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Abstract

The fixed effects (FE) panel model is one of the main econometric tools
in empirical economic research. A major practical limitation is that the
parameters on time-constant covariates are not identifiable. This paper
presents a new approach to grouping FE in the linear panel model to
reduce their dimensionality and ensure identifiability. By using unsupervised
nonparametric density based clustering, cluster patterns including their
location and number are not restricted. The approach works with large data
structures (units and groups) and only clusters units that are sufficiently
similar, while leaving others as unclustered atoms. Asymptotic theory and
rates of convergence are presented. With the help of simulations and an
application to economic data it is shown that the suggested method performs
well and gives more insightful and efficient results than conventional panel
models.
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1 Introduction

Panel data are characterised by high dimensionality due to having both cross-
sectional (N units) and longitudinal (T time periods) dimensions. Panel analysis
is appealing, because it gives consistent estimates under weaker restrictions on
the correlation between observables and unobservables than cross-sectional analy-
sis. The leading example is the so-called linear fixed effects (FE) model, where
observables can be arbitrarily correlated with time-constant unobservables. A
disadvantage of the FE model is that it is overparametrised in the presence of
time-constant covariates. While parameters on time-varying covariates are identifi-
able and are consistently estimated by the classical FE estimator, or by Mundlak
(1978) type estimators (compare Wooldridge, 2019), the parameters on the time-
constant covariates are not identifiable in the FE model. Mundlak (1978) type
models substantially restrict the correlation of the time-constant covariates with
the FEs. Combining machine learning methods to regularise the space of fixed
effects is tricky, as by increasing the number of units, the number of parameters
in the model increases and therefore it is different from regularisation in a given
parameter space. The overparametrisation also leads to multicollinearity, which
causes problems for regularisation methods. Existing approaches therefore require
additional restrictions on group numbers or the covariates structure.

This paper considers the conventional linear FE model with discrete time-
constant covariates and suggests a new estimator that clusters the FEs. By adopting
nonparametric density based clustering, the cluster structure, such as cluster
locations and their number, are determined from the data without restrictions.
The clustering is so adaptive that it does not force units into clusters if they are
not similar enough. Therefore only similar units are clustered, while others remain
atoms. Our approach is attractive to practitioners for the following reasons: It
works with a large number of units and groups and gives estimates for parameters
on discrete time-constant covariates that can only take on a small number of values
such as dummy variables. We show that our estimator is consistent and converges
at rate Op(1/

√
NT ).

Most closely related to our approach is the pioneering work by Bonhomme
and Manresa (2015), which allows for time-constant covariates that are correlated
with covariates. While in their model, these covariates must take on sufficiently
many values to identify their parameters, our model contains any discrete time-
constant covariates, such as dummy variables. While Bonhomme and Manresa
(2015) use k-Means for the clustering, which requires a known number of clusters
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and normally forces all units into clusters, our approach is distribution free by using
the HDBSCAN algorithm. Other existing approaches that combine panel models
with regularisation techniques either do not allow for time constant covariates,
require them to be uncorrelated with fixed effects (Berger and Tutz, 2018; Bondell
et al., 2010; Bonhomme et al., 2022; Fan and Li, 2012; Heinzl and Tutz, 2014; Li
et al., 2018; Schelldorfer et al., 2011; Rohart et al., 2014; Su et al., 2016) or cannot
be computed with large sample sizes (Tutz and Oelker, 2017; Tutz and Schauberger,
2015). We conduct a series of Monte Carlo simulations to provide evidence of our
approach producing reliable estimates in a range of scenarios. Because it has a
modular structure, the clustering algorithm can be easily changed by the researcher
and we provide comparative results as a robustness check. We illustrate with the
help of a wage equation from labour economics that our approach is practicable
with a large number of units (77,500) and gives more insightful results than the
classical FE and the Mundlak model.

The paper is structured as follows. Section 2 presents the model and the
statistical approach. Section 3 presents simulation results to investigate finite
sample performance, while Section 4 presents the results from an application to
labour market data. The last section summarises the main findings and derives
some recommendations.

2 The Model

We consider the linear FE panel model

yit = Witθ + vi + uit

= Xitβ + Ziγ + vi + uit, (1)

where i = 1, ..., N is the unit and t = 1, ..., T is the time period. W ′
it = (Xit, Zi)′ ∈

W ⊂ IRK are observable covariates, where X ′
it ∈ X ⊂ IRK1 are time-varying

covariates which may be continuous or discrete. Z ′
i ∈ Z ⊂ IRK2 are time-constant

discrete covariates that can take on finitely many values from the finite set Z.
Only yit, Wit are observed, while θ = (β, γ) ∈ IRK is unknown, vi is an unknown
fixed effect and uit is an unknown idiosyncratic error. The objective is to identify
and estimate θ. Following general convention, we assume E(uit|Wi, vi) = 0, where
Wi = (W ′

i1, ..., W ′
iT )′, i.e. Wit is strictly exogenous conditional to vi. The fixed

effects vi ∈ IR are not mean restricted, because we consider a variant of the
model without a common intercept. The fixed effect is generated as mixture of
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a continuous and a discrete distribution, where the latter has a finite support
{1, . . . , G1} with fixed deterministic G1 where each value in the set corresponds
to a cluster. Within a group g all observations have the same value vi = qg.
The continuous part leads to isolated values of vi which we call atoms or atomic
groups. The random number of atoms is denoted by G2. The classical FE panel
model assumes G2 = N atomic groups and therefore cannot identify γ and vi but
only the sum Ziγ + vi. This is because the model is overparametrised, leading
to multicollinearity between the time-constant Zi and vi. Therefore, though the
model permits for general forms of endogeneities, the interpretability of the results
is unclear as only Ziγ + vi can be identified and not the role of the components
Zi. This is a severe limitation in applications, when the focus is on time-constant
variables, such as geographic factors or gender. This paper suggests a new approach
for identifying γ using a cluster structure of vi.

2.1 Group FE Estimation

In this subsection we present our estimation approach. A summary of the ap-
proach can be found in Table 1. Further details about the procedure are given in
Supplement S1.

Table 1: Steps of estimation procedure. See Supplement S1 for more details.

Step Description
1a) Estimate β in model (1) by the FE estimator and retrieve esti-

mated fixed effects âi = ȳi − X̄iβ̂, where ȳi = T −1∑T
t=1 yit, X̄i =

T −1∑T
t=1 Xit. Note that âi ≈ Ziγ + vi + ūi with ūi = T −1∑T

t=1 uit.
1b) For each value z ∈ Z: Cluster all units with Zi = z using the values

of âi for indices i with Zi = z.
2a) Define Ĝ1 as the maximum number of clusters in Step 1b) over

z ∈ Z.
2b) Establish linkage between the clusters of Step 1b) for different values

of z and assign to each atomic cluster a unit specific label between
Ĝ1 + 1 and Ĝ1 + Ĝ2.

3) Use OLS to estimate β, γ and α in a regression model with response
yit and covariates Xit, Zi and D̂i where the latter is a dummy
variable indicating group membership, see equation (2) below.

Step 1: Clustering
a) There is some evidence that FE estimation of model (1) provides well behaved
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estimates for Ziγ + vi as N and T become large and if there is an underlying group
structure, see Hahn and Moon (2010). In a classical individual level FE model,
this term is the fixed effect. We denote the estimate of this individual level FE as
âi = Ziγ +vi +ei, where ei is an estimation error in âi, see Step 1a) in Table 1. The
estimation error diminishes by sample size and simulations show that convergence
in T is quick and not many periods are required.

b) Consistent estimation of γ in the model for âi by OLS is not possible because
the relationship between Zi and vi is unrestricted and therefore Zi is endogenous.
We make use of a clustering approach to overcome this problem. We use a version
of density-based clustering which is a slight modification of DBSCAN* (Ester
et al. (1996)) and HDBSCAN ( Campello et al. (2013, 2015)) which belong to the
most well-known density-based clustering algorithms, see Supplement S3 for more
details. In Assumption (A5) in the next subsection we will state the model for the
distribution of vi. We assume that with a positive probability vi is generated from
a continuous distribution. Further, with positive probability vi takes a value from
the finite set {qg : g ∈ {1, . . . , G1}}, where qg are some unknown real numbers.
Thus we have a fraction of vis spread over the real line and fractions of vis equal to
qg for some g ∈ {1, . . . , G1}. We call the first vis "atoms" and we call the index sets
{i : vi = qg} "clusters". In our asymptotic setting we allow that the probabilities
of both fractions do not converge to zero. Then we will have that the number of
atoms as well as the number of cluster points are of order N .

For the implementation of our density-based clustering algorithm we use the
kernel density estimators

f̂ z
b (x) = 1

Nz

N∑
i=1

I[Zi = z]1
b
K

(
âi − x

b

)
,

with Nz = #{i : Zi = z} where K is a probability density function and b is a
bandwidth with b = cb

1/
√

T for some cb
1 > 0. We consider high level sets of f̂ z

b and
correct their boundaries

Iz
∗ = {x : f̂ z

b (x) ≥ cb
2
1
b
},

Iz = {x : |x − w| ≤ cb
3b ∃w ∈ Iz

∗ } for some constants cb
2, cb

3 > 0.

Here cb
1, ..., cb

3 are tuning parameters for the method.
We will show that Iz is a union of disjoint closed intervals

Iz = Iz
1 ∪ . . . ∪ Iz

l(z) with l(z) ≥ 1.
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Figure 1: Population choice of the mappings hz(l)

qz1
1 qz1

2 qz1
3

γz1 0
Zi = 1

qz2
1 qz2

2 qz2
3 qz2

4

Zi = 2
γz2 = 0

qz3
1 qz3

2 qz3
3

γz30
Zi = 3

atom: x, cluster:

hz1(1) = 1, hz1(2) = 2, hz1(3) = 4
hz2(1) = 1, hz2(2) = 2, hz2(3) = 3, hz2(4) = 4
hz3(1) = 1, hz3(2) = 3, hz3(3) = 4

We denote the midpoint of the interval Iz
l by q̂z

l . We assume that they are ordered
in increasing values. These are the estimates of the cluster centers for 1 ≤ l ≤ l(z)
of the subsample {i : Zi = z}. In our simulations and data example we also applied
the popular k-Means clustering algorithm for comparison with our approach. The
k-Means algorithm tends to clusters all units with Ĝ2 = 0.

Step 2: Mapping of Cluster Membership Variables
a) The number G1 of clusters is estimated by Ĝ1 = maxz∈Z l(z).
b) To link the clusters for all values z of Zi we define strictly monotone functions

hz : {1, ..., l(z)} → {1, ..., Ĝ1}. In the fitted model all individuals i with the same
value of hZi

(l) with l chosen such that âi ∈ IZi
l belong to the same cluster. The

number of this cluster is ĝ(i) = hZi
(l). The linkage problem is illustrated in Figure

1 for three different values of Zi and G1 = 4. We now specify our algorithm for the
choice of the functions hz. We choose these functions by comparing the distances
between neighbouring clusters for z ∈ Z. We choose hz for z ∈ Z by minimising

∑∣∣∣(q̂z
l+1 − q̂z

l ) − (q̂z′

k2 − q̂z′

k1)
∣∣∣ ,

where the sum runs over all z, z′ ∈ Z, 1 ≤ l ≤ l(z) − 1, 1 ≤ k1 < k2 ≤ l(z′)
with hz(l) = hz′(k1) and hz(l + 1) = hz′(k2). For all atomic groups containing
only individual i we choose ĝ(i) equal to a unique value in {Ĝ1 + 1, ..., Ĝ} with
Ĝ = Ĝ1 + Ĝ2.
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Step 3: Dummy Variable Regression for the Regularised Model
After the correspondence between the reference groups and the groups in all

reparametrised models is established, a vector of Ĝ dummy variables D̂ indicating
estimated group membership is created and the following model is established:

yit = Xitβ + Ziγ + D̂iα + ũit, (2)

where α is Ĝ dimensional. ũit = uit iff D̂iα = vi. This regression produces consistent
estimates for previously unidentified components γ and α. The estimates for β are
more precise than in the conventional FE model due to restricting the fixed effects
to take on Ĝ values.

D̂i may not be free of error in applications. That is it may not be the same
as Di, the vector of dummies based on the true groups. There are several types
of possible errors. An individual that belongs to a cluster could be classified as a
member of another cluster. In our asymptotic setting where the location of clusters
is fixed and the distance between clusters is positive this happens with very small
probability. In particular, we will see in our asymptotic analysis that the bias
caused by this type of misclassification is asymptotically negligible. Secondly a
cluster point could be classified as an atom. One can show that this does not
contribute a bias term. But the individual will not be used in the estimation
of γ. This increases the variance of the estimator of γ. The effect will not be
negligible in our asymptotic setting because this misclassification may happen for
a fraction of the sample that is bounded away from zero. The last type of error is
a classification of an atom as cluster point. This misclassification adds a bias term
in the estimation of the cluster centers which lead in our asymptotic setting to a
bias term of order T −3/2 in the estimation of γ. This bias term is only negligible if
T converges to infinity fast enough, see the discussion in the next subsection and
in Supplement S4.

When the algorithm in Step 1 creates too many groups, an additional supervised
regularisation step could be implemented that will fuse groups and therefore remove
inefficiencies at the cost of an increasing bias coming from misclassification of atoms
as cluster points. This corresponds to finding whether D̂i is of greater length than
G. Given that the position and ordering of each subgroups are known from Step 2,
the regularisation corresponds to a fused LASSO. The corresponding optimisation
problem is:

min
λ̃∈RK1+K2+Ĝ

1
2∥y − W̃ λ̃∥2

2 + η
Ĝ1−1∑
g=1

|λ̃g+1 − λ̃g|, (3)
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where y is stacked N ∗ T × 1, η ≥ 0 is a tuning parameter and W̃ = [D1, W, D2] ∈
R(N∗T )×(K1+K2+Ĝ). W̃ contains the stacked D̂ and W matrices, arranged in a
specific column order. The vectors in the N ∗ T × Ĝ1 matrix D1 indicate the
membership of individuals in the non-atomic groups and the N ∗ T × Ĝ2 matrix
D2 indicates the atomic groups respectively. Further, we order the groups (i.e.
columns) in D1 by the mean estimated fixed effect. To ensure comparability we
compute the ordering only with the fixed effects of the units in the reference group
with respect to Z, i.e. the reference level of Z which is assumed to contain all
non-atomic groups. Using the same order as in W̃ , λ̃ ∈ RK1+K2+Ĝ is the rearranged
λ. Problem (3) is a variant of the so-called fused LASSO, as only the coefficients
of the non-atomic groups shrink towards each other. The coefficients on both time-
variant and time-constant covariates are not regularised. The group coefficients
are not regularised towards zero. As shown in Supplement S5 the problem in (3)
can be transformed into a regular LASSO as in Tibshirani and Taylor (2011). The
regular LASSO has computational advantages and its properties are well developed,
see for example Tibshirani (1996) and Hastie et al. (2017). While our approach is
a variant of the fused LASSO, an alternative shrinkage approach would be pairwise
cross-smoothing as suggested by Heiler and Mareckova (2021).

2.2 Large Sample Properties

In our asymptotic approach we assume that N and T converge to infinity. More
formally, we assume that N → ∞ and that T = TN depends on N and fulfils
limN→∞TN = ∞.

Furthermore, we will suppose that an estimator β̂ of β is used in Step 1 which
fulfils ∥β̂ − β∥ = Op((NT )−1/2), see Assumption (A1). For the sets Iz

1 , . . . , Iz
l(z),

introduced in the last subsection we will show that, with probability tending to one,
each interval Iz

j contains qg + zγ for exactly one 1 ≤ g ≤ G1. We also write Ig,z for
this interval. If there exists no j with qg + zγ ∈ Ig,z we define Ig,z = ∅. Under our
assumptions the mapping of cluster membership variables of Step 2 identifies the
value of g with Iz

j = Ig,z with probability tending to one, see Assumption (A7).
We now define the estimator γ̂ of γ as the minimiser over γ of the least squares

criterion
N∑

i=1
(âi − ǎĝ(i) − Ziγ)2,
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where

ǎg =
N∑

i=1
âiIĝ(i)=g/

N∑
i=1

Iĝ(i)=g,

and where ĝ(i) has been defined in the last subsection. It can be easily checked
that

γ̂ =
(

N∑
i=1

(Zi − Žĝ(i))′(Zi − Žĝ(i))
)−1 N∑

i=1
(Zi − Žĝ(i))′(âi − ǎĝ(i)),

where

Žg =
N∑

i=1
ZiIĝ(i)=g/

N∑
i=1

Iĝ(i)=g.

Note that

γ̂ =

 ∑
i:1≤ĝ(i)≤Ĝ1

(Zi − Žĝ(i))′(Zi − Žĝ(i))


−1 ∑

i:1≤ĝ(i)≤Ĝ1

(Zi − Žĝ(i))′(âi − ǎĝ(i)).

We now state an asymptotic stochastic expansion for the estimator γ̂. The expansion
implies that γ̂ achieves a parametric rate of convergence of order Op(1/

√
NT ). We

will discuss below how the stochastic expansion can be used to get the asymptotic
normal distribution limit for γ̂.

Theorem 1 Make assumptions (A1)-(A7) stated below and assume that T −1 =
o(1/

√
N). Then it holds that

γ̂ − γ = Σ−1
Z,N

1
N

N∑
i=1

I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′ūi

− Σ−1
Z,N

1
N

N∑
i=1

I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(X̄i − X̌ĝ(i))(β̂ − β) + oP (1/

√
NT ),

where

ΣZ,N = 1
N

N∑
i=1

I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(Zi − Žĝ(i)),

X̌g =
N∑

i=1
X̄iIĝ(i)=g/

N∑
i=1

Iĝ(i)=g.

In particular we get that
γ̂ − γ = Op(1/

√
NT ).
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The proof of Theorem 1 is given in the Appendix. For the statement that γ̂ − γ =
Op(1/

√
NT ) it would suffice to assume that T −1 = O(1/

√
N). As discussed in

the last subsection, there are two types of clustering errors that are not negligible
in our asymptotic setting. First, atoms with a value of vi in the neighbourhood
of a cluster centre qg are accidentally assigned to the cluster. Second, cluster
elements with large enough ūi, with ūi = T −1∑T

t=1 uit, are accidentally classified
as atoms. The first error leads in particular to bias effects which are shown to be
of second order in our proof of Theorem 1. The second type of errors leads to a
loss of efficiency. Note that nevertheless our estimator of γ achieves the same rate
Op(1/

√
NT ) as if all clusters were known. The assumption T −1 = O(1/

√
N) could

be weakened if the relative number δN of atoms converges to 0 or, more explicitly
if we replace αz

0 and αz
g in Assumption (A5) by δNαz

0 or αz
g(1 − δNαz

0)/(1 − αz
0),

respectively. Then the assumption that δNT −1 = O(1/
√

N) would suffice.
If T converges slower to +∞ as N−1/2 the asymptotic bias of γ̂ is not negligible

because it is of order T −3/2, a rate which is not of order O(1/
√

NT ). The bias
term would vanish if the density of ūi is symmetric which in general may not
be the case. We assume that the distribution of ūi differs from a symmetric
distribution by a distance of order T −1/2. Theoretically, it is possible to weaken the
assumptions further by applying an approach that corrects for bias. In particular,
one can construct an estimator of γ that achieves the Op(1/

√
NT ) rate under the

assumption T −3/2 = O(1/
√

N) or δNT −3/2 = O(1/
√

N), respectively. We do not
report on this approach because its practical success would heavily depend on the
finite sample accuracy of the then used higher order expansions which may be
questioned at least for small and moderate sample sizes.

We now discuss how the theorem can be used to get the asymptotic normal
limit for γ̂. We suppose that also a stochastic expansion for β̂ is given:

β̂ − β = 1
NT

N∑
i=1

T∑
t=1

Ai,tui,t

for some vectors Ai,t depending on the covariates Xi, t and Zi. An example is the
difference estimator for which such an expansion has been used for an asymptotic
analysis. Then we get with the theorem that there exist vectors Bi,t depending on
the covariates Xi,t and Zi such that

 γ̂ − γ

β̂ − β

 = 1
NT

N∑
i=1

T∑
t=1

 Bi,t

Ai,t

ui,t + oP (1/
√

NT ).
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Asymptotic normality of the joint distribution of γ̂ − γ and β̂ − β follows under
suitable conditions by application of an appropriate central limit theorem. Our
theory does not cover a two-step estimator where in a first step the above procedure
is used for the cluster allocations ĝ(i) and where in a second step the cluster effects,
and the estimates of β and γ are updated by minimizing a least squares criterion.
One may expect that one can achieve 1/

√
NT convergence and normal limits if the

values of Xit lie in a finite set and similar conditions are made for the conditional
distribution of vi, given Xit and Zi as above for the conditional distribution given Zi.
But now (Xit : 1 ≤ t ≤ T ) are vectors of increasing dimension which complicates
the situation. The major problem are atoms that erroneously categorized as
belonging to a cluster. The number of these atoms is of order NT −1/2. The error
in the estimation of their individual effect is of order NT −1/2. Thus a crude bound
for the error in estimation of β is of order N−1NT −1/2T −1/2 = T −1 which is in
general not of order N−1/2T −1/2. Thus finer arguments are needed to check under
which conditions the two-step estimator achieves 1/

√
NT convergence and normal

limits.

Assumptions

Assumption A1 There exists an estimator β̂ of β with ∥β̂ − β∥ = Op((NT )−1/2).
The values of Xit lie in a bounded set: ∥Xit∥ ≤ Cx a.s. for some Cx > 0.

With this assumption there is no need to discuss estimation of β in Step 1. A
possible choice for an estimator that fulfils this condition is the fixed effects
estimator.

Assumption A2 The tuples (Zi, vi, ūi) are i.i.d. It holds that for 1 ≤ i ≤ N that
Euit = 0 and that

supu∈IR|FN(u) − Φ(u/σ)| ≤ CF T −1/2

for some CF > 0 with σ2 = Eu2
it. Here, FN is the distribution function of

√
T ūi

and Φ is the distribution function of a standard normal distribution.

For the case that ui1, ..., uiT are i.i.d. with E|uit|3 < ∞ the bound on the
distribution function FN of

√
T ūi follows directly by an application of the Berry-

Esseen bound (Feller, 1971). We will exploit below that the density of Φ is
symmetric. This will be essential when estimating the location of the centers of
the clusters.

We now describe the distribution of (Zi, vi, ūi).
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Assumption A3 ūi is independent of (Zi, vi).

Assumption A4 The Zi’s have a finite support Z ⊂ RdZ . The linear span of Z
is equal to RdZ . For z ∈ Z we put p(z) = P (Zi = z). We suppose that p does not
depend on N .

We now describe the conditional distribution of vi given Zi.

Assumption A5 The conditional distribution of vi given Zi = z ∈ Z is equal to

αz
0Sz +

G1∑
g=1

αz
gδqg ,

where δq denotes a mass point in q, where q1 > . . . > qG1 are points in [0,1] and
Sz are probability measures on [0,1] with densities sz that allow for a continuous
derivative. Furthermore, αz

g (z ∈ Z, 0 ≤ g ≤ G1) are real weights with αz
g ≥ 0,∑G1

g=0 αz
g = 1 for all z ∈ Z, supz∈Z αz

g > 0 ∀g.

In (A5) we allow that αz
g = 0 for some (g, z) ∈ {0, . . . , G1}×Z. In (A5) we assume

that the order of the number of atom units is the same as that for units in clusters.
One could change and model the conditional distribution of vi given Zi = z as

δNα0S
z + (1 − δN)

G1∑
g=1

αz
gδqg ,

where δN is a sequence with δN → 0. By doing so we can replace the assumption
T −1 = O(1/

√
N) by δNT −1 = O(1/

√
N), or in case we do assume that the

density fN of ūi is symmetric, see comment after the statement of (A2), by
δNT −3/2 = O(1/

√
N).

For the kernel K we assume:

Assumption A6 The kernel K is a strongly unimodal symmetric density function
and differentiable with derivative absolutely bounded by cK

1 . For the bandwidth b

it holds b = cb
1/

√
T for some cb

1. The constant cb
2 in the definition of Iz

∗ is chosen
small enough.

Note that a density is strongly unimodal if its convolution with a unimodal density
is always unimodal. This also implies that the density of the convolution of
two strongly unimodal densities is also strongly unimodal. For a density strong
unimodality is equivalent to log-concavity. In particular, normal densities are
strongly unimodal. Below we will make use of the fact that the convolution of the
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kernel K with a normal density is strongly unimodal and thus log-concave. For a
discussion of strongly unimodal densities see Ibragimov (1956).

As explained in Subsection 2.1, we make a simplifying assumption to ease
identification of clusters and their centres in Step 2.

Assumption A7 There exists a z∗ ∈ Z with αz∗
g > 0 for all 1 ≤ g ≤ G1. For all

z ∈ Z we assume that there exist g1, g2 ∈ {1, . . . , G1}, g1 ̸= g2, depending on z

with αz
g1 , αz

g2 > 0. Furthermore, we suppose that the values of qg1 − qg2 are pairwise
different for 1 ≤ g1 < g2 ≤ G1.

We conjecture that Assumption (A7) could be weakened but this would require
more refined statistical methods and the application of more technical arguments
in the mathematical analysis. Note that we identify clusters for each value of Zi

separately without making use of the link (Zi1 − Zi2)γ. Including this information
may motivate more effective approaches if Z contains more than 2 elements.

2.3 Comparison of Approaches

We compare how classical approaches such as the FE model and Mundlak model
compare to our approach in terms of restrictions. We also consider how the choice
of the clustering algorithm induces different restrictions.

There are no restrictions on the correlation between vi and Zi in the FE model.
Moreover, vi can take on N values. This corresponds to that all units are allowed
to be atoms. γ is not identified without restricting G or the relationship between
the fixed effect and the observables. The model by Mundlak (1978) assumes that
the fixed effect is a function of the time average of time-varying covariates (X̄i)
and that its residual variation is not correlated with Zi. The model produces
inconsistent estimates if there is anything in vi that is related to Zi conditional on
X̄i. The model does not restrict the marginal distribution of vi , therefore it only
restricts the correlation structure of the observables with vi.

Our suggested approach does not restrict the correlation structure between
observables and vi but for identifiability G < N − K2, the number of atomic units.
In the case of k-Means clustering it is assumed that G is a known small number.
In the case of density-based clustering, G is unknown and allowed to be large.
For identifiability, for each realisation (or more precisely for each distinct realised
combination of the components) of Zi at least two non-atomic clusters must be
present in the dataset. However, our theory explicitly allows that groups are not
present in some realisations of Zi (compare Assumption (A5)). Assumption (A7)
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ensures that there is one realisation of Z that contains all non-atomic groups. We
conjecture that this latter assumption could be relaxed both in the theory as well
as in the practical estimation. In regard to theory, this would require both more
refined statistical methods and the application of more technical argumentation
in the mathematical analysis. The different group numbers across realisations of
Zi are determined from the data by density-based clustering. k-Means in contrast
clusters the observations into the same known number of groups for all levels of
Z, unless the researcher has additional knowledge about group numbers to differ
across levels. It is therefore possible to characterise the various models. When
using density-based clustering, no specific assumption is made on the number of
groups and groups are allocated by a mechanism that bases on a nonparametric
density estimation. In contrast, when using k-Means clustering, the model is more
restrictive as the number of groups is known and identification is through their
means only. In Section 3 we show with simulations that as long as the restrictions
are satisfied, the more restrictive models, including Mundlak are more efficient,
while they are biased when these restrictions are violated. This is the usual trade-off
one faces in terms of bias and efficiency. On the grounds of these considerations it
would be of interest to formulate inference approaches that test for the validity
of restrictions. For example, a Hausman type test could be done to test for the
validity of the additional restrictions of the k-Means clustering in comparison to
density-based clustering.

2.4 Remarks and Extensions

The following two remarks should be of use for practitioners who apply our
approach:

• P (Zi = z|gi = g) can become low for some values of Z in the case of strong
correlation between vi and Zi. In this case a large data set may be required
for the algorithm to detect a cluster.

• While from a theoretical point of view, Zi can be high dimensional, there
are practical constraints as the clustering step 1 has to be done conditional
for all values of Zi. The applied researcher is advised to include only low
dimensional Zi of key interest. The remaining time-constant variables will
be simply absorbed by vi.

There are several practically relevant extensions to our model that we omitted to
focus on the main idea of our approach:

14



Multi-level models. Linear multi level models are routinely applied in a wide
range of applications. Our model can be extended to multi-level fixed effects, e.g.
vi + fj in the case of two levels. They comprise of, for example, a regional or firm
component fj in addition to vi. Higher dimensional density clustering methods
can be used for regularisation in Step 1.

Continuous Zi. In the case Zi contains one or multiple continuous covariates,
we suggest a pragmatic approximation by specifying the partial relationship of the
continuous time-constant covariates and yit as piecewise constant model (interval
dummies).

Continuous v. The fixed effects could be continuously distributed with unknown
distribution. This is likely the case in many empirical applications. Forcing
them into groups, will lead to an approximation error. The problem is similar to
that considered in Bonhomme et al. (2022) who show that incorrect grouping of
similar units will not or will only slightly bias estimates. Our simulation results in
Section 3 confirm that incorrect grouping of similar units will only lead to small
inconsistencies in coefficients of interest.

Further regularisation step to group atomic units. The clustering in Step 2
of our procedure typically produces atoms in applications. These are units that are
not clustered with any other unit. In addition to the supervised regularisation to
combine groups as outlined in Supplement S5, it is possible to test whether atoms
are different from groups or other atoms. In this case they can be combined or
merged into existing groups to further reduce the dimensionality of the model. The
starting point is that a dummy variable regression model as in equation (2) after
the generalised LASSO, will give estimated fixed effects for groups and atoms. On
the grounds of these estimates it is possible to determine the nearest neighbours
for each atom. Using a Wald test or a t-test based on a reparametrised model it is
possible to test the null that the FE of the atom and its nearest neighbour are the
same. If the null is not rejected, the two are to be merged into one group.

Inference. For honest bootstrap inference it would be important to take the
uncertainty of the regularisation steps into account. Chatterjee and Lahiri (2011)
and Chatterjee and Lahiri (2013) suggest residual based bootstrap methods for
high dimensional linear regression models that are valid for sparse estimators. Our
estimation procedure additionally involves an unsupervised clustering step, but it
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would be of interest to develop a residual based bootstrap procedure that produces
valid standard errors and p-values.

3 Simulations

We conduct a series of Monte Carlo simulations to investigate the numerical
performance of our approach in finite samples and compare it to OLS and the
Mundlak approach. Table 2 summarises the 4 simulation designs, that we mainly
consider in this section. Designs M1-M4 differ in terms group structures of fixed
effects and correlation structures between observables and the FEs. Design M1 is
characterised by a high correlation between the fixed effect and the time-varying
regressor, design M2 by a high correlation of the fixed effect and the time-constant
regressor, design M3 models a large number of atoms, where half of the population
is not part of a cluster. Finally design M4 illustrates the effect of different group
sizes and different distances between the group intercepts.

We choose the designs such that they possess similarities to the related literature
(Tutz and Schauberger, 2015; Berger and Tutz, 2018; Bonhomme et al., 2022). We
adapted them to make them more aligned to the theoretical model of Section 2.
By doing so the existing approaches become incompatible and can therefore not
be included in the comparison.

While the main features of the 4 designs are listed in Table 2, we discuss
some of them in more detail in what follows. In terms of Assumption (A5) M1 is
characterised by αz

0 = 0 for all z and αz
g = 1/G = 1/G1 for all G clusters and all z

levels. In M2 αz
g varies both across groups and z. M3 includes atoms, i.e. αz

0 ̸= 0.
In design M4 αz

0 = 0 and αz
g varies in g but not in z. The distributions of vi are as

follows: In M1/M2 each vi is a realisation of a N(1, 2)/N(1, 10) random variable,
that is subsequently discretised into 5 groups. First observations are binned into
5 quantiles and the quantile means are used as final group intercepts. In design
M3 the clusters are modelled as in M1/M2, the atomic vi are independent random
draws from a N(0, 1) distribution. The latter is aligned to the simulation design
in Bonhomme et al. (2022, Supplementary Appendix S3). The mixture of clear
groups and atoms creates intervals with different densities, there HDBSCAN is
known to have advantages. In design M4 the increased distance between the group
intercepts increases the bias induced by choosing an incorrect group number in
k-means.

In design M4, for four groups the share of the entire population is drawn from
a uniform distribution in the interval [0.1,0.25]. The fifth group is formed by
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the residual share. The group intercepts are drawn from five different uniform
distributions to ensure more spacing between the groups.

There is one bivariate time-constant covariate and one continuous time-varying
covariate in all designs, which are drawn from a binomial or standard normal
distribution, respectively. The correlation structures between the covariates and vi

differ across designs (compare row Correlation Structure). In M2, the probability
of Zi = 1 depends on vi and differs across groups. The Mundlak estimator is
expected to perform worse in this setting compared to the settings M1 and M3.

We use T=20 as in Bonhomme et al. (2022, Supplement S3).

Table 2: Simulation Designs

Design M1 M2 M3 M4
Group Structure

adapted from B&T(2018) & B&T(2018) Mixed
T&O(2017) T&O(2017)

G 5 5 G1 = 5 5
G2 = N/2 varying

sizes
N 500 500 1000 1000
T 20 20 20 20
Fixed Effect vi

drawn from N(1, 2) N(1, 10) N/2 ∼ N(1, 2) U(G5)
N/2 ∼ N(0, 1)

discretised 5 quantile 5 quantile N/2: 5 q. means yes
means means N/2: none

Time-constant B(0.5) P (Zi = 1|vi) = P2 B(0.5) B(0.5)
covariate Zi

Time-varying xit 0.4vi + 0.6N(0, 1) N(0, 1) 0.4vi + 0.6N(0, 1) N(0, 1)
covariate
β, γ 2,2 2,2 2,2 2,2
Correlation cor(vi, xit) cor(vi, Zi) cor(vi, xit) none
structure ≈ 0.8 > 0 ≈ 0.8
Error term uit N(0, 3) N(0, 3) N(0, 3) N(0, 3)

Notes: B&T(2018): Berger and Tutz (2018),T&O(2017): Tutz and Oelker (2017), B,L&M (2022):
Bonhomme et al. (2022). Vector G5 = [[−15, −14], [−2, −1.5], [1.5, 2.5], [6, 8.5], [13.5, 14.5]], Vector
P2 = (0.35, 0.45, 0.55, 0.55, 0.65)

We apply different variants of our estimation approach in order to compare
their performances. As clustering techniques we use HDBSCAN with and without
the optional LASSO step and k-means. In the LASSO step we choose the tuning
parameter with BIC, Cross Validation and General Cross Validation. We also
compute Post LASSO after Cross Validation but do not report the results here for
reasons of brevity, in most settings Cross Validation performs better. HDBSCAN is
computed using the R package dbscan described in Hahsler et al. (2019). MinPts

(compare Supplement S3) is set to 7 in M1,M3 and 10 in M2,M4. k-Means is
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Table 3: Simulation Results

β γ

Bias MAD MSE Bias MAD MSE
M1
POLS 1.5196 1.5196 2.3117 -0.0010 0.0718 0.0080
Mundlak 0.0014 0.0407 0.0025 -0.0000 0.0505 0.0041
k-Means
k-Means, 3 0.3427 0.3427 0.1199 -0.0100 0.1538 0.0393
k-Means, 5 0.1206 0.1207 0.0171 -0.0024 0.2426 0.0915
k-Means, 10 0.0400 0.0517 0.0041 -0.0197 0.2549 0.0983
HDBSCAN 0.0360 0.0535 0.0055 -0.0227 0.3484 0.2019
HDBSCAN with LASSO
Cross Validation -0.0076 0.0462 0.0041 -0.0168 0.2828 0.1291
Gen Cross Val 0.0339 0.0526 0.0053 -0.0225 0.3434 0.1960
BIC 0.0335 0.0524 0.0053 -0.0224 0.3431 0.1957
M2
POLS 0.0022 0.0735 0.0086 3.7064 3.7064 14.3185
Mundlak 0.0013 0.0235 0.0009 3.7041 3.7041 14.3027
k-Means
k-Means, 3 0.0032 0.0339 0.0018 4.6190 4.6235 23.3694
k-Means, 5 0.0013 0.0224 0.0008 -0.0011 0.0474 0.0035
k-Means, 10 0.0013 0.0237 0.0009 0.3208 0.3887 0.8949
HDBSCAN 0.0013 0.0224 0.0008 0.0175 0.0661 0.0903
HDBSCAN with LASSO
Cross Validation -0.2037 0.2037 0.0429 0.1251 0.1281 0.1015
Gen Cross Val -0.0368 0.0399 0.0022 0.0376 0.0686 0.0906
BIC -0.0368 0.0399 0.0022 0.0376 0.0686 0.0906
M3
POLS 1.5981 1.5981 2.5552 -0.0001 0.0493 0.0038
Mundlak -0.0021 0.0282 0.0013 0.0013 0.0347 0.0019
k-Means
k-Means, 3 0.4994 0.4994 0.2508 0.0106 0.1580 0.0390
k-Means, 5 0.2263 0.2263 0.0525 -0.0230 0.2522 0.0987
k-Means, 10 0.0738 0.0744 0.0068 -0.0010 0.3168 0.1588
HDBSCAN 0.0163 0.0330 0.0017 -0.0014 0.3023 0.1450
HDBSCAN with LASSO
Cross Validation 0.0012 0.0312 0.0016 -0.0032 0.2618 0.1089
Gen Cross Val 0.0162 0.0330 0.0017 -0.0016 0.2985 0.1412
BIC 0.0161 0.0330 0.0017 -0.0018 0.2982 0.1409
M4
POLS 0.0070 0.0570 0.0052 0.0012 0.5056 0.3958
Mundlak 0.0007 0.0171 0.0005 0.0017 0.5056 0.3956
k-Means
k-Means, 3 0.0025 0.0215 0.0007 0.0201 0.2617 0.3107
k-Means, 5 0.0005 0.0168 0.0004 0.0008 0.0333 0.0017
k-Means, 10 0.0006 0.0171 0.0005 0.0513 0.4351 0.6393
HDBSCAN 0.0005 0.0168 0.0005 0.0147 0.1152 0.4071
HDBSCAN with LASSO
Cross Validation -0.1770 0.1770 0.0323 0.0131 0.1099 0.3546
Gen Cross Val -0.0394 0.0402 0.0020 0.0144 0.1139 0.3997
BIC -0.0395 0.0403 0.0020 0.0145 0.1139 0.3997

Notes: Means of 500 simulations. Simulation designs are defined in Table 2.
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computed with different choices of k, including too small, too large and the correct
number of groups to investigate how results are affected by misspecification. All
k-Means computations apply 100 iterations and 1000 random starting values. As a
baseline, we compare our estimators to the Mundlak estimator and a pooled OLS
regression.

We simulate the 500 samples for each design and report bias, MAD and MSE
for the various approaches in Table 3. The results confirm our suggested approach
performs well. Whether HDBSCAN or k-Means clustering give superior results
depends on the design and the chosen k. Given that G is normally unknown
in applications, there is always the risk of assuming the wrong k. There is no
clear pattern for the MSE, whether G is assumed to be too little or too great.
The group intercepts have a larger distance in settings M2 and M4. Choosing
an incorrect number increases the error by a larger factor than for example in
setting M1. Specifying a too small k leads to worse performances for coefficients
on both the time-varying and the time-constant covariates. Setting k too large
leads to a larger MSE for coefficient on the time-constant covariate. Due to its
nonparametric nature the MSE for HDBSCAN tends to be larger than for k-Means
if there are any sizeable differences. The LASSO step improves the results with
the HDBSCAN clustering, although not always. Cross validation outperforms BIC
and general cross validation in most settings.

Further simulations are presented in Supplement S6. They include variants of
design M2 with varying combinations of fixed effects and error terms. A larger
variance of fixed effects and a smaller error variance both improve estimation
results with HDBSCAN and HDBSCAN with LASSO. We explain this by a clearer
and more distinct group structure and more precise estimation of fixed effects.
We also provide results for T = 5. While the errors are larger than for T = 20,
as expected, our approach is shown to work reasonably well in very short panels.
We also provide results for a continuously distributed vi without mass points.
This is in the spirit of Bonhomme et al. (2022), who consider the problem of
discretising unobserved heterogeneity. Although, this scenario is not compatible
with our modelling, our approach shows a reasonable performance. We also provide
a graphical representation of the clustering step in Supplement S7.

4 Application

We apply the proposed methods to labour market data and estimate the gender
wage gap. Thereby we demonstrate the applicability to large scale data structures
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that are commonly used for empirical economic research. We extract a sample
from the Sample of the Integrated Employment Biographies 1975-2014 (SIAB)
of the Institute for Employment Research (IAB), Germany. These data contain
information from various linked administrative social security registers. SIAB is a
2% random sample of the workforce in Germany that contributed to social insurance
in the period 1975–2014. Among other things the SIAB contains daily information
about periods of dependent employment and wages with basic information about
the individual (such as gender, age and education) and the employing firm (such as
business sector). SIAB is available as a scientific use file for independent research.
For more information on the data see Ganzer et al. (2017). We extract a yearly
panel of wages on the 30th of June for the years 2006-2013. Our sample contains
employees aged 16-65, that are subject to social insurance contributions, including
those in vocational training. If an employee has a part-time and a full-time job
we only consider the full-time job. Further, we only consider the job with the
highest salary. In addition to the provided variables, we compute others based
on the individual employment history to include tenure (time with the current
employer) and additional labour market experience (in addition to current tenure).
After some data cleansing, we are left with a balanced panel of 241,076 individuals
with 1,928,608 person-year observations. In our model we use one time-constant
covariate (female), 14 time-varying covariates, 7 year dummies and an intercept,
whenever adequate. The analysis of the partial effect of gender and education on
wages is popular in empirical economic research and is the reference example in
leading econometrics textbooks (e.g. Wooldridge, 2010).

We compare results of the following models:

• Pooled OLS model, where Xit and Zi are contemporaneously exogenous and
therefore not allowed to be correlated with vi.

• Mundlak model, which allows for arbitrary correlation between vi and Xis

and some correlation between vi and Zi if it is through X̄i, the within time
average of the time-varying covariates.

• Our regularisation approach with HDBSCAN as clustering step.

• Our regularisation approach with k-Means as clustering step. We work with
5 clusters and with 55 clusters to illustrate the role of the number of clusters.

• Our regularisation approach with HDBSCAN, followed by a LASSO to
regularise group membership further as outlined in Appendix S5.
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We use R V4.0.2 for the analysis on Windows Server 2019 with 96GB RAM. Our
suggested clustering methods run quickly and give results within several hours,
though we encounter memory problems in the clustering steps and when running the
grouped fixed effects regression (2) of step 3 when groups are created by HDBSCAN.
Because of the large number of atoms (individuals that are not assigned to any
group), this regression easily contains 10,000s of dummy variables. Despite the use
of big data packages such as biglm (Lumley, 2020) we must restrict the analysis to
a randomly chosen 77,500 individuals. The final LASSO step to reduce the groups
numbers turned out to require even more memory. For this reason, this last step is
only estimated on a smaller sample of 7,500 individuals. This gives some insight
as to how much the last supervised regularisation step contributes to dimension
reduction. In practice, the final LASSO step is only applicable to large scale data
when high performance computing facilities are available. For this step, R requests
more than 2800GB of RAM in the case of 77,500 individuals. The running time for
the large sample is approximately 3 days to obtain the results in Table 4, where
the HDBSCAN based model takes around 2 of these days. The results for the
smaller sample are obtained within a couple of hours. We report cluster robust
standard errors if not otherwise stated using lm.cluster (Robitzsch et al., 2020),
where clustering is done at the individual level. For our suggested approaches we
report post-clustering standard errors. For the fused LASSO, we only report point
estimates to avoid further computational challenges. It would of course be possible
with little difficulty to compute post LASSO standard errors.

The estimation results for the various models are displayed in Table 4 and in
Table 5 for the smaller sample. The results in Table 4 show that using Mundlak
regression instead of POLS leads to considerable changes in many coefficients,
including the work history, part-time, certain business sectors and education. Such
an observation is frequent in empirical work as POLS is only consistent if the
regressors are not correlated with any component in the error term, while the
Mundlak model allows for such correlation via the means of the time-varying
covariates. The application of our method with HDBSCAN and k-Means with a
larger number of groups gives often similar results as already seen in the simulations.
k-Means with a small number of groups is also similar, although there are some
economically meaningful differences for several variables such as part-time, several
business sectors and higher education. Similar to those findings in the simulations,
this can be interpreted as evidence suggesting that an insufficient number of groups
has been selected. When comparing the Mundlak results with the results of our
methods, we see that the estimated effect of the time-constant variable female in
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particular is quite different when Mundlak is used. Even though the estimates
with our methods are not identical they are much more similar and negative. Our
method with HDBSCAN clustering suggests a gender wage gap of 32%, while it
is only 18% when the Mundlak model is used. Interestingly, while the Mundlak
model suggest that POLS is downward biased for this variable, the results with our
methods suggest that the direction of the bias is actually in the opposite direction.
This illustrates that the Mundlak model can lead to incorrect conclusions when the
correlation of the observables with the fixed effects is not only through the means
of the time-varying observables. However, most of the coefficients on the time-
varying variables do not differ economically between our methods and Mundlak
with the exception of age and part-time. In conjunction with the simulation results,
Table 5 confirms that the additional LASSO step leads only to small changes in
results. In our application it is because only a small number of group FE are being
regularised (6 after HDBSCAN and 1 after k-Means). The main benefit of the
LASSO step therefore seems to be that the resulting estimates have statistical
optimality properties. Thus, it can be used to check whether the clustering method
is working well.

Our example here shows that the application of statistical learning methods
in panel analysis is possible for larger data sets. Our results demonstrate that
our suggested methods produce sizeably different estimates than the classical
panel models under stronger restrictions. This is particularly true in the case of
the coefficient on the time-constant covariate that benefits most from the weaker
restrictions of our methodology. Our application has also shown that an analysis
with 620,000 person year observations is possible on a computer with 96GB RAM,
although the last regularising LASSO step requires too much memory. Note
that our application cannot definitively answer the question of the size of the
gender wage gap. This is because the dependent variable is daily and not hourly
wages. The variable part-time provides some information about the number of
hours worked, but only represents an indicator for reduced working time without
precisely controlling for hours worked. Further, the reported variable might be
incomplete. To conclude, our estimates point to considerably lower daily wages for
females.
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Table 4: Estimated coefficients of wage regression model.

POLS Mundlak HDBSCAN k-Means(55) k-Means(5)
Zi

female -0.2115∗∗∗ -0.1829∗∗∗ -0.3190∗∗∗ -0.3647∗∗∗ -0.3347∗∗∗

(0.0034) (0.0035) (0.0005) (0.0007) (0.0016)

Xit

tenure 0.0216∗∗∗ -0.0213∗∗∗ -0.0199∗∗∗ -0.0197∗∗∗ -0.0145∗∗∗

(0.0003) (0.0032) (0.0000) (0.0000) (0.0001)
additional experience 0.0187∗∗∗ -0.0207∗∗∗ -0.0194∗∗∗ -0.0193∗∗∗ -0.0144∗∗∗

(0.0003) (0.0032) (0.0000) (0.0000) (0.0001)
age -0.0087∗∗∗ -0.0089∗∗∗ 0.0498∗∗∗ 0.0497∗∗∗ 0.0415∗∗∗

(0.0002) (0.0002) (0.0000) (0.0000) (0.0001)
part − time -0.4289∗∗∗ -0.1270∗∗∗ -0.1569∗∗∗ -0.1748∗∗∗ -0.2101∗∗∗

(0.0042) (0.0032) (0.0006) (0.0010) (0.00019)
trainee -1.0791∗∗∗ -1.0254∗∗∗ -1.0204∗∗∗ -1.0163∗∗∗ -1.0225∗∗∗

(0.0095) (0.0074) (0.0019) (0.0057) (0.0066)
business sector (ref: production)
agriculture -0.2787∗∗∗ -0.1205∗∗∗ -0.1154∗∗∗ -0.1070∗∗∗ -0.1290∗∗∗

(0.0117) (0.0155) (0.0017) (0.0022) (0.0053)
gastronomy -0.4663∗∗∗ -0.2264∗∗∗ -0.2275∗∗∗ -0.2290∗∗∗ -0.2681∗∗∗

(0.0112) (0.0194) (0.0016) (0.0026) (0.0053)
construction -0.2291∗∗∗ -0.0612∗∗∗ -0.0540∗∗∗ -0.0490∗∗∗ -0.0752∗∗∗

(0.0051) (0.0081) (0.0009) (0.0010) (0.0026)
trade -0.1221∗∗∗ -0.0561∗∗∗ -0.0561∗∗∗ -0.0563∗∗∗ -0.0681∗∗∗

(0.0042) (0.0058) (0.0006) (0.0008) (0.0018)
services -0.0266∗∗∗ -0.1200∗∗∗ -0.1125∗∗∗ -0.1105∗∗∗ -0.0986∗∗∗

(0.0035) (0.0050) (0.0005) (0.0007) (0.0016)
education/social/health -0.0220∗∗∗ -0.0860∗∗∗ -0.0795∗∗∗ -0.0748∗∗∗ -0.0739∗∗∗

(0.0043) (0.0112) (0.0007) (0.0001) (0.0020)
public institutions 0.0302∗∗∗ -0.0580∗∗∗ -0.0466∗∗∗ -0.0407∗∗∗ -0.0382∗∗∗

(0.0045) (0.0133) (0.0008) (0.0010) (0.0023)
education (ref: none)
higher education 0.5727∗∗∗ 0.0331∗∗∗ 0.0375∗∗∗ 0.0393∗∗∗ 0.1084∗∗∗

(0.0038) (0.0028) (0.0007) (0.0010) (0.0020)
vocational education 0.1062∗∗∗ 0.0136∗∗∗ 0.0139∗∗∗ 0.0151∗∗∗ 0.0296∗∗∗

(0.0027) (0.0011) (0.0004) (0.0006) (0.0012)
N = 77, 500, T = 8
Clustering
individuals with Z = 0: 45,974, Z = 1: 31,526
cluster (0/1) 131/134 55/55 5/5
atoms (0/1) 14,172/9,769 0/0 0/0

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Cluster robust standard errors in parentheses. Non-robust for
HDBSCAN. Post-clustering standard errors for HDBSCAN and k-Means. Intercept and year dummies
not reported. Averages of xit not reported (Mundlak).
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Table 5: Estimated coefficients of wage regression model (smaller sample).

Mundlak HDBSCAN HDBSCAN k-Means k-Means
+fLASSO +fLASSO

Zi

female -0.1664∗∗∗ -0.3881∗∗∗ -0.3746 -0.2564∗∗∗ -0.2529
(0.0114) (0.0025) (0.0030)

Xit

tenure -0.0020 -0.0010∗∗∗ 0.0000 -0.0016∗∗∗ 0.0000
(0.0098) (0.0002) (0.0002)

additional experience -0.0021 -0.0011∗∗∗ -0.0001 -0.0016∗∗∗ -0.0003
(0.0098) (0.0001) (0.0002)

age -0.0089∗∗∗ 0.0316∗∗∗ 0.0292 0.0316∗∗∗ 0.0294
(0.0007) (0.0002) (0.0002)

part − time -0.1349∗∗∗ -0.1678∗∗∗ -0.1829 -0.1862∗∗∗ -0.1977
(0.0106) (0.0037) (0.0040)

trainee -1.0206∗∗∗ -1.0176∗∗∗ -1.0213 -1.0156∗∗∗ -1.0215
(0.0229) (0.0190) (0.0182)

business sector (ref: production)
agriculture -0.0931∗ -0.0830∗∗∗ -0.0947 -0.0709∗∗∗ -0.0770

(0.0562) (0.0077) (0.0082)
gastronomy -0.2559∗∗∗ -0.2664∗∗∗ -0.2793 -0.2581∗∗∗ -0.2662

(0.0733) (0.0106) (0.0101)
construction -0.0693∗∗ -0.0587∗∗∗ -0.0731 -0.0576∗∗∗ -0.0666

(0.0318) (0.0042) (0.0046)
trade -0.0467∗∗∗ -0.0476∗∗∗ -0.0536 -0.0473∗∗∗ -0.0503

(0.0180) (0.0028) (0.0031)
services -0.0951∗∗∗ -0.0905∗∗∗ -0.0856 -0.0850∗∗∗ -0.0801

(0.0166) (0.0026) (0.0028)
education/social/health -0.0630∗ -0.0561∗∗∗ -0.0558 -0.0531∗∗∗ -0.0520

(0.0348) (0.0030) (0.0035)
public institutions -0.0117 -0.0010 -0.0005 0.0060∗ 0.0065

(0.0430) (0.0032) (0.0035)
education (ref: none)
higher education 0.0445∗∗∗ 0.0407∗∗∗ 0.0743 0.0443∗∗∗ 0.0715

(0.0113) (0.0039) (0.0041)
vocational education 0.0190∗∗∗ 0.0193∗∗∗ 0.0251 0.0209∗∗∗ 0.0236

(0.0037) (0.0022) (0.0024)
N = 7, 500, T = 8
Clustering
number of individuals with Z = 0 : 4, 359, Z = 1 : 3, 141
cluster (0/1) 57/56 55/55
atoms (0/1) 1,314/884 0/0
group FE 2,255 2,249 55 54

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Cluster robust standard errors in parentheses. Post-clustering
standard errors for HDBSCAN and k-Means. Intercept and year dummies not reported. Averages of
xit not reported (Mundlak).
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5 Summary

We introduce a new approach that incorporates unsupervised learning for the
estimation of the linear FE panel model. Our method gives consistent estimates
for the parameters on both time-constant and time-varying covariates. It comple-
ments existing approaches to estimation of panel models by means of statistical
regularisation techniques by using nonparametric clustering that does not restrict
the number and location of groups and allows for atoms. Moreover, it gives co-
efficients on discrete covariates that take on only a small number of values. We
provide asymptotic theory for the estimator of the parameters on the time-constant
covariates and show that it converges in probability at rate

√
NT . Our simulations

confirm that our method works as expected and yields low MSE and bias. Our
application to the estimation of the gender wage gap confirms that it works with
large samples sizes and group numbers and gives practically relevant different
estimates compared to the Mundlak model.
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Appendix

A.I Proof of Theorem 1

We start by showing that, with probability tending to one,

(a) Iz is a union of disjoint closed intervals Iz = Iz
1 ∪ · · · ∪ Iz

l(z) with l(z) ≤ Ĝ1.

Furthermore we will show that, with probability tending to one,

(b) each interval Iz
j contains qg + zγ for exactly one 1 ≤ g ≤ Ĝ1. As said, we

also write Ig,z for this interval.

For a proof of these claims define:

f̃ z
b (x) = 1

Nz

N∑
i=1

1I(Zi = z)1
b
K
(

Ziγ + vi + ūi − x

b

)
.

It can be easily checked that

(c) sup
z∈Z,x

|f̃ z
b (x) − f̂ z

b (x)| = Op

(√
T√
N

)
.

For a proof of this statement one makes use of

sup
z∈Z,x

1
Nz

N∑
i=1

1I(Zi = z)1I(|vi + ūi − x|) ≤ Cb) = Op(b
√

T ) = Op(1)

for C > 0,

sup
1≤i≤N

∣∣∣∣K (
Ziγ + vi + ūi − x

b

)
− K

(
ai − x

b

)∣∣∣∣ = Op

(
1√
N

)
.

For a proof of (a) choose δ > 0 with q′
g − qg > 2δ for all g′ ̸= g. Because of

(A2), (A5) and (c), with probability tending to one it holds that f̂ z
b (x) = Op(1),

uniformly for x not in an interval

Iz
g,δ = [qg + zγ − δ, qg + zγ + δ], (1 ≤ g ≤ Ĝ1, z ∈ Z).

Choose g0 ∈ {1, . . . , Ĝ1}, z0 ∈ Z with αz0
g0 > 0. We now show that:

(d) Iz0 ∩ Iz0
g0,δ is a closed interval.
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Note that (d) implies (a) and (b). To simplify notation we assume that
qg0 + z0γ = 0 and that cb

1 = 1. Then we have that b = 1/
√

T . For the proof of (d)
we define independent random variables

V z(i) (z ∈ Z, 1 ≤ i ≤ N)

with
P (V z(i) = g) = αz

g, (g = 0, . . . , Ĝ1).

Given Zi = z, V z(i) = g, put v#
i = qg if 1 ≤ g ≤ Ĝ1 and v#

i conditionally
distributed according to Sz if V z(i) = 0.

Note that, given Zi, ūi, the variable v#
i has the same conditional distribution

as vi. W.l.o.g. we assume v#
i = vi. For x ∈ Iz

g,δ we have with probability tending
to one,

f̂ z
b (x) = f̂ z

b,0(x) + f̂ z
b,g(x)

with
f̂ z

b,v(x) = 1
Nz

N∑
i=1

1I(Zi = z, V z(i) = v)1
b
K

(
âi − x

b

)

for 0 ≤ v ≤ Ĝ1. Put

f̃ z
b,v = 1

Nz

N∑
i=1

1I(Zi = z, V z(i) = v)1
b
K
(

zγ + vi + ūi − x

b

)
.

Uniformly for x ∈ Iz
g,δ it holds that

(e) f̂ z
b,0(x) − f̃ z

b,0(x) = Op(1/
√

N),
(f) f̂ z

b,g(x) − f̃ z
b,g(x) = Op(

√
T/

√
N).

Expansions (e), (f) follow similarly as (c). With x∗ = x
√

T , ū∗,i = ūi

√
T we

get for all constants C > 0 uniformly for |x∗| ≤ C that

f̃ z0
b,g0(x) = f̃ z0

b,g(x∗/
√

T )

= 1
Nb

N∑
i=1

1I(Zi = z0, V z0(i) = g0)K
(

ūi − x

b

)

=
√

T

N

N∑
i=1

1I(Zi = z0, V z0(i) = g0)K (ū∗,i − x∗)

=
√

T
(
∆1

N(x∗, z0) + ∆2
N,T (x∗, z0) + Op(1/

√
N)
)

,
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where with the standard normal density φ

∆1
N(x∗, z0) = p(z0)αz0

g0

∫
K(u − x∗)

1
σ

φ(u/σ) du = O(1),

∆2
N,T (x∗, z0) = p(z0)αz0

g0

∫
K(u − x∗)

( 1
σ

φ(u/σ) du − FN( du)
)

= O(T −1/2),

where in the second statement we used (A2), (A6) and
∫

K(u − x∗)
( 1

σ
φ(u/σ) du − FN( du)

)
= −

∫
K ′(u − x∗) (Φ(u/σ) − FN(u)) du.

Furthermore, we get for all constants C > 0 uniformly for |x∗| ≤ C that

f̃ z0
b,0(x) + f̃ z0

b,0(−x)

= 1
Nb

N∑
i=1

1I(Zi = z0, V z0(i) = 0)

×
{

K

(
vi − qg0 + ū∗,i/

√
T − x

b

)
+ K

(
vi − qg0 + ū∗,i/

√
T + x

b

)}

= p(z0)αz0
0

∫ {
K

(
v − qg0 + vi/

√
T − x

b

)
+ K

(
v − qg0 + vi/

√
T + x

b

)}

×1
b
FN(du)sz0(v)dv + Op(1/

√
Nb)

= ∆3
N,T (x∗, z0) + Op(N−1/2T 1/4),

where

∆3
N,T (x∗, z0) = p(z0)αz0

0

∫
K(w)(sz0(qg0 + bw − u/

√
T + x∗/

√
T )

+ sz0(qg0 + bw − u/
√

T − x∗/
√

T ))FN( du) dw

= O(1).

Finally, we get for all constants C > 0 uniformly for |x∗| ≤ C that

f̃ z0
b,0(x) − f̃ z0

b,0(−x) = ∆4
N,T (x∗, z0) + Op(N−1/2T 1/4),
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where

∆4
N,T (x∗, z0) = p(z0)αz0

0

∫
K(w)(sz0(qg∗ + bw − u/

√
T + x∗/

√
T )

− sz0(qg∗ + bw − u/
√

T − x∗/
√

T )) FN(du) dw

= p(z0)αz0
0 T −1/2∂sz0(qg)2x∗ + o(T −1/2)

= O(T −1/2).

Here ∂sz0 denotes the derivative of sz0 . We now consider x∗,− < 0 < x∗,+, where
these values are solutions of the equations

f̂b(x∗,−/
√

T ) = cb
2
1
b

= f̂b(x∗,+/
√

T ).

Note that x∗,− and x∗,+ may not be uniquely defined by the equations. But one
can check that the following considerations apply for all choices of x∗,− and x∗,+.
For x∗,± ∈ {x∗,−, x∗,+} we get that

cb
2 = 1√

T
f̂b (x∗,±) = H(

√
Tx∗,±) + O

( 1
T

)
+ Op

(
1√
N

)
, where

HN,T,z0(x∗) = H(x∗) = ∆1
N(x∗, z0) + ∆2

N,T (x∗, z0) + 1
2
√

T
∆3

N,T (x∗, z0).

We compare x∗,+ and x∗,− with xj
∗,+ > 0 > xj

∗,− (1 ≤ j ≤ 3), where xj
∗,± ∈

{xj
∗,−, xj

∗,+} solves

∆1
N(x1

∗,±, z0) = cb
2,

∆1
N(x2

∗,±, z0) + ∆2
N,T (x2

∗,±, z0) = cb
2,

∆1
N(x3

∗,±, z0) + ∆2
N,T (x3

∗,±, z0) + 1
2
√

T
∆3

N,T (x3
∗,±, z0) = cb

2.

For a study of x1
∗,± note that x∗ → J(x∗) =

∫
K(v −x∗) 1

σ
φ(v/σ) dv is a log-concave

function. At this point we assume that p(z0)αz0
g J(0) > cb

2. For this reason we
assume in Assumption (A6) that cb

2 is small enough. We now use that log J is
concave. This gives for δ > 0 small enough that for 0 < x1 < x2 with

log c∗,b
2 + δ ≥ log J(x1) > log J(x2) ≥ log c∗,b

2 − δ
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for c∗,b
2 = cb

2/(p(z0)αZ∗
g J(0)) it holds that

x2 − x1 ≤ log J(x1) − log J(x2)
log J(0) − log c∗,b

2 − δ
xδ,

where xδ is the solution of

log J(xδ) = log c∗,b
2 + δ.

From this inequality we conclude that

xj
∗,± − x3

∗,± = O(1/
√

T ) + Op(1/
√

N), for j ∈ {1, 2},

x3
∗,± − x∗,± = O(1/T ) + Op(1/

√
N).

Note also that, because of

∆1
N(x∗, z0) = ∆1

N(−x∗, z0)

we have that x1
∗,− = −x1

∗,+. We conclude that Ig,z0 is equal to
[

x∗,−√
T

− cb
3b,

x∗,+√
T

+ cb
3b
]

.

Note that the centre of this interval 1
2
√

T
(x∗,++x∗,−) is of order O(T −1)+Op(1/

√
NT )

and that its length is of order 1√
T

(x∗,+ − x∗,−) = O(1/
√

T ) + Op(1/
√

NT ).
Remind that for simplifying notation we have assumed that z0γ + qg = 0. For

general z, g we have that Iq,z is an interval with midpoint zγ + qg + O(T −1) +
Op(1/

√
NT ) and length O(1/

√
T ) + Op(1/

√
NT ), which shows (d) and thus also

(a) and (b).
At this point we would like to mention that the term O(T −1) for the rate of the

midpoint of the intervals is caused by the term ∆2
N,T (x∗, z0). In principal one could

apply a bias correction of this term based on an estimate of the skewness of the
errors uit. Because of symmetry of the third term ∆3

N,T (x∗, z0) = ∆3
N,T (−x∗, z0)

this would result in an error of order O(T −3/2) + Op(1/
√

NT ) for the midpoint
of the intervals. We do not pursue this idea here and we do not construct bias
corrected estimates of the midpoints of the intervals because their success heavily
depends on the finite sample accuracy of Edgeworth expansions which may be
doubted. Furthermore it requires that the error variables have the same skewness
which may not be true in many applications. We only mention shortly below the
resulting order of convergence for the estimator of γ.

We now make use of our considerations to discuss the rate of convergence of the
estimator γ̂. The essential point here is to show that atoms that are classified as
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belonging to a cluster are asymptoically negligible for the distribution of γ̂. Using
the results from above we will now show that

1
N

N∑
i=1

1I(Zi = z, ĝ(i) = g, V z(i) = 0)(vi + ūi − qg) (4)

= oP

(
T −1/2N−1/2

)
.

For getting this bound we note first that for constants c > 0 and for 1 ≤ g ≤
Ĝ1 one gets that the number of atom points (i.e. V z(i) = 0) in the interval
[qg − c/

√
T , qg + c/

√
T ] is of order OP (N/

√
T ). Furthermore, conditionally given

Zi = z, V z(i) = 0 and that vi + ūi ∈ [qg − c/
√

T , qg + c/
√

T ], the random variables
vi + ūi − qg have a conditional expectation of order O(1/T ) and a conditional
standard deviation of order O(1/

√
T ). This gives that

1
N

N∑
i=1

1I(Zi = z, V z(i) = 0)(vi + ūi − qg)1Ivi+ūi∈[qg−c/
√

T ,qg+c/
√

T ]

= OP

(
N−1(N/

√
T )T −1 + N−1

√
N/

√
T (1/

√
T
)

= OP

(
T −3/2 + N−1/2T −3/4

)
= oP

(
T −1/2N−1/2

)
,

where the condition T −1 = o(N−1/2) has been used. Under the above discussed
bias correction we expect that at this point as at other points of the proof the much
weaker condition T −3/2 = O(N−1/2) would suffice. Now, ĝ(i) = g is equivalent
to the condition that vi + ūi ∈ [qg − c/

√
T + ∆1, qg + c/

√
T + ∆2], where c is an

appropriately chosen constant and where ∆1 and ∆2 are random variables of order
OP (T −1/2N−1/2 + T −1). Thus we have OP (N(T −1/2N−1/2 + T −1)) values of vi + ūi

between qg − c/
√

T and qg − c/
√

T +∆1 or between qg − c/
√

T and qg − c/
√

T +∆2.
This gives

1
N

N∑
i=1

1I(Zi = z, ĝ(i) = g, V z(i) = 0)(vi + ūi − qg)

= 1
N

N∑
i=1

1I(Zi = z, V z(i) = 0)(vi + ūi − qg)1Ii

= OP

(
N−1T −1/2(N(T −1/2N−1/2 + T −1))

)
= oP

(
T −1/2N−1/2

)
,

where 1Ii is the indicator function of the event that vi + ūi lies between qg − c/
√

T
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and qg − c/
√

T + ∆1 or between qg − c/
√

T and qg − c/
√

T + ∆2. This shows (4).
We now come to a proof of the stochastic expansion of γ̂ stated in the theorem.

By definition of γ̂ we have that

ΣZ,N(γ̂ − γ)

= 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(âi − ǎĝ(i) − (Zi − Žĝ(i))γ).

This implies that

WN = ΣZ,N(γ̂ − γ) + 1
N

N∑
i=1

I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(X̄i − X̌ĝ(i))(β̂ − β)

= 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(vi + ūi − v̌ĝ(i) − ǔĝ(i)),

where

ǔg =
∑N

i=1 ūi1I(ĝ(i) = g)∑N
i=1 1I(ĝ(i) = g)

,

v̌g =
∑N

i=1 vi1I(ĝ(i) = g)∑N
i=1 1I(ĝ(i) = g)

.

We now apply (4) and

1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′(qĝ(i) − v̌ĝ(i) − ǔĝ(i)) = 0.

This implies that

1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1,V Zi (i)=0(Zi − Žĝ(i))′(vi + ūi − v̌ĝ(i) − ǔĝ(i))

= 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1,V Zi (i)=0(Zi − Žĝ(i))′(qĝ(i) − v̌ĝ(i) − ǔĝ(i)) + oP (N−1/2T −1/2)

= − 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1,V Zi (i)̸=0(Zi − Žĝ(i))′(qĝ(i) − v̌ĝ(i) − ǔĝ(i)) + oP (N−1/2T −1/2).
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We conclude that

WN = 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1,V Zi (i) ̸=0(Zi − Žĝ(i))′(vi + ūi − v̌ĝ(i) − ǔĝ(i) − (qĝ(i) − v̌ĝ(i) − ǔĝ(i)))

+ oP (N−1/2T −1/2)

= 1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1,V Zi (i) ̸=0(Zi − Žĝ(i))′ūi + oP (N−1/2T −1/2).

One can easily verify that the right hand side of the last equation is equal to

1
N

N∑
i=1

1I1≤ĝ(i)≤Ĝ1
(Zi − Žĝ(i))′ūi + oP (N−1/2T −1/2).

This shows the stochastic expansion stated in the theorem. It remains to show
that γ̂ − γ = OP (1/

√
NT ). For this statement it suffices to show that the smallest

eigen value of ΣZ,N is bounded away from 0. This can be done by choosing
gz ∈ {1, ..., Ĝ1} with αz

gz
> 0. One can show that with probability tending to one

for δ > 0 small enough

ΣN ≥ 1
N

N∑
i=1

∑
z∈Z

1IZi=z,V z(i)=gz ,ĝ(i)=gz(Zi − Žĝ(i))′(Zi − Žĝ(i))

≥ δE [(Zi − E [Zi])′(Zi − E [Zi])] + oP (1),

where A ≤ B for two quadratic matrices means that B − A is positive semidefinite.
One can now use Assumption (A4) to bound the smallest eigenvalue of this matrix
from below. This concludes the proof of the theorem. □
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Estimation of Group Structures in
Panel Models with Individual

Fixed Effects
SUPPLEMENTARY MATERIAL
Enno Mammen,1 Ralf A. Wilke,2 Kristina Zapp3

S1 Estimation Approach

This supplement describes step by step the estimation procedure. Notation is
either introduced or taken from the main text. The approach is implemented in R.
See Supplement S2 for the list of required R packages.

1a) Use the FE estimator to estimate β in the model:

yit = Xitβ + Ziγ + vi + ϵit (5)

and retrieve the estimated fixed effects âi = Ziγ + vi + ei.

1b) For each distinct combination of values of z ∈ Z: Cluster all units with
Zi = z using their corresponding values for âi. See Supplement S3 for further
details on the clustering algorithms HDBSCAN and k-means. HDBSCAN is
computed using R package dbscan (Hahsler et al., 2019), k-Means with base
R (R Core Team, 2021).

2a) Let Cz∗ be the assigned cluster membership variable for all units with Zi = z∗.
We define the reference level z0 of the variable Zi as z0 ∈ Z : max(Cz0) >

max(Cz̃)∀z̃ ∈ Z, z̃ ̸= z0 ∈ Z. This means the reference level is the level of
Zi for which the maximum number of clusters was estimated. The cluster
membership variable contains labels corresponding to all distinct clusters,
starting at 1 and counting upwards. Therefore the maximum of the vector

1Heidelberg University, Institute for Applied Mathematics, E–mail: mammen@math.uni-
heidelberg.de

2Copenhagen Business School, Department of Economics and ZEW Mannheim, E–mail:
rw.eco@cbs.dk

3ZEW Mannheim, E–mail: kristina.zapp@zew.de



corresponds to the number of distinct non-atomic clusters. Non-clustered
"atomic" units are labelled as zero and do not enter the estimated number of
clusters. The number of identified clusters in the reference level is denoted
Ĝ1, the estimated value for G1.

2b) We use the clustering in the subsamples to create a uniform cluster variable
in the whole sample. First, the clusters identified in the reference level Z0

are sorted and relabelled in ascending order of mean(âi). Let m0 denote the
vector of sorted means, where each element in the vector corresponds to a
distinct cluster.

Then, for each z ∈ Z:

a ∀c ∈ C = {CZi|Zi = z}, i.e. C is the set of all cluster labels corresponding
to units with Zi = z, : compute the corresponding mean of the estimated
fixed effects mc = mean(âi) : Zi = Z & CZi=c. Store the computed
means in the first column of a matrix with the corresponding cluster
labels in a second column. Order the matrix rows in ascending order of
the means, denote the resulting matrix as Mz.

b Compute the set D of all possible draws (combinations) of |C| elements
out of Ĝ1 elements, where |.| denotes the cardinality of a set. For each
d ∈ D : compute steps 1-3.
1. Compute the subvector m0d of m0 containing all elements indexed
with elements contained in d.
2. Compute the vectors diff0d with diff0d(i) = m0d(i) − m0d(i+1),

diffz with diffz(i) = Mz(,1)(i) − Mz(,1)(i+1) and
3. fd = ∑ |diffz − diff0d|, where Mz(,1)(i) denotes the i-th element of
vector Mz(,1) and Mz(,1) the first column of the matrix Mz and ∑ |x| the
sum of all absolute values of elements in a vector x.
Choose d̂ ∈ D such that fd̂ < fd ∀d ∈ D, d ≠ d̂. This combination
out of all combinations is chosen as the clusters of the reference level
into which the clusters of the level z are grouped into.
Relabel the cluster assignment of z: the cluster label stored in Mz(i,2) is
relabelled as the i-th element of d̂.
The number of combinations can take on very large values, when the
number of estimated groups (substantially) differ between the realisa-
tions of Zi. Therefore, we make use of an iterative strategy: only one
combination is computed at a time (using R package arrangements Lai
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(2020)) and a difference fd is saved only if it is smaller than all previous
differences.

2b) (continued) Assign to each atomic cluster a unit specific label. Starting at
Ĝ1 + 1 up to Ĝ1 + Ĝ2.

3) Regularise the model with a generalised LASSO:

a Set up matrix Q̃ = [Q′, A′]′ and matrix W̃ = [D1, W, D2], where the
matrices Q and A are defined in Appendix A.IV.

b Compute W̃ Q̃−1, set up W̃1 = W̃ [1 : N ∗ T, 1 : Ĝ1], W̃2 = W̃ [1 :
N ∗ T, 1 + Ĝ1 : Ĝ1 + Ĝ2 + K1 + K2]. This means that W̃1 contains the
first Ĝ1 columns of W̃ and W̃2 the remainder of the columns of W̃ .

c compute P = W̃2(W̃ ′
2W̃2)−1W̃ ′

2 and yp = (I − P )y, W̃1p = (I − P )W̃1,
where I denotes the identity matrix.

d Compute the LASSO path with yp as response vector and W̃1p as input
matrix.

e Choose the optimal tuning parameter for the LASSO estimator:
We apply three different criteria: 10-fold cross validation (CV), gener-
alised cross validation (GCV) and Bayesian Information Criterion (BIC).
In the cross validation the 10 random subsets of the data are created
using the dimension N of individuals only such that all T observations
of one specific individual are in the same subset. As optimal coefficient
vector the most regularised model is chosen such that the CV error
conditional on the coefficient vector is within one standard error of
the minimum. Regarding BIC and GCV we implement the expressions
defined in Hastie et al. (2017), see p. 244, formula 7.52 for GCV and
p.233, formula 7.36 for BIC. This leads to an optimal parameter vector
φ1.

f Transform the parameter vector back to match the response y and input
matrix W̃ .
Compute φ̂2 = (W̃ ′

2W̃2)−1W̃ ′
2(y − W̃1)φ̂1 and λ̃ = D̃ ∗ (φ̂1, φ̂2)

3: Option 1) Different Option: Without the LASSO step directly after step 2b)
estimate the linear model:

yit = Xitβ + Ziγ + vĝ(i) + uit, (6)
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where ĝ(i) denotes the estimated cluster for unit i.

3: Option 2) We compute step 3 using cross validation. This leads to a shrunken
vector vĝ(i)cv. Then we estimate by OLS:

yit = Xitβ + Ziγ + vĝ(i)cv + uit. (7)

S2 Computation

We use the following R packages in the computation: dbscan (Hahsler et al., 2019),
glmnet (Friedman et al., 2010), biglm (Lumley, 2020), plyr (Wickham, 2011), dplyr
(Wickham et al., 2021), arrangements (Lai, 2020) , plm (Croissant and Millo, 2008),
aricode (Chiquet et al., 2020), miceadds (Robitzsch et al., 2020), haven (Wickham
and Miller, 2021), car (Fox and Weisberg, 2019), cluster (Maechler et al., 2021),
VeryLargeIntegers (Cuadrado, 2020). For plots and tables we further use ggplot2
(Wickham, 2016), cowplot (Wilke, 2020), xtable (Dahl et al., 2019).

S3 Clustering

After estimated fixed effects have been retrieved as described in Section 2, the aim
is to detect latent patterns of heterogeneity by means of a clustering algorithm.
These are generally applicable in our context as fixed effects are real valued, can
be ordered and are unlabelled, i.e. the group membership is unknown. The
clustering algorithm assigns units into groups ("clusters") such that clustered units
are more similar than those across clusters. Clustering algorithms require a notion
of similarity and dissimilarity, i.e. specifying a distance measure, in our case
the Euclidean distance is the natural choice. Units that are not similar enough
to other units are not clustered and are called atoms. In the context of our
model it is important to allow for a data driven approach, where the number of
clusters is not exogenously set but determined on the grounds of a distribution free
nonparametric density estimate. For this reason, we use density based clustering
methods, where clusters are defined as high-density regions (Campello et al., 2020)
without restrictions on the shape of cluster patterns (Ester, 2014, p.111). Compare
also the supplementary material S.S7 for a numerical illustration of density-based
clustering. Campello et al. (2013, 2015) introduce the HDBSCAN algorithm. It
bases on DBSCAN*, which is a small refinement of DBSCAN by Ester et al. (1996),
one of the most well-known density-based clustering algorithms. Whether a region
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in the data is high-density according to DBSCAN*, and intuitively speaking defines
a cluster, is defined by a minimum distance parameter ϵ and a minimum number
of points parameter MinPts. Points in high-density regions, so-called core points,
are surrounded by at least MinPts points within a distance of ϵ. Noise points, all
points that are not core points, are not part of a cluster and considered as "atomic"
points. Core points lie in the same cluster if they are connected by a chain of core
points with each distance being smaller than ϵ. Let Nϵ(x) = {y ∈ X|d(x, y) < ϵ}
and |.| denotes the cardinality of a set on which the clustering is computed. The
formal definition is given by Campello et al. (2013, p. 162):

x in a dataset X is a core point w.r.t ϵ and MinPts ⇔ |Nϵ(x)| ≥ MinPts.

y in a dataset X is a noise point ⇔ |Nϵ(y)| < MinPts.

Two core objects x and y ∈ X are ϵ-reachable if x ∈ Nϵ(y) and y ∈ Nϵ(x).
A cluster C w.r.t. ϵ and MinPts is a non-empty maximal subset of X

such that every pair of objects in C is density-connected.

Campello et al. (2013) develop the algorithm going back to Ester et al. (1996) further
to HDBSCAN by embedding it in a hierarchical clustering structure. Thereby, they
also allow for different density thresholds, i.e. ϵ can vary across clusters within the
dataset.This also implies that no ϵ parameter must be predefined by the researcher:
The algorithm computes the different clustering outcomes for all possible ϵ values.
For ϵ → 0 all data points will be atoms. For ϵ → ∞ all data points will be put into
one large cluster. Between those extremes lies a nested clustering hierarchy, a tree
structure. HDBSCAN identifies all ϵ values where changes in the clustering occur
and spans the whole hierarchical clustering tree. Then a simplified tree is built by
identifying the ϵ thresholds where "significant clustering changes" occur. These are
defined as a split of one cluster into two non-atomic clusters or the disappearance
of a non-atomic cluster. Finally out of this simplified clustering hierarchy a final
clustering outcome is chosen. This is the result of an optimization that finds the
most stable clusters with respect to changes in ϵ , i.e. clusters that are present in
the hierarchy over the longest interval of ϵ, with the additional condition that each
data point is in exactly one cluster or a noise point.

Because of its popularity and use in related literature (Bonhomme and Manresa,
2015; Bonhomme et al., 2022) we also apply the k-Means algorithm for a comparison
in our numerical analysis. The k-Means algorithm, dating back to MacQueen
(1967) and Lloyd (1982), assumes that the data can be partitioned into a number
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Figure S2: DBSCAN* and HDBSCAN
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Notes: Left Picture: own illustration based on illustrations in Ester et al. (1996).
Stylised Illustration of DBSCAN* in R2 with MinPts=3. Right Picture: own illustration
created with R package dbscan. Simplified Tree of HDBSCAN in Simulation Setting M2,
MinPts=10. The vertical axis plots different ϵ values.
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k of convex clusters, where k is exogenously set by the researcher. Put into a
statistical perspective, k-Means can be interpreted as the estimation of the means
of k underlying Gaussian distributions (Campello et al., 2020). Under these
restrictions, the algorithm enjoys greater computational efficiency than the density
based algorithms with measurable shorter computation times. The disadvantages
are that it does not base on a nonparametric density and that cluster numbers
have to be known. In practice, it tends to cluster all units and does not give atoms.

S4 Consequences of Incorrect Subgrouping

We provide large sample results in Section 2.2 and show consistency of our estimator
for γ. Using density based clustering, the estimator reaches the same convergence
rate as if group membership was known ex ante. Given that any data set is finite,
it is of importance to study possible errors that occur in the clustering step. Given
a finite dataset ai will contain an estimation error. In this Supplement we provide
a non-technical discussion to compare different estimators. For a more technical
discussion with respect to density based clustering see Section 2.2. The clustering
algorithm makes two types of errors: atoms with values of vi in close neighbourhood
of a non-atomic cluster may be grouped into this cluster. Cluster points with
corresponding large average error terms ūi = T −1∑T

t=1 uit can be considered as
atoms. The latter will increase the number of estimated parameters in the final
model and decrease efficiency. The former error leads to a bias, because there are
units with different vi that are assigned to the same cluster. In the limit both
errors do still exist. Nevertheless the estimator converges with OP (1/

√
NT ) i.e.

with the same rate as if the true group structure would be known. The main result
of our proof bases on the assumption that T apporaches infinity with rate N−1/2.
In practice it is important that the estimator works well in short to medium panels.
Typically the number of observations in a dataset is much larger than the number
of available time periods. In our simulations we show that the estimator produces
reliable estimates in finite samples, we also provide simulation results for very
short panels (T = 5). In general, the requirements for T can be relaxed if we are
willing to make stricter assumptions regarding the error term: i.e. a symmetric
density of ūi (see Section 2.2 for more details and specifically Assumptions (A2)
and (A3) for the proposed more general assumptions on ūi). Importantly there is
also a relation between the requirements for T and the existence of atoms. The
rate of T approaching infinity can be relaxed if we assume that the relative number
of atoms approaches 0 as N approaches infinity. This corresponds to a stricter
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or less general Assumption (A5). In the limit we will not group two non-atomic
clusters into one cluster. This is however true for density based clustering but not
necessarily for other clustering approaches. In the k-Means clustering approach the
number of clusters has to be specified ex ante. If it is unknown to the researcher
two types of errors are possible: If G is specified too small clusters will be grouped
together although the corresponding observations have different values of vi. This
will lead to biased estimation. G can also be specified too large. If clusters are
formed by splitting up true clusters this will only affect efficiency. If additional
clusters are formed "between" two existing clusters by combining observations both,
this will also lead to a bias. The presence of atoms is not incorporated in the
k-Means approach: atoms will be grouped into one of the clusters. We test the
finite sample performance of both density based clustering and k-Means in our
simulations in Section 3. In Appendix S7 we provide graphs that illustrate the
cluster assignment in settings for density based clustering an k-Means with and
without atoms and for different values of G in k-Means.

S5 Regularisation of Redundant Groups

In this supplement, we first show that the fused LASSO in Problem (3) is a
generalised LASSO. Then we show that it can be transformed into a regular
LASSO.

We define a matrix Q ∈ R(Ĝ1−1)∗(K1+K2+Ĝ) as:

Q =



−1 1 0 0 0 0 0 . . .

0 −1 1 0 0 0 0 . . .

0 0 −1 1 0 0 0 . . .
... ... . . . . . . . . . . . .
0 0 . . . 0 −1 1 0 . . .


(8)

where only the first Ĝ1 columns of Q contain non-zero elements. By using Q it is
possible to see that Equation (3) is equivalent to:

min
λ̃∈RK1+K2+Ĝ

1
2∥y − W̃ λ̃∥2

2 + η∥Qλ̃∥1, (9)

which defines a generalised LASSO problem as discussed by Tibshirani and Taylor
(2011).

While the LARS algorithm can be used to find the solution for the regular
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LASSO, the fused or generalised LASSO is computationally demanding, in partic-
ular if there are many groups. It is unfortunately not straightforward to transfer
results for a regular LASSO to a generalised LASSO including the computation
of degrees of freedom, choice of optimal tuning parameters and p-values. Tib-
shirani and Taylor (2011) show, however, that generalised LASSO problems can
be written as a regular LASSO problem under a mild restriction by applying a
known transformation. We adopt their approach such that more efficient software
implementations can be used and to simplify the problem.

The condition that the link to a regular LASSO exists is satisfied in our context
because the matrix Q in Problem (9) has full row rank. Following Tibshirani and
Taylor (2011) we extend the matrix Q to Q̃ = [Q′, A′]′, where A is K1 + K2 + 1 ×
K1 + K2 + Ĝ and comprises of Ĝ1 column vectors of zeros and a block diagonal
matrix plus the last row of the matrix being a vector of Ĝ1 1s and K1 + K2 + Ĝ2

zeros:

A =



0 . . . 0 1 0 . . . 0 0
0 . . . 0 0 1 . . . 0 0
... . . .

... ... . . .
. . . . . .

...
0 . . . 0 0 0 . . . 1 0
0 . . . 0 0 0 . . . 0 1
1 . . . 1 0 0 . . . 0 0


(10)

Q̃ is K1 + K2 + Ĝ × K1 + K2 + Ĝ invertible and the rows in A are orthogonal
to Q. Therefore, the conditions on A defined in Tibshirani and Taylor (2011) are
satisfied. By applying a transformation to the Problem in (9), we obtain

min
φ∈RK1+K2+Ĝ

1
2∥y − W̃ Q̃−1φ∥2

2 + η∥Qφ∥1, (11)

with φ = Q̃λ̃ = (φ′
1, φ′

2)′, where φ1 contains the first Ĝ1 −1 elements of φ. Problem
(11) is a regular LASSO with the exception that the penalty shrinks differences in a
subset of parameters. Using an orthogonalisation Tibshirani and Taylor (2011) show
that there is actually equivalence to a regular LASSO. Let W̃ Q̃−1φ = W̃1φ1 +W̃2φ2,
where W̃1 contains the first Ĝ1 − 1 columns of W̃ Q̃−1. Problem (11) corresponds
then to

min
φ1∈RĜ1−1

1
2∥(I − P )y − (I − P )W̃1φ1∥2

2 + η∥φ1∥1, (12)

with P = W̃2(W̃ ′
2W̃2)−1W̃ ′

2, the projection onto the column space of W̃2 and I the
identity matrix. The LARS algorithm can be applied to Problem (12) for estimating
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λ, which is just a differently ordered λ̃. This is achieved by back-transforming the
estimated coefficients through pre-multiplication with the matrix Q̃−1, i.e. Q̃−1φ̂.
φ̂2 is obtained by a linear regression of y − W̃1φ̂1 on W̃2.

S6 Additional Simulation Results

Additional Designs

The following table S6 shows variants of simulation design M2 from the main text
with different distribution of the group intercepts vi and idiosyncratic errors uit.
HDBSCAN with and without LASSO performs best, when the group differences
are larger. In these settings it leads to large errors when k-Means is computed with
a too small k. Bonhomme et al. (2022) suggest that a too small k is leading to
omitted variable bias. Too large k is also leading to errors, but by a much smaller
magnitude. Both Mundlak and Pooled OLS lead to biased results, especially in the
settings with larger group intercepts and differences. HDBSCAN performs worse
in the setting M2A where errors are larger and group intercepts relatively small.
This might indicate that it is sensitive to biased estimation of fixed effects rather
than to an included correlation structure.

Further, we simulate an additional design M5, where all individuals are modelled
as atoms. This is similar to the model in Bonhomme et al. (2022). We note that this
is not in line with the assumptions in our model but we consider it as an insightful
special case. For this simulation design we use larger k values in k-Means (compare
table S9) and set MinPts to 5 in the HDBSCAN algorithm. The simulation design
is defined in table S8, the results in table S9.

Table S6: Simulation Designs M2

Design Group Structure G N T Fixed Effect vi error uit
adapted from drawn from discretised

M2A B&T(2018) & 5 500 20 N(1, 2) 5 quantile N(0, 3)
T&O(2017) means

M2 B&T(2018) & 5 500 20 N(1, 10) 5 quantile N(0, 3)
T&O(2017) means

M2B B&T(2018) & 5 500 20 N(1, 10) 5 quantile N(0, 1)
T&O(2017) means

M2C B&T(2018) & 5 500 20 N(1, 2) 5 quantile N(0, 1)
T&O(2017) means

Notes: B&T(2018): Berger and Tutz (2018),T&O(2017): Tutz and Oelker (2017), P2 =
(0.35, 0.45, 0.55, 0.55, 0.65), xit,Zi,γ,β defined as in Table 2, Design M2.
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Table S7: Simulation results M2

β γ

Bias MAD MSE Bias MAD MSE
M2A
POLS 0.0015 0.0272 0.0011 0.7406 0.7406 0.5755
Mundlak 0.0013 0.0235 0.0009 0.7402 0.7402 0.5749
k-Means
k-Means, 3 0.0007 0.0240 0.0009 0.3412 0.3557 0.1755
k-Means, 5 0.0013 0.0235 0.0009 0.3590 0.4035 0.2343
k-Means, 10 0.0013 0.0234 0.0009 0.4250 0.4452 0.2740
HDBSCAN 0.0015 0.0236 0.0009 0.3085 0.7462 0.9394
HDBSCAN with LASSO
Cross Validation -0.1951 0.1951 0.0397 0.4277 0.6624 0.6870
Gen Cross Val -0.0080 0.0247 0.0009 0.3143 0.7414 0.9237
BIC -0.0081 0.0247 0.0009 0.3144 0.7415 0.9237
Cross Val Post Lasso 0.0019 0.0238 0.0009 0.3071 0.7478 0.9406
M2
POLS 0.0022 0.0735 0.0086 3.7064 3.7064 14.3185
Mundlak 0.0013 0.0235 0.0009 3.7041 3.7041 14.3027
k-Means
k-Means, 3 0.0032 0.0339 0.0018 4.6190 4.6235 23.3694
k-Means, 5 0.0013 0.0224 0.0008 -0.0011 0.0474 0.0035
k-Means, 10 0.0013 0.0237 0.0009 0.3208 0.3887 0.8949
HDBSCAN 0.0013 0.0224 0.0008 0.0175 0.0661 0.0903
HDBSCAN with LASSO
Cross Validation -0.2037 0.2037 0.0429 0.1251 0.1281 0.1015
Gen Cross Val -0.0368 0.0399 0.0022 0.0376 0.0686 0.0906
BIC -0.0368 0.0399 0.0022 0.0376 0.0686 0.0906
Cross Val Post Lasso 0.0013 0.0224 0.0008 0.0176 0.0663 0.0903
M2B
POLS 0.0014 0.0692 0.0078 3.7070 3.7070 14.3176
Mundlak 0.0004 0.0078 0.0001 3.7046 3.7046 14.3016
k-Means
k-Means, 3 0.0024 0.0266 0.0011 4.6768 4.6822 23.7525
k-Means, 5 0.0004 0.0075 0.0001 -0.0004 0.0158 0.0004
k-Means, 10 0.0006 0.0088 0.0001 0.3224 0.3462 0.8951
HDBSCAN 0.0005 0.0075 0.0001 0.0080 0.0240 0.0350
HDBSCAN with LASSO
Cross Validation -0.0764 0.0764 0.0060 0.0484 0.0490 0.0364
Gen Cross Val -0.0376 0.0376 0.0015 0.0281 0.0318 0.0354
BIC -0.0376 0.0376 0.0015 0.0281 0.0318 0.0354
Cross Val Post Lasso 0.0005 0.0075 0.0001 0.0080 0.0241 0.0350
M2C
POLS 0.0006 0.0161 0.0004 0.7412 0.7412 0.5729
Mundlak 0.0004 0.0078 0.0001 0.7407 0.7407 0.5723
k-Means
k-Means, 3 0.0007 0.0091 0.0001 0.8453 0.8461 0.8162
k-Means, 5 0.0004 0.0075 0.0001 0.0004 0.0179 0.0005
k-Means, 10 0.0004 0.0078 0.0001 0.0738 0.0988 0.0375
HDBSCAN 0.0004 0.0076 0.0001 0.0033 0.0252 0.0046
HDBSCAN with LASSO
Cross Validation -0.0679 0.0679 0.0048 0.0407 0.0436 0.0059
Gen Cross Val -0.0105 0.0119 0.0002 0.0093 0.0256 0.0046
BIC -0.0105 0.0119 0.0002 0.0093 0.0256 0.0046
Cross Val Post Lasso 0.0004 0.0076 0.0001 0.0035 0.0252 0.0046

Notes: Simulation Designs are defined in Table S6. Means of 500 simulations.
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Table S8: Simulation Designs

Design M5
Group Structure

adapted from B,L&M(2022)
G N
N 500
T 20
Fixed Effect vi

drawn from N(0, 1)
discretised none

Time-constant B(0.5)
covariate Zi

Time-varying N(0, 1) + vi

covariate
β, γ 1,1
Correlation cor(vi, xit)
structure ≈ 0.7
Error term uit N(0, 1)

Notes: B,L&M (2022): Bonhomme et al.
(2022).

Table S9: Simulation Results

β γ

Bias MAD MSE Bias MAD MSE
M3
POLS 0.4976 0.4976 0.2479 0.0033 0.0404 0.0025
Mundlak -0.0001 0.0082 0.0001 0.0011 0.0217 0.0007
k-Means
k-Means, 5 0.0688 0.0688 0.0049 0.0126 0.1854 0.0531
k-Means, 20 0.0092 0.0116 0.0002 -0.0030 0.1628 0.0396
k-Means, 100 0.0046 0.0093 0.0001 0.0093 0.1004 0.0163
HDBSCAN 0.0068 0.0103 0.0002 -0.0051 0.1664 0.0457
HDBSCAN with LASSO
Cross Validation -0.0044 0.0101 0.0002 -0.0032 0.1537 0.0387
Gen Cross Val 0.0056 0.0097 0.0002 -0.0048 0.1648 0.0448
BIC 0.0056 0.0097 0.0002 -0.0048 0.1648 0.0448

Notes: Simulation Design is defined in Table S8. Means of 500 simulations.

Smaller Time Dimension

Table S10 displays the results for Monte Carlo simulations with T=5, all other
parameters are kept as in Table 2.

Clustering Evaluation

The effect of grouping individuals from different groups into the same cluster
on the estimation error will depend on the difference of their true underlying
group intercepts. Therefore we compute the difference between an individuals
true intercepts and the mean true intercept of all individuals in the same cluster.
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Table S10: Simulation results, T=5

β γ

Bias MAD MSE Bias MAD MSE
M1
POLS 1.5208 1.5208 2.3185 0.0011 0.1185 0.0210
Mundlak -0.0028 0.0929 0.0137 0.0001 0.1091 0.0182
k-Means
k-Means, 3 0.3164 0.3165 0.1101 -0.0087 0.2660 0.1124
k-Means, 5 0.1290 0.1412 0.0287 -0.0093 0.3682 0.2157
k-Means, 10 0.0363 0.0954 0.0146 -0.0257 0.3878 0.2308
HDBSCAN 0.0261 0.0970 0.0171 0.0197 0.4604 0.3490
HDBSCAN with LASSO
Cross Validation -0.0933 0.1258 0.0238 0.0256 0.3930 0.2536
Gen Cross Val 0.0210 0.0963 0.0168 0.0200 0.4566 0.3432
BIC 0.0200 0.0962 0.0167 0.0204 0.4555 0.3418
Cross Val Post Lasso 0.0835 0.1476 0.1063 0.0403 0.4533 0.3438

M3
POLS 1.5987 1.5987 2.5585 -0.0040 0.0854 0.0110
Mundlak 0.0073 0.0608 0.0059 -0.0050 0.0794 0.0095
k-Means
k-Means, 3 0.4330 0.4330 0.1916 -0.0132 0.2184 0.0775
k-Means, 5 0.1974 0.1974 0.0439 -0.0137 0.3203 0.1597
k-Means, 10 0.0664 0.0804 0.0099 -0.0393 0.3463 0.1931
HDBSCAN 0.0223 0.0632 0.0064 0.0118 0.3397 0.1841
HDBSCAN with LASSO
Cross Validation -0.0437 0.0715 0.0078 0.0103 0.2957 0.1410
Gen Cross Val 0.0192 0.0623 0.0062 0.0117 0.3366 0.1811
BIC 0.0180 0.0619 0.0062 0.0111 0.3354 0.1797
Cross Val Post Lasso 0.2710 0.2990 0.5435 0.0400 0.3178 0.1666
HDBSCAN 0.0223 0.0632 0.0064 0.0118 0.3397 0.1841
M4

POLS -0.0095 0.1132 0.0207 0.0363 0.4888 0.3698
Mundlak -0.0006 0.0405 0.0025 0.0363 0.4898 0.3714
k-Means
k-Means, 3 -0.0028 0.0447 0.0031 0.0012 0.2574 0.1368
k-Means, 5 -0.0008 0.0386 0.0022 0.0084 0.1250 0.0653
k-Means, 10 0.0000 0.0404 0.0025 0.0248 0.5234 0.5902
HDBSCAN -0.0014 0.0400 0.0025 -0.1102 0.6857 2.5903
HDBSCAN with LASSO
Cross Validation -0.2703 0.2703 0.0780 -0.1033 0.6447 2.2937
Gen Cross Val -0.0404 0.0528 0.0041 -0.1097 0.6815 2.5582
BIC -0.0409 0.0531 0.0042 -0.1100 0.6815 2.5563
Cross Val Post Lasso 0.0301 0.0706 0.3161 -0.0689 0.7182 2.7161

Notes: Simulations as defined in Table 2 with T=5. Means of 500 simulations.

Specifically, let ci ∈ 1, ..., C be the cluster where individual i was grouped into, cI

the set of all individuals grouped into this cluster and vi i’s true group intercept.
Then we compute

CD = 1
N

(
∑
c∈C

(
∑
i∈cI

|vi − 1
|cI | − 1

∑
j∈cI ,j ̸=i

vj|)). (13)

Table S11 displays this measure for different clustering methods and across the
different settings defined in Table 2. Further values of k are plotted in figure S3.
Table S12 displays additional information regarding the estimated group structures
in the HDBSCAN step and the LASSO step after HDBSCAN.
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Figure S3: Within Cluster Differences

M1 M2

M3 M4

Notes: The blue scatterplot displays CD as defined in equation 13 for different
values of k in k-Means across the simulation settings as defined in Table 2. For
each setting the value for HDBSCAN with cross validation as described in Section
3 is plotted as the orange line, compare Table S11. The dashed line denotes the
true groups in the settings with small number of true groups. Data source:
simulations.
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Table S11: Clustering Bias

M1 M2 M3 M4
HDBSCAN with LASSO
Cross Validation 0.3801 0.0114 0.4047 0.0338
Gen Cross Val 0.3795 0.0114 0.4035 0.0338
BIC 0.3795 0.0114 0.4035 0.0338
HDBSCAN 0.3795 0.0114 0.4035 0.0338
k-Means
k-Means, 3 0.7156 3.2451 0.7868 1.7834
k-Means, 5 0.4634 0.0004 0.6394 0.0091
k-Means, 10 0.4639 0.1549 0.5560 0.1908

Notes: Displays the measure CD defined in equation (13). Means of 500
simulations. Simulation designs are defined in Table 2.

Table S12: Estimated Group Structure

No Groups No Atoms No Groups Regularized
Z = 0 Z = 1 Z = 0 Z = 1 CV GCV BIC

M1 12.168 12.122 57.572 56.620 1.144 0.068 0.116
M2 5.058 5.042 0.808 0.624 0.008 0 0

M3 24.742 24.700 118.048 117.154 2.290 0.540 0.592
M4 5.448 5.482 9.336 9.808 0.148 0.010 0.016

Notes: Estimated Group structures by HDBSCAN and HDBSCAN with
LASSO. Means across 500 simulations. Simulation designs are defined in
Table 2.

S7 Illustration of Clustering Algorithms

Illustration of HDBSCAN

Figure S4 illustrates the clusters computed by the HDBSCAN algorithm for
simulation design M3, the first of 500 iterations is used as an example. The
histogram displays the distribution of the computed fixed effects for two realisations
of Z. The blue intervals display the regions of non-atomic clusters. Observations
outside of these regions are labelled as atoms. Figure S5 displays the analogous
picture for the first Monte Carlo realisation of Design M4.

Illustration of k-Means

Figure S6 illustrates the clusters computed by the k-Means algorithm for simulation
design M3, the first of 500 Monte Carlo iterations is used as an example. The
histogram displays the distribution of the computed fixed effects for two realisations
of Z. The coloured intervals display the regions of all k clusters, each cluster is
illustrated with a different colour. Figure S7 displays the analogous picture for M4.
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Figure S4: Estimated Fixed Effects and HDBSCAN Clusters Simulation M3

Notes: Histograms of estimated fixed effects. The blue regions indicate the intervals of
non-atomic clusters computed by HDBSCAN. Dataset: first Monte Carlo realisation of
Simulation Design M3 as defined in Table 2.
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Figure S5: Estimated Fixed Effects and HDBSCAN Clusters Simulation M4

Notes: Histograms of estimated fixed effects. The blue regions indicate the intervals of
non-atomic clusters computed by HDBSCAN. Dataset: first Monte Carlo realisation of
Simulation Design M4 as defined in Table 2.
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Figure S6: Estimated Fixed Effects and k-Means Clusters Simulation M3

Notes: Histograms of estimated fixed effects. The coloured regions indicate the intervals
of k different clusters computed by k-Means. Dataset: first Monte Carlo realisation of
Simulation Design M3 as defined in Table 2.
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Figure S7: Estimated Fixed Effects and k-Means Clusters Simulation M4

Notes: Histograms of estimated fixed effects. The coloured regions indicate the intervals
of k different clusters computed by k-Means. Dataset: first Monte Carlo realisation of
Simulation Design M4 as defined in Table 2.
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