey (1990b, pp. 115), use the

related concept of Controllability instead of the concept of Reachability. For more details on

linear systems theory, we refer the reader to Gu (2012, Chapter 3) as well as Anderson and

Moore (1979, Appendix C).

Some general convergence results: Finally, we collect the main results on the convergence

of the RDE (B.1) provided by de Souza et al. (1986) in the following Proposition:

Proposition B.1 Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with

Q = DDT , D ∈ Rn×n, refer to the RDE (B.1) that generates the matrix sequence {Σt}Nt=0 with a

variance matrix Σ0 ≥ 0. Further suppose that (B.3) is the DARE corresponding to the RDE (B.1),

then

(i) The strong solutionΣs of the DARE (B.3) exists and is unique if and only if (H,F) is detectable.

Furthermore, subject to (Σ0 −Σs) ≥ 0, the RDE (B.1) converges to the strong solution (i.e.

lim
t→∞

Σt = Σs).

(ii) The strong solution Σs is the only non-negative definite solution of the DARE (B.3) if and only

if (H,F) is detectable and F has no (F,D)-unreachable eigenvalues outside the unit circle.

(iii) The strong solution Σs is a stabilizing solution of the DARE (B.3) if and only if (H,F) is

detectable and F has no (F,D)-unreachable eigenvalues on the unit circle. Furthermore,

subject to Σ0 > 0, the RDE (B.1) converges to the strong and stabilizing solution Σs.

Proof:

(i) See de Souza et al. (1986, Theorem 3.2-A and theorem 4.2).

(ii) See de Souza et al. (1986, Theorem 3.2-B).

(iii) See de Souza et al. (1986, Theorem 3.2-C and theorem 4.1).

�
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From Proposition B.1(i)-(iii) and Lemma B.3(v) follows the well-known result that the RDE

(B.1) converges to a stabilizing solution if the pair (H,F) is detectable while the pair (F,D)

is stabilizable. Furthermore, it follows from Lemma B.3(i)-(iii) that the same holds true if

F is stable and/or if the pair (H,F) is observable while the pair (F,D) is reachable. However,

Proposition B.1(i) also allows to investigate the existence and convergence to a strong solution.

B.2 Proof of Proposition 2.1

To prove claims (i) and (ii) of Proposition 2.1, we will consult the results of Proposition B.1 and

Lemmas B.1, B.2 and B.3, while the proof of claim (iii) basis on Proposition 13.1 by (Hamilton,

1994, pp. 390) and Lemma B.2.

Statement (i): To prove the claim (i), we first consider the sequence {Pt|t−1}Nt=1 determined

by the (ordinary) RDE (8b). Since R is a non-singular matrix by assumption, we may use the

results by de Souza et al. (1986) to analyze the convergence behavior of {Pt|t−1}Nt=1. Using

the fact that the matrix F is stable by assumption, it follows from Lemma B.3 (i), (ii), and (v)

that (H,F) is detectable and F has no (F,D)-unreachable eigenvalues on (or outside) the unit

circle. Thus, the claim related to the sequence {Pt|t−1}Nt=1 follows directly from the „if “ part

of Proposition B.1 (iii). The claim related to the sequence {Ct}Nt=1 then follows directly from

Lemma B.2 and the „only if“ part of Proposition B.1 (iii).

Statement (ii): To prove the claim (ii), we first consider the sequence {Ct}Nt=1 determined by

the (general) RDE (8a). Since R is a non-singular matrix by assumption, we may use Lemma

B.1 to transform (8a) into the (ordinary) RDE

Ct = FCt−1FT +Q − FCt−1HT
�

HCt−1HT +R
�−1

HCt−1FT , (B.6)

with F := F−GR−1H and Q := Q−GR−1GT . Based on (B.6), we may use the results by de Souza

et al. (1986) to analyze the convergence behavior of {Ct}Nt=1. Using the fact that the matrix F is

stable by assumption, it follows from Lemma B.3 (i), (ii), and (v) that (H,F) is detectable and

F has no (F,D)-unreachable eigenvalues on (or outside) the unit circle. Thus, the claim related

to the sequence {Ct}Nt=1 follows directly from the „if “ part of Proposition B.1 (iii). The claim

related to the sequence {Pt|t−1}Nt=1 then follows directly from Lemma B.2 and the „only if “ part

of Proposition B.1 (iii).

Statement (iii): Hamilton (1994, Chapter 13) shows that using the unconditional initializa-

tion, the sequence {Pt|t−1}Nt=1 is non-increasing, i.e., Pt|t−1 − Pt+1|t is positive semi-definite for
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all t = 1, . . . , N − 1, and converges to a strong solution P+, with P1|0 − P+ = C0 − P+ ≥ 0.26

Furthermore, it follows from (3) and (4f) that

P+ −C+ = P+HT
�

HP+HT +R
�−1 �

HP+HT +R
� �

HP+HT +R
�−1

HP+ ≥ 0

so that

C0 −C+ ≥ C0 − P+ = P1|0 − P+ ≥ 0.

Since we know from Lemma B.2 that C+ is a strong solution of RDE (8a), the claim related to

the sequence {Ct}Nt=1 follows directly from Proposition B.1 (i).

�

C DERIVATION OF THE STEADY-STATE KALMAN FILTER

In this appendix, we provide the formal derivation of the steady-state Kalman filter (SKF) (11)

and the steady-state log-likelihood (12). To do so, note that if we initialize the KF at (µ0,+,C+),

where C+ is a solution to (B.4), Ct = C+ for all t = 1, 2, . . . , N . Furthermore, the quantities

Pt|t−1, Ut , and Kt become time-invariant, too. If we denote their steady-state equivalents as P+,

U+, and K+, it follows directly from (4b), (4d), and (3) that

P+ = FC+FT +Q, U+ = HP+HT +R, K+ = P+HT U−1
+ .

Since, in this case, the updating steps (4b),(4d), and (4f) of the Kalman recursion (4), and the

updating of the gain matrix (3), become redundant, the Kalman recursion (4) for t = 1,2, . . . , N

reduces to

wt|t−1,+ = Fµt−1,+, (C.1a)

et,+ = y(h)t −Hwt|t−1,+, (C.1b)

µt,+ =wt|t−1,+ +K+et,+. (C.1c)

Defining

J+ := (I−K+H)F,

26Note that from C0 = F C0FT +Q and (4b) follows that P1|0 = F C0FT +Q= C0.
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we can use equations (C.1a) to (C.1c) to determine the law of motion for µt,+ as

µt,+ =wt|t−1,+ +K+et,+

=wt|t−1,+ +K+
�

y(h)t −Hwt|t−1,+

�

= Fµt−1,+ +K+
�

y(h)t −HFµt−1,+

�

= K+ y(h)t + (I−K+H)F µt−1,+

= K+ y(h)t + J+ µt−1,+, ∀t = 1,2, . . . , N . (C.2)

This means we can use (C.2) to determine µt,+ for t = 0, 1, . . . , N − 1 recursively. It follows

directly from equations (C.1b) and (C.1c) that the quantities wt|t−1 and et for t = 1,2, . . . , N

are then determined by

�

w1|0,+ · · · wN |N−1,+

�

= F
�

µ0,+ · · · µN−1,+

�

, (C.3)
�

e1,+ · · · eN ,+

�

=
�

y(h)1 · · · y(h)N

�

−H
�

w1|0,+ · · · wN |N−1,+

�

=
�

y(h)1 · · · y(h)N

�

−HF
�

µ0,+ · · · µN−1,+

�

. (C.4)

Note that we can also simplify the log-likelihood conditional to the initialization (µ0,+,C+), since

in this case Ut = U+ for all t = 1, . . . , N . Hence, we can define the log-likelihood computed

based on the SKF as

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) +
N
∑

t=1

log |U+| +
N
∑

t=1

eT
t,+ U−1

+ et,+

�

= −
1
2

�

ny N log(2π) + N log |U+|
�

−
1
2

N
∑

t=1

tr
�

eT
t,+ U−1

+ et,+

�

= −
1
2

�

ny N log(2π) + N log |U+|
�

−
1
2

N
∑

t=1

tr
�

U−1
+ et,+eT

t,+

�

= −
1
2

�

ny N log(2π) + N log |U+|
�

−
1
2

tr

�

N
∑

t=1

U−1
+ et,+eT

t,+

�

= −
1
2

�

ny N log(2π) + N log |U+|
�

−
1
2

tr

�

U−1
+

N
∑

t=1

et,+eT
t,+

�

= −
1
2

h

ny N log(2π) + N log |U+|+ tr
�

U−1
+

�

e1,+ · · · eN ,+

��

e1,+ · · · eN ,+

�T�i

= −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

U−1
+ e1:N ,+eT

1:N ,+

��

,

= −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

eT
1:N ,+ U−1

+ e1:N ,+

��

, (C.5)

with e1:N ,+ :=
�

e1,+ · · · eN ,+

�

.

Further, note that since J+ = F̃C+ , we may analyze its eigenvalues to check if C+ is a strong /

49



stabilizing solution to RDE (8a).

D DERIVATION OF THE AUGMENTED KALMAN FILTER

The first part of this appendix contains the formal derivation of the augmented Kalman fil-

ter (AKF) (15) and the log-density log
�

fYN

�

given in (16). In the second part, we provide a

brief digression on how initialization strategies for non-stationary SSMs, such as the fixed-but-

unknown or the diffuse initialization, can be incorporated within the AKF (15). In the last part

of this appendix, we show how to incorporate the additional steps of the AKF into the KF (4).

D.1 The augmented Kalman filter

Note that the derivation of the AKF given here in large parts follows the arguments of Durbin

and Koopman (2012, Chapter 5.7). However, we shall derive the AKF with respect to SSM (1),

while the elaborations of Durbin and Koopman (2012) are based on the alternative state-space

representation (5).

For convenience, let us restate the model for the initial state vector from equation (13):

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

Further, we denoted the time t quantities generated by the Kalman recursion (4) initialized at

(µ̃0, C̃0), with µ̃0 = aw +Awµ0 and C̃0 = AwC0AT
w, by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt , and K̃t . In the

following derivation of the AKF (15a)-(15e)

µt = µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

, ∀ t = 1,2, . . . , N ,

Ct = C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t , ∀ t = 1,2, . . . , N ,

st = st−1 + (HFMt−1)
T Ũ−1

t ẽt , s0 = 0, ∀ t = 1,2, . . . , N ,

St = St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1), S0 = 0, ∀ t = 1,2, . . . , N ,

Mt =
�

I− K̃tH
�

F Mt−1, M0 = I, ∀ t = 1,2, . . . , N ,

and especially of the log-density

log( fYN
) = log

�

fYN |d=0

�

−
1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ),

given in (16), the Bayes theorem will play a key role as it allows us to decompose the log-density
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log( fYN
) into

log
�

fYN

�

= log

�

fYN |d · fd

fd|YN

�

= log( fd) + log
�

fYN |d

�

− log
�

fd|YN

�

. (D.1)

While for given δ0 and D0, the log-density log( fd) is fully specified, we need to obtain log
�

fYN |d

�

and log
�

fd|YN

�

to determine log
�

fYN

�

from the right-hand side of (D.1). Therefore, in the first

step, we will show that we can express the log-density log( fYN |d) as a function of log( fYN |d=0), d,

Ad , sN , and SN , where a crucial preliminary result will be the observation that the quantities µt ,

wt|t−1, and et of the KF are linear functions of µ0. This observation is due to Rosenberg (1973)

and forms the basis for the so-called fixed-but-unknown initialization discussed later in this

appendix. Eventually, we will receive (15) and (16) using a fixed-point smoothing algorithm

to obtain log
�

fd|YN

�

.

Linearity of µt , wt|t−1, and et in µ0: In the following lemma, we will show that the quan-

tities µt , wt|t−1, and et of the KF are linear in µ0, while the quantities Ct , Pt|t−1, and Ut are

independent of µ0:

Lemma D.1 Suppose for the SSM (1) the time t quantities generated by the Kalman recursion

(4) initialized at (µ̃0,C0) are denoted by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t . Further suppose µt ,

Ct , wt|t−1, Pt|t−1, et , Ut and Kt denote the time t quantities generated by the Kalman recursion

(4) initialized at (µ0,C0), then we can state that

Ct = C̃t , Pt|t−1 = P̃t|t−1, Ut = Ũt , Kt = K̃t ,

and that

µt = µ̃t +Mt ∆0, wt|t−1 = w̃t|t−1 + FMt−1 ∆0, et = ẽt −HFMt−1 ∆0,

with

∆0 = µ0 − µ̃0, Ms =
∏s

j=1
Js− j+1, Jt = (I−KtH)F, ∀s = 0, 1, . . . , N ,

for all t = 1,2, . . . , N.

Proof:

Defining Jt := (I−KtH)F we can use equation (4a), (4c) and (4e) to obtain the law of motion
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for µt as

µt =wt|t−1 +Ktet

=wt|t−1 +Kt

�

yt − h−H wt|t−1

�

=wt|t−1 +Kt (yt − h)−KtH wt|t−1

= (I−KtH)wt|t−1 +Kt (yt − h)

= (I−KtH)F µt−1 +Kt (yt − h)

= Jt µt−1 +Kt (yt − h) , ∀t = 1,2, . . . , N . (D.2)

Note that it follows from equations (3), (4b), (4d) and (4f), that the sequences {Kt}Nt=1, {Pt|t−1}Nt=1,

{Ut}Nt=1 and {Ct}Nt=0 referring to the initialization (µ0,C0) do not depend on µ0 and therefore

are identical to the sequences {K̃t}Nt=1, {P̃t|t−1}Nt=1, {Ũt}Nt=1 and {C̃t}Nt=0 referring to the initial-

ization (µ̃0,C0). Consequently, we can state that law of motion for µ̃t similar to (D.2) is given

by

µ̃t = Jt µ̃t−1 +Kt (yt − h) , ∀t = 1,2, . . . , N . (D.3)

Moreover, defining ∆t = µt − µ̃t for all t = 0,1, . . . , N , we may use (D.2) and (D.3) to write

∆t = Jt ∆t−1

= Jt · Jt−1 ∆t−2

...

= Jt · Jt−1 · . . . · J1 ∆0

=

�

t
∏

j=1

Jt− j+1

�

∆0

=Mt ∆0, ∀t = 0,1, . . . , N , (D.4)

with

Mt :=
t
∏

j=1

Jt− j+1, ∀t = 0, 1, . . . , N .

Note that from the definition of the
∏

(·) operator follows that M0 =
∏0

j=1 J j+1 = I. The

statement of Lemma D.1 then follows directly from (D.4), (4a) and (4b):

µt = µ̃t +Mt ∆0, ∀t = 0,1, . . . , N , (D.5)

wt|t−1 = F µt−1
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= F µ̃t−1 + FMt−1 ∆0

= w̃t|t−1 + FMt−1 ∆0, ∀t = 1,2, . . . , N , (D.6)

et = yt − h−Hwt|t−1

= yt − h−H
�

w̃t|t−1 + FMt−1 ∆0

�

= yt − h−Hw̃t|t−1 −HFMt−1 ∆0

= ẽt −HFMt−1 ∆0, ∀t = 1,2, . . . , N . (D.7)

�

As mentioned before, this observation, closely connected to the so-called fixed-but-unknown

initialization, where we treat the elements of d as fixed parameters that we may estimate via

maximum-likelihood, is due to Rosenberg (1973).

Obtaining log( fYN |d) as a function of log( fYN |d=0), d, Ad , sN , and SN : In the following Propo-

sition, we use Lemma D.1 to obtain the analytical maximum-likelihood estimator for d and

show that we may rewrite log( fYN |d) as a function of log( fYN |d=0), d, Ad , sN , and SN :

Proposition D.1 Suppose the initial state vector w0 can be written as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

where w0 ∈ Rnw̄ , nw̄ ≤ nw and d ∈ Rnd , nd ≤ nw represent two independent random vectors.

Suppose for SSM (1) the time t quantities generated by the Kalman recursion (4) initialized at

(µ̃0, C̃0), with µ̃0 = aw+Awµ0 and C̃0 = AwC0AT
w, are denoted by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and

K̃t . Then for the SSM (1) the conditional log-density of YN given d may be written as

log
�

fYN |d

�

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d,

with

st =
N
∑

i=1

ET
i Ũ−1

i ẽi, St =
N
∑

i=1

ET
i Ũ−1

i Ei

Et = HFMt−1, Mt−1 =
∏t−1

j=1
Jt− j, Jt =

�

I− K̃tH
�

F, ∀t = 1,2, . . . , N .

Further, the maximum-likelihood estimator of d for a given sample YN yields

d̂ = argmax
d

log
�

fYN |d

�

=
�

AT
d SN Ad

�−1
AT

d sN ,
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with

ÓVar[d̂] = −

�

∂ 2 log
�

fYN |d

�

∂ d ∂ dT

�−1

=
�

AT
d SN Ad

�−1
.

Proof:

Note that we may write the mean vector and the variance matrix of w0 given d as

µ0|d := E[w0|d] = µ̃0 + d, C0|d := Var[w0|d] = C̃0,

with d = Ad d. Suppose for SSM (1) the time t quantities generated by the Kalman recursion

(4) initialized at (µ0|d,C0|d) are denoted by µt|d, Ct|d, wt|t−1,d, Pt|t−1,d, et|d, Ut|d and Kt|d. Then

the conditional log-density of YN given d follows from (6) as

log
�

fYN |d

�

= −
N ny

2
log(2π) −

1
2

N
∑

t=1

log
�

�Ut|d

�

� −
1
2

N
∑

t=1

eT
t|d U−1

t|d et|d.

Hence, using Lemma D.1 we may write

log
�

fYN |d

�

= −
N ny

2
log(2π) −

1
2

N
∑

t=1

log
�

�Ũt

�

�−
1
2

N
∑

t=1

�

ẽt − Et d
�T

Ũ−1
t

�

ẽt − Et d
�

. (D.8)

The first part of the proof is completed by rewriting the (D.8) to

log
�

fYN |d

�

= −
N ny

2
log(2π) −

1
2

N
∑

t=1

log
�

�Ũt

�

�−
1
2

N
∑

t=1

�

ẽt − Et d
�T

Ũ−1
t

�

ẽt − Et d
�

= −
N ny

2
log(2π) −

1
2

N
∑

t=1

log
�

�Ũt

�

� −
1
2

�

N
∑

t=1

ẽT
t Ũ−1

t ẽt

�

︸ ︷︷ ︸

=log(fYN |d=0)

+
1
2

�

N
∑

t=1

ẽT
t Ũ−1

t Et d

�

+
1
2

�

N
∑

t=1

dT ET
t Ũ−1

t ẽt

�

−
1
2

�

N
∑

t=1

dT ET
t Ũ−1

t Et d

�

= log
�

fYN |d=0

�

+
1
2

�

N
∑

t=1

ẽT
t Ũ−1

t Et

�

d +
1
2

dT

�

N
∑

t=1

ET
t Ũ−1

t ẽt

�

−
1
2

dT

�

N
∑

t=1

ET
t Ũ−1

t Et

�

d

= log
�

fYN |d=0

�

+
1
2

sT
Nd +

1
2

dT sN
︸ ︷︷ ︸

=d̄TsN , since (d̄TsN)∈R1×1.

−
1
2

dT SN d

= log
�

fYN |d=0

�

+ dT sN −
1
2

dT SN d

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN A d. (D.9)
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Since sN , SN , Ad and log
�

fYN |d=0

�

do not depend on d, using matrix differentiating rules (see

e.g. Lütkepohl (2007, pp. 664-671)) the first and second order derivatives of log
�

fYN |d

�

with

respect to d yield

∂ log
�

fYN |d

�

∂ d
= AT

d sN −AT
d SN Ad d, (D.10a)

∂ log
�

fYN |d

�

∂ d ∂ dT
= −AT

d SN Ad. (D.10b)

If the matrix AT
d SN Ad has full rank, equating (D.10a) to zero yields the maximum-likelihood

estimator for d given (YN )

d̂ = argmax
d

log
�

fYN |d

�

=
�

AT
d SN Ad

�−1
AT

d sN ,

with

ÓVar[d̂] = −

�

∂ 2 log
�

fYN |d

�

∂ d ∂ dT

�−1

=
�

AT
d SN Ad

�−1
.

�

Derivation of (15) and (16): Using the results of Lemma D.1 and Proposition D.1, we may

ultimately obtain the formulas of the AKF (15) and the log-density log( fYN
) given in (16). There-

fore, let us establish the following Proposition:

Proposition D.2 Suppose the initial state vector w0 can be written as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

where w0 ∈ Rnw̄ , nw̄ ≤ nw and d ∈ Rnd , nd ≤ nw represent two independent random vectors.

Suppose for SSM (1) the time t quantities generated by the Kalman recursion (4) initialized at

(µ̃0, C̃0), with µ̃0 = aw + Awµ0 and C̃0 = AwC0AT
w, are denoted by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt

and K̃t . Suppose the variance matrix D0 is positive definite. Then for the SSM (1) the conditional

distributions of d and wt given Yt are Gaussian with mean vectors

δ t := E [d|Yt] =
�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

,

µt := E [wt |Yt] = µ̃t +MtAd δ t ,

and variance matrices:

Dt := Var [d|Yt] =
�

D−1
0 +AT

d St Ad

�−1
,

Ct := Var [wt |Yt] = C̃t +MtAdDtA
T
d MT

t ,
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where

st =
t
∑

i=1

ET
i Ũ−1

i ẽi, St =
t
∑

i=1

ET
i Ũ−1

i Ei and

Et = HFMt−1, Mt−1 =
∏t−1

j=1
Jt− j, Jt =

�

I− K̃tH
�

F, ∀t = 1, 2, . . . , N .

Further, the log-density of YN may be written as

log( fYN
) = log

�

fYN |d=0

�

−
1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ).

Proof:

From Lemma A.1 and the linearity of the SSM (1) follows that d given Yt is normally distributed

with the corresponding log-density

log
�

fd|Yt

�

= −
nd

2
log(2π) −

1
2

log |Dt | −
1
2
(d−δ t)

T D−1
t (d−δ t) , (D.11)

whereδ t := E [d|Yt] and Dt := Var [d|Yt] denote mean vector and the variance matrix of d given

Yt . Since d given Yt is normally distributed, the mode and the mean of log
�

fd|Yt

�

coincide and

we can write

δ t = argmax
d

log
�

fd|Yt

�

.

Additionally from (D.11) and matrix differentiating rules (see e.g. Lütkepohl (2007, pp. 664-

671)) follows that the Hessian matrix of log
�

fd|Yt

�

with respect to d is

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT
=
∂

∂ d

�

−
1
2

∂ (d−δ t)
T D−1

t (d−δ t)

∂ dT

�

=
∂

∂ d

�

−
1
2

∂ (δ t − d)T D−1
t (δ t − d)

∂ dT

�

=
∂

∂ d

�

−
1
2

�

−2 (δ t − d)T D−1
t

�

�

=
∂

∂ d

�

(δ t − d)T D−1
t

�

= −D−1
t ,
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and the variance matrix Dt yields

Dt = −

�

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT

�−1

. (D.12)

Hence, to prove the first part of Proposition D.2 we need to obtain the first and second order

derivatives of log
�

fd|Yt

�

with respect to d. To do so, we first use the Bayes Theorem to rewrite

log
�

fd|Yt

�

as

log
�

fd|Yt

�

= log

�

fYt |d · fd

fYt

�

= log( fd) + log
�

fYt |d

�

− log
�

fYt

�

. (D.13)

Note that the first term on the right-hand side of (D.13) is the log-density of d, which yields

log( fd) = −
nd

2
log(2π) −

1
2

log |D0| −
1
2
(d−δ0)

T D−1
0 (d−δ0) . (D.14)

Differentiating equation (D.14) with respect to d we get

∂ log ( fd)
∂ d

= −
1
2
∂

∂ d

�

(d−δ0)
T D−1

0 (d−δ0)
�

= −
1
2
∂

∂ d

�

(δ0 − d)T D−1
0 (δ0 − d)

�

= −
1
2

�

−2D−1
0 (δ0 − d)

�

= D−1
0 (δ0 − d)

= D−1
0 δ0 −D−1

0 d. (D.15)

Furthermore, we already obtained the first order derivatives of the conditional log-likelihood

log
�

fYt |d

�

with respect to d in equation (D.10a). Finally, we get the first order derivatives of

log
�

fYt

�

with respect to d as

∂ log
�

fYt

�

∂ d
= 0, (D.16)

since we can obtain log
�

fYt

�

without knowledge of d from equation (6) by initializing the

Kalman recursion (4) at
�

µ0,C0

�

with µ0 = aw +Aw µ0 +Ad δ0 and C0 = Aw C0 AT
w +Ad D0 AT

d .
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Hence, from equations (D.10a), (D.13), (D.15) and (D.16) we receive

∂ log
�

fd|Yt

�

∂ d
=
∂ log ( fd)
∂ d

+
∂ log

�

fYt |d

�

∂ d
−
∂ log

�

fYt

�

∂ d

= D−1
0 δ0 −D−1

0 d+AT
d st −AT

d St Ad d

= D−1
0 δ0 +AT

d st −
�

D−1
0 +AT

d St Ad

�

d, (D.17)

and the mean vector δ t of d given Yt is obtained as

δ t = argmax
d

log
�

fd|Yt

�

=
�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

,

by equating (D.17) to zero and solving with respect to d. To obtain Dt , we compute the Hessian

of log
�

fd|Yt

�

with respect to d by differentiating (D.17) with respect to dT , which results in

∂ log
�

fd|Yt

�

∂ d ∂ dT
= −

�

D−1
0 +AT

d St Ad

�

. (D.18)

Thus, due to (D.12), the variance matrix Dt of d given Yt equals

Dt = −

�

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT

�−1

=
�

D−1
0 +AT

d St Ad

�−1
.

Moreover, we can state that

�

d

wt

�

given Yt is normally distributed with mean vector

E

�

d

wt

�

�

�Yt

�

=

�

δ t

µ̃t +MtAd δ t

�

(D.19)

and variance matrix

Var

�

d

wt

�

�

�Yt

�

=

�

Dt DtA
T
d MT

t

MtAdDt C̃t +MtAdDtA
T
d MT

t

�

. (D.20)

This may be seen from the fact that we can write the joint density function of d and wt given

Yt as

fd,wt |Yt
= fd|Yt

· fwt |d,Yt

=(2π)−
np
2 |Dt |

− 1
2 exp

�

−
1
2
(d−δ t)

T D−1
t (d−δ t)

�
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× (2π)−
nw
2
�

�C̃t

�

�

− 1
2 exp

�

−
1
2

�

wt − µ̃t −MtAdd
�T

C̃−1
t

�

wt − µ̃t −MtAdd
�

�

=(2π)−
np+nw

2

�

�

�

�

�

�

Dt 0

0 C̃t

�

�

�

�

�

�

− 1
2

× exp



−
1
2

�

d−δ t

wt − µ̃t −MtAdd

�T �
D−1

t 0

0 C̃−1
t

��

d−δ t

wt − µ̃t −MtAdd

�





=(2π)−
np+nw

2











�

�

�

�

�

�

I 0

MtAd I

�

�

�

�

�

�

︸ ︷︷ ︸

=1

�

�

�

�

�

�

Dt 0

0 C̃t

�

�

�

�

�

�

�

�

�

�

�

�

I AT
d MT

t

0 I

�

�

�

�

�

�

︸ ︷︷ ︸

=1











− 1
2

× exp

�

−
1
2

�

d−δ t

wt − µ̃t −MtAdd

�T �
I AT

d MT
t

0 I

��

I AT
d MT

t

0 I

�−1

︸ ︷︷ ︸

=I

×

�

Dt 0

0 C̃t

�−1�
I 0

MtAd I

�−1�
I 0

MtAd I

�

︸ ︷︷ ︸

=I

�

d−δ t

wt − µ̃t −MtAdd

�

�

=(2π)−
np+nw

2

�

�

�

�

�

�

I 0

MtAd I

��

Dt 0

0 C̃t

��
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d MT

t

0 I

�

�
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�

− 1
2

× exp

�

−
1
2

�

d−δ t

MtAdd−MtAdδ t +wt − µ̃t −MtAdd

�T

×

��

I 0

MtAd I

��

Dt 0

0 C̃t

��

I AT
d MT

t

0 I

��−1

×

�

d−δ t

MtAdd−MtAdδ t +wt − µ̃t −MtAdd

�

�

=(2π)−
np+nw

2

�

�

�

�

�

�

Dt DtA
T
d MT

t

MtAdDt C̃t +MtAdDtA
T
d MT

t

�

�

�

�

�

�

− 1
2

× exp

�

−
1
2

�

d−δ t

wt −
�

µ̃t +MtAdδ t

�

�T �
Dt DtA

T
d MT

t

MtAdDt C̃t +MtAdDtA
T
d MT

t

�−1

×

�

d−δ t

wt −
�

µ̃t +MtAdδ t

�

�

�

.
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Consequently, it follows from (D.19) and (D.20) that wt given Yt is normally distributed with

mean vector µt and variance matrix Ct defined by

µt := E [wt |Yt] = µ̃t +MtAdδ t ,

Ct := Var [wt |Yt] = C̃t +MtAdDtA
T
d MT

t .

The claim about log-density of YN then follows directly from equations (D.9), (D.11), (D.13)

and (D.14):

log( fYN
) = log( fYN |d) + log( fd)− log( fd|YN

)

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d

︸ ︷︷ ︸

log(fYN |d), from (D.9).

−
nd

2
log(2π) −

1
2

log |D0| −
1
2
(d−δ0)

T D−1
0 (d−δ0)

︸ ︷︷ ︸

=log(fd), from (D.14).

−
�

−
nd

2
log(2π) −

1
2

log |DN | −
1
2
(d−δN )

T D−1
N (d−δN )

�

︸ ︷︷ ︸

=log(fd|YN ), from (D.11).

= log
�

fYN |d=0

�

−
1
2

log |D0|+
1
2

log |DN |+ dT AT
d sN −

1
2

dT AT
d SN Ad d

−
1
2
(d−δ0)

T D−1
0 (d−δ0)

+
1
2
(d−δN )

T D−1
N (d−δN )

= log
�

fYN |d=0

�

−
1
2
(log |D0| − log |DN |) + dT AT

d sN −
1
2

dT AT
d SN Ad d

−
1
2

dT D−1
0 d +

1
2

dT D−1
0 δ0 +

1
2
δT

0 D−1
0 d

︸ ︷︷ ︸

=dT(D−1
0 δ0), since

�

δT
0 D−1

0 d
�

∈ R.

−
1
2
δT

0 D−1
0 δ0

+
1
2

dT D−1
N d −

1
2

dT D−1
N δN −

1
2
δT

N D−1
N d

︸ ︷︷ ︸

=−dT(D−1
N δN), since

�

δT
N D−1

N d
�

∈ R.

+
1
2
δT

N D−1
N δN

= log
�

fYN |d=0

�

−
1
2

log
�

�D0D−1
N

�

�−
1
2
δT

0 D−1
0 δ0 +

1
2
δT

N D−1
N δN

−
1
2

�

dT AT
d SN Ad d+ dT D−1

0 d
�

︸ ︷︷ ︸

=dT(D−1
0 +AT

d SN Ad)d

+dT
�

D−1
0 δ0

�

+ dT AT
d sN

︸ ︷︷ ︸

=dT(D−1
0 δ0+AT

d sN)

+
1
2

dT D−1
N d

︸ ︷︷ ︸

=dT(D−1
0 +AT

d SN Ad)d

− dT
�

D−1
N δN
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︸ ︷︷ ︸

=dT(D−1
0 δ0+AT

d sN)

= log
�

fYN |d=0

�

−
1
2
δT

0 D−1
0 δ0

−
1
2

log
�

�D0D−1
N

�

�

︸ ︷︷ ︸

=− 1
2 log|D0(D−1

0 +AT
d SN Ad)|

+
1
2
δT

N D−1
N δN

︸ ︷︷ ︸

= 1
2 (D

−1
0 δ0+AT

d sN)T(D−1
0 +AT

d SN Ad)−1(D−1
0 δ0+AT

d sN)
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= log
�

fYN |d=0

�

−
1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ),

which completes the proof.27

�

Note that (16) follows directly from the claims of Proposition D.2, while we may obtain (15a)

and (15b) by substitutingδ t =
�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

and Dt =
�

D−1
0 +AT

d St Ad

�−1

into µt = µ̃t +MtAd δ t and Ct = C̃t +MtAdDtA
T
d MT

t , respectively. To derive the remaining for-

mulas of the AKF, notice that defining the sequences {st}Nt=0, {Mt}Nt=0, and {St}Nt=0 as in Propo-

sitions D.1 and D.2 is equivalent to their recursive derivation given in (15c)-(15e). To see this,

note that

st =
t
∑

i=1

ET
i Ũ−1

i ẽi

=
t
∑

i=1

(HFMi−1)
T Ũ−1

i ẽi

= (HFMt−1)
T Ũ−1

t ẽt +
t−1
∑

i=1

(HFMi−1)
T Ũ−1

i ẽi

= st−1 + (HFMt−1)
T Ũ−1

t ẽt ,

St =
t
∑

i=1

ET
i Ũ−1

i Ei

=
t
∑

i=1

(HFMi−1)
T Ũ−1

i (HFMi−1)

= (HFMt−1)
T Ũ−1

t (HFMt−1) +
t−1
∑

i=1

(HFMi−1)
T Ũ−1

i (HFMi−1)

= St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1),

Mt =
∏t

j=1
Jt+1− j

= Jt Jt−1 . . . J1

= Jt

∏t−1

j=1
Jt− j

= Jt Mt−1

=
�

I− K̃tH
�

F Mt−1.

27Note that some arguments of this proof are taken from Durbin and Koopman (2012, pp. 141-144) and de Jong
(1988).
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Further, by definition of the
∑

(·) and the
∏

(·) operator, we get:

s0 =
0
∑

i=1

ET
i Ũ−1

i ẽi = 0, S0 =
0
∑

i=1

ET
i Ũ−1

i Ei = 0, M0 =
0
∏

j=1

J1− j = I.

D.2 Initialization strategies for non-stationary state-space models

In the following, we present two well-known strategies, namely the fixed-but-unknown and the

diffuse initialization, to choose (µ0,C0) in the context of non-stationary SSMs.

Fixed-but-unknown initialization: Imagine the state vector wt contains some non-stationary

elements, which implies that the unconditional second moments of wt do not exist; therefore an

unconditional initialization is impossible. One way to handle non-stationary SSMs is to treat

the non-stationary elements in w0 as fixed-but-unknown and estimate them via maximum-

likelihood. We refer to this approach, which goes back to Rosenberg (1973), as the fixed-but-

unknown initialization. As de Jong (1988) shows, we can easily apply the fixed-but-unknown

initialization within the framework of the AKF. To see this, suppose that we may reorder the

initial state vector w0 such that

w0 =

�

w(1)0

w(2)0

�

∼ N

��

µ(1)0

µ(2)0

�

,

�

C(1)0 0

0 C(2)0

��

, µ(1)0 = µ
(1), C(1)0 = C(1), C(2)0 = zI, (D.21)

where w(1)0 and w(2)0 denote the stationary and non-stationary elements, respectively, and where

µ(1) and C(1) represent the unconditional mean vector and the unconditional variance matrix of

w(1)t . For an initial state vector w0 as defined in (D.21), we can consider the fixed-but-unknown

initialization as the case where z tends to zero. We may also express w0, defined via (D.21)

using (13) by setting

µ0 = 0, C0 = C(1)0 , aw =

�

0

0

�

, Aw =

�

I

0

�

,

δ0 = µ
(2)
0 D0 = C(2)0 = zI, Ad =

�

0

I

�

.

Hence, we can apply the AKF to the initial state vector w0 defined by (D.21). If we now let z

tend to zero, i.e., d= δ0 and D0→ 0, (15a) and (15b) become

µt|d = E[wt |Yt ,d]

= lim
D0→0

µt

= lim
D0→0

µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�
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= lim
D0→0

µ̃t +MtAd

�

I+D0AT
d St Ad

�−1
D0

�

D−1
0 δ0 +AT

d st

�

= lim
D0→0

µ̃t +MtAd

�

I+D0AT
d St Ad

�−1 �
δ0 +D0AT

d st

�

= µ̃t +MtAd (I)
−1 d

= µ̃t +MtAd d, ∀ t = 1, 2, . . . , N , (D.22a)

Ct|d = Var[wt |Yt ,d]

= lim
D0→0

Ct

= lim
D0→0

C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t

= lim
D0→0

C̃t +MtAd

�

I+D0AT
d St Ad

�−1
D0AT

d MT
t

= C̃t , ∀ t = 1,2, . . . , N , (D.22b)

and the conditional log-density of YN given d follows from Proposition D.1 as

log
�

fYN |d

�

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d. (D.23)

Further, if AT
d SN Ad is non-singular, we may obtain the maximum-likelihood estimator of d and

its estimated variance matrix from Proposition D.1 as

d̂ =
�

AT
d SN Ad

�−1
AT

d sN , (D.24a)

ÓVar[d̂] =
�

AT
d SN Ad

�−1
. (D.24b)

Hence, substituting d by d̂ in (D.23) yields

log
�

fYN |d=d̂

�

= log
�

fYN |d=0

�

+ d̂T AT
d sN −

1
2

d̂T AT
d SN Ad d̂

= log
�

fYN |d=0

�

+
�

�

AT
d SN Ad

�−1
AT

d sN

�T
AT

d sN

−
1
2

�

�

AT
d SN Ad

�−1
AT

d sN

�T
AT

d SN Ad

�

�

AT
d SN Ad

�−1
AT

d sN

�

= log
�

fYN |d=0

�

+ sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN

−
1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d SN Ad

�

AT
d SN Ad

�−1
AT

d sN

= log
�

fYN |d=0

�

+ sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN −
1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN

= log
�

fYN |d=0

�

+
1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN , (D.25)

which is the log-density of YN concentrated with respect to d. This means that if we want

to evaluate the log-density of YN based on the fixed-but-unknown initialization for the non-

stationary elements w(2)0 of w0, we replace (6) with (D.25).
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Diffuse initialization: A rather contrary approach to the fixed-but-unknown initialization is

the so-called diffuse initialization, where we treat the non-stationary elements w(2)0 of the initial

state vector w0 as diffuse, i.e., z→∞ or equivalently D0→∞. Thus, treating w(2)0 as diffuse,

(15a) and (15b) yield

µt,z→∞ := lim
z→∞

µt = µ̃t +MtAd

�

AT
d St Ad

�−1 �
AT

d st

�

, ∀ t = k, k+ 1, . . . , N , (D.26a)

Ct,z→∞ := lim
z→∞

Ct = C̃t +MtAd

�

AT
d St Ad

�−1
AT

d MT
t , ∀ t = k, k+ 1, . . . , N , (D.26b)

where k is the first period where the matrix AT
d St Ad becomes non-singular. Thus, although

the initial state vector w0 in this case (z→∞) has an improper distribution, in the sense that

it does not integrate to one, it has a proper distribution conditional on Yk. In practice, when

dealing with non-stationary SSMs, we often use often only the first k observations to obtain

µk,z→∞ and Ck,z→∞. We then use the remaining observations to evaluate the log-likelihood

based on the original Kalman recursion (4) initialized at (µk,z→∞,Ck,z→∞). For more detailed

treatments of the diffuse initialization using the AKF, we refer the reader to textbook treatments

by Harvey (1990b) or Durbin and Koopman (2012).

D.3 Incorporating the augmented Kalman filter into the Kalman recursion

To compute the log-likelihood log
�

fYN

�

based on the AKF, one augments the standard Kalman

recursion (4) initialized at (µ̃0, C̃0) so that for all t = 1, 2, . . . , N , the quantity Mt can be com-

puted in parallel. To do so, we define

Wt|t−1 := FMt−1, ,∀ t = 1, 2, . . . , N (D.27)

so that we may compute Mt as

Mt =
∏t

j=1
Jt− j+1

= JtMt−1

=
�

I− K̃tH
�

FMt−1

=
�

I− K̃tH
�

Wt|t−1

=Wt|t−1 − K̃tHWt|t−1

=Wt|t−1 − K̃tEt ,∀ t = 1, 2, . . . , N . (D.28)
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Based on (D.27) and (D.28), we get the augmented Kalman recursion by extending (4a), (4c),

and (4e) from the standard Kalman recursion (4) initialized at (µ̃0, C̃0) to

�

w̃t|t−1 Wt|t−1

�

= F
�

µ̃t−1 Mt−1

�

, (D.29a)
�

ẽt Et

�

=
�

y(h)t 0
�

−H
�

w̃t|t−1 Wt|t−1

�

, (D.29c)
�

µ̃t Mt

�

=
�

w̃t|t−1 Wt|t−1

�

+ K̃t

�

ẽt Et

�

, (D.29e)

for all t = 1, 2, . . . , N .

E SMETS AND WOUTERS MODEL

The version of the dynamic stochastic general equilibrium (DSGE) model introduced by Smets

and Wouters (2007) that we use in this paper reflects a slightly adjusted version of the original

model that follows the Dynare implementation made available by Johannes Pfeifer.28

E.1 Stochastic process and residuals

The stochastic process driving the economy is given by

εa
t = ρa ε

a
t−1 +η

a
t ηa

t ∼ N(0,σa),

εb
t = ρb ε

b
t−1 +η

b
t ηb

t ∼ N(0,σb),

εg
t = ρg ε

g
t−1 +ρga η

a
t +η

g
t ηg

t ∼ N(0,σg),

εi
t = ρi ε

i
t−1 +η

i
t ηi

t ∼ N(0,σi),

εr
t = ρr ε

r
t−1 +η

r
t ηr

t ∼ N(0,σr),

εp
t = ρp ε

p
t−1 −µp η

p
t−1 +η

p
t ηp

t ∼ N(0,σp),

εw
t = ρw ε

w
t−1 −µwη

w
t−1 +η

w
t ηw

t ∼ N(0,σw),

where εa
t , εb

t , εg
t , εi

t , ε
r
t , ε

p
t , and εw

t denote a productivity shock, a risk premium shock, an

exogenous government spending shock, an investment-specific technology shock, a monetary

policy shock, a price markup shock, and a wage markup shock, respectively. In two periods, we

can write this stochastic process as

0= εa
t −η

a
t −ρa L

�

εa
t

�

, (E.1)

0= εb
t −η

b
t −ρb L

�

εb
t

�

, (E.2)

0= εg
t −η

g
t −η

a
t ρga −ρg L

�

εg
t

�

, (E.3)

28Link: https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Smets_Wouters_2007/
Smets_Wouters_2007_45.mod
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0= εi
t −η

i
t −ρi L

�

εi
t

�

, (E.4)

0= εr
t −η

r
t −ρr L

�

εr
t

�

, (E.5)

0= εp
t −η

p
t + L

�

ηp
t

�

µp −ρp L
�

εp
t

�

, (E.6)

0= εw
t −η

w
t + L

�

ηw
t

�

µw −ρw L
�

εw
t

�

, (E.7)

0= Et

�

ηa
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�

, (E.8)

0= Et

�

ηb
t+1

�

, (E.9)
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�

η
g
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�

, (E.10)
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ηi
t+1

�

, (E.11)

0= Et

�
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�

, (E.12)

0= Et

�

η
p
t+1

�

, (E.13)

0= Et

�

ηw
t+1

�

, (E.14)

where L(x t) denotes the variable x t lagged by one period, i.e, L(x t) = x t−1.

E.2 Economy with sticky prices and wages

At the core of the log-linearized version of the model are 13 equations

0= yt −Φεa
t −αΦ ks

t +Φ lt (α− 1) , (E.15)

0= ks
t − L (kt)− zt , (E.16)

0= zt +
rk

t (ψ− 1)

ψ
, (E.17)

0= µp t + ε
a
t −α rk

t +wt (α− 1) , (E.18)

0= ks
t − lt + rk

t −wt , (E.19)

0= yt − εg
t − ct cy − it iy − zt zy , (E.20)

0= rt − εr
t − L (rt) ρ + r∆y L (yt)− r∆y L

�

y f
t

�

− yt

�

r∆y − ry (ρ − 1)
�

+ y f
t

�

r∆y − ry (ρ − 1)
�

+πt rπ (ρ − 1) , (E.21)

0= −ik,γ ε
i
t ϕγ

2 + kt − it ik,γ + L (kt)
�

ik,γ − 1
�

, (E.22)

0= it − εi
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L (it)

β̄ γ+ 1
−
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γ2ϕ
�

β̄ γ+ 1
� −
Et [it+1] β̄ γ

β̄ γ+ 1
, (E.23)

0= qt −Et [πt+1] + rt −
Et

�
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t+1

�
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ss
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ss −δ+ 1

+
Et [qt+1] (δ− 1)
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+
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b
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�

h
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h
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, (E.24)

0= ct − εb
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Et [ct+1]

h
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−
L (ct) h

γ
�

h
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� +
Et [πt+1]

�

h
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�
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�

h
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h
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�
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h
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�
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0= πt − εp
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, (E.27)

in the 14 endogenous variables that describe an economy with sticky price and wage contracts:

output yt , consumption ct , investment it , hours worked lt , capital services ks
t , capital stock kt ,

real wage wt , rental rate of capital rk
t , capital utilization rate zt , real value of existing capital

stock qt , inflation πt , nominal interest rate rt , gross price markup µp t , and potential output y f
t .

E.3 Economy with flexible prices and wages

To determine potential output y f
t the model is augmented by the 11 equations

0= y f
t −Φε

a
t −αΦ ks, f

t +Φ l f
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in the variables y f
t , c f

t , i f
t , l f

t , ks, f
t , k f

t , w f
t , rk, f

t , z f
t , q f

t , and r f
t , describing the corresponding

economy with flexible prices and wages.

E.4 Law of motion of lagged variables

The motion of the model’s 20 lagged and therefore predetermined variables is given by
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E.5 Data and auxiliary variables

We fit the model to 7 quarterly time series of the log difference of per capita real GDP (dlGDPt),

the log difference of per capita real consumption (dlCONSt), the log difference of per capita

real investment (dl INVt) and the log difference of per capita real wages (dlWAGEt), log of per

capita hours worked (lHOURst/100), the log difference of GDP deflator (dlPt), and the federal

funds rate (F EDFUN DSt) for U.S. from 1966 to 2004. The series are displayed in Figure 2. To

link the model’s variables to the data we add 4 auxiliary variables ȳt , c̄t , īt , and w̄t which are

determined by

0= ȳt + L (yt)− yt , (E.59)

0= c̄t + L (ct)− ct , (E.60)

0= īt + L (it)− it , (E.61)

0= w̄t + L (wt)−wt . (E.62)

The link between the vector of observations yt and the model’s variables is then given by
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E.6 Policy function and BA-model

The economy described in equations (E.1)-(E.62) includes 62 variables: The 35 endogenous

variables yt , ct , it , lt , ks
t , kt , wt , rk

t , zt , qt , πt , rt , µp t , y f
t , c f

t , i f
t , l f

t , ks, f
t , k f

t , w f
t , rk, f

t , z f
t , q f

t ,

r f
t , ȳt , c̄t , īt , w̄t , ε

a
t , εb

t , εg
t , εi

t , ε
r
t , ε

p
t , and εw

t , the 20 predetermined states L (yt), L (ct), L (it),

L (kt), L (rt), L (wt), L (πt), L
�
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�
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�
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, and L
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k f
t

�

, and the 7 exogenous state variables ηa
t , η

b
t , ηg

t , ηi
t , η

r
t , η

p
t ,

and ηw
t . To solve the model for its policy function we collect the endogenous variables in the

vector y(m)t , the predetermined states in the vector x(m)t , and the exogenous states in the vector

z(m)t . Since equations (E.1)-(E.62) are linear in x(m)t , y(m)t , z(m)t , x(m)t+1, Ety
(m)
t+1, and Etz

(m)
t+1 they
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Figure 2: Data – Smets and Wouters model
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Notes: The data is adopted from the FORTRAN codes provided by Herbst (2015) and covers 1966:Q1 to 2004:Q4.
The construction follows that of Smets and Wouters (2007) and is explained in detail by Herbst and Schorfheide
(2016). Source: Herbst (2015).
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may be rewritten as a rational expectations model of the form

B Et

�

w(m)t+1

y(m)t+1

�

= A

�

w(m)t

y(m)t

�

,

where w(m)t =
�

z(m)t x(m)t

�T
. As shown by Klein (2000), this model can be solved using the

generalized Schur decomposition. The resulting policy function takes the form:

x(m)t+1 = L x
x x(m)t + L x

z z(m)t , (E.63a)

y(m)t = L y
x x(m)t + L y

z z(m)t , (E.63b)

z(m)t+1 = ηt+1, (E.63c)

where the vector ηt collects the residuals ηa
t , η

b
t , ηg

t , ηi
t , η

r
t , η

p
t , and ηw

t . Further, we denote

L̃ y
z and L̃ y

x as the rows of L y
x and L y

z that correspond to the endogenous variables ȳt , c̄t , īt , w̄t ,

lt , πt , and rt , so that
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�

γ̄ γ̄ γ̄ γ̄ l̄ π̄ r̄
�T
+ L̃ y

x x(m)t + L̃ y
z z(m)t .

E.7 State-space representation

Using the policy function (E.63), we may rewrite the solved model in terms of the SSM (2) by

defining wt , vt,z, h, H, F and Q as
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x ,

Qz = diag
�

σ2
a,σ2

b,σ2
g ,σ2

i ,σ2
r ,σ2

p,σ2
w

�

, Fz =
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0 0
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, Fx =
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z L x

x

�

.

Consequently, the model satisfies the preconditions of Proposition 3.1, provided the matrix is

L̃ y
x is non-singular.

E.8 Parameters and steady-state

The model has 36 parameters to be estimated. The prior distributions of these parameters are

displayed in Table 6. Further, the model contains the 5 fixed parameters:

δ = 0.03, λw = 1.50, g y = 0.18, εp = 10.00, εw = 10.00.
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as well as the 15 dependent parameters defined by

π∗ =
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100
+ 1,

γ=
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+ 1,
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,
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.
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