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Abstract: Net-zero climate policies foresee deployment of atmospheric carbon

dioxide removal wit geological, terrestrial, or marine carbon storage. While ter-

restrial and geological storage would be governed under the framework of national

property rights, marine storage implies that carbon is transferred from one global

common, the atmosphere, to another global common, the ocean, in particular if

storage exceeds beyond coastal applications. This paper investigates the option of

carbon dioxide removal (CDR) and storage in different (marine) reservoir types in

an analytic climate-economy model, and derives implications for optimal mitigation

efforts and CDR deployment. We show that the introduction of CDR lowers net

energy input and net emissions over the entire time path. Furthermore, CDR affects

the Social Cost of Carbon (SCC) via changes in total economic output but leaves
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the analytic structure of the SCC unchanged. In the first years after CDR becomes

available the SCC is lower and in later years it is higher compared to a standard

climate-economy model. Carbon dioxide emissions are first higher and then lower

relative to a world without CDR. The paper provides the basis for the analysis of

decentralized and potentially non-cooperative CDR policies.

Keywords: carbon dioxide removal, climate change, integrated assessment, social

cost of carbon, optimal carbon tax
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1 Introduction

In line with the Paris Agreement to limit global warming to well below 2°C many

countries have declared their intention to transition towards a net-zero emissions

economy by the second half of this century (Tanaka and O’Neill, 2018). To accom-

plish this goal approaches that remove carbon dioxide from the atmosphere with

subsequent terrestrial, geological or marine carbon storage have been proposed (car-

bon dioxide removal, CDR). Furthermore, also capturing carbon at emissions point

sources like industrial installations is discussed, requiring as well carbon storage

options (Anderson and Newell, 2004). The process of capturing, transporting and

storing carbon consumes additional energy and thus potentially leads to new emis-

sions (IPCC, 2005). The availability of carbon dioxide removal and storage as an

‘end of pipe’ mitigation technology may be perceived as a substitute for conven-

tional emission mitigation, which might lead to rebound effects (e.g. Geden et al.,

2019). Furthermore, while terrestrial and geological storage would be governed un-

der the framework of national property rights, CDR with marine storage implies

that carbon is transferred from one global common, the atmosphere, to another

global common, the ocean, in particular if storage exceeds beyond coastal applica-

tions.

We focus on marine carbon storage and explore the various trade-offs in a global

analytic integrated assessment model where CDR technologies can be used to reduce

atmospheric carbon concentrations at a cost measured in energy units. We derive

the optimal level of CDR deployment and analyze how emissions, energy input, and

the SCC (optimal carbon tax) are affected by the introduction of CDR. Although the

model focuses on marine CDR, it is general enough to also consider the potential

of Carbon Capture and Storage (CCS) technologies and CDR in different non-

atmospheric boxes in general.

Atmospheric carbon dioxide only represents a small fraction of the total carbon
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stock in the Earth System, namely 829 gigatons (Gt) out of a total of more than

45,696 gigatons (IPCC, 2013). The rest of it is bound in other reservoirs such

as the oceans that have served as an important carbon sink over the past 200

years (Sabine et al., 2004). Due to the large storage capacity, the ocean has been

suggested to serve as carbon storage achieved either by direct, intentional injection

of carbon dioxide via ships or pipelines (Rickels and Lontzek, 2012) or indirect

increased carbon marine carbon uptake achieved by coastal blue carbon approaches,

increasing marine biological productivity via fertilization achieved for example by

artificial up-welling, or by increasing the chemical buffer capacity of the ocean by

adding alkaline materials (ocean alkalinity enhancement).

Whether a geological reservoir, such as an exploited oil field, is well suited for

CDR is mainly determined by the rate at which carbon leaks back to the atmosphere

(van der Zwaan and Gerlagh, 2009). A similar problem arises, if carbon is stored

in the ocean. Due to feedback and saturation effects in the carbon cycle some

of the carbon that is injected into the oceans will eventually still end up in the

atmosphere. Rickels et al. (2018) investigate how well these effects are captured in

currently used Integrated Assessment Models (IAMs). Rickels and Lontzek (2012)

explore the economic implications of the ocean’s imperfect storage property. They

show that optimally each ton of carbon sequestered to the ocean is taxed at a

rate lower than the optimal carbon tax for atmospheric carbon emission. In this

paper, We derive the SCC, which quantifies the optimal tax on carbon emissions, for

different reservoir types and analyze how the optimal carbon tax is affected by the

introduction of CDR technologies by comparing the results of model specifications

with and without the availability of CDR.

The paper is based on the recently emerging literature on analytic IAMs which

have the feature that the SCC can be written as a constant fraction of total economic

output (e.g. Traeger, 2018; Gerlagh and Lsiki, 2018; Golosov et al., 2014). This

result arises from specific assumptions on utility and climate change damages which
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ensure that the climate-economy model is linear in the model’s state variables, in

particular human-made capital and the stocks of carbon in the different reservoirs

(Karp, 2017; Traeger, 2018). We show that due to the linear-in-states property of

analytic IAMs the deployment of CDR technologies has no effect on the analytic

structure of the SCC. However, CDR alters the time path of total economic output

and therefore influences the level of the SCC. The quantitative analysis shows that

this effect is minor and only increases the SCC by 3 USD/tCO2 by the year 2100,

where the absolute level of the SCC is around 800 USD/tCO2.

The paper is structured as follows. The next section introduces the option of

CDR in an analytic climate-economy model. Section 3 presents the theoretical

results on optimal emissions, CDR deployment, and the SCC, and compares them

to the outcome of a standard climate-economy model without the option of CDR.

The last section provides a numerical simulation for calibrated versions of both

model types.

2 Analytic climate-economy model

This section introduces the option of CDR and the storage of carbon in different

reservoirs types in an analytic integrated assessment model of climate change. The

model is based on Traeger (2018) and Golosov et al. (2014). We consider a global

economy where gross output Yt is a function of technology A0,t, capital Kt, labor

N0,t, and net energy input It,

Yt = A0,tK
κ
t N

1−κ−v
0,t Ivt with K0 > 0 given. (1)

The subscript zero denotes that technology and labor are prescribed by time depen-

dent exogenous processes. Subscript t denotes the point in time. We distinguish

between gross energy Et and net energy It, whereby only the latter enters the gross

output function.
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Energy Et is derived from an exhaustible resource Rt which comprises all fossil

fuels (coal, oil, and natural gas), and is measured in terms of its carbon content (in

GtC). Absent a CCS technology, Et can also be interpreted as carbon emissions.

The resource stock Rt develops over time according to

Rt+1 = Rt − Et, with R0 > 0 given. (2)

We follow Traeger (2018) and allow for a finite number of carbon boxes with

carbon contents, M1, ...Mr, where r ∈ N. The first carbon content, M1, represents

the atmospheric stock of carbon. The other boxes reflect the carbon stocks of the

ocean and the biosphere, and potential geological storage capacities. Different to

Lafforgue et al. (2008), We assume that there exist no capacity constraints for the

geological reservoir. The dynamics of the carbon stocks are given by



M1,t+1

M2,t+1

...

Mr,t+1


=



φ11 . . . φr1

φ12 . . . φr2
... . . . ...

φ1r . . . φrr





M1,t

M2,t

...

Mr,t


+



Enet
t + Eexo

t

G2,t

...

Gr,t


, (3)

or in matrix notation

M t+1 = ΦM t + Et.

The transition matrix Φ shows the rates of carbon flows between the reservoir types.

CDR technologies allow to remove carbon from the atmosphere M1, and to

store it in another reservoir type Mi with i ∈ {2, ..., r}. The amount of additional

carbon that is stored in each reservoir is measured in GtC and denoted by Gi,t.

Net emissions are given by the difference between the carbon emitted during the
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production process and the carbon that is removed from the atmosphere,

Enet
t = Et −G1,t. (4)

In each time period, the sum of carbon injected in all reservoir types must be equal

to the amount of carbon that is subtracted from the atmospheric reservoir, thus

G1,t =
r∑
i=2

Gi,t. If Enet
t > 0, CDR can also be interpreted as carbon capture and

storage. Net negative emissions are only present if Enet
t < 0.

The total amount of carbon that enters or leaves the atmosphere is given by the

sum of net emissions Enet
t , and emissions from exogenous processes including land

use change and forestry, which are collected in Eexo
t and also measured in GtC.

CDR consumes energy. It is therefore convenient to measure its operational

costs fi(Gi,t) in energy units. Thus, net energy input is the result of fossil energy

net the energy used for CDR,

It = Et −
r∑
i=2

fi(Gi,t). (5)

If a storage reservoir is not used, the corresponding costs of CDR are zero,

fi(0) = 0. Marginal costs are assumed to be positive and increasing for all storage

units, f ′i(Gi,t) > 0 and f ′′i (Gi,t) > 0. A reduction in carbon emissions into the

atmosphere can either be achieved by reducing energy input Et directly (mitigation)

or by using CDR (Gi,t). Since the cost for mitigation and CDR deployment can

both be measured in energy units (in GtC), reservoir i will only be used if its cost

(and marginal cost) is lower than the cost (and marginal cost) of mitigation, thus

fi(Gi,t) ≤ Gi,t, and f ′i(Gi,t) ≤ 1.

Note that without the option of CDR, net energy input, emissions, and net

emissions are equivalent, It = Et = Enet
t .

We follow Golosov et al. (2014) and assume a direct mapping of climate change
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damages from the atmospheric carbon stockM1,t. The damage function, that shows

climate damage as a fraction of gross output, is given by

Dt(M1,t) = 1− exp [−ξ0 (M1,t −Mpre
1 )] , (6)

where Mpre
1 denotes the pre-industrial atmospheric carbon concentration. The cli-

mate change damage parameter ξ0 > 0 scales the marginal climate damage of

atmospheric carbon, and can be reasonably calibrated to the climate damages in

the DICE model (see e.g. Golosov et al., 2014).

Output net climate change damages is therefore given by Y net
t = Yt [1−Dt (M1,t)].

The model does not include any impacts from increasing carbon concentrations in

the ocean (e.g. from ocean acidification).

Following Golosov et al. (2014) we assume full depreciation of capital over the

course of 10 years, the model’s time step. Thus, the economy’s capital stock in the

next period is given as the difference between net output Y net
t , and consumption

Ct,

Kt+1 = Yt [1−Dt (M1,t)]− Ct (7)

= Yt exp [−ξ0 (M1,t −Mpre
1 )]− Ct.

The consumption rate is defined as xt = Ct

Y net
t

, such that 1− xt is the savings rate.

We solve the model for a social planner who maximizes the infinite stream of

consumption flows by choosing the consumption rate, emissions, and CDR deploy-

ment,

max
xt,Et,Gi,t

∞∑
t=0

βt log(Ct), (8)

subject to the constraints imposed by the economy and the climate system, equa-

tions (1) to (7). The parameter β denotes the utility discount factor.
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3 Theoretical results

This section presents the results of the climate-economy model, and compares them

to the outcome of an alternative model specification without the option of CDR.

3.1 Carbon dioxide removal

Appendix A solves the intertemporal optimization problem. It shows that the

optimal rate of consumption is constant over time, x∗t = 1 − β κ, and that the

shadow value of the fossil resource stock, denoted by ϕR,t, monotonically grows

over time according to Hotelling’s (1931) rule, ϕR,t = β−tϕR,0. In the following, we

summarize the results on optimal CDR deployment.

Proposition 1. The optimal level of CDR deployment for reservoir i is given by

G∗i,t = f ′i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0

)
, (9)

where [·]1,1 denotes the first, and [·]1,i denotes the i th element of the first column

of the inverted matrix in square brackets. Note that the inverse of the marginal cost

function is expressed by f ′i
−1 and that [(1− βΦ)−1]1,1 > [(1− βΦ)−1]1,i.

Proof. See Appendix B.

Optimal CDR deployment is a function of constant model parameters, and the

endogenously determined shadow value of the resource stock, which monotonically

grows over time. Since f ′i(Gi,t) is an increasing function, also its inverse f ′i
−1 is

an increasing function. Thus, optimal CDR immediately starts with its maximum

level and then monotonically declines over time.

The interpretation of the carbon dynamics contributions follows Traeger (2018):

The term [(1− βΦ)−1]1,1 characterizes the discounted sum of carbon persisting in

and returning to the atmospheric carbon stock in all future periods. The term
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[(1− βΦ)−1]1,i characterizes the long-term contribution to the atmospheric carbon

reservoir from carbon that is currently stored in reservoir i.

The numerator in equation (9) shows the marginal benefit of the new technology.

CDR reduces the marginal damage of emissions as it allows to remove carbon from

the atmosphere and store it in a less damaging reservoir i. The denominator shows

the marginal cost of fossil energy. It captures the opportunity cost of the resource

and the marginal damage that it creates.

The magnitude of the benefit from CDR is determined by the difference in the

carbon dynamics contributions of the atmosphere and reservoir i. A decrease in the

carbon persistence of reservoir i increases its carbon dynamics contribution as more

carbon eventually finds its way into the atmosphere. This decreases the marginal

benefit of CDR, and hence G∗t declines. In contrast, an increase in the climate

change damage parameter ξ0 or an increase in the atmospheric carbon dynamics

contribution [(1− βΦ)−1]1,1 raises the marginal damage of emissions and makes

CDR technologies more attractive.

3.2 Emissions and energy input

Using the solution for CDR deployment allows to derive the optimal levels for

emissions, and net energy input.

Proposition 2. Optimal carbon emissions into the atmosphere are given by

E∗t =
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0
+

r=4∑
i=2

fi
(
G∗i,t
)
, (10)

with optimal CDR deployment G∗i,t as defined in equation (9).

Proof. See Appendix C.

Optimal emissions are given by the sum of two terms. The first term captures

the marginal benefit (numerator) and the marginal cost (denominator) from fos-
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sil energy. The term monotonically declines over time as the shadow value of the

fossil resource increases. The second term shows the total cost of CDR deploy-

ment (measured in energy units). According to Proposition 1 optimal deployment

monotonically declines over time, and thus optimal emissions decline over time as

well.

An increase in ϕR,0 makes the fossil resource a more expensive input for pro-

duction, and decreases both terms in equation (10). An increase in the carbon

dynamics contribution [(1− βΦ)−1]1,i increases the marginal damage from reser-

voir i. As a result CDR deployment declines, and thus optimal emissions are lower.

The outcome of an increase in [(1− βΦ)−1]1,1 and ξ0 is ambiguous as there are two

opposing effects. It decreases the first term in equation in (10) but leads to a higher

level of CDR which increases the second term.

Using the solutions G∗i,t and E∗t allows to solve for optimal net energy input I∗t ,

I∗t =
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0
. (11)

Net energy is defined as the difference between fossil energy and the energy spent

on CDR. It is therefore equivalent to the first term in equation (10). Net energy

input increases in the energy share v, and decreases in climate change damages

ξ0, the initial resource shadow value ϕR,0, and the carbon dynamics contribution

[(1− βΦ)−1]1,1.

In order to gain insides on what changes due to the introduction of CDR, We

specify an alternative scenario by removing the option of CDR from the climate-

economy model in section 2. We denote the variables of the alternative model

without CDR by a tilde. In the following, We show that the introduction of CDR

influences the initial shadow value of the nonrenewable resource, and analyze how

this affects net energy input, and net emissions. We discuss the implications of

CDR for E∗t in the subsequent section.
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Proposition 3. CDR increases the shadow value of the fossil resource, and de-

creases net energy input and net emissions.

Proof. See Appendix D.

CDR increases the value of the fossil fuel resource as it creates an additional

option to mitigate the negative effects from carbon emissions, and thus reduces the

social costs of using fossil fuels. Due to the linear-in-states property of the model,

there is no direct effect of CDR on the marginal damage of carbon emissions. As a

result, the net effect of CDR on the cost of the fossil resource is positive, and thus

net energy input declines, ∆ I∗t ≡ I∗t − Ĩ∗t < 0.

Next, We compare how net emissions differ between both model types. The

difference is given by

∆Enet∗

t ≡Enet∗

t − Ẽnet∗

t

= I∗t − Ĩ∗t +
r∑
i=2

(
fi(G

∗
i,t)−G∗i,t

)
< 0,

since Ĩ∗t > I∗t and fi(G∗i,t) ≤ G∗i,t.

CDR leads to lower net emission over the entire time path. This result is driven

by two effects. First, as already shown CDR lowers net energy input, and second,

the cost of CDR is lower than the cost of mitigation (both measured in energy

units).

3.3 Social cost of carbon

This section derives the SCC for all reservoir types and explores how CDR influences

the optimal carbon tax. Due to the linear-in-states property of the model the

marginal damage for each reservoir type is independent of its stock size. This leads

to the following result.
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Proposition 4. CDR leaves the structure of the atmospheric SCC (optimal carbon

tax) unchanged. The SCC for reservoir i is proportional to net output,

SCCMi = Y net
t ξ0

[
(1− βΦ)−1

]
1,i
. (12)

As defined above, [·]1,i denotes the i th element of the first column of the inverted

matrix in square brackets.

Proof. See Appendix E.

The persistence of carbon differs between reservoir types such that each reservoir

has its own SCC. For example, for the DICE carbon cycle the carbon dynamics

contribution of the deep ocean is smaller than the carbon dynamics contribution

of the shallow ocean. This leads to the following ordering: SCCM1 > SCCM2 >

SCCM3. The carbon dynamics contribution of the geological reservoirs depend on

the rates of decay to the atmospheric carbon stock. If it is a secure deposit and the

decay rate is zero, then its reservoir specific SCC is zero.

Deriving the atmospheric SCC (optimal carbon tax) for the alternative model

specification without CDR leads to the same result as in equation (12). The avail-

ability of CDR leaves the analytic structure of the atmospheric SCC unchanged.

This result is driven by two crucial assumptions of analytic IAMs. First, utility is

a logarithmic function of consumption, and second, climate change damages have

an exponential impact on output. These two assumptions ensure that the climate-

economy model is linear-in-states and can be solved by a linear affine value function

(Karp, 2017). The linear-in-states property implies that the marginal damage from

an additional unit of carbon in the atmosphere is constant and does not depend

on the atmospheric carbon concentration. Hence, removing a unit of carbon from

the atmosphere has no effect on the marginal damage, and the atmospheric SCC.

This is different for other geoengineering measures such as stratospheric aerosol

injections (Meier and Traeger, 2021).
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Next, We analyze how the level of the SCC is affected by the availability of CDR,

compared to the situation without CDR. According to Proposition 3 CDR leads to

a lower net energy input over the entire time path. As a result initial output

declines. Since the initial atmospheric carbon concentration and initial climate

change damages are equivalent for both model types, initial net output decreases

as well. This lowers the initial level of the atmospheric SCC, and therefore rises

the level of emissions in the beginning. However, as CDR is an option it must

increase net output eventually as otherwise it would no be used. Thus, there must

exist a period in the future in which the SCC is higher compared to the model

without CDR. The interpretation of this result is straight forward. As climate

change damages are measured in percent of output, an increase in Yt also increases

the money-measured welfare loss from global warming. In other words: The better

off the economy is, the more the economy loses from climate change. The next

section quantifies this effect.

4 Quantitative analysis

This section illustrates the previous theoretical findings. It provides a calibration

of the climate-economy model for a high and low-cost scenario of oceanic CDR, and

compares the results to the alternative model specification without CDR.

4.1 Climate-economy model without CDR

The simulation starts in t = 2010 and ends in t = 2200 with one period repre-

senting ten years, which is a standard in the literature. Economic growth is driven

by increasing total factor productivity A0,t, which develops exogenously over time

according to

A0,t = A0 (1 + w)t. (13)
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The growth rate of total factor productivity is assumed to be 2 percent per year,

w = 0.02. The initial population is set to 6.9 billion and assumed to grow logistically

over time to a maximum of 11 billion in 2200 as in Gerlagh and Lsiki (2018). Output

for the initial decade is set to 700 trillion (tn) USD. I use the same shares of capital,

α = 0.3, and net energy, v = 0.04, as in Golosov et al. (2014). The utility discount

rate is set to 1.4 percent per year (Traeger, 2018). The given parameter set implies

an optimal constant savings rate of s ≈ 0.25. The initial capital stock is assumed to

be 135 trillion USD, approximately the output of two years, and fully depreciates

over the course of a decade. We use the carbon cycle from DICE 2013 (Nordhaus

and Sztorc, 2013), and the climate change damage parameter ξ0 = 5.3 x 10−5 from

Golosov et al. (2014). The pre-industrial carbon stock is set to 600 GtC. The carbon

concentration for the first decade is set to 830.4 GtC yielding initial climate change

damages of D0 = 1.2 percent.

Assuming emissions of 86.7 GtC for the first decade (Gerlagh and Lsiki, 2018)

allows to solve for the initial level of total factor productivity, and delivers A0 = 38.

We then calibrate the initial resource stock such that it matches the initial level

of emissions. This implies an initial fossil fuel stock size of 793.25 GtC. Table 1

summarizes the model parameters and initial stock values.

Table 1: Parameter values

K0 N0 R0 κ v β w A0 ξ0
135 6.9 793.25 0.3 0.04 0.986 0.02 38.02 5.3 x 10−5

trillion USD billion GtC 1/year 1/year 1/GtC

Figure 1 shows the outcome of the standard model without CDR. The fossil

resource is scarce and used up over the time horizon. Emissions start at 86 GtC

per decade and monotonically decline over time as the shadow price of the resource

increases. Damages start at 1.2 percent of global output and increase up to around

3 percent by the year 2100. Afterwards, damages start to decline as less energy is

used and more carbon is taken up by the oceans. Relative net production (GDP)
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rises over time due to the growth of total factor productivity. The atmospheric SSC

starts at around 45 USD/tCO2 and increases up to around 800 USD/tCO2 by the

year 2100. All these results are very much in line with results of common IAMs

(e.g. Golosov et al., 2014).

Figure 1: The graph shows emissions per decade (Ẽt), damages (D̃t), relative
net output (Ỹ net

t /Ỹ net
0 ), and the social cost of carbon ( ˜SCCt) for the calibrated

standard climate-economy model without CDR.

4.2 Climate-economy model with oceanic CDR

This section introduces the option of oceanic CDR and explores how it affects the

outcome of the standard climate-economy model. Cost estimates for the storage of

carbon in the oceans are still uncertain and vary widely. IPCC (2005) estimates the

cost for oceanic storage between 22 and 114 USD/tC. Rickels et al. (2018) consider

a convex cost function with a broad parameter range for the quadratic cost term to

account for uncertainty about the cost of large-scale deployment.
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To capture the cost uncertainty for oceanic CDR we consider a low and high-cost

scenario. For the low-cost case, the cost function for CDR is given by

fl(Gt) = glG
2
t , (14)

with parameter gl to be calibrated. As a point of reference, we use the linear

quadratic cost function from Rickels et al. (2018) and combine it with the lower

bound cost estimate for oceanic storage of 22 USD/tC from IPCC (2005), which

leads to

F (Gt) = 0.022Gt + 0.01833G2
t . (15)

CDR deployment Gt is measured in GtC and F (Gt) shows the costs in trillion USD

(tn USD). We calibrate the cost function fl(Gt) to equation (15) for the initial time

period. Minimizing the squared difference over the interval Gt ∈ (0, 18.5) yields

gl = 0.056. We choose this interval since for Gt ≥ 18.5 the cost of CDR is higher

than the cost of mitigation. Figure 2 shows the quality of the fit, and the cost of

mitigation in trillion USD. For the high-cost scenario, we consider the upper bound

of previous estimates. As the upper bound cost estimate is expected to surpass the

lower bound cost estimate by a factor of five (IPCC, 2005), we assume gh = 5× gl.

Due to the assumption of a quadratic cost function the level of CDR will still be

positive but considerably lower than in the low-cost scenario. Figures 3 and 4 show

how the results change due to the introduction of CDR. The black solid lines show

the results for the low-cost scenario and the dotted green lines show the outcome

for the high-cost scenario.

The simulation illustrates the analytic results from the previous section. In the

first decade, in the low-cost case around 4.5 GtC are removed from the atmosphere

and stored in the deep ocean. In the high-cost scenario, CDR deployment is con-

siderably lower with only 1 GtC in the first decade. As described in Propositions

1 and 2 CDR deployment and emissions monotonically decline over time. In line
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Figure 2: The graph shows the calibrated cost function fl(Gt) (solid line), the cost
estimate based on Rickels et al. (2018) and IPCC (2005) (dashed line), and the cost
of mitigation (dotted line).

with Proposition 3, net emissions and net energy input is lower over the entire time

horizon compared to the model without CDR. In both scenarios emissions are first

higher and then lower than in the model without CDR. In the low cost scenario the

difference is more pronounced.

In the low-cost case, CDR reduces the atmospheric carbon concentration by

20 GtC in 2125 and damages are lower by around 0.1 percentage points of output.

Towards the end, the negative effect on the atmospheric carbon concentration and

climate damages wears off as CDR deployment goes to zero and more and more

carbon has cycled back from the oceans. In the high-cost case, the negative effect

on atmospheric carbon is minor and only decreases damages by around 0.01 percent.

The numerical simulation also allows to assess how strongly net output and the

atmospheric SCC (optimal carbon tax) are affected by the introduction of CDR. As

already discussed in the theoretical part of the paper initial net output declines as

CDR becomes available. Figure 4 shows that this effect is rather small. Net output

declines by 0.025 percent in the low-cost scenario. Afterwards, the effect on net
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Figure 3: The graph shows the optimal deployment of oceanic CDR (Gt) per
decade and the difference in emissions (∆Et), net energy input (∆ It), and net
emissions (∆Enet

t ) compared to the outcome of the standard model without CDR
for the low cost (black solid lines), and high cost scenario (green dotted lines).

output becomes positive and grows until 2125 to around 0.11 percent. Similar to

net output, the SCC is first lower and then higher. The economy first emits more

and then less. The simulation shows that the effect of CDR on the SCC is minor.

By 2100 the SCC is only higher by 3 USD/tCO2 compared to the model without

CDR.

5 Summary and conclusions

The paper introduces the option of carbon dioxide removal (CDR) and storage

in different reservoir types into an analytic climate-economy model and compares

the results to a model variant without CDR. The analytic model shows that the
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Figure 4: The graph shows the difference in atmospheric carbon concentration
(∆M1,t), climate change damages (∆Dt), net output (∆Y net

t ), and the social cost
of carbon (∆SCCt) compared to the outcome of the standard model without CDR
for the low cost (black solid lines), and high cost scenario (green dotted lines).

availability of CDR alters the level of the SCC. However, the quantitative analysis

suggests that this effect is negligible. In the low-cost scenario, CDR increases initial

emissions by around 0.6 GtC, which is equivalent to around 0.7 percent of total

carbon emissions. Thus, with an optimal policy in place the introduction of CDR

has hardly any effect on mitigation incentives. The model suggests that CDR is

needed on top of traditional mitigation efforts.

Furthermore, the paper provides basic implications for the optimal implemen-

tation of CDR technologies. One option that has been proposed in the literature is

the introduction of a differentiated carbon tax (Rickels and Lontzek, 2012). This

paper presents a simple formula for the reservoir specific carbon tax, and character-

izes its components. Another suggestion for the optimal implementation of CDR is
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the introduction of carbon credits (Chomitz and Lecocq, 2004; Sedjo and Marland,

2003), for which this paper also offers a simple way to calculate it. The analyti-

cal structure with the different social cost for the various boxes allows assessing a

broad variety of marine CDR options by considering different boxes in the carbon

cycle. This provides the basis for the analysis of decentralized and potentially non-

cooperative CDR policies. In a further extension we will renewable energies which

would reduce the cost of CDR.
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Appendices

A Solving the linear-in-states model

For the proof of the linear-in-states property I follow Traeger (2018). The consump-

tion rate can be written as

xt =
Ct

Yt [1−Dt (M1,t)]
,

such that

logCt = log xt + logA0,t + κ logKt + (1− κ− v) logN0,t + v log It − ξ0 (M1,t −Mpre
1 ).

I transform the optimization problem into its dynamic programming form (Bellman

equation)

V (kt,M t, Rt, t) = max
xt,Et,Gt

{
log xt + logA0,t + κ logKt + (1− κ− v) logN0,t

+ v log It(Et, Gi,t)− ξ0 (M1,t −Mpre
1 ) + β V (kt+1,M t+1, Rt+1, t+ 1)

}
,

where kt = logKt with the equation of motion

kt+1 = logA0,t + κ logKt + (1− κ− v) logN0,t + v log It − ξ0 (M1,t −Mpre
1 ) + log(1− xt).

(16)

To solve the intertemporal optimization problem, I use the following guess for the

value function

V (kt,M t, Rt, t) = ϕk kt + ϕT
M M t + ϕR,tRt + ϕt, (17)
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where ϕ is used to denote the shadow values for the different states, and T denotes

the transpose of a vector of shadow values.

Inserting the trial solution and the next periods states (equations 2, 3, and 16)

into the Bellman equation delivers

ϕk kt + ϕT
M M t + ϕR,tRt + ϕt

= max
xt,Et,Gi,t

{
log xt+logA0,t+κ kt+(1−κ−v) logN0,t+v log It(Et, Gi,t)−ξ0 (M1,t−Mpre

1 )

+β ϕk
(

logA0,t+κ kt+(1−κ−v) logN0,t+v log It(Et, Gi,t)−ξ0 (M1,t−Mpre
1 )+log(1−xt)

)
+ βϕT

M (ΦM t + Et) + β ϕR,t+1 (Rt − Et) + β ϕt+1

}
. (18)

First order conditions. Maximizing the right hand side over xt yields

1

xt
− β ϕk

1

1− xt
= 0 =⇒ x∗t =

1

1 + β ϕk
. (19)

Next, I find the first order condition for CDR deployment for reservoir i

−v(1 + β ϕk)
f ′i(Gi,t)

It
= β(ϕM1 − ϕMi), (20)

and the first order condition for emissions

v(1 + β ϕk)
1

It
= β(ϕR,t+1 − ϕM1). (21)

Inserting (21) into (20) and solving for Gi,t leads to

G∗i,t = f ′i
−1
(

ϕM1 − ϕMi

ϕM1 − ϕR,t+1

)
, (22)

where the inverse of the marginal cost function is denoted by f ′i
−1. Summing up
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CDR deployment over all reservoir types yields

G∗1,t =
r∑
i=2

f ′i
−1
(

ϕM1 − ϕMi

ϕM1 − ϕR,t+1

)

Using (22) and solving for optimal emissions yields

E∗t =
v(1 + β ϕk)

β(ϕR,t+1 − ϕM1)
+

r∑
i=2

fi

(
f ′i
−1
(

ϕM1 − ϕMi

ϕM1 − ϕR,t+1

))
. (23)

First order conditions deliver optimal controls x∗t , E∗t , and G∗i,t which are indepen-

dent of the states.

Using E∗t and G∗i,t one can solve for the optimal net energy input I∗t .

I∗t = E∗t −
r∑
i=2

fi(G
∗
i,t) =

v(1 + β ϕk)

β(ϕR,t+1 − ϕM1)
. (24)

Inserting the optimal controls into (18) and arranging terms with respect to their

states yields

ϕk kt +ϕT
M M t +ϕR,tRt +ϕt =

[
(1 + β ϕk)κ

]
kt +

[
βΦϕT

M − (1 + β ϕk)ξ0 e
T
1

]
M t

+
[
β ϕR,t+1

]
Rt+log x∗t+β ϕk log(1−x∗t )+(1+β ϕk) logA0,t+(1+β ϕk)(1−κ−v) logN0,t

+(1+β ϕk)v log I∗t +(1+β ϕk)ξ0M
pre
1 +β ϕM1(E

∗
t +Eexo

t −G∗1,t)+β ϕM2G
∗
2,t+ ...+

+ β ϕMrG
∗
r,t − β ϕR,t+1E

∗
t + β ϕt+1. (25)

Given the optimal controls the maximized Bellman equation is linear in all states.

Shadow values. Coefficient matching with respect to capital, kt, yields

ϕk = (1 + β ϕk)κ ⇔ ϕk =
κ

1− β κ
(26)

Inserting ϕk into equation (19) yield the optimal consumption rate x∗t = 1− β κ.

I match the coefficients of each state from both sides of the equation, which
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leads to

ϕT
M = −ξ0 (1 + β ϕk) e

T
1 [1− βΦ]−1

Using (26) the vector of shadow prices turns to

ϕT
M = −ξ0

1

1− β κ
eT1 [1− βΦ]−1 (27)

Coefficient matching with respect to the resource stock yields

ϕR,t = β ϕR,t+1 ⇔ ϕR,t = β−tϕR,0 (Hotelling’s rule). (28)

The initial resource values ϕR,0 depend on the set up of the economy, including

assumptions about production and the energy sector. Given the coefficients and

the optimal rate of consumption equation (25) turns to the following condition:

ϕt−β ϕt+1 = log x∗t+β ϕk log(1−x∗t )+(1+β ϕk) logA0,t+(1+β ϕk)(1−κ−v) logN0,t

+ (1 + β ϕk)v log I∗t + (1 + β ϕk)ξ0M
pre
1 + βϕT

M E∗t − β ϕR,t+1E
∗
t

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... The additional

condition limt→∞ β
tV (·) = 0⇒ limt→∞ β

tϕt = 0 pins down this initial value ϕ0.

B Proof of Proposition 1

Inserting the solutions for the shadow values, equations (26) to (28), into (22) yields

G∗i,t = f ′i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0

)
, (29)
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where [·]1,1 denotes the first, and [·]1,i denotes the i th element of the first col-

umn of the inverted matrix in square brackets. Note that [(1− βΦ)−1]1,1 >

[(1− βΦ)−1]1,i.

C Proof of Proposition 2

Inserting the solutions for the shadow values, equations (26) to (28), into (23) yields

E∗t =
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0
+

r∑
i=2

fi
(
G∗i,t
)
, (30)

where

G∗i,t = f ′i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0

)
.

D Proof of Proposition 3

Consider the climate-economy model from section 2 without the option of CDR,

and let the variables of this model specification be denoted by a tilde.

From the first order condition (20) it follows that optimal emissions without the

option of CDR are given by

Ẽ∗t =
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕ̃R,0
. (31)

The only endogenous term in equation (31) is the initial shadow value of the resource

stock, which is denoted by ϕ̃R,0. In both model specifications, the size of the resource

stock is the same and will be used up eventually. Therefore,

R0 =
∞∑
t=0

E∗t =
∞∑
t=0

Ẽ∗t .
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Using equations (30) and (31), and rearranging leads to

∞∑
t=0

r∑
i=2

fi(G
∗
i,t) =

∞∑
t=0

(
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕ̃R,0

− v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tϕR,0

)
.

If there exists at least one point in time where
r∑
i=2

fi(G
∗
i,t) > 0, the left term of

the equation is positive, and thus ϕ̃R,0 < ϕR,0. From this it directly follows that

∆ I∗t ≡ I∗t − Ĩ∗t < 0.

Comparing net emissions with and without the option of CDR yields

∆Enet∗

t ≡Enet∗

t − Ẽnet∗

t

= I∗t − Ĩ∗t +
r∑
i=2

(
fi(G

∗
i,t)−G∗i,t

)
< 0,

since Ĩ∗t > I∗t and fi(Gi,t) ≤ G∗i,t.

E Proof of Proposition 4

The SCC is the negative of the shadow value of carbon reservoir i expressed in

money-measured consumption units,

SCCMi = −(1− β κ)Y net
t ϕMi

= Y net
t ξ0

[
(1− βΦ)−1

]
1,i
,

where again [·]1,i denotes the i th element of the first column of the inverted matrix

in square brackets.
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