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Estimating Inequality with Missing Incomes

Paolo Brunori∗, Pedro Salas-Rojo†, and Paolo Verme‡

July 25, 2022

Abstract

The measurement of income inequality is affected by missing observations, espe-

cially if they are concentrated on the tails of an income distribution. This paper

conducts an experiment to test how the different correction methods proposed by the

statistical, econometric and machine learning literature address measurement biases

of inequality due to item non response. We take a baseline survey and artificially

corrupt the data employing several alternative non-linear functions that simulate pat-

terns of income non-response, and show how biased inequality statistics can be when

item non-responses are ignored. The comparative assessment of correction methods

indicates that most methods are able to partially correct for missing data biases. Sam-

ple reweighting based on probabilities on non-response produces inequality estimates

quite close to true values in most simulated missing data patterns. Matching and

Pareto corrections can also be effective to correct for selected missing data patterns.

Other methods, such as Single and Multiple imputations and Machine Learning meth-

ods are less effective. A final discussion provides some elements that help explaining

these findings.1
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1 Introduction

Official estimates of inequality worldwide rely on survey data and money-metrics of well-

being such as income, consumption, or expenditure. These monetary indicators are known

to suffer from unit and item non-response, which are particularly frequent around the

tails of income distributions. If left untreated, such phenomenon can potentially bias the

measurement of inequality (Rubin, 1983; Solt, 2009, Atkinson et al., 2011, Kennickell,

2017).

A variety of solutions have been proposed to address this problem. The simplest prac-

tice consists of ignoring missing observations. Another common approach replaces missing

values with means or other moments of the objective distribution. More refined techniques

include single and multiple imputations methods (Rubin, 1987); cross-survey imputations

(Elbers et al., 2003), replacement of missing observations based on parametric functions

(Cowell and Flachaire, 2007; Jenkins, 2017), and sample reweightings based on the proba-

bility of non-response (Korinek et al., 2006; Hlasny and Verme, 2018; Hlasny and Verme,

2022). The increasing adoption of Machine Learning (ML) methods among social scien-

tists (Athey and Imbens, 2019) has recently expanded the portfolio of available options to

treat missing data, including regularized regressions and random forest methods (Bertsimas

et al., 2018).

As a general norm, the central problem with missing observations consists of knowing

whether these observations are missing at random or not (Rubin, 1978). If the missing

pattern is completely random, one can safely assume that ignoring these observations

does not bias the measurement of inequality. If missing observations are not random,

one first needs to understand the underlying missing data pattern and try to correct the

data accordingly. This information is typically unavailable to researchers working with

surveys, and the methods aimed to address incomplete or corrupted data do not benefit

from a counterfactual to test whether they are actually able to correct the missing data

problem. It is generally impossible to know whether some methods are actually more or less

effective than others in addressing measurement biases due to item non-response because

the complete distribution of incomes is unknown.

This paper proposes to address this problem by conducting an experiment focused on

income item non-response.2 We take a real set of income data which we consider clear

2Note that this paper focuses on incomes and item non-response only. Results cannot be extended
to other money-metrics of well-being such as consumption or expenditure, and most correction methods
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of missing data and corrupt it mimicking alternative missing data patterns as observed in

the literature. We then measure the bias generated by missing observations on the Gini

inequality index and test the capacity of correction methods to address this bias. For

this purpose, we compare the performance of ten correction methods including deletion of

observations, replacement with means, single imputation, multiple imputation, Predictive

Means Matching (PMM), replacement with Pareto distribution, reweighting with sample

non-responses, and the machine learning methods of LASSO, single tree and random forest.

The paper finds that sample reweighting based on the probability of non-response is

the best method to correct income inequality biases due to item non-response. This is

true for the most common case encountered with income data, when missing incomes

are correlated with income itself and some covariates of income. Even when half of the

complete original sample is missing, this method manages to reduce the measurement bias

very significantly. It also shows a good performance in most other missing data patterns

considered, although its performance declines when missing observations are extremely

concentrated at the top. Replacing with means, a common practice among practitioners,

is instead the worse performing method in all applications we considered in this paper.

The Pareto-tail adjustment is successful in reducing the inequality bias when missing

values are concentrated on the right-tail of the income distribution and, in this respect, is

a good complement to the Reweighting method. In our applications, this method seems to

overestimate inequality but can potentially be improved with out-of-sample data such as

tax data that may help to improve on the parameters of the Pareto function. Predictive

Means Matching can also perform relatively well in addressing missing incomes driven by

income and other covariates.

Single and multiple imputations reduce the inequality bias when missing values are

concentrated in the middle and the left tail of the income distribution, but never as effi-

ciently as sample reweighting, and these missing data patterns are rare cases with income

data. Unsurprisingly, we find machine learning methods to be powerful in reducing the root

mean squared error between the corrupted and the original data and this can make a real

difference when predicting incomes at the individual level. However, under rather general

conditions, this comes at the cost of increasing the inequality estimation bias. Based on

these findings, we discuss the possible tension between two apparently similar objectives:

predicting income at the individual level and predicting inequality for the population at

analyzed in this paper cannot be applied to the case of unit non-response.
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large.

The remainder of the paper is organized as follows. The next section describes the prob-

lem of missing incomes with a special focus on different patterns of item non-responses.

The third section outlines the most popular methods used in the literature to address the

problem of item non-response in surveys. In section four, we propose an empirical appli-

cation based on a real data set, corrupting the data and applying the methods explained

in the previous section. A summary and a discussion of our main results, providing some

guidance for practitioners, conclude the paper.

2 The problem of missing incomes

Missing incomes in surveys are mainly caused by item non-responses, unit non-responses

and misreportings. Item non-response occurs when individuals participating in surveys do

not reply to income questions, while unit non-response refers to individuals who refuse

to take part in surveys.3 It is also possible that individuals taking part in surveys and

responding to income questions provide inaccurate information on incomes. When this

is likely, as in the case of negative or tiny wages, statistical agencies or researchers may

prefer to omit this information from the original sample, hence enlarging the missing data

problem.

In this paper we focus on income item non-response. This problem is less restrictive than

unit non-response, because the remaining information available in the survey for individuals

not responding to income questions can be used to estimate income with predictive methods

such as single or multiple imputation models (see section 3). Focusing on item non-response

has two advantages: it enables the comparison of a larger set of correction methods as

compared to methods designed for unit non-response while conclusions derived from item

non-response corrections would also apply to correction methods designed to address unit

non-response issues.

Statisticians refer to three types of missing data patterns that, in the case of income,

can be described as follows (Rubin, 1978):

• Missing Completely at Random (MCAR) - when the probability of missing incomes

is the same across the full distribution of incomes;

3Note that we always refer to individuals’ non responses, although all ideas expressed in this paper would
also apply to households’ non responses.
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• Missing at Random (MAR) - when the probability of missing incomes depends on

non-income observed variables;

• Missing Not at Random (MNAR) - when the probability of missing incomes depends

on income itself.

This classification is relevant because it ultimately determines whether missing data are

problematic or not, and the type of statistical problem to address. MCAR data is evidently

the least damaging. If one can argue that missing observations are MCAR for all income

and non-income variables, estimating statistics from the remaining observed sample is a

viable option with the only caveat that weights should be adjusted to provide accurate

population figures. This missing pattern is considered to be ignorable (Rubin, 1976).

If missing data are MAR, providing statistics by non-income variables may be problem-

atic. For example, suppose that missing income observations are random across the income

variable but non-random across gender, with all missing income observations being females.

In this case, using gender in an income regression or providing income inequality statis-

tics by gender groups could deliver biased results (unless missing incomes are distributed

randomly within each group).

Finally, if missing income values are MNAR, the missing pattern is defined as a function

of incomes. This situation is a well-known attribute of incomes reported in surveys world-

wide: individuals with higher incomes are less likely to respond income questions and more

likely to under report incomes (Jenkins, 2017), and there is also recent evidence suggesting

that lower income individuals are less likely to respond to income questions (Hlasny et al.,

2021).

Clearly, MNAR is the most problematic of the three cases considered, because one first

needs to understand the function that defines missing data before applying any correction

method. Although the general assumption with income is that higher income individuals

have a lower probability of response, the precise probabilities are usually unknown to

practitioners. MAR data are also very likely to be MNAR. Indeed, the case of missing

incomes correlated with income and some covariates is the most common case encountered

by practitioners working with incomes. Note that this is what we will label “MAR” in the

remaining of the paper.

In practice, it is not easy to determine the missing data pattern. The MCAR pattern

can be tested with the Little’s test (Little, 1988), which is used to check whether the null

hypothesis of missing observations being completely at random is rejected or not. The MAR
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pattern can be assessed by testing the correlation of observed incomes with non-income

variables, which provides indirect information on the correlation between non-observed

incomes and non-income variables. But the MNAR pattern is unknown unless one has

access to reliable complementary out-of-survey data such as tax or administrative data4,

or other in-survey data that can be used to estimate the probability of income non-response

such as non-response rates by administrative area.

The case of income inequality measurement is also particularly problematic if data

are MNAR. Several authors who worked on the US Population Census noted that income

non-responses are U-shaped, with lower and higher income individuals being less likely to

respond to income questions (Rubin, 1983; Greenlees et al., 1982). Scholars who work on

top incomes routinely find that missing incomes increase with income, which means that

missing observations grow in number and mass as we approach the upper tail of the income

distribution (Atkinson et al., 2011, Jenkins, 2017). We also know that higher incomes weigh

more on inequality measures than lower incomes (Ceriani and Verme, 2021). These stylized

facts vary depending on the inequality measure considered but they generally apply to most

inequality measures (Cowell and Flachaire, 2007). Moreover, missing incomes on the lower

tail can also be frequent and problematic for the measurement of inequality, although their

number and mass make them less problematic than missing high incomes (see Ceriani and

Verme, 2021 and Hlasny et al., 2021).

In the remaining of the paper, we will focus on the Gini index of inequality. This

choice is driven by its popularity among income inequality specialists, and by the fact

that this index attributes more weight to observations located in the middle of the income

distribution as opposed to other measures of inequality, such as the Theil index or the

top-bottom income share (Cowell and Flachaire, 2007). The Gini index is, therefore, less

sensitive to missing observations in the tails of the income distribution than other indexes

of inequality, and we would expect the bias generated by missing incomes on the tails to

be on the lower side as compared to other measures. We will report basic statistics on the

Mean Logarithmic Deviation (MLD), the Atkinson Index (ε=2), 20% share, 80% share and

the 20%/80% ratio whereas full results on these indexes are available on request.

4One should always be cautious when using tax or administrative data, because tax exemptions, non-
filers or tax avoidance could also affect the variable under scrutiny, hence biasing the estimates aimed to
cover the complete population.

6



3 Popular solutions to address missing data issues

In this section we explain the most popular methods employed in statistics and economet-

rics to address issues related to item non-response. By order of exposition, we explain

deletion, replacing with means, replacing with parametric imputations -including single

and multiple imputations-, replacing with matching, replacing with parametric distribu-

tions, reweighting techniques and machine learning models including LASSO, conditional

inference trees and random forests.5

As a baseline set up, consider individual j in a population of n individuals characterized

by a vector of characteristics x1j , ..., x
C
j with income yj . The objective is to estimate the

Gini inequality index on the full distribution of incomes from a survey that is assumed to

be representative of the population of interest. Data on non-income variables are observed

in full while a share of income observations M is missing. For simplicity, we assume that

all observations have the same sample weight. We also assume that the survey design

accurately reflects the objective population, such that the complete data delivers non-

biased estimates of income inequality.

3.1 Deletion

Deletion consists in ignoring missing incomes or erasing incomes with suspected misre-

ported information. Inequality is estimated only on observed values, without applying any

other correction. The main advantage of this approach is its simplicity, making it a popular

shortcut for practitioners. In principle, in the context of income inequality, if missing data

are MCAR, deletion should deliver inequality estimates in expectation identical to those

expected from the full distribution, although the standard errors may be large. If missing

data are MAR, estimates of overall inequality are expected to be similar to those from

the complete distribution. If missing data are MNAR, deletion results invariably in biased

inequality measures.

3.2 Replacing with means

This method consists of replacing missing observations with the average of the remaining

observed values.

5Table A2 in the Appendix contains the software packages used to implement the different correction
methods.
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∀i ∈M : yi =
∑
j /∈M

wjyj (1)

where wj is estimated over the number of non-missing incomes.

This replacement can result from averaging values based on geographical sub-sub-

groups, such as primary sample units, administrative areas or the full population average,

or sometimes averaging values by covariates of income. The main advantage of this method

is, again, its simplicity. However, replacing missing incomes with the mean reduces income

variability. As compared to the deletion approach, replacing missing observations might

improve estimations of the standard error for MCAR and MAR data, but the potential

inequality biases generated by MAR and MNAR data will persist and would increase.

Moreover, in right-skewed distributions such as that of income, the mean is by definition

higher than the median, so this imputation method tends to overestimate imputed incomes

in the left tail.

3.3 Replacing with parametric imputations

Replacing with predicted values or imputations consists in substituting missing income

observations with values generated with a regression model. The two most common tools

are based on single and multiple parametric imputation methods. The simplest case is

single imputation described as follows:

∀j /∈M : log(yj) = βxj + εj (2)

εj ∼ N(0, σ2) (3)

where xj is the vector of observed covariates, β is the vector of unknown regression

coefficients to be estimated and σ2 represents the variance of the error term εj . The missing

incomes are then imputed by fitting the parameters as follows:6

6To obtain non-logarithmic incomes, it is not enough to apply the transformation exp(β̂xi). Log-
Linear regression models deliver consistent estimates only under the -potentially strong- assumption that
the distribution of the error term is independent of the regressors. As shown in Blackburn, 2007, this
assumption is violated by the presence of heteroskedasticity, which is partially but not completely corrected
by robust standard errors. Hence, to obtain more reliable predicted values, especially on the right tail, it is
necessary to apply an extra transformation: ŷi = exp(β̂xi + σ2/2).
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∀i ∈M : ŷi = exp(β̂xi + σ2/2) (4)

With sample surveys, single imputation may deliver accurate means but the predicted

variance is expected to be inaccurate as the model relies on one draw of data. In this case,

it is usually recommended to draw several bootstrapped samples that somehow reflect the

potentially different realizations of the missing pattern. This is what is referred to as

multiple imputation (Rubin, 1987, Rubin, 1996 or Raghunathan et al., 2001).

Single or multiple parametric imputation methods can be applied to MCAR and MAR

missing income data, but they are not able to address issues generated by MNAR data.

To do so, one should know the function regulating non-response probabilities. Rubin, 1983

discusses data on wages from the US Current Population Survey and argues that multiple

imputation cannot address biases generated by MNAR data because the function regulating

the missing data pattern is unknown and the prediction of missing data is unlikely to be

accurate. This method is expected to improve estimations of the standard errors but cannot

correct for bias inequality estimates.

3.4 Replacing with matching

Another common approach to imputing missing observations is based on matching meth-

ods. The general idea consists of finding some observations within the observed sample that

potentially match as closely as possible observations with missing incomes. The matching

process is based on the remaining observed covariates, which can be regarded as predic-

tors of income. The matching literature is rich and multiple matching methods have been

proposed to address missing data issues (Stuart, 2010). One drawback of these methods

is that they generally assume that missing observations are unrelated to income (Lillard

et al., 1986). A priori, they should function well for MCAR and MAR, but not for MNAR

data.

In this paper, we use the Predictive Means Matching (PMM) method proposed by

Rubin, 1986 and Schenker and Taylor, 1996. First, we define the predictive mean of a

missing observation as in Equation 4. Then, instead of assigning the predicted income

to each incomplete income case, we draw a random observation from the set of complete

cases - which are considered as donors- having the predictive means coinciding with the

incomplete case. The correspondent value of yj of the selected observation is then imputed

in the incomplete case.
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3.5 Replacing with parametric distributions

This method consists of replacing observed values in selected parts of an income distribution

with other values extracted from a theoretical parametric distribution. In the past decades,

the inequality literature has proposed several functional forms to replace observations on

both tails of an income distribution (see Cowell and Flachaire, 2007 and Jenkins, 2017).

Replacing missing incomes with values extracted from a parametric distribution is suitable

when missing incomes are due to either item or unit non-response, can potentially address

all types of missing data patterns, and are particulalry effective when missing observations

are concentrated on the tails. Their limitation reside in the fact that they require a cutpoint

below or above which observations are not replaced. If missing incomes are present all

along the distribution, these methods are not very effective in correcting biases generated

by missing observations.

In this paper we lean towards the most common approach: the Pareto right-tail distri-

bution adjustment. This adjustment consists of replacing values above a certain threshold

to make it fit the shape of a Pareto-tail distribution. This distribution is usually defined

in terms of its own cumulative distribution function, such that:

Fθ(y) = 1−
(
yj
y0

)θ
, yj ≥ y0 (5)

where y0 > 0 is a scale parameter defining the threshold over which the Pareto tail is

adjusted, and θ > 0 is a data-specific shape parameter.7

3.6 Reweighting

Reweighting methods adjust the weights of non-missing observations in order to correct

the statistics of interest. In other words, rather than replacing missing observations and

expanding the sample, these methods simply adjust the weights of observed incomes to

account for missing observations.

The reweighting method used in this paper is the one proposed by Korinek et al. (2006)

7We estimate the shape parameter using the integrated squared error (ISE) estimator proposed by
(Vandewalle et al., 2007), that can be written as:

θ̂ = argminθ

[∫
f2
θ (y)dy − 2E(fθ(y))

]
(6)

where fθ(y) is the density function of the Pareto distribution for the relative excesses.
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and used in various applications by Hlasny and Verme (2018), Hlasny and Verme (2022),

and Munoz and Morelli (2021a). This is a probabilistic model that uses non-response rates

across geographical units to estimate the probability of non-response. Following Hlasny

and Verme (2022), the probability of non-response is defined as

Pi(xi, θ) =
eg(xi,θ)

1 + eg(xi,θ)
(7)

where g(xi, θ) is a stable function of observable characteristic x and θ is a vector of

parameters estimated with a Generalized Method of Moments (GMM) model as:

θ̂ = argmin
∑

j=1,...,J

[
(m̂j −mj)w

−1
j (m̂j −mj)

]
(8)

where mj is the number of households in region j according to sample design, m̂j is the

estimated number of households in the region, and wj is a region-specific analytical weight

proportional to mj . The estimated number of households m̂j can be imputed as the sum of

inverted estimated response probabilities of responding households in the region P̂ij where

the summation is over all nj (population for area j) responding households.

To the best of our knowledge, this is the only method that explicitly learns from the

missing data pattern, determines the function that explains the probability of non-response,

and uses this function to address issues related to MAR and MNAR data. Its drawback

is that one requires information on non-response rates by geographical areas, which is not

always available to researchers.

3.7 Machine Learning Models

Supervised machine learning can also be used to handle item non response. Similarly to

standard multiple imputation methods, these algorithms are trained on a joint distribution

of an output variable (income) and several input variables (covariates), to obtain the best

possible out-of-sample prediction of an output value. Machine learning algorithms are

particularly suitable to detect non-linearities in the data generating process, as well as to

perform variable selection to avoid model overfitting when the number of covariates that

can potentially be used to impute missing observations is large (Varian, 2014; Athey and

Imbens, 2019). In this paper, we limit the use of ML techniques to three of the most popular

methods used in economics: regression with regularization, trees and random forests.
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Regressions with regularization. Regularization methods are used to reduce the

risk of overfitting in linear regressions, hence improving their prediction accuracy. Stan-

dard regression parameters are shrunk by applying a penalization term that reduces their

absolute value. The optimal shrinkage is determined by assessing the out-of-sample mean

squared error of alternative values of the penalization term.

The most popular regularization algorihtm is the LASSO (Least Absolute Selection and

Shrinkage Operator, introduced by (Tibshirani, 1996). LASSO can be formally defined as

a regression where the coefficients of Equation 2 are estimated by minimizing:

∀j /∈M :

n∑
j=1

(log(yj)− βxj)
2 − λ

C∑
c=1

|βc| (9)

where the first term is the typical sum of squared residuals and λ is the penalization

term. When λ = 0, LASSO is equivalent to an OLS, while larger λs result in more shrunk

coefficients. Eventually, for a sufficiently large λ, one or more coefficients will be set to

zero, so the algorithm simultaneously regularizes and performs variable selection. Among

alternative penalization terms, the choice is guided by an estimate of the out-of-sample

predictive accuracy of the resulting model (Tibshirani, 1996; Hastie et al., 2009). Once the

LASSO parameters are fitted, missing incomes are predicted as in Equation 4.

Decision trees and random forests. A regression tree is an algorithm trained

to predict an output variable out-of-sample by splitting the observed sample into non-

overlapping subgroups, based on a partition of the regressors’ space. Then, the prediction

is typically the average realization of the output variable by subgroups. The binary splitting

used to grow trees makes them particularly suitable to fit highly non-linear data generating

processes (Hastie et al., 2009; Hothorn et al., 2006). Similar to other prediction methods,

we first build the tree estructure by training the subsample of complete observations, and

then we predict incomes over missing observations based on their own covariates.

The low bias of trees comes at the cost of a substantial variance that can be reduced

by bootstrap aggregation or random forests (Ho, 1995; Breiman, 2001). Random forest

models derive their predictions from analyzing a multitude of decision trees. Each tree is

built from a random sample extracted from the original population, and the combination of

covariates used to determine each split is also a random set of variables extracted from the

complete set available. The idea is to pool multiple decision tree-votes, each one endowed

with a different set of information extracted at random from the original data. The final
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prediction is produced by averaging all predictions produced by each tree.

4 Empirical analysis

4.1 Data

Simulations are based on the 5th wave of the National Income Dynamics Study (NIDS),

carried out in 2017 by the Southern Africa Labour and Development Research Unit (SAL-

DRU), at the University of Cape Town. NIDS is one of the most accurate survey on income

among low and middle-income countries, has a very low non-response rate relative to other

countries, and covers a country characterized by a very high level of income inequality

(Schotte et al., 2022), three features particularity useful for our analysis.

The income variable we use is monthly take-home wages from primary and secondary

employment (variable w5 fwag). This choice allows us to limit issues of item non-response

and misreporting to a minimum.8 In the original data, there are 7,591 observations with

labor incomes and a complete set of covariates, with 7,199 originally reported by the

respondents and 377 imputed by SALDRU. This leads to an item non-response rate of

about 5%, a very low rate by global standards (Riphahn and Serfling (2005)). The Gini

estimated on all observations (with imputed incomes) is estimated at 53.1% as compared to

a Gini of 53.4% estimated on observed income with overlapping confidence intervals (100

bootstrap repetitions). The Gini estimated on the raw sample (no bootstrap) is 53.2%

with imputations and 53.5% without. All estimations are conducted with sample weights.

4.2 Data corruption

For the data corruption exercise and the consequent analysis we assume the complete

observed data (7,199 observations) to be complete and untainted by missing data. As a

consequence, our analysis should be understood as a laboratory experiment to test the

validity of different correction methods and none of the inequality statistics presented in

this paper should be considered as accurate representation of inequality statistics in South-

Africa.

The essence of our missing data pattern simulation is the attribution of a probability

of non-response to each observation. The first determinant of such probability is the share

8All labor incomes in NIDS are positive and we do not have issues related to imputation of negative
incomes.
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of missing observations in the complete population. Although we tested many different

shares of missing, our final results are illustrated with shares of 3%, 5%, 7%, 10%, 15%,

20%, 30%, 40% and 50%. Showing other shares does not meaningfully alter any of our

conclusions. When simulating the MCAR pattern explained in Section 2, the proportion

of missing data is the only variable determining the probability of being missing, which

is orthogonal to income and any other covariate. This probability is homogeneous to all

observations and directly corresponds to the desired share of missing data.

In the case of MAR simulations, the probability of non-response depends on the co-

variates used as predictors of income. In order to obtain a MAR pattern consistent with

South African missing data, we estimate a score vector based on the original data. We go

back to the original NIDS sample, including the complete and incomplete labor incomes,

and observe the covariates associated to individuals with missing incomes. In particular,

we consider all covariates used by SALDRU to impute employed labor income includ-

ing sex, race, age, age squared, union membership, years of schooling, years of schooling

squared, several tertiary education degrees, marital status, number of rooms, number of

rooms squared, geotype of the dwelling, month of interview and province of residence (see

Argent, 2009 for more information regarding these variables). We then run a logistic re-

gression with the dependent variable being 1 if incomes are missing and 0 if incomes are

non-missing, hence exploring the relation between the probability of non-response and the

selected covariates. To avoid overfitting, we regularize the logistic regression estimating a

LASSO, as explained in Section 3.9

Finally, for MNAR simulations, probabilities of non-response are designed to be corre-

lated solely with income. MNAR patterns are simulated following the non-linear functions

proposed in Schouten et al. (2018). We consider four possible MNAR patterns: i) the prob-

ability of non-response is higher in the middle of the distribution (MID); ii) the probability

of non-response is monotonically decreasing with income (LEFT); iii) The probability of

non-response is monotonically increasing with income (RIGHT); and iv) the probability

of non-response is higher in both tails of the distribution (TAIL). As explained, cases iii)

and iv) are the most common cases with income data. However, it is also useful to illus-

trate results for cases i) and ii) as benchmarks and because these patterns could apply to

certain income definitions. Figure 1 shows how the four non-linear probability functions of

non-response vary along the distribution of income.

9The results of this LASSO regression are shown in Table A1, while Figure A1 in the Appendix reports
the LASSO tuning output.
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We consider the MAR simulation to be the more realistic exercise because missing in-

comes usually do not depend neither exclusively on a random parameter (MCAR) nor on

the sole income distribution (MNAR). In the MAR pattern, factors such as gender, educa-

tion, the province of residence, or the type of dwelling drive the missingness probability. In

our case, we find this association leading to a pattern similar to MNAR/RIGHT, although

the MAR covariate-driven approach delivers a smoother missing distribution than that

proposed in Figure 1. In other words and in reality, a pure MAR pattern where missing

observations are related to a covariate but not to income is extremely rare. With this in

mind, our main results and discussions are based on MAR corrections where missing ob-

servations are correlated to both income and covariates of income. We will also comment

on other data corruption patterns providing results in Appendix.10

[FIGURE 1]

4.3 Inequality measurement with data corrections

We now turn to compare the capacity of missing data correction methods to improve on

inequality estimates. As a general criterion for the evaluation, we use the arithmetic differ-

ence between inequality measured on the corrupted incomes and inequality measured on

the original complete incomes and apply a difference-in-means t-test with 100 bootstraped

repetitions. In all Tables below, a negative sign is interpreted as an underestimation of

inequality estimated with corrupted data, and a positive sign as an overestimation. For all

methods based on an explicit imputation of missing values (all but deletion and reweight-

ing) we also provide the Root Mean Squared Error (RMSE) as an estimate of the precision

of the model.

One may observe trade-offs between minimizing inequality prediction errors and the

RMSE. Suppose that ignoring missing incomes reduces inequality and that this problem is

addressed with an OLS imputation model that is able to reduce the downward bias. Now,

assume that suspecting the OLS model to overfit the data, it is regularized with a LASSO

model, as in Equation 9. The optimal shrinkage is determined by choosing the value of

the penalization term producing the smallest out-of sample RMSE. Different values for the

penalization term are tested and a lower out-of-sample RSME is obtained. In the general

case in which regularization will shrink towards zero the values of the OLS parameters, it

will also shrink the variability of predicted incomes, producing a more severely downward

10More graphical information regarding the generated MAR pattern are available upon request.
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biased inequality estimate than what obtained using an OLS imputation. That is to say, if

we are downward biased in estimating inequality, worsening individual incomes’ prediction

including some noise due to overfitting would improve our inequality estimation at the cost

of a higher prediction error at the individual level, an issue that emerges for several data

correction patterns.

The benchmark statistics obtained with the complete sample are shown in Table 1.

Mean monthly labor income amounts to 8,057 rands (2017), with a Gini reaching 53.5%,

a MLD index of 0.521 and an Atkinson of 0.689. Around 3.5% of labor income belongs

to the bottom quintile, while almost 60% is owned by the top 20%. The p80p20 ratio is

16.87. As expected, these baseline inequality measures indicate a rather extreme level of

inequality across labor earnings.

[TABLE 1]

In the reminder of this section, we compare the performance of the correction methods

described in section 3 applied over the different missing data patterns described in section

4.2. The main results are reported in Tables 3 to 7. Each table refers to a different missing

data pattern and each column in tables refer to a different correction method. Top panels

report the statistical difference between the Gini estimated on the corrupted data and the

Gini estimated on the original complete distribution of incomes (Gini diff.). The bottom

panels report RMSE values for the correction methods where RMSEs can be estimated.

4.3.1 MCAR

As explained, MCAR is the least problematic case but it is important to understand that

the Gini bias generated by MCAR may not be zero, and that practitioners are usually

blind in regards to the missing data pattern. They may be applying corrections when, in

fact, missing data are randomly distributed and not problematic.

Table 2 reports results for MCAR data. As expected, ignoring missing incomes does

not lead to a significant Gini bias (all the Gini difference values in the Deletion column are

close to zero and non-significant). However, it should be remarked that this only occurs

after several repetitions of the bootstrap exercise, more than 40. For a small number of

repetitions, MCAR inequality estimates are significantly (and randomly) different from

those used as benchmark in Table 1. This is an important finding, because even missing

items thought to be MCAR may result in inequality estimates that do not match true

inequality if inequality is simply calculated on the raw sample.
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Moreover, if one is blind with respect to the missing data pattern and applies cor-

rections, results show that the Gini becomes biased. That is the case for all correction

methods with the exception of reweighting, which is explained by the fact that reweighting

is the only method that includes the estimation of the missing data pattern (the probability

of non-response), which is then used to correct incomes. In other words, this method first

learns from the data the specific missing data pattern, and then applies corrections using

this information. Indeed, the reweight column in Table 2 shows that applying this method

results in Ginis that are not significantly different from the Gini estimated on complete

data, and this is true for any share of missing incomes.

[TABLE 2]

4.3.2 MAR

As explained, the MAR pattern we simulate results in the majority of incomes missing

from the middle and top of the income distribution implying a correlation between missing

and observed incomes (and between regressors of income and missing incomes), as in the

MNAR case. This is the most common and problematic case for practitioners working on

the estimation of inequality with incomes.

Table 3 shows results for the MAR missing data pattern. As expected, with MAR

data, when missing incomes are ignored the Gini is underestimated. Indeed, the Deletion

column (top panel) shows that the Gini is significantly underestimated and the size of the

underestimation grows with the share of missing incomes.

Yet, attempting to correct for this bias may not result in better Gini estimates than

simply ignoring missing incomes. This is evident looking at the Gini difference results

across correction methods. None of the methods is able to eliminate the bias completely.

Some methods such as PMM, Pareto and Reweighting do better than Deletion, but other

methods such as replacement with Means, Single and Multiple Imputation, and ML meth-

ods (LASSO, Tree and Random Forest) do worse. With the exception of Pareto, the poor

performance of these methods also becomes worse as the share of missing incomes increases.

More in details, inequality measures obtained after replacing with a Single Imputation

are underestimated. The bias is lower than for Deletion with lower shares of missing

observations but higher for higher shares. However, the correction bias is not as large

as that found for the imputation of the mean. For Multiple Imputation, we find worse

results in that the bias is larger and is always worse than Deletion. This is not surprising,
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because re-sampling with multiple imputations improves the estimation of the standard

error, but tends to worsen the precision of the inequality estimates. The intuition is that the

distribution of the average of five predictions has a lower variance than the distribution of

the single predictions. If using single imputation induces a downward bias in the prediction,

averaging across imputations may worsen the problem.

Predictive Means Matching (PMM) substitutes missing incomes with a random value

drawn from the complete set of observations with actual incomes close to fitted incomes in

the missing observations. PMM reflects the uncertainty of imputations and does not neces-

sarily impute the same value to missing observations that share covariates. Consequently,

correcting with PMM never leads to smaller estimates of inequality than single or multiple

parametric imputations. Results in Table 3 confirm that the PMM method reduces more

the inequality bias than other parametric imputations. However, the RMSE estimation

is larger than that obtained with single and multiple parametric imputations. This result

illustrates the trade-off between imputation accuracy and precision in the inequality mea-

surement we have previously explained. Overfitting imputed values increases inequality

estimates, because it induces more heterogeneity in the income vector (randomly match-

ing real values conditioned on the fitted means) at the cost of increasing RMSEs. When

the objective is simply measuring inequality, and it is irrelevant whether each income is

estimated correctly, PMM appears a better approach than simple or multiple parametric

imputations, but if the aim is to obtain reliable predictions for missing data, this method

is among the worst performing of all.

With the Pareto correction, we modify the right tail of the corrupted dataset and

make it fit a Pareto distribution. Given the Pareto distribution we have specified,11 we

obtain upward biased estimates of inequality with no clear pattern as the share of missing

observations increases. Note that, with this method, we impose a specific parametric shape

on a certain part of the distribution. For different missing shares, the corrupted distribution

will be different and the adjustment of the Pareto correction can be “better” or “worse”.

11As explained in Section 3, the Pareto-tail correction is characterized by two parameters: the percentile
threshold above which the right tail is fitted and the shape parameter. Regarding the former, we have
checked our results with many different thresholds, using the top 10th, 7th, 5th, 2nd and 1st percentiles.
Here we lean towards using the top 10 percentile because it is the threshold usually delivering least biased
estimates when missing shares are above 15%. Hence, our results can be considered as lower-bound estimates
of the inequality bias, although the precision of other thresholds varies depending on the missing pattern
and the share of missing under scrutiny. Overall, as explained by (Jenkins, 2017), administrative data is
required to obtain data-driven threshold parameters. We have also checked the Hill Estimator and the
Partial Density Component Estimator, finding no meaningful differences across their results.
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Results for sample Reweighting show a rather limited downward bias which grows with

the share of missing incomes. This method is the most successful among those considered

in correcting for MAR data. In the worst-case scenario, after turning 50% of the sample

to missing, the Gini index is underestimated by only 1.6 points, the same bias obtained

using multiple imputation with a missing share of 7%. This performance is explained by

two factors. One is that this is the only method that estimates the probability of non-

response and uses this probability to correct the data. Recall that our MAR data pattern

includes the MNAR feature in that missing incomes are correlated also with incomes. The

lack of knowledge on the function that relates missing incomes to observed incomes is the

reason why multiple imputation cannot address biases generated by MNAR data (Rubin,

1983). This method addresses this problem. The second factor is that this method uses

the variance of incomes within groups and between groups to estimate the variance of the

full distribution of incomes (observed and unobserved values) unlike other methods such

as OLS and machine learning methods that predict incomes using only the variance of

observed values.

The idea of the LASSO imputation is similar to the single imputation parametric

method, but now including the extra regularization component (see Equation 9). Taking

advantage of this regularization, we could include many more regressors and interactions,

hoping to obtain results closer to the original income distribution. Besides the covariates

employed in the other imputation methods, we also include all pairwise interactions between

gender (binary), race (white, coloured, asian/indian, african) and the years of schooling.

Results in Table 2 show that, with LASSO, the inequality bias is similar to other parametric

imputation methods. Including the regularization term and the interactions does not seem

to provide a clear improvement in this case. However, in Table 3, we find the RMSE in

LASSO to be slightly smaller than in the other parametric imputations. We find once more

the tension between the closeness of the imputation adjustment and the inequality bias.

The same idea applies to Tree and Random Forests (RF). In both cases, the accuracy

of the imputation is much higher than for other methods, especially for random forests,

which in Table 2 shows the smallest RMSEs. However and contrary to the PMM results,

this accuracy in predicting incomes comes at the cost of increasing the inequality bias. As

the share of missing observations increases, these methods provide an increasingly larger

bias becoming the worse performing methods together with Mean replacement as the share

of missing observations nears 50%.
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[TABLE 3]

4.3.3 MNAR

Although MAR may be the most commonly encountered pattern of missing incomes in real

data, there might be some cases in which missing data are MNAR only (missing incomes

are only correlated with incomes and not with other covariates). Tables 4 to 7 show MNAR

results with different flavors (missing data concentrated in the middle, left, right and both

tails of the income distribution). To keep the exposition simple, we focus the discussion on

the inequality bias results. RMSEs results are reported in the bottom panels of all tables.

Regarding the MNAR/MID pattern (Table 4), missing items are more concentrated

around the median, so the income distribution becomes more polarized with the increasing

shares of missing observations. This provokes a positive sign in the Deletion column, be-

cause inequality is overestimated in the corrupted data. Similarly, Pareto and Reweighting

produce upward biased estimates. Methods that use covariates to correct for missing data

perform better in this case, given the substantial degree of correlation between income

and its covariates. The imputation using the Mean remains the worst performing method,

even if missing items are concentrated around the mean. Single, multiple imputations and

the three machine learning methods reduce significantly the inequality bias, with LASSO

being especially successful for this task. MNAR-MID is the only missing data pattern

where reweighting is outperformed by the majority of the other correction methods. How-

ever, while possible, it is unlikely with survey data to have the majority of missing data

concentrated in the middle of the income distribution.

Table 5 shows results for the MNAR/LEFT pattern. It is not obvious which effect

should be expected on inequality after corrupting the bottom of an income distribution.

On the one hand, removing small incomes would make lower quantiles relatively richer

(decreasing inequality). On the other hand, top quantiles will lose relatively less affluent

individuals, making quantiles at the top even richer (increasing inequality). The net effect

depends on the specific shape of the income distribution. In the case of South Africa, the

simulated missing pattern mildly increases inequality (see the Deletion column). Among

correction methods, PMM and Reweighting are the best performing methods. The for-

mer producing slightly downward biased estimates and the latter overestimated levels of

inequality.

Table 6 and 7 show the MNAR/RIGHT and MNAR/TAILS results. As we should
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expect given our MAR pattern, these results are similar to those obtained with MAR, but

more pronounced. In the extreme case, with 50% of the sample missing, both MNAR/RIGHT

and MNAR/TAIL provoke an underestimation of almost 11 Gini points (see the Deletion

column). Interestingly, being both patterns different in the sense that one focuses on top

incomes and the other on both tails, the effect on inequality is almost the same, high-

lighting the importance of the right tail in the inequality bias. In both cases, no model

is successful in correcting inequality estimates, although the Pareto adjustment seems to

deliver relatively more precise results, which is expected given its focus on top incomes.

Also, Deletion performs better than the majority of the other methods with the exception

of Pareto and Reweighting.

It is noticeable that Reweighting performs well relatively to Pareto for low shares of

missing incomes but not for high shares. The performance of this method is also much worse

than its performance on MAR data. This may be due to two factors. The MNAR/RIGHT

and MNAR/TAILS data are much more skewed in income than the MAR data by design.

This means that, when Reweighting estimates the probability of non-response, it has little

information to use at the very top of the distribution and is likely to underestimate this

probability for top incomes. This would be the case, for example, if all households in Pri-

mary Sample Units (PSU) with very high incomes do not respond to the income question.

It may also be the case that Reweighting is able to address correlations of missing incomes

with both income and other covariates, whereas Pareto is effective in addressing correlation

of missing incomes with income but not with covariates of income.

[TABLES 4-7]

4.4 Summary, conclusions, and recommendations

The paper provided a laboratory experiment to test which of the most popular correction

methods for income item non-response in surveys provides the best outcomes in the context

of income inequality measurement. We used a real data set (NIDS, from South Africa 2017)

complete of incomes and relevant covariates and corrupted it mimicking known missing data

patterns including MCAR, MAR, and MNAR with various flavors and shares of missing

incomes. We then proposed to compare the performance of ten different methods used by

statistical agencies, statisticians and economists to correct measurement biases due to item

non-response using the Gini index as statistics of interest.
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Table 8 summarizes results. We report the arithmetic average of the Gini bias (the

mean difference between the Gini measured on corrupted data and the Gini measured on

complete data) across shares of missing incomes and for all missing data patterns, and the

average RMSE. Note that the RMSE cannot be calculated for the Deletion and Reweighting

methods. In terms of the Gini difference, the Reweighting method is the one that performs

relative better overall and is the best performing method for the most common MAR

case. Replacement with Mean also stands out as the worst performing method. PMM also

performs well overall whereas Pareto performs better than other methods for MNAR/RIGH

and MNAR-TAILS data. The other methods including Single and Multiple Imputation,

LASSO, Tree and Random Forest perform well only with MNAR/LEFT or MNAR-MID

data, which are very rare cases with income data.

[TABLE 8]

Figures 2 and 3 summarize main results for the MAR correction. Figure 2 shows the

different correction methods in their ability to estimate the Gini correctly as the share of

missing observations increases. It can be seen that the decay in prediction accuracy varies

across methods. Reweighting is the method that is closer to the true Gini and remains so

as the share of missing incomes increases, whereas mean imputation is the method that

decays faster than all others. Other relatively good performing methods in this respect

are Deletion and PMM. Also noticeable is the fact that Pareto overestimates rather than

underestimate inequality and that this method does not show any pattern as the share of

missing incomes increases. Figure 3 shows that RMSE increases as the share of missing

incomes increases as we should expect but, again, the size and gradient of this increase is

different across methods. RMSE growth is the steepest for PMM and the least steep for

Random Forest. Again, Pareto does not show any trend.

[FIGURES 2-3]

Based on this summary information and the results presented in the previous section,

we derive the following broad indications for practitioners when addressing issues of income

item non-response for the measurement of inequality:

1. The use of the sample mean to impute missing items always produces severely down-

ward biased inequality estimates, even when the probability of non-response is dis-

proportionately higher in the middle of the income distribution (close to the mean).
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2. With MCAR data, deletion and reweighting are the best options. These two methods

result in Gini differences that are not significant for any share of missing incomes.

This means that forcing corrections on missing incomes that are distributed randomly

with other correction methods may worsen inequality estimates.

3. Reweighting is, on average, the best correction method. It performs better than other

methods in the frequently encountered case of MAR data (with MNAR features).

However, it does not perform well with MNAR/MID and is outperformed by PMM

with MNAR/LEFT and MNAR/RIGHT and by Pareto with MNAR/RIGHT and

MNAR/TAILS. Therefore, there is no method that outperforms all others in all

cases considered.

4. Corrections based on the Pareto distribution always produce upward biased inequality

estimates. While the exact extent of this bias depends on the specific distribution of

observed and missing incomes, this is due to the fact that this method corrects (or

over corrects) incomes at the top but does not correct for missing incomes in lower

parts of the distribution resulting in excess weight given to top incomes. Pareto is the

best performing method when the probability of missing incomes is disproportionately

higher on the right tail or on both tails of the income distribution.

5. Single and multiple imputation methods, despite their popularity, they never result

in the best methods under any data correction pattern and their Gini difference is

always significant across all missing incomes shares. They seem to perform better

with with MNAR/MID and MNAR/LEFT but these two cases are not particularity

important when inequality is measured with income.

6. The use of ML algorithms reduces the prediction error, but it will also limit the

variability of predicted incomes which ultimately reinforces downward biases. We ob-

served this phenomenon across missing data patterns with the exception of MNAR/MID

where these methods perform relatively well, particularly tree based methods. ML

may be more useful when information to predict missing incomes is abundant, which

can lead other prediction methods to overfit the model and induce an upward bias in

inequality. This was not the case with the data used by this paper but it is possible

with richer data.

Some factors can help to intuitively explain these results. The Reweighting method is

somehow unique, because it first estimates the probability of non response from observed
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data, and then uses the inverse of this probability to reweight observations. It is the only

method we know of that explicitly makes an effort to understand the non-response pattern,

which is the essential information needed to correct for missing incomes correlated with

income. This method performs relatively better also because it estimates the variance of

the full distribution (observed and unobserved values) leveraging within group and between

groups income variance.

Deletion or ignoring non-responses perform well under the conditions we should expect,

with MCAR and, to a lesser extent, MNAR/LEFT data. Observations in the middle

of the distribution have less leverage on summary inequality measures than observations

located in the tails (even if the Gini attributes more weight to observations located in the

middle of the distribution), and observations located in the left tail have less leverage than

observations located in the right tail. Perhaps more striking is the fact that this method

does not perform too poorly with MAR, MNAR/RIGHT and MNAR/TAIL data. While

this method should not be a primary choice, in these latter cases it performs better than

some popular methods such as Single and Multiple Imputation and also ML methods.

It is also clear why correcting with mean income cannot perform well. Mean income

is typically located towards the center of the distribution, even if it does not necessarily

coincide with the median value. When non-responses are concentrated on the tails, as

often the case with income distributions, replacing these responses with means results in

the maximum possible error. This error can be reduced if means by population sub-groups

are used in place of sample mean but a mean would always reduce variability of incomes.

Methods relying on linear predictions can perform relatively well with rich sets of

covariates that increase the initial explanatory power of the model and exploit their ability

to selectively reduce models with techniques such as regularization. RMSE scores are

generally good when compared with other methods but we showed that these positive

outcome comes at a cost in terms of precision of the inequality estimate. Methods like

Random forests are, for example, the result of averaging over repeated tests, making results

more likely to bear external validity but less likely to be close to the real estimates. Overall,

these methods are data-specific and by definition ignore possible patterns of income non-

responses.

PMM performs well when other methods tend to underestimate inequality. Among

prediction approaches, PMM is the only method together with reweighting that explicitly

takes into consideration the part of the variability that cannot be explained by observable

covariates by assigning the entire income of similar individuals rather than predicting the
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income net of an interpolation error term. This makes the method prone to large out-

of-sample prediction errors but relatively precise in estimating inequality. In this respect

PMM and Reweighting methods are similar to methods proposed by the cross-survey im-

putation literature which use the empirical or normal distribution of incomes to generate

the error term that is not estimated by the prediction model and add the latter to the

estimated error to obtain the full variance of the distribution (Dang and Verme, 2022).

Based on the findings above, to obtain robust inequality measures, a pragmatic ap-

proach consists of using more than one correction method and then produce a range of

possible estimates. In our case, using Pareto, Reweigting and PMM to define the range

would have produced intervals containing the real level of inequality in all simulated miss-

ing patterns. With time constraint and the availability of information on non-response

rates by geographical area, reweighting should be the method of choice for MAR data with

MNAR features.

It is important to caution from taking these results as definitive. This paper is based on

one specific data set that was selected for its extreme income inequality, a useful feature for

the type of exercise we proposed. Some information on the external validity of our results

can be gathered from the RMSE values reported in all tables but, overall, the question

of external validity remains unexplored and future research should try to replicate this

exercise with other empirical or parametric data to validate results. It is possible, for

example, that when initial inequality is much lower, measurement biases may appear less

sizable or relevant. In other cases, empirical distributions which (in the absence of item non-

responses) would be extremely left or right skewed would probably show different results

from distributions that are more uniformly distributed, given that the data corruption

patterns proposed focus on different parts of the distribution.

There are pros and cons in replicating our paper with empirical or parametric distri-

butions. With empirical data, income non-responses or misreportings are almost always

inevitable, whereas data with very low item non-response rates, such as the one we use, are

few and may have different item non-response rates and patterns. In other words, findings

from any replication of our paper with other data would still remain limited in terms of

external validity, although similar results to ours would provide some degree of validation.

Using an income distribution extracted from a parametric function is implicitly biased, as

it does not represent any real data, and it is mainly driven by the selection of functions

and parameters made by the researcher, which is ultimately a subjective choice. In sum,

the best option for future research is probably to replicate our experiment with multiple
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data sets. This would allow the imposition of different data corruption patterns, as we did,

and the comparison of results across data sets.
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5 Tables

Table 1: Statistics from Complete Original Data
N Mean Gini MLD Atkinson Share p20 Share p80 p80p20

7199 8057.23 53.46 0.5210 0.6892 0.0350 0.5900 16.87
Source: NIDS 5. N shows the sample size, MLD stands for mean logarithmic deviation,

and p20, p80 and p80p20 respectively denote the 20th and 80th percentile, and their ratio.



Table 2: Gini Difference and RMSE (MCAR)
Gini diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 0.02 -0.72* -0.30* -0.23* -0.02*
6839 5 -0.01 -1.25* -0.55* -0.43* -0.08*
6695 7 -0.01 -1.78* -0.76* -0.60* -0.11*
6479 10 -0.02 -2.64* -1.10* -0.88* -0.12*
6119 15 -0.01 -4.11* -1.63* -1.31* -0.20*
5759 20 0.03 -5.70* -2.15* -1.74* -0.17*
5039 30 -0.02 -9.43* -3.36* -2.79* -0.34*
4319 40 -0.05 -13.72* -4.52* -3.84* -0.44*
3600 50 0.00 -18.57* -5.69* -4.94* -0.54*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 2.08* 0.09 -0.21* -0.19* -0.36*
6839 5 2.05* 0.01 -0.37* -0.45* -0.57*
6695 7 2.02* -0.02 -0.55* -0.77* -0.82*
6479 10 2.16* 0.03 -0.81* -1.15* -1.11*
6119 15 2.12* 0.04 -1.21* -1.22* -1.68*
5759 20 2.19* -0.02 -1.68* -2.34* -2.34*
5039 30 2.37* 0.05 -2.71* -4.20* -3.92*
4319 40 2.67* -0.04 -3.79* -5.06* -5.46*
3600 50 2.92* 0.00 -4.95* -7.42* -7.23*
RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 1519* 1237* 1219* 1711*
6839 5 n.a. 2040* 1667* 1656* 2234*
6695 7 n.a. 2455* 1995* 1996* 2682*
6479 10 n.a. 2988* 2454* 2459* 3292*
6119 15 n.a. 3630* 2996* 3001* 4050*
5759 20 n.a. 4178* 3459* 3465* 4635*
5039 30 n.a. 5150* 4270* 4290* 5663*
4319 40 n.a. 5921* 4918* 4947* 6572*
3600 50 n.a. 6598* 5500* 5536* 7278*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 7118* n.a. 1205* 1052* 1156*
6839 5 7300* n.a. 1594* 2209* 1610*
6695 7 7349* n.a. 1960* 2314* 1886*
6479 10 7453* n.a. 2399* 2596* 2296*
6119 15 7366* n.a. 2954* 3051* 2762*
5759 20 7509* n.a. 3424* 3960* 3276*
5039 30 8033* n.a. 4220* 4945* 4133*
4319 40 9062* n.a. 4854* 5393* 4836*
3600 50 9507* n.a. 5446* 5847* 5384*

Note: NIDS 5. N shows the sample size, and PMM stands for Predictive Means
Matching. The star (*) indicates that the number is statistically different from the

baseline estimate shown in Table 1, at 01.



Table 3: Gini Difference and RMSE (MAR)
Gini Diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 -0.72* -1.68* -0.53* -0.86* -0.41*
6839 5 -1.00* -2.57* -0.80* -1.26* -0.50*
6695 7 -1.33* -3.50* -1.11* -1.68* -0.74*
6479 10 -1.60* -4.66* -1.43* -2.13* -0.84*
6119 15 -2.07* -6.66* -1.94* -2.81* -1.03*
5759 20 -2.45* -8.64* -2.47* -3.45* -1.18*
5039 30 -3.32* -13.05* -3.50* -4.61* -1.67*
4319 40 -3.86* -17.58* -4.31* -5.46* -1.94*
3600 50 -4.44* -22.65* -5.20* -6.26* -2.16*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 4.35* -0.14* -0.87* -1.21* -1.23*
6839 5 4.08* -0.16* -1.35* -1.88* -1.77*
6695 7 1.80* -0.26* -1.71* -2.31* -2.46*
6479 10 2.54* -0.26* -2.36* -2.39* -3.05*
6119 15 4.19* -0.38* -3.02* -2.83* -3.78*
5759 20 3.92* -0.48* -3.73* -3.16* -4.75*
5039 30 2.31* -1.15* -5.05* -4.81* -7.01*
4319 40 4.10* -1.30* -6.23* -8.40* -8.33*
3600 50 0.85* -1.62* -7.49* -10.75* -10.46*

RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 3224* 2772* 2661* 3335*
6839 5 n.a. 3879* 3352* 3216* 4154*
6695 7 n.a. 4405* 3809* 3652* 4610*
6479 10 n.a. 4927* 4236* 4064* 5202*
6119 15 n.a. 5642* 4866* 4672* 5951*
5759 20 n.a. 6198* 5332* 5142* 6585*
5039 30 n.a. 7133* 6165* 5970* 7447*
4319 40 n.a. 7730* 6736* 6533* 8069*
3600 50 n.a. 8217* 7148* 6994* 8571*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 10208* n.a. 2658* 2934* 2750*
6839 5 9233* n.a. 3214* 3967* 3154*
6695 7 4809* n.a. 3592* 4116* 3513*
6479 10 6074* n.a. 4118* 4309* 3825*
6119 15 8713* n.a. 4675* 4639* 4236*
5759 20 8075* n.a. 5137* 4994* 4663*
5039 30 4808* n.a. 5922* 5623* 5435*
4319 40 8130* n.a. 6447* 5826* 5827*
3600 50 3167* n.a. 6879* 6598* 6304*

Note: NIDS 5. N shows the sample size, P stands for Parametric, PMM stands for
Predictive Means Matching and RF for Random Forest. The star (*) indicates that the
number is statistically different from the baseline estimate shown in Table 1, at 0.001.



Table 4: Gini Difference and RMSE (MNAR/MID)
Gini diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 0.30* -0.60* -0.18* -0.03* -0.19*
6839 5 0.49* -1.03* -0.29* -0.06* -0.29*
6695 7 0.68* -1.49* -0.41* -0.09* -0.48*
6479 10 0.96* -2.23* -0.60* -0.14* -0.62*
6119 15 1.42* -3.58* -0.90* -0.23* -0.97*
5759 20 1.87* -5.11* -1.18* -0.31* -1.28*
5039 30 2.77* -8.61* -1.68* -0.45* -1.71*
4319 40 3.64* -12.83* -2.19* -0.61* -2.67*
3600 50 4.47* -17.60* -2.25* -0.70* -3.31*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 4.26* 0.32* -0.02* -0.13 -0.22
6839 5 5.99* 0.51* -0.04* -0.20 -0.34
6695 7 7.66* 0.70* -0.04* -0.31* -0.45
6479 10 6.25* 0.97* -0.06* -0.41* -0.62*
6119 15 5.35* 1.44* -0.09* -0.51* -0.89*
5759 20 3.36* 1.90* -0.12* -0.79* -1.31*
5039 30 4.16* 2.84* -0.23* -1.13* -2.00*
4319 40 7.34* 3.82* -0.35* -1.85* -2.65*
3600 50 5.65* 4.80* -0.58* -1.71* -3.29*
RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 862* 863* 715* 1397*
6839 5 n.a. 1112* 1124* 929* 1816*
6695 7 n.a. 1325* 1353* 1121* 2290*
6479 10 n.a. 1595* 1640* 1364* 2720*
6119 15 n.a. 1991* 2056* 1725* 3415*
5759 20 n.a. 2349* 2440* 2073* 3973*
5039 30 n.a. 3012* 3173* 2757* 5099*
4319 40 n.a. 3671* 3910* 3438* 6174*
3600 50 n.a. 4377* 4711* 4214* 7030*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 10749* n.a. 701* 826* 762*
6839 5 15369* n.a. 917* 1019* 946*
6695 7 21458* n.a. 1084* 1230* 1140*
6479 10 17302* n.a. 1307* 1554* 1359*
6119 15 15072* n.a. 1614* 2069* 1661*
5759 20 9783* n.a. 1903* 2379* 1950*
5039 30 12445* n.a. 2407* 3196* 2509*
4319 40 25797* n.a. 2909* 3612* 3081*
3600 50 19573* n.a. 3400* 4474* 3743*

Note: NIDS 5. N shows the sample size, and PMM stands for Predictive Means
Matching. The star (*) indicates that the number is statistically different from the

baseline estimate shown in Table 1, at 01.



Table 5: Gini Difference and RMSE (MNAR/LEFT)
Gini Diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 0.03* -0.50* -0.21* -0.10* -0.01
6839 5 0.05* -0.89* -0.37* -0.18* -0.04
6695 7 0.05* -1.32* -0.55* -0.28* -0.06*
6479 10 0.06* -2.00* -0.83* -0.43* -0.08*
6119 15 0.09* -3.31* -1.29* -0.69* -0.11*
5759 20 0.13* -4.79* -1.77* -0.96* -0.10*
5039 30 0.20* -8.35* -2.81* -1.57* -0.14*
4319 40 0.27* -12.69* -3.82* -2.21* -0.08*
3600 50 0.30* -17.87* -4.81* -2.88* -0.10*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 3.61* 0.07* -0.10* -0.15 -0.22
6839 5 4.91* 0.11* -0.17* -0.29* -0.36*
6695 7 6.41* 0.14* -0.24* -0.45* -0.52*
6479 10 8.31* 0.20* -0.36* -0.67* -0.80*
6119 15 3.40* 0.31* -0.57* -1.01* -1.22*
5759 20 5.21* 0.45* -0.79* -1.50* -1.69*
5039 30 3.70* 0.76* -1.33* -2.19* -2.82*
4319 40 6.74* 1.11* -1.96* -3.00* -3.94*
3600 50 5.30* 1.46* -2.69* -3.62* -5.12*
RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 697* 575* 462* 1002*
6839 5 n.a. 925* 778* 628* 1284*
6695 7 n.a. 1120* 939* 763* 1569*
6479 10 n.a. 1379* 1146* 945* 1914*
6119 15 n.a. 1776* 1499* 1268* 2513*
5759 20 n.a. 2145* 1801* 1554* 3003*
5039 30 n.a. 2880* 2400* 2144* 3973*
4319 40 n.a. 3669* 3021* 2804* 4909*
3600 50 n.a. 4566* 3689* 3525* 6068*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 9197* n.a. 459* 569* 574*
6839 5 12440* n.a. 609* 762* 718*
6695 7 16761* n.a. 736* 906* 853*
6479 10 24340* n.a. 902* 1136* 1029*
6119 15 8926* n.a. 1148* 1453* 1281*
5759 20 14510* n.a. 1376* 1814* 1569*
5039 30 10521* n.a. 1805* 2483* 2056*
4319 40 21474* n.a. 2246* 3107* 2640*
3600 50 17294* n.a. 2711* 3796* 3341*

Note: NIDS 5. N shows the sample size, and PMM stands for Predictive Means
Matching. The star (*) indicates that the number is statistically different from the

baseline estimate shown in Table 1, at 0.1.



Table 6: Gini Difference and RMSE (MNAR/RIGHT)
Gini Diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 -4.73* -5.73* -4.59* -4.96* -4.49*
6839 5 -5.43* -6.90* -5.33* -5.79* -5.27*
6695 7 -6.09* -8.02* -6.02* -6.55* -5.85*
6479 10 -6.70* -9.32* -6.72* -7.33* -6.38*
6119 15 -7.51* -11.36* -7.72* -8.42* -7.14*
5759 20 -8.15* -13.34* -9.09* -9.39* -7.76*
5039 30 -9.12* -17.32* -10.62* -11.06* -8.54*
4319 40 -9.88* -21.69* -11.82 -12.52* -9.06*
3600 50 -10.50* -26.50* -13.31* -13.92* -9.44*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 2.64* -3.39* -5.03* -5.55* -5.16*
6839 5 6.56* -4.06* -5.99* -6.34* -6.14*
6695 7 3.68* -4.79* -6.77* -6.79* -6.86*
6479 10 5.80* -5.48* -7.69* -8.10* -8.09*
6119 15 2.82* -6.40* -8.79* -9.55* -9.63*
5759 20 4.21* -7.12* -9.78* -11.42* -10.95*
5039 30 0.75* -8.23* -11.50* -13.52* -13.12*
4319 40 3.88* -9.23* -13.03* -14.56* -15.29*
3600 50 3.15* -9.89* -14.57* -17.56* -17.35*
RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 6865* 5724* 6013* 6021*
6839 5 n.a. 7215* 5988* 6286* 6340*
6695 7 n.a. 7460* 6171* 6471* 6546*
6479 10 n.a. 7721* 6366* 6666* 6787*
6119 15 n.a. 8046* 6616* 6906* 7087*
5759 20 n.a. 8287* 6801* 7081* 7289*
5039 30 n.a. 8652* 7087* 7335* 7653*
4319 40 n.a. 8931* 7317* 7522* 7927*
3600 50 n.a. 9152* 7503* 7667* 8142*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 3819* n.a. 6118* 6024* 5728*
6839 5 8759* n.a. 6407* 6257* 6044*
6695 7 4668* n.a. 6608* 6419* 6260*
6479 10 7195* n.a. 6824* 6726* 6529*
6119 15 3309* n.a. 7082* 7021* 6809*
5759 20 4705* n.a. 7291* 7347* 7036*
5039 30 1315* n.a. 7596* 7674* 7407*
4319 40 3304* n.a. 7830* 7812* 7724*
3600 50 2660* n.a. 8038* 8096* 7949*

Note: NIDS 5. N shows the sample size, and PMM stands for Predictive Means
Matching. The star (*) indicates that the number is statistically different from the

baseline estimate shown in Table 1, at 01.



Table 7: Gini Difference and RMSE (MNAR/TAIL)
Gini Diff.
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 -4.08* -4.93* -3.98* -4.24* -3.92*
6839 5 -4.82* -6.07* -4.75* -5.07* -4.64*
6695 7 -5.31* -6.94* -5.30* -5.64* -5.11*
6479 10 -5.96* -8.20* -6.04* -6.41* -5.75*
6119 15 -6.83* -10.11* -7.08* -7.48* -6.53*
5759 20 -7.53* -11.92* -7.96* -8.36* -7.17*
5039 30 -8.63* -15.55* -9.60* -9.94* -8.19*
4319 40 -9.65* -19.53* -11.27* -11.51* -9.12*
3600 50 -10.50* -23.85* -12.73* -12.88* -9.88*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 3.95* -3.36* -4.28* -4.52* -4.32*
6839 5 2.13* -4.22* -5.15* -5.64* -5.34*
6695 7 4.43* -4.78* -5.82* -6.44* -6.21*
6479 10 6.06* -5.54* -6.60* -6.94* -7.19*
6119 15 3.65* -6.55* -7.78* -8.12* -8.31*
5759 20 5.14* -7.33* -8.64* -9.47* -9.71*
5039 30 3.41* -8.63* -10.30* -11.81* -12.29*
4319 40 1.69* -9.75* -11.85* -14.99* -14.83*
3600 50 3.56* -10.67* -13.41* -16.38* -16.97*
RMSE
N % Miss. Deletion Mean SingleImp. Mult.Imp. PMM
6983 3 n.a. 6529* 5484* 5755* 5739*
6839 5 n.a. 6879* 5733* 6015* 6063*
6695 7 n.a. 7110* 5908* 6195* 6267*
6479 10 n.a. 7365* 6100* 6385* 6475*
6119 15 n.a. 7673* 6329* 6606* 6755*
5759 20 n.a. 7906* 6510* 6772* 6978*
5039 30 n.a. 8249* 6779* 7012* 7306*
4319 40 n.a. 8522* 6998* 7194* 7572*
3600 50 n.a. 8737* 7170* 7323* 7795*

N % Miss. Pareto Reweight LASSO Tree RF
6983 3 6049* n.a. 5835* 5655* 5476*
6839 5 3371* n.a. 6124* 6036* 5734*
6695 7 5764* n.a. 6309* 6232* 5917*
6479 10 7999* n.a. 6523* 6175* 6221*
6119 15 4505* n.a. 6767* 6636* 6587*
5759 20 6144* n.a. 6948* 6901* 6841*
5039 30 3875* n.a. 7235* 7183* 7103*
4319 40 2067* n.a. 7448* 7636* 7312*
3600 50 3357* n.a. 7629* 7765* 7521*

Note: NIDS 5. N shows the sample size, and PMM stands for Predictive Means
Matching. The star (*) indicates that the number is statistically different from the

baseline estimate shown in Table 1, at 01.



Table 8: Summary Results
Methods MCAR MAR MNAR-M MNAR-L MNAR-R MNAR-T

Deletion
Gini 0.00 -2.31 1.84 0.13 -7.57 -7.03

Mean
RMSE 3831 5706 2255 2129 8037 7663
Gini -6.43 -9.00 -5.90 -5.74 -1.34 -11.90

Sing. Par.
RMSE 3166 4935 2363 1761 6619 6334
Gini -2 .23 -2.37 -1.10 -1.83 -8.27 -7.63

Mult. Par.
RMSE 3174 4767 2037 1566 6883 6584
Gini -1.86 -3.17 -0.29 -1.03 -8.23 -7.95

PMM
RMSE 4235 5991 3768 2915 7088 6772
Gini -0.22 -1.16 1.28 -0.01 -7.10 -6.70

Pareto
RMSE 7855 7024 16394 15051 4415 4793
Gini 2.28 3.12 5.56 5.29 3.72 3.78

Reweighting
Gini 0.00 -0.64 1.92 0.51 -6.51 -6.76

LASSO
RMSE 3117 4738 1805 1332 7088 6758
Gini -1.81 -3.53 -0.17 -0.91 -9.24 -8.20

Tree
RMSE 3486 4778 2262 1781 7042 6691
Gini -2.53 -4.19 -0.78 -1.43 -10.38 - 9.37

Random Forest
RMSE 3040 4414 1906 1562 6831 6524
Gini -2.61 -4.76 -1.31 -1.85 -10.29 -9.46

Source: NIDS 5. RMSE stands for Root Mean Squared Error. Sing. Par. stands for
single parametric, Mult. Par. stands for Multiple parametric, PMM stands for Predictive

Means Matching.



6 Figures

Figure 1: Conditional missing probabilities under MNAR

Source: Figure from Schouten et al. (2018).



Figure 2: Gini Deviation by Shares
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Source: NIDS 5. P. stands for Parametric, PMM stands for Predictive Means Matching.



Figure 3: RMSE by Shares
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A Appendix

A.1 LASSO MAR deletion

Table A1 shows the coefficients for the LASSO regularization, where the dependent is

a binary variable that takes 1 if the observation was originally missing and 0 if it was

observed. We use the deviance of the binomial model for the tuning of the Lasso. The

lambda selected is equal to 0.0016. (log of lambda = -6.437752).

Figure A1: Lasso tuning
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Table A1: Lasso Estimates
Coefficient

Male 0.3372
Asian or Indian 0.4555

White 0.5427
Trade Union -0.3427

Schooling 0.0546
Cert (nomat) -0.1010
Dipl (nomat) -0.1277

Cer (mat) -0.1926
Dip (mat) 0.0364
Bachelors 0.0753
Honours -0.2936
Married -0.0156

Homerooms 0.1404
Homerooms squared -0.0031
Int. Month (May)5 -0.0901
Int. Month (June)6 0.0000
Int. Month (July)7 -0.0632

Int. Month (October)10 0.2932
Int. Month (November)11 0.2728
Int. Month (December)12 1.1653

Province: 2 0.1554
Province: 3 -0.0371
Province: 4 0.1854
Province: 6 0.2383
Province: 7 0.0186
Province: 8 -0.0023
Province: 9 0.2176

Geo Type: 3 -0.8345

Note: Source: NIDS 5.



Table A2: Packages
Method R Package Reference

Data corruption ampute Schouten et al., 2018
Imputation of the mean mice Buuren and Groothuis-Oudshoorn, 2011
Multiple Imputation mice Buuren and Groothuis-Oudshoorn, 2011
PMM mice Buuren and Groothuis-Oudshoorn, 2011
Parametric distribution laeken Alfons and Templ, 2012
Sample reweighting krm (Stata) Munoz and Morelli, 2021b
LASSO glmnet Friedman et al., 2010
Tree partykit Hothorn and Zeileis, 2015
Random forest partykit Hothorn and Zeileis, 2015

Note: All packages are implemented in R with the exception of ”kmr”, that is implemented in Stata.
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