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Abstract 
 
Decarbonization requires the transformation of power markets towards renewable energies 
and investment costs are decisive for the deployed technologies. Exogenous cost assump-
tions cannot fully reflect the underlying dynamics of technological change. We implement 
divergent learning-by-doing specifications in a multi-region power market model by means of 
mixed-integer programming to approximate non-linear investment costs. We consider Euro-
pean learning, regional learning, and three different ways to depreciate experience stocks 
within the European learning metric: perfect recall, continuous forgetting, and lifetime forget-
ting. Learning generally yields earlier investments. European learning fosters the deployment 
of solar PV and wind onshore, whereas regional learning leads to more wind offshore deploy-
ment in regions with high wind offshore quality. Perfect recall fosters solar PV and wind on-
shore expansion, whereas lifetime forgetting fosters wind offshore usage. Results for contin-
uous forgetting are in between those of perfect recall and lifetime forgetting. Generally, learn-
ing leads to the earlier deployment of learning technologies but regional patterns are different 
across learning specifications and also deviate significantly from this general pattern of 
preponing investments. 
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1. Introduction

Recent geopolitical events expose an urgent need for European energy markets to accelerate
the transition from using fossil fuels to renewable energies. The intention to do so has already been
announced in the European Green Deal (2019) and confirmed by European Climate Law (2021),
but the path for a cost-efficient transition to a carbon-neutral European energy system still needs
to be paved. Energy system and power market models can help to coordinate and evaluate the
long-term policy support needed to achieve this path.

Such models rely on numerous long-run fixed assumptions due to the long horizon considered for
climate and environmental policies. One of these assumptions is about the future investment cost
of technologies following from the pace and scope of technological development—usually labeled
as technological change. Often technological change is represented exogenously as an autonomous
function of time. Such an approach keeps computational complexity of models manageable but
relies on modeler’s subjective assumptions about cost reductions in the future. Moreover, exoge-
nously decreasing investment costs neglect that technological developments can be an endogenous
result of feedback processes occurring through market and policy channels such as accumulated
experience from applying a technology—called learning-by-doing (LBD).1

Possible technological learning (e.g, lower investment cost) and related uncertainties are rather
small for mature technologies such as conventional power plants burning fossil fuels. However, less
mature technologies are still experiencing significant learning and thus can be expected to undergo
substantial technological change (Arrow, 1962). Renewable technologies such as solar PV, wind
onshore, and wind offshore belong to this group of less mature technologies and are at the same
time expected to be the cornerstone of decarbonization (Creutzig et al., 2017, Luderer et al.,
2022). A lack of representation of endogenous dynamics for these technologies in the long-term
modeling horizon can thus bias resulting decarbonization pathways in both timing and abatement
cost. Hence, realistic assumptions about the cost development of generation technologies triggered
by ETC are essential to providing sound policy recommendations towards climate-neutrality goals
(Berglund and Söderholm, 2006). We thus focus on solar PV, wind onshore, and wind offshore
as endogenously learning technologies and use exogenous investment cost formulations for all the
other technologies.

We implement LBD in the EUREGEN model—a multi-region partial equilibrium model of the
European power market that dynamically optimizes (i.e., assuming perfect foresight) investments,
decommissioning, and dispatch of multiple generation, storage, and transmission technologies until
2050.2 We build on existing approaches to linearize the non-linear learning dynamics by means

1LBD is usually represented by learning curves that describe how much investment costs drop when the under-
lying experience stock of past capacity investments grows. This approach is pre-dominant in disaggregated energy
system and power market models. Alternative strategies focus on accumulated knowledge through R&D activities,
which is more common for dynamic computable general equilibrium (CGE) and some integrated assessment models
(Gillingham et al., 2008, Barreto and Kypreos, 2004).

2See Weissbart and Blanford (2019) for the basics of the model, Mier et al. (2020, 2022), Siala et al. (2022) for
the underlying calibration, and Weissbart (2020), Mier and Weissbart (2020), Azarova and Mier (2021), Mier et al.
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of mixed-integer programming (MIP) and develop a novel way to account for spatial learning
(on European and regional levels). We also introduce different ways to account for experience
depreciation - perfect recall, continuous forgetting, and lifetime forgetting. We further develop
a reverse-calibration routine that uses exogenous investment cost assumptions and the resulting
model outcomes as a benchmark to calibrate the learning parameters of the endogenous techno-
logical change (ETC) formulation. This reverse-calibration enables high comparability, allowing
to analyze the direct effects of endogenized technology costs.

Our findings show that European learning fosters the deployment of wind onshore and also solar
PV. Regional learning relies more on wind offshore in regions with high quality wind offshore po-
tential. Both learning metrics reduce abatement cost—measured by a carbon price following from
a quantity target—and electricity prices but the regional metric does more so than the European
one. Differences resulting from depreciation assumptions are smaller and often region-specific. In
general, perfect recall and continuous forgetting foster solar PV and wind onshore, whereas lifetime
forgetting deploys considerably more wind offshore. Moreover, a sensitivity analysis shows that
lower solar PV cost lead to more solar PV but no substitution of wind onshore as well as offshore,
whereas lower wind onshore cost yield a substitution of wind offshore by wind onshore, and vice
versa. European learning is considerably more sensitive to changes in investment cost of solar
PV and wind offshore compared to regional learning. European and regional learning are equally
sensitive to changing wind onshore cost.

Implementing ETC is more complicated for more disaggregated power market models with
reasonable temporal and spatial resolution compared to rather aggregated ones such as CGE or
integrated assessment models—which have seen various implementations of ETC already. Power
market models are often formulated as a linear program (LP) due to their granularity with respect
to hourly, spatial, and technological resolution. The straightforward implementation of learning
curves, however, introduces non-linear dynamics which can take already medium complex models
to the limits of stable computational solutions. As a consequence, a string of literature emerged to
linearize learning curves in energy system models by means of MIP (e.g., Messner, 1997, Mattsson,
1997, Kypreos et al., 2000). This approach has been applied to a large number of models in-
cluding GENIE (Mattsson, 1997), MARKAL (Seebregts et al., 1998), MESSAGE (Messner, 1997,
Grübler and Messner, 1998, Seebregts et al., 1998), POLES (Kouvaritakis et al., 2000), WITCH
(Bosetti et al., 2006), NEMS (Ouassou et al., 2021), and REMIND (Luderer et al., 2022). The
paper most closely related to ours is Heuberger et al. (2017). They apply the MIP approach to the
ESO-XEL model of the UK power market and find that the implementation of learning-by-doing
has a forward-shifting impact on the optimal timing of capacity investments. We confirm findings
of Heuberger et al. (2017) to a certain degree but also find different patterns. In particular, we
apply the MIP approach to the entire European power market (28 countries merged to 14 regions)
and thus can identify regions that shift investments forward but mainly find that specific regions
with high resource qualities and potentials of the respective renewable learning technology invest

(2021), Mier and Azarova (2021a,b) for applications.
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considerably more in later periods. We also analyze two spatially different metrics—European and
regional learning—which are not applicable to a single country power market model. Moreover,
the numerical literature about ETC neglects to identify and quantify the origin of differences from
exogenous investment cost with ETC formulations because exogenous model calibrations do not
match endogenous learning calibrations. We close that gap by presenting a reverse-calibration
routine to perfectly compare the outcomes of exogenous investment cost specifications with ETC
formulations. In addition to that, Miketa and Schrattenholzer (2004) and Barreto and Kypreos
(2004) point out that an empirically well-known characteristic of LBD dynamics—namely expe-
rience depreciation from organizational forgetting (Argote et al., 1990, Argote and Epple, 1990,
Benkard, 2000, Thompson, 2007)—has not been taken into account in the numerical implementa-
tions of LBD in power market models yet. We explore different ways to accumulate and depreciate
experience stocks and fill in this gap in the literature.

The remainder of this paper is organized as follows. Section 2 introduces our exogenous as
well as endogenous formulation of technological change, including European and regional learning
and different ways of depreciating experience. Section 3 guides through our reverse-calibration
strategy. Section 4 presents results. Section 5 concludes.

2. Model

2.1. Notation and objective
IQ are investments into capacity (in GW) at unit investment cost cIQ (in e/kW), Q is the

capacity stock (in GW) that costs cQ to operate and maintain (in e/kW), and Y is generation
(in GWh) at cost cY (in e/kWh). Consider different technologies j and regions r. h is the hourly
time index and t = 2015, 2020..., 2050 a quinquennial index that indicates periods. t0 = 2015 is
the base period of the planning horizon that does not allow for investments and tstep = 5 is the
length of a period. v = 1960, 1965, ..., 2050 is the period of installation, which we call vintage in
the following. We use subscripts for j, r and parentheses for h, v, t to denote variables (capital
letters) and parameters (small letters), i.e., Yj,r (h, v, t) is generation of technology j in region r in
hour h and period t that is installed in vintage v.

Power market models minimize the stream of cost C (t) from investments IC (t), operation
and maintenance FC (t) (fixed cost), and dispatch DC (t) (all in million e) by choosing to install
capacities IQ, operate and maintain capacities Q, and generate Y. Intertemporal (dynamically
optimizing) models additionally discount such cost streams by using the discount factor δ (t). The
minimization problem is

min
IQ,Q,Y

∑
t

δ (t)C (t) =
∑
t

δ (t) [IC (t) + FC (t) +DC (t)] , (1)

subject to multiple constraints. The most important one is the demand-equals-supply constraint,
which requires that generation, dispatch, and imports meet a certain electricity demand (so that
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IQ,Q, Y = 0 is not the solution of the optimization problem). For parsimony, we refrain from
showing them here.

2.2. Exogenous unit investment cost
Unit investment cost cIQ (t) vary over time, so that investment cost follow from

IC (t) =
∑
j,r

IQjr (t) · cIQjr (t) . (2)

Such an investment cost specification allows to keep the model linear. Endogenous technological
change turns the model into a non-linear program, which cannot be solved at a comparable (or
even reasonable) temporal, spatial, and technological resolution. However, the non-linearity can
be overcome by approximating investment cost by means of mixed-integer programming (MIP).
Hence, all further derivations serve to changing investment cost (2) in accordance with endogenous
technological change.

2.3. European learning
Perfect recall. Suppose that unit investment cost vary depending on the European experience stock
QS that includes all past investments into capacity as well as the initial capacity stocks q0 at the
beginning of the first period t0, i.e.,

QSj (t) = QSj (t− 1) +
∑
r

∑
v=t

IQjr (v)

=
∑
r

∑
v≤t0

q0jr (v) +
∑

t0<v≤t

IQjr (v)

 . (3)

The second line displays the experience stock as the sum of all initial capacity stocks installed
until t0 and all the past investments from t0 + 1 onward until the respective period. Observe that
such a formulation prevents forgetting of experience over time, hence, we denote it as perfect recall.
The unit investment cost are now a function of the experience stock:

cIQj (QSj (t)) = cFIRST
j ·QSj (t)

−bj , (4)

where cFIRST
j is the cost of the first capacity unit installed (initial unit investment cost) and b ≥ 0

is the learning elasticity. Current unit costs are decreasing with the experience stock and higher
learning elasticities, and increasing with the level of initial unit investment cost. Such a non-linear
form is computationally challenging. We follow the piece-wise linear approximation described by
Kypreos et al. (2000) to transform it into a mixed-integer linear programming problem. We first
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calculate the aggregate investment cost AIC(t) by taking the integral of unit investment cost (4)
over the experience stock, i.e.,

AICj (t) =

∫ QSj(t)

0

cIQj (x) dx =
cFIRST
j

1− bj
QSj (t)

1−bj . (5)

The perfect recall nature of this formulation allows to start the approximation at the initial ex-
perience stock. In particular, aic0 follows from the initial experience stock qs0 =

∑
r

∑
v≤t0 q

0
jr (v).

aicMAX follows from the maximum experience stock qsMAX , which should be chosen slightly above
the potentially realized experience stock to improve validity of the approximation. The curve
between these two points is approximated by multiple linear line segments ls = ls1, ls2, ..., LS.
We opt for an increasing length of line segments to allow for a more precise representation of the
steeper curve segments at early learning phases. Each line segment covers an increasingly longer
portion of the difference between aicMAX and aic0, where the portion is defined by a weighting
factor3:

ζls =

{
1

2LS−ls/
∑

ls
1

2LS−ls ∀ls < LS,

1 ∀ls = LS.
(6)

The breakpoints of the line segments are marked by the segments’ upper bounds:

aicUP
j,ls = aic0j + ζls

(
aicMAX

j − aic0j
)
, (7)

where the respective lower bounds follow from aicLO”ls1” = aic0 and aicLOls+1 = aicUP
ls . The associated

experience stocks at the (upper and lower) breakpoints are qsUP and qsLO. Exchanging AICj (t)
and QSj (t) in (5) by aicUP

j,ls or aicLOj,ls and qsUP
j,ls or qsLOj,ls, respectively, and rearranging yields:

qsUP
j,ls =

(
1− bj
cFIRST
j

aicUP
j,ls

) 1
1−bj

, (8)

qsLOj,ls =

(
1− bj
cFIRST
j

aicLOj,ls

) 1
1−bj

. (9)

We can now determine the line segment slopes σj,ls that reflect the linear approximations of
unit investment cost (in e/kW) per line segment. They follow from the fraction of the difference
of aggregated investment cost and experience stocks of the respective upper and lower bounds of

3Assuming five line segments, we obtain weighting factors ζ = (0.0667, 0.1333, 0.2667, 0.5333, 1).
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each line segment, i.e.,

σj,ls =
aicUP

j,ls − aicLOj,ls
qsUP

j,ls − qsLOj,ls
. (10)

So far, all necessary calculations are calibration necessities. To implement the MIP approxi-
mation in the model, we need four additional constraints that describe the evolution of the line
segment-specific experience stock QSj,ls (t) and a binary variable ρj,ls (t) ∈ {0, 1} that indicates
which line segment is currently active. The four constraints are:

QSj,ls (t) ≥ qsLOj,ls · ρj,ls (t) , (11)
QSj,ls (t) ≤ qsUP

j,ls · ρj,ls (t) , (12)∑
ls

ρj,ls (t) = 1, (13)∑
ls

QSj,ls (t) = QSj (t) . (14)

Constraints (11) and (12) ensure that the line segment-specific experience stock is above the
lower and below the upper boundary of the specific line segment. Constraint (13) ensures that
only one line segment is active per time period. Finally, constraint (14) ensures that the line
segment-specific experience stock equals indeed the experience stock as defined by (3).

Using the slopes and the binary variable, we can now approximate investment cost AICj (t)
by linearly extrapolating from the lower bound of the active line segment, i.e.,

AICj (t) =
∑
ls

[(
ρj,ls (t) aic

LO
j,ls

)
+ σj,ls

(
QSj,ls (t)− ρj,ls (t) qs

LO
j,ls

)]
. (15)

Note that the lower segment bound always reflects exact cost, as all segment bounds lie on the
accumulated investment cost curve.4 Only the last interpolation step is an approximation. Finally,
we obtain approximated periodical cost IC (t) from the difference between current period’s and
prior period’s accumulated investment cost, i.e.,

IC (t) =
∑
j

[
AICj (t)− AICj (t− 1)

]
. (16)

4Equation (15) is a corrected version of Equation (43) in Heuberger et al. (2017), where we found a multiplication
with the binary variable ρ to be missing in the first term.

7



Figure 1 provides a graphical representation of the segmentation and interpolation procedure.
The x-axis shows the experience stock. The y-axis shows accumulated investment cost. The black
line presents the interpolated curve of accumulated investment cost with squares representing line
segments bounds. The curve starts at the initial experience stock qs0 with initial experience stocks’
accumulated investment cost aic0. The difference between the experience stock of the current
period t to the prior period t − 1 is the investment into capacity IQ. The difference between
accumulated investment cost are the investment cost of the respective period (16). Observe that
such an approximation works well when climbing and skipping line segments or also staying within
one line segment.

Figure 1: Illustration of the segmented accumulated investment cost curve under perfect recall

Note that it is important to distinguish the experience stock and actual installed capacity.
While each of them is associated with a quantity and expenditure dimension, they can be at
different levels and move in different directions in each of the dimensions. For instance, this LBD
specification assumes perfect recall and therefore the experience stock is monotonically increasing
in quantity, while actually installed capacity is also subject to (even endogenous) decommissioning.
However, both experience stock and installed capacity are simultaneously increasing in quantity
and expenditure from one period to the next by IQ. This variable therefore serves as a direct link
between magnitudes of the abstract experience stock and the actually installed capacity.

We use the above specification for all the learning technologies and the default exogenous
formulation from (2) for all other technologies.

Continuous forgetting. Not only capacity depreciates over time but also experience. We thus
introduce continuous forgetting, that is, each year ∆ ∈ (0, 1) of the experience is lost.5 The
experience stock changes to

5We apply 3% per year in the remainder.
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QSj (t) =

{
(1−∆)tstep QSj (t− 1) +

∑
r

∑
v=t IQjr (v) ∀t > t0,∑

r

(∑
v≤t0 (1−∆)t−v q0jr (v)

)
∀t = t0.

(17)

The second line describes the initial experience stock qs0j = QSj (t
0). It consists of all vintage-

specific initial capacity stocks. Each of those initial capacity stocks is subject to depreciation,
where t − v is the distance of installation period v to the current period t. Thus, qs0j is already
subject to depreciation. After initializing the experience stock within the second line of (17), we
can always use the depreciated prior period experience stock and current investments (that are
not yet subject to depreciation) to describe the evolution of the experience stock. The first part
of the term in the first line of (17) represents the depreciated experience stock inherited from the
previous period. We denote this term the legacy experience stock (denoted by superscript LEG),
defined as:

QSLEG
j (t) =

{
(1−∆)tstep QSj (t− 1) ∀t > t0,

QSj (t) ∀t = t0.
(18)

Note that QSLEG
j (t) < QS (t− 1) so that the associated AIC

LEG

j (t) < AICj (t− 1). By
introducing depreciation we thus allow for backward movement on the segmented aic curve. This
also means that the experience stock can potentially depreciate below its initial level. Thus we do
not calculate aic0 from qs0j anymore but set aic0 = aicLO”ls1” = 0.6 Equations (7) to (15) still hold.

Finally, as AICLEG

j (t) < AICj (t− 1), total investment cost can no longer be calculated from
(16), but instead AIC

LEG

j (t) needs to be identified first. This requires the duplication procedure
of constraints (11) to (14) for the legacy variables, i.e.,

QSLEG
j,ls (t) ≥ qsLOj,ls · ρLEG

j,ls (t) , (19)
QSLEG

j,ls (t) ≤ qsUP
j,ls · ρLEG

j,ls (t) , (20)∑
ls

ρLEG
j,ls (t) = 1, (21)∑

ls

QSLEG
j,ls (t) = QSLEG

j (t) . (22)

6Note that setting aic0 = aicLO
”ls1” to zero increases the space to be approximated, hence generally produces

slightly poorer approximations. However, qsMAX
j might differ in this depreciation specification because experience

stocks that are subject to continuous forgetting are generally lower than those under perfect recall due to ∆ > 0.
Thus, choosing a lower qsMAX

j re-improves the approximation.
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Note that this doubles the number of binary variables in the continuous forgetting specifications
due to the mirrored legacy variables. Finally, we can define the legacy accumulated investment cost
as

AIC
LEG

j (t) =
∑
ls

[(
ρLEG
j,ls (t) aicLOj,ls

)
+ σj,ls

(
QSLEG

j,ls (t)− ρLEG
j,ls (t) qsLOj,ls

)]
. (23)

We can now calculate the periodical investment cost as the difference between aggregated
investment cost and legacy aggregated investment cost:

IC (t) =
∑
j

[
AICj (t)− AIC

LEG

j (t)
]
. (24)

The application of legacy experience stocks is crucial here to avoid distortions. Using (16) from
the perfect recall specification would lead to a downward distortion of both capacity expansion
and associated investment cost, because AIC

LEG

j (t) < AICj (t− 1).

Figure 2: Illustration of the segmented accumulated investment cost curve under forgetting

Figure 2 displays again the piece-wise linear approximation of the accumulated investment cost
curve over the experience stock, here additionally accounting for forgetting (represented by the
green arrow). Moreover, the approximation starts at accumulated investment cost and experience
stocks of zero. Investment cost IC now becomes the difference between accumulated investment
cost of the current period and the legacy accumulated investment cost associated with experience
inherited from the previous period (24). The same holds true for the respective current period
investments.
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Lifetime forgetting. With continuous forgetting, we cannot reflect the timing of past investments.
That is, there is much experience depreciation when experience is high and little when experience
is low. However, it is plausible to assume that earlier investments undergo higher depreciation, for
example, due to retirement-induced turnovers—where older employees with ample experience from
earlier installations leave the electricity sector more frequently than younger workers (Ashworth,
2006). We thus introduce a novel way of interpreting forgetting that reflects this hypothesis through
the actual lifetime of capacity. Denote by Γ (v, t) ∈ {0, 1} the binary parameter indicating whether
initial capacities or past investments from vintage v are still active (at least potentially, that is,
endogenous decommissioning is ignored here) in period t. We then need to change the experience
stock to

QSj (t) =

{∑
r

(∑
v≤t0 Γjr (v, t) qs

0
jr (v) +

∑
t0<v≤t Γjr (v, t) IQjr (v)

)
∀t > t0,∑

r

(∑
v≤t0 Γjr (v, t) qs

0
jr (v)

)
∀t = t0.

(25)

The experience stock now perfectly mirrors past investments but might differ from the available
capacity due to endogenous decommissioning. Legacy capacity follows from

QSLEG
j (t) =

{∑
r

(∑
v≤t0 Γjr (v, t) q

0
jr (v)

)
∀t > t0,

QSj (t) ∀t = t0.

All further calculations are identical to those of continuous forgetting.

2.4. Regional learning
In addition to our base model, which assumes a European-wide experience stock for LBD, we

also implement regional learning. In this extreme case each region maintains its own experience
stock and learns completely in isolation from other regions. We therefore need to define region-
specific unit investment cost cIQjr , experience stocks QSIQ

jr , learning elasticities bjr, and initial unit
investment cost c0jr. Perfect recall regional experience stocks are given by

QSjr (t) = QSjr (t− 1) +
∑
v=t

IQjr (v)

=
∑
v≤t0

q0jr (v) +
∑

t0<v≤t

IQjr (v) . (26)

All further calculations only require adding a subscript r, except when calculating the invest-
ment cost. Equation (16) needs to be adjusted by taking the sum over all regions to enter the
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minimization problem.7
Note that the number of (binary) variables and necessary parameters as well as MIP equations

is now multiplied by the number of regions, which could make the entire problem computation-
ally more challenging. However, as opposed to European learning, in the regional specification
investment decisions in one region do not impact costs in all other regions anymore. Hence, the
interdependence of investment cost and intertemporal decisions is reduced in the regional model.8

3. Calibration

3.1. Learning-by-doing
One of the main contributions of our paper is a detailed analysis of the structural model

behavior under endogenous technological change formulations. This includes insights into the
structural biases (e.g., in the timing and extent of investment decisions) of intertemporal power
market models that use exogenous unit investment cost specifications. In particular, we do not aim
to provide the best possible (most realistic) calibration of LBD via empirical estimates, but rather
aim to achieve quantifiable comparability between exogenous and endogenous cost formulations.
We therefore introduce a novel approach to reverse-calibrate our ETC formulation to best match
the assumptions of a model using exogenous unit investment cost, which we call benchmark in the
remainder.

Simplification. We simplify the spatial resolution of the EUREGEN model from 28 countries to
14 regions (with each region being a spatial grouping of countries with similar solar PV, wind
onshore, and wind offshore qualities), the temporal resolution to 89 hours, and the technological
resolution to keep the MIP formulation numerically tractable and solvable within a reasonable time
frame.9 In particular, solar PV, wind onshore, and wind offshore are learning technologies. For all
other technologies (bioenergy, bio-CCS, gas-CCGT and gas-ST, gas-CCS, gas-OCGT, nuclear, lig-
nite, geothermal, hydro, transmission technologies, storage technologies), we apply the exogenous
investment cost formulation. Appendix A contains details of this simplification process.

European learning. The benchmark takes unit investment cost from Table 1 as given. From the
capacity investments undertaken by the benchmark, we calculate the underlying synthetic expe-
rience stocks that would occur under the different depreciation assumptions. Table 1 shows that
the 2015 solar PV initial experience stock assuming perfect recall is 98 GW and increases to 525
GW in 2050. When applying continuous forgetting, optimization starts at a lower initial synthetic
experience stock of 83 GW, which increases to 340 GW in 2050. For lifetime forgetting, the 2015
values are the same as under perfect recall because none of the respective technology vintages have

7Adjustments for continuous and lifetime forgetting are the same as for the European metric. We, however,
refrain from showing results for these specifications in the remainder of the paper for parsimony.

8All investment decisions remain interconnected via allowed transmission between regions and a joint carbon
emission target.

9Around one week using 10 threads with the solver GUROBI in GAMS.
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reached their decommissioning age yet. However, 2050 values are fundamentally lower than for
perfect recall, as they reflect maximum lifetime of currently installed capacities, while perfect recall
refers to the total amount of capacity ever installed.10 Patterns across the different depreciation
assumptions are similar for the two wind technologies.11

Table 1: Exogenous unit investment cost for the benchmark and synthetic experience stocks that follow from the
benchmark for different depreciation assumptions

Technology 2015 2020 2030 2040 2050

Unit investment Solar PV 1,100 900 810 760 720
cost (e/kW) Wind onshore 1,400 1,350 1,250 1,150 1,100

Wind offshore 3,470 2,448 2,193 2,023 1,938

Perfect recall Solar PV 98 125 222 330 525
experience stock (GW) Wind onshore 131 184 745 1,284 1,617

Wind offshore 11 19 19 44 262

Continuous forgetting Solar PV 84 98 161 217 340
experience stock (GW) Wind onshore 113 150 629 967 1,007

Wind offshore 10 17 13 31 234

Lifetime forgetting Solar PV 98 125 205 232 340
experience stock (GW) Wind onshore 131 184 705 1,153 1,128

Wind offshore 11 19 19 34 243
There are no investments possible in 2015 but cost are depicted here for the sake of comparability
with other tables. 2025, 2035, and 2045 values are not shown for the sake of parsimony.

We now take 2020 and 2050 synthetic experience stocks from the benchmark as well as the
associated exogenous 2020 and 2050 unit investment cost to obtain two investment cost-experience
pairs for our calibration. The two pairs have to lie on the reverse-calibrated learning curve, i.e.,
the calibrated ETC formulation should endogenously achieve the same unit investment cost for
the same experience stock levels. We assume learning elasticities per technology to be stable
over time and thus reverse-calibrate the learning elasticity bj and initial unit investment cost
cFIRST
j . In particular, we solve the learning curve shown in Equation (4) for cFIRST

j and create two
learning curves by using the two cost-experience pairs consisting of 2020 and 2050 experience stocks,
QSj(”2020”) and QSj(”2050”), with respective exogenous unit investment costs, cIQj (”2020”) and
cIQj (”2050”) (see values in Table 1), solve each of the two curves for cFIRST

j , set them equal, and
finally solve for bj. The learning elasticity can then be substituted in one of the learning curves to
obtain initial unit investment cost. We obtain

10Endogenous decommissioning allows “active” capacities to fall behind lifetime forgetting experience stocks.
11The 340 GW for solar PV, 1,128 GW for wind onshore, and 243 GW for wind offshore assuming lifetime

forgetting coincide with the potential that is intuitively competitive (see Table A.1 in Appendix A). Only the
realized wind offshore potential stays behind as, economically, it is not reasonable to install 400 GW wind offshore
in Ireland and United Kingdom.
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bj = −
ln cIQj (”2050”)− ln cIQj (”2020”)

lnQSj (”2050”) · 106 − lnQSj (”2020”) · 106
, (27)

cFIRST
j =

cIQj (”2050”)

exp
lnQSj(”2050”)·106

(
ln cIQj (”2050”)−ln cIQj (”2020”)

)
lnQSj(”2050”)·106−lnQSj(”2020”)·106

. (28)

Observe that experience stocks are transformed from GW into kW (via 106) because costs are
measured in e/kW. This transformation ensures comparability of learning elasticities and initial
unit investment cost with literature values. Applying those formulas leads to the values in Table
2. Note that the 2020 and 2050 fix-points from the benchmark do not differ in exogenous unit
investment cost but in the synthetic experience stock. Hence, learning elasticities and initial unit
investment cost should be lowest for perfect recall after the reverse-calibration because there is
no experience loss. Observe that the resulting learning elasticities from the reverse-calibration are
around 16 to 24 % (for solar PV), 9 to 11% (for wind onshore), and 11 to 12% (for wind offshore).
Those rates tend to be in the lower range of literature estimates (Rubin et al., 2015).12 Our
calibration results also reflect patterns of substantial learning happening in the past. The initial
unit investment cost estimates are slightly higher than in the literature. However, note that we do
not seek to replicate real world values here but rather to make models with exogenous assumptions
and endogenous technological change comparable.

Table 2: Learning elasticity and initial unit investment cost by technology and depreciation assumptions

Learning elasticity Initial unit inv. cost (e/kW)
(Learning rate)

Solar Onshore Offshore Solar Onshore Offshore

Perfect recall -16.30% -9.42% -8.86% 19,001 8,099 10,806
(10.68%) (6.32%) (5.96%)

Continuous forgetting -19.43% -10.75% -8.86% 32,654 10,217 10,700
(12.60%) (7.18%) (5.96%)

Lifetime forgetting -23.82% -11.28% -9.12% 77,507 11,552 11,281
(15.22%) (7.52%) (6.13%)

Learning elasticities and initial unit investment cost are calculated according to Equations (27) and (28).
Corresponding transformation into learning rates in parentheses.

Regional learning. We largely follow the same reverse-calibration logic as before. Now, we apply
regional synthetic experience stocks. Those are calculated on the basis of demand shares of the
respective region, i.e., when a region builds capacities according to its demand share (from total

12Most empirical studies transform learning elasticities into learning rates LR (see values in parentheses in Table
2) or progress ratios PR by using LR = 1− PR = 1− 2−b.
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capacities build in the benchmark), then this region observes 2020 and 2050 unit investment cost
as shown in Table 1. Unit investment costs are higher (lower) in case a region invests less (more)
than its demand share. Details and results of those adjustments are given in Appendix B.

Calibration routine. We use the benchmark outcome to write reverse-calibration routines for each
of the MIP specifications. In particular, we calculate warm-start values from the benchmark to give
starting values for each model variable. We therefore use the MIPSTART option of the GUROBI
solver. This enables us to start the branch-and-cut routine at MIPGAPS of 1% to 5% after
processing the MIPSTART routine instead of spending multiple days of running time at MIPGAPS
of 100%.13 Additionally, we use a specification with 20 line segments for European and regional
learning to produce an updated warm-start for each of the following MIP formulations of the
respective metric. We finally aim for MIPGAPS below 0.1%. Higher MIPGAPS sometimes choose
other local optima, producing significantly different technology mixes, e.g., one that relies heavily
on nuclear power in combination with gas-CCS instead of a wind power-dominated system. This
fact underlines that different technology mixes are similarly competitive when applying endogenous
technological change. This issue is not relevant for linear instead of MIP formulations, as linearity
of a model always ensures reaching the global optimum, whose outcome is always a wind power-
dominated system. It is thus crucial to carefully re-calibrate the MIP model (number of line
segments, approximation with maximum experience stock) and to review each of the outcomes
in detail. Occasionally, we re-use the outcome of a particular specification, run the calibration
routine on this outcome, and opt for even lower MIPGAPS to be sure about the global optimality
of the calculated technology mix.

Number of line segments. We test specifications with 3, 5, 7, 10, 15, and 20 line segments to
approximate investment cost (see Appendix C). 5, 7, 10, and 15 line segments produce good
approximations, given that 20 is the one to match (see Appendix D for details). However, 15 line
segments perform similarly in terms of solving time as 20 segments do. Likewise, 10 line segments
converge slowly to reasonable MIPGAPS that ensure optimality of the resulting technology mix.
The approximation quality of 7 line segments is slightly better than with 5 line segments, while
there is no significant difference in solving time. We thus decide to perform all further calculations
with 7 line segments.

Perfect recall vs. forgetting. We need to allow for backward movements of the experience stocks
along the line segments when assuming forgetting. In particular, we need to start the approxi-
mation with zero experience stocks to allow for complete depreciation.14 Moreover, perfect recall

13The relative MIPGAPS describe the difference in the objective of the MIP problem to the outcome of a linear
programming relaxation where the binary variables are assumed to be free between 0 and 1. The log-files are
available upon request from the corresponding author.

14One might also decide to calibrate for minimum values higher than zero but this does not ensure that the
metric can freely move. In particular, not setting the first lower breakpoint to zero usually makes the forgetting
formulations infeasible.
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exhibits largest experience stocks because experience does not depreciate over time. Experience
under lifetime forgetting, in turn, generally cannot be above the respective potential.15 Continuous
forgetting tends to deliver experience stocks below lifetime forgetting but the timing of decisions
allows for higher values as well. Moreover, the last line segment covers around 50% of accumu-
lated investment cost (and even more than 50% of the resource potential) and thus come with the
worst approximation quality. We thus multiply the respective resource potentials by 1.5 (perfect
recall), 1.25 (continuous forgetting), and 1 (lifetime forgetting) to obtain the maximum experi-
ence stocks used to approximate line segment-specific unit investment cost. Appendix E shows
results of this approximation process for European learning formulations with 7 line segments.
Continuous forgetting tends to have the lowest respective unit investment cost per line segment.
This, however, does not per se mean that continuous forgetting exhibits lowest cost at any given
time because the experience stock depreciates over time. Also, the maximum experience stocks
(for perfect recall, continuous, and lifetime forgetting) are set rather arbitrarily and hamper per-
fect direct comparability of the calibrations. However, the general idea is to calibrate each MIP
specification to the best possible extent while maintaining comparability with the benchmark and
between specifications.

3.2. General calibration
We now provide some general calibration unrelated to any learning dynamics, which is thus

applicable likewise to the benchmark and the MIP formulations. We apply a CO2 emissions
quantity target to reflect ambitions from European Green Deal (2019) and European Climate Law
(2021). The 2020 emission cap is at 844 Mt. We assume that there are on average no CO2 emissions
from electricity generation in the period 2045 (from 2041 to 2045) anymore. For 2050, we force
electricity generation to deliver negative emissions of –98 Mt. The first line of Table 3 summarizes
the CO2 emission target. Rising electricity demand (second line) reflects dense electrification of
sectors and drives investment dynamics as does the emission target. The next three blocks show
unit investment cost, cost for operating and maintaining capacity (fixed cost), and dispatch cost
for a pre-selection of non-learning technologies. Observe that bio-CCS and nuclear have highest
investment cost. Further, nuclear has highest fixed cost and lowest dispatch cost, whereas bio-CCS
has highest dispatch cost. Note that dispatch does not include the implicit carbon price following
from the emission target. In fact, the 2050 emission target can only be achieved by using bio-CCS,
leading to 2050 carbon prices of around 220 e/ton in the benchmark as well as in all our MIP
formulations.

4. Results

We begin by comparing European and regional learning-by-doing (LBD) outcomes with the
benchmark (Subsection 4.1). Further on, we analyze the outcomes of different depreciation as-

15Endogenous decommissioning would, in principle, allow for experience stocks above the potential but we never
encountered such an outcome in the optimization game. Moreover, the respective potentials used are subject to a
simplification procedure and thus do not correlate with true resource potentials (see Appendix A).

16



Table 3: CO2 emissions quantity target and demand as well as unit investment cost, fixed cost, and dispatch cost
for selected technologies

2020 2030 2040 2050

CO2 emissions (Mt) 844 639 246 -98
Demand (TWh) 3,088 4,501 5,479 6,203

Investment cost (e/kW) Bio-CCS 4,361 4,272 4,183 4,139
Coal 1,500 1,410 1,380 1,365
Gas-CCGT, gas-ST 850 850 850 850
Gas-CCS 1,495 1,495 1,495 1,495
Gas-OCGT 437 437 437 437
Nuclear 6,006 5,082 4,488 4,356

Fixed cost (e/kW*a) Bio-CCS 127 125 122 121
Coal 60 56 55 55
Gas-CCGT, gas-ST 34 34 34 34
Gas-CCS 32 32 32 32
Gas-OCGT 17 17 17 17
Nuclear 264 264 264 264

Dispatch cost (e/MWh) Bio-CCS 96 96 93 90
Coal 18 17 17 17
Gas-CCGT, gas-ST 33 33 33 33
Gas-CCS 56 56 56 56
Gas-OCGT 45 43 42 42
Nuclear 8 7 7 7

Cost are depicted for current vintages, so that dispatch cost are subject to fuel price changes
and efficiency improvements over time.

sumptions (Subsection 4.2). Finally, we test sensitivity of results by changing unit investment
cost and underlying learning elasticities as well as initial unit investment cost following from the
reverse-calibration (Subsection 4.3).

4.1. European vs. regional learning
Figure 3 shows installed capacities (in GW) for the whole set of technologies. Outcomes

are clustered in periods for European LBD, regional LBD, and the benchmark. Differences in
the non-learning technology mix are mostly negligible and, thus, not discussed in the remainder.
Moreover, 2015 as the calibration year has the same outcome for each specification. 2020 outcomes
contain only negligible differences between specifications. European and regional LBD do not
exhibit any differences in 2025 but the benchmark has slightly lower wind onshore and solar PV
capacity. This trend persists for wind onshore until 2050. Observe that differences between the two
LBD specifications start in 2030, where regional LBD has considerably lower wind onshore but,
indeed, higher solar PV capacity. Relative differences are even higher from 2035 to 2045 because
wind offshore capacity is systematically higher for regional LBD (compared to European LBD).
European LBD offshore capacity is even lower than in the benchmark.
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Figure 3: Installed capacities (in GW) for European LBD, regional LBD, and the benchmark

Relative differences are lower in 2050, but overall European LBD leads to the highest solar
PV (354 GW) and wind onshore (1,188 GW) capacities, whereas offshore capacity is the lowest in
this specification (229 GW, see also Table 4). In turn, the regional LBD ends up with the lowest
solar PV capacity (331 GW) but the highest offshore capacity (291 GW). The benchmark has the
lowest onshore capacity (1,128 GW). From our reverse-calibration we know that higher capacities
of a respective technology under European LBD compared to the benchmark translate into lower
investment costs. Thus, 2050 solar PV and wind onshore costs are lower under European LBD than
assuming exogenous unit investment cost. Similarly, capacity stocks for regional learning hint that
investing regions face even lower costs since those regions learn more than their respective demand
shares suggest. This leads to the lowest CO2 and electricity prices under regional LBD, whereas
the benchmark delivers highest prices. It is fair to say that on the aggregate level, endogenous
learning dynamics provide an incentive to invest earlier (Heuberger et al., 2017).

We can trace back differences in the capacities of learning technologies by looking at regional
differences of 2050 installed capacities.16 For example, solar PV differences can be mainly related
to Britain (Ireland plus UK), France, and Iberia (Spain plus Portugal). Britain invests into solar
PV under European LBD (15 GW) but not under regional LBD and only a little in the benchmark
(2 GW). In particular, Britain does not exhibit investments until 2040 but afterwards abruptly
invests under European learning (and the benchmark). France invests moderately under regional
LBD (2 GW) but considerable amounts under European LBD (19 GW) and the benchmark (18
GW). The only investment period here is 2030. Iberia, in turn, invests considerably more under

16Appendix F presents 2050 installed capacities for each region.
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Table 4: 2050 installed capacities (in GW) of learning technologies, 2050 CO2 price (in e/ton), and 2050 European
weighted-average electricity price (in e/MWh) for European LBD, regional LBD, and the benchmark

European LBD Regional LBD Benchmark

Solar PV 354 331 339
Wind onshore 1,188 1,133 1,128
Wind offshore 229 291 245

CO2 price 222.9 218.3 224.6
Electricity price 73.3 72.9 74.6

We calculate CO2 prices from the marginals of the carbon constraint (see Table
3 for the assumed quantity target) and electricity prices from the marginals of
the demand-equals-supply constraint (see Table 3 for the assumed demand).

regional LBD (141 GW) compared to European LBD (116 GW) and the benchmark (117 GW).
Those differences mainly stem from the last investment period (2050), where Iberia adds 63 GW
assuming regional LBD but only 39 GW (46 GW) for European LBD (the benchmark).

Now turning to wind onshore, we see that Denmark drives major differences in the outcomes,
since generally cheaper wind onshore capacity assuming European learning leads to 24 GW,
whereas regional LBD (1 GW) and the benchmark (4 GW) deliver considerably less. Such capac-
ity differences can be mainly traced back to the investment decisions in 2035 and 2040. Benelux
has a completely different pattern. Onshore capacity is the highest in the benchmark (29 GW),
whereas European LBD (17 GW) and regional LBD (13 GW) fall behind. The differences here
emerge in the very last investment period 2050. The opposite to the Benelux-pattern is observed
in France, where our LBD specifications (224 or 226 GW, respectively) have considerably higher
capacities than the benchmark (205 GW). These differences cannot be traced back to investment
but rather the decommissioning decisions. In fact, accumulated investments are 20 GW higher
assuming LBD.

Finally, the fundamental differences in wind offshore are observed in Britain, where regional
LBD delivers 2050 capacities of 203 GW and the other two specifications fall structurally behind
(151 GW or 153 GW, respectively). Offshore costs in Britain drop considerably with LBD. In
particular, this can be driven by the fact that this region has the best offshore quality spots across
Europe. Denmark faces a similar pattern in magnitude when comparing European (22 GW) and
regional LBD (36 GW). However, the benchmark is close to the regional LBD outcome (33 GW),
hinting that Denmark has quite similar endogenous and exogenous offshore cost in 2050. EE-NE,
also possessing high quality offshore potential, shows a different pattern. Here, offshore capacity
is the lowest under regional LBD (1 GW). Such an outcome can be explained by the fact that
this region’s own ability to learn might not suffice to introduce larger amounts of offshore capacity
(European LBD has 5 GW, the benchmark 6 GW).

Overall, the introduction of regional learning puts more emphasis on local comparative advan-
tages among the different technologies, leading to diverse technology specializations of the different
regions. Under the European metric, learning efforts are systematically coordinated based on the
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resource quality in intra-European comparison. At the same time, we observe that firms use pos-
itive learning externalities from other regions to build capacity in regions with inferior resource
potentials.

4.2. Perfect recall vs. forgetting
Figure 4 shows installed capacities (in GW) for perfect recall, continuous forgetting, and lifetime

forgetting assuming European LBD.17 We also analyze perfect recall specifications, where the
approximation starts at zero accumulated investment cost (indicated by *)—as it is the case for
the two forgetting specifications. Looking at the outcomes of the different specifications over time,
2015 is again the same for each specification and also 2020 differences are negligible.

Figure 4: Installed capacities (in GW) for different depreciation assumptions under European LBD

First differences are observed in 2025 with slightly lower wind onshore capacities for lifetime
forgetting, which are compensated by higher solar PV capacity. In 2035, the specifications starting
the approximation at zero accumulated investment cost (perfect recall*, continuous forgetting, and
lifetime forgetting) start increasing offshore capacity, whereas perfect recall falls behind. Interest-
ingly, lifetime forgetting now has an even higher onshore capacity than the other three specifi-
cations. In 2040 the differences are even more pronounced. The offshore lag of perfect recall is
still valid (as it is also in 2045). The outlier is now continuous forgetting with considerably lower
wind offshore capacities. This is compensated, generation-wise, by a more intense usage of (al-
most carbon-neutral) gas-CCS. 2045, in turn, shows very similar capacity levels again. The higher

17For parsimony, we refrain from showing and analyzing these specifications for regional LBD.
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offshore capacities for lifetime forgetting (103 GW), continuous forgetting (69 GW), and perfect
recall* (54 GW) compared to perfect recall (29 GW) are substituted by higher wind onshore ca-
pacities (perfect recall with 1,476 GW, perfect recall* with 1,460 GW, continuous forgetting with
1,442 GW, and lifetime forgetting with 1,423 GW). Observe that onshore capacity drops in 2050
since a major share of the onshore generation is substituted by offshore that now overtakes higher
market shares.

Table 5 shows 2050 capacities of the four depreciation specifications. Observe that lifetime
forgetting has the lowest solar PV and wind onshore capacities but the highest wind offshore.
The differences of lifetime forgetting to the other three specifications seem to occur when the
approximation space in comparison to realized investments is large (solar PV and wind offshore).
When the approximation space is smaller (wind onshore), the lifetime forgetting results are close
to those of the other ones. Continuous forgetting results are comparable to perfect recall and, in
particular, the two perfect recall specifications are quite close. Resulting CO2 and electricity prices
are also similar across specifications.

Table 5: 2050 installed capacities (in GW) of learning technologies, 2050 CO2 price (in e/ton), and 2050 European
weighted-average electricity price (in e/MWh) for different depreciation assumptions under European LBD

Perfect recall Perfect recall* Continuous forgetting Lifetime forgetting

Solar PV 354 345 352 327
Wind onshore 1,188 1,180 1,149 1,148
Wind offshore 229 230 240 264

CO2 price 222.9 223.4 223.7 223.1
Electricity price 73.3 73.5 73.8 73.5

We calculate CO2 prices from the marginals of the carbon constraint (see Table 3 for the assumed quantity target)
and electricity prices from the marginals of the demand-equals-supply constraint (see Table 3 for the assumed
demand).

A regional decomposition of differences is only sensible for lifetime forgetting.18 Here, Britain’s
outcomes are decisive for solar PV (0 GW compared to 10–15 GW in the other specifications).
Onshore differences are driven by France (267 GW compared to 219–224 GW), Benelux (28 GW
compared to 13–21 GW), Germany (58 GW compared to 69–74 GW), and Denmark (11 GW
compared to 12–24 GW). Offshore differences, in turn, occur in Britain (163 GW vs. 151–152
GW) and Denmark (31 GW vs. 22–29 GW).

4.3. Sensitivity analysis
We now test our results with respect to different 2050 unit investment cost assumptions for solar

PV, wind onshore, and wind offshore. In particular, we use perfect recall as default specification
to analyze five additional specifications for each technology that experiences a 50% lower (–50%),
25% lower (–25%), 25% higher (+25%), 50% higher (+50%), and 100% higher (+100%) cost

18Appendix F presents 2050 installed capacities for each region.

21



reduction from 2020 to 2050. For example, the default reduction for solar PV is from 900 e/kW
in 2020 to 720 e/kW in 2050. +100% experiences the doubled decrease from 900 to 540 e/kW.
–50%, in turn, sees only half of the reduction from 900 to 810 e/kW. Learning elasticities and
initial unit investment cost as well as all necessary further calibration are adjusted in accordance
to those changes in cost reductions. Table 6 presents the outcome of this sensitivity analysis.

We start with the sensitivity to solar PV cost. Under European learning solar PV capacity
now varies tremendously from 301 (–50%) to 446 (+100%) GW. Assuming regional LBD, in turn,
solar PV capacity only varies between 303 (–50%) and 355 (+100%) GW. Regional learning is thus
considerably less sensitive towards solar PV unit investment cost because arbitrage opportunities
from learning externalities are constrained, i.e., regions with less high quality solar PV potential do
not benefit from regions with high quality (or higher quality) potential. Interestingly, onshore and
offshore capacities remain almost unaffected across diverging cost specifications for both European
and regional LBD.

Table 6: Installed capacities in GW for sensitivity analyses on solar PV, wind onshore, and wind offshore cost

Solar PV cost Wind onshore cost Wind offshore cost

Solar Onshore Offshore Solar Onshore Offshore Solar Onshore Offshore

European LBD

-50% 301 1,187 224 354 1,089 248 361 1,217 174
-25% 331 1,184 224 352 1,137 236 361 1,220 170
default 354 1,188 229 354 1,188 229 354 1,188 229
+25% 376 1,183 222 348 1,257 199 348 1,163 258
+50% 412 1,182 218 346 1,334 175 345 1,120 350
+100% 446 1,176 226 342 1,478 151 353 1,165 500

Regional LBD

-50% 303 1,119 304 327 966 363 325 1,175 216
-25% 315 1,117 303 326 1,018 333 326 1,165 250
default 331 1,133 291 331 1,133 291 331 1,133 291
+25% 341 1,109 304 321 1,216 277 326 1,075 335
+50% 346 1,115 301 328 1,246 274 327 1,064 344.8*
+100% 355 1,115 303 326 1,317 264 326 1,071 345.2*
*We add digits here to show that there is at least a small difference in offshore capacity.

Next, we turn to the wind onshore cost sensitivity. The cost sensitivity changes wind onshore
capacity in the European metric from 1,089 to 1,478 GW. A similar magnitude is now observed
for regional LBD (966 to 1,317 GW). In fact, every region explores wind onshore so that lower
or higher cost, respectively, impact each region similarly irrespective whether the European or
the regional metric is applied. Interestingly, solar PV capacities remain almost unchanged again.
However, onshore capacity substitutes for offshore capacity for both European and regional LBD.

Finally, we consider the wind offshore cost sensitivity. Offshore capacities differ from 170 to 500
GW (for European LBD) and 216 to 345 GW (for regional LBD). The impact of the sensitivity
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is again higher for European LBD due to positive learning externalities. Now, wind offshore
substitutes for wind onshore capacity and solar PV capacities are almost unaffected. Observe
that additional cost reductions from +50% to +100% in the regional metric do not yield higher
offshore capacities because the cost drop is not sufficient to increase the economically viable offshore
potential.

5. Conclusion

We implement endogenous technological change (ETC) in a power market model. In partic-
ular, we allow for learning-by-doing (LBD), that is, installing capacity leads to the accumulation
of experience that reduces unit investment cost. We transform such a non-linear problem into a
mixed-integer problem (MIP) by using an approximation of investment cost. We apply a European
LBD (joint European experience stock drives investment cost) and a regional LBD (region-specific
experience stocks drive regional investment cost) metric, as well as three different depreciation
assumptions that explain how experience is retained over time. Perfect recall assumes no loss of
experience over time. Continuous forgetting is subject to 3% annual depreciation of experience.
Lifetime forgetting in turn mirrors the engineering nature of power market models by depreciating
experience according to the lifetime of capacity addings, i.e., once a capacity investment reaches
the end of its lifetime the entire experience gained from this investment is lost. We consider solar
PV, wind onshore, and wind offshore as learning technologies and implement the ETC formula-
tion for those technologies into a multi-region partial equilibrium model of the European power
market, while keeping exogenous investment cost formulations for all remaining technologies. We
simplify and reverse-calibrate our model by using the outcomes of a benchmark with exogenous
cost assumptions for two reasons. First, we need to reduce numerical complexity without losing
much prediction quality to improve stability and solving speed of the MIP formulations. In par-
ticular, we decide for a reasonable temporal, spatial, and technological resolutions. Second, the
overall goal is to make results of exogenous technological change formulations directly comparable
to endogenous ones with LBD to quantify the effects of endogenization. We thus calculate learning
elasticities, initial unit investment cost, and the entire MIP approximation for each LBD specifi-
cation (European LBD, regional LBD, diverging depreciation assumptions) from the benchmark.
We apply the same carbon emission quantity target for each specification (carbon-neutrality in
2045, –98 Mt in 2050) to harmonize specifications by comparing resulting carbon and electricity
prices as proxies for abatement and total system cost.

The benchmark (exogenous unit investment cost as autonomous function of time) delivers 2050
solar PV (wind onshore, wind offshore) capacities of 339 GW (1,128 GW, 245 GW). European
LBD fosters deployment of solar PV (+16 GW) and wind onshore (+60 GW) but deploys less wind
offshore (–16 GW). Regional LBD, in turn, fosters the deployment of wind offshore (+46 GW)
but similar wind onshore (+5 GW) and slightly less solar PV (–8 GW). The dominance of wind
offshore for regional LBD leads to the lowest carbon and electricity prices, whereas neglecting LBD
(in the benchmark) yields the highest prices. The differences across European LBD, regional LBD,
and the benchmark are traced back to developments in specific regions. For example, Ireland and
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UK are responsible for higher solar PV under European learning. France explains higher solar PV
under European LBD and the benchmark, but Portugal and Spain balance parts of those effects
by actually deploying more solar PV under regional LBD. France explains lower wind onshore
capacity in the benchmark but the Benelux region balances almost the entire effect by having
higher wind onshore capacity in the benchmark. The generally higher onshore capacity under
European LBD is driven by Germany and Denmark. Wind offshore differences result mainly from
Ireland and UK that deploy around 50 GW more under regional learning. Estonia, Latvia, and
Lithuania compensate small parts of this effect by actually using considerably less offshore under
regional LBD. The diverse patterns of differences in technology expansion between European LBD
and regional LBD can be explained by two intuitions. First, regional LBD encourages regional
specialization based on local comparative advantages between the technologies, whereas European
LBD sees more coordination of learning efforts based on local resource qualities in intra-European
comparison. Second, European LBD also allows exploitation of positive learning externalities from
sublime resource regions to build capacities in regions with inferior resource qualities. Moreover,
higher capacities from LBD stem mainly from preponing investments to earlier periods. For ex-
ample, regional LBD starts structural deployment of wind offshore in 2035 already, whereas the
benchmark does so later. A similar pattern can be observed for wind onshore, in particular, under
European LBD. Consequently, 2050 differences do not explain the entire process of learning be-
cause the investment cost under LBD are grounded in the respective experience stock from past
capacity addings and not based on an autonomous function of time as in the benchmark. However,
the general pattern of preponing investments cannot be observed for each region. On the contrary,
we indeed observe diverging timing patterns.

We also analyze the role of different depreciation assumptions that explain the evolution of the
experience stock over time. Lifetime forgetting delivers considerably lower solar PV (mainly in
Britain) and wind onshore capacities (France, reversed by Benelux regions, Denmark) but higher
wind offshore ones (Ireland plus UK, France, and Denmark). Continuous forgetting is similar to
lifetime forgetting when it comes to wind onshore but is closer to perfect recall for solar PV and
wind offshore. Differences resulting from depreciation assumptions are not fully negligible but can
be explained by experience stock dynamics. For example, there are considerable historical solar
PV addings prior to 2020 but relatively little further addings until 2030. Lifetime forgetting loses
much of the early solar PV experience in 2035 and 2040, resulting in considerably lower solar PV
capacities in 2050 because overall cost are slightly higher than in the other specifications. Instead,
there is little pre-existing wind offshore capacity and no endogenous addings until 2035, so that
offshore experience and its impact is negligible in early periods across depreciation assumptions.
Lifetime forgetting then favors the deployment of such a rather recent technology because there is
no cost of experience loss of 2035 investments until the end of the model horizon. One might tackle
those distortions by choosing a different reverse-calibration, e.g., calibrating learning elasticities
and initial investment cost for lifetime forgetting not on the basis of 2020 and 2050 benchmark
outcomes (and cost) but 2035 and 2050 instead. However, we refrain from doing so to maintain
comparability of results and—as consistently as possible—show how calibration affects results.

The above mentioned regional differences show that results of power market models must be
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reviewed carefully for each region and, in particular, that the spatial dimension is important.
For example, much of the differences between LBD formulations and the benchmark with respect
to wind onshore is a spatial trade-off between France and the neighboring Benelux region with
similar wind onshore quality. Those regions are connected via transmission lines and already small
changes in cost assumptions deliver structural differences that cannot be observed without the
review of spatial expansion patterns. Moreover, lower Danish wind onshore is complemented by
higher Danish wind offshore under lifetime forgetting. Such a technology switch can be again
caused by marginal changes in cost assumptions or even driven by investments in other regions
that in turn foster the deployment of a certain technology in other countries. It is also not only the
cost of a respective technology that plays a role but also the (correlation of) time profiles (solar
and wind availability) across technologies and countries.

Our results show that aggregate differences on a European level slightly differ across different
learning formulations and when assuming exogenous cost developments. However, much of the rel-
evant regional differences are overlooked when only analyzing aggregated differences. In particular,
regions face diverse, sometimes opposite, patterns of employing learning technologies, depending
on the underlying learning specification. European and local policy makers need to account for
those structural differences when designing policies to achieve a fast and deep decarbonization
at a low cost. However, this analysis is only a first step towards informing policy makers about
appropriate policy making under the consideration of endogenous technological change. For more
actionable insights, it is necessary to improve the empirical foundation of the calibration, i.e.,
whether European or regional learning is the more appropriate metric to use (for the respective
technology and region) and which of the depreciation assumptions best matche observed economic
behavior.

Our analysis comes with some caveats. We focus solely on three learning technologies (solar
PV, wind onshore, wind offshore) and neglect learning in other (potentially relevant) technologies
such as nuclear, CCS, or batteries. However, solar PV and wind technologies are the major pillars
of decarbonizing the European electricity systems and at the same time also technologies where
substantial LBD has already been observed in the past. Some other critics to include LBD in
power market, energy system, and climate models via leaning curves was introduced by Nordhaus
(2014). According to his analysis learning parameters (elasticity, initial cost) are always upward
biased and not robust to specification changes. These limitations force models to opt for learning
technologies with incorrectly specified learning parameters due to lower costs, thereby biasing the
outcomes of the model. However, these limitations apply to all models that include LBD based
on empirical estimations of learning curves. Moreover, the main goal of our analysis is to derive
general economic patterns of different LBD specifications and not to produce the most accurate
and unbiased projection of the 2050 technology mix in the European power sector. We further
neglect other endogenous technological change channels such as learning-by-searching. The MIP
formulation of the ETC problem is already numerically challenging and we thus refrain from adding
a second learning skein that additionally drives cost drops. This avenue of including learning-by-
searching as single-factor learning or together with learning-by-doing as a two-factor learning model
could be explored in follow-up studies. Finally, recent findings (Schauf and Schwenen, 2021) show
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that not only unit investment cost decrease when technologies experience learning, but rather
their respective technological efficiency (or full-load hours) also increases. Hence, improving the
technological resolution of learning technologies might be useful for policy makers to have better
projections of the optimized system. In this regard, inclusion of several learning channels and
allowing for both reductions of unit investment cost and increase in full-load hours seem prominent
topics for further research.
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Appendix A. Simplification process

The EUREGEN model covers the entirety of the European power market consisting of 28 coun-
tries (EU27 less islands Cyprus and Malta, including Norway, Switzerland, and United Kingdom).
We simplify the spatial resolution to 14 regions, each region being a grouping of countries similar
in solar PV, wind onshore, and wind offshore qualities. We thus decide to model Denmark, France,
Germany, Italy, and Norway as individual countries but group Ireland and United Kingdom (to
Britain), Portugal and Spain (to Iberia), Belgium, Netherlands, and Luxembourg (to Benelux),
Austria and Switzerland (to Alpine), Poland and Czech Republic (to EE-NW), Latvia, Lithua-
nia, and Estonia (to EE-NE), Hungary, Slovenia, Slovakia, and Croatia (to EE-SW), Bulgaria,
Romania, and Greece (to EE-SE), and Finland and Sweden (to Fise). We further reduce the
hourly resolution of a year to 89 hours as an outcome of an hour choice algorithm that produces
a selection of hours to match the extremes of solar PV, wind onshore, wind offshore, and load
for each of the 14 regions. We further weight those hours to reduce the difference of the reduced
timeseries to annual load and full-load hours of intermittent technologies that would occur in a
full hourly resolution. Finally, we maintain the relative regional competitiveness of intermittent
technologies (also hydro) by scaling the resulting reduced timeseries by a factor to re-construct
annual load and full-load hours (FLH) of the respective technologies from the hourly resolution.
The best outcome in terms of deviations from the hourly resolution without scaling of this choice
and weighting algorithm delivers around the double amount of hours but deviations (calculated
for the benchmark) in the technology mix over time are negligible to the used specification with
89 hours.

We further simplify the model with regard to conventional gas technologies by merging steam
turbines burning natural gas and combined-cycle gas turbines due to similar characteristics in
efficiencies and cost. We also simplify learning wind and solar technologies such that there is
only one resource class (instead of high, mid, and low). Moreover, we refrain from exogenous
evolution of wind turbines height, growing from 80m to 100m to 120m. Instead, we use the 100m
turbine height only. Further, we only make resource potentials of intermittent sources available
that exceed a specific FLH level to improve the approximation. In particular, we only use the
best solar and wind potentials for each region. We repeatedly run the benchmark to ensure that
each of the technologies’ regional potentials leave sufficient buffer, or, in other words, that higher
potentials would not lead to increased deployment, respectively. In particular, merging the high
quality with lower quality potentials decreases FLH of the respective technology (for the specific
region) and often decreases usage of the total potential (compared to a situation where only high
quality potential is available).

Table A.1 shows the outcome of this calibration process. Some smaller regions such as Benelux
have only limited high quality wind offshore potential and might often hit the upper boundary
in the benchmark. Adding more (medium and low) potential does not yield more wind offshore
deployment than the 22 GW specified in Table A.1. In general, the competitiveness of technologies
starts around 1,200 FLH for solar PV, 3,600 FLH for wind offshore, and 2,100 FLH for wind
onshore. We expect considerable exploitation of solar PV potentials in Iberia, Italy, and EE-
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SE (around 327 GW in total). Offshore potentials in Britain, Benelux, and Denmark seem to
be competitive (around 458 GW in total)—although the 400 GW in Britain might not be fully
exploited due to physical and economic transmission constraints between Britain and neighboring
regions. Wind onshore is competitive in every region (even in those with FLH below 2,100) but in
particular Fise, Norway, Britain, Iberia, and EE-SW have high FLH, so that we expect considerable
expansion in those regions.

Table A.1: Resource potential and full-load hours by region

Potential (GW) Full-load hours
Solar Onshore Offshore Solar Onshore Offshore

Britain 78 201 400 1,036 2,626 4,110
France 155 357 119 1,188 2,072 3,414
Iberia 198 280 110 1,800 2,581 2,211
Italy 87 37 178 1,361 1,849 956
Benelux 7 37 22 988 2,263 3,728
Germany 82 171 19 1,055 2,180 3,267
Alpine 16 58 1,039 1,963
EE-NW 91 198 10 1,008 2,390 3,149
EE-NE 30 45 20 992 2,424 3,420
EE-SW 14 28 19 1,199 2,530 914
EE-SE 42 104 190 1,604 1,987 2,069
Denmark 10 27 36 839 2,532 4,106
Norway 45 88 963 1,052 2,711 2,317
Fise 101 92 53 884 3,346 3,003

Europe 956 1,723 2,140 1,256 2,382 2,645
327 1,167 458 >1,200 >2,100 >3,600

Britain covers Ireland and United Kingdom, Iberia covers Portugal and Spain, Benelux
covers Belgium, Netherlands, and Luxembourg, Alpine covers Austria and Switzerland
(without wind offshore potential), EE-NW covers Poland and Czech Republic, EE-NE
covers Estonia, Latvia, and Lithuania, EE-SW covers Slovenia, Slovakia, Croatia, and
Hungary, EE-SE covers Romania, Bulgaria, and Greece, and Fise covers Finland and
Sweden.

Appendix B. Regional learning

The European learning metric’s calibration is rather straightforward. However, this approach
is not fully applicable to regional learning. In fact, we need to make assumptions about the initial
unit investment cost and learning speeds of different regions, and how growing experience stocks
translate into cost reductions for each region. The problem is twofold. First, assuming same
learning elasticities and initial unit investment cost for each region leaves smaller regions worse off
than bigger regions that can in general produce higher experience stocks. Second, scaling regional
learning according to resource potentials leaves the regions with high wind and solar potentials
worse off then regions with smaller ones. In particular, our calibration routine of calculating
“competitive” potentials before running the MIP specifications would violate such an approach.
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We decide for (electricity) demand shares because those best reflect the size of a respective region
and already accumulated experience (from installed capacities per region) accounts for the fact
that some countries are more advanced in the learning process.

Table B.2 presents respective demand shares in 2020 and 2050. Observe that those shares
change over time. For further calculations, however, only the 2020 and 2050 shares are relevant.
We take the European experience stocks from the benchmark, and (by multiplying the European
stock with the respective demand share) calculate the regional experience stocks necessary to
obtain the respective 2020 and 2050 cost; meaning that regions that install capacities respective
to their demand shares end up exactly with the 2020 and 2050 unit investment cost used in the
benchmark. Learning elasticities and initial unit investment cost follow in the same way as for the
European metric, and are depicted in Table B.2 as well. Regional learning elasticities vary around
European values for all three technologies. However, regional initial unit investment cost seem
to be lower because the overall lower amount (to learn) is smaller in the regional metric, so that
absolute drops are also smaller. Similar learning elasticities thus imply structurally lower initial
experience stock levels. This, however, does not matter for the final learning decision of regions
under the regional metric because some regions start at higher unit investment cost (when their
true experience stock is below the demand share experience stock) or lower ones (when their true
experience stock is indeed higher). However, regions with lower true experience stock can reduce
cost fast by catching up with regions that learned already.

Table B.2: Demand shares, learning elasticities, and initial unit investment cost for perfect recall with starting
change

Demand shares Learning elasticities Initial unit investment cost (e/kW)

2020 2050 Solar Onshore Offshore Solar Onshore Offshore

Britain 11.1% 10.4% -17.1% -9.7% -9.1% 15,263 6,927 9,199
France 14.6% 15.9% -15.3% -9.1% -8.6% 11,792 6,351 8,736
Iberia 9.7% 10.4% -15.5% -9.1% -8.6% 11,447 6,199 8,509
Italy 10.3% 11.9% -14.8% -8.9% -8.4% 10,255 5,950 8,287
Benelux 6.5% 7.1% -15.4% -9.1% -8.6% 10,560 5,935 8,183
Germany 17.3% 15.3% -17.9% -10.0% -9.3% 18,689 7,560 9,863
Alpine 4.1% 5.1% -14.0% -8.5% 7,903 5,213
EE-NW 6.7% 7.1% -15.5% -9.1% -8.2% 10,812 5,993 7,405
EE-NE 0.9% 0.7% -18.1% -10.0% -8.6% 11,185 5,648 8,241
EE-SW 3.0% 3.1% -16.0% -9.3% -9.3% 10,242 5,721 7,499
EE-SE 4.2% 3.1% -20.9% -10.9% -8.8% 23,002 7,624 7,827
Denmark 1.0% 0.9% -18.1% -10.1% -10.0% 11,682 5,775 9,518
Norway 4.0% 3.1% -20.3% -10.7% -9.4% 20,914 7,388 7,648
Fise 6.7% 6.0% -17.6% -9.9% -9.9% 15,109 6,774 9,318

Europe 3,088* 6,203* -16.3% -9.4% -8.9% 19,001 8,099 10,806
*The demand share of Europe is 100%. The values thus refer to absolute annual demand (in TWh).
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Appendix C. Line segment calibration

Tables C.3 to C.5 show line segment weights, experience stock lower breakpoints and maximum
stock, and line segment-specific unit investment cost for 3, 5, 7, 10, 15, and 20 line segments for
European learning with perfect recall. We refrain from describing outcomes for 5, 10, and 15 line
segments in detail and, instead, focus on 3, 7, and 20 line segments in the following. Start with
line segment weights. Observe that 3 line segments yield equal distribution of weights. The other
two specifications always double the prior weight in the next line segment, aiming for 0.5 at the
fore-last line segment (so that the highest line segment weight is 1). The specification with 7 line
segments almost achieves that 0.5 at the ls7 lower breakpoint. The 20 line segments specification
in turn shows almost no progress (at the three digit level) from ls1 to ls9. Later “jumps”, in turn,
are again comparable with the 7 line segment specification.

Table C.3: Line segment weights

Number 3 5 7 10 15 20

ls1 0.3333 0.0667 0.0159 0.0020 0.0001 0.0000
ls2 0.6667 0.1333 0.0318 0.0039 0.0001 0.0000
ls3 1 0.2667 0.0635 0.0078 0.0002 0.0000
ls4 0.5333 0.1270 0.0157 0.0005 0.0000
ls5 1 0.2540 0.0313 0.0010 0.0000
ls6 0.5079 0.0626 0.0020 0.0001
ls7 1 0.1252 0.0039 0.0001
ls8 0.2505 0.0078 0.0002
ls9 0.5010 0.0156 0.0005
ls10 1 0.0313 0.0010
ls11 0.0625 0.0020
ls12 0.125 0.0039
ls13 0.25 0.0078
ls14 0.5 0.0156
ls15 1 0.0313
ls16 0.0625
ls17 0.125
ls18 0.25
ls19 0.5
ls20 1
We calculate the line segment length according to Equation (6). Observe that
the values always present the relative position on the total investment cost
curve (see Equation (5)) and the length of the respective line segment follows
from the differences of neighboring values.

Those weights determine experience stock lower breakpoints (via accumulated investment cost
breakpoints). The weights are thus reflected in those breakpoints as well. However, the relative
changes differ by two reasons. First, investments into capacity get cheaper with higher experience
stocks, that is, the double weight yields doubled accumulated investment cost but more than
doubled experience stocks. Second, experience stocks start (ls1 lower breakpoint is the starting
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experience stock) at 98, 131, or 11 GW, respectively (see also Table 1). The distribution of
experience stock breakpoints is further determined by the maximum experience stock. We choose
QSMAX

j so that perfect recall does not hit its uppermost boundary. In particular, we take the
resource potential by technology (see Table A.1) and multiply it by 1.5. The maximum stocks
(indicated by MAX) are thus the same for each line segment specification.

Now turn to the line segment-specific unit investment cost in the lower part. Note that weights
are again presented but identical to the upper ones. Those unit investment cost always present the
average unit investment cost per line segment. Observe that there are only little changes for the 20
line segments specification until ls9 (as it is the case for experience stock lower breakpoints). Later
“jumps” are again comparable to the 7 line segments specification. Furthermore, the 3 line segment
specification has structurally lower unit investment cost in ls1 because the first line segment spans
a considerably higher magnitude with respect to the experience stock. For example, the first
line segment (ls1) spans from 11 GW to 974 GW for wind offshore. The 974 GW wind offshore
realization in turn might be unrealistic given the competitive potentials (the benchmark employs
243 GW). Similar problems arise for the other two technologies. This is particular important
because the line segment-specific unit investment cost underestimate cost at the beginning of each
line segment, arriving at the exact value (for accumulated investment cost) when entering the next
line segment. Not fully employing line segments thus underestimates cost (also in the other line
segment specifications). One might solve this problem by adjusting the line segment weights (e.g.,
formulating them linear) but initial learning (steeper curves at the beginning) would be then badly
reflected.
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Table C.4: Experience stock lower breakpoints and maximum stock (in GW) for European learning with perfect recall

Solar PV Wind onshore Wind offshore
Number 3 5 7 10 15 20 3 5 7 10 15 20 3 5 7 10 15 20

ls1 98 98 98 98 98 98 131 131 131 131 131 131 11 11 11 11 11 11
ls2 486 167 114 100 98 98 883 270 163 135 131 131 974 179 47 15 11 11
ls3 940 242 130 102 98 98 1,713 417 196 139 131 131 2,064 366 87 20 11 11
ls4 401 164 106 98 98 724 264 147 132 131 766 170 28 12 11
ls5 752 234 114 99 98 1,375 403 163 132 131 1,619 348 47 12 11
ls6 386 130 99 98 694 195 133 131 727 86 13 11
ls7 718 163 100 98 1,312 262 135 131 1,536 168 15 11
ls8 232 102 98 399 139 131 343 20 11
ls9 381 106 98 686 147 132 716 28 12
ls10 708 114 99 1,294 163 132 1,513 47 12
ls11 130 99 195 133 86 13
ls12 163 100 261 135 168 15
ls13 232 102 398 139 342 19
ls14 381 106 685 147 714 28
ls15 707 114 1,292 163 1,510 47
ls16 130 195 86
ls17 163 261 168
ls18 232 398 342
ls19 381 685 714
ls20 707 1,292 1,510
max 1,434 2,584 3,210
Experience stock lower breakpoints follow from Equation (11).
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Table C.5: Line segment-specific unit investment cost (in e/kW) for European learning with perfect recall

Solar PV Wind onshore Wind offshore
Number 3 5 7 10 15 20 3 5 7 10 15 20 3 5 7 10 15 20

ls1 805 902 934 944 946 946 1,241 1,342 1,379 1,391 1,393 1,393 1,883 2,160 2,372 2,530 2,567 2,568
ls2 687 840 913 941 946 946 1,125 1,274 1,353 1,388 1,393 1,393 1,663 1,936 2,191 2,467 2,564 2,568
ls3 631 781 886 937 945 946 1,072 1,215 1,322 1,382 1,393 1,393 1,581 1,815 2,069 2,398 2,560 2,568
ls4 711 844 928 945 946 1,148 1,277 1,372 1,393 1,393 1,699 1,945 2,305 2,553 2,568
ls5 640 786 913 945 946 1,081 1,219 1,353 1,392 1,393 1,595 1,823 2,193 2,538 2,567
ls6 716 886 943 946 1,152 1,323 1,391 1,393 1,707 2,071 2,512 2,566
ls7 642 845 941 946 1,083 1,278 1,388 1,393 1,598 1,947 2,467 2,564
ls8 787 937 945 1,221 1,382 1,393 1,826 2,398 2,560
ls9 717 929 945 1,154 1,372 1,393 1,709 2,305 2,553
ls10 643 913 945 1,083 1,353 1,392 1,599 2,194 2,538
ls11 886 943 1,323 1,391 2,072 2,512
ls12 845 941 1,279 1,388 1,948 2,467
ls13 787 937 1,221 1,382 1,826 2,398
ls14 718 929 1,154 1,372 1,709 2,305
ls15 643 913 1,084 1,353 1,599 2,194
ls16 887 1,323 2,072
ls17 845 1,279 1,948
ls18 787 1,221 1,826
ls19 718 1,154 1,709
ls20 643 1,084 1,599
Line segment-specific unit investment cost follow from Equation (10).
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Appendix D. Line segment pre-results

Running a huge set of different MIP specifications takes a considerable time. We thus
search for a line segment specification that resolves the trade-off between reasonable solving
time (to reach stable global optimums) and good approximation. We thus explore the validity
of our approximation with respect to different line segment numbers (3, 5, 7, 10, 15, and
20). Table D.6 shows the outcome by comparing solar PV, wind onshore, and wind offshore
installed capacities (in GW) and generation (in TWh) for European and regional learning
with perfect recall in 2030, 2040, and 2050. Note that the specification with 20 line segments
must be seen as the best (in terms of approximation quality), whereas 3 line segments solve
most stable reaching lowest MIPGAPS in shortest time. For comparison, Table D.6 also
shows the respective values for the benchmark that assumes exogenous unit investment cost
for the three learning technologies as depicted in Table 1.

Start with solar PV. 3 line segments produce considerably higher solar PV capacities
in 2030 for European learning because the specific investment cost in the first line segment
are structurally underestimating investment cost. This effect turns in the long-run because
later investments become relatively more expensive. There is not much of a difference across
the other line segment numbers. 5 to 15 line segments fail to exactly match the outcome of
20 line segments but the differences are only around 9 GW in 2050. However, also looking
at generation leaves 7 line segments close to the 20 line segment outcome. 2050 solar PV
capacities are similar for the regional metric. However, 2030 and 2040 capacities are more
diverse because countries with high quality solar PV potential start learning and thus invest
earlier. Observe that benchmark solar PV capacity (and generation) is comparable to the
regional learning outcomes.

Now turn to wind onshore. Again, the specification with 3 line segments produces con-
siderably different wind onshore capacities (and generation). The difference is above 70 GW
or 140 TWh, respectively (more than 5%). Remaining line segment numbers are similar.
Turning to regional learning, observe that 3 line segments still produce the poorest outcome
but the difference is smaller than for European learning. However, overall capacities are
structurally below the ones of European learning, as it is generation. Benchmark capacities
(and generation) are comparable to those of regional learning.

Finally, observe that wind offshore capacities tremendously differ between European and
regional learning (around 30% more for regional learning), whereas benchmark capacities
are close to the European metric (at 245 GW). Moreover, 3 line segments in the European
metric produce a poor outcome again, whereas the remaining line segments seem to be quite
good representatives (of the 20 line segment specification). In particular, 7 line segments
match capacities and generation quite well.

We can further analyze differences between European and regional learning. Figure D.1
shows installed capacities for (a) solar PV on the left, (b) wind onshore (in the middle, and
(c) wind offshore on the right. Capacities are depicted for European (solid lines) and regional
learning (dashed lines) for periods 2030 (blue), 2040 (red), and 2050 (green). The panels
depict spider charts with spider legs each representing one of the respective line segments.
Observe again that aforementioned quality of the 3 line segment specification is bad, in
particular, for 2040 wind onshore and 2030 as well as 2040 wind offshore capacities.

Figure D.1 adds information to Table D.6 as it is more suitable to gain a feeling of the
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Table D.6: Installed capacities and generation from learning technologies for different line segment numbers
and the benchmark

Solar PV Wind onshore Wind offshore

Number 2030 2040 2050 2030 2040 2050 2030 2040 2050

European learning with perfect recall

Installed (GW) 3 221 231 348 705 1,118 1,105 72 104 273
5 211 247 354 815 1,287 1,188 18 8 230
7 209 244 354 813 1,279 1,188 18 8 229
10 209 244 354 813 1,274 1,188 18 17 228
15 209 243 354 813 1,274 1,188 18 17 228
20 205 234 351 798 1,270 1,182 18 17 224

Generation (TWh) 3 301 335 486 1,590 2,511 2,481 278 398 1,037
5 286 352 491 1,832 2,859 2,629 65 28 900
7 279 343 481 1,835 2,855 2,672 63 27 865
10 282 349 492 1,829 2,834 2,630 65 63 894
15 282 348 488 1,829 2,829 2,627 65 68 900
20 278 336 482 1,796 2,830 2,628 65 64 861

Regional learning with perfect recall

Installed (GW) 3 229 276 335 723 1,214 1,156 63 71 285
5 218 260 339 773 1,226 1,127 18 47 294
7 232 262 331 779 1,205 1,133 18 46 291
10 214 260 351 774 1,196 1,140 18 46 277
15 231 268 347 785 1,194 1,115 18 73 301
20 231 301 346 784 1,198 1,115 18 74 302

Generation (TWh) 3 312 387 470 1,615 2,691 2,518 249 258 1,111
5 299 371 486 1,750 2,719 2,443 65 181 1,146
7 316 375 474 1,763 2,694 2,486 63 173 1,115
10 293 373 496 1,752 2,669 2,491 65 182 1,082
15 313 376 473 1,776 2,666 2,536 65 263 1,088
20 313 403 470 1,774 2,668 2,495 66 277 1,133

Benchmark

Installed (GW) 203 232 339 706 1,152 1,128 18 34 245
Generation (TWh) 276 337 474 1,628 2,615 2,533 65 128 938

differences between European and regional learning. The European metric produces lower
solar PV capacities in 2030 and 2040 but higher ones in 2050. Wind onshore capacities are
always higher for European learning (except for the bad choice of 3 line segments). Wind
offshore capacities in turn are considerably higher for regional learning (again except for
the bad choice of 3 line segments). Thus, European and regional differences are persistent
for line segment numbers from five upwards and hint that the comparability of European
and regional metric in the remainder of this section is consistent with the finally chosen line
segment number.

We can already draw some conclusion from those pre-results. 3 line segments are not
a reasonable choice given our assumptions about maximum potentials. One might improve
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Figure D.1: Installed solar PV (a), wind onshore (b), and wind offshore (c) capacities (in GW) for European
and regional learning for different line segments numbers (3, 5, 7, 10, 15, and 20) and periods (2030, 2040,
2050)

Spider arms show outcomes for the respective line segment numbers. The scales are different for technologies to improve the
visibility of difference. The lowest numbers of the respective axes (150 GW for solar PV, 600 GW for wind onshore, and 0
GW for wind offshore) point to the middle of the respective chart. The second number in turn represent the first hexagon.

the approximation quality when reducing the approximation spaces in accordance to those
findings. However, we opt for comparability of European and regional learning results (and
with the benchmark) and thus stick with the metric of multiplying the overall resource
potentials by a certain factor. In tendency, regional learning is closer to the benchmark
for solar PV and wind onshore, but there is tremendously higher wind offshore deployment.
Wind offshore also constitutes main differences between European and regional learning.
The European metric favors expansion of the most promising technology (wind onshore)
whereas regional learning concentrates on regional diverging resource potentials and qualities.
Finally, 5, 7, 10, and 15 line segments produce good approximations (given that 20 is the one
to match). However, 15 line segments perform similar in terms of solution speed as 20 does.
Also 10 line segments converge slow to reasonable MIPGAPS. The approximation quality of
7 line segments is slightly better than those of 5 line segments, whereas there is no significant
difference in solution speeds. We thus decide to perform all further calculation with 7 line
segments.

Appendix E. Forgetting

Table E.7 presents the outcome for 7 line segments for all three learning technologies and
deprivation assumptions. The upper part shows the experience stock upper breakpoints.19
Perfect recall is shown with starting change (sc) and without (nosc). Continuous and lifetime
forgetting always require to be applied without a starting change. Moreover, the forgetting
specifications calculate the maximum experience differently because experience stocks are
generally smaller. In particular, we multiply the resource potential by 1.25 to calculate

19It is necessary to change the metric here to upper breakpoints (compared to Table C.4 in Appendix C)
because the different deprivation assumptions have diverging maximum experience stocks.
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the maximum experience stocks (equal to ls7 upper breakpoint) for continuous forgetting.
Lifetime forgetting in turn reflects the exact amount of capacity potentially active and we
thus can set the maximum experience stock equal to the resource potential.

Table E.7: Experience stock upper breakpoints and line-segment specific unit investment cost for different
deprivation and starting change specifications

Technology Specification Start ls1 ls2 ls3 ls4 ls5 ls6 ls7

Experience stock upper breakpoints (GW)

Solar PV Perfect recall 98 114 130 164 234 386 718 1,434
Perfect recall* 0 10 23 53 122 279 638 1,434
Continuous forgetting 0 7 17 39 92 218 516 1,197
Lifetime forgetting 0 4 10 26 64 158 394 958

Wind onshore Perfect recall 131 163 196 264 403 694 1,312 2,584
Perfect recall* 0 27 57 123 265 569 1,223 2,584
Continuous forgetting 0 21 45 98 213 464 1,008 2,153
Lifetime forgetting 0 16 35 77 168 368 803 1,723

Wind offshore Perfect recall 11 47 87 170 348 727 1,536 3,210
Perfect recall* 0 34 73 156 334 714 1,527 3,210
Continuous forgetting 0 28 61 130 278 595 1,272 2,675
Lifetime forgetting 0 22 48 103 221 474 1,016 2,140

Line segment-specific unit investment cost (e/kW)

Solar PV Perfect recall 934 934 913 886 844 786 716 642
Perfect recall* 969 1,636 1,269 1,109 969 846 739 647
Continuous forgetting 995 1,896 1,391 1,176 995 842 713 604
Lifetime forgetting 948 2,696 1,817 1,463 1,178 948 764 617

Wind onshore Perfect recall 1,379 1,379 1,353 1,322 1,277 1,219 1,152 1,083
Perfect recall* 1,253 1,787 1,555 1,447 1,346 1,253 1,166 1,086
Continuous forgetting 1,348 1,871 1,593 1,466 1,348 1,240 1,141 1,051
Lifetime forgetting 1,417 2,002 1,690 1,548 1,417 1,298 1,188 1,089

Wind offshore Perfect recall 2,372 2,372 2,191 2,069 1,945 1,823 1,707 1,598
Perfect recall* 2,549 2,549 2,237 2,091 1,955 1,828 1,709 1,599
Continuous forgetting 2,565 2,565 2,251 2,105 1,967 1,839 1,719 1,609
Lifetime forgetting 2,652 2,652 2,318 2,162 2,017 1,881 1,755 1,639

PR* starts approximation of accumulated investment cost at zero as does forgetting specifications. Note that the ls7 upper
breakpoints are the maximum experience stock of the selected specification and Start refers to the starting experience stock.

The lower part shows line segment-specific unit investment cost. Those cost are decisive
for final investments. Observe that Perfect recall starts at fundamentally lower investment
cost in ls1. Perfect recall* in turn reaches the starting capacity stock between ls3 and
ls4 upper breakpoints (i.e., in the fourth line segment) for solar PV and wind onshore so
that the cost approximation of ls1, ls2, and ls3 are actually obsolete. The quality of the
approximation is thus worse and there is actually not much usage of perfect recall*, except
for the comparison with the forgetting ones. However, the specifications cannot be directly
compared with each other because accumulated investment cost drives the placement of
experience stock breakpoints and line segment-specific unit investment cost. In particular,
lifetime forgetting has the highest initial unit investment cost (see Table 2), so that the
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respective breakpoints are lowest and costs are highest. However, unit investment costs in
ls6 and ls7 are comparable to perfect recall, whereas continuous forgetting tends to have the
lowest respective unit investment cost per line segment.
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Appendix F. Regional decomposition

Table F.8: 2050 installed solar PV, wind onshore, and wind offshore capacities (in GW) for different LBD
specifications and the benchmark

European LBD Regional LBD Benchmark
PR PR* CF LF PR

Solar PV

Britain 15 10 11 0 0 2
France 19 19 20 17 2 18
Iberia 116 116 117 113 141 117
Italy 87 87 87 87 78 87
Germany 82 82 82 82 78 81
EE-SW 12 10 12 8 4 10
EE-SE 23 22 24 21 29 24

Europe 354 345 352 327 331 339

Wind onshore

Britain 158 158 158 158 152 158
France 224 222 219 207 226 205
Iberia 238 238 234 237 238 229
Italy 37 37 37 37 37 37
Benelux 17 21 13 28 13 29
Germany 74 70 69 58 55 61
Alpine 58 58 58 58 58 58
EE-NW 85 84 85 84 86 82
EE-NE 21 21 18 18 22 17
EE-SW 28 28 28 28 22 28
EE-SE 44 45 43 45 44 43
Denmark 24 20 12 11 1 4
Norway 88 88 83 88 85 85
Fise 92 92 92 92 92 92

Europe 1,188 1,180 1,149 1,148 1,133 1,128

Wind offshore

Britain 151 152 152 163 203 153
France 28 28 31 41 28 30
Benelux 22 22 22 22 22 22
EE-NE 5 5 6 6 1 6
Denmark 22 24 29 31 36 33

Europe 229 230 240 264 291 245
PR is perfect recall, PR* starts approximation of accumulated investment cost at zero as
does forgetting specifications, CF is continuous forgetting, LF is lifetime forgetting. Britain
covers Ireland and United Kingdom, Iberia covers Portugal and Spain, Benelux covers Belgium,
Netherlands, and Luxembourg, Alpine covers Austria and Switzerland (without wind offshore
potential), EE-NW covers Poland and Czech Republic, EE-NE covers Estonia, Latvia, and
Lithuania, EE-SW covers Slovenia, Slovakia, Croatia, and Hungary, EE-SE covers Romania,
Bulgaria, and Greece, and Fise covers Finland and Sweden. There are no solar PV capacities
in Benelux, Alpine, EE-NW, EE-NE, Denmark, Norway, and Fise. There are no wind offshore
capacities in Iberia, Italy, Germany, Alpine, EE-NW, EE-SW, EE-SE, Norway, and Fise.
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