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Abstract

The endowment and attachment e�ect are empirically well-documented in bilat-

eral trade situations. Yet, the theoretical literature has so far failed to formally iden-

tify these e�ects. We �ll this gap by introducing expectations-based loss aversion,

which can explain both e�ects, into the classical setting by Myerson and Satterth-

waite (1983). This allows us to formally identify the endowment and attachment

e�ect and study their impact on information rents, allowing us to show that, in

contrast to other behavioral approaches to the bilateral trade problem, the impossi-

bility of inducing materially e�cient trade persists in the presence of loss aversion.

We then turn to the design of optimal mechanisms and consider the problem of

maximizing the designer's revenue as well as gains from trade. We �nd that the

designer optimally provides the agents with full insurance in the money dimension

and, depending on the distribution of types, optimally increases or decreases the

trade frequency in the presence of loss aversion.

Keywords: Bilateral trade, loss aversion, mechanism design, endowment and attach-

ment e�ect
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1 Introduction

The bilateral trade setting describes a simple, yet economically important situation. There

is a seller, who owns a good and might be willing to sell it, and a buyer, who might be

interested in buying it. Di�erent parts of the economic literature have approached this

setting di�erently. In the �eld of mechanism design we assume that the agents' valuation

of the good is private information and study what outcomes a designer can achieve through

di�erent institutions. Famously, Myerson and Satterthwaite (1983) have shown that some

potential gains from trade will be left on the table as a rule. This impossibility result on

e�ciency constitutes a cornerstone within economics overall.

In the empirical literature, especially by means of experiments, we have studied how

people behave in such trade situations and how the institution a�ects behavior. Here, two

notable e�ects have been documented: the endowment e�ect, going back to Thaler (1980),

and, more recently, the attachment e�ect (Ericson and Fuster, 2011). The endowment

e�ect tells us that ownership of the good drives up the seller's valuation of the good. The

attachment e�ect tells us that a buyer can get attached to a good she does not own (yet)

and that this attachment drives up her valuation for it. Both of these empirical �ndings

can be explained by the model of expectations-based loss aversion by K®szegi and Rabin

(2006, 2007), which builds on the seminal work by Kahneman and Tversky (1979).1 In

their model, essentially, people compare an outcome to some reference point, which is

given by their initial, rational expectations of the outcome. In the case of the buyer, for

instance, it is the expectation that she will buy the good which leads to her attachment

to the good. Importantly, the neoclassical model which is employed in Myerson and

Satterthwaite (1983) cannot explain why these e�ects would materialize. The model by

K®szegi and Rabin, however, is a natural candidate to better understand these empirical

e�ects and their implications on trade situations from a theoretical perspective.

In this paper, we thus introduce expectations-based loss aversion into an otherwise

standard mechanism-design approach to the bilateral-trade problem. More speci�cally,

we augment the model by Myerson and Satterthwaite (1983) (henceforth MS), in which

both agents have quasi-linear utility over ownership of the good and money, by allowing

for both agents to have reference-dependent preferences as modeled in K®szegi and Rabin

(2006, 2007) (henceforth KR). We call the standard utility from ownership of the good

and money material utility, and, in addition, introduce gain-loss utility with respect to

both, money and ownership of the good, separately. The reference point, relative to

which agents evaluate an outcome, is formed endogenously as the rational expectations

1There is a substantial empirical evidence of loss aversion, e.g., Fehr and Goette (2007), Post, van den
Assem, Baltussen, and Thaler (2008), Crawford and Meng (2011) and Pope and Schweitzer (2011). In
particular, see Ericson and Fuster (2014) for an excellent review on the role of loss aversion in explaining
behavioral e�ects in exchange situations.
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over the outcome.2 We introduce the formal framework in detail in Section 2, where we

also characterize incentive compatible mechanisms.

We then begin our analysis in Section 3 by identifying the theoretical counterparts of

the endowment and attachment e�ect. In Proposition 1, we show that in any incentive

compatible mechanism, loss aversion, by means of the attachment and the endowment

e�ect, reduces the information rent of the buyer and increases the information rent of the

seller, respectively. To better understand this and to �x ideas, consider the mechanism

in which trade takes place whenever the buyer values the good more than the seller, i.e.,

whenever trade is materially e�cient. In the absence of loss aversion, the buyer has an

incentive to imitate a lower type, that is, pretend that she does not value the good as

much as she actually does, in order to drive down the price she has to pay for it. The

�ip side of this behavior, is that by doing so, she reduces the probability of trade actually

taking place. This is where expectations-based loss aversion kicks in. The possibility of

getting the good induces an attachment to the good, which, if trade was to not take place,

gives rise to a feeling of loss. In order to avoid this loss, which is felt more strongly than

a commensurate gain, the buyer is less eager to shade her valuation than in the absence

of loss aversion. Consequently, it is easier to induce truthful behavior from the buyer and

thus her information rent decreases due to the attachment e�ect. Turning to the seller,

we �nd that the endowment e�ect plays out in a similar fashion, but with the opposite

result. In the absence of loss aversion, the seller wants to imitate a higher type, in order

to receive a higher transfer. Loss aversion reinforces this behavior, as reporting a higher

type increases the chance of trade not taking place and hence keeping the good the seller

is endowed with. Thus, it becomes even harder to induce truthful behavior from the seller

and her information rent increases.

The result on the e�ect of loss aversion on the agents' information rent in Proposition

1 is of interest for two reasons. First, as we have already noted, it formally identi�es the

theoretical counterparts of the attachment and endowment e�ect. Second, it suggests an

interesting connection to Myerson and Satterthwaite's impossibility result. The standard

interpretation of the impossibility result is that the gains from trade cannot cover the

information rents that accrue to the agents in order to ensure incentive compatibility

given the participation constraints and budget balance. Since loss aversion reduces the

buyer's information rent, it could mitigate the severity of the impossibility problem or

even reverse it, thus enabling the implementation of materially e�cient trade. Indeed,

Proposition 2 shows that the presence of a loss-averse buyer can mitigate the impossibility

2Ericson and Fuster (2011), Abeler, Falk, Goette, and Hu�man (2011), Crawford and Meng (2011),
Gill and Prowse (2012), Karle, Kirchsteiger, and Peitz (2015), and Bartling, Brandes, and Schunk (2015)
provide evidence for the assumption that the reference point is determined by expectations. In contrast,
see He�etz and List (2014) and Gneezy, Goette, Sprenger, and Zimmermann (2017) for papers that show
the limits of this. He�etz (2021) provides a nuanced discussion on some of the con�icting evidence.
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result in the sense that a lower subsidy would be needed to induce materially e�cient

trade. However, a reversal is beyond reach, as loss aversion not only reduces the buyer's

information rent, but also her participation constraint becomes harder to satisfy, due to

the ex-post variation in payo�s, which lower expected utility.

We would like to note that the robustness of the impossibility result in the present

context is in stark contrast to other papers with non-standard preferences, which show that

the impossibility result can be reversed. In the case of intentions-based social preferences

the reversal is driven by the fact that the incentive compatibility constraints can be turned

slack by introducing an action which generates su�ciently strong feelings of kindness,

thereby essentially eliminating any tension between ex-post e�ciency and the agents'

incentives (Bierbrauer and Netzer, 2016). Similarly, as agents become more altruistic,

their utility becomes more aligned with the expected gains from trade, reducing the

tension between ex-post e�ciency and the agents' incentives (Kucuksenel, 2012). Thus,

in contrast to the present framework, the channel alleviating the impossibility problem

does not con�ict with the incentive compatibility or the participation constraints, meaning

that a reversal is possible.

In Section 4 we turn to the problem of designing optimal mechanisms and begin with

the problem of maximizing the designer's revenue. We show that in the presence of loss

aversion any revenue-maximizing mechanism features what we call interim-deterministic

transfers, that is, the transfer of an agent is independent of the other agent's report and is

thus deterministic given her own type. This reduces ex-post variations in payo�s, thereby

making loss-averse agents better o�. Turning to the optimal trade rule, we note that it is

not possible to simply obtain the optimal trade rule by pointwise maximization as in MS,

because the agents' expected utilities endogenously depend on the mechanism through the

reference point. We thus �rst show that the optimal trade rule must take a particular form.

Namely, holding �xed the buyer's type, if trade optimally takes place for some seller type,

then trade should also take place for all lower seller types. This captures the intuitively

appealing notion that trade should take place for buyers with high valuations and sellers

with low valuations. With this in hand we can reformulate the objective function such

that pointwise maximization is once more applicable and derive the optimal mechanism.

We �nd that the presence of loss aversion can reduce or increase the optimal amount

of trade depending on the distribution of types. In some cases, for instance when types

are distributed uniformly with identical support, the designer induces less trade in the

presence of loss aversion. Thus, beyond eliminating all ex-post variation in the agents'

transfers, thereby fully insuring them against any losses in the money dimension, the

designer may partially insure agents against losses in the trade dimension by reducing the

trade probability. In this case with uniformly distributed types, one can show that the

designer reduces the trade probability as the stakes increase and provides the agents with
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full insurance by eliminating trade altogether for su�ciently high stakes. Intuitively, as

the stakes become larger, it becomes too costly to induce loss-averse agents to take on

any uncertainty.

Besides maximizing the designer's revenue, another natural question to ask is to how

the designer can maximize the gains arising from trade. In the presence of loss aversion

one needs to clarify what the relevant welfare criterion is and how to handle gain-loss

utility. The literature on behavioral welfare economics provides some guidance and allows

us to distinguish between model-based and model-less approaches (Manzini and Mariotti,

2014). In a model-based approach (e.g., Benkert and Netzer, 2018; Rubinstein and Salant,

2012) the welfare criterion is developed based on an underlying theory (or, a model) of

mistakes. In contrast, in a model-less approach (e.g., Apesteguia and Ballester, 2015;

Bernheim and Rangel, 2009) multiple inconsistent preferences are being aggregated into

a welfare criterion solely on the basis of observed choices. Thus, the designer may take

di�erent stances on how to treat gain-loss utility when aiming to maximize gains from

trade. Proceeding analogously as for the revenue-maximizing mechanism, we can derive

the optimal mechanism for both when the designer wants to maximize only material gains

from trade or total gains from trade (including gain-loss utility). In general, the optimal

mechanisms may be di�erent for the these two distinct objectives. It turns out, however,

that for the case of uniformly distributed types and symmetric degrees of loss aversion, the

optimal mechanisms coincide, so that it does not matter whether the designer considers

loss aversion a mistake or not.

1.1 Related literature

Most closely related to our paper is the literature on mechanism design with loss-averse

agents. Eisenhuth (2019) considers the problem of a risk-neutral seller who wants to

maximize revenue by selling a good to loss-averse buyers. Using the framework of KR, he

�nds that the optimal auction is an all-pay auction with reserve price when agents bracket

narrowly. This result corresponds to our �nding that transfers are interim deterministic

in optimal mechanisms and, as one can show, extends beyond the auction and bilateral

trade setting. Duraj (2018) considers mechanism design problems with agents who are

loss averse on news utility, that is, agents' utility depends on changes in their beliefs over

the outcome as in K®szegi and Rabin (2009). In an application to bilateral trade he shows

the robustness of the impossibility result in this setting.3

Also related is the (increasingly large) literature on behavioral industrial organization

3In an older version of that paper, which was made available by personal communication, Duraj
showed that the impossibility result can be reversed under some conditions in the presence of news utility
(Duraj, 2015). We thank Niccolò Lomys for making the connection.
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with loss-averse agents.4 Rosato (2017) considers a sequential bargaining model with a

risk-neutral seller and a loss-averse buyer.5 Also within the framework of KR, but as-

suming wide bracketing, he shows that the buyer's loss aversion softens the rent-e�ciency

trade o� for the seller. As in the present paper, this is driven by the attachment e�ect: the

buyer is willing to accept lower o�ers to avoid the risk of a breakdown of the negotiations.6

In contrast to the present paper, neither Rosato (2017) (nor Eisenhuth (2019) above)

feature loss-averse sellers, but only loss-averse buyers. Heidhues and K®szegi (2014) and

Rosato (2016) consider models with a monopolist selling to expectations-based loss-averse

consumers. In both papers the monopolist uses random prices to induce the attachment

e�ect, increasing the consumers willingness to pay and thus pro�ts. In contrast, in the

present paper agents are already confronted with uncertainty due to the private nature

of types and there is no need to further �inject� randomness to induce the attachment or

endowment e�ect. Indeed, the designer optimally insures agents fully against any varia-

tion in transfers and partially in the trade dimension in order to reduce ex-post variation

in payo�s.

Finally, our paper also relates to the large literature on the bilateral trade problem,

which has followed Myerson and Satterthwaite (1983). Arguably, the departure from

the classical setting most closely related to our paper, is to consider risk-averse agents.

However, in contrast to loss aversion, risk aversion cannot explain the endowment and

attachment e�ect. Early on, Chatterjee and Samuelson (1983) showed that when agents

�become in�nitely risk averse� all material gains from trade can be realized using a double-

auction. More recently, Garratt and Pycia (2020) examine the bilateral trade problem

relaxing the assumption that the agents have quasi-linear utility.7 Allowing for risk aver-

sion and wealth e�ects, they provide conditions for the possibility of realizing all gains

of trade. The impossibility result can be reversed in this setting, because the presence

of risk aversion and wealth e�ects give rise to additional gains from trade, which then

su�ce to cover the agents' information rents.8 In contrast to Garratt and Pycia (2020)

4See for instance Karle and Möller (2020) and the references therein.
5See Shalev (2002) and Driesen, Perea, and Peters (2012) for other approaches incorporating loss

aversion to bargaining.
6The attachment e�ect also plays a role in a number of other papers, among others Karle and Schu-

macher (2017) in a model of advertisement or in Rosato (2021) who proposes expectations-based loss
aversion as an explanation for the �afternoon e�ect� observed in sequential auctions.

7See also the references in Garratt and Pycia (2020) for more work on the bilateral trade problem in
the classic framework with quasi-linear utility following Myerson and Satterthwaite (1983). Moreover,
see Wolitzky (2016) and Crawford (2021) for analyses of the bilateral trade problem with maxmin and
level-k agents, respectively.

8In contrast to Garratt and Pycia (2020), we obtain quasi-linear utility due to narrow-bracketing of
gain-loss utility and having piece-wise linear value functions. Thus, the relaxation of quasi-linear utility,
which gives rise to the possibility result in their paper, is not present in our framework. The narrow-
bracketing assumption also sets the present setting apart from that in Gershkov, Moldovanu, Strack,
and Zhang (2021), who study optimal auction design when agents have constant relative risk aversion.
They �nd that agents' utility is, in the language of the present paper, interim deterministic, i.e., does
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we do not attempt to establish whether e�cient trade with respect to the total gains from

trade can be achieved, but approach the problem as one of �nding the trade mechanism

which maximizes the gains from trade from an ex-ante perspective, �nding that it mat-

ters whether one wants to maximize total or only material gains from trade, unless loss

aversion is su�ciently strong.

2 Model

2.1 Utility, Social Choice Functions and Mechanisms

The set of agents is given by I = {S,B} where S and B denote seller and buyer,

respectively. It is commonly known that the type of agent i ∈ I has distribution

Fi with full support on the set Θi = [ai, bi] ⊂ R+, and is private information. Let

Θ = ΘS × ΘB and assume that ΘS and ΘB have a non-trivial intersection. We inter-

pret the type of an agent as her valuation of the good.9 A social alternative is given by

x = (y, tS, tB) ∈ X = {0, 1}×R2, where y indicates whether or not trade takes place and

tS and tB denote the respective transfers of the seller and buyer.

Following KR, we allow for the agents to be loss averse in the trade and in the money

dimension. That is, the buyer derives the standard material utility from obtaining and

paying for the good, and additionally, the buyer feels weighted gain-loss utility with

respect to getting the good as well as weighted gain-loss utility with respect to paying

for the good. Loss-aversion is captured by value functions in the sense of Kahneman and

Tversky (1979) given by

µk
i (x) =

x if x ≥ 0,

λk
i x else,

for some λk
i > 1, which re�ects the degree of loss aversion.10 Thus, the riskless total utility

not depend on other agents' reports, while we only obtain interim deterministic transfers with narrow
bracketing. The setting in Gershkov et al. (2021) is more closely related to the part in Eisenhuth (2019)
with wide bracketing.

9We could alternatively assume that the seller does not own the good but has to produce it. The
seller's type would then represent her marginal cost of production. All the results that follow would go
through in this case.

10We follow the literature by abstracting from diminishing sensitivity. This assumption is not needed
for gain-loss utility in the money dimension. For instance, all the proofs go through directly if we assume
µ2
i (x) = g(x) if x ≥ 0, and µ2

i (x) = −λ2
i g(−x) if x < 0, for some concave function g. In the trade

dimension, however, we cannot dispense of the piece-wise linearity, as this ensures that expected utility
remains linear in the agents type in the presence of loss aversion.
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is given by

uS(x, rS, θS) = (1− y)θS + tS + η1Sµ
1
S

(
r1SθS − yθS

)
+ η2Sµ

2
S(tS − r2S) (1)

uB(x, rB, θB) = yθB − tB + η1Bµ
1
B(yθB − r1BθB) + η2Bµ

2
B(r

2
B − tB) (2)

where ηki ≥ 0 are the weights put on gain-loss utility and ri = {r1i , r2i } ∈ R2 are the

so-called riskless reference levels. Following KR we will allow the reference point to be

the agent's rational expectations and therefore a probability distribution over all riskless

reference levels (see more below).

The model by KR has several moving parts, so we devote the following paragraph to

discuss several (implicit) assumptions. We refer to (1−y)θS+ tS and yθB− tB as material

utility and to the other terms as gain-loss utility in the trade and money dimension,

respectively. We follow most of the literature working with the model by KR and adopt

the following assumption by Herweg, Müller, and Weinschenk (2010).11

Assumption 1 (No Dominance of Gain-Loss Utility) Λi = η1i (λ
1
i − 1) ≤ 1, i ∈ I.

As KR noted, this condition ensures that agents will not choose stochastically dominated

options and the condition seems to hold up in empirical estimates.12 Essentially, we need

the assumption in order to ensure incentive compatibility and will discuss its role when

stating our results.13 Further, we follow KR by assuming �narrow bracketing�, i.e., we

assume that there is a separate gain-loss term for each of the two material utility dimen-

sions, trade and money utility. This assumption is well-supported empirically (see e.g.,

Thaler, 1999) and is important in our setting, as it allows us to maintain quasi linearity

in the presence of loss aversion.14 Finally, the assumption that the loss aversion param-

eters are commonly known may seem restrictive. However, we are essentially assuming

that the functional form of the utility function is common knowledge and that all private

information pertains to the agents' valuation of the good. We are thereby following for

instance Maskin and Riley (1984) who assume in their study of optimal auctions with

risk-averse buyers that the buyers' parameter of risk-aversion is commonly known. We

brie�y discuss relaxing the assumption in the conclusion.

11This condition is commonly imposed, see for instance de Meza and Webb (2007), Eisenhuth and
Grunewald (2018), Eisenhuth (2019), Karle and Peitz (2014), Rosato (2021), and Gershkov et al. (2021).
For examples not adopting the assumption see Meisner and von Wangenheim (2021) or Dreyfuss, He�etz,
and Rabin (2019).

12In a recent meta analysis, Brown, Imai, Vieider, and Camerer (2021) �nd that the the loss-aversion
coe�cient λ is empirically estimated with a mean λ = 1.955 and a 95%-credible interval of [1.824, 2.104],
suggesting that the assumption is indeed widely, if not always, satis�ed.

13Note that the assumption applies only to gain-loss utility in the trade dimension, while no restrictions
are placed on the money dimension.

14As discussed in the literature review above (see footnote 8 in particular), this is a key distinction to
the models considering risk aversion, which implicitly correspond to wide bracketing.

8



A social choice function (SCF) f : Θ → X assigns a collective choice f(θS, θB) ∈ X

to each possible pro�le of the agents' types (θS, θB) ∈ Θ. In the present bilateral trade

setting, a social choice function takes the form f = (yf , tfS, t
f
B). Let F denote the set

of all SCFs and Y the set of all trade mechanisms, i.e., the set containing all yf . A

mechanism Γ = (MS,MB, g) is a collection of message sets (MS,MB) and an outcome

function g : MS × MB → X. We denote the direct mechanism by Γd = (ΘS,ΘB, f).

Since agents privately observe their types, they can condition their message on their type.

Consequently, a pure strategy for agent i in a mechanism Γ is a function si : Θi → Mi.

Note that g(sS(θS), sB(θB)) ∈ X. Let Si denote the set of all pure strategies of agent

i. Further, we denote the truthful strategy sti(θi) = θi. Throughout, the operator E−i

denotes the expectation over the random variables θ̃−i taking the value θi as given.

2.2 Equilibrium Concept and Revelation Principle

We use the concept of an (interim) choice-acclimating personal equilibrium (CPE) in-

troduced in K®szegi and Rabin (2007).15 The set of all riskless reference levels is given

by the set of all social alternatives X. Essentially, the set X captures all the outcomes

that could materialize at the end of the agents' interaction. In a mechanism Γ, agent i's

action induces a distribution over the set of social alternatives X, conditional on the other

agent playing s−i. It is this endogenously generated distribution over X that forms the

agent's reference point, or rather, reference distribution in a CPE. E�ectively, when an

agent evaluates an outcome, she is comparing it to all other possible social alternatives

that could have materialized given the distribution induced over them. Moreover, when

the agent takes an action in a CPE, she takes the action anticipating that it will not only

determine the outcome of the mechanism, but also the distribution over the set X and,

therefore, the reference point.

Moving to the interim stage and allowing the reference point to be the agent's rational

expectations, we can de�ne the interim expected utility of the seller with type θS, in the

mechanism Γ, when playing action m ∈ MB, given that the buyer plays strategy sB as

US(m,sB,Γ|θS) =∫ bB

aB

(1− yg(m, sB(θB)))θS + tgS(m, sB(θB)) dFB(θB)

+

∫ bB

aB

∫ bB

aB

η1Sµ
1
S

(
yg(m, sB(θ

′
B))θS − yg(m, sB(θB))θS

)
dFB(θ

′
B) dFB(θB) (3)

15KR also introduce the unacclimating personal equilibrium (UPE). In the UPE the agent �maximizes
expected utility taking the reference point as given�, whereas in the CPE the agent �maximizes expected
utility given that it determines both the reference lottery and the outcome lottery�. KR note that the
CPE is more appropriate when the uncertainty is resolved after the agent's decision. We thus believe that
the CPE is the more natural equilibrium concept in our context, as the report of an agent determines
the uncertainty she feels about the outcome given her beliefs about the other agent's type.
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+

∫ bB

aB

∫ bB

aB

η2Sµ
2
S

(
tg(m, sB(θB))− tg(m, sB(θ

′
B))

)
dFB(θ

′
B) dFB(θB)

= θS

∫ bB

aB

(1− yg(m, sB(θB))) dFB(θB) +

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)

+ θSη
1
S

∫ bB

aB

∫ bB

aB

µ1
S

(
yg(m, sB(θ

′
B))− yg(m, sB(θB))

)
dFB(θ

′
B) dFB(θB)

+ η2S

∫ bB

aB

∫ bB

aB

µ2
S

(
tgS(m, sB(θB))− tgS(m, sB(θ

′
B))

)
dFB(θ

′
B) dFB(θB).

The expression in (3) may require some explanation. The �rst line corresponds to

material utility, the second to gain-loss utility in the trade dimension and the third to

gain-loss utility in the money dimension. The double integral has a clear intuition. To

illustrate, consider the last line containing the money gain-loss utility. Fix any θB in the

domain of integration of the outer integral and suppose this was the actual realization

of the buyer's type. The seller would then receive a transfer of tgS(m, sB(θB)), which she

would compare to the reference point. The reference point is induced endogenously and

corresponds to the distribution of possible transfers. Thus, for every θ′B in the domain of

the inner integral we get a possible transfer tgS(m, sB(θ
′
B)) given the buyer's strategy and

the seller's message. The seller compares the actual transfer tgS(m, sB(θB)) with all these

other possible transfers and the value function µ2
S weights these comparisons di�erently,

depending on whether they result in a loss or a gain. The inner integral then aggregates

the gains and loss weighted by the induced probability distribution. Next, integrate over

all the values θB in the domain of the outer integral to get the familiar interim expected

utility. In summary, the seller aggregates over each possible realization of transfers and

for each of these possible realizations she compares the outcome with all other possible

outcomes, aggregating gains and losses in each comparison.

Given our interpretation that the seller owns the good, her outside option is type-

dependent and given by θS. To simplify notation later, we will consider the seller's net

utility from trade, which, with some abuse of notation, allows us to compactly write

US(m, sB,Γ|θS) = −θS ṽS(m) + t̃S(m), where

ṽS(m) =

∫ bB

aB

yg(m, sB(θB)) dFB(θB)

− η1S

∫ bB

aB

∫ bB

aB

µ1
S (y

g(m, sB(θ
′
B))− yg(m, sB(θB))) dFB(θ

′
B) dFB(θB),

t̃S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB)

+ η2S

∫ bB

aB

∫ bB

aB

µ2
S (t

g
S(m, sB(θB))− tgS(m, sB(θ

′
B))) dFB(θ

′
B) dFB(θB).
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This compact notation highlights the fact that not only material utility, but also overall

utility is linear in the type. Moreover, it will turn out to be useful to further de�ne

t̄S(m) =

∫ bB

aB

tgS(m, sB(θB)) dFB(θB),

wS(m) =

∫ bB

aB

∫ bB

aB

µ2
B (tgS(m, sB(θB))− tgS(sS(θS), sB(θ

′
B))) dFB(θ

′
B) dFB(θB),

allowing us to write t̃S(m) = t̄S(m)+η2SwS(m). Similarly, we can write the buyer's utility

as UB(m, sS,Γ|θB) = θB ṽB(m) + t̃B(m), de�ning the functions ṽB and t̃B analogously.

We can now de�ne our equilibrium concept, which follows Eisenhuth (2019).16

De�nition 1 A strategy pro�le s∗ = (s∗S, s
∗
B) is a CPE of the mechanism Γ = (MS,MB, g)

if s∗i (θi) ∈ argmaxmi∈Mi
Ui(mi, s

∗
−i,Γ|θi) for all i ∈ I and θi ∈ Θi.

De�nition 2 A mechanism Γ implements a SCF f if there is a CPE strategy pro�le

s = (sS, sB) such that g(sS(θS), sB(θB)) = f(θS, θB) for all (θS, θB) ∈ Θ.

De�nition 3 A SCF f is CPE incentive compatible (CPEIC) if the truthful pro�le st =

(stS, s
t
B) is a CPE strategy in the direct mechanism Γd.

As a �rst result we note that the revelation principle for CPE holds in our setting.17

Proposition 1 (Revelation Principle for CPE) A social choice function f can be

implemented in CPE by some mechanism Γ if and only if f is CPEIC.

The standard proof of the revelation principle goes through in spite of the presence of

an endogenous reference point. To see this, note that the reference point is determined

as the rational expectations over outcomes. Starting from an arbitrary mechanism which

induces some distribution of outcomes, the corresponding direct mechanism induces the

same distribution of outcomes and therefore also the same reference point. Henceforth,

we focus on direct mechanisms and no longer explicitly list the mechanism as an argument

in the utility function.

16In later work than Eisenhuth (2019), Dato, Grunewald, Müller, and Strack (2017) have developed
a framework to extend the equilibrium concepts in K®szegi and Rabin (2006, 2007) to study strategic
interaction in �nite games. The equilibrium concept they de�ne for the CPE coincides with the one in
Eisenhuth (2019) and here. Interestingly, they show that in a CPE players are unwilling to randomize
over pure strategies, implying that existence may fail and that restriction to pure strategies is without
loss.

17Proofs are relegated to the appendix unless noted otherwise.

11



2.3 Incentive Compatibility and E�ciency

In this section we characterize the set of all CPEIC social choice functions and introduce

some familiar concepts, such as individual rationality and ex post budget balance. Further,

we introduce our notion of an interim deterministic mechanism.18

Proposition 2 The SCF f = (yf , tfS, t
f
B) is CPEIC if and only if,

(i) ṽS is non-increasing and ṽB is non-decreasing, and

(ii) we can write utility as

US(θS, s
t
B|θS) = US(bS, s

t
B|bS) +

∫ bS

θS

ṽS(t) dt, (4)

UB(θB, s
t
S|θB) = UB(aB, s

t
S|aB) +

∫ θB

aB

ṽB(t) dt. (5)

Recall that the functions ṽB and ṽS contain terms of gain-loss utility. Thus, while the

incentive-compatibility conditions in Proposition 2 seem similar as those in the absence of

loss aversion, they are not and thus the set of incentive-compatible SCF need not coincide

either. We say that a SCF is individually rational if for both agents i ∈ I

Ui(θi, s
t
−i|θi) ≥ 0 ∀θi ∈ Θi. (IR)

Setting the outside option in (IR) equal to zero is without loss of generality.19 An agent

could choose to walk away and not participate in the mechanism as soon as she learns

her type. Doing so would rule out any possibility of trade and payment or receipt of

any transfers. Therefore, the reference points of the agent would be equal to zero, as she

anticipates that no trade or transfers can take place if she walks away. Consequently,

there would be no feelings of gain or loss, as well as zero material utility.

We say that a mechanism has interim-deterministic transfers, when, given her own

type, an agent's transfer does not depend on almost all types of the other agent. Similarly,

a trade rule is interim deterministic, when, given her own type, the trade rule coincides

for almost all types of the other agent. A mechanism with interim-deterministic transfers

and an interim-deterministic trade rule is called interim deterministic.

18In contrast to Carbajal and Ely (2016), who consider price discrimination using a di�erent model
of loss aversion than the one here, the standard integral representation obtains in our setting. This is
driven by the fact that, in contrast to Carbajal and Ely (2016), the report of an agent and not her type
determines her reference point. For instance, a high buyer type does not expect to get the good with
the probability corresponding to her true type when misreporting. Rather, she is aware that reporting a
lower type changes the probability of getting the good and this is re�ected in her reference point.

19Recall that we are considering net utility and have thus already taken care of the seller's type-
dependent outside option.
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3 Attachment, Endowment and Information Rents

As noted in the introduction, the attachment and endowment e�ect have been empirically

documented in bilateral trade situations. However, the classical model with quasi-linear

utility as in Myerson and Satterthwaite (1983) cannot explain such e�ects, motivating the

inclusion of expectations-based loss aversion in the present paper. Our �rst step is thus

to formally identify these e�ects and their implications in our model.

Proposition 3 In any CPEIC mechanism, the information rent of the seller is increasing

in ΛS and the information rent of the buyer is decreasing in ΛB.

Put di�erently, the presence of loss aversion in the trade dimension increases the
information rent of the seller and decreases the information rent of the buyer. The proof
is straightforward as it su�ces to take the derivatives with respect to ΛS and ΛB from
equations (4) and (5), respectively. The key step is to note that

ṽB(θB)

=

∫ bS

aS

yf (θS , θB) dFS(θS) + η1B

∫ bS

aS

∫ bS

aS

µ1
B

(
yf (θS , θB)− yf (θ′S , θB)

)
dFS(θ

′
S) dFS(θS),

= yB(θB) + η1B

∫ bS

aS

∫ bS

aS

yf (θS , θB)(1− yf (θ′S , θB))− λ1
B(1− yf (θS , θB))y

f (θ′S , θB) dFS(θ
′
S) dFS(θS),

= yB(θB)(1− ΛB(1− yB(θB)))

and analogously for the seller ṽS(θS) = yS(θS)(1 + ΛS(1− yS(θS))), where

yB(θB) =

∫ bS

aS

yf (θS, θB)dFS(θS), yS(θS) =

∫ bB

aB

yf (θS, θB)dFB(θB).

Thus, the attachment e�ect is captured by −ΛB

∫ θB
aB

yB(θB)(1 − yB(θB)dθB and the

attachment e�ect by ΛS

∫ bS
θS

yS(θS)(1 − yS(θS))dθS. As already noted, the respective de-

crease and increase in the rents stem from the loss aversion in the trade dimension. As

one would expect, loss aversion on the money dimension plays no role here. To simplify

exposition, we will use the term loss aversion as referring to loss aversion in the trade

dimension unless stated di�erently.

Having formally identi�ed the two e�ects as the impact of loss aversion on the infor-

mation rents, we can conduct an interesting bit of comparative statics. Does loss aversion

a�ect all types in the same way?

Corollary 1 The strength of the endowment and attachment e�ect is increasing and de-

creasing in the type of the buyer and seller, respectively.

The result follows immediately as one takes the derivative with respect to ΛS and

θS from equation (4) and with respect to ΛB and θB from equation (5), so that a proof
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is omitted. The �nding about the impact of the endowment and attachment e�ect on

the information rents suggests that the presence of a loss-averse buyer could enable the

designer to implement materially e�cient trade subject to ex-post budget balance and the

agents' participation constraints,20 that is, to �reverse� the impossibility result by Myerson

and Satterthwaite (1983). To see this, recall the interpretation of the result, stating that

the gains from trade do not su�ce to cover the agents' information rents. Thus, seller loss

aversion, which increases the information rent, will make the problem only harder, while

buyer loss aversion could make it easier. However, there is a countervailing e�ect even for

the buyer. Loss aversion not only a�ects information rents as stated in Proposition 3, but

also decreases expected utility and hence makes satisfying the participation constraints

harder, too.21 Nevertheless, it su�ces to consider buyer loss aversion to check whether

the impossibility result can be reversed. Making use of this insight, we can proceed

analogously to the proof in Myerson and Satterthwaite (1983). That is, impose budget

balance as well as incentive compatibility to obtain an expression for the sum of utilities

of the �worst� buyer and seller types in the materially e�cient mechanism and show that

it is strictly negative. Indeed, we obtain

UB(aB) + US(bS) =

−
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

(6)

< 0,

which violates individual rationality for any ΛB ≤ 1. This proves our next result (see

Appendix A for the details).

Proposition 4 Given CPEIC, individual rationality and ex-post budget balance, it is

impossible to realize all material gains from trade for any degree of loss aversion in the

money or trade dimension.

The minimal subsidy needed to induce materially e�cient trade under CPEIC and

IR in equation (6) can be interpreted as a measure of the severity of the impossibility

problem and will generally depend on the degree of loss aversion and the distribution of the

agents' types. Indeed, taking the derivative of the minimal subsidy in equation (6) with

respect to ΛB, we can see that the attachment e�ect mitigates the impossibility problem

by dominating the diminishing e�ect of loss aversion on the participation constraints

20Ex-post budget balance corresponds to the condition tfS(θS , θB) = tfB(θS , θB), ∀(θS , θB) ∈ Θ.
21Loss aversion on the money dimension does not a�ect information rents but also reduces expected

utility, thus only making it harder to reverse the impossibility result.
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whenever∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− FS(x))− (1− FS(x))FS(x)xfB(x) dx ≥ 0.

To get a feel for this condition, consider the families of distributions FS(x) = xs and

FB(x) = xb on [0, 1] for b, s > 0. Whenever b > 2s2 − 1 the buyer's loss aversion makes

the problem easier. In words, the likelier low seller types and high buyer types are, the

less severe is the impossibility problem. This is in line with the intuition underlying

the attachment e�ect. When low seller types are likely, a buyer puts a relatively high

probability on trade taking place and thus has a strong attachment to the good (a high

reference point). Hence, when low seller types and high buyer types are likely, on average

the buyer will have a high attachment e�ect, thereby mitigating the impossibility problem.

Note that in the absence of loss aversion, it is also true that the minimal subsidy is lower

the likelier low seller types and high buyer types are. In the presence of the attachment

e�ect, however, this is reinforced.

Another noteworthy point is that for the extreme types, i.e., types who lie outside the

intersection of the intervals, loss aversion does not matter. This �nding is very intuitive.

To see this, observe that for these types trade is interim deterministic and hence there is

no gain-loss utility as there is no room for ex-post variations in payo�s. Put di�erently,

expectations-based loss aversion only has bite when there is unresolved uncertainty, which

is only the case for types lying strictly in the intersection of the type spaces.

The fact that the impossibility result is not reversed is linked to the assumption that

ΛB ≤ 1, i.e., that gain-loss utility does not dominate for the buyer. For instance, when

types are drawn from [0, 1] with distributions FS(x) = x and FB(x) = x10 the subsidy

in equation (6) turns into a surplus for ΛB ≥ 13/3. However, in this example ΛB ≤ 1 is

a necessary condition for the materially e�cient mechanism to be incentive compatible

for the buyer. Hence, incentive compatibility puts limits on the feasible degree of loss

aversion, and, as a consequence, on the strength of the attachment e�ect, meaning that

the impossibility result cannot be reversed. Yet, as we will discuss next, ΛB ≤ 1 is in

general only a su�cient condition for incentive compatibility and not always necessary.

The assumption that Λi ≤ 1 is commonly imposed in the literature for conceptual

as well as technical reasons and seems appears widely supported empirically (see foot-

notes 11 and 12). In particular, KR showed that the assumption ensures that agents do

not choose stochastically dominated options. In the present context, it is easy to show

that the assumption is a su�cient condition for the materially e�cient trade rule to be

incentive compatible in the presence of loss aversion. Moreover, whenever FS(aB) = 0

the assumption is not only su�cient, but also necessary. That is, whenever the small-

est buyer type has a zero probability of trading, the materially e�cient trading rule is
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CPEIC if and only if ΛB ≤ 1. In particular, this is true when the types of both agents

are drawn from the same support. It turns out, however, that when FS(aB) > 0 the

assumption is no longer necessary.22 Indeed, when FS(aB) < 1/2 the necessary condition

reads ΛB ≤ 1/(1 − 2FS(aB)) and when FS(aB) ≥ 1/2 no restrictions need to be put on

ΛB. In the light of the above result the question thus arises whether the impossibility

result persists when FS(aB) > 0 and the assumption is relaxed, as this would allow us

to strengthen the attachment e�ect and possibly set the required subsidy in equation (6)

equal to zero.

To this end, one can show that the impossibility result continues to hold for ΛB ≤
1/(1−FS(aB)). This condition ensures that the lowest buyer type aB is in fact the �worst�

buyer type. For ΛB > 1/(1 − FS(aB)), the worst buyer type is some intermediate type

and the above approach to proving the impossibility result fails: if the lowest buyer type

is no longer the worst type, satisfying individual rationality for the lowest buyer type

does no longer guarantee satisfying individual rationality for all types. The observation

that an intermediate type is the worst type is reminiscent of the related model of part-

nership dissolution (Cramton, Gibbons, and Klemperer, 1987; Fieseler, Kittsteiner, and

Moldovanu, 2003). In this model, the good is initially not exclusively owned by one agent

only, but by several agents. As a result, the worst type of an agent may be an intermediate

type. However, in spite of this similarity, the approach taken in that model cannot be

extended to the present context due to the endogeneity of the reference point. In sum,

although counterexamples have proved elusive, a reversal of the impossibility for when

ΛB > 1/(1−FS(aB)) cannot be ruled out. Note, however, that for su�ciently high degrees

of loss aversion the total gains from trade disappear completely. Thus, even if the buyer's

information rent can be reduced using the attachment e�ect, impossibility will obtain for

su�ciently high degrees of loss aversion because it will eliminate all the total gains from

trade.23

4 Optimal Mechanisms

The preceding section has formally identi�ed the endowment and the attachment e�ect

in an otherwise standard bilateral trade setting. In particular, we have seen how loss

aversion impacts the agents' information rents and the participation constraints, allowing

us to show that the impossibility of implementing materially e�cient trade extends to

22In Herweg et al. (2010), who �rst introduced this assumption, the assumption plays a similar role
as here. It provides a su�cient but not necessary condition to satisfy incentive compatibility of certain
contracts.

23In the above we have only discussed the degree of loss aversion of the buyer. Analogous arguments
regarding the necessity and su�ciency of ΛS ≤ 1 for incentive compatibility of the seller apply. However,
as loss aversion on the side of the seller makes the impossibility problem only harder, it does not enter
our result.
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the setting with loss-averse agents. We now turn to the problem of designing optimal

mechanisms. We begin by considering the problem of maximizing the designer's revenue

and then turn to the (conceptually) more nuanced question of maximizing the gains

from trade. In contrast to the previous section, we assume a symmetric support for the

distributions of buyer and seller types to simplify notation.24 We will continue to allow

for arbitrary distributions, but will make the standard regularity assumption of increasing

virtual types.

4.1 Maximizing the Designer's Revenue

The revenue-maximizing designer's problem reads

max
(yf ,tfS ,t

f
B)∈F

∫ b

a

∫ b

a

(
tfB(θS, θB)− tfS(θS, θB)

)
dFS(θS) dFB(θB),

subject to CPEIC and IR. (RM)

We begin by rewriting this problem into a more accessible form which will allow us to

gain some intuition �rst. The �rst step is to impose the envelope representation of the

utility due to the CPEIC and the individual rationality constraint. The objective function

then reads∫ b

a

(
η2BwB(θB) + θB ṽB(θB)−

∫ θB

a

ṽB(t) dt

)
dFB(θB)

+

∫ b

a

(
η2SwS(θS)− θS ṽS(θS)−

∫ b

θS

ṽS(t) dt

)
dFS(θS). (7)

In the absence of loss aversion, the envelope representation of utility would allow us to

maximize over the trade rule only instead of both the trade rule and transfers. With loss

aversion in the money dimension, however, this is not the case. Indeed, recall that we

de�ned

wS(θS) =

∫ b

a

∫ b

a

µ2
S

(
tfS(θS, θB)− tfS(θS, θ

′
B)
)

dFB(θ
′
B) dFB(θB),

and thus the objective function still depends on transfers. This expression and its analog

for the buyer collect all gain-loss utility with respect to money. Nevertheless, the problem

can be reduced to only choosing the optimal trade rule, because in any optimal mechanism

the transfers of the seller will be interim deterministic and thus not depend on the buyer's

type, and vice versa, so that wi(θi) = 0.

24All arguments go through analogously for the case with asymmetric supports.
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Proposition 5 Any solution to the revenue maximization problem (RM) entails interim-

deterministic transfers.

Intuitively, loss-averse agents dislike ex-post variations in their payo�s. By making the

transfers independent of the other agent's type, the designer completely insures the agents

from any ex-post variation in the transfers. Thus, starting from any mechanism with non-

interim-deterministic transfers, the designer can extract more surplus from the agents by

choosing appropriate interim-deterministic transfers, e�ectively selling the agents insur-

ance. Note that interim-deterministic transfers are also a solution in the absence of loss

aversion. However, in the presence of loss aversion interim-deterministic transfers are the

only solution.25

Proposition 5 allows us to rewrite the maximization problem to

max
yf∈Y

∫ b

a

JB(θB)yB(θB)(1− ΛB (1− yB(θB)) fB(θB)dθB

−
∫ b

a

JS(θS)yS(θS)(1 + ΛS(1− yS(θS)))fS(θS)dθS (RM')

subject to yB(θB) being non-decreasing and yS(θS) being non-increasing,

where yB(θB) =
∫ b

a
yf (θS, θB) dFS(θS) and yS(θS) =

∫ b

a
yf (θS, θB) dFB(θB) denote the

interim trade probabilities of the buyer and seller, respectively, and

JB(θB) = θB − 1− FB(θB)

fB(θB)
, JS(θS) = θS +

FS(θS)

fS(θS)

denote the buyer's and the seller's virtual types. We make the following standard as-

sumption.

Assumption 2 (Regularity) The virtual types JB and JS are strictly increasing.

The designer faces the trade-o� that inducing trade comes at a cost in the form of the

payment due to the seller and with a bene�t in the form of the payment from the buyer.

Further, the form of the objective function in (RM') suggests that even in the presence of

loss aversion the designer wants to induce trade between high buyer and low seller types in

particular. Put di�erently, the designer wants to buy the good from a low-value seller and

sell it to a high-value buyer, as this yields a large pro�t margin. However, as a consequence

25Eisenhuth (2019) proved an analogous result for the case of auctions. In fact, one can show that
Proposition 5 extends beyond the bilateral trade and auction setting. Further, the result is reminiscent
of the optimal mechanism found in Herweg et al. (2010), who augment a principal-agent setting with
moral hazard by assuming the agent is expectations-based loss averse as in the present paper. They �nd
that the principal optimally employs a binary payment scheme instead of a fully contingent contract in
the presence of loss aversion. Hence, loss aversion drastically reduces the ex-post variation in payments,
too, but, in contrast to the present setting, does not eliminate it fully to preserve incentives.
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of expectations-based loss aversion, it matters for an agent's utility whether trade takes

place with only a few or many types of the other agent, as this a�ects her expectations,

which in turn a�ect the strength of the endowment and attachment e�ect. Thus, there are

in some sense externalities between the outcomes of di�erent types. Indeed, because the

agents' expected utilities endogenously depend on the mechanism through the reference

point, point-wise maximization of the objective function is not possible. To see this, note

that the expected trade probabilities yB and yS enter both linearly and quadratically so

that we cannot �move out� the integral of yB and yB to maximize over the ex-post trade

rule yf . In order to get rid of the quadratic terms, we �rst show that the optimal trade

rule takes a particular form.

We begin by performing a change of variables, which will simplify the analysis. Let

vi = Fi(θi) and de�ne φi(vi) = F−1
i (vi). Further, de�ne

q(vB, vS) = y(φB(vB), φS(vS)), qi(vi) =

∫ 1

0

q(vB, vS)dt−i

as well as

MB(vB) = JB(φB(vB)) = φB(vB)− (1− vB)φ
′
B(vB),

MS(vS) = JS(φS(vS)) = φS(vS) + vSφ
′
S(vS).

The problem then becomes∫ 1

0

MB(vB)qB(vB)(1− ΛB(1− qB(vB)))dvB

−
∫ 1

0

MS(vS)qS(vS)(1 + ΛS(1− qS(vS))dvS (8)

subject to the monotonicity constraints and we obtain the following intermediate result.

Lemma 1 The solution to the problem (8) can be written as

q(vB, vS) =

1 0 ≤ vS ≤ v∗S(vB)

0 o.w.
(9)

for some function v∗S : [0, 1] → [0, 1].

The above lemma has a straight-forward interpretation. Fix a buyer type vB and

suppose that it is optimal to induce trade for some seller type v∗S(vB). Then, it is optimal

to also induce for all seller types vS that are lower, i.e., for all vS ≤ v∗S(vB). This re�ects

the intuition that the designer would like to induce trade with low seller types, as they

will be willing to give up the good at a low price.
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The proof of the lemma is in the appendix and proceeds in three steps. First, suppose

some trade rule q̂ is optimal and associate to q̂ the function

q(vB, vS) =

1 0 ≤ vS ≤ q̂B(vB)

0 o.w.,
(10)

where q̂B(vB) =
∫ 1

0
q̂(vB, vS)dvS. Note that qB = q̂B by construction so that the �rst

integral equation (8) is not a�ected by a change from q̂ to q. Essentially, we are holding

�xed the expected trade probability of the buyer and shift all trade probability to low

seller types. Second, we prove a technical lemma in the appendix (Lemma 2) allowing us

to show that∫ 1

0

MS(vS)qS(vS)(1 + ΛS)dvS ≤
∫ 1

0

MS(vS)q̂S(vS)(1 + ΛS)dvS (11)

and ∫ 1

0

ΛSMS(vS)(q
2
S(vS)− q̂2S(vS))dvS ≥ 0. (12)

Third, we plug that together to show that second integral in equation (8) has become

smaller, implying that q yields a higher revenue than the initial trade rule q̂, showing that

the latter cannot be optimal, completing the proof.

Making use of Lemma 1, we note that

qB(vB)
2 =

(∫ 1

0

q(vB, vS)dvS

)2

= 2

∫ 1

0

q(vB, vS)vSdvS

and that

qS(vS)
2 =

(∫ 1

0

q(vB, vS)dvB

)2

= 2

∫ 1

0

q(vB, vS)(1− vB)dvB.

This allows us to get rid of the quadratic terms in (8) and move out the integral of

the expected trade probabilities to obtain∫ 1

0

∫ 1

0

MB(vB) [1− ΛB + 2ΛBvS] q(vB, vS)dvSdvB

−
∫ 1

0

∫ 1

0

MS(vS) [1− ΛS + 2ΛSvB] q(vB, vS)dvSdvB,
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which, reversing our change of variables, becomes∫ b

a

∫ b

a

JB(θB) [1− ΛB + 2ΛBFS(θS)]︸ ︷︷ ︸
:=J̃B(θB ,θS)

yf (θB, θS)dFS(θS)dFB(θB)

−
∫ b

a

∫ b

a

JS(θS) [1− ΛS + 2ΛSFB(θB)]︸ ︷︷ ︸
J̃S(θS ,θB)

yf (θB, θS)dFS(θS)dFB(θB),

=

∫ b

a

∫ b

a

(
J̃B(θB, θS)− J̃S(θS, θB)

)
yf (θB, θS)dFS(θS)dFB(θB).

We now have a concave maximization problem so that an trade rule yf is optimal if

and only if (see, e.g., Theorems 1 and 2 in Luenberger, 1969, p. 217 and p. 221)

yf (θB, θS) =

1 if J̃B(θB, θS)− J̃S(θS, θB) ≥ 0

0 otherwise
(13)

subject to the monotonicity constraints on yB and yS. In order to get a more precise

statement in terms of the monotonicity constraints, we make use of Assumption 1, i.e.,

that Λi ≤ 1. This allows us to reformulate to

J̃B(θB, θS)− J̃S(θS, θB) ≥ 0

⇔J̄B(θB) :=
JB(θB)

1− ΛS + 2ΛSFB(θB)
≥ JS(θS)

1− ΛB + 2ΛBFS(θS)
=: J̄S(θS).

Thus, the trade rule in equation 13 satis�es the monotonicity constraints if the functions

J̄i are increasing. Note that for the case ΛB = ΛS = 0 we obtain J̄i = Ji so that the

monotonicity follows directly from the regularity assumption. In general, however, the

functions J̄i are not necessarily strictly increasing, so that it is not clear, weather the

monotonicity constraint is satis�ed. We have

∂J̄ ′
i(θi)

∂θi
> 0 ⇔ Λj <

J ′
i(θi)

2Ji(θi)fi(θi) + J ′
i(θi)(1− 2Fi(θi))

allowing us to de�ne the set

IC =

{
(ΛB,ΛS) ≥ 0 | Λj <

J ′
i(θi)

2Ji(θi)fi(θi) + J ′
i(θi)(1− 2Fi(θi))

∀θi ∈ [a, b]

}
.

The above derivations prove the following result.

Proposition 6 Suppose (ΛB,ΛS) ∈ IC. Then, the revenue-maximizing trade rule is

given by trade taking place if and only if J̄B(θB) ≥ J̄S(θS, ).
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(c) (ΛB,ΛS) = (1, 0)

Figure 1: The above �gures depict optimal trade rules with the buyer and seller types
on the x and y axes, respectively. Buyer types are always drawn from FB(θB) = θB.
Seller types in panels (a) and (b) are drawn from FS(θS) = θS and from FS(θS) =

√
θS in

panel (b). The orange line corresponds to the case without loss aversion. The blue line
corresponds to the loss aversion parameters indicated in the sub captions. For pro�les
(θB, θS) in the red-shaded are, loss aversion leads to a reduction of trade and in the green-
shaded area to an increase in trade; in the blue-shaded area trade takes place in with and
without loss aversion.

This result deserves some discussion, as it has several noteworthy features. First, in

the absence of loss aversion in the trade dimension, i.e., for ΛS = ΛB = 0, we obtain the

mechanism from Myerson and Satterthwaite (1983). Second, depending on the distribu-

tion of types and degrees of loss aversion, the trade frequency can increase or decrease

compared to the case with no loss aversion. This is illustrated in Figure 1c, where more

trade takes place for pairs of relatively high buyer and seller types, but less trade is in-

duced for relatively low pairs. To gain some intuition, notice that low seller types are

relatively likely given the chosen distributions. Thus, for high buyer types, it is fairly

likely that they value the good more than the seller. Increasing the trade probability for

high buyer types by also inducing trade with higher seller types therefore does not increase

ex-post variation in payo�s too much. Moreover, the attachment e�ect makes it cheaper

to induce truthful behavior among buyers, so that inducing more trade for higher types

(for which the attachment e�ect is strongest, see Corollary 1) is attractive. In other cases,

the trade frequency always decreases, as is illustrated in Figures 1a and 1b. Thus, in such

cases, the designer not only provides agents with full insurance in the money dimension

by means of interim-deterministic transfers, but also o�ers partial insurance in the trade

dimension by reducing the trade probability. Finally, let us discuss the restriction we

need to place on the degree of loss aversion to ensure incentive compatibility. We can

look at the functions J̃i as modi�ed virtual types. However, due to the endogeneity of

the reference point, these modi�ed virtual types also depend on the other agent's type,

so that an ironing approach (Myerson, 1981) is not feasible. Thus, we need to formulate
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conditions on the parameters of loss aversion that ensure CPEIC. Inspecting the set IC

reveals that the above trade rule will only be optimal for su�ciently small degrees of loss

aversion, often well below simply assuming no dominance of gain-loss utility, as the next

part will illustrate.

To close this section, we focus our attention on the case when types are uniformly

distributed on [a, a + 1], as this allows us to derive closed form solutions of the optimal

mechanism, allowing for interesting comparative statics and sharper insights into the

necessary bounds on the degree of loss aversion.

Corollary 2 Consider the case of uniformly distributed types on the interval [a, a+1] for

a ≥ 0 and suppose that ΛB ≤ 1/(a + 1),ΛS ≤ min{1, 1/a}. Then, the optimal trade rule
reads

y(θS, θB) =

1 if θS ≤ δ(θB),

0 otherwise,

where

δ(θB) =
(2θB − 1− a)(1− ΛB(2a+ 1) + aΛS) + a− ΛSa

2

2(1− ΛB(2θB − a− 1) + ΛS(2θB − 1− 2a))
.

Moreover, for (ΛB,ΛS) ̸= (0, 0), increasing the parameter a reduces the optimal trade

frequency, eventually eliminating all trade.

We can interpret an increase of a as an increase of the stakes. Thus, for higher

stakes, less trade takes place for any positive degree of loss aversion. This is in sharp

contrast to the case without loss aversion, where the optimal mechanism is independent

of the size of the stakes. Intuitively, the potential material gains from trade remain

the same even when the stakes are high, because only the di�erence between valuation

matters. However, as the stakes increase, the potential losses increase. Since the designer

needs to compensate the agents for these losses with appropriate transfers to maintain

participation, the losses eventually eat up all the potential material gains. Hence, at some

point the best the designer can do is to induce no trade at all. Contrary to conventional

wisdom, the behavioral e�ects of loss aversion are not mitigated when the stakes are large.

Rather, in that case, loss aversion has the biggest impact precisely when the stakes are

large. Further, we note that the bound on loss aversion ensuring incentive compatibility

decreases in the degree of loss aversion.
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4.2 Maximizing the Gains from Trade

In this section, we consider the problem of maximizing gains from trade. In the absence

of loss aversion, the objective function is given by the sum of ex-ante expected utilities

of the two agents. In the presence of loss aversion, however, it may not be clear what

constitutes an appropriate objective function. Naturally, one way to go about is to mirror

the case without loss aversion and to maximize the sum of ex-ante expected utilities. But

what if the designer is only interested in maximizing the material gains from trade, e.g.,

because she considers loss aversion a mistake?

In standard welfare economics, choice reveals a preference, which in turn should guide

any welfare considerations. When choices do not reveal a preference because of incon-

sistencies or, mistakes, the case is not so clear. Within the �eld of behavioral welfare

economics, we can distinguish between model-based and model-less approaches (Manzini

and Mariotti, 2014). In a model-based approach the welfare criterion is developed based

on an underlying theory (or, a model) of mistakes. In contrast, in a model-less approach

multiple inconsistent preferences are being aggregated into a welfare criterion solely on

the basis of observed choices. In analogy, when maximizing the trade from gains the

designer could �take loss aversion seriously� and include gain-loss utility in the objective

function, or �treat loss aversion as a mistake�, thus only considering material gains from

trade in the maximization problem. It is not always straightforward or uncontroversial to

determine the �right� approach in such situations. As we will see, the distinction matters

in general, but may be irrelevant in special cases.

In order to formulate the maximization problem, we impose a budget balance condition

in addition to CPEIC and IR. Namely, we do not want the designer to inject money in

the economy on average. This is in line with the preceding section, where we looked at

ex-ante revenue maximization. We say that a mechanism is ex-ante budget balanced if∫ b

a

∫ b

a

(
tfS(θS, θB)− tfB(θS, θB)

)
dFS(θS) dFB(θB) = 0. (AB)

We consider two maximization problems given by

max
(yf ,tfB ,tfS)∈F

∫ b

a

US(θS, s
t
B|θS) dFS(θS) +

∫ b

a

UB(θB, s
t
S|θB) dFB(θB),

subject to CPEIC, IR and AB. (TG)

and
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max
(yf ,tfB ,tfS)∈F

∫ b

a

(−θSyS(θS) + t̄S(θS)) dFS(θS) +

∫ b

a

(θByB(θB)− t̄B(θB)) dFB(θB),

subject to CPEIC, IR and AB. (MG)

In problem TG the designer includes gain-loss utility in the objective function and

thus maximizes what we call total gains from trade, whereas only material gains from

trade are maximized in problem MG. To solve either problem, we proceed as we did

before and also obtain the result that in any mechanism maximizing total or material

gains from trade agents are fully insured against any ex-post variation in transfers.

Proposition 7 Any solution to the problem (TG) or (MG) entails interim-deterministic

transfers.

The proof is analogous to the revenue maximization problem and thus omitted. From

here we proceed as we did for the derivation of the revenue-maximizing mechanism, the

only di�erence being the presence of the budget constraint. Putting all of this together,

we obtain the following result.26

Proposition 8 Suppose (ΛB,ΛS) ∈ ICj for j ∈ {TG,MG}. Then, the optimal trade

rules for problems (TG) and (MG), respectively, are such that trade takes place if and

only if trade takes place whenever J̄ j
B(θB, γ) ≥ J̄ j

S(θS, γ).

Naturally, the two trade rules coincide when ΛB = ΛS = 0, in which case we �nd

ourselves in the setting as in MS. In general, however, the optimal trade rules (and thus

transfers) for the two problems will be distinct and it will matter what stance the designer

takes regarding gain-loss utility. Yet, in some instances, it does not matter whether the

designer treats gain-loss utility as a mistake or not, as the following corollary shows.

Corollary 3 Consider the case of uniformly distributed types on the unit interval. If

ΛS = ΛB = Λ, then the optimal trade rules for the problems (TG) and (MG) coincide.

5 Conclusion

The theoretical and empirical literature on bilateral trade have both become quite exten-

sive over time. However, the theoretical literature has so far failed to incorporate some

�ndings from the empirical literature, most prominently the well-documented endowment

26The parameter γ is the Lagrange multiplier. See the proof of the result for the de�nitions of the
expressions in the result. They are analogous to the ones in the revenue-maximization problem above.
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and attachment e�ect. The present paper aims to �ll this gap by augmenting the stan-

dard model by Myerson and Satterthwaite (1983) with expectations-based loss aversion

as in K®szegi and Rabin (2006, 2007). In doing so, we also contribute to the literature

combining mechanism design and loss aversion (see K®szegi, 2014).

We �rst formally identify the endowment and attachment e�ect and study their impact

on the agents' information rents. Using these insights, we can show that it remains

impossible to implement ex-post materially e�cient trade, but that buyer loss aversion can

mitigate the severity of this impossibility. Turning to the design of optimal mechanisms

we �nd that the designer optimally provides agents with insurance in order to reduce ex-

post variation in payo�s. More speci�cally, when maximizing revenue or gains from trade,

agents receive full insurance in the money dimension in the form of interim-deterministic

transfers. In terms of the trade rule, we show that depending on the distribution of types,

the trade frequency may increase or decrease in the presence of loss aversion.

One may wonder whether other models than the one by K®szegi and Rabin can also ex-

plain the attachment and endowment e�ect and thus constitute alternatives to the present

analysis. One obvious alternative is a model of loss aversion with a �xed reference point,

such as classical prospect theory by Kahneman and Tversky. Indeed, with an appropri-

ately chosen, �xed reference point, such a model can give rise to both attachment and

endowment e�ect. However, the innovation of K®szegi and Rabin was precisely to deter-

mine the reference point endogenously, as otherwise the question of what the appropriate

reference point is, remains open. Yet, even with an endogenously determined reference

point there exist alternative ways to proceed. K®szegi and Rabin (2007) note that the

models of disappointment aversion by Bell (1985) and Loomes and Sugden (1986) are

very similar except that the endogenous reference point is given by the certainty equiva-

lent of a lottery rather than the full lottery. However, Masatlioglu and Raymond (2016)

�nd that the intersection of preferences induced by expectations-based loss aversion with

CPE and any of these disappointment-aversion models is only standard expected utility,

and thus while seemingly similar, the models are actually quite di�erent. Nevertheless,

Benkert (2022) shows that the optimal mechanisms for the two types of models are equiv-

alent across a range of mechanism design settings. In particular, the optimal mechanisms

derived in the present paper are also optimal if we instead work with a model of dis-

appointment aversion as in Bell (1985) and Loomes and Sugden (1986). This �nding is

of practical relevance, as the designer of some economic institution may have evidence

that individuals are loss averse, but be unsure about the precise formation process of the

reference point, be it �xed, as a full lottery over outcomes or as the certainty equivalent

of the lottery. There appears to be some robustness, which suggests that lacking this

information may not be too much of a problem, as long as loss-averse individuals are

provided with insurance as derived above.
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Finally, we have assumed throughout our analysis that the degree of loss aversion is

commonly known. If, instead, we assumed that these parameters are private information,

a hard multi-dimensional mechanism design problem arises. Our analysis nevertheless

provides some insights into this problem. We could relax the assumption that the loss-

aversion parameters in the money dimension are commonly known and allow them to

be distributed arbitrarily, as the designer optimally eliminates any ex-post variation in

the transfers irrespective of the degree of loss aversion. We leave the question of pri-

vate information regarding the degree of loss aversion in the trade dimension for further

research.
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A Proofs

Proof of Proposition 1

Suppose f was CPEIC. Then, by de�nition the strategy pro�le st a CPE in the direct

mechanism Γd and thus, again by de�nition, the direct mechanism implements f in CPE.

Conversely, suppose there is a mechanism Γ = (M1, . . . ,MN , g) that implements f in

CPE. If s∗ = (s∗1, . . . , s
∗
N) is a CPE, then for all i,m′

i ∈ Mi and θi

Ui(s
∗
i (θi), s

∗
−i,Γ|θi) ≥ Ui(m

′
i, s

∗
−i,Γ|θi)

by de�nition of the CPE. In particular, this is also true form′
i = s∗i (θ̂i) for all i ∈ I, θ̂i ∈ Θi.

Therefore, given that s∗ = (s∗1, . . . , s
∗
N) is a CPE we have for all i ∈ I, θi, θ̂i ∈ Θi,

Ui(s
∗
i (θi), s

∗
−i,Γ|θi) ≥ Ui(s

∗
i (θ̂i), s

∗
−i,Γ|θi)

Since Γ implements f in CPE we have

g(s∗1(θ1), . . . , s
∗
N(θN)) = f(θ1, . . . , θN),

implying

Ui(s
t
i(θi), s

t
−i,Γ

d|θi) ≥ Ui(s
t
i(θ̂i), s

t
−i,Γ

d|θi)

for all i ∈ I, θi,θ̂i ∈ Θi. Thus, the truthful strategy pro�le st is a CPE in the direct

mechanism and therefore the social choice function f is CPEIC.

Proof of Proposition 2

Proof. Suppose the social choice function f is CPEIC. Take some θ̂i > θi, then by CPEIC

Ui(θi, s
t
−i|θi) ≥ θiṽi(θ̂i) + t̃i(θ̂i) = Ui(θ̂i, s

t
−i|θ̂i) + (θi − θ̂i)ṽi(θ̂i)

and analogously

Ui(θ̂i, s
t
−i|θ̂i) ≥ θ̂iṽi(θi) + t̃i(θi) = Ui(θi, s

t
−i|θi) + (θ̂i − θi)ṽi(θi).

Thus,

ṽi(θ̂i) ≥
Ui(θ̂i, s

t
−i|θ̂i)− Ui(θi, s

t
−i|θi)

θ̂i − θi
≥ ṽi(θi),
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implying that ṽi is non-decreasing because we assumed θ̂i > θi. Now, letting θ̂i → θi we

get that for all θi we have

∂Ui(θi, s
t
−i|θi)

∂θi
= ṽi(θi)

and so

Ui(θi, s
t
−i|θi) = Ui(0, s

t
−i|0) +

∫ θi

0

ṽi(s) ds

for all θi ∈ Θi. Conversely, suppose that conditions (i) and (ii) hold. Without loss of

generality, take any θi > θ̂i. Then,

Ui(θi, s
t
−i|θi)− Ui(θ̂i, s

t
−i|θ̂i) =

∫ θi

θ̂i

ṽi(s) ds

≥
∫ θi

θ̂i

ṽi(θ̂i) ds

= (θi − θ̂i)ṽi(θ̂i).

Hence,

Ui(θi, s
t
−i|θi) ≥ Ui(θ̂i, s

t
−i|θ̂i) + (θi − θ̂i)ṽi(θ̂i) = θiṽi(θ̂i) + t̃i(θ̂i)

and similarly

Ui(θ̂i, s
t
−i|θ̂i) ≥ Ui(θi, s

t
−i|θi) + (θ̂i − θi)ṽi(θi) = θ̂iṽi(θi) + t̃i(θi).

Consequently, f is CPEIC.

Proof of Proposition 3

As noted in the main text we can write ṽB(θB) = yB(θB)(1 − ΛB(1 − yB(θB))) and

ṽS(θS) = yS(θS)(1+ΛS(1−yS(θS))), allowing us to rewrite expected utility as in equations

(4) and (5) to

US(θS, s
t
B|θS) = US(bS, s

t
B|bS) +

∫ bS

θS

yS(t)(1 + ΛS(1− yS(t))) dt,

UB(θB, s
t
S|θB) = UB(aB, s

t
S|aB) +

∫ θB

aB

yB(t)(1− ΛB(1− yB(t))) dt.

29



Taking derivatives we obtain

∂US(θS, s
t
B|θS)

∂ΛS

=

∫ bS

θS

yS(t)(1− yS(t)) dt ≥ 0

∂UB(θB, s
t
S|θB)

∂ΛB

= −
∫ θB

aB

yB(t)(1− yB(t)) dt ≤ 0

Proof of Proposition 4

We begin by noting that

ṽB(θB)

=

∫ bS

aS

yf (θS , θB) dFS(θS) + η1B

∫ bS

aS

∫ bS

aS

µ1
B

(
yf (θS , θB)− yf (θ′S , θB)

)
dFS(θ

′
S) dFS(θS),

= yB(θB) + η1B

∫ bS

aS

∫ bS

aS

yf (θS , θB)(1− yf (θ′S , θB))− λ1
B(1− yf (θS , θB))y

f (θ′S , θB) dFS(θ
′
S) dFS(θS),

= yB(θB)(1 + ΛB(yB(θB)− 1))

and analogously ṽS(θS) = yS(θS)(1− ΛS(yS(θS)− 1)), where

yB(θB) =

∫ bS

aS

yf (θS, θB)dFS(θS), yS(θS) =

∫ bB

aB

yf (θS, θB)dFB(θB).

Imposing CPEIC we can write the sum of the agents' ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS

= UB(aB) +

∫ bB

aB

∫ θB

aB

yB(t)(1 + ΛB(yB(t)− 1))dtfB(θB)dθB

+ US(bS) +

∫ bS

aS

∫ bS

θS

yS(t)(1− ΛS(yS(t)− 1))dtfS(θS)dθS

= UB(aB) +

∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB

+ US(bS) +

∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Note that the monotonicity constraints are satis�ed due to Assumption 1, i.e., ΛB,ΛS ≤ 1.

Further, from the discussion in the main text we know that we can set the loss aversion

in the money dimension to zero, as it only makes the problem harder. This allows us to

express the sum of the agents' ex ante expected utilities as∫ bB

aB

UB(θB)fB(θB)dθB +

∫ bS

aS

US(θS)fS(θS)dθS
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=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS, θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

where we used CPEIC and integration by parts towards the end. Putting these two
equations together we get

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

(θB − θS)y(θS , θB)fS(θS)fB(θB)dθSdθB

+

∫ bS

aS

θSyS(θS)ΛS(yS(θS)− 1)fS(θS)dθS +

∫ bB

aB

θByB(θB)ΛB(yB(θB)− 1)fB(θB)dθB

−
∫ bB

aB

yB(θB)(1 + ΛB(yB(θB)− 1))(1− FB(θB))dθB −
∫ bS

aS

yS(θS)(1− ΛS(yS(θS)− 1))FS(θS)dθS .

Individual rationality requires UB(aB)+US(bS) ≥ 0. We will now show that this condition

is never satis�ed for any combination of buyer and seller loss aversion. From our discussion

in the main text, we know that it is su�cient to consider the case ΛS = 0, i.e., no loss

aversion on the trade-dimension for the seller. This allows us to simplify and rewrite to

UB(aB) + US(bS)

=

∫ bB

aB

∫ bS

aS

([
θB − 1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

+ ΛB

∫ bB

aB

yB(θB)(yB(θB)− 1)

[
θB − 1− FB(θB)

fB(θB)

]
fB(θB)dθB.

Myerson and Satterthwaite (1983) show in their proof of Theorem 1 (p. 269) that∫ bB

aB

∫ bS

aS

([
θB − 1− FB(θB)

fB(θB)

]
−
[
θS +

FS(θS)

fS(θS)

])
y(θS, θB)fB(θB)fS(θS)dθSdθB

= −
∫ bS

aB

(1− FB(x))FS(x) dx.

Further, we have yB(θB) = FS(θB) since we are considering the ex-post e�cient mecha-

nism. Putting this together yields

UB(aB) + US(bS) = −
∫ bS

aB

(1− FB(x))FS(x) dx

+ ΛB

∫ bB

aB

FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx.
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Careful inspection of the limits of the integrals shows that

UB(aB) + US(bS) = −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) dx

+ ΛB

∫ min{bS ,bB}

max{aB ,aS}
FS(x)(FS(x)− 1)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx

= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x) + ΛB(1− FS(x))FS(x)

[
x− 1− FB(x)

fB(x)

]
fB(x)dx

= −
∫ min{bS ,bB}

max{aB ,aS}
(1− FB(x))FS(x)(1− ΛB(1− FS(x))) + ΛB(1− FS(x))FS(x)xfB(x) dx

< 0,

violating individual rationality. To conclude the proof, recall from our discussion of

the information rents, that loss aversion in the money dimension makes the problem

unambiguously harder, as it reduces the gains from trade without a�ecting the information

rents. Thus, impossibility in the absence of loss aversion in the money dimension implies

impossibility in the presence of loss aversion in the money dimension.

Proof of Proposition 5

As noted in the text, the objective function reads∫ b

a

(
η2BwB(θB) + θB ṽB(θB)−

∫ θB

a

ṽB(t) dt

)
dFB(θB)

+

∫ b

a

(
η2SwS(θS)− θS ṽS(θS)−

∫ b

θS

ṽS(t) dt

)
dFS(θS),

where we observe that wB and wS enter positively. Next, note that

wS(θ) =

∫ b

a

∫ b

a

µ2
S

(
tfS(θS , θ)− tfS(θS , θ

′)
)

dFB(θ
′) dFB(θ)

=

∫ b

a

∫ b

a

(
tfS(θS , θ)− tfS(θS , θ

′)
)
1[tfS(θS , θ) > tfS(θS , θ

′)] dFB(θ
′) dFB(θ)

+

∫ b

a

∫ b

a

λ2
S

(
tfS(θS , θ)− tfS(θS , θ

′)
)
1[tfS(θS , θ) < tfS(θS , θ

′)] dFB(θ
′) dFB(θ)

=

∫ b

a

∫ b

a

(
tfS(θS , θ)− tfS(θS , θ

′)
)
1[tfS(θS , θ) > tfS(θS , θ

′)] dFB(θ
′) dFB(θ)

− λ2
S

∫ b

a

∫ b

a

(
tfS(θS , θ

′)− tfS(θS , θ)
)
1[tfS(θS , θ

′) > tfS(θS , θ)] dFB(θ
′) dFB(θ)

= (1− λ2
S)

∫ b

a

∫ b

a

(
tfS(θS , θ

′)− tfS(θS , θ)
)
1[tfS(θS , θ

′) > tfS(θS , θ)]dFB(θ
′)dFB(θ),

where 1 denotes the indicator function. The key step in the above derivation lies in the last

equality. Comparing the two integrands on the third and second-to-last lines, we notice
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that they look the same but that θB and θ′B are interchanged. To see the equality, change

the order of integration in the integral on the second-to-last line and perform a change

of variables for the resulting integral. This shows that the two integrals are actually the

same and allows us to sum them. Thus, since λ2
S > 1 we �nd wS(θS) ≤ 0. The argument

for wB is analogous.

Given that wB and wS enter the designer's objective function positively, the designer

optimally sets wi(θi) = 0. Further, a transfer achieves wi(θi) = 0 if and only if the transfer

is independent of almost all buyer types. Thus, interim deterministic transfers are the

only transfers that achieve wi(θi) = 0.

Proof of Lemma 1

We begin by proving the following technical lemma.

Lemma 2 Let f, g : [a, b] → R be two integrable functions with the following properties:

(1) We have∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx

(2) There exists a x0 ∈ [a, b] such that

a) f(x) ≥ g(x) for a.e. x ≤ x0

b) f(x) ≤ g(x) for a.e. x ≥ x0

Further, de�ne φ : [a, b] → R. Then, if φ is monotonically decreasing we have∫ b

a

φ(x)f(x)dx ≥
∫ b

a

φ(x)g(x)dx,

and if φ is monotonically increasing we have∫ b

a

φ(x)f(x)dx ≤
∫ b

a

φ(x)g(x)dx.

Proof. We prove the statement for the case when φ is monotonically decreasing. For the

case of an increasing φ simply reverse the appropriate inequalities. We begin by rewriting

property (1) to∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx ⇔
∫ x0

a

(f(x)− g(x))dx ≥
∫ b

x0

(g(x)− f(x))dx
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and note that both integrands are weakly positive due to property (2). Then, once more

by (2), we have for a.e. x ≤ x0

φ(x)(f(x)− g(x)) ≥ φ(x0)(f(x)− g(x))

for a.e. x ≤ x0, which we can integrate to obtain∫ x0

a

φ(x)(f(x)− g(x))dx ≥
∫ x0

a

φ(x0)(f(x)− g(x))dx. (14)

Proceeding analogously, we obtain the inequality∫ b

x0

φ(x0)(g(x)− f(x))dx ≥
∫ b

x0

φ(x)(g(x)− f(x))dx. (15)

Further, we also have by∫ x0

a

φ(x0)(f(x)− g(x))dx =

∫ b

x0

φ(x0)(g(x)− f(x))dx (16)

by property (1). Combining the inequalities in equations (14) to (16) we obtain∫ x0

a

φ(x)(f(x)− g(x))dx ≥
∫ b

x0

φ(x)(g(x)− f(x))dx,

which we can rearrange to∫ b

a

φ(x)f(x)dx ≥
∫ b

a

φ(x)g(x)dx,

completing the proof.

With this in hand, we can prove Lemma 1. Let q̂ : [0, 1] × [0, 1] → {0, 1} be any

candidate for optimality. Associate to q̂ the function

q(vB, vS) =

1 0 ≤ vS ≤ q̂B(vB)

0 o.w.,
(17)

where q̂B(vB) =
∫ 1

0
q̂(vB, vS)dvS. First, note that qB = q̂B by construction. Thus, the �rst

integral in equation (8) is not a�ected by a change from q̂ to q. However, we will show

that the second integral, which enters negatively, will become smaller. To do so, we will

show
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∫ 1

0

MS(vS)qS(vS)(1 + ΛS)dvS ≤
∫ 1

0

MS(vS)q̂S(vS)(1 + ΛS)dvS (18)

and ∫ 1

0

ΛSMS(vS)(q
2
S(vS)− q̂2S(vS))dvS ≥ 0. (19)

To prove (18), �x vB ∈ [0, 1] and apply Lemma 2 by setting f(vS) = q(vB, vS),

g(vS) = q̂(vB, vS) and x0 = q̂B(vB). Note that the properties (1) and (2) in the lemma

are satis�ed by the construction of q from q̂. Further, MS(vS)(1 +ΛS) is a monotonically

increasing function so that Lemma 2 yields∫ 1

0

MS(vS)(1 + ΛS)q(vB, vS)dvS ≥
∫ 1

0

MS(vS)(1 + ΛS)q̂(vB, vS)dvS.

Let us now integrate this with respect to vB and apply Fubini's theorem to reverse the

order of integration to obtain∫ 1

0

∫ 1

0

MS(vS)(1 + ΛS)q(vB, vS)dvSdvB ≥
∫ 1

0

∫ 1

0

MS(vS)(1 + ΛS)q̂(vB, vS)dvSdvB

⇔
∫ 1

0

∫ 1

0

MS(vS)(1 + ΛS)q(vB, vS)dvBdvS ≥
∫ 1

0

∫ 1

0

MS(vS)(1 + ΛS)q̂(vB, vS)dvBdvS

⇔
∫ 1

0

MS(vS)qS(vS)(1 + ΛS)dvS ≤
∫ 1

0

MS(vS)q̂S(vS)(1 + ΛS)dvS

as claimed in equation (18).

To prove (19), we begin by noting that we can rewrite this inequality to∫ 1

0

MS(vS)[q
2
S(vS)− q̂2S(vS)]dvS ≥ 0

⇔
∫ 1

0

[qS(vS) + q̂S(vS)][MS(vS)qS(vS)−MS(vS)q̂S(vS)]dvS ≥ 0.

We will once more apply Lemma 2. Fix vB ∈ [0, 1] and set f(vS) = MS(vS)q(vB, vS),

g(vS) = MS(vS)q̂(vB, vS). Note that by (18)∫ 1

0

f(vS)dvS ≥
∫ 1

0

g(vS)dvS

so that property (1) is satis�ed. Further, if vS ≤ q̂B(vB), then MS(vS)q(vS, vB) =

MS(vS) ≥ MS(vS)q̂(vB, vS). Similarly, if vS ≥ q̂B(vB), then MS(vS)q(vS, vB) = 0 ≤
MS(vS)q̂(vB, vS). Together, this shows that property (2) is satis�ed. Further, de�ne
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ϕ(vS) = qS(vS) + q̂S(vS) and note that it is a decreasing function, as the candidate solu-

tion q̂S is decreasing bq assumption and the associated qS by the construction in (17).27

Therefore, it follows from Lemma 2 and by once more integrating with respect to vB and

applying Fubini's theorem that∫ 1

0

[qS(vS) + q̂S(vS)][MS(vS)qS(vS)−MS(vS)q̂S(vS)]dvS ≥ 0

⇔
∫ 1

0

[qS(vS) + q̂S(vS)]MS(vS)(qS(vS)− q̂S(vS))dvS ≥ 0

⇔
∫ 1

0

ΛSMS(vS)(q
2
S(vS)− q̂2S(vS))dvS ≥ 0,

as claimed in equation (19).

Putting equations (18) and (19) together, we obtain that∫ 1

0

MS(vS)q̂S(vS)(1− ΛS(q̂S(vS)− 1)) dvS

−
∫ 1

0

MS(vS)qS(vS)(1− ΛS(qS(vS)− 1)) dvS

=

∫ 1

0

MS(vS)(1 + ΛS)q̂S(vS)−MS(vS)ΛS q̂
2
S(vS) dvS

−
∫ 1

0

MS(vS)(1 + ΛS)qS(vS)−MS(vS)ΛSq
2
S(vS) dvS

=

∫ 1

0

MS(vS)(1 + ΛS)[q̂S(vS)− qS(vS)] +MS(vS)ΛS[q
2
S(vS)− q̂2S(vS)] dvS ≥ 0,

showing that the second integral in equation (8) indeed becomes smaller when moving

from q̂ to q. Hence, for any q̂ not of the form (9) we can construct a function in this class

which does better, completing the proof.

Proof of Corollary 2

Imposing that types are uniformly distributed types on the interval [a, a + 1] for a ≥ 0,

the condition in equation (13) can be written as

2θB − a− 1

1− ΛS + 2ΛS(θB − a)
≥ 2θS − a

1− ΛB + 2ΛB(θS − a)

θS ≤ δ(θB) =
(2θB − 1− a)(1− ΛB(2a+ 1) + aΛS) + a− ΛSa

2

2(1− ΛB(2θB − a− 1) + ΛS(2θB − 1− 2a))
=: θ(θB)

27To see this, note that qS(vS) = 1− q−1
B (vS). Thus, since qB is increasing qS is decreasing.
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and the conditions on the degree of loss aversion reduce to IC = {ΛB ≤ 1/(a+ 1),ΛS ≤
min{1, 1/a}}. From here one can show that the trade rule induces less trade for given

ΛB,ΛS as a increases, eventually eliminating trade altogether.

Proof of Proposition 8

The derivations of the mechanisms maximizing the total and the material gains from

trade proceed analogously. We here present the derivations for the case of maximizing

the total gains from trade. Making use of Proposition 7 and the budget constraint (AB),

we eliminate the transfers from the problem and can rewrite the objective function to∫ b

a

UB(θB, s
t
S|θB) dFB(θB) +

∫ b

a

US(θS, s
t
B|θS) dFS(θS)

=

∫ b

a

(
θByB(θB)(1 + ΛB(yB(θB)− 1))− t̄B(θB) + η2BwB(θB)

)
dFB(θB)

−
∫ b

a

(
θSyS(θS)(1− ΛS(yS(θS)− 1))− t̄S(θS)− η2SwS(θS)

)
dFS(θS)

=

∫ b

a

θByB(θB)(1 + ΛB(yB(θB)− 1)) dFB(θB)−
∫ b

a

θSyS(θS)(1− ΛS(yS(θS)− 1)) dFS(θS).

Further, the budget constraint AB and the CPEIC can be jointly written as∫ b

a

JB(θB)yB(θB) (1− ΛB (1− yB(θB))) dFB(θB)

=

∫ b

a

JS(θS)yS(θS) (1 + ΛS (1− yS(θS))) dFS(θS),

as well as the monotonicity constraints. We can set up the Lagrangian as

L(yf , γ) =
∫ b

a

(θB + γJB(θB))yB(θB) (1− ΛB (1− yB(θB))) dFB(θB)

−
∫ 1

0

(θS + γJS(θS))yS(θS) (1 + ΛS (1− yS(θS))) dFS(θS).

Note that we must have γ ≥ 0, because relaxing the budget constraint (i.e., allowing

the designer to run a de�cit) can only increase the objective. Hence, by Assumption 2,

θB+γJB(θB) and θS+γJS(θS) are strictly increasing in θB and θS, respectively. Therefore,

the arguments from the proof of the revenue maximizing mechanism carry through and

we obtain
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L(yf , γ) =
∫ b

a

∫ b

a

(θB + γJB(θB)) [(1− ΛB) + 2ΛBFS(θS)]︸ ︷︷ ︸
:=J̃TG

B (θB ,θS ,γ)

yf (θB, θS)dFS(θS)dFB(θB)

−
∫ b

a

∫ b

a

(θS + γJS(θS)) [(1 + ΛS)− 2ΛS(1− FB(θB))]︸ ︷︷ ︸
J̃TG
S (θS ,θB ,γ)

yf (θB, θS)dFS(θS)dFB(θB),

=

∫ b

a

∫ b

a

(
J̃TG
B (θB, θS, γ)− J̃TG

S (θS, θB, γ)
)
yf (θB, θS)dFS(θS)dFB(θB).

We now have a concave maximization problem so that an trade rule yf is optimal if

and only if (see, e.g., Theorems 1 and 2 in Luenberger, 1969, p. 217 and p. 221)

yf (θB, θS) =

1 if J̃TG
B (θB, θS, γ)− J̃TG

S (θS, θB, γ) ≥ 0

0 otherwise
(20)

subject to the monotonicty constraints on yB and yS. Leveraging Assumption 1 we can

reformulate this to

J̄TG
B (θB, γ) :=

θB + γJB(θB)

1− ΛS + 2ΛSFB(θB)
≥ θS + γJS(θS)

1− ΛB + 2ΛBFS(θS)
=: J̄TG

S (θS, γ).

Finally, we de�ne the set

ICTG =

{
(ΛB,ΛS) ≥ 0 | Λj <

1 + γJ ′
i(θi)

2(θi + γJi(θi))fi(θi) + (1 + γJ ′
i(θi))(1− 2Fi(θi))

∀θi ∈ [a, b]

}
.

The Lagrangian for the case of material gains from trade is obtained analogously and

reads

L(yf , γ) =
∫ b

a

∫ b

a

(θB + γJB(θB) [(1− ΛB) + 2ΛBFS(θS)])︸ ︷︷ ︸
:=J̃MG

B (θB ,θS ,γ)

yf (θB, θS)dFS(θS)dFB(θB)

−
∫ b

a

∫ b

a

(θS + γJS(θS) [(1 + ΛS)− 2ΛS(1− FB(θB))])︸ ︷︷ ︸
J̃MG
S (θS ,θB ,γ)

yf (θB, θS)dFS(θS)dFB(θB),

=

∫ b

a

∫ b

a

(
J̃MG
B (θB, θS, γ)− J̃MG

S (θS, θB, γ)
)
yf (θB, θS)dFS(θS)dFB(θB).

Proof of Corollary 3

To obtain the expression in Corollary 3 plug in the assumptions on the distributions of

types and the parameters of loss aversion to rewrite the trade condition in equation (20)
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to

θS ≤ (θB + γ(2θB − 1))(1− Λ)

1 + 2g − Λ
.

We can plug this into the budget constraint and solve for the Lagrange multiplier, yielding

γ = (Λ +
√
1 + Λ + Λ2)/2 which yields the optimal trade rule

yTG(θB, θS) =

1 θS ≤ (1−Λ)(2θB(
√
Λ2+Λ+1+Λ+1)−

√
Λ2+Λ+1−Λ)

2(
√
Λ2+Λ+1+1)

0 o.w.

Proceeding analogously for the case of material gains from trade, we obtain the same

trade rule.
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