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Relaxing the import proportionality 
assumption in multi‑regional input–output 
modelling
Simon Schulte*, Arthur Jakobs and Stefan Pauliuk 

1 Introduction
Multi-Regional input–output modelling (MRIO) is widely applied to study the relation-
ship between economic activities and their upstream environmental, social and eco-
nomic impacts (Miller and Blair 2009; Wiedmann 2009). To do so, MRIO links national 
inter-industry accounts with international trade data (Tukker et  al. 2018). Although 
extensive inter-regional trade information is available, they often lack the required level 
of detail needed to compile MRIO tables without having to rely on strong assumptions 
(Rodrigues et al. 2016; Dietzenbacher et al. 2013).
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In the absence of data on the destination industry of international trade flows most 
multi-regional input–output (MRIO) tables are based on the import proportionality 
assumption. Under this assumption imported commodities are proportionally dis-
tributed over the target sectors (individual industries and final demand categories) 
of an importing region. Here, we quantify the uncertainty arising from the import 
proportionality assumption on the four major environmental footprints of the different 
regions and industries represented in the MRIO database EXIOBASE. We randomise the 
global import flows by applying an algorithm that randomly assigns imported com-
modities block-wise to the target sectors of an importing region, while maintaining 
the trade balance. We find the variability of the national footprints in general below a 
coefficient of variation (CV) of 4%, except for the material, water and land footprints 
of highly trade-dependent and small economies. At the industry level the variability 
is higher with 25% of the footprints having a CV above 10% (carbon footprint), and 
above 30% (land, material and water footprint), respectively, with maximum CVs up 
to 394%. We provide a list of the variability of the national and industry environmental 
footprints in the Additional files so that MRIO scholars can check if an industry/region 
that is important in their study ranks high, so that either the database can be improved 
through adding more details on bilateral trade, or the uncertainty can be calculated 
and reported.
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MRIOs are commonly build from rectangular Multi-Regional Supply and Use Tables 
(MRSUTs) which are then converted to symmetric MRIO tables (see Eurostat 2008 for 
more details). The compilation of MRSUTs requires information on the use (or con-
sumption) of product i from region a in the target sector j in region b for all regions, 
products and target sectors covered by the MRSUT. The target sector can either be an 
individual industry (intermediate consumer) or a final consumer (typically distinguish-
ing households, government and capital formation). However, data on imported inputs 
are not available at the level of individual industries and final demand categories but by 
“Broad End-use Category” BEC (OECD 2020). As the name implies the BEC classifica-
tion system only broadly distinguishes between intermediate consumption, household 
consumption, capital goods and mixed end-use (products where the end-use is unclear 
e.g. cars can be purchased both for household consumption and as capital goods).

In effort to overcome this lack of information, MRIO/MRSUT compilers proportion-
ally distribute the imported commodities over the target sectors in the importing region 
so that an exporting region’s share of the total import volume of a product is the same 
for each target sector (see Fig.  2D). This assumption is often referred to as the “pro-
portionality assumption” (Rodrigues et  al. 2016; Peters et  al. 2011). The proportional-
ity assumption underlies all current global MRIO tables, however the level at which the 
proportionality assumption is applied varies. EXIOBASE (Stadler et al. 2018), Eora (Len-
zen et al. 2013) and GTAP (Peters et al. 2011) for instance allocate imports to the target 
sectors without the differentiation in intermediate use, consumption, and capital (i.e. 
not using BEC data) thus using the same proportions for all target sectors be it indus-
tries or final consumers. WIOD, by contrast, take the BEC data to distribute imports 
to aggregate end-use sectors but then also use the same proportions for all industries 
and final demand categories, respectively (Dietzenbacher et al. 2013). One reason why 
only WIOD uses the BEC data is that the BEC data by no means covers all industries, 
countries and years at the resolution required to produce such high resolution MRIOs as 
EXIOBASE or Eora.

Although the assumption that imports are distributed proportionally among individ-
ual industries and end-consumers might provide a practical solution to the lack of more 
detailed data, the assumption might be flawed for several reasons, possibly resulting in 
biased MRIO-based results. In the following, we first address some aspects that could 
lead to ‘real’ import shares differing significantly from the proportionality assumption. 
We then work out the conditions which additionally must be fulfilled so that assuming 
proportional import shares in such situations leads to a bias in the MRIO results.

1.1  Why the proportionality assumption might bias MRIO‑based footprints

One reason why the proportionality assumption might be flawed is the aggregation bias: 
due to the aggregation of firms to broader industry sectors, one such a sector might 
include rather heterogeneous products (in terms of physical properties and/or prices) 
(Majeau-Bettez et al. 2016).

In EXIOBASE for example, raw unfabricated leather products and luxury leather 
handbags are aggregated into one “Leather and leather products” sector (Stadler et al. 
2018). Imagine three countries: Country a and b both export leather and leather prod-
ucts to country c. However, a is specialised in raw leather, while b exports mainly luxury 
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leather handbags. In country c two industries i and j use imported leather, however, sec-
tor i buys raw leather from country a (to further process it), while sector j imports lux-
ury leather handbags from country b (to retail them). However, since this knowledge on 
the exact use of imports is not available for MRIO compilers, they assume that for both 
industries i and j the shares of imported leather products coming from country a and b, 
respectively, are the same.

Depending on the application case this assumption of proportional import shares 
could lead to biases in the outcome of MRIO studies if further conditions are met: If a 
MRIO is used to study the environmental implications at the level of industry or product 
sectors [e.g. study the footprint of sector i (Wiedmann et al. 2009; Huang et al. 2009), or 
of a consumption basket (Hardadi et al. 2020; Ivanova et al. 2016)], the proportionality 
assumption biases the outcome when there is a large variation in the impact intensi-
ties between the products of the exporting countries. Presumably, the cheap raw leather 
products from country a have a higher carbon emission intensity (i.e. emissions per 
Euro) than the expensive luxury leather handbags from country b. Hence sector i’s car-
bon footprint would be underestimated because the upstream emissions related to i’s 
use of imported leather products are averaged among both importing countries, instead 
of taken from the carbon intense leather sector of country a.

If a MRIO practitioner is interested in the environmental implications at the national 
level (e.g. Schmidt et  al. 2019), a large variation in the impact intensities between the 
products of the exporting countries, however, is not yet sufficient to lead to a bias in 
the results. Then additionally the products of industries i and j have to differ in terms of 
what proportion is consumed domestically and what proportion is exported. If industry 
i (importing from a) mainly produces for export, while j’s luxury leather handbags are 
mainly for the domestic market, the proportionality assumption would lead to an over-
estimation of c’s national carbon footprints because the upstream emissions related to 
industry j’s use of imported leather products would partly incorporate emissions which 
are actually linked to i’s leather imports (which should not show up in the footprint of 
country c since i produces for export).

There exist also other reasons why imports might not be distributed proportionally 
among target sectors. These are, for example, geographical reasons, e.g. the location of 
firms from one sector closer to large harbours or towards the border to a neighbouring 
country, or historically grown trade relations between firms in different countries.

1.2  Literature review, research gap and research question

Even though several MRIO compilers mention the potential problems related to the 
proportionality assumption (Stadler et  al. 2018; Peters et  al. 2011; Lenzen et  al. 2013; 
Dietzenbacher et  al. 2013), so far only few studies approached the problem quantita-
tively. Puzzello (2012) investigated the effect of the proportionality assumption on the 
factor content (capital, labour, services, ...) of trade. The author compared the results 
of two different methods to compile the Asian MRIO table, one assuming proportional 
import shares, and another survey-based including bilateral details on trade. She found-
inds the net bias introduced by the proportionality assumption to be small “only because 
the biases on exports and imports of factor services cancel each other out”.
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In their working paper Milberg and Winkler (2010) studied the error from the pro-
portionality assumption on the estimate of the effect of offshoring on the German 
labour demand for 36 sectors. They estimated the effect of offshoring applying the 
same econometric model but with two distinct data sets: one based on the propor-
tionality assumption and one with additional details on the use of German imports. 
They found a large difference in the regression coefficient estimates between the two 
versions, in many cases even with reversed signs.

Feenstra and Jensen (2012) did a similar comparison for the estimates of material 
offshoring from US manufacturing. They calculated the shares of imported inter-
mediate inputs of individual manufacturing sectors in two ways: (1) using firm-level 
data on imports and production and (2) applying the proportionality assumption. 
They found a moderate to high correlation between the offshoring shares calculated 
with the distinct methods (correlation coefficient of 0.68 and 0.87 if shares are value 
weighted).

Recently, Jiang et  al. (2020) compared the material footprints of China and Chi-
nese provinces based on two approaches: one with the assumption of proportional 
provincial import shares, and one with the inclusion of detailed data on Chinese 
inter-provincial trade. They found that the Chinese national material footprint is not 
significantly influenced by the choice of methods. Across provinces, however, the 
authors found variations in the material footprints between the two methods in the 
range from − 9% to + 14%. For disaggregated materials the differences between both 
methods were even ranging between − 48% and + 34%.

From the literature review we identify two major research gaps. First, all studies 
so far are region-specific, i.e. they only examine how the calculated impacts change 
when including bilateral trade details for one country/region. Second, all but one 
study investigate economic effects, with only Jiang et al. (2020) considering an envi-
ronmental impact indicator. The effect of the proportionality assumption on other 
environmental indicators, such as carbon, land or water footprints, however, have 
not been investigated so far. Which is surprising given that environmental footprint-
ing has been a major field of application of MRIOs in the last decades (Wiedmann 
2009; Wiedmann et al. 2015; Li et al. 2017; Brizga et al. 2017).

Against this background, we test how sensitive environmental footprint estimates 
are towards changes in the allocation of import flows not only for individual regions 
but for the entire world trade. Since we do not know the true import shares we ran-
domise the allocation of import flows to different target sectors while keeping fixed 
the available information, namely (i) the total imports per country and product, and 
(ii) the total use of product import per target sector. The aim of our study is to quan-
tify the maximum uncertainty introduced by the proportionality assumption. We 
focus on the four most commonly used types of environmental footprints (carbon, 
material, land, and water) on two levels (country and industry).
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2  Material and methods
To quantify the uncertainty of environmental footprints introduced by the proportion-
ality assumption we undertake the following steps: We generate 48971 MRIO tables 
with globally randomised import allocations. With each of these new MRIO tables we 
then calculate national and industry footprints and investigate the variability of these 
footprints.

2.1  Data

We use EXIOBASE (Version 3.4), a global MRIO database that is based on the propor-
tionality assumption and is widely used for environmental footprint analysis (Stadler 
et  al. 2018). We use the tables for the year 2011 in current prices in its original reso-
lution covering 163 industries in 44 countries and 5 Rest of the World (RoW) regions. 
EXIOBASE provides MRIOs in two different versions which differ in the model used to 
create a symmetric MRIO table from a rectangular MRSUT (Eurostat 2008): industry-
by-industry tables based on the fixed product sales assumption covering 163 industries, 
and product-by-product tables based on the industry technology assumption covering 
200 products. Product-by-product MRIOs offer a higher level of detail for (trade) trans-
actions than industry-by-industry MRIOs as the former distinguish between different 
types of coal, natural gas, coke, refined products, biofuels and gas distribution services. 
However, this additional level of detail comes at the expense of a longer computation 
time for calculating environmental footprints. Since the computation time of a matrix 
inversion that is required when calculating environmental footprints (see below) scales 
exponentially with the number of dimensions (Çetinay et  al. 2020), and computation 
time was constrained to 40 h by the cluster used for the analysis, we decided to work 
with the industry-by-industry tables. This allows us to perform considerably more simu-
lations and thus to get more robust results. We believe that the choice of model does 
not significantly change our conclusions, since as stated by Eurostat in their Manual of 
Supply, Use and input–output Tables under most circumstances “industry-by-indus-
try tables [are considered] a good approximation of product-by-product input–output 
tables” (Eurostat 2008).

2.2  Generating a MRIO table with globally randomised import allocations

We first show our approach to randomise the allocation of the imports of the output of 
one industry to the target sectors in one country. To generate an entire new MRIO table 
with globally randomised import allocations this procedure has to be repeated for all 
industries and countries covered by the MRIO.

We refer to the sets of exporting regions as R, exporting industries as I, importing 
regions as S and importing target sectors (comprising industries and final demand cat-
egories) as J. Matrices (capital letters) and vectors are represented as bold characters. 
For demonstration in this paper, we use a simple industry-by-industry MRIO system 
with four regions, four industries and two final demand categories to exemplify how 
the imports of the output of industry i ∈ I (say “leather industry”) from the exporting 

1 The number results from the maximum run time of 40 h allowed by the BWunicluster which was used for the analysis.



Page 6 of 21Schulte et al. Economic Structures           (2021) 10:20 

countries R are randomly allocated to the six target sectors J of region s ∈ S (say Ger-
many) (see Fig. 1). Since the proportionality assumption concerns only the inter-indus-
try matrix Z and the final demand matrix Y at that stage we omit the other elements of 
typical environmentally-extended MRIO tables (primary inputs, total output, environ-
mental extensions).

The problem we are facing is the allocation of the import flows of a given good (here: 
the output of industry i = leather industry) from different countries R to different tar-
get sectors J in a given country (here: s = Germany), where both (i) the total amount of 
imports by each exporting country r ∈ R , and (ii) the total amount of imported inputs 
for each target sector j ∈ J  are known. This problem can be represented in the form of a 
matrix (the “import matrix” Tsi ), where both the row sums ssi (= imports of the output 
of industry i to region s by region of origin R) and column sums usi (= inputs of indus-
try i’s output by target sector J in region s) are known, but cell entries are not. Formally 
expressed we know thus:

Figure 1 shows how we extract the import matrix Tsi from the inter-industry matrix Z 
and the final demand matrix Y . For the sake of readability, we omit the superscripts in 
the following. Summing T row-wise we get the vector of import flows s depicting the 
imports (supply) of the leather industries’ output from different exporting regions to 
Germany (Eq. 1). Summing T column-wise we get the vector u depicting the use of the 
imported leather industries’ output in different industries and final consumption catego-
ries in Germany (Eq. 2).

Now, the aim is to randomly allocate the region-specific supply s to the industry-
specific use u . Thus, we want a ‘new’ randomised import matrix T′ . We follow the 

(1)
∑

j∈J

tsirj = ssi

(2)
∑

r∈R

tsirj = usi

Tsi
usi

ss
iYZ

Fig. 1 A simplified MRIO system with four regions, four industries and two final demand categories to 
exemplify how the import matrix Tsi is extracted from the inter-industry matrix Z and the final demand matrix 
Y
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compilers of the most prominent global MRIOs EXIOBASE (Stadler et  al. 2018), 
Eora (Lenzen et  al. 2013) and GTAP (Peters et  al. 2011) and do not—unlike WIOD 
(Dietzenbacher et al. 2013)—include information on the BEC.

We apply an algorithm to randomly allocate s to u block-wise which works as fol-
lows (see Fig. 2A–C, a pseude-code version of the algorithm can be found in Addi-
tional file 1).

Step 1: We start by taking the supply of region 1 ( s1 = 1st element of s ) and the use of 
a randomly chosen target sector j ( uj = jth element of u).
Step 2: Now we differentiate three cases: If the supply from country 1 equals or is 
smaller than the use of industry j (case 1 or 2, respectively) we allocate the entire sup-
ply of country 1 to industry j. If, however, the supply of country 1 is larger than the 
use of industry j (case 3), the fraction of country 1’s supply which equals the entire 
use of j is allocated to j. In Fig. 2A–C these three cases are illustrated.
Step 3 is depending on which case has occurred in the previous step:

• In case 1, both the entire supply of country 1 and the entire need of industry j have 
been accounted for. Thus, we can go over to the next country 2 and compare its 
supply with the next randomly chosen industry following the procedure described 
under step 2 and 3.

Fig. 2 Sankey diagrams illustrating different possible ways to allocate s to u . A–C Three possible outcomes 
of our algorithm. D allocation based on proportional import shares. E An example of an intermediate case 
which is not covered by our algorithm
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• In case 2, the entire supply of country 1 has been accounted for but not the need 
of industry j. Thus, we go over to the next country 2 and compare its supply with 
the remainder of industry j following the procedure described under step 2 and 3.

• In case 3, the entire need of industry j is met, but country 1 still has imports left. 
Therefore, we continue with the next randomly chosen industry (in our example 
i3 ) and compare its need with the remainder of country 1’s supply following the 
procedure described under step 2 and 3.

 We run this algorithm until the supplies of all countries have been accounted for 
and the needs of all industries have been met. This condition will certainly be 
reached since all trade flows in MRIO tables are balanced, i.e. the total imports 
of industry i’s output into region s equals the total use of imported inputs 
( 
∑

r sr =
∑

j uj).

Carrying out the above outlined procedure for the imports of each industry output 
i ∈ I into each region s ∈ S results in ‘new’ matrices Znew and Ynew where all imported 
industry outputs into all countries are randomly allocated to the target sectors while 
keeping fixed both, (i) the total imports per country and industry output, and (ii) the 
total use of product import per industry sector.

Our approach is strictly speaking not a randomisation, since we do not consider all 
possible versions of the import matrices. In the lack of knowledge on bilateral trade 
details we should have to assume that each of the theoretically infinite possible versions 
of this import matrix is evenly likely. However, with our algorithm we only consider the 
extreme versions of the import matrix. With “extreme” we mean that our algorithm pro-
duces import matrices where imports are bundled and allocated block-wise to the target 
sectors (Fig. 2A–C). Thus, we miss all versions of the import matrix T where the import 
flows from different regions are split and randomly distributed over a large number of 
target sectors (i.e. all target sectors import a bit from country a, a bit from b and so on, 
Fig. 2E).

So instead of randomly sampling out of all possible versions of the import matrix, we 
only sample out of all extreme ones. Given the number of repetitions to be limited by 
computational issues—in our case to 4897 repetitions—with our approach we increase 
the probability to capture the extreme ends of the “real” distribution of the uncertainty 
of the respective footprint. Thus, we come closer to an estimate of the maximum possi-
ble uncertainty of the respective footprint which is the aim of our study.

2.3  Calculating environmental footprints

We calculate the four most used environmental footprints: carbon, land, material and 
water (Steinmann et al. 2018). Following Steinmann et al. (2018) we define these foot-
prints as the consumption-based ...

... emissions of the greenhouse gases CO2 , CH4 , N2 O, SF6 , hydrofluorocarbons 
(HFC), and perflourocarbons (PFC) weighted by their global warming potential 
based on a time horizon of 100 years (Myhre et al. 2014) (carbon footprint)
... area of land required by forestry, agriculture, infrastructure, etc. (land footprint)
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... mass of all used extractions including metal ores, other minerals, wood, fish, and 
crops (material footprint)
... volume of the total blue water consumption (water footprint).

To calculate the environmental footprints at the national and industry level we use Znew 
and Ynew , along with the stressor matrix S containing the relative environmental impacts 
per unit of sector output, the output per sector x , the characterisation matrix C that 
weights the environmental impacts according to the four footprints, and the matrix of 
direct impacts from final demand H storing the total direct impacts caused by all final 
demand categories in a region by footprint category, all provided by EXIOBASE (Stadler 
et al. 2018; Miller and Blair 2009).

We first calculate the Leontief inverse matrix L as

where I is the identity matrix and X̂−1 is a square matrix with 1/xi on the main diagonal 
and zeros elsewhere.

We then calculate the matrix of environmental multipliers E storing the environmental 
impacts per Euro of final demand produced by industry sector:

What we refer to as industry footprints Find we obtain by multiplying the environmental 
multipliers with the amount that is finally demanded for each industry’s output:

where Ŷ is a square matrix with y =
∑

j yij (i.e. the sum of final demand over final 
demand categories j) on the main diagonal and zeros elsewhere.

National footprints Fnat we calculate as

We carry out 4897 simulations runs, thus resulting in samples of 4897 different carbon, 
water, land and material footprints at national and industry level respectively. We quan-
tify both the absolute and the relative variability within these samples. To measure the 
absolute variability we use the Standard Deviation (SD), while for the relative variability 
we use the Coefficient of Variations (CV) defined as

where µ is the sample’s mean.
We choose the more commonly used SD and CV instead of a measure that is more 

robust against outliers such as the (relative) Median Absolute Deviation, so that we can 
compare our results with other studies on the uncertainty of environmental footprints. 
In Additional files 3 and 4 we also provide our results with these alternative measures of 
variability. Since both SD and CV do not give any information about the exact appear-
ance of a distribution (e.g. its skewness, number of modes, etc.), we take a closer look at 

(3)L = (I− ZnewX̂−1),

(4)
E = CSL.

(5)Find = EŶ,

(6)Fnat = EYnew
+H.

(7)CV =
SD

µ
,
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the sample distributions for some example industries/nations by looking at their prob-
ability density function and describing their variability in terms of their 2.5th and 97.5th 
percentiles.

3  Results
We present the sensitivity of different environmental footprints when relaxing the pro-
portionality assumption on two different levels: first, at the level of nations, and second, 
at the level of industries.

Fig. 3 A The relative variability (CV) of the national footprints compared to their absolute size assuming 
proportional import shares. Boxplots show the distributions of the CVs across the 49 regions to facilitate 
comparison between the different types of footprints. Country codes according to ISO 3166-1 alpha-3 except 
RoW regions (see Additional file 5). B The sample distributions of the national footprints exemplary for some 
selected interesting regions. The footprints where normalised by dividing each sample by the mean of all 
4897 samples. The violin plots show the probability density and the range of all samples. The boxplots show 
the inter-quartile range (IQR) where 50% of all samples are situated (boxes), the sample’s median (horizontal 
line) and the range from the 2.5th to the 97.5th percentile (whiskers). The red points show the footprints size 
assuming proportional import shares, also normalised by the mean of all samples
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3.1  National footprints

Figure 3A shows the relative variability (CV) of the national footprints compared to the 
absolute size of the footprints assuming proportional import shares. The points and 
country labels are coloured by the percentage of the footprint which is sourced from 
imports.

Overall, the CV of the carbon footprints is lower on average compared to the other 
three footprint categories (boxplots). A high CV is mostly associated with regions with 
a small absolute footprint size and and a high import share. The highest CV in carbon, 
material and water footprints can be seen in Luxembourg (LUX) with values of approxi-
mately 0.02 (carbon) and 0.06 (material and water). Taiwan (TWN) shows the highest 
relative variability for the land footprint with a CV of close to 0.07. The percentage of 
these footprints sourced from imports is 66% (LUX, carbon), 95% (TWN, land), and 
99% (LUX, material and water). Other regions of interest with a relatively high CV and 
a relevant footprint size are—in the case of carbon footprints—Switzerland (CHE) and 
Slovenia (SCN) with CVs of 0.01 each. In the case of land footprints, regions worth men-
tioning are the Netherlands (NLD, CV of 0.04) and Belgium (BEL, CV of 0.03), which 
both have a high population density and are highly dependent on imports of land-inten-
sive food products and materials. RoW Asia and Pacific (WWA) stands out when looking 
at its material footprint having the third largest absolute material footprint with more 
than 5000 Mt and the second highest CV with a value of 0.05. In the case of water foot-
prints, interesting regions are again the Netherlands (CV of 0.06) and, less pronounced, 
Lithuania (LTU, CV of 0.04).

Figure  3B shows the distribution of the 4897 simulated national footprints exem-
plary for some selected regions (the regions mentioned earlier). For distributions of all 
national footprints please refer to in Additional file 2: Figure S1. The footprints where 
normalised by dividing each sample by the mean of all 4897 samples.

The 95% confidence interval (CI) of Luxembourg’s carbon footprint ranges between 
± 4% around the mean. Both, Luxembourg’s material and water footprint distributions 
are skewed towards higher values with a range between − 9% and + 14%, and − 10% and 
+ 12%, respectively. Taiwan’s land footprint ranges between − 11% and + 10% around 
the mean (95% CI). Taiwan’s land footprint and WWA’s material footprint both show 
multi-modal distributions, i.e. they have several local maxima in their density function.

The difference between the footprints using the proportionality assumption and the 
sample mean, is particularly pronounced for the material footprints of Luxembourg 
(+ 10%), WWA (− 8%) and Belgium (+ 6%). The three countries exemplary listed with 
their water footprint show a difference around + 3 to + 6%, while the countries listed 
with their carbon and land footprints show only a comparably smaller deviance.

Using Fig. 4, the relevance of the identified variability can be assessed against the back-
ground of the relative contribution of a region’s footprint to global impacts. The regions 
in Fig. 4 are ordered by their standard deviation (SD) from top (high) to bottom (low). 
WWA stands out with the highest SD regarding carbon, material and water footprints 
and the second highest SD regarding land footprints. China (CHN) has the highest SD 
in terms of land footprint and the second (carbon) and third (material, water) highest 
variability for the remaining footprints. Except WWA’s material footprint all previously 
discussed regional footprints with high relative variability have negligible variability 



Page 12 of 21Schulte et al. Economic Structures           (2021) 10:20 

in absolute terms. Overall, we find that the proportion of a region’s footprint in global 
impacts is relatively robust with regard to a relaxation of the proportionality assumption. 
Even for WWA’s material footprint which has the highest absolute variability the contri-
bution to global impacts ranges between 6.8 and 8.0% (95% CI). For all other footprints, 
the spread between the 2.5th and 97.5th percentiles is less than 1 percentage point.

3.2  Industry footprints

For the industry footprints (Fig. 5) we see a similar pattern as for the national footprints. 
Considering relative variability (CV) the carbon footprints are less variable on average 
than land, material and water footprints (boxplots). Industries with a higher CV also 
have a higher import share. However, a high import share does not necessarily go hand 
in hand with a higher CV (compare in Additional file 2: Figure S3). With maximum CVs 
between 1.87 (land footprint) and 3.94 (material footprint) the variability at the level of 
industry sectors is significantly higher than at the regional/national level.

Industries of interest, i.e. with a relatively high CV and a relevant footprint size are—in 
the case of the carbon footprint—the ‘Electricity by biomass and waste’ (i40.11.g) sectors 

Fig. 4 The absolute variability of the national footprints expressed as variability in the contribution to the 
global total impacts. The bars cover the range between the 2.5th and 97.5th percentiles. The grey whiskers 
extend to the min/max of the sample. The regions are ordered by their SD from top (high) to bottom (low). 
All regions with a share of less than 1% of the global impact are not included in the figure



Page 13 of 21Schulte et al. Economic Structures           (2021) 10:20  

in Portugal (PRT) and India (IDN) with CVs of 2.19 and 1.66 respectively. In the case of 
land footprints, the sector ‘Other non-ferrous metal ores and concentrates’ (i13.20.16) in 
Germany (DEU, CV of 1.87) and Italy (ITA, CV of 1.70) stand out. Industries of interest 
in their material footprint are the Indian ‘Electricity by petroleum and other oil deriv-
atives’ sector (IDN: i40.11.f ) with a CV of 3.94, the Brazilian ‘Electricity by coal’ sec-
tor (BRA: i40.11.a) with a CV of 3.60 and the Turkish ‘Electricity by wind’ sector (TUR: 
i40.11.e) with a CV of 3.27. In the case of water footprints the sectors with a promi-
nent role are the ‘Wool, silk-worm cocoons’ sectors (i01.o) in Ireland (IRL) and—less 
pronounced—Finland (FIN) with CVs of 2.05 and 1.77, respectively, the Chinese ‘Sale, 
maintenance, repair of motor vehicles, motor vehicles parts, motorcycles, motor cycles 
parts and accessories’ sector (CHN: i50.a) with a CV of 1.92, the Slovenian ‘Processing 
vegetable oils and fats’ sector (SVN: i15.e) with a CV of 1.98, and the German ‘Sea and 
coastal water transport’ sector (DEU: i61.1) with a CV of 1.69.

When taking a closer look at the distributions of the 4897 simulated industry foot-
prints for aforementioned selected industries (Fig. 6), we see that most distributions are 
multi-modal. Additionally, most distributions have a positive skew. The most extreme 

Fig. 5 The relative variability (CV) of the industry footprints compared to their absolute size assuming 
proportional import shares. The 10 industries with the smallest non-zero footprint and all industries with a 
zero footprint are not shown. Boxplots show the distributions of the CVs across all industries with a non-zero 
footprint to facilitate comparison between the different types of footprints



Page 14 of 21Schulte et al. Economic Structures           (2021) 10:20 

upward deviation can be seen for the Portuguese ‘Electricity by biomass and waste’ (PRT: 
i40.11.g) sector’s carbon footprint with a 97.5th percentile of 1000%. Since the footprint 
calculated with the default version of EXIOBASE is even a bit below the sample mean, 
this finding implies that this sector’s carbon footprint can be more than 10 times higher 
than the current EXIOBASE version’s result. The largest downward deviation can be 
seen for the water footprint of the Italian ‘Mining of other non-ferrous metal ores and 
concentrates’ sector with a 2.5th percentile of 5%, implying a possible overestimation of 
this footprint by a factor of 20.

In contrast, other industry sectors stand out when looking at absolute variability (SD). 
Figure 7 shows the distributions of the top five industries with the highest SD for each 
footprint category. Again, industries are ordered by their SD from left (high) to right 
(low). The sector standing out the most is the construction sector (i45) with a high SD 
for WWA (carbon and material), China (carbon and land), USA (land) and RoW Middle 
East (WWM, material). The US ‘Public administration and defence; compulsory social 
security’ (USA: i76) stands out in terms of its land and carbon footprint. A high SD can 
also be seen for the ‘Health and social work’ sector (i85) in WWM and WWA (both 

Fig. 6 The sample distributions of the industry footprints exemplary for selected industries. The footprints 
where normalised by dividing each sample by the mean of all 4897 samples. The violin plots show the 
probability density and the range of all samples. The boxplots show the IQR (boxes), the sample’s median 
(vertical line) and the range from the 2.5th to the 97.5th percentile (whiskers). The red points show the 
footprints size assuming proportional import shares, also normalised by the mean of all samples
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material), and China (land). The ‘Manufacture of furniture; manufacturing n.e.c.’ sectors 
(i36) in Italy (carbon) and China (land) stand out, as does the ‘Processing of Food prod-
ucts nec’ sectors (i15.i) in WWM and the USA (both water). The widest spreads in abso-
lute terms between the 2.5th and 97.5th percentiles we find are 51 Mt CO2eq emissions 
(USA: i75), 792 t of material extraction (WWA: i45), 160,000 km2 of land use (CHN: i85), 
and 5000 hm3 of water consumption (WWM: i15i).

4  Discussion
Most published MRIO-based footprints come with no uncertainty by default. Given the 
high potential uncertainty due to several assumptions made in the process of compil-
ing MRIO tables (Lenzen et al. 2010) this is problematic if these results are used for, or 
influence, decision making, as the robustness of the decision in relation to the footprint 
information used cannot be assessed due to the lacking uncertainty of the latter (Tuk-
ker et al. 2020). This piece quantifies the effect of one assumption underlying all global 
MRIOs—the proportionality assumption—on the four major environmental footprints 
of the different EXIOBASE regions and industries.

Fig. 7 The sample distributions of the top five industries with the highest SD for each footprint category. 
The industries are ordered by their SD from left (high) to right (low). The red points show the footprints size 
assuming proportional import share
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At the country level, the relative variability is in general below a coefficient of variation 
(CV) of 4%, except for the material, water and land footprints of highly trade-dependent 
and globally very small (Luxembourg, Malta, Latvia, Lithuania) and small economies 
(Belgium, Netherlands), and the RoW-region ‘Asia and Pacific’. More profound prob-
lems, however, are to be expected in the interpretation of the geographical origin of the 
national footprints (such as e.g. Schmidt et  al. 2019; Tukker et  al. 2014). Focusing on 
the footprints of regions with a globally considerable impact we find that the share of a 
region’s footprint in global impacts is relatively robust to a relaxation of the proportion-
ality assumption. Only for the material footprint of the RoW-region ‘Asia and Pacific’ the 
spread between the 2.5th and 97.5th percentiles of the region’s share in global impacts is 
larger than 1 percentage point.

At the industry/product level we find the relative variability to be substantially higher 
as compared to national footprints. The footprints of 25% of the industry sectors covered 
by EXIOBASE that have a non-zero footprint2 show a CV above 10% (carbon footprint), 
above 30% (land and material footprint), and above 34% (water footprint), respectively. 
Some industry footprints, show a possible relative variability of 1000% or more indicat-
ing that assuming proportional import shares might lead to over- or underestimation 
of these footprints by a factor of 10 or more. In terms of absolute variability we find 
industry footprints with a spread between the 2.5th and 97.5th percentile of up to 51 
Mt CO2eq emissions, 792 t of material extraction, 160,000 km2 of land use, and 5000 
hm3 of water consumption. Our findings thus confirm that MRIO-based footprints at 
the industry/product level need to be treated with great care (Lenzen et al. 2010).

The greater relative variability at the industry level compared to the national level can 
be explained by the fact that national footprints are the sum of a multitude of industry 
footprints. Hence, at the more aggregated level of nations variability at the industry level 
will partly cancel out each other. Moreover, as elaborated in the introduction, for the 
industry footprints the proportionality assumption might already be problematic when 
only one condition is met (a large variation in the impact intensities between the indus-
tries of the exporting countries), while in the case of national footprints a second condi-
tion has to be satisfied (a large variation in the proportions of the importing industries 
that is consumed domestically).

The sample distributions of most industry footprints and some national footprints 
(Taiwan’s land footprint, WWA’s material footprint) are multi-modal, i.e. they have two 
or more local maxima in their density functions. One explanation could be that the 
variability of these footprints depends on the allocation of imports of only one (or few) 
products. Changing the allocation of only this (these few) product import(s) leads to 
a large change in the footprint (local maxima) while the allocation of all other global 
import flows has only a minor influence (little dispersion around the local maxima). Fur-
ther research could zoom into these footprints, e.g. via a structural path analysis/decom-
position, to determine the origin of the uncertainty introduced by the proportionality 
assumption (Lenzen 2003).

2 Note that EXIOBASE has a harmonised sector resolution i.e. the economy of each region is represented with the same 
set of industry sectors such that sectors which do not exist in a region (e.g. there is no Austrian paddy rice production) 
show up with zero inputs and outputs and thus a zero footprint
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In general, we find that country and industry footprints with a high import share 
show a higher variability (compare also in Additional file 2: Figures S2 and S3). This 
finding is in line with Jiang et al. 2020 who found a high correlation between the per-
centage of the Chinese material footprint sourced from imports and the error of the 
footprint introduced by the proportionality assumption (Jiang et al. 2020). This rela-
tionship also seems to—at least partly—explain the overall lower variability of the 
carbon footprints (with relatively low import shares), compared to material, land, 
and water footprints (with import shares up to 100%). The finding that a high import 
share does not automatically lead to a high variability in the footprints suggests that a 
high import share is a necessary but not sufficient condition for a high uncertainty in 
national/industry footprints with regard to the proportionality assumption.

As elaborated in the introduction, from a theoretical perspective, MRIO results are 
only sensitive to changes in the allocation of an imported commodity if the impact 
intensities for the production of this commodity differ between exporting regions. We 
compared this between-region variability of the impacts intensities across all industry 
sectors between the four footprint categories to see if it also might explain parts of 
the gap in variability between carbon footprints and the remainder footprint catego-
ries. However, as it can be seen in Additional file 2: Figure S4, we find no significant 
signs of a lower between-region variability for carbon multipliers than for material, 
land and water multipliers.

With the algorithm we apply in this study we provide an upper boundary estimate of 
the uncertainty that might arise from the proportionality assumption in MRIO analy-
sis. By only considering ‘extreme’ versions of how to allocate imports to target sec-
tors, the sample distributions of the footprints (and all numbers derived from them) 
cannot be seen as the ‘true’ uncertainty distributions under the assumption that each 
possible allocation is evenly likely. However, we consider our study as a relevant con-
tribution to the quantification of the maximum possible uncertainty that may arise 
from relaxing the proportionality assumption in MRIO.

One possible reason why the actual maximum uncertainty could be even larger than 
stated in this study, however, is that the uncertainty estimate is based on only 4897 
iterations. Theoretically, with our allocation algorithm there exist almost infinite pos-
sibilities to construct ‘new’ Z and Y  matrices. The computational limit of 4897 itera-
tions is almost entirely owed to the calculation of the Leontief inverse which is—given 
the size of EXIOBASE—computational expensive even when solved as a system of 
linear equations (see also Çetinay et al. 2020).

In our analysis we use the industry-by-industry version of EXIOBASE. As men-
tioned in the methodology section, from a theoretical point of view it would be more 
conclusive to do the randomisation directly within the MRSUT framework, convert 
them to product-by-product MRIO tables and then calculate national and product 
footprints. However, this approach would require larger computing resources than 
we had available to obtain robust results. Moreover, we see no reason to believe that 
MRSUTs or product-by-product MRIOs will in general react differently to a relaxa-
tion of the proportionality assumption than the industry-by-industry version we 
used. Although it would certainly have a noteworthy impact on the footprints of some 
(few) industries/products.
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In a next step, the question whether the inclusion of trade data from the BEC sub-
stantially decreases the uncertainty of the footprints could be answered quantitatively. 
Given the patchy and aggregate nature of the BEC data, however, compilers of highly 
disaggregated MRIOs such as EXIOBASE would still have to rely on strong assumptions. 
Another interesting research question would be the effect of the sectoral/regional reso-
lution of a MRIO on the uncertainty introduced by the proportionality assumption. This 
could either be approached by conducting a similar analysis for other MRIOs having dif-
ferent sectoral/regional resolutions or using the same database but aggregating sectors/
regions step-wise.

To contextualise our results we can compare the footprint variability we found to the 
variability found in other studies. Most studies to date dealing with the uncertainty in 
MRIO-based footprint analysis compared the results across databases (Rodrigues et al. 
2018; Owen et al. 2014; Wieland et al. 2018; Wood et al. 2019; Moran and Wood 2014; 
Steen-Olsen et  al. 2016). An exception is the work of Lenzen et  al. (2010) that uses 
(inferred) standard deviations of the raw data to analyse how these uncertainties propa-
gate to UK’s carbon footprint estimate. Almost all studies examine carbon footprints, 
only Giljum et al. (2019) focuses on material footprints, while for MRIO-based land and 
water footprint we could not find any study on uncertainty with a scope comparable to 
our work which would make it possible to compare our results with.

The most up-to-date study of the uncertainty of MRIO-based carbon footprints we are 
aware of is from Rodrigues et al. (2018). The authors analysed the uncertainty of national 
and product carbon footprints using the variability in the footprints between five dif-
ferent global product-by-product MRIO tables. At the level of national footprints they 
found CVs of 6% (USA), 9% (China) up to 16% for the Netherlands, and at the level of 
product footprints CVs between 10 and 213%. It should be noted, however, that they 
used product-by-product tables with a much lower sectoral resolution only distinguish-
ing 17 product sectors compared to the 163 industry sectors we use in our analysis. A 
similar analysis with regard to material footprints was conducted by Giljum et al. (2019). 
They reported the variability of country material footprints as % difference in footprints 
between three different MRIO databases. To allow comparison to our results, we took 
their raw results and calculated the CV of selected country footprints. Taiwan, Slovakia 
and the Netherlands showed the highest variability in their material footprints with CVs 
of 40%, 37% and 25%, respectively. At the lower end range the US and the German mate-
rial footprints with CVs of 6% and 2%, respectively.

When comparing these numbers with our results, we find that for national carbon 
footprints the variability caused by the proportionality assumption is only 1 to 4% of 
the inter-database variability found by Rodrigues et al. (2018). Although the maximum 
variability of industry footprints we found (219%) is in the same range compared to 
Rodrigues et al. (2018), due to the much higher sectoral resolution of our data, we can 
assume that when aggregating our results to an equivalent industry resolution the vari-
ability will be considerably reduced. Similarly, for national material footprints the vari-
ability caused by the proportionality assumption is only 0.2 to 2% of the inter-database 
variability found by Giljum et al. (2019). Hence, we conclude that the question of how 
the imported goods are distributed among the target sectors only leads to a low vari-
ability of the environmental footprints as compared to those assumptions made in the 
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process of compiling environmentally-extended MRIOs that differ between individual 
databases, such as the source data, the use of the territorial versus residential principle, 
the chosen balancing algorithm or the breakdown/allocation of extensions (see also Tuk-
ker et al. 2020).

5  Conclusion
A sound knowledge of the uncertainties in MRIO modelling is the basic prerequisite for 
the acceptance of MRIO-based results among policy makers. So far, the scientific lit-
erature on the uncertainty of MRIO-based environmental footprints, almost exclusively 
compared the results across databases. With our study we are adding a new perspective 
to this strand of literature by dealing with a source of uncertainty that affects all global 
MRIOs and has thus been ignored in inter-database comparisons: the import propor-
tionality assumption. We quantified the global sensitivity of MRIO-based environmental 
footprint results to a relaxation of the proportionality assumption. We found that for 
carbon and material country footprints the variability caused by relaxing the propor-
tionality assumption is only at most 4% of the inter-database variability found in previ-
ous studies.

However, as the variability of some industry and a few country footprints is too large 
to be ignored, and to help researchers that use MRIO to study environmental footprints 
at the national or sectoral level, we provide our main results in Additional files 3 and 
4 in the form of .xlsx tables containing measures of the variability (SD, CV, 2.5th and 
97.5th percentiles) of the environmental footprints of all regions and industries covered 
by EXIOBASE. With the help of these tables researchers can check if an industry/region 
that is important in their study ranks high, so that either the database can be improved 
through adding more details on bilateral trade, or the uncertainty can be calculated and 
reported.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s40008- 021- 00250-8.

Additional file 1. A pseudo-code version of our algorithm we applied in this study. 

Additional file 2. Relaxing the import proportionality assumption in multi-regional input-output modeling. 

Additional file 3. Results national level. The data behind Figs. 3A and 4. The data of all individual model runs 
(needed to produce Fig. 3B can be get upon request from the author. 

Additional file 4. Results industry level. The data behind Figs. 5 and 7. The data of all individual model runs (needed 
to produce Fig. 6) can be get upon request from the author. 

Additional file 5. Country codes according to ISO 3166-1 alpha-3 except RoW regions.

Acknowledgements
We thank Richard Wood for his helpful comments on an earlier draft and two anonymous reviewers for their valuable 
feedback. Further, we thank the BwUniCluster for providing a high performance computing cluster which gave us the 
opportunity to conduct such a data and computing intensive study.

Authors’ contributions
SS, SP and AJ conceived and designed the research. SS performed the computations, analysed the results and wrote the 
paper with inputs from all authors. All authors read and approved the final manuscript.

Funding
SS and SP were supported by a grant by the Eva-Mayr-Stihl Foundation. AJ’s work was funded by the Swiss National 
Science Foundation Grant Number 407340 172445 as part of the National Research Program “Sustainable Economy: 
resource-friendly, future-oriented, innovative” (NRP 73).

https://doi.org/10.1186/s40008-021-00250-8


Page 20 of 21Schulte et al. Economic Structures           (2021) 10:20 

Availability of data and materials
EXIOBASE V3.4 is available at https:// exiob ase. eu/. The R-code needed to reproduce the results of this article is available 
in the github repository https:// github. com/ simsc hul/ import_ propo rtion ality under the commit ‘Publication version’ 
(90e65647967af7c87b75703813a1ce0230279f12). The results data supporting the conclusions of this article are included 
in Additional files 3 and 4.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 February 2021   Revised: 3 September 2021   Accepted: 21 September 2021

References
Brizga J, Feng K, Hubacek K (2017) Household carbon footprints in the Baltic states: a global multi-regional input–output 

analysis from 1995 to 2011. Appl Energy 189:780–788. https:// doi. org/ 10. 1016/j. apene rgy. 2016. 01. 102
Çetinay H, Donati F, Heijungs R, Sprecher B (2020) Efficient computation of environmentally extended input–output 

scenario and circular economy modeling. J Ind Ecol 24(5):976–985. https:// doi. org/ 10. 1111/ jiec. 13013
Dietzenbacher E, Los B, Stehrer R, Timmer M, Vries G.d (2013) The construction of world input–output tables in the WIOD 

project. Econ Syst Res 25(1):71–98. https:// doi. org/ 10. 1080/ 09535 314. 2012. 761180
Eurostat (2008) Eurostat manual of supply, use and input–output tables. Office for Official Publications of the European 

Communities, Luxembourg
Feenstra RC, Jensen JB (2012) Evaluating estimates of materials offshoring from US manufacturing. Econ Lett 117(1):170–

173. https:// doi. org/ 10. 1016/j. econl et. 2012. 04. 069
Giljum S, Wieland H, Lutter S, Eisenmenger N, Schandl H, Owen A (2019) The impacts of data deviations between MRIO 

models on material footprints: a comparison of EXIOBASE, Eora, and ICIO. J Ind Ecol 23(4):946–958. https:// doi. org/ 
10. 1111/ jiec. 12833

Hardadi G, Buchholz A, Pauliuk S (2020) Implications of the distribution of German household environmental footprints 
across income groups for integrating environmental and social policy design. J Ind Ecol 25(1):95–113. https:// doi. 
org/ 10. 1111/ jiec. 13045

Huang YA, Lenzen M, Weber CL, Murray J, Matthews HS (2009) The role of input–output analysis for the screening of 
corporate carbon footprints. Econ Syst Res 21(3):217–242. https:// doi. org/ 10. 1080/ 09535 31090 35413 48

Ivanova D, Stadler K, Steen-Olsen K, Wood R, Vita G, Tukker A, Hertwich EG (2016) Environmental impact assessment of 
household consumption. J Ind Ecol 20(3):526–536. https:// doi. org/ 10. 1111/ jiec. 12371

Jiang M, Liu L, Behrens P, Wang T, Tang Z, Chen D, Yu Y, Ren Z, Zhu S, Tukker A, Zhu B (2020) Improving subnational input–
output analyses using regional trade data: a case-study and comparison. Environ Sci Technol 54(19):12732–12741. 
https:// doi. org/ 10. 1021/ acs. est. 0c047 28

Lenzen M (2003) Environmentally important paths, linkages and key sectors in the Australian economy. Struct Change 
Econ Dyn 14(1):1–34. https:// doi. org/ 10. 1016/ S0954- 349X(02) 00025-5

Lenzen M, Wood R, Wiedmann T (2010) Uncertainty analysis for multi-region input–output models—a case study of the 
UK’s carbon footprint. Econ Syst Res 22(1):43–63. https:// doi. org/ 10. 1080/ 09535 31100 36612 26

Lenzen M, Moran D, Kanemoto K, Geschke A (2013) Building Eora: a global multi-region input–output database at high 
country and sector resolution. Econ Syst Res 25(1):20–49. https:// doi. org/ 10. 1080/ 09535 314. 2013. 769938

Li JS, Chen B, Chen GQ, Wei WD, Wang XB, Ge JP, Dong KQ, Xia HH, Xia XH (2017) Tracking mercury emission flows in the 
global supply chains: a multi-regional input–output analysis. J Clean Prod 140:1470–1492. https:// doi. org/ 10. 1016/j. 
jclep ro. 2016. 10. 002

Majeau-Bettez G, Pauliuk S, Wood R, Bouman EA, Strømman AH (2016) Balance issues in input–output analysis: a com-
ment on physical inhomogeneity, aggregation bias, and coproduction. Ecol Econ 126:188–197. https:// doi. org/ 10. 
1016/j. ecole con. 2016. 02. 017

Milberg W, Winkler DE (July 2010) Errors from the “proportionality assumption” in the measurement of offshoring: applica-
tion to German labor demand. SSRN Scholarly Paper ID 1635800, Social Science Research Network, Rochester. 
https:// doi. org/ 10. 2139/ ssrn. 16358 00

Miller RE, Blair PD (2009) Input–output analysis: foundations and extensions, 2nd edn. Cambridge University Press, 
Cambridge

Moran D, Wood R (2014) Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’S consumption-based carbon 
accounts. Econ Syst Res 26(3):245–261. https:// doi. org/ 10. 1080/ 09535 314. 2014. 935298

Myhre G, Shindell D, Pongratz J (2014) Anthropogenic and natural radiative forcing. Cambridge University Press, Cam-
bridge, pp 659–740. https:// doi. org/ 10. 1017/ CBO97 81107 415324. 018

OECD (2020) BTDIxE bilateral trade in goods by industry and end-use. ISIC Rev. 4. https:// stats. oecd. org/ Index. aspx? DataS 
etCode= BTDIXE_ I4. Accessed 21 July 2020

https://exiobase.eu/
https://github.com/simschul/import_proportionality
https://doi.org/10.1016/j.apenergy.2016.01.102
https://doi.org/10.1111/jiec.13013
https://doi.org/10.1080/09535314.2012.761180
https://doi.org/10.1016/j.econlet.2012.04.069
https://doi.org/10.1111/jiec.12833
https://doi.org/10.1111/jiec.12833
https://doi.org/10.1111/jiec.13045
https://doi.org/10.1111/jiec.13045
https://doi.org/10.1080/09535310903541348
https://doi.org/10.1111/jiec.12371
https://doi.org/10.1021/acs.est.0c04728
https://doi.org/10.1016/S0954-349X(02)00025-5
https://doi.org/10.1080/09535311003661226
https://doi.org/10.1080/09535314.2013.769938
https://doi.org/10.1016/j.jclepro.2016.10.002
https://doi.org/10.1016/j.jclepro.2016.10.002
https://doi.org/10.1016/j.ecolecon.2016.02.017
https://doi.org/10.1016/j.ecolecon.2016.02.017
https://doi.org/10.2139/ssrn.1635800
https://doi.org/10.1080/09535314.2014.935298
https://doi.org/10.1017/CBO9781107415324.018
https://stats.oecd.org/Index.aspx?DataSetCode=BTDIXE_I4
https://stats.oecd.org/Index.aspx?DataSetCode=BTDIXE_I4


Page 21 of 21Schulte et al. Economic Structures           (2021) 10:20  

Owen A, Steen-Olsen K, Barrett J, Wiedmann T, Lenzen M (2014) A structural decomposition approach to comparing 
MRIO databases. Econ Syst Res 26(3):262–283

Peters GP, Andrew R, Lennox J (2011) Constructing an environmentally-extended multi-regional input–output table 
using the GTAP database. Econ Syst Res 23(2):131–152. https:// doi. org/ 10. 1080/ 09535 314. 2011. 563234

Puzzello L (2012) A proportionality assumption and measurement biases in the factor content of trade. J Int Econ 
87(1):105–111. https:// doi. org/ 10. 1016/j. jinte co. 2011. 11. 009

Rodrigues J, Marques A, Wood R, Tukker A (2016) A network approach for assembling and linking input–output models. 
Econ Syst Res 28(4):518–538. https:// doi. org/ 10. 1080/ 09535 314. 2016. 12388 17

Rodrigues JFD, Moran D, Wood R, Behrens P (2018) Uncertainty of consumption-based carbon accounts. Environ Sci 
Technol 52(13):7577–7586. https:// doi. org/ 10. 1021/ acs. est. 8b006 32

Schmidt S, Södersten C-J, Wiebe K, Simas M, Palm V, Wood R (2019) Understanding GHG emissions from Swedish 
consumption—current challenges in reaching the generational goal. J Clean Prod 212:428–437. https:// doi. org/ 10. 
1016/j. jclep ro. 2018. 11. 060

Stadler K, Wood R, Bulavskaya T, Södersten C-J, Simas M, Schmidt S, Usubiaga A, Acosta-Fernández J, Kuenen J, Bruckner 
M, Giljum S, Lutter S, Merciai S, Schmidt JH, Theurl MC, Plutzar C, Kastner T, Eisenmenger N, Erb K-H, Koning Ad, Tuk-
ker A (2018) EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–out-
put tables. J Ind Ecol 22(3):502–515. https:// doi. org/ 10. 1111/ jiec. 12715

Steen-Olsen K, Owen A, Barrett J, Guan D, Hertwich EG, Lenzen M, Wiedmann T (2016) Accounting for value added 
embodied in trade and consumption: an intercomparison of global multiregional input–output databases. Econ 
Syst Res 28(1):78–94. https:// doi. org/ 10. 1080/ 09535 314. 2016. 11417 51

Steinmann ZJN, Schipper AM, Stadler K, Wood R, Koning Ad, Tukker A, Huijbregts MAJ (2018) Headline environmental 
indicators revisited with the global multi-regional input–output database EXIOBASE. J Ind Ecol 22(3):565–573. 
https:// doi. org/ 10. 1111/ jiec. 12694

Tukker A, Bulavskaya T, Giljum S, De Koning A, Lutter S, Simas M, Stadler K, Wood R (2014) The global resource footprint of 
Nations—carbon, water, land and materials embodied in trade and final consumption calculated with exiobase 2.1, 
2014. The Netherlands Organisation for Applied Scientific Research

Tukker A, Koning Ad, Owen A, Lutter S, Bruckner M, Giljum S, Stadler K, Wood R, Hoekstra R (2018) Towards robust, author-
itative assessments of environmental impacts embodied in trade: current state and recommendations. J Ind Ecol 
22(3):585–598. https:// doi. org/ 10. 1111/ jiec. 12716

Tukker A, Wood R, Schmidt S (2020) Towards accepted procedures for calculating international consumption-based 
carbon accounts. Clim Policy 20(sup1):90–106. https:// doi. org/ 10. 1080/ 14693 062. 2020. 17226 05

Wiedmann T (2009) A review of recent multi-region input–output models used for consumption-based emission and 
resource accounting. Ecol Econ 69(2):211–222. https:// doi. org/ 10. 1016/j. ecole con. 2009. 08. 026

Wiedmann TO, Lenzen M, Barrett JR (2009) Companies on the scale. J Ind Ecol 13(3):361–383. https:// doi. org/ 10. 1111/j. 
1530- 9290. 2009. 00125.x

Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, Kanemoto K (2015) The material footprint of nations. Proc 
Natl Acad Sci 112(20):6271–6276

Wieland H, Giljum S, Bruckner M, Owen A, Wood R (2018) Structural production layer decomposition: a new method to 
measure differences between MRIO databases for footprint assessments. Econ Syst Res 30(1):61–84. https:// doi. org/ 
10. 1080/ 09535 314. 2017. 13508 31

Wood R, Moran DD, Rodrigues JFD, Stadler K (2019) Variation in trends of consumption based carbon accounts. Sci Data 
6(1):99. https:// doi. org/ 10. 1038/ s41597- 019- 0102-x

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/09535314.2011.563234
https://doi.org/10.1016/j.jinteco.2011.11.009
https://doi.org/10.1080/09535314.2016.1238817
https://doi.org/10.1021/acs.est.8b00632
https://doi.org/10.1016/j.jclepro.2018.11.060
https://doi.org/10.1016/j.jclepro.2018.11.060
https://doi.org/10.1111/jiec.12715
https://doi.org/10.1080/09535314.2016.1141751
https://doi.org/10.1111/jiec.12694
https://doi.org/10.1111/jiec.12716
https://doi.org/10.1080/14693062.2020.1722605
https://doi.org/10.1016/j.ecolecon.2009.08.026
https://doi.org/10.1111/j.1530-9290.2009.00125.x
https://doi.org/10.1111/j.1530-9290.2009.00125.x
https://doi.org/10.1080/09535314.2017.1350831
https://doi.org/10.1080/09535314.2017.1350831
https://doi.org/10.1038/s41597-019-0102-x

	Relaxing the import proportionality assumption in multi-regional input–output modelling
	Abstract 
	1 Introduction
	1.1 Why the proportionality assumption might bias MRIO-based footprints
	1.2 Literature review, research gap and research question

	2 Material and methods
	2.1 Data
	2.2 Generating a MRIO table with globally randomised import allocations
	2.3 Calculating environmental footprints

	3 Results
	3.1 National footprints
	3.2 Industry footprints

	4 Discussion
	5 Conclusion
	Acknowledgements
	References




