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Abstract

Transitivity is perhaps the most fundamental choice axiom and, there-
fore, almost all economic models assume that preferences are transitive.
The empirical literature has regularly documented violations of transitivity,
but these violations pose little problem as long as they are simply a result
of somewhat-noisy decision making and not a reflection of the determinis-
tic part of individuals’ preferences. However, what if transitivity violations
reflect individuals’ nontransitive preferences? And how can we separate non-
transitive preferences from noise-generated transitivity violations—a problem
that so far appears unresolved? Here we tackle these fundamental questions
on the basis of a newly developed, non-parametric method which uses re-
sponse times and choice frequencies to distinguish revealed preferences from
noise. We extend the method to allow for nontransitive choices, enabling
us to identify the share of weak stochastic transitivity violations that is
due to nontransitive preferences. By applying the method to two different
datasets, we document that a sizeable proportion of transitivity violations
reflect nontransitive preferences. These violations cannot be accounted for
by any noise or utility specification within the universe of random util-
ity models. Finally, in spite of revealed transitivity violations, preferences
estimated through our method predict choices out of sample better than
standard parametric random-utility estimations.
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1 Introduction

The economic approach to decisions builds upon the assumption that choices can
be represented by (complete) transitive binary relations, that is, preferences. Tran-
sitivity is hence, arguably, the most fundamental assumption behind economic
models of choice. Yet, the empirical literature has regularly documented system-
atic violations of transitivity in the form of cyclical choices where, for example,
a is chosen over b, b is chosen over ¢, and ¢ is chosen over a (e.g., Tversky, 1969;
Loomes, Starmer, and Sugden, 1989, 1991; Humphrey, 2001).

The interpretation of this empirical evidence is strongly contested. The main
argument is that choice is stochastic, and hence it is possible to observe nontran-
sitive choices even though preferences are transitive, because actual choices are
noisy (Iverson and Falmagne, 1985; Sopher and Gigliotti, 1993; Birnbaum, 2020).
As Birnbaum and Schmidt (2010) observed, “fa/ problem that has frustrated previ-
ous research has been the issue of deciding whether an observed pattern represents
‘true violations’ of transitivity or might be due instead to ‘random errors.”” In
other words, while it is tempting to interpret non-transitive choices as evidence of
true violations of transitivity (underlying “nontransitive preferences”), those can
in principle be explained by, for example, random utility models which postulate
a transitive binary relation plus a noise term (McFadden, 1974, 2001; Anderson,
Thisse, and De Palma, 1992). The current literature has long been at an impasse
due to the impossibility of disentangling preferences from noise.

In this contribution, we show how to disentangle preferences and noise to ex-
amine whether cyclical choices are due to noise or true evidence of nontransitive
preferences. We do this by relying on recent results by Alos-Ferrer, Fehr, and Net-
zer (2021), which use response times to reveal preferences even when choices alone
cannot do so. We extend their results to allow for “preference revelation” even
when the underlying binary relation is nontransitive. We then apply the results
to two existing datasets (which include both repeated choices and response times)
and examine the evidence for violations of transitivity in the light of the new re-
sults. In a nutshell, we find that both datasets contain transitivity violations in
the underlying preferences, independently of any model of noise. That is, we find
a percentage of nontransitive patterns which cannot be explained by any model
built upon transitive preferences and noisy choices.

The key to understand our empirical results is the fact that our theoretical
approach allows us to examine Revealed Transtivity Violations (RTVs) in datasets
including repeated choices and response times. Those are patterns of cyclical

choices such that, for each choice pair along the cycle, any model of preference-



based choice (transitive or not) including noise (no matter which assumptions on
the latter are imposed, e.g. symmetric or not), the data reveals that the underlying
preference is as specified in the cycle. Hence, the observed cycle can only be
explained by a truly nontransitive preference, and not by choice noise. Naturally,
not all observed choice cycles are RT'Vs.

In contrast, the previous literature has concentrated on violations of Weak
Stochastic Transitivity (WST) in datasets with repeated choices. Denoting by
p(z,y) the proportion of x choices from the pair {z,y}, a WST violation is a
pattern in the data where p(a,b) > 1/2 and p(b,c) > 1/2, but p(a,c) < 1/2.} The
focus on WST is natural because it is straightforward to show that random utility
models, where choices maximize an underlying utility plus a pair-specific noise
term, can never violate WST, provided the noise is symmetrically distributed. The
latter additional assumption is automatically fulfilled by all standard models used
in microeconometric analysis (e.g., probit or logit choice). Hence, we will compare
RTVs to violations of WST in both datasets. We show that every RTV implies a
violation of WST, but the converse is not true. This is because violations of WST
are compatible with asymmetric noise and transitive preferences, but RTVs are
not.

In order to study transitivity violations, we extend random utility models
(RUMs) and their response-times extensions in Alés-Ferrer, Fehr, and Netzer
(2021) to allow for nontransitive preferences. This allows to falsify the transitivity
hypothesis in models with noisy choices by documenting the existence of nontran-
sitive preferences. To do so, we apply the framework developed in the seminal pa-
per of Shafer (1974), which encompasses models allowing for non-transitive choices
such as (generalized) regret theory (Loomes and Sugden, 1982, 1987), salience the-
ory (Bordalo, Gennaioli, and Shleifer, 2012), and Skew-Symmetric-Bilinear utility
(Fishburn, 1984a.b,c). The relationship between our approach and previous ap-
proaches is as follows. In a standard utility model, z is (weakly) preferred to y if
and only if U(x) —U(y) > 0, where U is a utility function. In a RUM, z is chosen
over y if and only if U(x) — U(y) + €4, > 0, where ¢, is a pair-specific noise term.
In the deterministic model of Shafer (1974), utilities are replaced by two-variable
functions V' (z,y), which can be thought of as “strength of preference,” such that
x is (weakly) preferred to y if and only if V(x,y) > 0. This obviously allows for
nontransitive choices, as V(z,y) > 0 and V(y, z) > 0 do not necessarily imply that
V(z,z) > 0. In our Random Nontransitive Models (RNMs), z is chosen over y if

I'Note that violations of WST should be tested in experiments or datasets at the individ-
ual level, i.e. in settings where the same individual has made a decision multiple times, hence
generating choice frequencies.



and only if V(z,y) + €,, > 0, where ¢, is again a pair-specific noise term. We
work in the universe of RNMs and first derive a nontransitive-preference revelation
result extending the main result of Alés-Ferrer, Fehr, and Netzer (2021), which
we then apply to the data. Models as regret theory or salience theory essentially
postulate specific functions V' (z,y) capturing certain phenomena (e.g., regret or
salience), and thus encompass nontransitive choices. Those models, however, are
deterministic, and hence, by definition, cannot tackle noise. Our RNMs encompass
all such models while providing a framework where noise can be disentangled from
underlying (potentially nontransitive) preferences.

The revelation result we use, as the result of Alds-Ferrer, Fehr, and Netzer
(2021), is based on robust empirical regularities of choices and response times
arising from psychology and neuroscience. First, easier choice problems are more
likely to elicit correct responses than harder problems. This psychometric effect is
perhaps one of the most robust facts in all of psychology (Cattell, 1893; Laming,
1985; Klein, 2001; Wichmann and Hill, 2001), and extends to cases where the cor-
rect response is subjective, e.g. favorite colors, and is uncovered by the researcher
through ratings (Dashiell, 1937). The phenomenon has also been established for
economic decisions, with evidence dating back to Mosteller and Nogee (1951) and
including the recent Alés-Ferrer and Garagnani (2022a,b). Second, easier choice
problems take less time to respond to than harder problems. This extremely-
robust chronometric effect is considered a zero-order fact in the cognitive sciences,
and there is overwhelming evidence for it in a wide variety of domains, starting
with classical contributions as Cattell (1902), Moyer and Landauer (1967), Moyer
and Bayer (1976), and Dehaene, Dupoux, and Mehler (1990). The finding extends
of course to preferential choices, as in Dashiell (1937), and a growing number of
contributions have demonstrated it in economic decisions, including intertempo-
ral decisions (Chabris et al., 2009), social preferences (Krajbich et al., 2015), and
decisions under risk (Moffatt, 2005; Alés-Ferrer and Garagnani, 2022a,b).

Originally, the psychometric and chronometric effects where documented in
discrimination tasks, where a decision is hard when the difference between two
stimuli is small. The fact that error rates and response times are large in this case
simply reflects the difficulty in separating the values of the options (see, e.g., Fu-
denberg, Strack, and Strzalecki, 2018). In RUMs, harder choices are those where
the utilities U(z) and U(y) are closer, and hence more difficult to tell apart. Of
course, the psychometric effect is an integral part of standard RUMs, which as-
sume that choice probabilities are monotone in utility differences. The contribution

of Alés-Ferrer, Fehr, and Netzer (2021) was to integrate chronometric effects in



RUMs and show how to use them for preference revelation. Analogously, in RNMs,
harder choices are those where the strength of preference V(z,y) is smaller, and
we rely on psychometric and chronometric effects for our results. Importantly, our
approach provides conditions (in terms of choice frequencies and distributions of
response times) which, if fulfilled, reveal the underlying preference within a pair
independently of any assumptions on the behavioral noise. Within the class of
RNMs, those revealed preferences can in turn reveal nontransitive cycles. That is,
contrary to WST and other approaches, we do not look for violations of certain
implied conditions (on choice frequencies only), but rather examine when nontran-
sitive preferences are revealed by the choice and response time data. In this sense,
an RTV does not just imply that the data violates transitivity: it actually reveals
nontransitive preferences behind the data.

Our theoretical approach requires datasets where subjects make the same choice
multiple times (as in any experiment focusing on WST violations) and where
response times were explicitly and reliably measured. We obtained two datasets
with these characteristics from Davis-Stober, Brown, and Cavagnaro (2015) and
Kalenscher et al. (2010). It is important to note that none of these datasets was
collected with our approach in mind, and hence they also serve as a demonstration
of the applicability of our techniques. As anticipated above, we find that there
are revealed transitivity violations in the data, hence rejecting the hypothesis
that choices can be represented by transitive preferences plus behavioral noise.
Naturally, however, not all violations of WST are true violations of transitivity,
and hence our approach provides a better estimate of the extent of nontransitivite
preferences, which is necessarily smaller than that derived from WST alone.

The observation that nontransitivities exist and cannot be explained by noise,
but that they might be less frequent than previously assumed, begs the question of
how much they matter. In the last part of the paper, we use standard microecono-
metric models and the response-times techniques of Alés-Ferrer, Fehr, and Netzer
(2021) to predict choices out of sample. Both methods are based on estimating
transitive preferences in the presence of behavioral noise, an assumption that is
rejected by our analysis. However, the question at this point is not whether this
assumption is correct (it is not), but whether it is useful (as a simplification). In
other words, we aim to determine whether the fact that transitivity violations exist
seriously impairs our capacity to predict new choices. We find that the predictive
performance of standard, parametric microeconometric methods is rather modest,
but the nonparametric “Time Will Tell” method of Alés-Ferrer, Fehr, and Netzer
(2021) significantly improves upon them. The performance is high enough to be



useful, and larger than the standard levels reported in the literature: in spite of
nontransitivities, around 75% of out-of-sample choices are correctly predicted by
transitive preferences estimated according to the Time Will Tell method.

We view our results as a call for attention. The fundamental assumption that
economic choices can be explained by transitive preferences is useful but wrong,
even if one allows for behavioral noise. Any model that assumes that people
evaluate alternatives independently of other alternatives and tend to choose the
option with the higher overall evaluation satisfies transitivity, and hence stands
on somewhat-shaky grounds. This includes of course normative models as ex-
pected utility theory, but also descriptive models built to accommodate behavioral
anomalies as cumulative prospect theory, prospective reference theory, transfer of
attention exchange, gains decomposition utility and many others (Tversky and
Kahneman, 1992; Birnbaum, Patton, and Lott, 1999; Luce, 2000; Marley and
Luce, 2005). The extent of actual transitivity violations in the data might be
small enough for those models to remain applicable, but it is clear that their ap-
plicability must have an upper bound. Ultimately, applied economics needs to
embrace models allowing for violations of transitivity. Those are still sparse (e.g.
Shafer, 1974; Loomes and Sugden, 1982; Fishburn, 1982, 1986; Bordalo, Gennaioli,
and Shleifer, 2012), but include some prominent examples as salience theory and
regret theory.? The fact that those models violate transitivity should not be seen
as grounds for criticism, but rather as an advantage (a feature, not a bug!).

The paper is structured as follows. Section 2 briefly summarizes the key em-
pirical contributions in the previous literature on transitivity violations. Section
3 presents the theoretical framework, starting with a brief review of the received
deterministic models which allow for transitivity violations (Section 3.1) and con-
cluding with our generalization of random utility models to the nontransitive case
and the preference revelation result through response times (Section 3.2). Section
4 presents our empirical analysis of two existing lottery-choice datasets and applies
the techniques to uncover the extent of revealed transitivity violations. Section
5 presents the out-of-sample prediction analysis. Section 6 concludes. Additional

analyses and details are in the (Online) Appendix.

20ther models that allow for transitivity violations include lexicographic semiorders (Hausner,
1954; Fishburn, 1971; Birnbaum and Gutierrez, 2007), similarity theory (Fishburn, 1991; Leland,
1994, 1998), the context-dependent model of the gambling effect (Bleichrodt and Schmidt, 2002),
and the stochastic difference model of Gonzalez-Vallejo (2002).



2 Previous Evidence on Nontransitivities

Systematic empirical evidence on transitivity violations goes back to May (1954),
who collected choice data for pairs of hypothetical marriage partners described ac-
cording to intelligence, looks, and wealth. However, the evidence was in the form
of intransitive cycles when the choices of all participants were aggregated, and
hence reduces to the well-known observation that Condorcet cycles might appear
when transitive preferences are aggregated. Actual evidence on nontransitive pref-
erences at the individual level was first presented by Tversky (1969), using binary
choices among simple monetary lotteries and also among hypothetical job appli-
cants. Almost all participants displayed at least one weak stochastic transitivity
violation. These descriptive findings were subsequently replicated (Montgomery,
1977; Lindman and Lyons, 1978; Budescu and Weiss, 1987), but the later literature
cast doubts on the strength of the evidence. Iverson and Falmagne (1985) rean-
alyzed the data of Tversky (1969) and argued that the evidence was compatible
with transitive preferences and noisy choices. They further criticized the original
work’s statistical analysis and found that only one of Tversky’s participants signif-
icantly violated transitivity using likelihood ratio tests, which of course implicitly
assume (a particular shape of) noise in actual choices. It has also been criticized
that participants in Tversky (1969) were pre-selected.

Later empirical demonstrations of nontransitive choice have been similarly crit-
icized, the core argument frequently being that data might be compatible with
transitive but noisy behavior. For example, Loomes, Starmer, and Sugden (1989,
1991) argued that the classical preference reversal phenomenon (Lichtenstein and
Slovic, 1971; Grether and Plott, 1979; Tversky and Thaler, 1990), where choices
systematically contradict elicited (monetary) valuations, might be due to transi-
tivity violations. That is, actual nontransitive choices might build a cycle where a
lottery A is preferred to a lottery B and this second lottery is (of course) revealed
indifferent to its own certainty equivalent, but the latter is strictly preferred to the
certainty equivalent of A. However, Sopher and Gigliotti (1993), in a replication of
Loomes, Starmer, and Sugden (1991), estimated an econometric model of choice
with a specific structure of random errors, and could not reject the null hypothe-
sis of transitive preferencess and noisy choices. On the other hand, Starmer and
Sugden (1998) further replicated the work in Loomes, Starmer, and Sugden (1991)
and observed the same cycling asymmetries, suggesting that those are unlikely
to be due to noise. Other arguments which might explain transitivity violations
in decisions under risk were considered by Humphrey (2001), who for instance

discarded that those might be explained by event-splitting effects (a phenomenon



where preferences are affected by presenting the same event as two different events
with the same consequences and the same total probability).

Regenwetter, Dana, and Davis-Stober (2010, 2011) argued that violations of
transitivity are better analyzed through violations of the triangle inequality, p(z, y)+
p(y, z) — p(x, z) <1 (Marschak, 1960; Block and Marschak, 1960), instead of vio-
lations of Weak Stochastic Transitivity. Those works found that the first criterion
is often satisfied in (many) existing publications, even when WST is violated.
Cavagnaro and Davis-Stober (2014) argued that the tested populations are best
described as a mixture of different models of choice, with the resulting estimates
suggesting that the majority (but not all) of the people might satisfy transitivity.

Recent studies, however, keep bringing up empirical evidence which might indi-
cate violations of transitivity. Butler and Pogrebna (2018) provided new empirical
evidence using both WST and the triangle inequality. Their evidence showed that
cycles can be the modal preference patterns over simple lotteries even after consid-
ering transitive, stochastic models. Their choices were designed to reproduce the
“paradox of nontransitive dice,” where a heuristic which favors the option (within
a pair) with the largest probability to beat the alternative produce cyclical choices
(Savage Jr., 1994). As in previous cases, however, critical work was close on the
heels of Butler and Pogrebna (2018). Specifically, Birnbaum (2020) argued that
tests of weak stochastic transitivity and the triangle inequality do not provide a
method to compare transitive and nontransitive models that allow mixtures of
preference patterns and random errors. Birnbaum (2020) re-analyzed the data
of Butler and Pogrebna (2018) using a “true and error” model (a class of choice
models with noise terms; e.g., Birnbaum, 2013; Birnbaum and Wan, 2020) and still
found evidence for significant transitivity violations, but the latter are incompati-
ble with the explanation proposed by Butler and Pogrebna (2018) (see, however,
Butler, 2020).

Observed violations of transitivity, whatever their origin, seem to be relatively
stable. For example, Davis-Stober et al. (2019) and Park et al. (2019) report that
neither age nor, surprisingly, alcohol intoxication seem to play a major role in
transitivity violations for decisions under risk. Non-transitive choices have also
been observed in other domains. Li and Loomes (2022) report a substantial level
of nontransitive choices in respondents’ intertemporal decisions, i.e. decisions be-
tween pairs of monetary amounts to be received at different points in time (see
also Tversky, Slovic, and Kahneman, 1990). Birnbaum and Schmidt (2008) find
some evidence for transitivity violations for choices under uncertainty, albeit for

a limited number of participants. Moreover, people frequently violate transitiv-



ity when choosing between multi-attribute consumers’ products (sound systems,
flight plans, and software packages; e.g. Lee, Amir, and Ariely, 2009; Miiller-Trede,
Sher, and McKenzie, 2015; Lee et al., 2015). Naturally, there are also some do-
mains where evidence is less robust, e.g. for hypothetical alternative treatments
in the health domain (Schmidt and Stolpe, 2011), or when choosing between po-
tential sexual partners (Hatz et al., 2020). Finally, violations of transitivity are
no exception to the rule that few behaviors, if at all, are uniquely human: honey
bees and gray jays have been shown to violate transitivity when foraging for food
(Shafir, 1994; Waite, 2001).

We remark that, in this work, we follow the literature which favors testing
transitivity violations using binary choice probabilities instead of choice patterns
(e.g., Birnbaum, 2020; Birnbaum and Wan, 2020). For a discussion of these two
alternative approaches, we refer the reader to Cavagnaro and Davis-Stober (2014)
and Butler (2020). This is a natural choice given our theoretical framework, which
reveals preferences using binary choices. Moreover, the two approaches have been
shown to provide largely consistent evidence (e.g., Butler and Pogrebna, 2018;
Birnbaum, 2020).

Needless to say, this section is not and cannot be a complete review of the
literature on transitivity violations. We refer the reader to the recent review of
Ranyard et al. (2020), who also estimated a simplified additive-difference model
based on the processing of alternative dimensions. Similarly to Regenwetter, Dana,
and Davis-Stober (2010, 2011), Ranyard et al. (2020) argue that people seem to
behave according to different models of choice, and many individuals are best

explained by models which do violate transitivity.

3 Distinguishing Noise from Nontransitive Pref-

erences

To test whether choices are transitive, one needs to allow for the possibility that
they are not. Following Shafer (1974) and others, we refer to a complete but not
necessarily transitive binary relation on a set X as a nontransitive preference. In
this section we first briefly review deterministic models of nontransitive choice,
and then proceed to extend random utility models to allow distinguishing between
the nontransitivities which are simply due to noise and those which are due to

underlying nontransitive preferences.



3.1 Deterministic Models of Nontransitive Preferences

If transitivity does not hold, choices can not be presented by preferences or utility
functions. It is, however, possible to represent nontransitive binary relations on a
set X through real-valued, two-argument functions as follows. Consider a skew-
symmetric function v : X% — R, ie. v(z,y) = —v(y,z) for all x,y € X. We say
that a nontransitive preference > on X is represented by a function v : X? s R if,
forall z,y, € X, v(z,y) > 0 holds if and only if z > y. For Euclidean spaces, Shafer
(1974) proved that every strictly convex and continuous nontransitive preference
can be represented by a continuous, skew-symmetric function as above. This is a
natural generalization of representation results for transitive preferences, in which
case one can set v(z,y) = u(x) — u(y) for a utility function u. Interestingly, the
function v has been interpreted as a “strength of preference” (see, e.g. Fishburn,
1988, Chapter 3.9 and ff.), with values of v(z, y) close to zero indicating a difficult
decision (the decision maker is close to indifference).

The reason why this representation allows for nontransitivities is transparent.
That v(x,y) > 0 and v(y, z) > 0 delivers no implication for the sign of v(x, z),
while u(x) — u(y) > 0 and u(y) — u(z) > 0 immediately yield that u(z) — u(z) =
[u(x) = u(y)] + [u(y) —u(2)] = 0.

When the alternatives are lotteries, adding the requirement that v is linear in
both arguments results in skew-symmetric bilinear (SSB) representations, which
have been studied by Kreweras (1961) and Fishburn (1982, 1984b, 1986), among
others. Specifically, let Lq, Ly be simple lotteries on the set of outcomes X, i.e.
Li(x), Ly(z) denote the respective probabilities of outcome x and those are only
positive for finitely many outcomes. The function v can be extended bilinearly to

simple lotteries by

VISB(Ly, Lo) = 37 3 Lu(@) La(y) - v(z, y).
zeX yeX

so that Ly is weakly preferred to L, if and only V58 (L1, Ly) > 0. This generalizes
expected utility, since if v(x,y) = u(z) — u(y) for a utility function u on X, then
VISB(Ly, Ly) = Ypex Li(@)u(z) — X ex Lo(y)u(y). However, the SSB form does
not require transitivity and indeed allows for cycles and violations of the inde-
pendence axiom (see Fishburn, 1988 for an axiomatization of SSB nontransitive
preferences). That is, the function V5P is a particular example of the approach
of Shafer (1974) for a space of lotteries.

Some other prominent theories have incorporated behavioral phenomena (re-

gret and salience, respectively) in decision making under risk by capturing said

10



phenomena in a skew-symmetric function over outcomes and then extending it to
lotteries in a manner akin to SSB models. Those models, however, are formulated
in terms of acts (Savage, 1954), that is, mappings from a set of states to outcomes,
and hence it is better to change notation at this point. Let the (finite) set of states
be denoted by S, and let p(s) denote the probability of a state s € S. A lottery
L7 is then a vector of outcomes (z,),.q, With the interpretation that outcome z
obtains if state s occurs.

Loomes and Sugden (1982) introduced regret theory as a particular model al-
lowing for transitivity violations in the risk domain. Diecidue and Somasundaram
(2017) showed that regret theory deviates from expected utility only by relaxing
transitivity. Loomes and Sugden (1987) later extended this framework to gen-
eralized regret theory. This theory considers monetary consequences, X C R,
and starts out by postulating a real-valued, two-argument function M, so that
if z,y € X, M(z,y) is interpreted as the utility of choosing = net of the regret
associated with missing out on y. Then it defines the function v by vf(x,y) =
M (z,y) — M(y,x) which is immediately skew-symmetric and hence a particular
case of the approach of Shafer (1974) for the space of outcomes. Analogously to
SSB models, but within the formalization of lotteries as acts, a lottery L* is weakly
preferred to a lottery LY if and only if VE(L®, L¥) > 0, where

VE(LT, LY) =3 p(s)o" (s, ys)-

SES

Loomes and Sugden (1987) further impose several assumptions on v%

, namely
that vf(z,y) > 0 if and only if z > y (so that v represents the preferences on
outcomes “more is better” in the sense of Shafer, 1974), that v%(z, z) > v%(y, 2)
(resp. <,=) if and only if z > y (resp. <,=), and a “regret aversion” assumption
stating that vf(z,2) > v®(x,y) + v2(y, z) whenever x > y > 2, meaning that
large post-decision regrets are worse than the sum of step-wise, smaller regrets. In
particular, skew symmetry and these conditions imply that v(z,y) > 0 if x > y,
v(z,y) < 0if x <y, and v(z,x) = 0, for any outcomes z,y.

The comparison of regret theory and SSB theory is obscured by the fact that
the former is formulated in terms of lotteries as acts, while the latter is formulated
in terms of lotteries as probability distributions. Loomes and Sugden (1987) show
that, for stochastically independent lotteries (where the set of states can be seen as
a product of lottery-specific sets of states), generalized regret theory is equivalent
to SSB theory. Again, the function VF becomes a particular example of the

approach of Shafer (1974) for a space of lotteries.
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Bordalo, Gennaioli, and Shleifer (2012, 2013) introduced salience theory by
postulating a symmetric function o, i.e. o(x,y) = o(y,z) for all z,y € X C R,
with the interpretation that for a lottery pair (L*, LY), o(xs,ys) is the salience of
the state s. This function is assumed to fulfill a number of properties capturing
the idea of salience. In a “smooth” version of the theory, salience values are
transformed through an increasing, real-valued function f which preserves salience

rankings as derived from o, yielding®

N " f(O'(l‘S,ys))
¢s(L*, L) = Sres flo(xr,yr))

The decision maker then attaches a value to lottery L* which depends on the

alternative lottery LY,

UST(L*|LY) = " qs(L*, L Yu(xy)
s€S
where w is strictly increasing with u(0) = 0.
Although (smooth) salience theory appears functionally different from gener-
alized regret theory and SSB models, it is worth observing that there is a relation.

Under salience theory, a lottery L* is weakly preferred to a lottery LY if and only
if VST(L®, LY) > 0, where

VST Lm Ly Zp xs; ys)) [ <x8> - u(ys)] :

seS

This already shows that regret theory is a further particular case of the approach
of Shafer (1974) for a space of lotteries. Herweg and Miiller (2021) further ob-
serve that the two-argument function on outcomes w7 defined by w®T(x,y) =
f(o(z,y)) [u(x) — u(y)] is skew symmetric, and hence salience theory can be writ-
ten in the same terms as generalized regret theory. Further, assuming continuity
of w and f, the assumptions of (smooth) salience theory imply those of generalized
regret theory, that is, one can view salience theory as a particular case of the latter,
and hence (for stochastically independent lotteries) as a particular case of SSB the-
ory. Interestingly, the original regret theory of Loomes and Sugden (1982), which
was a more specific model, turns out to be a particular case of salience theory if

an additional, mild condition is imposed (Herweg and Miiller, 2021, Theorem 2).

3Bordalo, Gennaioli, and Shleifer (2012) also provide a rank-based version of salience theory
with similar insights. This version is analytically more tractable for specific applications, but
creates discontinuities in valuations (Kontek, 2016).
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All theories discussed above obviously allow for nontransitivities in lottery
choice, since they are built upon the fundamental representation of Shafer (1974).
That is, ultimately they provide a (structural, parametric) functional form for a

function V'(,-) defined on a specific space.*

3.2 Random Nontransitive Models

In this section, we extend the main result of Alés-Ferrer, Fehr, and Netzer (2021)
to allow for nontransitivities. We consider abstract options, which could e.g. be
themselves lotteries (this will be the case in our empirical analyses).

In an additive random utility model (McFadden, 1974, 2001), an agent is as-
sumed to have an underlying utility function u over a feasible set, but to be affected
by random utility shocks. Thus, given a choice between two alternatives x and
y, realized utilities are u(x) + ¢, and u(y) + ¢, respectively, where ¢,, ¢, are
mean-zero random variables. Thus, a RUM generates choice probabilities, with

the probability of x being chosen when y is also available given by
p(z,y) = Prob(u(x) + ¢, > u(y) + ¢,) = Prob(u(z) — u(y) + e, — e, > 0).

where tie-breaking conventions are irrelevant for continuously-distributed errors.
Under specific assumptions on the distributions of the error terms, one obtains
particular models, as the celebrated logit choice (Luce, 1959) or the classical pro-
bit choice (Thurstone, 1927). This general setting has become one of the dominant
approaches in economics to model the fact that choice is empirically (and over-
whelmingly) observed to be stochastic.’

Note that if the error term e,, = ¢, — ¢, is assumed to be symmetrically
distributed around zero, a preference for x over y is revealed if and only if p(z,y) >
1/2. A violation of transitivity in this framework thus consists of three (or more)

alternatives z, y, z such that p(z,y) > 1/2, p(y, z) > 1/2, and p(z, ) > 1/2. Hence

4Tt can be shown that generalized regret theory (and hence smooth salience theory) fulfill
a stronger version of transitivity, called dominance transitivity by Diecidue and Somasundaram
(2017): if L* strictly dominates LY (yields better outcomes for all states, and strictly better for
at least some states) and the latter is preferred to L?, then L* must be strictly preferred to
L?# (and analogously if L is preferred to LY and the latter strictly dominates L#). This rather
strong condition seems to be the only systematic constraint on the kind of transitivity violations
that these models can generate.

5The universe of random utility models comprehends also the class of random parameter
models (e.g., Loomes and Sugden, 1998; Apesteguia and Ballester, 2018) as a special case where
the distribution of errors is constrained by the structure of the family of utility functions, as well
as drift-diffusion models (e.g., Ratcliff, 1978; Fudenberg, Strack, and Strzalecki, 2018; Baldassi
et al., 2020). All these models assume exact functional forms mapping differences in utilities to
error terms, which are valuable as structural assumptions but are in general not directly tested.
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the literature tests for violations of Weak Stochastic Transitivity, which is defined
as: if p(z,y) > 1/2 and p(y, z) > 1/2, then p(z,z) > 1/2.5 However, since noise
is not directly observable, the assumption of symmetric noise is untestable and
might be unwarranted in general.

Al6s-Ferrer, Fehr, and Netzer (2021) introduced a more general class of RUM
models where error terms are modeled directly for utility differences, i.e. the re-
alized utility difference given a choice {x,y} is u(x) — u(y) + €, for a mean-zero

random variable ¢, , and hence
Pz, ) = Prob(u(x) — u(y) + £,y > 0).

That work provided sufficient conditions on the distributions of response times
conditional on each possible choice (x or y for a given pair {x,y}) which ensure
that any RUM within a given class (defined by restrictions on the error terms, e.g.
symmetry) which fits the data (in terms of choices and response times) reveals
a preference for, say, x over y, in the sense that u(x) > wu(y) for the underlying
u. The importance of those results relies on the fact that they guarantee that an
option is preferred to another for any utility function and any distribution of the
error term that the analyst might consider, and hence the results are completely
non-parametric and independent of functional forms. The message is that the
properties of the empirical distribution of response times allow to recover the
underlying preferences in random utility models without imposing any substantive
assumptions on the distribution of random terms.

To allow for nontransitive preferences, we go one step forward and consider
any skew-symmetric function v : X? — R (not necessarily arising from a utility
function). That is, we consider models where noise is captured by mean-zero

random variables ¢, , and choice probabilities are given by
p(z,y) = Prob(v(x,y) + &4, > 0).

We remark at this point that our approach is agnostic with respect to whether
decisions among lotteries are best represented by expected utility theory, prospect
theory, or any other model generating preferences among lotteries. We merely
test the class of models generating transitive choices, where the function above

can be written as v(z,y) = u(z) — u(y), against the class of models allowing for

6As discussed in Section 2, Regenwetter, Dana, and Davis-Stober (2010, 2011) and others
have argued in favor of criteria other than WST to test for stochastic transitivity. However,
WST remains a natural choice given our theoretical framework, and we will use it for ease of
comparison to the literature.
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nontransitivity lottery choices, where the function v(z,y) cannot be written as
a difference of utilities independently of the considered alternatives. The former
class includes expected utility theory, rank-dependent utility theory, cumulative
prospect theory, and others, while the latter includes generalized regret theory,
salience theory, and SSB utility theory.”

To spell out the result, we need to define what we understand by a dataset.
Given the set of alternatives X, denote by C' = {(x,y) | =,y € X,z # y} the set
of all binary choice problems, so (z,y) and (y,x) both represent the problem of
choice between x and y. Let D C C be the set of choice problems on which we
have data in the form of direct choices, assumed to be non-empty and symmetric,
that is, (z,y) € D implies (y,x) € D. A dataset (including response times) is
modeled as follows (Alés-Ferrer, Fehr, and Netzer, 2021).

Definition 1. A stochastic choice function with response times (SCF-RT) is a pair

of functions (p, f) where

(i) p assigns to each (z,y) € D a frequency p(x,y) > 0, with the property that
p(z,y) +ply,z) =1, and

(ii) f assigns to each (z,y) € D a strictly positive density function f(z,y) on
R,.

In an SCF-RT, p(z,y) is interpreted as the proportion of the time that a de-
cision maker chose x when offered the binary choice between x and y. The as-
sumption that p(x,y) > 0 for all (x,y) € D implies that choice is noisy, that is,
every alternative is chosen at least a small fraction of the time. The density f(z,y)
describes the distribution of response times conditional on the instances where x
was chosen in the binary choice between x and y. The corresponding cumulative
distribution function is denoted by F(z,y). The following definition extends the
concepts in Alés-Ferrer, Fehr, and Netzer (2021).

Definition 2. A random nontransitive model with a chronometric function (RNM-
CF) is a triple (v,9,7) where v : X? — R is a skew-symmetric function and
0 = (0(2,Y))(a,y)cc is a collection of real-valued random variables, with each o(z, y)

having a density function g(z,y) on R, fulfilling the following properties:

(RNM.1) E[o(z,y)] = v(z,y),

"We remind the reader that our functions v and v are defined here on an abstract space. For
a space of lotteries, v might be expected utility and v might be any of the functions V598 VE,
V'S described in Section 3.1.
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(RNM.2) o(z,y) = —0(y, z), and
(RNM.3) the support of o(z,y) is connected.

Further, r : R, — R, is a continuous function that is strictly decreasing in v

whenever r(v) > 0, with lim,_,07(v) = oo and lim,_, r(v) = 0.

A RUM-CF is a particular case of RNM-CF where the function v is derived from
a utility function, v(z,y) = u(x) —u(y), and hence transitivity is guaranteed. The
random variables (z, y) and their densities g(x, y) capture noisy choice. Condition
(RNM.1) requires that noise is unbiased (equivalent to assuming mean zero for an
additive term e,, = 9(z,y) — v(z,y)). Condition (RNM.2) reflects that the choice
between x and y is the same as the choice between y and z, and condition (RNM.3)
is a regularity condition requiring connected support, i.e. without gaps. Last, r
represents the chronometric function, which maps realized values of v into response
times r(|v|). Specifically, easier choices (where the value o(z, y) is larger) are faster.
This is in keeping with the interpretation that the function v captures a strength
of preference.

Given an RNM-CF (v, 0,7) and a pair (z,y) € C, the random variable describ-
ing the response times predicted by the model conditional on z being chosen over

y is given by

t(z,y) = r(|o(z,y)),

conditional on o(z,y) > 0.
The results we seek will be in terms of preference revelation for all RNM-CFs
which rationalize (explain) the data. The following definition pins down the formal

meaning of the latter.
Definition 3. An RNM-CF (v, 9,r) rationalizes an SCF-RT (p, f) if
(i) p(x,y) = Problo(z,y) > 0] holds for all (z,y) € D, and

(ii) F(z,y)(t) = Probli(z,y) < t | (x,y) > 0] holds for all £ > 0 and all
(x,y) € D.

In other words, an RNM-CF (the model) rationalizes an SCF-RT (the data)
if it reproduces both the choice frequencies and the conditional response time
distributions in the latter. Obviously, fixing the set D, every RNM-CF generates
an SCF-RT through the equations given in (i) and (ii) above, thus an alternative
definition is that an RNM-CF rationalizes an SCF-RT if it coincides with the
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SCF-RT generated by the former. We say that an SCF-RT is rationalizable if
there exists an RNM-CF that rationalizes it. Note that an SCF-RT might be
rationalizable by an RNM-CF even though it is not rationalizable by a RUM-CF.

The last definition captures preference revelation in a potentially nontransitive

framework.

Definition 4. A rationalizable SCF-RT reveals that x is preferred to y if all RNM-
CFs that rationalize it satisfy v(z,y) > 0. It reveals that x is strictly preferred to
y if all RNM-CFs that rationalize it satisfy v(z,y) > 0.

The results in Alds-Ferrer, Fehr, and Netzer (2021) make use of the following
technical concept. Given two cumulative distribution functions G and H on R,

and a constant ¢ > 1, we say that G ¢-first-order stochastically dominates H (also
written G ¢-FSD H) if

G(t) <q-H(t) for all t > 0.

If the inequality is strict for some t, then G strictly q-first-order stochastically
dominates H (written G ¢-SFSD H). For ¢ = 1, these concepts coincide with the
standard notions of first-order stochastic dominance, but they are weaker when
q > 1. Clearly, ¢-FSD implies ¢’-FSD whenever ¢ < ¢'.

The following Theorem generalizes the main result of Alés-Ferrer, Fehr, and

Netzer (2021) for the case of nontransitive preferences.

Theorem 1. Consider random nontransitive models. A rationalizable SCF-RT
(p, f) reveals that x is preferred to y if F(y,x) ¢-FSD F(z,y), and that x is strictly

preferred to y if F(y,x) q-SFSD F(z,y), for ¢ = p(z,y)/p(y, ).

Proof. The proof is as the proof of Theorem 1 in Alds-Ferrer, Fehr, and Netzer
(2021) replacing u(x) — u(y) with v(x,y). All arguments go through with the

concepts amended as above. O

Remark 1. Note that the condition that F(y,z) ¢-FSD F(x,y) implies that ¢ > 1
(e.g., by taking limits as ¢ — o0) even if this were not stated as part of the
definition. That is, if Theorem 1 reveals a (nontransitive) preference for x over v,
if follows that p(z,y) > 1/2, i.e. preferences cannot be revealed “against” choice
frequencies, but choice frequencies do not imply preference revelation. This is
important because most evidence for nontransitivities has been evaluated on the

basis of Weak Stochastic Transitivity, which is stated in terms of choice frequencies.
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Suppose that a dataset seems to point at nontransitive behavior, e.g. due to a
violation of Weak Stochastic Transitivity. That is, the data identify a cycle of, say,
three alternatives x,y, z such that p(z,y) > 1/2, p(y,2) > 1/2, and p(z,z) > 1/2.
While a researcher might take this as evidence of a transitivity violation, another
researcher might argue that those population frequencies have arisen due to noise
(as in a random utility model) even though underlying preferences are transitive.
Until now, there was no way out of this debate, as there was no tool capable of
determining whether an apparent violation of transitivity was due to noise or not.

Theorem 1 provides the missing tool. Suppose three alternatives z,y, z build a
violation of Weak Stochastic Transitivity for a given decision maker, as described
above. If the dataset includes response times, one can apply the “Time Will Tell”
(TWT) method derived from Theorem 1 to each of the pairs (z,y), (y,z), and
(z,z). In view of Remark 1, only two outcomes are possible. In the first case,
preferences are revealed for all three pairs, which necessarily reveals a nontransi-
tive cycle (except in the knife-edge case of full indifference). In this case, Theorem
1 shows that any model of choice explaining the observed data needs to entail a true
nontransitive cycle, independently of the model of noise assumed (and, in particu-
lar, whether noise is symmetric or not). That is, in this case, a truly nontransitive
cycle is revealed, which cannot be due to noise. In the second case preferences
fail to be revealed for at least one of the pairs. In this case, the researcher is not
entitled to conclude that the observed violation of Weak Stochastic Transitivity
is actually due to a nontransitivity in underlying preferences; in other words, the

observed violation might well be due to noise.

4 Empirical Evidence for Nontransitivity

4.1 Description of the Datasets

In this section we apply Theorem 1 to two existing datasets, both of which were
specifically collected to study transitivity violations. The selected datasets, from
Davis-Stober, Brown, and Cavagnaro (2015) (DSBC) and Kalenscher et al. (2010)
(KTHDP), are ideal for our purposes because they include response times and
every participant repeated every choice a reasonable number of times.

In the dataset of DSBC, N = 60 subjects made binary choices among different
lotteries in a 2 x 2 within-subject design. Specifically, the experiment varied the
display format of the lotteries (pies vs. bars) and whether participants faced a
time constraint when making their choices or not (4 seconds vs. no time limit).

The choice pairs were drawn from two sets of five lotteries each, with one lottery
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Figure 1: List of lotteries and implemented pairwise comparisons in Davis-Stober,
Brown, and Cavagnaro (2015) (left) and Kalenscher et al. (2010) (right).

common to the two sets. All possible combinations of the lotteries within each set
were implemented, giving rise to 20 distinct choice pairs (see Figure 1, left). Each
of these pairs was repeated 12 times in each of the 4 possible conditions, for a total
of 12 x 4 x 20 = 960 choices per participant. Each participant took part in two
sessions, with two (randomly allocated) combinations of time pressure and display
format manipulations in each of them. Choices were incentivized (one decision
from each condition was randomly selected and paid, in addition to a show-up
fee).

In the dataset of KTHDP, N = 30 subjects made binary choices among five
different lotteries.® All combinations of the lotteries where implemented (see Fig-
ure 1, right). Each of the 10 resulting choice pairs was repeated 20 times, for a
total of 200 trials per participant. Participants needed to decide within 4 seconds,
with missed time limits resulting in a missed trial. Each participant took part in a
single, individual-level session while being scanned in an fMRI machine. Choices
were incentivized (with dummy dollars translated into Euro with a conversion rate
of 100:1), with one randomly-selected decision paid in addition to a show-up fee.

In addition to the presence of repetitions, the measurement of response times,
and the fact that they were collected to study transitivity violations, the two
datasets are also interesting for other reasons. First, all lotteries involve only
one non-zero outcome and hence can be presented with only two variables (a
single outcome and its probability). This makes alternatives easy to compare for
participants. Second, all magnitudes in each of the experiments are comparable
(without extreme differences), hence mitigating possible concerns regarding range
or outlier effects. Third, none of the lotteries involves probabilities close to zero

or one, which are known to bias behavior.

8Further 240 filler lotteries were used, but they all were paired in a way which involved
dominated choices, and hence are not interesting for our purposes.
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Figure 2: If the subset of WST violations (subset of all cycles in the circle) are
due to noise, then the set of revealed violations (subset in red) should be empty.
However, if transitivity violations are not noise, then this subset should be non-
empty. In practice, this subset must coincide with set of all WST violations where
preferences are revealed for each involved pair.

4.2 Strategy of Analysis and Preliminaries

We now investigate transitivity violations in the two datasets. A Revealed Tran-
sitivity Violation (RTV) exists in the data whenever application of Theorem 1
reveals a cycle with 1 = x9 > ... = z,, and z,, > ;. An RTV reveals a nontran-
sitivity which cannot be explained by noise, and in this sense disentangles noise
from true transitivity violations. Since, within the universe of RNMs, preferences
revealed by our method are independent of the form of noise assumed, we conclude
that transitivity violations which involve only revealed preferences cannot be due
to any form of noise or because of the specific function v that one assumes.

Up to now, the empirical literature has predominantly looked at violations of
Weak Stochastic Transitivity (WST) to study transitivity violations. This property
states that for all z1, x9, 23 such that p(xy,z2) > 1/2 and p(xq, z3) > 1/2, it must
follow that p(zq,x3) > 1/2. Other concepts of transitivity in a stochastic setting
exist, as e.g. strong stochastic transitivity (where the implication is that p(zq, z3) >

max{p(x1, z2),p(xa, x3)}) or moderate stochastic transitivity (which replaces the
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maximum with the minimum in the previous implication). See Fishburn (1998)
for an overview.

The concept of RT'V is more stringent than violations of WST. If a nontransitive
cycle x1 > x9 = w3 > x1 is revealed by an application of Theorem 1, it follows from
Remark 1 that this cycle also entails a WST violation. Hence, the concepts are
naturally nested, that is, every RTV is necessarily a WST violation. The question
we ask is what is the proportion of empirical WST violations where the researcher
is actually justified to conclude that a transitivity violation actually exists and is
not simply due to behavioral noise.

The intuition behind the relation between WST violations and our analysis is
sketched in Figure 2. Fix a cycle of alternatives, (z1,xs,...,Zpn, Tny1 = x1). We
apply Theorem 1 to the data for every binary choice along the cycle, {z;, x;11},
i = 1,...,n. If any of the preferences along this cycle is not revealed (neither
X ¥ Xip1 NOr Ty = x;, as in the left-hand-side part of the figure), then no
conclusion can be drawn as to whether the cycle entails a transitivity violation or
not. However, data can still show a WST violation. In that case, the researcher
is not entitled to conclude that a true transitivity violation exists, as the choice
proportions might be due to noise. If all preferences along the cycle are revealed
after application of Theorem 1, those might build a transitivity violation (an RTV)
or not. We know from Remark 1 that all RTVs must be violations of WST.
Conversely, if all preferences along a cycle violating WST are (strictly) revealed,
again by Remark 1 the cycle must in practice be an RTV. For, if a preference
between x and y is revealed and p(z,y) > 1/2, only a preference of x over y can
be revealed.’

If choices were always transitive, empirically-observed WST violations would
be due to noise. Then, once we identify which preferences are revealed, the subset
of RTVs should be empty. On the other hand, if transitivity violations are not
due to noise, then the subset of cycles where all preferences are revealed should
still contain violations of transitivity, i.e. RT'Vs. The size of this set relative to the
size of the set of cycles involving WST violations (and where all preferences along
the cycle are revealed) quantifies how accurate WST actually is in detecting true

transitivity violations, conditional on preferences being revealed. The size of the

%In principle, it is possible that p(z,y) > 1/2 but the TWT method only reveals a weak
preference, which would make it possible to have a WST violation which cannot be concluded
to be an RTV (instead of an indifference cycle). It is also possible that a WST violation involves
p(z,y) = 1/2 and the TWT method reveals a strict preference either way, hence allowing for
WST violations where all preferences are (even strictly) revealed but a nontransitive cycle does
not arise. In practice, such knife-edge cases are empirically rare and they never occurred in our
data.
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Figure 3: Distribution of the individual proportions of WST (on the left) and of
revealed preferences (on the right). Violin plots show the median, the interquartile
range and the 95% confidence intervals as well as rotated kernel density plots on
each side.

set of RT'Vs relative to the size of all WST violations quantifies the accuracy of
taking the latter as a proxy of true transitivity violations.

As explained above, we aim to compare revealed nontransitivities according to
Theorem 1 with violations of WST. For this analysis to be feasible, two precon-
ditions must be fulfilled. First, enough WST violations should be present in the
data. Second, a relatively large proportion of the observed choices should lead to
the underlying preferences being revealed by Theorem 1. Figure 3 illustrates that
both preconditions are met. The left-hand side of this figure displays violin plots
for the subject-level proportion of WST violations (the differences across datasets
are presumably due to differences in stimuli and experimental implementation).
For DSBC, we observe an average of 20.77% WST violations (median 20.61%,
SD=5.28, min 9.04%, max 34.57%), while in KTHDP the average is 15.42% (me-
dian 15.69%, SD=13.93, min 0.00%, max 49.02%). These proportions are roughly
representative of results in the literature, and indicate a sizeable percentage of
transitivity violations if WST is used as a criterion.

The right-hand-side of Figure 3 illustrates how often application of Theorem
1 reveals preferences. That is, for every potential cycle and every binary choice
along the cycle, we compute the choice proportions and the response time densities
and check whether the condition in Theorem 1 holds.!® For DSBC, the average

percentage of choices at the subject level for which the method reveals preferences

106 reveal preferences using the TWT method, we need to estimate the density of the distri-
bution of response times. As in Alés-Ferrer, Fehr, and Netzer (2021), the kernel density estimates
were performed in Stata using the akdensity function, which delivers CDFs as output. We es-
timate the distribution of log-transformed response times to avoid boundary problems. The
estimates use an Epanechnikov kernel with optimally chosen non-adaptive bandwidth. For the
case where some choice is made only one out of the total number of repetitions (only a single
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is 56.67% (median 57.22%, SD= 6.15, min 44.66%, max 68.31%), while for KTHDP
is 77.00% (median 75.00%, SD=15.57, min 40.00%, max 100.00%). Thus, in our
datasets, the method reveals preferences often enough for an analysis of revealed

nontransitivities to be conducted.

Remark 2. For DSBC participants, we find no differences in the proportion of
revealed preferences depending on whether subjects were under time pressure or
not (56.13% vs. 57.16%; WRS, N = 60, z = —0.942, p = 0.3505). This is
important, as it suggests that even though the method relies on response times,
its capacity to reveal preferences is not affected by (reasonable) time limits, and

hence it is robust with respect to such manipulations.

4.3 Revealed Transitivity Violations

We now turn to our main analysis. Say that a cycle of alternatives

(X1, T2y ooy Ty Ty = T1)

is a revealed cycle if all preferences along the cycle are revealed, i.e. the method
reveals either x; = x;,1 or x;,1 = x;, foralli = 1,... n. The proportion of revealed
cycles is obviously smaller than the proportion of choices for which preferences are
revealed, since all preferences along a cycle must be revealed for the cycle to be
revealed. For DSBC, 20.82% of cycles are revealed (median 22.08%, SD=7.61, min
0.00%, max 32.08%), and the number is 54.25% (median 60.00%, SD=25.00, min
0.00%, max 100.00%) for KTHDP.

Figure 4 illustrates how the stylized partition of data sketched in Figure 2 looks
like for the two actual datasets. We compute the proportion of all WST violations
where the cycle is revealed and check that they are indeed RT'Vs. Recall that every
RTV is a WST violation, and, except for knife-edge cases, every WST violation
where preferences are revealed is an RTV. Indeed, in both datasets, every single
WST violation for a revealed cycle is also an RT'V.

We obtain that, on average across subjects, 19.24% of all WST violations are
actually RTVs for DSBC (median 17.71%, SD=9.56, min 4.35%, max 43.42%).
The average is 39.58% for KTHDP (median 29.41%, SD=32.60, min 0.00%, max
100.00%). That is, when using WST to evaluate whether people violated transi-

tivity, in about a third of cases the data provide enough evidence to support the

response time is available) an optimal bandwidth cannot be determined endogenously, so we set
it to 0.1, yielding a distribution function close to a step function at the observed response time.
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Figure 4: Proportion of all WST violations where the cycle is revealed or not for
DSBC (on the left) and KTHDP (on the right). All WST violations where the
cycle is revealed are RT'Vs.

statement that these choices are not just behavioral noise. In the rest of the cases,
the researcher is not entitled to state that WST violations are not just noise.

In other words, for 19.24% of all WST violations for DSBC, and 39.58% for
KTHDP, application of Theorem 1 reveals a transitivity violation which cannot
be due to noise. In particular, we can conclude that true transitivity violations
indeed exist within the universe of RNM models independently of any assumption
made on the distribution of noise or the underlying value function. At the same
time, for most of the observed WST violations, it cannot be discarded that they
are simply due to some sort of underlying noise. That is, in the majority of cases
which the literature has identified as WST violations, data might not actually
allow to conclude that these reflect actual transitivity violations.

As a percentage of all decisions, the set of transitivity violations (RT'Vs) is com-
paratively small. The individual proportion of revealed transitivity violations over
all cycles in DSBC is 4.03% (median 3.72%, SD=2.27, min 0.53%, max 10.32%)
and 6.47% in KTHDP (median 1.96%, SD=8.40, min 0.00%, max 27.45%).

The message which arises from our analysis is two-fold. First and foremost, our
approach identifies transitivity violations which cannot be explained by noise (at
least within the framework of RNMs), and hence the set of violations we identify
stand on conceptually solid ground as a demonstration that nontransitivities in
the data do occur. Second, however, we conclude that evidence for transitivity

violations, as a percentage of all decision cycles, is smaller than one would conclude
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by using previous measures, in particular violations of WST, in the sense that, for
many of those, it is unwarranted to conclude that a true transitivity violation has

been discovered. We now turn to a more detailed comparison.

4.4 Comparison Between RTVs and WST Violations

We would like to quantify the size of the set of transitivity violations at the individ-
ual level, and compare it to previous measurements using WST. Since the number
of RTVs for a given subject is necessarily smaller than the individual number of
WST violations (Remark 1), we quantify the proportion of RT'Vs in relation to cy-
cles with revealed preferences only. That is, we compute the subject-level number
of RTVs divided by the total number of cycles for which preferences are revealed
along the entire cycle. This proportion is not mechanically related to the propor-
tion of WST violations, and hence this procedure allows a fair comparison of the
magnitudes of transitivity violations as suggested by RTV and WST.

Figure 5 plots the distribution of subject-level proportions of RTV over all
revealed cycles, that is, excluding cycles where preferences were not revealed, for
both datasets. In particular, if transitivity violations would mainly arise from
choices which are not revealed, we should see a sharp decrease in the proportion
of transitivity violations according to RTV when computed in this way (since non-
revealed cycles are excluded), when compared to WST violations. On the contrary,
if transitivity violations are orthogonal to whether preferences are revealed by
Theorem 1 or not, the overall proportion of transitivity violations according to
WST and to RTV computed in this way should be unaffected.

The individual proportion of revealed transitivity violations in DSBC is 19.24%,
compared to a proportion of 20.77% of WST violations for the overall sample. The
difference is small, and a Wilcoxon Rank-Sum test reveals no significant differences
at the 5% level (N = 60, z = —1.811, p = 0.0705). In KTHDP the proportion of
RTVs is 13.83%, compared to a 15.42% of WST violations for the overall sample.
However, again there are no significant differences at the 5% level (WRS, N = 29,
z = —1.847, p = 0.0657). Hence, the evidence is aligned with the interpretation
that transitivity violations might be orthogonal to whether preferences are revealed
by Theorem 1 or not. However, of course, this is just suggestive evidence and
one cannot conclude that WST violations where preferences are not revealed are

actually transitivity violations.

Remark 3. In Appendix B.1 we take advantage of the manipulations in DSBC
to further investigate the robustness of the results. In that experiment, partic-

ipants faced lotteries in two different graphical formats, both with and without
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Revealed Transitivity Violations

DSBC KTHDP

Figure 5: Distribution of the individual proportions of RTV over all cycles where
all preferences are revealed. Violin plots show the median, the interquartile range
and the 95% confidence intervals as well as rotated kernel density plots on each
side.

time pressure. The results reported above are qualitatively unchanged by either

manipulation.

Remark 4. Figures 3 and 5 show clear differences between the two datasets. Par-
ticipants in DSBC display limited heterogeneity, with unimodal, relatively concen-
trated distributions of WST violations and RTVs. In contrast, in KTHDP there
seem to be more heterogeneity across participants, with a more disperse distri-
bution. In KTHDP, the authors report that participants were unaware of having
made intransitive choices, but some reported following heuristic rules of behavior
which would indeed produce transitivity violations within the context of the ex-
periment. For our purposes, the fact that we obtain comparable results from two

radically different samples and experiments strengthens our conclusions.

4.5 Characteristics of Nontransitive Cycles

Our analysis above shows the existence of transitivity violations which are not
due to noise. A natural question is whether specific collections of lottery choices
give rise to such violations often. To answer this question, we reanalyze the data
taking individual cycles as the unit of observation. That is, in each dataset and
for each cycle of alternatives, we compute the percentage of participants who dis-
play either a WST violation or an RTV. The left-hand panel of Figure 6 shows
the distribution of the proportion of participants displaying WST violations across
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Figure 6: Distribution of the proportion of subjects displaying WST violations (on
the left) and RTVs (on the right) per each cycle.

cycles (DSBC: mean 20.56%, median 21.67%, SD=6.51, min 0.00%, max 36.67%;
KTHDP: mean 15.42%, median 0.00%, SD=20.03, min 0.00%, max 80.00%), while
the right-hand panel represents the distribution of the proportion of participants
displaying RTVs across cycles, computed over all participants for which the cy-
cle was revealed (DSBC: mean 18.84%, median 17.16%, SD=11.50, min 0.00%,
max 58.33%; KTHDP: mean 11.22%, median 0.00%, SD=20.55, min 0.00%, max
100.00%).1 The data hence reveals heterogeneity across cycles, that is, some cycles
involve nontransitive choices for a sizeable part of the experiment’s participants,
while others involve next to no violations.

To single out which constellations of choices produce a particularly large pro-
portion of violations, we then look at the cycles which entail the most transitivity
violations. Table 1 lists the ten cycles (for both datasets) with the largest pro-
portion of RTVs, computed as the percentage of people for which the cycle was
revealed who displayed an RTV. For DSBC, those range from 48% to 58%, and
all of them correspond to WST violations for at least a quarter of the sample.
Notably, all ten cycles involve just the five following lotteries (out of the nine in

the experiment), which correspond to the left-hand subset in Figure 1(left).

7 8 9
T = <$25.43,—> R <$24.16,—) R <$22.89, —) ,

24 24 24
10 11

The fact that the most common transitivity violations in DSBC all involve the

left-hand subset in Figure 1(left), and none of them involves the lotteries in the

' Note that for DSBC the average is computed over N = 60x 4 observations, as each participant
made the same choices in four different conditions.
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Table 1: The ten cycles in DSBC and KTHDP with the most transitivity viola-
tions. The second column indicates the proportion of experimental participants
displaying an RTV for the cycle in the first column, computed over all participants
for which the cycle was revealed (numbers in brackets indicate how the proportion
is computed). The third column indicates the proportion of participants (out of
4 x 60 for DSBC, out of 30 for KTHDP) displaying a WST violation for the cycle.

Cycle People with RTV  People with WST
DSBC

Ty = Ty > Tz = Ty 58.33% (28/48) 30.00% (72)

Ty T4 = T3 = Ty = T 54.55% (24,/44) 35.00% (84)
Ty = Ty > Xy > T3 - Ty 50.00% (12/24) 25.00% (60)
Ty T4 = Ty = T3 > T 53.85% (28/52) 31.67% (76)
Ty = Lo > X3 = Ty > Ty 57.14% (32/56) 33.33% (80)
Ty = To = Xy =T - Xy - T 47.62% (40/84) 36.67% (88)
Ty = Tg - X1 = T3 = o = T, 50.00% (24/48) 35.00% (84)
Ty = Ty = Xy = Ty - x3 = T 50.00% (12/24) 26.67% (64)
Te Ty - T - Ty = T3 - we 53.85% (28/52) 35.00% (84)
Ty = Ty 7= T = X1 = T3 > Ty 57.14% (32/56) 33.33% (80)

KTHDP

Yo = Ya > Y5 > Yo 66.67% (12/18) 40.00% (12)

Y2 > Y3 > Ys =Yg > Yo 100.00% (6/6) 60.00% (18)

Ys = Y1 = Yo - Ys > Y3 66.67% (12/18) 60.00% (18)

Ys = Ya > Ys = Y1 > U3 66.67% (12/18) 40.00% (12)

Ys ™Y1 > Y2 > Y3 > Yy 66.67% (12/18) 60.00% (18)

Y1 > Ya > Y3 > Y2 > Ys > Y1 75.00% (9/12) 30.00% (9)
Ys > Y1 >~ Y2 > Ya > Y5 ™ Y3 66.67% (12/18) 60.00% (18)
Ys > Ys - Ys - Y1 - Yo -y 66.67% (12/18) 40.00% (12)
Ya = Y1 = Yo - Ys = Ys =Yg 66.67% (12/18) 60.00% (18)
Yo ™ Ys > Y2 > Y1 > Y3 > Ya 66.67% (12/18) 40.00% (12)

right-hand set, is particularly revealing. The differences in outcomes across similar
lotteries in the left-hand set are noticeably larger (between $3.13 and $4.96) than
those for the other set (all $ 1.27), while differences in probabilities are always
1/24 in both sets. That is, the most frequent nontransitivities involve choices
whose evaluations are presumably closer, i.e. such that the strength of preference
is smaller. If one used WST or a similar measure as a criterion for detecting
nontransitivites, standard psychometric effects (error rates are larger for closer
valuations) would suggest that the increase in nontransitivities is merely due to
increased noise. However, our approach through RTVs has disentangled prefer-
ences from noise. Thus, the data suggests that the increase in nontransitivities is
due to the fact that evaluations are close, but not because this results in noisier

choices. Rather, it appears that empirical transitivity violations are more frequent
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Figure 7: Graphical representation of some of the most common cycles in the
datasets. All lotteries have a single non-zero outcome, depicted in the (outcome,
probability) space. Arrows indicate preference, i.e. + — y means y > x. The two
upper pictures are from the DSBC data, the two lower ones from KTHDP.

when they result from a gradual chain of small changes in the options. Specifically,
many of the examples in Table 1 suggest that small tradeoffs, which are possible
when lottery attributes are close enough, do not scale up monotonically. For ex-
ample, consider the shortest cycle for DSBC in Table 1, which is also the one with
the largest proportion of RTV violations, x, = x4 = x3 > xz,. Twice along this
cycle (x4 > x3 > x.), the decision maker accepts a one-step decrease in monetary
payoff ($1.27) in exchange for a one-step increase in probability (1/24). Then, how-
ever, the same decision maker accepts a two-steps decrease in probability (2/24) in
exchange for a two-step increase in monetary payoff ($2.54). The exact same phe-
nomenon appears in the cycles x, = x4 > T3 > o = Xy, Ty, > To > T3 = Ty = Ty,
and (rewritten) x; > x4 = x3 > x. = x1, with three one-step tradeoffs being
reversed by a three-step tradeoff in the opposite direction, and similar but more
complex patterns can be seen in the longer cycles. The two top panels of Figure 7

give a graphical representation of two of these examples.
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For KTHDP, the proportion of RT'Vs among revealed cycles for the ten topmost
ones is always above two thirds. corresponding to between 40% and 60% WST

violations in the overall sample. The cycles involve all five lotteries in KTHDP,

y1 = ($500,0.29) , y» = ($475,0.32), y3 = ($450,0.35),
ys = ($425,0.38) , y5 = ($400,0.41)

The same phenomenon is observed in several of the KTHDP cycles. For exam-
ple, in the cycle y4 > y1 > y2 > y3 > 4, three times in a row the decision maker
accepts a one-step reduction in probability (0.03) in exchange for a one-step in-
crease in monetary payoff ($25), but then undoes it by accepting a three-step
reduction in monetary payoff ($75) in exchange for a three-step increase in prob-
ability (0.09). A similar pattern can be seen in the cycle ys3 > y4 = y5 = y1 > ys,
and similar phenomena appear in several of the longer cycles. The two bottom

panels of Figure 7 give a graphical representation of two of these examples.

5 Predicting Choices Out of Sample in Spite of

Nontransitivities

Our results raise a natural question. So far, we have provided conclusive evi-
dence that a percentage of decisions under risk (in the datasets we analyze) entail
transitivity violations which cannot be ascribed to noise. On the other hand,
the percentage of such transitivity violations is naturally smaller than previously
assumed in the literature if one takes WST violations as the criterion, as those in-
clude observations that might be just due to noise. The natural follow-up question
is whether transitivity violations fundamentally impair our capacity to forecast or
predict decisions out of sample, or rather can just be ignored for these purposes,
as yet another factor making predictions imperfect. Strictly speaking, our results
reject the hypothesis of transitivity, and standard prediction methods (based, e.g.,
on the estimation of underlying utilities) do assume transitivity. However, if the
actual number of effective violations is small, this (fundamental) theoretical prob-
lem might not pose unsurmountable empirical difficulties.

To address this question, we used the datasets of DSBC and KTHDP to perform
out-of-sample prediction exercises. In doing so, we also compared the performance
of parametric and non-parametric prediction methods. Parametric methods typ-
ically entail the estimation of a utility function (with a pre-specified shape, say
CARA or CRRA) within the context of a random utility model (Anderson, Thisse,
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and De Palma, 1992; McFadden, 2001) or a random parameter model (Loomes and
Sugden, 1998; Apesteguia and Ballester, 2018), with additional, specific functional
assumptions on the shape of the noise (e.g., logit or probit models). Appendix A
briefly summarizes the (standard) microeconometric approach we followed.

In contrast, we also considered prediction methods derived from additional
results in the TWT approach (Alés-Ferrer, Fehr, and Netzer, 2021). Those entail
the non-parametric estimation of a (transitive) preference using response times
and choice frequencies, which is possible under the additional (also non-parametric)
assumption that the noise term is symmetric.!? This of course entails two possibly-
unwarranted assumptions, the transitivity of the underlying preference and the
symmetry of the noise. Under symmetric noise, in this case, p(x,y) > p(y,x)
reveals a strict preference for x over y. To obtain out-of-sample predictions, the
idea is to triangulate a preference indirectly through comparisons with a reference
option. The rough intuition is that, if an option a is preferred to x* with fast
response times, this preference is relatively strong. If another option b is preferred
to the same x* with slow response times, this preference is relatively weak. Even
though no conclusion follows from transitivity (as both a and b are preferred to
x*), the cardinality embodied in response times should allow to conclude that
a is preferred to b. Theorem 2 in Alés-Ferrer, Fehr, and Netzer (2021) shows
that, however, this intuition is elusive, and the meaning of “fast” and “slow” is
subtle. Specifically, for each (z,y) € D with p(x,y) > p(y, x), define 0(z,y) as the
1/2p(z, y)-percentile of the response time distribution of z, i.e., F(x,y)(0(z,y)) =
m The quantity (z,y) > 0 combines information about choice probabilities
and response times, that is, it corresponds to a different percentile for each choice
pair. Once one replaces “fast or slow response time” with 6(x,y), the result fully
captures the intuition above. We restate it here spelling out all implicit conditions

in Alés-Ferrer, Fehr, and Netzer (2021) for convenience.

Theorem 2 (Theorem 2, Alos-Ferrer, Fehr, and Netzer, 2021). Within the class
of symmetric RUM-CFs, a rationalizable SCF-RT reveals a preference for x over
y, where (z,y) € C'\ D, if there ezists x, € X such that (x,z.),(y,x.) € D and

o cither p(x,x*),p(y,x*) > % and ‘9(1’,37*) S e(ywr*)
o o7 p(Ty, ), p(Ts,y) > L and O(xs, ) > 0(x4,y)

2

and it reveals a strict preference if the inequalities are strict.

12Noise in a RNM-CF is symmetric if for each (x,y) € C and all § > 0, g(z,y)(v(z,y) + 6) =

31



Use These

7

($25.43,5) ($31.99,5;)

%, / 1
= $27.03,2
= )

!
- ($19.32,10)

($21.62,37) .

P ]

($20.35,1) ($16.19,%1)

124 124

To Predict These
>
\ a/‘
DO
N\

(00]
J@
Rlo

Figure 8: Assuming symmetric noise in a dataset with a reference option (x;) we
can use all comparisons with this reference (in red) to predict out-of-sample all
other choices (in blue).

Hence, by fixing a reference option x,, one can derive a full (transitive) prefer-
ence among all alternatives which have been compared to z, in a dataset including
response times. The price to pay is, as commented above, twofold. First, one as-
sumes symmetric noise. Second, transitivity of the underlying preference relation
is taken for granted. Of course, we know that both of these assumptions are vio-
lated (see Al6s-Ferrer, Fehr, and Netzer, 2021 for a discussion of the assumption
of symmetric noise), i.e. the model underlying this prediction is incorrect. The
question, however, is not whether the model (transitive preferences and symmet-
ric noise) is entirely correct, but rather how useful it is for predictive purposes,
or, in other words, how severe are the consequences of transitivity violations (and
noise asymmetry) for prediction.

As Figure 8 shows, the dataset of DSBC has a particular structure which is
especially interesting for our purposes. All lotteries were repeatedly compared to
a specific one (denoted x, in the figure, where these comparisons are highlighted
in red). Theorem 2 above then allows to estimate a full preference relation using
just those decisions. In particular, the estimated preferences allow to predict the
choices among other lotteries. The dataset also includes choices within the left-
hand- and right-hand subsets (highlighted in blue in Figure 8), and hence we can
test the predictions. That is, we can use the choice frequencies and response times
of the first (red) type of choices in order to predict all other comparisons (in blue)
out-of-sample.

As a comparative benchmark, we use a standard econometric approach mim-
icking the procedure described above. We estimated risk attitudes, separately for
each individual, based only on the choices which involved z, (see Appendix A for

details on the estimation procedure). This is the same subset we used for the
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Figure 9: Proportion of out-of-sample correctly predicted choices for RUM/RPM
and TWT for Davis-Stober, Brown, and Cavagnaro (2015) (on the left) and Kalen-
scher et al. (2010) (on the right) across different utility functions (CRRA wvs.
CARA). 95% confidence intervals are represented in red.

TWT exercise, in red in Figure 8. We then used this individual estimate to pre-
dict all other choices not involving the lottery x, (in blue; again, this is the same
set as in the TWT application). In order to do this, however, we need structural
assumptions on both the utility function and the noise term. As frequently done
in the literature, we assume a random utility model with a CRRA utility function,
and conduct a robustness check by repeating the analysis with a CARA function.
We further repeat the analysis assuming a random parameter model (with either
CRRA or CARA functions) instead.'?

The dataset of KTHDP does not have the structure of DSBC. In this dataset,
all binary choices among five different lotteries were made (see Figure 1, right).
Hence, in order to implement a comparable out-of-sample approach, we replicated
the structure of the analysis of DSBC five times, with each analysis adopting one
of the five distinct lotteries in KTHDP as reference lottery z,. For example, we
applied the TWT method (Theorem 2) and estimated utilities with a standard
microeconometric approach using only the four binary choices involving option
[$500; 29%] and then predicted the remaining six comparisons not involving this
option. We did this for each possible lottery, and here we report the average
predictive performance across the five different analyses.

Figure 9 illustrates the results for both datasets. First, in DSBC, the predic-
tive performance of TW'T, measured as the average out-of-sample proportion of
correctly predicted choices, is 76.14% (median 77.13%, min 49.62%, max 100%).

13 Appendix C contains a further prediction exercise based on mean absolute errors instead of
choices. This can also be done with the TWT method under the stronger assumption of Fechner
errors, which brings it closer to parametric models.
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This is a reasonably-high performance.'* In particular, the out-of-sample predic-
tive performance of TW'T is significantly higher than that of standard econometric
techniques. Crucially, this observation holds independently of the particular util-
ity function assumed (CRRA vs. CARA) and of assumptions on the shape of
the noise (RUM vs. RPM). For DSBC (Figure 9, left) the average out-of-sample
proportion of correctly predicted choices according to RUM (CRRA) is 62.78%
(median 63.54%, min 16.67%, max 100%) which is significantly smaller than what
TWT achieves (WRS, N = 60, z = —4.800, p < 0.0001). Significant differences
are also found comparing TWT to the other microeconometric implementations,
even accounting for multiple-test corrections (RUM-CARA 59.55%, =z = 7.697,
p < 0.0001; RPM-CRRA 55.24%, z = 8.713, p < 0.0001; RPM-CARA 56.81%),
z = 8.740, p < 0.0001).1

The out-of-sample predictive performance of the RUM and RPM estimations
is quite modest. One possible reason is noise. In DSBC, subjects were overall very
inconsistent during the experiment, possibly due to the high number of trials, the
presence of repetitions, and similarities among the lotteries. However, those very
same reasons make the performance of TWT noteworthy.

The overall picture is very similar for KTHDP’s dataset (Figure 9, right), in
spite of the differences between the experiments. TW'T achieves a reasonable pre-
dictive performance (mean 71.76%, median 77.83%, min 32.67%, max 100%) and
outperforms standard econometric approaches. The average out-of-sample propor-
tion of correctly predicted choices according to RUM-CRRA is 54.11% (median
53.33%, min 0.00%, max 100.00%) which is smaller than that of TWT (WRS,
N = 26, z = —3.087, p = 0.0013). A similar result is obtained for the other
comparisons (RUM-CARA 56.00%, z = —3.188 p = 0.0008; RPM-CRRA 59.11%,
z = 3.087, p = 0.0013; RPM-CARA 54.56%, z = 3.506, p = 0.0002), and account-
ing for multiple-test corrections.

These results can be given different interpretations. On the one hand, the
predictive performance we obtain is reasonable, especially if one uses the non-
parametric methods of TW'T. This raises hopes that violations of transitivity might
not be an unsurmountable obstacle for the prediction of economic choices out of
sample. On the other hand, the datasets we rely on, while of course noisy, contain

considerable amounts of information, in terms of repeated choices and process data

14 Alés-Ferrer, Fehr, and Netzer (2021) reports an out-of-sample predictive performance of
80.7% in a food choice study where the options were simple food snacks; Garagnani (2020) finds
that the out-of-sample predictive performance of different risk elicitation tasks is below 68%.

15In Appendix B.2 we show that these results are robust across the different conditions and
manipulations in DSBC (time pressure and lottery format).
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(response times). One might thus give the more pessimistic interpretation that
“three out of four” is certainly better than typically achieved in the literature, but
it might be close to an upper bound, as long as predictions are based on transitive

models.

6 Discussion

Are economic choices transitive? A long-standing discussion in economics has ad-
dressed this fundamental issue. A negative answer would have the power to shake
the very foundations of applied microeconomic analysis, and empirical evidence to
this effect has been, understandably, subjected to detailed scrutiny. In particular,
evidence in favor of transitivity violations have been systematically criticized as
deriving from behavioral noise.

In this paper we provide a new method which allows to reveal “preferences”
even when they are not transitive, disentangling them from behavioral noise. the
method is based on a (straightforward) generalization of recent preference revela-
tion results which use both choice frequencies and response times. We apply this
method to two distinct datasets and find conclusive evidence that, even when one
fully disentangles behavioral noise from underlying preferences, transitivity viola-
tions are reduced but do not disappear. In this sense, transitivity violations are
not a mere artifact of the analysis or a consequence of behavioral noise, but rather
an actual feature of human behavior.

These violations obviously hinder the ability of standard econometric tech-
niques to predict choices, and hence have serious implications for positive and
welfare economics. However, we also illustrate that non-parametric methods using
response times still retain a reasonable predictive performance (of around 75% of
correctly-predicted choices out of sample in our datasets) in spite of the incorrect
transitivity assumption.

Although the latter results can be seen as good news, the now-undeniable exis-
tence of transitivity violations strongly suggests that descriptive models of choice
assuming transitivity will eventually hit a ceiling in terms of their applicability.
Thus, theories that dispense with the transitivity assumption might ultimately be

needed to make progress beyond that ceiling.

References

Alos-Ferrer, Carlos, Ernst Fehr, and Nick Netzer. 2021. “Time Will Tell: Re-
covering Preferences when Choices are Noisy.” Journal of Political Economy

35



129 (6):1828-1877.

Alés-Ferrer, Carlos and Michele Garagnani. 2022a. “Strength of Preference and
Decisions Under Risk.” Journal of Risk and Uncertainty 64 (3):309-329.

. 2022b. “The Gradual Nature of Economic Errors.” Journal of Economic
Behavior and Organization 200:55-66.

Anderson, Simon P., Jacques-Francois Thisse, and André De Palma. 1992. Discrete
Choice Theory of Product Differentiation. Cambridge, MA: MIT Press.

Apesteguia, José and Miguel A. Ballester. 2018. “Monotone Stochastic Choice
Models: The Case of Risk and Time Preferences.” Journal of Political Economy
126 (1):74-106.

Baldassi, Carlo, Simone Cerreia-Vioglio, Fabio Maccheroni, and Massimo Mari-
nacci. 2020. “A Behavioral Characterization of the Drift Diffusion Model and
its Multi-Alternative Extension to Choice under Time Pressure.” Management
Science 66 (11):5075-5093.

Birnbaum, Michael H. 2013. “True-and-Error Models Violate Independence and
yet They Are Testable” Judgment and Decision making 8 (6):717-737.

. 2020. “Reanalysis of Butler and Pogrebna (2018) Using True and Error
Model.” Judgment and Decision Making 15 (6):1044-1051.

Birnbaum, Michael H. and Roman J. Gutierrez. 2007. “Testing for Intransitivity of
Preferences Predicted by a Lexicographic Semi-Order.” Organizational Behavior
and Human Decision Processes 104 (1):96-112.

Birnbaum, Michael H., Jamie N. Patton, and Melissa K. Lott. 1999. “Evidence
Against Rank-Dependent Utility Theories: Tests of Cumulative Independence,
Interval Independence, Stochastic Dominance, and Transitivity.” Organizational
Behavior and Human Decision Processes 77 (1):44-83.

Birnbaum, Michael H. and Ulrich Schmidt. 2008. “An Experimental Investigation
of Violations of Transitivity in Choice Under Uncertainty.” Journal of Risk and
Uncertainty 37 (1):77-91.

. 2010. “Testing Transitivity in Choice Under Risk.” Theory and Decision
69 (4):599-614.

Birnbaum, Michael H. and Lucy Wan. 2020. “MARTER: Markov True and Error
Model of Drifting Parameters.” Judgment & Decision Making 15 (1):47-73.

Bleichrodt, Han and Ulrich Schmidt. 2002. “A Context-Dependent Model of the
Gambling Effect.” Management Science 48 (6):802-812.

Block, Henry D. and Jacob Marschak. 1960. “Random Orderings and Stochastic
Theories of Responses.” In Contributions to Probability and Statistics: FEssays
in Honor of Harold Hotelling, edited by Ingram Olkin. Stanford: Stanford Uni-
versity Press, 97-132.

36



Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2012. “Salience Theory of
Choice under Risk.” Quarterly Journal of Economics 127 (3):1243-1285.

. 2013. “Salience and Consumer Choice.” Journal of Political Economy
121 (5):803-843.

Budescu, David V. and Wendy Weiss. 1987. “Reflection of Transitive and Intran-
sitive Preferences: A Test of Prospect Theory.” Organizational Behavior and
Human Decision Processes 39 (2):184-202.

Butler, David. 2020. “Intransitive Preferences or Choice Errors? A Reply to
Birnbaum.” Judgment and Decision Making 15 (6):1052-1053.

Butler, David and Ganna Pogrebna. 2018. “Predictably Intransitive Preferences.”
Judgment and Decision Making 13 (3):217-236.

Cattell, James McKeen. 1893. “On Errors of Observation.” The American Journal
of Psychology 5 (3):285-293.

. 1902. “The Time of Perception as a Measure of Differences in Intensity.”
Philosophische Studien 19:63-68.

Cavagnaro, Daniel R. and Clintin P. Davis-Stober. 2014. “Transitive in Our Pref-
erences, but Transitive in Different Ways: An Analysis of Choice Variability.”
Decision 1 (2):102-122.

Chabris, Christopher F., Carrie L. Morris, Dmitry Taubinsky, David Laibson,
and Jonathon P. Schuldt. 2009. “The Allocation of Time in Decision-Making.”
Journal of the European Economic Association 7 (2-3):628-637.

Clithero, John A. 2018. “Improving Out-of-Sample Predictions Using Response
Times and a Model of the Decision Process.” Journal of Economic Behavior and
Organization 148:344-375.

Conte, Anna, John D. Hey, and Peter G. Moffatt. 2011. “Mixture Models of Choice
Under Risk.” Journal of Econometrics 162 (1):79-88.

Dashiell, John F. 1937. “Affective Value-Distances as a Determinant of Aesthetic
Judgment-Times.” American Journal of Psychology 50:57-67.

Davis-Stober, Clintin P., Nicholas Brown, and Daniel R. Cavagnaro. 2015. “Indi-
vidual Differences in the Algebraic Structure of Preferences.” Journal of Math-
ematical Psychology 66:70-82.

Davis-Stober, Clintin P., Denis M. McCarthy, Daniel R Cavagnaro, Mason Price,
Nicholas Brown, and Sanghyuk Park. 2019. “Is Cognitive Impairment Related
to Violations of Rationality? A Laboratory Alcohol Intoxication Study Testing
Transitivity of Preference.” Decision 6 (2):134-144.

37



Dehaene, Stanislas, Emmanuel Dupoux, and Jacques Mehler. 1990. “Is Numeri-
cal Comparison Digital? Analogical and Symbolic Effects in Two-Digit Number
Comparison.” Journal of Experimental Psychology: Human Perception and Per-
formance 16 (3):626-641.

Diecidue, Enrico and Jeeva Somasundaram. 2017. “Regret Theory: A New Foun-
dation.” Journal of Economic Theory 172:88-119.

Fishburn, Peter C. 1971. “A Study of Lexicographic Expected Utility.” Manage-
ment Science 17 (11):672-678.

. 1982. “Nontransitive Measurable Utility.” Journal of Mathematical Psy-
chology 26 (1):31-67.

. 1984a. “Dominance in SSB Utility Theory.” Journal of Economic Theory
34 (1):130-148.

. 1984b. “SSB Utility Theory: An Economic Perspective.” Mathematical
Social Sciences 8 (1):63-94.

. 1984c. “SSB Utility Theory and Decision-Making Under Uncertainty.”
Mathematical Social Sciences 8 (3):253-285.

. 1986. “Ordered Preference Differences Without Ordered Preferences.”
Synthese 67 (2):361-368.

. 1988. Nonlinear Preference and Utility Theory. Baltimore, Maryland:
Johns Hopkins University Press.

. 1991. “Nontransitive Preferences in Decision Theory.” Journal of Risk
and Uncertainty 4 (2):113-134.

. 1998. “Stochastic Utility.” In Handbook of Utility Theory, vol. 1: Prin-
ciples, edited by Salvador Barbera, Peter J. Hammond, and Christian Seidl,
chap. 7. Kluwer Academic Publishers, 273-319.

Fudenberg, Drew, Philipp Strack, and Tomasz Strzalecki. 2018. “Speed, Accuracy,
and the Optimal Timing of Choices.” American Economic Review 108 (12):3651—
3684.

Garagnani, Michele. 2020. “The Predictive Power of Risk Elicitation Tasks.” Work-
ing Paper, University of Zurich.

Gonzalez-Vallejo, Claudia. 2002. “Making Trade-Offs: A Probabilistic and
Context-Sensitive Model of Choice Behavior.” Psychological Review 109 (1):137—
155.

Grether, David M. and Charles R. Plott. 1979. “Theory of Choice and the Prefer-
ence Reversal Phenomenon.” American Economic Review 69 (4):623-638.

38



Hatz, Laura E., Sanghyuk Park, Kayleigh N. McCarty, Denis M. McCarthy, and
Clintin P. Davis-Stober. 2020. “Young Adults Make Rational Sexual Decisions.”
Psychological Science 31 (8):944-956.

Hausner, Melvin. 1954. “Multidimensional Utilities.” Decision Processes :167—180.

Herweg, Fabian and Daniel Miiller. 2019. “Regret Theory and Salience Theory:
Total Strangers, Distant Relatives or Close Cousins?”

. 2021. “A Comparison of Regret Theory and Salience Theory for Decisions
Under Risk.” Journal of Economic Theory 193:105226.

Humphrey, Steven. 2001. “Non-transitive Choice: Event-Splitting Effects or Fram-
ing Effects?” Economica 68 (269):77-96.

Iverson, Geoffrey and Jean-Claude Falmagne. 1985. “Statistical Issues in Measure-
ment.” Mathematical Social Sciences 10 (2):131-153.

Kalenscher, Tobias, Philippe N. Tobler, Willem Huijbers, Sander M. Daselaar, and
Cyriel Pennartz. 2010. “Neural Signatures of Intransitive Preferences.” Frontiers
in Human Neuroscience 4 (49):1-14.

Klein, A. Stanley. 2001. “Measuring, Estimating, and Understanding the Psy-
chometric Function: A Commentary.” Attention, Perception, & Psychophysics
63 (8):1421-1455.

Kontek, Krzysztof. 2016. “A Critical Note on Salience Theory of Choice Under
Risk.” Economics Letters 149:168-171.

Krajbich, Tan, Bjorn Bartling, Todd Hare, and Ernst Fehr. 2015. “Rethinking
Fast and Slow Based on a Critique of Reaction-Time Reverse Inference.” Nature
Communications 6 (7455):1-9.

Kreweras, G. 1961. “Sur une possibilité de rationaliser les intransitivités.” In La
Décision, Collogques Internationauzr du Centre National de la Recherche Scien-
tifique. Paris: Editions du Centre National de la Recherche Scientifique, 27-32.

Laming, Donald. 1985. “Some Principles of Sensory Analysis.” Psychological Re-
view 92 (4):462-485.

Lee, Leonard, On Amir, and Dan Ariely. 2009. “In Search of Homo Economicus:
Cognitive Noise and the Role of Emotion in Preference Consistency.” Journal
of Consumer Research 36 (2):173-187.

Lee, Leonard, Michelle P. Lee, Marco Bertini, Gal Zauberman, and Dan Ariely.
2015. “Money, Time, and the Stability of Consumer Preferences.” Journal of
Marketing Research 52 (2):184-199.

Leland, Jonathan W. 1994. “Generalized Similarity Judgments: An Alternative
Explanation for Choice Anomalies.” Journal of Risk and Uncertainty 9 (2):151—
172.

39



. 1998. “Similarity Judgments in Choice Under Uncertainty: A Reinterpre-
tation of the Predictions of Regret Theory.” Management Science 44 (5):659-672.

Li, Zhihua and Graham Loomes. 2022. “Revisiting the Diagnosis of Intertemporal
Preference Reversals.” Journal of Risk and Uncertainty :1-23.

Lichtenstein, Sarah and Paul Slovic. 1971. “Reversals of Preference Between
Bids and Choices in Gambling Decisions.” Journal of Ezperimental Psychol-
ogy 89 (1):46-55.

Lindman, Harold R. and James Lyons. 1978. “Stimulus Complexity and Choice
Inconsistency Among Gambles.” Organizational Behavior and Human Perfor-
mance 21 (2):146-159.

Loomes, Graham, Chris Starmer, and Robert Sugden. 1989. “Preference Reversal:

Information-Processing Effect or Rational Non-Transitive Choice?” FEconomic
Journal 99 (395):140-151.

. 1991. “Observing Violations of Transitivity by Experimental Methods.”
Econometrica 59 (2):425-439.

Loomes, Graham and Robert Sugden. 1982. “Regret Theory: An Alternative
Theory of Rational Choice Under Uncertainty.” Economic Journal 92 (368):805—
824.

. 1987. “Some Implications of a More General Form of Regret Theory.”
Journal of Economic Theory 41 (2):270-287.

. 1998. “Testing Different Stochastic Specifications of Risky Choice.” E'co-
nomica 65 (260):581-598.

Luce, R. Duncan. 1959. Individual Choice Behavior: A Theoretical Analysis. New
York: Wiley.

. 2000. Utility of Gains and Losses: Measurement-Theoretical and FExperi-
mental Approaches. New York, NY: Psychology Press.

Marley, Anthony A.J. and R. Duncan Luce. 2005. “Independence Properties vis-
a-vis Several Utility Representations.” Theory and Decision 58 (1):77-143.

Marschak, Jacob. 1960. “Binary Choice Constraints on Random Utility Indicators.”
In Stanford Symposium on Mathematical Methods in the Social Sciences, edited
by Kenneth J. Arrow. Stanford, CA: Stanford University Press, 312-329.

May, Kenneth O. 1954. “Intransitivity, Utility, and the Aggregation of Preference
Patterns.” Econometrica 22 (1):1-13.

McFadden, Daniel L. 1974. “Conditional Logit Analysis of Qualitative Choice
Behavior.” In Frontiers in Econometrics, edited by P. Zarembka. New York:
Academic Press, 105-142.

40



. 2001. “Economic Choices.” American Economic Review 91 (3):351-378.

Moffatt, Peter G. 2005. “Stochastic Choice and the Allocation of Cognitive Effort.”
Ezperimental Economics 8 (4):369-388.

Montgomery, Henry. 1977. “A Study of Intransitive Preferences Using a Think
Aloud Procedure” In Decision Making and Change in Human Affairs. 347-362.

Mosteller, Frederick and Philip Nogee. 1951. “An Experimental Measurement of
Utility.” Journal of Political Economy 59:371-404.

Moyer, Robert S. and Richard H. Bayer. 1976. “Mental Comparison and the
Symbolic Distance Effect.” Cognitive Psychology 8 (2):228-246.

Moyer, Robert S. and Thomas K. Landauer. 1967. “Time Required for Judgements
of Numerical Inequality.” Nature 215 (5109):1519-1520.

Miiller-Trede, Johannes, Shlomi Sher, and Craig R. M. McKenzie. 2015. “Tran-
sitivity in Context: A Rational Analysis of Intransitive Choice and Context-
Sensitive Preference.” Decision 2 (4):280-305.

Park, Sanghyuk, Clintin P. Davis-Stober, Hope K Snyder, William Messner, and
Michel Regenwetter. 2019. “Cognitive Aging and Tests of Rationality.” The
Spanish Journal of Psychology 22 (E57):1-26.

Ranyard, Rob, Henry Montgomery, Emmanouil Konstantinidis, and Andrea Louise
Taylor. 2020. “Intransitivity and Transitivity of Preferences: Dimensional Pro-
cessing in Decision Making.” Decision 7 (4):287-313.

Ratcliff, Roger. 1978. “A Theory of Memory Retrieval.” Psychological Review
85:59-108.

Regenwetter, Michel, Jason Dana, and Clintin P. Davis-Stober. 2010. “Testing
Transitivity of Preferences on Two-Alternative Forced Choice Data.” Frontiers
in Psychology 1 (148):1-15.

. 2011. “Transitivity of Preferences.” Psychological Review 118 (1):42-56.

Savage, Leonard J. 1954. The Foundations of Statistics. New York: John Wiley
& Sons.

Savage Jr., Richard P. 1994. “The Paradox of Nontransitive Dice.” American
Mathematical Monthly 101 (5):429-436.

Schmidt, Ulrich and Michael Stolpe. 2011. “Transitivity in Health Utility Mea-
surement: An Experimental Analysis.” Health Economics Review 1 (1):1-12.

Shafer, Wayne J. 1974. “The Nontransitive Consumer.” Econometrica 42:913-919.

Shafir, Sharoni. 1994. “Intransitivity of Preferences in Honey Bees: Support for
Comparative Evaluation of Foraging Options.” Animal Behaviour 48 (1):55-67.

41



Sopher, Barry and Gary Gigliotti. 1993. “Intransitive Cycles: Rational Choice or
Random Error? An Answer Based on Estimation of Error Rates with Experi-
mental Data.” Theory and Decision 35 (3):311-336.

Starmer, Chris and Robert Sugden. 1998. “Testing Alternative Explanations of
Cyclical Choices.” Economica 65 (259):347-361.

Thurstone, Louis L. 1927. “A Law of Comparative Judgement.” Psychological
Review 34:273-286.

Tversky, Amos. 1969. “Intransitivity of Preferences.” Psychological Review 76:31—
48.

Tversky, Amos and Daniel Kahneman. 1992. “Advances in Prospect Theory:
Cumulative Representation of Uncertainty.” Journal of Risk and Uncertainty
5 (4):297-323.

Tversky, Amos, Paul Slovic, and Daniel Kahneman. 1990. “The Causes of Prefer-
ence Reversal” American Economic Review 80 (1):204-217.

Tversky, Amos and Richard H. Thaler. 1990. “Anomalies: Preference Reversals.”
Journal of Economic Perspectives 4 (2):201-211.

Waite, Thomas A. 2001. “Intransitive Preferences in Hoarding Gray Jays
(Perisoreus Canadensis).” Behavioral Ecology and Sociobiology 50 (2):116-121.

Wichmann, A. Felix and N. Jeremy Hill. 2001. “The Psychometric Function: I. Fit-
ting, Sampling, and Goodness of Fit.” Attention, Perception, & Psychophysics
63 (8):1293-1313.

42



(ONLINE) APPENDIX

A Revealing Preferences and Estimating Risk

Theorem 2 of TWT allows to make out-of-sample predictions assuming symmet-
ric noise (but no further assumptions, and no structural restrictions) as long as
the dataset includes repeated decisions between each individual alternative and a
fixed, reference one. This is the exact structure of the DSBC dataset, and can
be reproduced in the KTHDP one since all comparisons are made there. For the
implementation of the out-of-sample predictions following the TWT method, we
followed Alds-Ferrer, Fehr, and Netzer (2021) and refer the reader to that article
for further details.

We detail now our predictive analyses following standard microeconometric
models. In order to compare the performance of these prediction exercises and
TWT, we estimate each subject’s risk attitude from the appropriate set of binary
lottery choices following a standard maximum likelihood estimation. All trials used
for the estimation involved binary choices between lotteries of the form A = (p, z)
and B = (q,y), where A pays x with probability p and B pays y with probability
q, and 0 otherwise (see Figure 1 in the main text for the actual lotteries). We
index the trials in the experiments by ¢ = 1,..., N. That is, in trial ¢ subjects
face the choice between A; = (p;, ;) and B; = (¢4, y;). In the main analysis we
assume two different utility functions. The first is a normalized constant absolute
risk aversion (CARA) function as in Conte, Hey, and Moffatt (2011), given by

e ifr#£0
u(x\'r’):{l—e ey M7 #

T if r =0,

where Ty, = max{zi,...,Tn,y1,...,yn} is the maximum outcome across all
N lottery pairs (trials). The normalization ensures that w(z | r) is increasing
also for negative values of r (indicating risk-seeking behavior). The second utility
form is a constant relative risk aversion (CRRA) function u(z | ) = 2". Under
the assumption of Expected Utility maximization, subject ¢ with utility function
(CARA) wu(z | r;) chooses A; over B; if the difference in expected utilities is
positive, that is,

Pl = ) — g1 = e )

1 — @ TiTmax

(1) Vilri) == peu(ae [ 1) — quuly, [ ri) = >0,
and analogously for the CRRA case. The second element of the model is a noise
term. For these models, there are two standard approaches to noise in the litera-
ture: The Fechner or Random Utility Model (RUM) and the Random Preference
Model (RPM). RUM assumes that each subject is characterized by a risk param-
eter r; that is fixed across trials, but utility is affected by an additive utility-noise
term with a fixed distribution, e.g. normal. In contrast, RPM assumes that a sub-
ject’s risk parameter varies randomly between trials but is drawn from a certain
distribution. We present the results of our analyses using both approaches.
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Following the RUM approach, we add an error term &;; ~ N(0,0?) with 02 > 0
to (1). That is, the lottery A, is chosen if

Vt(m) + & > 0.
Define the binary choice indicator for trial ¢

)1 if A; chosen by subject ¢
it = —1 if B; chosen by subject 1.

Then the probability of a choice conditional on the risk-parameter r; is given by

Pt | 1) = P (7 Vi(ri) > vie(—ew)) = P (w Vtyi) > Vit _jit> = (% Vfi)>

where ® is the standard normal cumulative distribution function. We used max-
imum likelihood to estimate individual risk attitudes based on the conditional
probability above. The procedure delivers estimates of the individual risk attitude
r; and the variance of the (normally-distributed) error term, o?.

For the RPM estimation, we use the same subsets of choices for the predictive
analyses as in the RUM case, and again we consider both CARA and CRRA utility
functions. Additionally, we re-arrange the dataset in such a way that A; is always
the safer of the two lotteries, that is, p > ¢ (no dominated lotteries are considered
in the analysis). In contrast to the RUM approach, the RPM assumes that a
subject’s risk parameter is not fixed across trials but varies randomly between
trials. Specifically, we assume that subject i’s risk parameter in trial ¢ is distributed
according to 7 ~ N(m;, 0?) where m; is subject i’s mean risk attitude. Assuming
Expected Utility maximization, in this setup subject ¢ with utility function wu;
chooses A; over B; if and only if

pt(l _ 6*7’7,’7:332&) _ Qt(l _ e*ntyt)

1 — e TitTmax

> 0.

At(rit) =

Let 7} be the risk parameter that would make a subject exactly indifferent
between the two lotteries in task ¢, that is, As(rf) = 0. Since A; is always the
safer lottery, we obtain the following equivalence

At(rit) >0 = T > 'I":(.

Again using ~;; € {1,—1} as a binary indicator that A; is chosen by subject i
in trial ¢, the probability of a choice conditional on a subject’s mean risk attitude
m; is given by

Ti — My ry —m; m; — 1y
p(yielmi) = p(yrae > vari|mi) = P (’Yz‘ttT > i ) =0 (’Yz‘t%t)

i g; i

where ® is the standard normal cumulative distribution function. Again, we relied
on maximum likelihood estimation based on the conditional probability above.
This delivers estimates of the mean m; and the variance o?

"
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B Robustness Analysis: Time Pressure and Lot-
tery Formats

In DSBC two within-subject treatments were implemented, time pressure vs. no
time pressure and pie vs. bar lottery format. We can hence investigate the possible
influence of these manipulations on our results.

B.1 Transitivity Violations

We start with preference revelation and transitivity violations. Comparing re-
vealed preferences over binary choices, there are no statistical differences between
time pressure and its absence (56.13% vs. 57.16%; WRS N = 60, z = —0.942,
p = 0.3505). However, we observe that using the bar representation is associated
with a higher proportion of revealed preferences (59.87%) compared to the pie
representation (53.84%; WRS N = 60, z = 3.872, p < 0.001).

Comparing overall proportions of transitivity violations, again there are no sta-
tistically significant differences between time pressure and its absence (20.32% vs.
21.21%; WRS N =60, z = —0.578, p = 0.5671). A similar result is obtained when
we consider RTV (19.03% vs. 19.15%; WRS N = 60, z = —0.129, p = 0.9011).
However, pie representations lead to a larger proportion of transitivity violations
compared the bar representations, although the comparison misses significance at
the 5% level (21.35% vs. 20.19%; WRS N = 60, z = 1.716, p = 0.0866). There
are no significant differences when we consider RTV (18.52% vs. 20.04%; WRS
N =60, z = —0.648, p = 0.5222).

B.2 Prediction Exercise

In the main text we show that the out-of-sample predictive performance of TWT
(Theorem 2) is systematically higher than that of RUMs or RPMs. In this subsec-
tion we report on some illustrative robustness analyses for the different conditions
in the DSBC dataset.

Figure B.1 shows that TWT outperforms RUM in all different conditions im-
plemented in the design of Davis-Stober, Brown, and Cavagnaro (2015) (time
pressure and lottery format). The figure displays data for the RUM-CARA case,
but results are robust to other utility or noise specifications. The proportion of
correctly predicted choices is higher in TWT for time pressure, both with pie rep-
resentations (73.79% vs. 56.52%; WRS, N = 60, z = 3.539, p = 0.0004) and bar
representations (75.31% vs. 63.06%; WRS, N = 60, z = 2.918, p = 0.0035), and
also for the absence of time pressure, again both for pie representations (76.97% vs.
59.58%; WRS, N = 60, z = 3.977, p < 0.0001), and bar representations (78.48%
vs. 57.22%; WRS, N =60, z = 4.199, p < 0.0001).
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Figure B.1: Proportion of out-of-sample correctly predicted choices for Davis-
Stober, Brown, and Cavagnaro (2015) across the four different conditions imple-
mented in the experiment.

C Predictive Performance Assuming Fechner Er-
rors

The standard microeconometric approach that we used in the main text involves
a probit model, i.e. normally-distributed, hence Fechnerian errors. If one is will-
ing to assume Fechnerian errors (as in any logit or probit model) then Theorem
3 of Al6s-Ferrer, Fehr, and Netzer (2021) provides a method to predict the pro-
portion of choices and not just the binary relation, without assuming a specific
functional form for utilities or a specific functional shape of the noise term beyond
the fact that noise must be Fechnerian.!® To quantify the predictive performance
of the analyses, we use the mean absolute error as in Alés-Ferrer, Fehr, and Net-
zer (2021) and Clithero (2018). This measure calculates the individual average
distance between predicted and observed choice frequencies (results are similar
using alternative measures as, e.g., the squared root of the sum of the squared
differences).

This result is as follows. Within the class of Fechnerian RUM-CFs, a ra-
tionalizable SCF-RT predicts choice probability p(x,y) for a non-observed choice
(xz,y) € C\ D if all RUM-CFs in the class that rationalize it satisfy Prob[o(z,y) >
0] = p(z, y).

6Noise in a RNM-CF is Fechnerian if, for each (x,y) € C and all v € R, g(z,y)(v) =

g(v —v(z,y)), where G is a common density g with full support such that g(§) = g(—¢) > 0 for
all § > 0.
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Theorem 3 (Theorem 3, Alés-Ferrer, Fehr, and Netzer, 2021). Let (x,y) € C'\ D
and z, € X with (x,z.), (y,z.) € D. Within the class of Fechnerian RUM-CFs, a
rationalizable SCF-RT predicts the choice probability

p(z, 2)F(z,2)(0(y, 2)) if ply, z) > 1/2,
p(z,y) = p(=, 2) if ply,2) = 1/2,
1—p(z,2)F(z,2)(0(z,y)) if ply,z) < 1/2.

For the out-of-sample prediction, we follow the same approach as in the main
text. That is, we again rely on the particular structure of DSBC’s dataset (see
Figure 8) to predict choice frequencies in decisions not involving x, after estimating
preferences and noise parameters from the decisions involving z,. For KTHDP,
again we average the five possible out-of-sample exercises (taking each distinct
lottery in the dataset as the reference).

The microeconometric estimation used in the main text obviously also allows
to predict choice frequencies (instead of deterministic binary choices), making the
prediction comparable with that of Theorem 3 above. For this purpose, we use the
estimates described in Appendix A to compute the predicted choice frequencies
in the corresponding RUM or RPM models. That is, instead of predicting an
alternative for each binary choice, we use the estimated risk attitude and noise
variance (for the RUM case) or the estimated mean and variance of the individual
risk attitudes (for the RPM case) to predict choice frequencies. In particular, for
the RUM approach we predict that a subject will choose option A; over B, at trial

t with probability
p=2a (Vt(”)>
o

Similarly, for the RPM approach we predict that a subject will choose the option
Ay over By at trial ¢ with probability

b (mi — r;*) .
0;

Again, to measure the accuracy of our prediction, we compute the mean absolute
error between the observed choice proportions and the predicted proportions.

The results are shown in Figure C.1 (recall that a good performance corre-
sponds to a small mean absolute error). For each individual, we compute the
mean absolute error. For DSBC, the average mean absolute error across indi-
viduals for the TWT method is 0.2120.'7 This outperforms the results when
using a RUM estimation with CARA utility functions (0.3316; WRS, N = 60,
z = —5.926, p < 0.0001) or an RPM approach with either CRRA (0.3787; WRS,
N = 60, z = —6.618, p < 0.0001) or CARA utilities (0.3765; WRS, N = 60,
z = —6.530, p < 0.0001). However, the performance of a RUM estimation us-
ing CRRA functions is better than that of TWT for this dataset (0.1386; WRS,
N =60, z = 5.875, p < 0.0001).

17Alés-Ferrer, Fehr, and Netzer (2021) obtain 0.237 with the food choice data of Clithero
(2018). The latter obtains 0.209 using a parametric drift-diffusion model approach.
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Figure C.1: Mean absolute errors for RUM/RPM and TWT for Davis-Stober,
Brown, and Cavagnaro (2015) (on the left) and Kalenscher et al. (2010) (on the
right) across different utility functions (CRRA vs. CARA). 95% confidence inter-
vals are represented in red.

A qualitatively similar result is obtained for KTHDP’s dataset (Figure C.1,
right). The TWT approach achieves an average mean absolute error of 0.2564,
which outperforms RUM estimations with either CRRA (0.4695; WRS, N = 29,
z = 4.076, p < 0.0001) or CARA utilities (0.3145; WRS, N = 24, z = 2.286,
p = 0.0211). However, RPM estimations outperform TWT for this dataset, both
with CRRA (0.1859 WRS, N = 30, z = —2.910, p = 0.0028) and with CARA
utilities (0.1982 WRS, N = 30, z = —2.088, p = 0.0364), although these results
do not reach significance if adjusting for multiple testing.

The mixed results for the application of TWT’s Theorem 3 might simply reflect
the dangers of additional, possibly-unwarranted assumptions used in estimation
procedures. Theorem 3 in the TWT method assumes Fechner errors (although
not a specific functional shape), an assumption that might be less warranted than
simply symmetric errors as in Theorem 2. Fechner errors reduce the concep-
tual distance between the TWT method and the RUM approach (with normally-
distributed errors) or RPM analyses (with normally-distributed risk attitudes).
While without this assumption the TWT method significantly outperformed the
other, parametric approaches, adopting this assumption leads to mixed results,
which are also inconsistent across datasets.
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