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A CATEGORY FOR EXTENSIVE-FORM GAMES

Peter A. Streufert
Economics Department

Western University

Abstract. This paper introduces Gm, which is a category for extensive-form

games. It also provides some applications.

The category’s objects are games, which are understood to be sets of nodes
which have been endowed with edges, information sets, actions, players, and

utility functions. Its arrows are functions from source nodes to target nodes

that preserve the additional structure. For instance, a game’s information-set
collection is newly regarded as a topological basis for the game’s decision-node

set, and thus a morphism’s continuity serves to preserve information sets.

Given these definitions, a game monomorphism is characterized by the prop-
erty of not mapping two source runs (plays) to the same target run. Further, a

game isomorphism is characterized as a bijection whose restriction to decision
nodes is a homeomorphism, whose induced player transformation is injective,

and which strictly preserves the ordinal content of the utility functions.

The category is then applied to some game-theoretic concepts beyond the
definition of a game. A Selten subgame is characterized as a special kind of

categorical subgame, and game isomorphisms are shown to preserve strategy

sets, Nash equilibria, Selten subgames, subgame-perfect equilibria, perfect-
information, and no-absentmindedness. Further, it is shown that the full sub-

category for distinguished-action sequence games is essentially wide in the

category of all games, and that the full subcategory of action-set games is
essentially wide in the full subcategory for games with no-absentmindedness.

1. Introduction

1.1. A foundational question.1.1. A foundational question

Extensive-form games can be specified in many different styles, as shown in
Figures 1.1–1.4 below. Game theorists informally understand that any substantial
concept in one style should have the same meaning in any other style, and that any
substantial result in one style should also hold in any another style.

This informal understanding might be formally developed. In particular, when
a concept or result is translated from one style to another, how would we define
the sense in which the translation itself was correct or incorrect? A good answer to
this question promises to help us identify and manipulate the substance of game-
theoretic concepts and results. This paper is part of a larger agenda which aims to
answer this and related questions by means of category theory.

Date: May 24, 2021. Keywords: Continuously labeled tree, Selten subgame, Nash equi-
librium, subgame-perfect equilibrium, distinguished-action game, sequence game, action-set

game. Classifications: MSC 91A70, JEL C73. Contact information: pstreuf@uwo.ca, 519-661-

2111x85384, Economics Department, University of Western Ontario, London, Ontario, N6A 5C2,
Canada.

The author is grateful to the readers of Streufert 2020b.
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2 1. Introduction
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Figure 1.1. Two Gm games. In both games, player P3 selects action
e or action f without knowing whether she is at node 3 or node 4. In
the context of this paper, the utilities of the two games have the same
meaning (see note 2).

1.2. Examples of equivalences.1.2. Examples of equivalences

Figures 1.1–1.4 depict seven games, which game theorists regard as “equiva-
lent” in an informal sense. The equivalences between these games illustrate three
“dimensions” in which games can be transformed without changing anything sub-
stantial. First, utilities can be altered, as in Figure 1.1(a) versus Figure 1.1(b).
Second, nodes and actions can be specified in various “styles”, as in Figures 1.1(a),
1.2(a,b), and 1.3(a,b). Third, information sets might or might not have distin-
guished actions, as in Figure 1.1(a) versus Figure 1.4. All three dimensions will
be formalized by this paper’s isomorphisms, and thus the examples here provide
background for the paper’s summary in Section 1.3 below.

To be more specific, Figure 1.1 depicts two games, both resembling Selten 1975,
Figure 1. For readers less acquainted with game theory, it may be helpful to
accompany these games with a story.1 Note that the two games have the same
configuration of nodes, edges, actions, information sets, and players. In both games,
nodes are numbers, edges are pairs of nodes shown by line segments, actions are
letters, player P1 moves at the node 0 in the information set {0}, player P2 moves
at the node 1 in the information set {1}, and player P3 moves at the nodes 3 and
4 in the information set {3,4}.

The two games differ in that they have different utilities. For example, consider
the run {0,3,5}, that is, the run (or “play”) through nodes 0, 3, and 5. In game (a),

1To tell a story matching Figure 1.1’s games, suppose a student (called player P1) must decide

between the bad action of not doing her homework (called b) and the correct action of doing her

homework (called c). Knowing that the homework has been finished (node 1), a dog (player P2)
must decide between the dumb action of eating the homework (d) and the good action of taking

a nap (g). Finally, without knowing whether the student chose bad (node 3) or the student chose
correct and the dog chose dumb (node 4), the teacher (player P3) must decide between excusing

the student (e) and failing the student (f). The student most prefers being excused without doing

the homework (run {0,3,5}), and least prefers failing after doing the homework (run {0,1,4,8}).
The dog likes eating homework (runs {0,1,4,7} and {0,1,4,8}). The teacher does not want to excuse

a badly behaving student (run {0,3,5}) or to fail a correctly behaving student (run {0,1,4,8}).
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player P1 gets utility 1 from this run (shown as the first entry in the vector beneath
node 5). Meanwhile in game (b), player P1 gets utility 3 from this run. Nonetheless,
in the context of this paper, the utilities in the two games have the same meaning
in the sense that they have the same ordinal content.2 For example, in both games,
player P1 most desires run {0,3,5}, least desires run {0,1,4,8}, and regards the
remaining three runs as equally desirable.

In addition to the different ways of assigning utilities, there are different styles
in which to specify nodes and actions. The following paragraphs arrange these
styles into five broad groups. Streufert 2019, Section 7, explains how each of these
five groups has its own advantages and disadvantages. Note that elsewhere in
the literature, nodes are sometimes called “vertices”, “states”, or “histories”, and
actions are sometimes called “labels”, “alternatives”, “choices”, or “programs”.

Group 1. Some styles specify nodes and actions abstractly without restriction.
Examples from economics include the styles in Selten 1975 and Myerson 1991,
Section 2.1. Examples from computer science and/or logic include the “labeled
transition system” style in Blackburn, de Rijke, and Venema 2001, page 3 (and
elsewhere); the style in Shoham and Leyton-Brown 2009, page 125; and the “epis-
temic process graph” style in van Benthem 2014, page 70.3 A final example is the
“Gm” style in this paper. Since this group specifies nodes and actions abstractly
without restriction, this group can be understood to subsume the other four groups.
Relatedly, this paper’s Gm games include virtually all extensive-form games.4

Group 2. Other styles specify nodes as sequences of actions. Examples from
economics include the styles in Harris 1985 and Osborne and Rubinstein 1994, page
200. Examples from computer science and/or logic include the “protocol” style
in Parikh and Ramanujam 1985, the “history-based multi-agent structure” style
in Pacuit 2007, the “sequence-form representation” style in Shoham and Leyton-
Brown 2009, page 129, the “logical game” style in Hodges 2013, Section 2, and the
“epistemic forest model” style in van Benthem 2014, page 130. A final example is
the “sequence” style in this paper (see Figure 1.2(a)).

Group 3. Some new styles specify nodes as sets of actions. These are the “choice-
set” style in Streufert 2019, and the closely related “action-set” style in this paper
(see Figure 1.2(b)). Gm subcategories corresponding to Groups 2 and 3 will be
developed in Section 5 below. These subcategories will be called SGm and AGm.

2The utilities in the two games would not have the same meaning if mixed strategies were

allowed and the specified utilities were used to construct expected utilities. Expected utilities
attach more meaning to the specified utilities, and this additional meaning can be embodied

by a Gm subcategory that admits only affine utility transformations. The construction of this

subcategory is left for future research.
3Some labeled transition systems and process graphs have recursive transitions. These do not

support extensive-form games because extensive-form games require trees. Similarly, stochastic
games, such as those in Mertens 2002, are not extensive-form games because they have recursive

transitions.
4Some aspects of this claim should be clarified. [a] Although infinite runs are allowed, a Gm

game is discrete in the sense that each node has a finite number of predecessors. This excludes
non-discrete extensive-form games such as those in Dockner, Jørgensen, Long, and Sorger 2000,
and Alós-Ferrer and Ritzberger 2016, Chapter 5. [b] A Gm game assumes that exactly one player
moves at each information set. Accordingly, simultaneous moves by several players are to be

specified by several information sets, as discussed in Osborne and Rubinstein, 1994, page 202. [c]
A Gm game specifies player preferences over runs by means of utility functions. Alternatively,
preferences could be specified by binary relations, as in Osborne and Rubinstein 1994, page 201.
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Figure 1.2. (a) A sequence game. (b) An action-set game. Section 5
develops subcategories for these kinds of games (SGm and AGm).
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Figure 1.3. (a) A node-set game. (b) An outcome-set game. Al-
though such games are Gm games, this paper does not define subcate-
gories for these two kinds of games.

Two more groups remain. Group 4. Some styles specify actions as sets of nodes.
An example is the “simple” style in Alós-Ferrer and Ritzberger 2016, Section 6.3
(see Figure 1.3(a)). Group 5. Other styles express both nodes and actions as
sets of outcomes. These include the style in von Neumann and Morgenstern 1944,
Section 10, and the style in Alós-Ferrer and Ritzberger 2016, Section 6.2 (see Fig-
ure 1.3(b)). Although Figure 1.3’s games are Gm games, the construction of Gm
subcategories for Groups 4 and 5 is left for future research (see note 5).

Finally, this five-group catalog of styles needs another dimension. In Figure
1.1(a), the actions of each information set are distinguished from the actions of any
other information set. In contrast, in Figure 1.4, the actions of one information set
are not distinguished from the actions of the other information sets. Gm games
allow undistinguished actions, and relatedly, Figure 1.4’s game is a Gm game.
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Figure 1.4. A Gm game with undistinguished actions.

1.3. Summary.1.3. Summary

This paper [a] develops a category for games and [b] applies the category to
some game-theoretic concepts beyond the definition of a game. For [a], Section 2
defines the category, Section 3.1 characterizes its monomorphisms, and Section 4.1
characterizes its isomorphisms. For [b], Section 3.2 considers Selten subgames,
Sections 4.2 and 4.3 consider two equilibrium concepts, and Section 5 considers some
properties of games. The results for [a] are called “propositions”, and the results
for [b] are called “theorems” (the results in the appendices are called “lemmas”).

[a] The category itself. To be more specific, Section 2 defines a game to be a
set of nodes which is accompanied by a large amount of additional structure. That
structure specifies (i) edges which link the nodes to create a tree, (ii) information
sets which partition the decision nodes, (iii) actions which label the edges, (iv)
an assignment of players to decision nodes which specifies who moves where, and
(v) for each player, a utility value for each run of the game. The information-set
collection is newly regarded as a basis for a topology on the decision-node set. Then
a continuity of the labeling imposes the restriction that the same feasible actions
are available at any two nodes in one information set (condition [C4]). Analogously,
the continuity of the player assignment imposes the restriction that the same player
moves at any two nodes in one information set (condition [G2]). The remaining
conditions in the definition of a game are relatively familiar.

Then Section 2 defines a game morphism to be a function from source nodes
to target nodes, which preserves all the additional structure. To preserve this
structure, a morphism is defined to satisfy six conditions. The first condition ([cE])
requires that edges are preserved. The second condition ([cI]) is the morphism’s
continuity, which ensures that information sets are preserved. Third, any morphism
determines an action transformation at each source decision node. These action
transformations are required to vary continuously across decision nodes so that
actions are transformed identically at any two source nodes in one information set
(condition [cL]). Further, a morphism is required to be compatible with a player
transformation which preserves moves (condition [gM]). Yet further, a morphism,
with its induced player transformation, is required to weakly preserve the ordinal
content of the players’ utility functions (condition [gU]). Finally, to make such
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utility comparisons possible, a morphism is required to preserve the end node of
each finite source run (condition [gZ]).

These games and game morphisms become the objects and arrows of the cate-
gory Gm. Proposition 2.4 shows that Gm is well-defined. Proposition 2.5 shows
that there is a forgetful functor to CLT, which is the category of continuously la-
beled trees (CLTs). CLTs have nodes, edges, information sets, and actions, but do
not have players and utilities. Next, Proposition 3.1 shows that a game morphism
is a monomorphism iff its induced run transformation is injective. Finally, Propo-
sition 4.1 shows that a game morphism is an isomorphism iff (i) it is bijective, (ii)
its restriction to decision nodes is a homeomorphism, (iii) its induced player trans-
formation is injective, and (iv) the ordinal content of the utility functions is strictly
preserved. Examples illustrate the independent roles of these four conditions.

[b] Applications. The remainder of the paper’s results concern applications of
Gm to game-theoretic concepts beyond the definition of a game. To begin, recall
Selten 1975 defines a kind of subgame which is standard in the game-theory liter-
ature. Meanwhile, Section 3.2 defines a categorical subgame to be the source of a
monomorphism. Theorem 3.2 characterizes Selten subgames as a special type of
categorical subgame in which (i) the subgame’s nodes are a particular node and all
its successors in the original game, (ii) the subgame’s information sets are in the
original game, (iii) the subgame’s actions and players are as in the original game,
and (iv) the subgame’s utility functions are essentially restrictions of the original
utility functions. Examples explore each of these four conditions.

Section 4.2 derives, from each game, its set of grand strategies, its sets of indi-
vidual player strategies, and its set of Nash equilibria. Theorems 4.3, 4.4, and 4.5
show that a game isomorphism preserves these sets. The manner in which a game
isomorphism preserves strategies and equilibria is somewhat complicated because
it must accommodate the action, player, and run transformations that are implied
by the isomorphism. In the same vein, Theorems 4.6 and 4.7 show how a game
isomorphism preserves Selten subgames and the subgame-perfect equilibria from
Selten 1975.

Section 5 develops some full subcategories of Gm. The first subcategory is
DGm, which is for “distinguished-action” games in which the actions of each in-
formation set are distinguished from the actions of every other information set.
DGm contains all six games in Figures 1.1–1.3, but not the game in Figure 1.4.
The second subcategory is SGm, which is for “sequence” games in which the nodes
are sequences of past actions, as in Figure 1.2(a). Theorems 5.1 and 5.2 show that
neither subcategory is restrictive in the sense that both (and also their intersection
DSGm) are essentially wide in Gm.

Next Section 5 considers the standard game-theoretic concepts of no-absentmind-
edness and perfect-information. Theorem 5.3 shows that both are invariant to game
isomorphisms. Finally, the section develops the subcategory AGm, which is for
“action-set” games in which the nodes are sets of past actions, as in Figure 1.2(b).
Theorem 5.5 shows that this is very mildly restrictive in the sense that AGm is
essentially wide in the Gm subcategory for games with no-absentmindedness.
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1.4. Motivation.1.4. Motivation

Section 1.1 proposed an agenda of translating concepts and results across differ-
ent styles of games. This section places the present paper within that agenda and
within the literature. The first four paragraphs are four steps in the same direction.

Translating Games. A necessary first step is to formally define a notion of
equivalence between individual games. This paper does so via Gm isomorphisms.
For example, the seven games in Figures 1.1–1.4 are isomorphic, in accord with the
intuition of game theorists.

Translating “Styles”. Theorems 5.1, 5.2, and 5.5 imply categorical equivalences
between Gm subcategories. These unify and extend earlier ad hoc equivalences in
the game-theory literature.5 In terms of Sections 1.1 and 1.2, the theorems sys-
tematically translate between the general “style”, the sequence “style”, the action-
set “style”, the distinguished-action “style”, and the distinguished-action sequence
“style”. All proofs are constructive. Specifically, Lemma D.7 takes an arbitrary
game and constructs a distinguished-action sequence isomorph, and Lemma D.13
takes an arbitrary game with no-absentmindedness and constructs an action-set
isomorph.

Translating Concepts. Theorems 4.5, 4.6, 4.7, and 5.3 show that the concepts of
Nash equilibrium, Selten subgame, subgame-perfect equilibrium, no-absentminded-
ness, and perfect-information are preserved by Gm isomorphisms. Thus it is shown
how these five concepts can be easily translated from a game to its isomorphs,
regardless of “style”. (Since the “style” concepts themselves do vary with Gm
isomorphisms, they have relatively little “substance” in the sense of Section 1.1.)

Translating Results. The above success in translating concepts suggests a future
agenda for translating results. Such translations promise conceptual benefits. Fore-
most in the author’s mind is the formal synthesis of results and questions from the
many disciplines and subdisciplines which are each studying some version of game
theory. There seems much to gain because there is so much diversity. In addi-
tion, the author has been made aware of another benefit, namely, that categorical
translations between games may allow for syntactic translations between the logical
languages that are interpreted in those games. This would accord with the corre-
spondence theory of van Benthem 2001, and Conradie, Ghilardi, and Palmigiano
2014.

Categorical Perspective. In a different direction, it appears that a categorical
perspective can sometimes benefit game theory in unexpected ways. For example,
consider this paper’s novel use of topology to understand a game’s collection of
information sets. This happened as parallels between Gm and Top emerged, and
the idea seems to measurably clarify the definition of a game. Other examples may
appear in the future.

Related Literature. This paper is preceded by Streufert 2018, 2020a and 2020b.
These papers develop, respectively, the categories of node-and-choice preforms,
node-and-choice forms, and node-and-choice games. The present paper develops

5Theorems 5.2 and 5.5 unify and extend the ad hoc equivalences by Kline and Luckraz 2016

and Streufert 2019. Similar categorical results promise to extend the ad hoc equivalences in
Alós-Ferrer and Ritzberger 2016, Section 6.3. This future research will concern the two games in

Figure 1.3.
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an entirely different formulation which is considerably more transparent. In ad-
dition, the present paper is more general in the sense that it does not assume

1. Introduction

distinguished actions (the other category names use the term “choice” as opposed
to “action” because that term is historically correlated with assuming distinguished
actions).

A complementary literature studies how finite extensive-form games can be re-
garded as compositions of fragments called “open games”. Within this literature,
the papers with nontrivial information sets are Bolt, Hedges, and Zahn 2019, and
the very recent work of Capucci, Ghani, Ledent, and Nordvall Forsberg 2021. These
papers define open games as morphisms, to be composed within a category. In con-
trast, the present paper defines games as objects, to be compared within a category.
Correspondingly, the compositions there have no counterpart here, and the general
morphisms here have no counterpart there.

Incidentally, categories with games as objects have also been constructed for
some other kinds of games.6 Both Lapitsky 1999 and Jiménez 2014 define categories
for simultaneous-move games. Machover and Terrington 2014 defines a category
for some specialized cooperative games in political science. Finally, Abramsky, Ja-
gadeesan, and Malacaria 2000, Hyland and Ong 2000, McCusker 2000, and Honsell,
Lenisa, and Redamalla 2012 develop specialized categories for some extensive-form
games in computer science.

1.5. Organization.1.5. Organization

The paper is organized as described in Section 1.3. Briefly, Section 2 defines
the category Gm. Section 3 characterizes monomorphisms and Selten subgames.
Section 4 characterizes isomorphisms and shows how they preserve Nash equi-
libria and subgame-perfect equilibria. Finally, Section 5 develops subcategories
for distinguished-action games, sequence games, action-set games, games with no-
absentmindedness, and games with perfect-information. Appendices A, B, C, and
D support Sections 2, 3, 4, and 5, respectively.

2. Definition

This section defines the category Gm in three steps. In brief, Section 2.1 re-
views oriented trees, Section 2.2 introduces continuously labeled trees (CLTs), and
Section 2.3 builds games on CLTs.

2.1. Out-trees.2.1. Out-trees

The next two paragraphs define nontrivial out-trees, which are rooted oriented
trees with possibly unbounded depth, possibly unbounded and uncountable degree,
and at least two nodes. Thereafter are some derivative concepts.

As in Diestel 2010, Chapter 1, an unoriented graph is a pair (X, E) such that
X is a set and E is a collection of two-element subsets of X. The elements of
X are called nodes, and the elements of E are called edges. A path linking x0

and x` is an unoriented graph (X̄, Ē) of the form X̄ = {x0, x1, x2, ... x`} and
Ē = {{x0, x1}, {x1, x2}, ... {x`−1, x`}} in which distinct i and j satisfy xi 6= xj .

6In addition, other papers study equivalences between games without using category theory.

These include the references in note 5, as well as McKinsey 1950, Thompson 1952, Dalkey 1953,
Kohlberg and Mertens 1986, Bonanno 1992, Elmes and Reny 1994, and van Benthem 2014 (pages

43–51).
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Out-tree (X,E)

X set of nodes x
E set of (oriented) edges xy
r

�

root node
4

�

weak tree order
≺

�

strict tree order
P

�

strict predecessor correspondence
p

�

immediate predecessor function
W

�

set of decision nodes x
XrW

�

set of end nodes x
Z

�

collection of runs Z
Zft

�

collection of finite runs Z
Zinft

�

collection of infinite runs Z

CLT (Continuously Labeled Tree) Θ = (X,E,H, λ) satisfying [C1]–[C4]

H collection of information sets H
λ labeling function
A

�

set of actions a
F

�

feasibility correspondence
n

�

next-node function
S

�

set of grand strategies s (Section 4)
o

�

outcome function (Section 4)

CLT morphism θ = [Θ,Θ′, τ ] satisfying [cE], [cI], [cL]

τ node transformation
α

�

action transformation

Game Γ = (X,E,H, λ, µ, U) satisfying [G1]–[G3]

µ move-assigning function
I

�

set of players i
U profile 〈Ui〉i∈I listing a utility function Ui for each player i
Wi

�

player i’s set of decision nodes x (Section 4)
Si

�

set of player-i strategies si (Section 4)

Game morphism γ = [Γ, Γ ′, τ ] satisfying [gZ], [gM], [gU]

ζ

�

run transformation
ι

�

player transformation

Table 2.1. Terms defined in Sections 2 and 4. Out-trees, CLTs, CLT
morphisms, games, and game morphisms are implicitly accompanied by
their components and derivatives (

�

).

Further, one graph (Xo, Eo) is said to be in another graph (X, E) iff Xo ⊆ X and
Eo ⊆ E . An unoriented tree is an unoriented graph (X, E) in which every two
elements of X are linked by exactly one path in (X, E).

As in Bang-Jensen and Gutin 2009, Chapter 1, an oriented graph is a pair (X,E)
such that X is a set and E is a collection of ordered pairs from X such that
(∀x∈X, y∈X) (x, y) ∈ E ⇒ (y, x) /∈ E [this implies (∀x∈X) (x, x) /∈ E]. Denote
the edges of an oriented graph by xy rather than (x, y). It is easily seen that each
oriented graph (X,E) determines an unoriented graph (X, E) by means of E 3 xy
7→ {x, y} ∈ E . An oriented tree is an oriented graph whose unoriented graph is an
unoriented tree. Further, an out-tree is an oriented tree (X,E) which has a node
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r ∈ X such that Xr{r} = π2E, where π2E is the projection of E onto its second
coordinate. Call r the root node. Finally, an out-tree (X,E) is nontrivial iff E 6= ∅.

A path from x0 to x` is an oriented graph (X̄, Ē) of the form X̄ = {x0, x1, x2, ...
x`} and Ē = {x0x1, x1x2, ... x`−1x`} in which distinct i and j satisfy xi 6= xj .

Similarly, infinite path from x0 is an oriented graph (X̂, Ê) of the form X̂ =

{x0, x1, x2, ... } and Ê = {x0x1, x1x2, ... } in which distinct i and j satisfy xi 6= xj .
If a path is in an out-tree, the path’s indices and edge set are redundant. In par-
ticular, if (Ẋ, Ė) is a path in an out-tree (X,E), then Ė = {xy∈E | {x, y}⊆Ẋ }.
Accordingly, the paths in an out-tree will be identified with their node sets.

Consider a nontrivial out-tree (X,E). Let 4 be the binary relation on X defined
by x 4 y iff there is a path from x to y. Call 4 the weak tree order. Next let ≺ be
the binary relation on X defined by x ≺ y iff x 4 y and x 6= y (this excludes trivial
one-node paths). Call ≺ the strict tree order. Further, define the correspondence7

P :X⇒W by P (y) = {x∈X |x≺y }. Call P the strict predecessor correspondence.
It is easily shown that (∀y∈X) P (y)∪{y} is (the node set of) the path from r to y.
Incidentally, P (r)∪{r} is the trivial path {r}.

Further, define W = π1E, where π1E is the projection of E onto its first coor-
dinate. Call W the set of decision nodes. It is easily shown that E determines the
surjective function p with domain Xr{r}, codomain W , and graph {(y, x)|xy∈E}.
Call p the (immediate) predecessor function. It is easily shown that (∀y∈Xr{r})
p(y) ∈ P (y).

Call XrW the set of end nodes, and let Zft be the collection of all paths from
r to an end node. In addition, let Zinft be the collection of all infinite paths from
r. Finally, let Z = Zft∪Zinft, and call Z the set of runs (elsewhere “plays”).
Nontriviality implies Z is nonempty. Possibly Z = Zft, possibly Z = Zinft, and
possibly both Zft and Zinft are nonempty.

2.2. Continuously labeled trees (CLTs).2.2. Continuously labeled trees (CLTs)

Consider a nontrivial out-tree (X,E). Let H be a partition of W , and call its
elements information sets. One can regard H as the basis of a topology for W . Call
this topology the information topology. This paper uses the information topology
for W and the discrete topology everywhere else.

Let λ be a surjective function with domain E. Call λ the labeling function,8

and say that λ(xy) labels the edge xy. Next define A to be the codomain of λ.9

Although A could be called the set of “labels”, A will instead be called the set of
actions. Finally, it will be assumed that λ is deterministic (Blackburn, de Rijke,
and Venema 2001, page 3) in the sense that for any two edges of the form xy1 and
xy2, λ(xy1) = λ(xy2) implies y1 = y2.

7To be clear, a correspondence F :X⇒Y is taken to be a triple (X,Y, F gr) such that

F gr ⊆ X×Y , and a function f :X→Y is taken to be a triple (X,Y, f gr) such that f gr ⊆ X×Y
and (∀x∈X)(∃!y∈Y ) (x, y) ∈ f gr (the three components of a correspondence or function are its

domain, codomain, and graph).
8Since there is a bijection between E and Xr{r}, a labeling function λ on E could be alter-

natively specified by a function on Xr{r}.
9To be clear, recall from note 7 that a function is regarded as a triple. First, λ =

(λdom, λcod, λgr) is assumed to be a function such that λdom = E and λcod = π2λgr, where π2λgr

is the projection of λgr onto its second coordinate. Second, A is defined to be λcod. Since A is
derived from λ, A will not appear in the tuple defining a CLT. Accordingly, Table 2.1 lists λ as a

component of a CLT, and A as a derivative of a CLT.
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From λ derive the correspondence F :W⇒A by

(∀x∈W ) F (x) = { a∈A | (∃y∈Xr{r})λ(xy)=a }.
Thus F (x) is the set of actions that label the edges leaving x. Call F the feasibility
correspondence, and call F (x) the set of actions that are feasible at x.

If λ is deterministic, there is a function n:F gr→Xr{r} which takes each10

(x, a) ∈ F gr to the unique y ∈ Xr{r} such that λ(xy) = a (Lemma A.1(b)). Call
n the next-node function. Notice that if the feasible action a ∈ F (x) is chosen at
node x, then the next node will be n(x, a).

From a different perspective, F = 〈F (x)〉x∈W can be regarded as a set-valued
function from W . It will be assumed that F is continuous as a function of W ,
endowed with the information topology, into the collection of subsets of A, endowed
with the discrete topology.11 This is equivalent to assuming that two nodes in one
information set have the same feasible set.

A continuously labeled tree (CLT) is a tuple Θ = (X,E,H, λ) such that

(X,E) is a nontrivial out-tree,[C1]

H is a partition of W,[C2]

λ is a deterministic surjective function from E, and[C3]

〈F (x)〉x∈W is continuous from W.[C4]

Figures 2.1 and 2.2 provide four examples (temporarily ignore the dashed arrows
suggesting morphisms, and the remarks about morphisms in the captions). A tree
diagram with underlined root node, shaded information sets, and labeled edges
unambiguously specifies all the components of a CLT.

The ensuing paragraphs will define CLT morphisms. This paragraph begins by
fixing some general notation. For f :X→Y and A⊆X, let f̄(A) = { f(x) |x∈A }.
Also, for f :X→Y , A⊆X, and B ⊆ Y , let f |A,B be the function with domain A,
codomain B, and the graph of f |A. This construction is well-defined iff f̄(A) ⊆ B.

Consider a source CLT Θ and a target CLT Θ′. A node transformation is a
function of the form τ :X→X ′. It will be assumed that τ preserves edges in the
sense that (∀xy∈E) τ(x)τ(y) ∈ E′. Edge preservation easily leads to several ob-
servations about the out-trees (X,E) and (X ′, E′). These are included far below
in Proposition 2.1(a–e). Among them is τ̄(W ) ⊆ W ′, which implies that τ |W,W ′ is
well-defined (recall the general notation of the previous paragraph).

It will also be assumed that τ |W,W ′ is continuous. This is equivalent to saying
that the inverse image of every target information set is the union of a collection
of source information sets. For another perspective, recall that W and W ′ are
endowed with partition topologies. Thus continuity is equivalent to saying that
the image of each source information set is included in a target information set
(Lemma A.2). In other words, continuity says that source information sets cannot
be “split”.

For example, consider Figure 2.2. There τ |W,W ′ = idW is discontinuous because
the inverse image {x∈W | τ(x)∈{1} } = {1} of the target information set {1} fails
to be open in the source information topology. Equivalently, τ |W,W ′ = idW is

10F gr is the graph of the correspondence F , as in note 7.
11This is equivalent to assuming that F :W⇒A is lower semicontinuous in the sense of Berge

1963, page 109, when its domain is endowed with the information topology, and when its codomain

is endowed with the discrete topology.
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Figure 2.1. Θ and Θ′ are CLTs. Figure 1.1’s games are built on Θ′,
and game theorists would informally regard Θ and Θ′ as equivalent.
[Θ,Θ′, idX ] is a morphism (where idX is an identity in Set).
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Figure 2.2. Θ and Θ′ are CLTs. [Θ,Θ′, idX ] is not a morphism be-
cause τ |W,W ′ = idW is not continuous.

discontinuous because the image τ̄({1, 3}) = {1, 3} of the source information set
{1, 3} is not included in a target information set. In other words, τ |W,W ′ = idW
is discontinuous because it “splits” the source information set {1, 3}. In contrast,
consider Figure 2.1. There τ |W,W ′ = idW is continuous since no source information
sets are split. The same can be said about Figure 4.1 far below.

To interpret continuity in the context of game theory, remember that continuity
prevents source information sets from being split. Thus, since large information
sets correspond to less information, continuity corresponds to preserving a lack of
information.

From the tuple [Θ,Θ′, τ ], derive α = 〈αx:F (x)→F ′(τ(x))〉x∈W at each x ∈ W
by

(∀a∈F (x)) αx(a) = λ′( τ(x) τ(n(x,a)) ).

Call α the tuple’s action transformation. At each x ∈ W , the function αx sends
source actions feasible at x to target actions feasible at the image of x. In particular,
consider a source action a which is feasible at x. This a is sent to the target action
that labels the target edge from the image of x to the image of the next source node
determined by x and a. This target action belongs to F ′(τ(x)) by the definition of
F ′.

As a whole, α = 〈αx〉x∈W is a function-valued function with domain W . It
will be assumed that α is continuous as a function from W , endowed with the
information topology, into the set of functions, endowed with the discrete topology.
This is equivalent to assuming that (∀H∈H, x1∈H,x2∈H) αx1

= αx2
. In words,

two nodes in one information set transform actions in the same way.
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To explore this carefully, suppose {x1, x2} ⊆ H ∈ H and consider the functions
αx1 :F (x1)→F ′(τ(x1)) and αx2 :F (x2)→F ′(τ(x2)). [C4] for Θ implies F (x1) =
F (x2). Further, if τ |W,W ′ is continuous, there is H ′ ∈ H′ such that {τ(x1), τ(x2)}
⊆ H ′, and thus [C4] for Θ′ implies F ′(τ(x1)) = F ′(τ(x2)). Hence, if τ |W,W ′ is con-
tinuous, the domains and codomains of αx1

and αx2
coincide, and thus the equality

αx1
= αx2

reduces to (∀a∈F (x1)=F (x2)) αx1
(a) = αx2

(a).
For example, consider Figure 2.3. Here

α3(b) = λ′( τ(3) τ(n(3, b)) ) = λ′( τ(3) τ(5) ) = λ′( 3 5 ) = e and

α4(b) = λ′( τ(4) τ(n(4, b)) ) = λ′( τ(4) τ(7) ) = λ′( 4 7 ) = f.

Since these differ, α3 6= α4. Thus since 3 and 4 belong to the same information set in
Θ, α is discontinuous. In contrast, Figure 2.1 provides an example of a continuous
α. There α3(b) = α4(b) = e and α3(c) = α4(c) = f. Thus (by the previous
paragraph), α3 = α4. So, since {3, 4} ⊆ W is the only nonsingleton information
set in Θ, α is continuous from W .
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Figure 2.3. Θ and Θ′ are CLTs. [Θ,Θ′, idX ] is not a morphism be-
cause its α = 〈αx〉x∈W is not continuous from W .

Note that the continuity of α from W allows “local” action changes in the sense
that actions can be changed differently at different information sets. For example,
return to Figure 2.1, where α0(b) = b and α3(b) = e. This is consistent with the
continuity of α because 0 and 3 are in different information sets.

A CLT morphism is a node transformation which preserves edges, information
sets, and labels, but possibly not the root. More precisely, a CLT morphism is a
tuple θ = [Θ,Θ′, τ ] such that Θ and Θ′ are CLTs, τ :X→X ′,

(∀xy∈E) τ(x)τ(y) ∈ E′,[cE]

τ |W,W ′ is continuous, and[cI]

〈αx〉x∈W is continuous from W[cL]

(where 〈αx〉x∈W is derived from [Θ,Θ′, τ ]). Call [cE] edge preservation, call [cI]
information-set preservation, and call [cL] label preservation. Note that the source
root r may or may not be taken to the target root r′.

Proposition 2.1. Suppose that [Θ,Θ′, τ ] is a morphism. Then the following
hold.

(a) (∀x∈X, y∈X) x 4 y ⇒ τ(x) 4′ τ(y).
(b) (∀x∈X, y∈X) x ≺ y ⇒ τ(x) ≺′ τ(y).
(c) (∀y∈X) τ̄(P (y)) ⊆ P ′(τ(y)).12

12Recall f̄(A) was defined as { f(x) |x∈A } shortly after the definition of a CLT.
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(d) (∀y∈Xr{r}) τ(p(y)) = p′(τ(y)).
(e) τ̄(W ) ⊆ W ′.12

(f) (∀xy∈E) αx(λ(xy)) = λ′(τ(x)τ(y)).
(g) (∀x∈W,a∈F (x)) τ(n(x, a)) = n′(τ(x), αx(a)). (Proof A.3.)

This paragraph defines the category CLT, which is called the category of CLTs
(continuously labeled trees). Let an object be a CLT Θ. Let an arrow be a CLT
morphism [Θ,Θ′, τ ]. Let source, target, identity, and composition be

[Θ,Θ′, τ ]src = Θ, [Θ,Θ′, τ ]trg = Θ′, idΘ = [Θ,Θ, idX ], and

[Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] = [Θ,Θ′′, τ ′◦τ ]

(where idX is an identity in Set).

Proposition 2.2. (a) CLT is well-defined. (b) If [Θ,Θ′, τ ] and [Θ′, Θ′′, τ ′]
are morphisms, then the action transformation of [Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] is
〈α′τ(x)◦αx〉x∈W . (Proof A.4.)

2.3. Games.2.3. Games

Let µ be a surjective function with domain W . Next define I to be the codomain
of µ.13 Call µ the move-assigning function, call a member of I a player, and say that
player µ(x) moves at node x. It will be assumed that µ is continuous. This means
that, for each i ∈ I, the inverse image {x∈W |µ(x)=i } is open in the information
topology. This is equivalent to saying that, for each i ∈ I, {x∈W |µ(x)=i } is the
union of a collection of information sets. Equivalently, the nodes in each information
set are assigned to the same player.

For each i ∈ I, consider a function Ui:Z→R. Call Ui the utility function of
player i (elsewhere the “payoff function” of player i). The intended meaning of Ui
is that, for all Z1 ∈Z and Z2 ∈Z, Ui(Z1) ≥ Ui(Z2) iff player i weakly prefers the
run Z1 over the run Z2. This meaning is called the “ordinal preference content” of
Ui.

An (extensive-form) game is a tuple (X,E,H, λ, µ, U) such that

(X,E,H, λ) is a CLT,[G1]

µ is a continuous surjective function from W, and[G2]

U = 〈Ui:Z→R〉i∈I .[G3]

Figures 1.1–1.4 provide seven examples. Note that a CLT diagram with movers
and utility vectors unambiguously specifies almost all the components of a game.
The only thing that may need to be specified externally is the order in which the
utility vectors list the players.

Game morphisms will be built on certain CLT morphisms. Say that a CLT
morphism [Θ,Θ′, τ ] preserves ends iff τ(XrW ) ⊆ X ′rW ′. Figure 2.4 shows a
morphism which does not preserve ends, because the end node 2 is mapped to
the decision node 12. Accordingly, the run {0, 2} is mapped to the non-run path
{10, 12}. Arguably, the source utility assigned to the source run {0, 2} should
imply nothing about the target utilities assigned to the target runs {10, 12, 13}
and {10, 12, 14} because the connection between that source run and those two

13This derivation of I from µ is very similar to the derivation of A from λ. In particular, note 9
would apply with I, µ, W , and “game” replacing, respectively, A, λ, E, and “CLT”.
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target runs is so nebulous. For this reason, game morphisms are not built on CLT
morphisms that fail to preserve ends.

c 1

0
d

2
Θ

c 11

10
d

1212

e
13

12
f

14

Θ∗

Figure 2.4. The morphism [Θ,Θ∗, τ ] defined by τ(x)=x+10.
[Θ,Θ∗, τ ] is not end-preserving.

In contrast, Figure 2.5 shows an end-preserving morphism. Here it seems rea-
sonable that a player’s preference between the source runs {0, 1} and {0, 2} could
be preserved in a preference between the target runs {50, 10, 11} and {50, 10, 12}.
Note that the images {10, 11} and {10, 12} of the two source runs are preceded by
the target node 50, and that 50 is not the image of any source node.
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Θ′

Figure 2.5. The morphism [Θ,Θ′, τ ] defined by τ(x)=x+10. [Θ,Θ′, τ ]
is end-preserving.

From an end-preserving [Θ,Θ′, τ ], derive the function ζ:Z→Z ′ by

ζ(Z) = P ′◦τ(r)∪τ̄(Z).

Call ζ the run transformation. Proposition 2.3 shows that ζ is well-defined. For
example, in Figure 2.5,

ζ({0, 2}) = P ′◦τ(r)∪ τ̄({0, 2}) = {50}∪ {10, 12} = {50, 10, 12},
where P ′◦τ(r) = P ′◦τ(0) = P ′(10) = {50}.

Proposition 2.3. If a morphism [Θ,Θ′, τ ] is end-preserving, then its run trans-
formation ζ is well-defined. (Proof A.6.)

To go further, consider two games Γ and Γ ′ (with their Θ and Θ′), and suppose
that [Θ,Θ′, τ ] is an end-preserving morphism. It will be assumed that there exists
a function ι:I→I ′ such that ι◦µ = µ′◦τ |W,W ′ . This implies (∀x∈W ) ι(µ(x)) =
µ′(τ(x)). This says that at each x ∈ W , the source player with the move at x
is sent to the target player with the move at the image of x. Call ι the player
transformation of [Γ, Γ ′, τ ]. There can be no more than one player transformation,
because for each i ∈ I, the definition of I and [G2] for Γ implies there is an x ∈ W
such that i = µ(x), and thus ι(i) is determined as µ′(τ(x)).
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Figure 2.6. [Θ1, Θ2, idX1 ] is an end-preserving CLT morphism. But
[Γ 1, Γ 2, idX1 ] is not a game morphism because there is no player trans-
formation ι.

At the same time, the existence of a player transformation is a restrictive as-
sumption. For example, consider Figure 2.6. There the tuple [Θ1, Θ2, idX ] is an
end-preserving CLT morphism. But the equation ι◦µ = µ′◦τ |W 1,W 2 is equivalent
to ι◦µ1 = µ2◦idW 1 , which implies (∀x∈{0, 1}) ι(µ1(x)) = µ2(x), which is equivalent
to the two equations ι(P1) = ι◦µ1(0) = µ2(0) = P1 and ι(P1) = ι◦µ1(1) = µ2(1) =
P2. Since it is impossible to satisfy both these equations, no player transformation
ι exists.

A game morphism is a node transformation which preserves edges, information
sets, labels, ends, movers, and the ordinal preference content of the utility functions.
More specifically, a game morphism is a tuple γ = [Γ, Γ ′, τ ] such that Γ and Γ ′ are
games,

[Θ,Θ′, τ ] is an end-preserving CLT morphism,[gZ]

and there exists ι:I→I ′ such that

ι◦µ = µ′◦τ |W,W ′ and[gM]

(∀i∈I, Z1∈Z, Z2∈Z) Ui(Z1) ≥ Ui(Z2) implies U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2)[gU]

(where ζ is derived from [Θ,Θ′, τ ]). Call [gM] move preservation, and call [gU]
utility preservation.

This paragraph defines the category Gm, which is called the category of exten-
sive-form games. Let an object be a game Γ . Let an arrow be a game morphism
[Γ, Γ ′, τ ]. Let source, target, identity, and composition be

[Γ, Γ ′, τ ]src = Γ, [Γ, Γ ′, τ ]trg = Γ ′, idΓ = [Γ, Γ, idX ], and

[Γ ′, Γ ′′, τ ′]◦[Γ, Γ ′, τ ] = [Γ, Γ ′′, τ ′◦τ ].

Proposition 2.4. (a) Gm is well-defined. (b) Suppose [Γ, Γ ′, τ ] and [Γ ′, Γ ′′, τ ′]
are morphisms. Then the run transformation of [Γ ′, Γ ′′, τ ′]◦[Γ, Γ ′, τ ] is ζ ′◦ζ, and
its player transformation is ι′◦ι. (Proof A.8.)

Proposition 2.5. Define F from Gm to CLT by

F0 : (X,E,H, λ, µ, U) 7→ (X,E,H, λ) and

F1 : [Γ, Γ ′, τ ] 7→ [F0(Γ ),F0(Γ
′), τ ].

Then F is a well-defined functor. (Proof A.10.)

3. Monomorphisms

3.1. Characterizing monomorphisms.3.1. Characterizing monomorphisms

The source of a CLT monomorphism is called a categorical subCLT of the
target. Similarly, the source of a Gm monomorphism is called a categorical subgame



3. Monomorphisms 17

of the target. A wide variety of examples appear in Figures 3.1, 3.2, 3.3, 3.5, and
3.6 (temporarily ignore their captions’ remarks about Selten subCLTs and Selten
subgames). Further, the morphisms in Figures 2.1 and 4.1 also happen to be monic.
14

Proposition 3.1.
(a) A CLT morphism [Θ,Θ′, τ ] is monic iff τ is injective.
(b) A Gm morphism [Γ, Γ ′, τ ] is monic iff its ζ is injective. (Proof B.5.)

Proposition 3.1(a) characterizes CLT monomorphisms by the injectivity of τ .
The injectivity of τ implies the injectivity of each action transformation αx (Lemma
B.6). Figure 3.1 provides an example of a CLT monomorphism.

0

c
1

Θ

c 1

0
d

2
Θ′

Figure 3.1. The monomorphism [Θ,Θ′, incX,X′ ].
14 Θ is a categorical

subCLT of Θ′, but not a Selten subCLT.

Proposition 3.1(b) characterizes a game monomorphism by the injectivity of
its run transformation ζ. By inspection, the injectivity of ζ is weaker than the
injectivity of τ , and the next paragraph will show by example that it is strictly
weaker. The salient difference between parts (a) and (b) of the proposition is that
game morphisms are built on CLT morphisms that are end-preserving (condition
[gZ]).

For example, consider Figure 3.2. Here ζ injectively maps the two source runs
to the two target runs. Yet τ is not injective because τ(41) = τ(42) = 40. Thus
Proposition 3.1 implies [Γ, Γ ′, τ ] is monic but [Θ,Θ′, τ ] is not.15 To develop intu-
ition for [Γ, Γ ′, τ ] being monic, let γ denote [Γ, Γ ′, τ ] and consider the problem of
specifying distinct γ1 = [Γ ∗, Γ, τ1] and γ2 = [Γ ∗, Γ, τ2] such that γ◦γ1 = γ◦γ2.
The non-injectivity of τ suggests specifying an x∗ ∈ X∗ such that τ1(x∗) = 41 and
τ2(x∗) = 42. But since γ1 and γ2 must be built on end-preserving CLT morphisms,
and since 41 and 42 are not end nodes, x∗ cannot be an end node. This suggests
specifying a successor y∗ of x∗. But then [cE] for γ1 implies τ1(y∗) = 81, and
[cE] for γ2 implies τ2(y∗) = 82. These equations and the definition of τ imply
τ◦τ1(y∗) = 81 and τ◦τ2(y∗) = 82, which contradict γ◦γ1 = γ◦γ2.

Game monomorphisms can also have non-injective action and player transfor-
mations. Figure 3.2’s example has a non-injective action transformation because
the definition of α implies α0(b) = α0(d) = f. Meanwhile, Figure 3.3’s example has
a non-injective player transformation because [gM] implies both ι(P1) = ι(µ(0)) =
µ′(τ(0)) = P1 and ι(P2) = ι(µ(1)) = µ′(τ(1)) = P1.

14Let incC,D be the inclusion function from C to D.
15This is consistent with Proposition 2.5’s forgetful functor because a functor need not take a

monomorphism to a monomorphism.
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b 41

c 81

0

d 42
e 82

P1

P1

P1

[
0
]

[
0
]Γ

0
f

10

c
81

40

e
82

P1 P1
[
0
]

[
0
]Γ ′

Figure 3.2. The monomorphism [Γ, Γ ′, τ ] defined by τ(x) = 40 for
x ∈ {41, 42} and τ(x) = x otherwise. Its [Θ,Θ′, τ ] is not monic. Γ is a
categorical subgame of Γ ′, but not a Selten subgame.

Γ 2

0
b

11
c

2

P1 P2

[
0
0

]

Γ 1

0
b

11
c

2

P1 P1

[
0
]

Figure 3.3. The monomorphism [Γ 2, Γ 1, idX2 ]. Its ι is not injective.
Γ 2 is a categorical subgame of Γ 1, but not a Selten subgame.

3.2. Selten subgames.3.2. Selten subgames

Selten 1975 defines a different concept of subgame.16 Consider a CLT Θ′. Then
for each r ∈ W ′, define the Selten tuple Θ = (X,E,H, λ) by

X = { y′∈X ′ | r<′y′ },
E = {x′y′∈E′ | {x′, y′}⊆X },
H = {H ′∈H′ |H ′⊆X }, and

λ = λ′|E,λ′(E).

This is a CLT iff [∗] (∀H ′∈H′) H ′⊆X or H ′⊆X ′rX (Lemma B.10). If the tuple
is a CLT, call it the Selten subCLT of Θ′ at r. Otherwise, the Selten subCLT of
Θ′ at r does not exist. For example, consider Θ′ in Figure 3.4. The Selten subCLT
at 24 has three nodes, and the Selten subCLT at 0 is Θ′ itself. In contrast, there
is no Selten subCLT at any other node. For example, the figure’s Θ illustrates
the Selten tuple below 11. This is not a CLT because 11 is not in an information
set, in violation of [C2]. Relatedly, condition [∗] is violated because {11, 12} ∈ H′,
11 ∈ X, and 12 /∈ X.

Finally, consider a game Γ ′ and an r ∈ W ′. If the Selten subCLT of Θ′ at r
exists, the Selten subgame of Γ ′ at r is the game Γ = (X,E,H, λ, µ, U) constructed
by letting Θ = (X,E,H, λ) be the Selten subCLT of Θ′ at r, and by defining µ and
U = 〈Ui:Z→R〉i∈I by

µ = µ′|W,µ′(W ) and

(∀i∈I, Z∈Z) Ui(Z) = U ′i(P
′(r)∪Z)

(Lemma B.11 verifies that Γ is well-defined). Because Γ determines r, the statement
that “Γ is a Selten subgame of Γ ′ ” is equivalent to the statement that “Γ is the
Selten subgame of Γ ′ at r ”. The parallel statement holds for CLTs.

16The construction here accords with the standard definition in Selten 1975 and Myerson 1991,
page 184, except that the standard definition admits trivial one-node subgames at each of a game’s

end nodes. In this paper, all games have at least two nodes because of the nontriviality in [C1].
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Figure 3.4. The tuple Θ is not a CLT because 11 is not in an infor-
mation set. The CLT Θ′ does not have a Selten subCLT at 11.

Theorem 3.2.

(a) Θ is a Selten subCLT of Θ′ iff (i) Θ is a categorical subCLT of Θ′ via
[Θ,Θ′, incX,X′ ] with α = 〈idF (x)〉x∈W , (ii) X = { y′∈X ′ | r<′y′ }, and (iii) H ⊆ H′.

(b) Γ is a Selten subgame of Γ ′ iff (i∗) Γ is a categorical subgame of Γ ′ via
[Γ, Γ ′, incX,X′ ] with α = 〈idF (x)〉x∈W and ι = incI,I′ , (ii) X = { y′∈X ′ | r<′y′ },
(iii) H ⊆ H′, and (iv) U = 〈U ′i◦ζ〉i∈I . (Proof B.13.)

Theorem 3.2(a) shows that a Selten subCLT is a special kind of categorical
subCLT. Restriction (ii) is identical to the Selten definition of X. It rules out the
categorical subCLTs in Figures 3.1 and 3.2. Meanwhile, the action transformation
in (i) implies that the subgame’s actions are the same as in the game itself. This
rules out the categorical subCLT implicit in Figure 2.1 long ago.

Restriction (iii) is relatively subtle. To explore it, recall that H generates a
topology for W . This topology can be compared with the subspace topology for
W that is implied by the topology for W ′ generated by H′ (restriction (ii) implies
W ⊆ W ′). By inspection, restriction (iii) implies that H generates the subspace
topology. In fact, (iii) is strictly stronger.

In this paragraph, the first example’s H does not generate the subspace topology,
and the second example violates (iii) even though its H generates the subspace
topology. First, consider Figure 4.1 far below. There Θ and Θ′ satisfy (i) and (ii),
but they violate (iii) because {3} ∈ HrH′. Note H generates a topology other
than the subspace topology (the former topology is strictly finer than the latter).
Second, consider Figure 3.5. Here Θ and Θ′ satisfy (i) and (ii), but they violate (iii)
because {11} ∈ HrH′. In contrast to the first example, this example’s H generates
the subspace topology. This violation of (iii) accords with Figure 3.4 and the earlier
observation that this Θ′ does not have a Selten subCLT at 11.

Next, Theorem 3.2(b) shows that a Selten subgame is a special kind of categorical
subgame. All the restrictions of the preceding paragraph are imposed. In addition,
restriction (i∗) stipulates that ι = incI,I′ , which implies that ι is injective. This rules
out the categorical subgame in Figure 3.3. Finally, restriction (iv) implies that the
ordinal content of the utility function is strictly preserved in the sense that [gU]’s
conditional holds in both directions. This rules out the categorical subgame in
Figure 3.6.
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Figure 3.5. The monomorphism [Θ,Θ′, incX,X′ ]. Θ is a categorical
subCLT of Θ′, but not a Selten subCLT. Θ′ also appears in Figure 3.4.
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Figure 3.6. The monomorphism [Γ, Γ ′, idX ]. Γ is a categorical sub-
game of Γ ′, but not a Selten subgame.

4. Isomorphisms

4.1. Characterizing isomorphisms.4.1. Characterizing isomorphisms

The following theorem uses the term “homeomorphism” from topology. If
[Θ,Θ′, τ ] is a morphism and τ is bijective, then τ |W,W ′ is a homeomorphism iff

3. Monomorphisms

(τ |W,W ′)−1 is continuous. For example, in Figure 4.1, τ |W,W ′ = idW is not a
homeomorphism because (τ |W,W ′)−1 = idW ′ is not continuous. In particular,
(τ |W,W ′)−1 = idW ′ splits the information set {3, 4}. For another perspective, re-
call that W and W ′ are endowed with partition topologies. Thus, if [Θ,Θ′, τ ] is a
morphism and τ is bijective, τ |W,W ′ is a homeomorphism iff H 3 H 7→ τ̄(H) ∈ H′
is a bijection. For example, in Figure 4.1, τ |W,W ′ = idW is not a homeomorphism
because it does not define a bijection between H and H′.
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Figure 4.1. The morphism [Θ,Θ′, idX ] is not an isomorphism because
τ |W,W ′ = idW is not a homeomorphism.
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Proposition 4.1.

(a) A CLT morphism [Θ,Θ′, τ ] is an isomorphism iff τ is bijective and τ |W,W ′
is a homeomorphism. Further, if [Θ,Θ′, τ ] is an isomorphism, then each αx in
〈αx〉x∈W is bijective, the inverse of [Θ,Θ′, τ ] is [Θ′, Θ, τ−1], and the inverse’s action

transformation is 〈α−1
τ−1(x′)〉x′∈W ′ .

(b) A Gm morphism [Γ, Γ ′, τ ] is an isomorphism iff τ is bijective, τ |W,W ′ is
a homeomorphism, ι is injective, and (∀i∈I, Z1∈Z, Z2∈Z) Ui(Z1) ≥ Ui(Z2) ⇔
U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2).17 Further, if [Γ, Γ ′, τ ] is an isomorphism, then its ζ

is the bijection τ̄ |Z,Z′ , its ι is bijective, its inverse is [Γ ′, Γ, τ−1], the inverse’s run
transformation is ζ−1, and the inverse’s player transformation is ι−1.18 (Proof C.4.)

To explore Proposition 4.1(a)’s characterization, this paragraph relaxes each of
its two conditions independently. In Figure 3.1 (long ago), τ is not a bijection
but τ |W,W ′ = id{0} is a homeomorphism. Here the tuple [Θ′, Θ, τ−1] cannot be

constructed because τ−1 does not exist. In Figure 4.1, τ is a bijection but τ |W,W ′ is
not a homeomorphism. Here the tuple [Θ′, Θ, τ−1] = [Θ′, Θ, idX′ ] is not a morphism
because idX′ is not continuous in violation of [cI].

To explore Proposition 4.1(b)’s characterization, this paragraph relaxes its third
and fourth conditions independently (its first two conditions are equivalent to
[Θ,Θ′, τ ] being an isomorphism by part (a)). In Figure 3.3, [Θ,Θ′, τ ] = [Θ2, Θ1, τ ]
is an isomorphism, ι is not injective, and the biconditional holds. Here the tuple
[Γ ′, Γ, τ−1] = [Γ 1, Γ 2, idX1 ] is not a morphism because it does not have a player
transformation in violation of [gM] (Figure 2.6 illustrated this in a different con-
text). In Figure 3.6, [Θ,Θ′, τ ] is an isomorphism, ι is injective, and the biconditional
is violated. Here the tuple [Γ ′, Γ, τ−1] = [Γ ′, Γ, idX′ ] is not a morphism because it
violates [gU].

To build further intuition for Proposition 4.1(a), note that the bijectivity of
τ is powerful. In particular, Lemma C.1(a) shows that a bijective τ implies a
bijective edge transformation in the sense of Proposition 4.2(a). This result relies
on the special properties of trees, and plays a central role in proving the reverse
direction of Proposition 4.1(a). Proposition 4.2 itself collects some implications of
CLT isomorphisms which do not appear in Proposition 4.1. It is comparable to
Proposition 2.1.

Proposition 4.2. Suppose [Θ,Θ′, τ ] is an isomorphism. Then the following
hold.

(a) E 3 xy 7→ τ(x)τ(y) ∈ E′ is a bijection.
(b) (∀x∈X, y∈X) x 4 y ⇔ τ(x) 4′ τ(y).
(c) (∀x∈X, y∈X) x ≺ y ⇔ τ(x) ≺′ τ(y).
(d) τ(r) = r′.
(e) (∀y∈X) τ̄(P (y)) = P ′(τ(y)).
(f) τ |XrW,X′rW ′ is a bijection. (Proof C.5.)

17In this sentence, ζ can be replaced by τ̄ |Z,Z′ because of the following. Part (a), τ being

bijective, and τ |W,W ′ being a homomorphism together imply that [Θ,Θ′, τ ] is an isomorphism,
which by Lemma C.2(b) implies ζ = τ̄ |Z,Z′ .

18The three conclusions of part (a)’s second sentence could be added to part (b)’s second
sentence. These additional conclusions follow immediately from part (a) and Proposition 2.5’s
forgetful functor.
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4.2. Nash equilibrium.4.2. Nash equilibrium

Consider a CLT Θ. Let S be the set of continuous s:W→A such that (∀x∈W )
s(x) ∈ F (x). Call a member of S a grand strategy. Continuity is equivalent to s
being constant across each information set.

At each decision node x ∈ W , a grand strategy s ∈ S determines the action
s(x), and thus the node’s successor n(x, s(x)). As a result, a grand strategy
s ∈ S determines the run Z ∈ Z consisting of r, x1=n(r, s(r)), x2=n(x1, s(x1)),
and so on, either indefinitely or until an end node occurs. To put this another
way, for each grand strategy s ∈ S, there is exactly one run Z ∈ Z such that
(∀x∈Z∩W ) n(x, s(x)) ∈ Z. This defines a function o from S into Z. Call o the
outcome function.

Theorem 4.3. Suppose [Θ,Θ′, τ ] is an isomorphism. Then the following hold.

(a) S 3 s 7→ 〈ατ−1(x′)(s(τ
−1(x′))) 〉x′∈W ′ ∈ S′ is a bijection. Its inverse is

S 3 〈α−1
x (s′(τ(x))) 〉x∈W 7→s′ ∈ S′.

(b) (∀s∈S) ζ◦o(s) = o′( 〈ατ−1(x′)(s(τ
−1(x′))) 〉x′∈W ′ ). (Proof C.6.)

Consider a game Γ . Then consider a player i ∈ I, and let Wi be the inverse
image {x∈W |µ(x)=i }. Thus Wi is the set of nodes at which player i moves.
Endow Wi with the subspace topology from W . The continuity of µ implies that
this topology is generated by {H⊆H |H⊆Wi }, and that this collection partitions
Wi (Lemma C.7). Finally, let Si be the set of continuous functions si:Wi→A such
that (∀x∈Wi) si(x) ∈ F (x). In light of the second-previous sentence, continuity
requires that each si is constant across each information set H that is a subset of
Wi. Call Si the set of player-i strategies.

Theorem 4.4. Suppose [Γ, Γ ′, τ ] is an isomorphism. Then the following hold.

(a) (∀i∈I) τ |Wi,W ′ι(i)
is a homeomorphism.

(b) (∀i∈I) Si 3 si 7→ 〈ατ−1(x′)(si(τ
−1(x′))) 〉x′∈W ′

ι(i)
∈ S′ι(i) is a bijection. Its

inverse is Si 3 〈α−1
x (s′ι(i)(τ(x))) 〉x∈Wi

7→s′ι(i) ∈ S′ι(i). (Proof C.8.)

There is a straightforward bijection between the set S of grand strategies and the
set Πi∈ISi of player-strategy profiles. In particular, S 3 s 7→ 〈s|Wi

〉i∈I ∈ Πi∈ISi
is a bijection. Its inverse is S 3 ∪i∈Isi 7→〈si〉i∈I ∈ Πi∈ISi, where ∪i∈Isi is the
function whose domain is W = ∪i∈IWi, whose codomain is A, and whose graph is
∪i∈Isgri .

In light of the preceding bijection, identify a grand strategy s ∈ S with a player-
strategy profile 〈si〉i∈I ∈ Πi∈ISi. Relatedly, for each i ∈ I, identify an s ∈ S with a
pair (si, s−i), where si ∈ Si, and where s−i is understood as both the grand-strategy
restriction s|WrWi

and the player-strategy subprofile 〈sj〉j∈Ir{i} ∈ Πj∈Ir{i}Sj . In

this fashion s−i specifies the strategies of player i’s opponents.
A Nash equilibrium is an s ∈ S such that (∀i∈I, s+

i ∈Si) Ui◦o(s) ≥ Ui◦o(s+
i , s−i).

Thus a Nash equilibrium is a strategy profile in which each player’s strategy is
a best response to their opponents’ strategies. Let SNE ⊆ S denote the set of
Nash equilibria. The following theorem shows how isomorphisms preserve Nash
equilibria.
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Theorem 4.5. Suppose [Γ, Γ ′, τ ] is an isomorphism. Then

SNE 3 s 7→ 〈ατ−1(x′)(s(τ
−1(x′))) 〉x′∈W ′ ∈ S′NE

is a bijection. Its inverse is SNE 3 〈α−1
x (s′(τ(x))) 〉x∈W 7→s′ ∈ S′NE. (Proof C.9.)

4.3. Subgame-perfect equilibrium.4.3. Subgame-perfect equilibrium

The following theorem shows how game isomorphisms preserve Selten subgames.
In the remainder of this section, games with small-letter superscripts are Selten
subgames of the games with the corresponding capital-letter superscripts.

Theorem 4.6. Suppose [ΓD, Γ E, τ ] is an isomorphism. Then the following hold.
(a) Let RD be the set of nodes at which ΓD has a Selten subgame. Similarly

let RE be the set of nodes at which Γ E has a Selten subgame. Then τ |RD,RE is a
bijection.

(b) Take rd ∈ RD, let Γ d be the Selten subgame of ΓD at rd, and let Γ e be the
Selten subgame of Γ E at τ(rd). Then [Γ d, Γ e, τ |Xd,Xe ] is an isomorphism. Its ac-
tion transformation is 〈αxd〉xd∈W d , its run transformation is ζ|Zd,Ze , and its player
transformation is ι|Id,Ie . (Proof C.10.)

As in Selten 1975, a subgame-perfect equilibrium in a game ΓB is an sB ∈ SB

such that, for each Selten subgame Γ b of ΓB, the restriction 〈 sB(xb) 〉xb∈W b is a

Nash equilibrium in Γ b. Let SB
SPE ⊆ SB denote the set of subgame-perfect equilibria

in ΓB.19 The following theorem shows how isomorphisms preserve subgame-perfect
equilibria.

Theorem 4.7. Suppose [ΓD, Γ E, τ ] is an isomorphism. Then

SD
SPE 3 sD 7→ 〈ατ−1(xE)(s

D(τ−1(xE))) 〉xE∈W E ∈ SE
SPE

is a bijection. Its inverse is SD
SPE 3 〈α−1

xD (sE(τ(xD))) 〉xD∈WD 7→sE ∈ SE
SPE. (Proof

C.11.)

5. Full Subcategories

5.1. Distinguished-action games.5.1. Distinguished-action games

A CLT Θ is said to have distinguished actions iff (∀a∈A) {x∈W | a∈F (x) } ∈ H.
This strengthens [C4], which states that each inverse image {x∈W | a∈F (x) } is the
union of a subcollection of H. It requires that each action is associated with exactly
one information set. Thus the actions of each information set are “distinguished”
from the actions of all the other information sets. For example, in Figure 2.1, Θ′

has distinguished actions and Θ does not. For a well-known example from the
literature, note that Kreps and Wilson 1982 assumes distinguished actions. Say
that a game has distinguished actions iff its CLT does, and let DGm be the full
subcategory of Gm for distinguished-action games.20

Consider a subcategory of an arbitrary category. As usual, the subcategory
is said to be essentially wide in the category iff each of the category’s objects

19Since a game is a Selten subgame of itself, each subgame-perfect equilibrium is a Nash

equilibrium. Hence SB
SPE ⊆ SB

NE.
20Streufert 2020b defines the category NCG. It is conjectured that DGm is isomorphic to the

subcategory of NCG for end-preserving morphisms.
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is isomorphic to an object of the subcategory. Since every essentially wide full
subcategory is equivalent to the category itself, the following theorem implies that
DGm and Gm are equivalent. Similar equivalences are implied by Theorems 5.2
and 5.5 below, and by Corollaries 5.4 and 5.6 below.

Theorem 5.1. DGm is an essentially wide full subcategory of Gm. (Lemma
D.3.21)

5.2. Sequence games.5.2. Sequence games

Let a (finite) sequence be a function with domain {1, 2, ... `} for some nonneg-
ative integer `. To be clear, the empty sequence {} is admitted by ` = 0, and
nonempty sequences will be written in the form x = (x1, x2, ... x`). Call ` the
length of a sequence x, and denote it hereafter as |x|. Further, for any sequence x
and any m ∈ {0, 1, ... |x|}, let 1xm denote the initial segment (x1, x2, ... xm). Thus
for any sequence x, 1x0 is the empty sequence {}.

A CLT Θ is said to use sequences iff

X is a collection of (finite) sequences,

E = { 1y|y|−1 y | y∈Xr{{}} }, and

(∀ 1y|y|−1 y ∈E) λ(1y|y|−1 y) = y|y|.

Note that a sequence CLT satisfies r = {}. Similar structures appear widely in
the literature, as discussed in Section 1.2 in connection with “Group 2” and Fig-
ure 1.2(a).

A sequence game is a game whose CLT uses sequences. Let SGm be the full
subcategory of Gm for sequence games. Further, let DSGm be the full subcat-
egory of Gm for distinguished-action sequence games. The following implies the
equivalence of SGm, DSGm, and Gm.

Theorem 5.2. SGm and DSGm are essentially wide full subcategories of Gm.
(Proof D.8.)

5.3. Two invariant properties.5.3. Two invariant properties

A CLT Θ is said to have no-absentmindedness iff (/∃H∈H, x∈H, y∈H) x ≺ y,
and further, a game is said to have no-absentmindedness iff its CLT does (the
term “no-absentmindedness” is from Piccione and Rubinstein 1997). If violated,
some information set H would contain both a node and one of its predecessors,
which would mean that the decision maker at that information set would not know
whether they had made the same decision previously. Such “absentmindedness” is
routinely ruled out by assumption, as in Kuhn 1953. In the present paper, Figure
2.2’s Θ′ is the only example that violates no-absentmindedness.

A CLT Θ is said to have perfect-information iff (∀H∈H) |H| = 1, and a game
is said to have perfect-information iff its CLT does. In other words, perfect-
information is equivalent to the information topology being discrete. For exam-
ple, consider Figure 4.1. There, Θ satisfies perfect-information, and Θ′ violates

21Lemma D.3 shows that each game has a distinguished-action isomorph. Its proof uses

Lemma D.1. That lemma begins with (i) an arbitrary game and (ii) arbitrary node, action,

and player transformations which are bijective. It then constructs an isomorph of the game by
means of the transformations. This general construction is also used to prove Theorems 5.2 and

5.5, and could be useful beyond this paper.
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perfect-information. Although perfect-information is quite restrictive, there are
many interesting perfect-information games, such as chess.

Consider an arbitrary category, and a property which is defined for its objects.
The property is said to be (isomorphically) invariant iff, for each object, the object
satisfies the property iff all its isomorphs satisfy the property. Equivalently, the
property is invariant iff, for each object, the object satisfies the property only if all
its isomorphs satisfy the property.

Theorem 5.3.
(a) No-absentmindedness is (isomorphically) invariant in Gm.
(b) Perfect-information is (isomorphically) invariant in Gm. (Proof D.9.)

Let Gmã be the full Gm subcategory for no-absentminded games. As noted,
Figure 2.2’s Θ′ violates no-absentmindedness, and hence, the one-player-named-
P1 zero-utility game22 built on Θ′ is not an object of Gmã. Further, since no-
absentmindedness is invariant by Theorem 5.3(a), this game is not isomorphic to
an object of Gmã. Thus Gmã is not essentially wide in Gm.

Let Gmp be the full Gm subcategory for perfect-information games. By in-
spection, perfect-information implies no-absentmindedness. Thus Gmp is a full
subcategory of Gmã. Further, Figure 4.1’s Θ′ satisfies no-absentmindedness but
not perfect-information, and hence, the one-player-named-P1 zero-utility game22

built on Θ′ is an object of Gmã but not an object of Gmp. Thus, since perfect-
information is invariant by Theorem 5.3(b), Gmp is not essentially wide in Gmã.

In a similar fashion, define DGmã and DGmp, SGmã and SGmp, and DSGmã

and DSGmp. For example, DSGmp is the full Gm subcategory for distinguished-
action sequence games with perfect-information. (Subscripts are being used for
invariant properties.)

Corollary 5.4.
(a) DGmã, SGmã and DSGmã are essentially wide full subcategories of Gmã.
(b) DGmp, SGmp and DSGmp are essentially wide full subcategories of Gmp.

(Proof D.10.)

5.4. Action-set games.5.4. Action-set games

A distinguished-action CLT Θ is said to use action sets iff

X is a collection of finite sets containing {},
E = {xy∈X2 |x⊆y, |yrx|=1 }, and

(∀xy∈E) {λ(xy)} = yrx.

Note that an action-set CLT satisfies r = {}. Figure 1.2(b) provides an example,
and similar structures appear in Streufert 2015 and 2019. Let an action-set game
be a game whose CLT uses action sets.23 Further, let AGm be the full Gm

22The “one-player-named-P1 zero-utility game” built on a CLT Θ is the game constructed

by augmenting Θ with (µ,U), where µ:W→{P1} is defined by µ(x) = P1 , and where U =

〈Ui:Z→R〉i∈{P1} is defined by UP1 (Z) = 0. For example, both games in Figure 3.2 are one-

player-named-P1 zero-utility games.
23Section 5.2’s games are called “sequence games” rather than “action-sequence games”. In a

similar vein, it is tempting to call Section 5.4’s games “set games” rather than “action-set games”.
But this abbreviation would be confusing because there are other kinds of “set games”, such as

those shown in Figure 1.3.
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subcategory for action-set games. The following theorem implies the equivalence of
AGm and Gmã. This reveals that using action sets is only slightly restrictive in
the sense that using action sets rules out absentmindedness but essentially nothing
else.

Theorem 5.5. AGm is an essentially wide full subcategory of Gmã. (Proof
D.15.)

Let AGmp be the full Gm subcategory for action-set games with perfect infor-
mation. The following implies the equivalence of AGmp and Gmp.

Corollary 5.6. AGmp is an essentially wide full subcategory of Gmp. (Proof
D.16.)

Appendix A. For Definition

Lemma A.1. Suppose that (X,E) is a nontrivial out-tree, and that λ:E→A is
surjective and deterministic. Then the following hold.

(a) ∪x∈WF (x) = A.
(b) For each (x, a) ∈ F gr there is a unique y ∈ Xr{r} such that λ(xy) = a.
(c) Define n:F gr→Xr{r} by part (b), and consider xo ∈ W . Then

F (xo) 3 a 7→ n(xo, a) ∈ {y+|xoy+∈E}
is a bijection. Its inverse is F (xo) 3 λ(xoy) 7→y ∈ {y+|xoy+∈E}.

Proof. (a). For ∪x∈WF (x) ⊆ A, note that each F (x) ⊆ A by the definition of
F . For the reverse inclusion, take a ∈ A. Then the surjectivity of λ implies there
is [1] xy ∈ E such that [2] λ(xy) = a. [1] and the definition of W imply x ∈ W .
[2] and the definition of F imply a ∈ F (x).

(b). Take (x, a) ∈ F gr. Then by the definition of F , there is y ∈ Xr{r} such
that λ(xy) = a. Further, if y∗ ∈ Xr{r} satisfies λ(xy∗) = a, then the determinism
of λ implies y = y∗.

(c). The forward function is well-defined by part (b), and the reverse function
is well-defined since the domain of λ is E. Thus it suffices to show that (1) the
forward followed by the reverse is idF (xo), and that (2) the reverse followed by the
forward is id{y+|xoy+∈E}.

For (1), take a ∈ F (xo). By definition, n(xo, a) is the unique y∗ such that
λ(xoy∗) = a. Thus (by substituting for y∗), λ(xon(xo, a)) = a.

For (2), take y such that xoy ∈ E. Then the definition of F (xo) implies
λ(xoy) ∈ F (xo), which easily implies (xo, λ(xoy)) ∈ F gr. Thus the definition of n
implies that (i) n(xo, λ(xoy)) = y∗ where (ii) y∗ is the unique solution to λ(xoy∗) =
λ(xoy). To conclude, (ii) implies y∗ = y and thus (i) implies n(xo, λ(xoy)) = y. 2

Lemma A.2. Suppose Θ and Θ′ are CLTs and τ̄(W ) ⊆ W ′. Then τ |W,W ′ is
continuous iff (∀H∈H)(∃H ′∈H′) τ̄(H) ⊆ H ′.

Proof. By general topology, τ |W,W ′ is continuous iff

(∀x∈W,H ′∈H′) τ(x) ∈ H ′ implies (∃H∈H) x ∈ H and τ̄(H) ⊆ H ′.(1)

Thus it suffices to show (1) iff (2) (∀H∈H)(∃H ′∈H′) τ̄(H) ⊆ H ′.
For the forward direction, assume (1) and take [a] H ∈ H. Then [C2] for Θ

implies there is [b] x ∈ W such that [c] x ∈ H. Further τ̄(W ) ⊆ W ′ and [C2] for
Θ′ imply there is [d] H ′ ∈ H′ such that [e] τ(x) ∈ H ′. [b], [d], [e] and (1) imply
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there is [f] Ho ∈ H such that [g] x ∈ Ho and [h] τ̄(Ho) ⊆ H ′. [a] and [c], [f] and
[g], and [C2] for Θ imply H = Ho. Thus [h] implies τ̄(H) ⊆ H ′.

For the reverse direction, assume (2), and take [a] x ∈ W and [b] H ′ ∈ H′ such
that [c] τ(x) ∈ H ′. [a] and [C2] for Θ imply there is [d] H ∈ H such that [e] x ∈ H.
It suffices to show τ̄(H) ⊆ H ′. [d] and (2) imply there is [f] H ′∗ ∈ H′ such that
[g] τ̄(H) ⊆ H ′∗. Easily, [e] implies τ(x) ∈ τ̄(H), which by [g] implies [h] τ(x) ∈ H ′∗.
[b] and [c], and [f] and [h], and [C2] for Θ′ imply H ′ = H ′∗. Thus [g] implies
τ̄(H) ⊆ H ′. 2

Proof A.3 (for Proposition 2.1). (a)–(e). These follow immediately from [cE].
(f). Take xy ∈ E. In steps, the definition of F implies λ(xy) ∈ F (x), which by

the definition of αx implies αx(λ(xy)) = λ′( τ(x) τ(n(x, λ(xy))) ), which by applying
Lemma A.1(c) at xo = x reduces to αx(λ(xy)) = λ′( τ(x) τ(y) ).

(g). Take x ∈ W and a ∈ F (x). Then the definition of αx implies [1] αx(a) =
λ′( τ(x) τ(n(x, a)) ). In addition, the definition of αx implies [2] αx(a) ∈ F ′(τ(x)).
By [2], the definition of n′ implies that n′(τ(x), αx(a)) is the unique y′ such that
λ′( τ(x) y′ ) = αx(a). By [1], that y′ is τ(n(x, a)). 2

Proof A.4 (for Proposition 2.2). By inspection, the identities are well-defined,
the identity laws hold, and associativity holds. Thus the proposition’s part (a)
follows from Claim 2. Part (b) follows from Claim 1.

Claim 1: Suppose [Θ,Θ′, τ ] and [Θ′, Θ′′, τ ′] are morphisms. Then the action
transformation of the tuple [Θ,Θ′′, τ ′◦τ ] is 〈α′τ(x)◦αx〉x∈W . To see this, let

〈α∗x:F (x)→F ′′(τ ′◦τ(x))〉x∈W be the action transformation derived from the tuple
[Θ,Θ′′, τ ′◦τ ]. Fix x ∈ W . Then α′τ(x)◦αx:F (x)→F ′′(τ ′◦τ(x)) is well-defined since

αx:F (x)→F ′(τ(x)) by construction, and since α′τ(x):F
′(τ(x))→F ′′(τ ′◦τ(x)) by the

construction of 〈α′x′ :F ′(x′)→F ′′(τ ′(x′))〉x′∈W ′ at x′ = τ(x). Thus it remains to
show that (∀a∈F (x)) α∗x(a) = α′τ(x)(αx(a)). Toward that end, take a ∈ F (x) and
note

α∗x(a) = λ′′( τ ′◦τ(x) τ ′◦τ(n(x, a)) )

= λ′′( τ ′(τ(x)) τ ′(n′(τ(x), αx(a))) )

= α′τ(x)(αx(a)),

where the first equality holds by the definition of α∗x, the second holds by Proposi-
tion 2.1(g) applied to [Θ,Θ′, τ ], and the third holds by the definition of α′τ(x).

Claim 2: Composition is well-defined. Let θ = [Θ,Θ′, τ ] and θ′ = [Θ′, Θ′′, τ ′] be
morphisms. It suffices to show that the tuple [Θ,Θ′′, τ ′◦τ ] satisfies [cE], [cI], and
[cL]. In this context, [cE] is

(∀xy∈E) τ ′◦τ(x) τ ′◦τ(y) ∈ E′′.
Take xy ∈ E. Then [cE] for θ implies τ(x)τ(y) ∈ E′, which by [cE] for θ′ implies
τ ′◦τ(x) τ ′◦τ(y) ∈ E′′. Further, [cI] is

(τ ′◦τ)|W,W ′′ is continuous.

Proposition 2.1(e) implies (τ ′◦τ)|W,W ′′ = τ ′|W ′,W ′′ ◦ τ |W,W ′ . This composition is
continuous since τ |W,W ′ is continuous by [cI] for θ, and since τ ′|W ′,W ′′ is continuous
by [cI] for θ′. Finally, Claim 1 implies that [cL] is

〈α′τ(x)◦αx〉x∈W is continuous from W.
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Suppose x1 and x2 are in the same member of H. By [cL] for θ, this assumption
implies [1] αx1 = αx2 . By [cI] for θ and Lemma A.2, the assumption also im-
plies τ(x1) and τ(x2) are in the same member of H′, which by [cL] for θ′ implies
[2] α′τ(x1) = α′τ(x2). [1] and [2] imply α′τ(x1)◦αx1

= α′τ(x2)◦αx2
. 2

Lemma A.5. Suppose Θ is a CLT. Then the action transformation of idΘ is
〈idF (x)〉x∈W .

Proof. Let 〈αx〉x∈W be the action transformation of idΘ. It suffices to show
〈αx〉x∈W = 〈idF (x)〉x∈W . Take x ∈ W . Since F ′(τ(x)) reduces to F (x), the def-
inition of αx implies αx:F (x)→F (x). Thus it remains to show that (∀a∈F (x))
αx(a) = a. Toward that end, take a ∈ F (x). In steps, αx(a) by definition is
λ′( τ(x) τ(n(x, a)) ), which reduces to λ′(xn(x, a) ), which reduces to λ(xn(x, a) ),
which by Lemma A.1(c) is a. 2

Proof A.6 (for Proposition 2.3). Take Z ∈ Z. Before beginning, note that the
definition of P ′ implies [1] P ′◦τ(r)∪{τ(r)} is the path from r′ to τ(r).

On the one hand, suppose Z ∈ Zft. Then there is a [2] y ∈ XrW such that
[3] Z is the path from r to y. [2] and end-preservation imply [4] τ(y) ∈ X ′rW ′.
Meanwhile, [3] and [cE] imply τ̄(Z) is the path from τ(r) to τ(y), which by [1]
implies that the concatenation P ′◦τ(r)∪τ̄(Z) is the path from r′ to τ(y). Thus [4]
implies P ′◦τ(r)∪τ̄(Z) ∈ Z ′ft.

On the other hand, take Z ∈ Zinft. Then Z is an infinite path from r. Thus
[cE] implies τ̄(Z) is an infinite path from τ(r), which by [1] implies that the con-
catenation P ′◦τ(r)∪τ̄(Z) is an infinite path from r′. Hence P ′◦τ(r)∪τ̄(Z) ∈ Z ′inft.
2

Lemma A.7. Suppose [Θ,Θ′, τ ] and [Θ′, Θ′′, τ ′] are end-preserving morphisms.
Then [Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] is end-preserving and its run transformation is ζ ′◦ζ.

Proof. The lemma follows from Claims 1 and 4.

Claim 1: [Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] is end-preserving. Take x ∈ XrW . Since
[Θ,Θ′, τ ] is end-preserving, τ(x) ∈ X ′rW ′. Thus since [Θ′, Θ′′, τ ′] is end-preserv-
ing, τ ′◦τ(x) ∈ X ′′rW ′′.

Claim 2: P ′′◦τ ′(r′) ∪ τ ′(P ′◦τ(r)∪{τ(r)}) = P ′′◦τ ′◦τ(r)∪{τ ′◦τ(r)}.
First, the definition of P ′′ implies

P ′′◦τ ′(r′)∪{τ ′(r′)} is the path from r′′ to τ ′(r′),

Second, the definition of P ′ implies P ′◦τ(r)∪{τ(r)} is the path in (X ′, E′) from r′

to τ(r), which by [cE] for [Θ′, Θ′′, τ ′] implies

τ ′(P ′◦τ(r)∪{τ(r)}) is the path from τ ′(r′) to τ ′◦τ(r).

The above imply that the concatenation P ′′◦τ ′(r′) ∪ τ ′(P ′◦τ(r)∪{τ(r)}) is the path
from r′′ to τ ′◦τ(r). Yet by the definition of P ′′, P ′′◦τ ′◦τ(r)∪{τ ′◦τ(r)} is the path
from r′′ to τ ′◦τ(r). Thus the two are equal.

Claim 3: (∀Z∈Z) P ′′◦τ ′(r′)∪ τ ′(P ′◦τ(r)∪τ̄(Z)) = P ′′◦τ ′◦τ(r)∪ τ ′◦τ(Z).
Take Z ∈ Z. It will be argued that

P ′′◦τ ′(r′) ∪ τ ′( P ′◦τ(r)∪τ̄(Z) )

= P ′′◦τ ′(r′) ∪ τ ′( P ′◦τ(r)∪{τ(r)} ∪ τ̄(Z) )
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= P ′′◦τ ′(r′) ∪ τ ′(P ′◦τ(r)∪{τ(r)}) ∪ τ ′◦τ(Z)

= P ′′◦τ ′◦τ(r)∪{τ ′◦τ(r)} ∪ τ ′◦τ(Z)

= P ′′◦τ ′◦τ(r) ∪ τ ′◦τ(Z).

The first holds because r ∈ Z, the second by manipulation, the third by Claim 2,
and the fourth because r ∈ Z.

Claim 4: The run transformation of [Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] is ζ ′◦ζ. Since the
morphisms are end-preserving, ζ:Z→Z ′ and ζ ′:Z ′→Z ′′ are well-defined. Thus
ζ ′◦ζ:Z→Z ′′ is well-defined. Meanwhile, Claim 1 implies that the run transfor-
mation of [Θ′, Θ′′, τ ′]◦[Θ,Θ′, τ ] is well-defined. By definition, it has domain Z and
codomain Z ′′. Thus is suffices to show (∀Z∈Z) ζ ′(ζ(Z)) = P ′′◦τ ′◦τ(r)∪ τ ′◦τ(Z).
This is equivalent to Claim 3. 2

Proof A.8 (for Proposition 2.4). By inspection, the identities are well-defined,
the identity laws hold, and associativity holds. Thus the proposition’s part (a)
follows from Claim 3. Part (b) follows from Claims 1 and 2.

Claim 1: Suppose γ = [Γ, Γ ′, τ ] and γ′ = [Γ ′, Γ ′′, τ ′] are morphisms. Then the
run transformation of the tuple [Γ, Γ ′′, τ ′◦τ ] is ζ ′◦ζ ′. [gZ] for γ implies [Θ,Θ′, τ ]
is end-preserving. Similarly [gZ] for γ′ implies [Θ′, Θ′′, τ ′] is end-preserving. Thus
the claim follows from Lemma A.7.

Claim 2: Suppose γ = [Γ, Γ ′, τ ] and γ′ = [Γ ′, Γ ′′, τ ′] are morphisms. Then the
player transformation of the tuple [Γ, Γ ′′, τ ′◦τ ] is ι′◦ι. It suffices to show that
ι′◦ι◦µ = µ′′◦(τ ′◦τ)|W,W ′′ . In steps, ι′◦ι◦µ by [gM] for γ equals ι′◦µ′◦τ |W,W ′ ,
which by [gM] for γ′ equals µ′′◦τ ′|W ′,W ′′◦τ |W,W ′ , which by inspection equals
µ′′◦(τ ′◦τ)|W,W ′′ .

Claim 3: Composition is well-defined. Suppose γ = [Γ, Γ ′, τ ] and γ′ =
[Γ ′, Γ ′′, τ ′] are morphisms. It suffices to show that the tuple [Γ, Γ ′′, τ ′◦τ ] satisfies
[gZ], [gM], and [gU]. First, [gZ] follows from [gZ] for γ, [gZ] for γ′, and Lemma A.7.
Second, [gM] holds since ι′◦ι is the player transformation of [Γ, Γ ′′, τ ′◦τ ] by Claim 2.
Finally, Claims 1 and 2 imply [gU] is equivalent to

(∀i∈I, Z1∈Z, Z2∈Z)

Ui(Z1) ≥ Ui(Z2) implies U ′′ι′◦ι(i)◦ζ ′◦ζ(Z1) ≥ U ′′ι′◦ι(i)◦ζ ′◦ζ(Z2).

To show this conditional holds, take i ∈ I, Z1 ∈ Z, and Z2 ∈ Z. Assume
Ui(Z1) ≥ Ui(Z2). Then [gU] for γ implies U ′ι(i)◦ζ(Z1)) ≥ U ′ι(i)◦ζ(Z2), which by

[gU] for γ′ implies U ′′ι′◦ι(i)◦ζ ′◦ζ(Z1) ≥ U ′′ι′◦ι(i)◦ζ ′◦ζ(Z2). 2

Lemma A.9. Suppose Γ is a game. Then idΓ ’s run transformation is idZ , and
its player transformation is idI .

Proof. Let ζ:Z→Z be the run transformation of idΘ. It suffices to show (∀Z∈Z)
ζ(Z) = Z. Take Z ∈ Z. Then ζ(Z) by definition is P (r)∪Z, which by inspection
is Z.

Let ι:I→I be the player transformation of idΓ . It suffices to show (∀i∈I) ι(i) = i.
Take i ∈ I. By the definition of I and [G2], there is x ∈ W such that µ(x) = i.
In steps, ι(i) by the definition of x is equal to ι(µ(x)), which by [gM] for idΓ is
equal to µ′(τ(x)), which reduces to µ(τ(x)), which reduces to µ(x), which by the
definition of x is i. 2
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Proof A.10 (for Proposition 2.5). By [G1], F0 maps any game to a CLT. By
[gZ], F1 maps any game morphism to a CLT morphism. By inspection, F preserves
source and target. Thus the proposition follows from Claims 1 and 2.

Claim 1: F preserves identity. In steps, F1(idΓ ) by the definition of id in Gm is
equal to F1([Γ, Γ, idX ]), which by the definition of F1 is equal to [F0(Γ ),F0(Γ ), idX ],
which by the definition of id in CLT is equal to idF0(Γ ).

Claim 2: F preserves composition. In steps, F1([Γ
′, Γ ′′, τ ′]◦[Γ, Γ ′, τ ]) by the def-

inition of ◦ in Gm is equal to F1([Γ, Γ
′′, τ ′◦τ ]), which by the definition of F1 is

equal to [F0(Γ ),F0(Γ
′′), τ ′◦τ ], which by the definition of ◦ in CLT is equal to

[F0(Γ
′),F0(Γ

′′), τ ′] ◦ [F0(Γ ),F0(Γ
′), τ ], which by two applications of the definition

of F1 is equal to F1([Γ
′, Γ ′′, τ ′]) ◦ F1([Γ, Γ

′, τ ]). 2

Appendix B. For Monomorphisms

Lemma B.1. Suppose that (X,E) and (X ′, E′) are out-trees, that τ :X→X ′
satisfies (∀xy∈E) τ(x)τ(y) ∈ E′, and that X̂ is a path in (X,E). Then τ̄(X̂) is a
path in (X ′, E′) and τ |X̂,τ̄(X̂) is a graph isomorphism.24

Proof. Let Ê be the edge set of X̂. The lemma is proved after the following
claims.

Claim 1: τ |X̂,τ̄(X̂) is a bijection. It suffices to show that τ |X̂,τ̄(X̂) is injective.

Toward that end, take distinct x1 and x2 in X̂. Because X̂ is a path, either
x1 ≺ x2 or x1 � x2. Assume the former without loss of generality. Then the
lemma’s assumption on τ implies τ(x1) ≺ τ(x2), which implies τ(x1) 6= τ(x2).

Claim 2: Suppose X̂ is finite. Then (a) τ̄(X̂) is a path in (X ′, E′), and (b) the

edge set of τ̄(X̂) is { τ(x)τ(y) |xy∈Ê }.
Since X̂ is a finite path with edge set Ê, there is an ` ≥ 0 and a bijection

φ:{0, 1, ... `}→X̂ such that {φ0φ1, φ1φ2, ... φ`−1φ`} = Ê. Define ψ = τ |X̂,τ̄(X̂)◦φ.

The bijectivity of φ and Claim 1 imply ψ:{0, 1, ... `}→τ̄(X̂) is a well-defined bijec-

tion. Thus the pair consisting of τ̄(X̂) and {ψ0ψ1, ψ1ψ2, ... ψ`−1ψ`} is a path.
It suffices to show this path is in (X ′, E′), and {ψ0ψ1, ψ1ψ2, ... ψ`−1ψ`} =

{ τ(x)τ(y) |xy∈Ê }. For the equality, {ψ0ψ1, ψ1ψ2, ... ψ`−1ψ`} by the definition of
ψ is equal to { τ(x)τ(y) | xy∈{φ0φ1, φ1φ2, ... φ`−1φ`} }, which by the definition of φ

is equal to { τ(x)τ(y) | xy∈Ê }. Further, this equality and the lemma’s assumption

on τ imply {ψ0ψ1, ψ1ψ2, ... ψ`−1ψ`} ⊆ E′. This and the fact that τ̄(X̂) ⊆ X ′ imply
that the path is in (X ′, E′).

Claim 3: Suppose X̂ is infinite. Then (a) τ̄(X̂) is a path in (X ′, E′), and (b)

the edge set of τ̄(X̂) is { τ(x)τ(y) |xy∈Ê }.
Since X̂ is an infinite path in the out-tree (X,E), X̂ is an infinite path from some

node. Thus there is a bijection φ:{0, 1, ... }→X̂ such that {φ0φ1, φ1φ2, ... } = Ê.

Define ψ = τ |X̂,τ̄(X̂)◦φ. The bijectivity of φ and Claim 1 imply ψ:{0, 1, ... }→τ̄(X̂)

24Bang-Jensen and Gutin 2009, page 7, defines graph isomorphisms for directed pseudographs.

To specialize that definition to the present context, suppose X1 and X2 are two paths in out-
trees. Then ψ:X1→X2 is a graph isomorphism iff (a) ψ is a bijection and (b) the edge set of X2

is {ψ(x)ψ(y) |xy∈E1 }, where E1 is the edge set of X1.
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is a well-defined bijection. Thus the pair consisting of τ̄(X̂) and {ψ0ψ1, ψ1ψ2, ... }
is a path.

It remains to be shown that this path is in (X ′, E′) and that {ψ0ψ1, ψ1ψ2, ... } =

{ τ(x)τ(y) |xy∈Ê }. For the equality, {ψ0ψ1, ψ1ψ2, ... } by the definition of ψ is
equal to { τ(x)τ(y) | xy∈{φ0φ1, φ1φ2, ... } }, which by the definition of φ is equal to

{ τ(x)τ(y) | xy∈Ê }. Further, this equality and the lemma’s assumption on τ imply

{ψ0ψ1, ψ1ψ2, ... } ⊆ E′. This and the fact that τ̄(X̂) ⊆ X ′ imply that the path is
in (X ′, E′).

Conclusion. Claims 2(a) and 3(a) imply τ̄(X̂) is a path in (X ′, E′). Thus
it suffices to show that τ |X̂,τ̄(X̂) is a graph isomorphism. Claim 1 shows it is a

bijection. Thus it suffices to show that { τ(x)τ(y) |xy∈Ê } is equal to the edge set

of τ̄(X̂). This follows from Claims 2(b) and 3(b). 2

Lemma B.2. Suppose [Θ,Θ′, τ ] is a monomorphism. Then τ is injective.

Proof. To show the contrapositive, suppose τ is not injective. Then there are
x1 ∈ X and x2 ∈ X such that [a] x1 6= x2 and [b] τ(x1) = τ(x2).

This paragraph concerns the predecessors of x1 and x2. The contrapositive of
Proposition 2.1(b) and [b] imply not x1 ≺ x2, which by [a] implies [c] x1 ∈ Xr{r},
which by Proposition 2.1(d) implies [d] τ(p(x1)) = p′(τ(x1)). Similarly, the con-
trapositive of Proposition 2.1(b) and [b] imply not x2 ≺ x1, which by [a] implies
[e] x2 ∈ Xr{r}, which by Proposition 2.1(d) implies [f] τ(p(x2)) = p′(τ(x2)). Fi-
nally, [b], [d], and [f] imply [g] τ(p(x1)) = τ(p(x2)).

Θ∗

0∗
b∗

1∗

Figure B.1. The Θ∗ in Lemma B.2’s proof.

Now define the tuple θ1 = [Θ∗, Θ, τ1] by taking Θ∗ from Figure B.1,25 and by
setting τ1(0∗) = p(x1) and τ1(1∗) = x1. To show θ1 is a morphism, note that
Θ∗ is a CLT by inspection, that Θ is a CLT by assumption, and that τ1:X∗→X
by the definition of x1 and [c]. [cE] holds because E∗ = { 0∗1∗ } and because
τ1(0∗)τ1(1∗) = p(x1)x1 ∈ E. [cI] and [cL] hold because H∗ generates the discrete
topology.

Similarly define the tuple θ2 = [Θ∗, Θ, τ2] by taking Θ∗ from Figure B.1 and by
setting τ2(0∗) = p(x2) and τ2(1∗) = x2. By reasoning like the previous paragraph,
θ2 is a morphism (replace τ1 with τ2, x1 with x2, and [c] with [e]). Note [a] implies
τ1(1∗) 6= τ2(1∗), which implies θ1 6= θ2.

Thus it remains to show θ◦θ1 = θ◦θ2. By definition, this is equivalent to showing
[Θ∗, Θ′, τ◦τ1] = [Θ∗, Θ′, τ◦τ2], which is equivalent to showing τ◦τ1(0∗) = τ◦τ2(0∗)
and τ◦τ1(1∗) = τ◦τ2(1∗). For the first, note that the left-hand side by definition is
τ(p(x1)), which by [g] equals τ(p(x2)), which by definition is the right-hand side.
For the second, note that the left-hand side by definition is τ(x1), which by [b]
equals τ(x2), which by definition is right-hand side. 2

25Θ∗ must have at least two nodes because of [C1]’s assumption of nontriviality. Otherwise the
proof could be simpler.
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Lemma B.3. Suppose γ = [Γ, Γ ′, τ ] is a morphism. Then if ζ is injective, γ is
monic.

Proof. To prove the contrapositive, suppose γ is not monic. Then there are γ1

and γ2 such that γ1 6= γ2 and γ◦γ1 = γ◦γ2. The equality implies that γ1 and
γ2 have a common source. Denote that source Γ̇ . Thus τ1:Ẋ→X and τ2:Ẋ→X
satisfy τ1 6= τ2 and [a] τ◦τ1 = τ◦τ2. The inequality implies there is ẋ ∈ Ẋ such
that [b] τ1(ẋ) 6= τ2(ẋ). Further, since any node is in at least one run, there is

Ż ∈ Ż such that [c] ẋ ∈ Ż. Note [a] and two applications of Proposition 2.4(b)

imply ζ(ζ1(Ż)) = ζ(ζ2(Ż)). Thus Claim 2 below implies ζ is not injective. This
completes the proof.

Claim 1: τ1(ẋ) 6≺ τ2(ẋ) and τ1(ẋ) 6� τ2(ẋ). By symmetry, it suffices to show the
first. If τ1(ẋ) ≺ τ2(ẋ), then Proposition 2.1(b) for γ implies τ◦τ1(ẋ) ≺ τ◦τ2(ẋ),
which contradicts [a].

Claim 2: ζ1(Ż) 6= ζ2(Ż). To see this, suppose ζ1(Ż) = ζ2(Ż). Then the

definition of ζ implies P◦τ1(ṙ)∪τ1(Ż) = P◦τ2(ṙ)∪τ2(Ż), which by [c] im-

plies τ1(ẋ) ∈ P◦τ2(ṙ)∪τ2(Ż). On the one hand, suppose τ1(ẋ) ∈ P◦τ2(ṙ).
Then τ1(ẋ) ≺ τ2(ṙ). Meanwhile, ṙ 4̇ ẋ and Proposition 2.1(a) for γ2 imply
τ2(ṙ) 4 τ2(ẋ). The last two sentences imply τ1(ẋ) ≺ τ2(ẋ), which contra-

dicts Claim 1. On the other hand, suppose τ1(ẋ) ∈ τ2(Ż). Note [c] implies

τ2(ẋ) ∈ τ2(Ż). Further, since Ż is a path, [cE] for τ2 implies τ2(Ż) is a path.
Thus τ1(ẋ) and τ2(ẋ) belong to the same path, which implies the satisfaction of
τ1(ẋ) ≺ τ2(ẋ) or τ1(ẋ) = τ2(ẋ) or τ1(ẋ) � τ2(ẋ). This contradicts the combination
of [b] and Claim 1. 2

Lemma B.4. Suppose γ = [Γ, Γ ′, τ ] is a morphism. Then if γ is monic, ζ is
injective.

Proof. To prove the contrapositive, suppose ζ is not injective. Then there are
[∗1] X1 ∈ Z and [∗2] X2 ∈ Z such that [∗3] X1 6= X2 and [∗4] ζ(X1) = ζ(X2) (in
other contexts X1 and X2 would be denoted Z1 and Z2). Note [∗1] and [∗2] imply
X1 and X2 are paths. Let E1 and E2 be their respective edge sets.

Define the tuple Γ 1 = (X1, E1,H1, λ1, µ1, U1) by augmenting (X1, E1) with
the following. First define W 1 = π1E

1 and H1 = {{x1}|x1∈W 1}. Second define
λ1:E1→{b} by (∀x1y1∈E1) λ1(x1y1) = b. Third define µ1 = idW 1 (this unusual
construction will identify the player set I1 with the decision-node set W 1, as shown
in Claim 4(a) below). Finally define U1 = 〈U1

i1 :{X1}→R〉i1∈W 1 by (∀i1∈W 1)

U1
i1(X1) = 0. By inspection, the tuple Γ 1 is well-defined (Claim 4(b) will show it

is a game).
Define the tuple γ1 = [Γ 1, Γ, incX1,X ]. This tuple is well-defined since X1 ⊆ X

by [∗1] (Claim 6 will show the tuple is a morphism). Further, define δ =
(τ |X2,τ̄(X2))

−1τ |X1,τ̄(X1). Claim 2(c) will show δ is well-defined. Given δ, define

the tuple γ2 = [Γ 1, Γ, incX2,X◦δ]. This tuple is well-defined since X2 ⊆ X by [∗2]
(Claim 8 will show the tuple is a morphism).

After a series of claims, the proof will conclude by showing that γ is not
monic.

Claim 1: τ̄(X1) = τ̄(X2). The definition of ζ and [∗4] imply
[∗] P ′◦τ(r)∪τ̄(X1) = P ′◦τ(r)∪τ̄(X1). Since (∀x∈X) r 4 x, Proposition 2.1(a)
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implies (∀x∈X) τ(r) 4′ τ(x). Thus X1 ⊆ X implies P ′◦τ(r) and τ̄(X1) are dis-
joint. Similarly, X2 ⊆ X implies P ′◦τ(r) and τ̄(X2) are disjoint. Thus [∗] implies
the claim.

Claim 2: (a) τ |X1,τ̄(X1) is a graph isomorphism from the path X1 to the path

τ̄(X1). (b) τ |X2,τ̄(X2) is a graph isomorphism from the path X2 to the path τ̄(X2).

(c) δ is a (well-defined) graph isomorphism from the path X1 to the path X2. Part

(a) follows from Lemma B.1 at X̂ = X1. Part (b) follows from Lemma B.1 at

X̂ = X2. Part (c) follows from parts (a) and (b) and Claim 1.

Claim 3: (a) (X1, E1,H1, λ1) is a CLT. (b) Z1 = {X1}. For part (a), it suffices
to show that the tuple satisfies [C1]–[C4]. Part (b) will be shown en route.

Consider [C1]. By definition, (X1, E1) is a path. This implies (X1, E1) is an
out-tree. It also implies Z1 = {X1}, which proves (b). Further [∗1] and the
nontriviality in [C1] for Γ imply that X1 has at least two nodes. Thus (X1, E1) is
a nontrivial out-tree, which proves [C1].

[C2] follows immediately from the definition of H1. For [C3], recall X1 is a path,
which implies each element of X1 has exactly one immediate successor, which vac-
uously implies λ1 is deterministic. Further, λ1 is surjective by inspection. Finally,
[C4] holds vacuously because H1 generates the discrete topology.

Claim 4: (a) I1 = W 1. (b) Γ 1 is a game. For (a), recall I1 is the codomain of
µ1 by general definition. Thus the definition µ1 = idW 1 implies I1 = W 1. For (b), it
suffices to show that the tuple satisfies [G1]–[G3]. [G1] holds by Claim 3. For [G2],
µ1 is continuous becauseH1 generates the discrete topology for its domain. Further,
µ1 is surjective by inspection. Finally for [G3], Claim 3(b) and the definition of U1

implies U1 = 〈U1
i1 :Z→R〉i1∈W 1 , which by part (a) implies U1 = 〈U1

i1 :Z→R〉i1∈I1 .

Claim 5: [Θ1, Θ, incX1,X ] is a morphism. Θ1 is a CLT by Claim 3 and Θ is a
CLT by assumption. Thus it suffices to show that the tuple satisfies [cE], [cI], and
[cL]. For [cE], the definition of E1 implies that every edge in E1 is also in E. [cI]
and [cL] hold vacuously because H1 generates the discrete topology.

Claim 6: γ1 is a morphism. Γ 1 is a game by Claim 4(b) and Γ is a game by
assumption. Define ι1 = µ◦incW 1,W , and note ι1:I1→I by Claim 4(a). Thus it
suffices to show that the tuple γ1 satisfies [gZ], [gM] with ι1, and [gU] with ι1.
For [gZ], note [Θ1, Θ, incX1,X ] is a morphism by Claim 5. To show that it is end-
preserving, recall X1 is a path. If X1 is infinite, Θ1 has no end nodes, so end nodes
are preserved vacuously. If X1 is finite, the only end node in Θ1 is the end of X1,
which by [∗1] is also an end in Θ. For [gM], note

ι1◦µ1 = ι1◦idW 1 = µ◦incW 1,W ◦idW 1 = µ◦incW 1,W ,

where the first equality holds by the definition of µ1, the second holds by the
definition of ι1, and the third holds by inspection. The entire equality is [gM] with
ι1 by general definition. Finally, [gU] with ι1 holds vacuously because Claim 3(b)
shows Z1 is the singleton {X1}.

Claim 7: [Θ1, Θ, incX2,X◦δ] is a morphism. Θ1 is a CLT by Claim 3, Θ is a CLT
by assumption, and incX2,X◦δ :X1→X by Claim 2(c). Thus it suffices to show that
the tuple satisfies [cE], [cI], and [cL]. For [cE], take x1y1 ∈ E1. Then Claim 2(c)
implies δ(x1)δ(y1) ∈ E2, which by the definition of E2 implies δ(x1)δ(y1) ∈ E. [cI]
and [cL] hold vacuously because H1 generates the discrete topology.
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Claim 8: γ2 is a morphism. Γ 1 is a game by Claim 4(b), Γ is a game by as-
sumption, and incX2,X◦δ :X1→X by Claim 2(c). Define ι2 = µ◦(incX2,X◦δ)|W 1,W ,
and note ι2:I1→I by Claim 4(a). Thus it suffices to show that the tuple γ2 satisfies
[gZ], [gM] with ι2, and [gU] with ι2. For [gZ], note [Θ1, Θ, incX2,X◦δ] is a morphism
by Claim 7. To show that it is end-preserving, recall X1 is a path. If X1 is infinite,
Θ1 has no end nodes, so end nodes are preserved vacuously. If X1 is finite, the only
end node in Θ1 is the end of X1. Call this end node x1. Lemma 2(c) implies δ(x1)
is the end of X2. Thus [∗2] implies δ(x1) is an end node in Θ. For [gM], note

ι2◦µ1 = ι2◦idW 1 = µ◦(incX2,X◦δ)|W 1,W ◦idW 1 = µ◦(incX2,X◦δ)|W 1,W ,

where the first equality holds by the definition of µ1, the second holds by the
definition of ι2, and the third holds by inspection. The entire equality is [gM] with
ι2 by general definition. Finally, [gU] with ι2 holds vacuously because Claim 3(b)
shows Z1 is the singleton {X1}.

Claim 9: γ1 6= γ2. It suffices to show incX1,X 6= incX2,X◦δ. Thus it suffices
to show there is x1 ∈ X1 such that x1 6= δ(x1). Mechanically, [∗3] implies that
X1rX2 or X2rX1 is nonempty. In the first contingency, take [a] x1 ∈ X1rX2.
Then Claim 2(c) implies δ(x1) ∈ X2, which by [a] implies δ(x1) 6= x1. In the second
contingency, take x2 ∈ X2rX1. Thus [b] x2 ∈ X2 and [c] x2 /∈ X1. First, [b] and
Claim 2(c) imply there is [d] x1 ∈ X1 such that [e] δ(x1) = x2. Second, [c] and [e]
imply δ(x1) /∈ X1, which by [d] implies δ(x1) 6= x1.

Claim 10: γ◦γ1 = γ◦γ2. Claims 6 and 8 imply γ1 and γ2 are morphisms. Thus,
since γ1 and γ2 share the target Γ , the compositions are well-defined. Thus, since
γ1 and γ2 share the source Γ 1, it suffices to show τ◦incX1,X = τ◦incX2,X◦δ. This
equality is equivalent to each of the following by the definition of δ, by Claim 1,
and by Claim 2(a):

τ◦incX1,X = τ◦incX2,X◦(τ |X2,τ̄(X2))
−1◦τ |X1,τ̄(X1) ,

τ◦incX1,X = τ◦incX2,X◦(τ |X2,τ̄(X1))
−1◦τ |X1,τ̄(X1) , and

τ◦incX1,X◦(τ |X1,τ̄(X1))
−1 = τ◦incX2,X◦(τ |X2,τ̄(X1))

−1.

The last holds by inspection.

Conclusion. Claims 9 and 10 imply that γ is not monic. 2

Proof B.5 (for Proposition 3.1). (a). By inspection, the injectivity of τ is
sufficient. Lemma B.2 shows it is necessary. (b). Lemma B.3 shows the injectivity
of ζ is sufficient. Lemma B.4 shows it is necessary. 2

Lemma B.6. Suppose [Θ,Θ′, τ ] is a morphism and τ is injective. Then (∀x∈W )
αx is injective.

Proof. Take x ∈ W . It suffices to show that (∀a1∈F (x), a2∈F (x)) αx(a1) =
αx(a2) ⇒ a1 = a2. Toward that end, suppose a1 ∈ F (x) and a2 ∈ F (x) are such
that αx(a1) = αx(a2). Then the definition of αx implies λ′( τ(x) τ(n(x, a1)) ) =
λ′( τ(x) τ(n(x, a2)) ). Thus the determinism of λ′ from [C3] for Θ′ implies
τ(n(x, a1)) = τ(n(x, ax)). Thus the injectivity of τ implies n(x, a1) = n(x, a2).
Thus Lemma A.1(c) at xo = x implies a1 = a2. 2
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Lemma B.7. Suppose (X ′, E′) is a nontrivial out-tree and r ∈ W ′. Construct
(X,E) by the Selten definitions. Then the following hold.

(a) (X,E) is a nontrivial out-tree.
(b) W = W ′∩X.
(c) W ′rW ⊆ X ′rX.
(d) XrW ⊆ X ′rW ′.
Proof. (a). Since (X ′, E′) is an out-tree, the definitions of X and E immediately

imply (X,E) is a out-tree. Further, the assumption r ∈ W ′ implies E is nonempty,
which implies (X,E) is nontrivial.

(b). For the forward direction, note W ⊆ X by definition. Further, in steps,
the definition of E implies E ⊆ E′, which implies π1E ⊆ π1E

′, which by definition
implies W ⊆ W ′. Conversely, take x′ ∈ W ′∩X. Then [1] x′ ∈ W ′ and [2] x′ ∈ X.
Note [1] implies there is y′ ∈ X ′ such that [3] x′y′ ∈ E′. Further, in steps, [2] by the
definition of X implies r4′x′, which by [3] implies r4′y′, which by the definition
of X implies y′ ∈ X. This, [2], [3], and the definition of E imply x′y′ ∈ E, which
implies x′ ∈ W .

(c). In steps, W ′rW by part (b) is equal to W ′r(W ′∩X), which is equal to
W ′rX, which is a subset of X ′rX.

(d). In steps, XrW by part (b) is equal to Xr(W ′∩X), which is equal to
XrW ′, which is a subset of X ′rW ′. 2

Lemma B.8. Suppose (X ′, E′) is a nontrivial out-tree, H′ partitions W ′, and
r ∈ W ′. Construct (X,E,H) by the Selten definitions and assume [∗] (∀H ′∈H′)
H ′⊆X or H ′⊆X ′rX. Then the following hold.

(a) H generates the subspace topology for W that is implied by the topology for
W ′ generated by H′.

(b) H is a partition of W .

Proof. (a). Since W ⊆ W ′ by Lemma B.7(b), {H ′∩W 6=∅ |H ′∈H′ } gener-
ates the subspace topology for W . In steps, this collection by Lemma B.7(b)
is equal to {H ′∩W ′∩X 6=∅ |H ′∈H′ }, which by H′ partitioning W ′ is equal to
{H ′∩X 6=∅ |H ′∈H′ }, which by [∗] is equal to {H ′∈H′ |H ′⊆X }, which by Selten
definition is equal to H.

(b). Part (a) implies ∪H = W . Thus it remains to show that H is pairwise
disjoint and that each element of H is nonempty. These facts hold because H ⊆ H′
by the Selten definition of H, and because H′ is a partition by assumption. 2

Lemma B.9. Suppose (X ′, E′) is a nontrivial out-tree, λ′:E′→A′ is determinis-
tic and surjective, and r ∈ W ′. Construct (X,E, λ) by the Selten definitions. Then
the following hold.

(a) (∀x∈W ) F (x) = F ′(x).
(b) (∀(x, a)∈F gr) n(x, a) = n′(x, a).

Proof. (a). Take x ∈ W . This implies [1] x ∈ X, which by the definition of X
implies [2] r 4′ x. In steps, a ∈ F (x) by the construction of F is equivalent to
(∃y∈X) xy∈E and a=λ(xy), which by the definition of λ is equivalent to (∃y∈X)
xy∈E and a=λ′(xy), which by [1] and the definition of E is equivalent to (∃y∈X)
xy∈E′ and a=λ′(xy), which by the definition of X is equivalent to [3] (∃y′∈X ′)
r4′y′ and xy′∈E′ and a=λ′(xy′). Within [3], r4′y′ is redundant because it is
implied by [2] and xy′∈E′. Thus [3] is equivalent to (∃y′∈X ′) xy′∈E′ and a=λ′(xy′),
which by the construction of F ′ is equivalent to a ∈ F ′(x).
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(b). Take (x, a) ∈ F gr. Then part (a) implies (x, a) ∈ F ′ gr, which implies n′(x, a)
is well-defined. In steps, the definition of n implies a = λ(xn(x, a) ), which by the
Selten definition of λ′ implies a = λ′(xn(x, a) ), which by the definition of n′ implies
n′(x, a) = n(x, a). 2

Lemma B.10. Suppose that Θ′ is a CLT and construct Θ by the Selten defini-
tions at r ∈ W ′. Then Θ is a CLT iff [∗] (∀H ′∈H′) H ′⊆X or H ′⊆X ′rX.

Proof. This follows from Claims 1 and 2.

Claim 1: Suppose Θ is a CLT. Then [∗] holds. To prove the contrapositive,
suppose [∗] is false. Then there is [a] H ′ ∈ H′ such that both H ′∩X and H ′rX
are nonempty. The nonemptiness of H ′rX and the Selten definition of H imply
that [b] H ′ /∈ H. The nonemptiness of H ′∩X implies there is [c] x ∈ X such that
[d] x ∈ H ′.

Because H′ is a partition, and because H ⊆ H′ by the Selten definition of H, the
sets ∪H and ∪(H′rH) are disjoint. Further, [a] and [b] imply H ′ ∈ H′rH, which
by [d] implies x ∈ ∪(H′rH), which by the previous sentence implies [e] x /∈ ∪H.
Yet [a], [d], and [C2] for Θ′ imply x ∈ W ′, which by [c] implies x ∈ W ′∩X, which
by Lemma B.7(b) implies x ∈ W . This and [e] contradict [C2] for Θ.

Claim 2: Suppose [∗] holds. Then Θ is a CLT. It suffices to show that Θ satisfies
[C1]–[C4]. [C1] follows from Lemma B.7(a). [C2] follows from Lemma B.8(b).

For [C3], recall λ = λ′|E,λ′(E) by the Selten definition. Thus λ is surjective by

definition. Further, λ is deterministic because (i) λ′ is deterministic by [C3] for Θ′

and (ii) a restriction of a deterministic labeling function is deterministic.
For [C4], it suffices to show that F is constant over each H ∈ H. To see this,

take H ∈ H. Then the Selten definition of H implies H ∈ H′, which by [C4] for Θ′

implies F ′ is constant over H, which by Lemma B.9(a) implies F is constant over
H. 2

Lemma B.11. Suppose that Γ ′ is a game and that the Selten subCLT at r ∈ W ′
exists. Then the Selten subgame of Γ ′ at r is well-defined.

Proof. It suffices to show that Γ satisfies [G1]–[G3]. [G1] holds by assumption.
For [G2], recall µ = µ′|W,µ′(W ) by the Selten definition. Thus µ is surjective by

definition. Further, µ is continuous because (i) µ′ is continuous by [G2] for Γ ′, (ii)
a restriction of a continuous function is continuous from the subspace topology by
general topology, and (iii) H generates the subspace topology by Lemma B.8(a).

For [G3], it suffices to show (∀i∈I, Z∈Z) Ui(Z) ∈ R. Toward that end, take
i ∈ I and Z ∈ Z. The definition of P ′ implies P ′(r)∪{r} is the path from r′ to r,
and the Selten definition of X implies Z is either an infinite path from r or a finite
path from r to an end node of (X ′, E′). Thus the concatenation P ′(r)∪Z is either
an infinite path from r′ or a finite path from r′ to an end node of (X ′, E′). Thus
P ′(r)∪Z ∈ Z ′, which by [G3] for Γ ′ implies U ′i(P

′(r)∪Z) ∈ R, which by the Selten
definition of Ui implies Ui(Z) ∈ R. 2

Lemma B.12.

(a) Θ is a Selten subCLT of Θ′ iff (i) [Θ,Θ′, incX,X′ ] is a morphism with α =
〈idF (x)〉x∈W , (ii) X = { y′∈X ′ | r<′y′ }, and (iii) H ⊆ H′.

(b) Γ is a Selten subgame of Γ ′ iff (i∗) [Γ, Γ ′, incX,X′ ] is a morphism with α =
〈idF (x)〉x∈W and ι = incI,I′ , (ii) X = { y′∈X ′ | r<′y′ }, (iii) H ⊆ H′, and (iv) U =
〈U ′i◦ζ〉i∈I .
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Proof. Part (a) holds by Claims 1 and 3. Part (b) holds by Claims 2 and 4.

Claim 1: Suppose Θ is a Selten subCLT of Θ′. Then [Θ,Θ′] satisfies (i)–(iii).
The Selten definitions of X and H implies (ii) and (iii).

Derive α from the tuple [Θ,Θ′, incX,X′ ]. To see that α = 〈idF (x)〉x∈W , take
x ∈ W . By the definition of αx, αx:F (x)→F ′(τ(x)). Note F ′(τ(x)) reduces to
F ′(x), which by Lemma B.9(a) is equal to F (x). Thus it remains to show that
(∀a∈F (x)) αx(a) = a. Toward that end, take a ∈ F (x). In steps, αx(a) by defini-
tion is equal to λ′( τ(x) τ(n(x, a)) ), which reduces to λ′(xn(x, a) ), which by the
Selten definition of λ is equal to λ(xn(x, a) ), which by Lemma A.1(c) is a.

Finally, to see (i), it suffices to show that the tuple [Θ,Θ′, incX,X′ ] satisfies [cE],
[cI], and [cL]. First, [cE] reduces to (∀xy∈E) xy ∈ E′, which holds by the Selten
definition of E. Second, [cI] reduces to the continuity of incW,W ′ , which holds by
Lemma B.8(a). Finally, [cL] by the previous paragraph reduces to the continuity
of 〈idF (x)〉x∈W from W , which is equivalent to the continuity of 〈F (x)〉x∈W from
W , which is [C4] for Θ.

Claim 2: Suppose Γ is a Selten subgame of Γ ′. Then [Γ, Γ ′] satisfies (i∗), (ii),
(iii), and (iv). Claim 1 implies (ii) and (iii). Thus it suffices to prove (i∗) and (iv).

Note [a] I ⊆ I ′ because I by general definition is the codomain of µ, which by
Selten definition is the codomain of µ′|

W,µ′(W )
, which is a subset of the codomain

of µ′, which by general definition is I ′. Note [a] implies incI,I′ is well-defined. Thus,
for (i∗), it suffices to show that [gZ] holds with α = 〈idF (x)〉x∈W , that [gM] holds
with ι = incI,I′ , and that [gU] holds with ι = incI,I′ . These three statements and
(iv) are proved in the following four paragraphs.

First, consider [gZ] with α = 〈idF (x)〉x∈W . Claim 1 implies (i), which states that
[Θ,Θ′, incX,X′ ] is a morphism with α = 〈idF (x)〉x∈W . In addition, Lemma B.7(d)
implies [Θ,Θ′, incX,X′ ] is end-preserving.

Second, consider [gM] with ι = incI,I′ . This reduces to (∀x∈W ) µ(x) = µ′(x),
which follows from the Selten definition of µ.

Third, consider (iv). Take i ∈ I. Since Ui:Z→R by [G3] for Γ , it suffices to
show (1) U ′i◦ζ:Z→R is well-defined and (2) (∀Z∈Z) Ui(Z) = U ′i(ζ(Z)). For (1),
note [a] implies i ∈ I ′, which by [G3] for Γ ′ implies U ′i :Z ′→R. Thus it suffices
that ζ:Z→Z ′ by general definition. For (2), take Z ∈ Z. Then Ui(Z) by Selten
definition is U ′i(P (r)∪Z), which by the general definition of ζ is U ′i(ζ(Z)).

Fourth, consider [gU] with ι = incI,I′ . This reduces to (∀i∈I, Z1∈Z, Z2∈Z)
Ui(Z1) ≥ Ui(Z2) ⇒ U ′i◦ζ(Z1)) ≥ U ′i◦ζ(Z2), which follows immediately from (iv).

Claim 3: Suppose [Θ,Θ′] satisfies (i)–(iii). Then Θ is a Selten subCLT of Θ′.
Assumption (i) and Proposition 2.1(e) imply W ⊆ W ′, which implies r ∈ W ′. Fur-
ther, (i) implies Θ is the source of a morphism, which easily implies Θ is a CLT.
Thus it suffices to show that Θ satisfies the Selten definitions for X, E, H, and λ.
The Selten definition for X is the same as (ii), which is assumed.

The Selten definition for E is E = {x′y′∈E′ | {x′, y′}⊆X }. To show this,
start with the observation that (i) and [cE] imply [a] E ⊆ E′. Next, for the
forward direction, take xy ∈ E. Then [a] implies xy ∈ E′, and [C1] for Θ eas-
ily implies {x, y} ⊆ X. Then, for the reverse direction, take [b] x′y′ ∈ E′ such
that [c] {x′, y′} ⊆ X. By [C1] for Θ, (X, E) is an unoriented tree, where E =
{ {x, y} |xy∈E }. Similarly by [C1] for Θ′, (X ′, E ′) is an unoriented tree, where
E ′ = { {x′, y′} |x′y′∈E′ }. [a] implies [d] E ⊆ E ′. Further, by [c] and the definition
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of a tree, the nodes x′ and y′ are linked by a path (X∗, E∗) in (X, E). Thus by [d],
x′ and y′ are linked by the path (X∗, E∗) in (X ′, E ′). Meanwhile, [b] implies that x′

and y′ are also linked by the one-edge path ({x′, y′}, {{x′, y′}}) in (X ′, E ′). Since
any two nodes in a tree a linked by a unique path, (X∗, E∗) = ({x′, y′}, {{x′, y′}}).
Thus since (X∗, E∗) was defined to be a path in (X, E), ({x′, y′}, {{x′, y′}}) is a
path in (X, E). Hence {x′, y′} ∈ E . Thus the definition of E implies x′y′ ∈ E or
y′x′ ∈ E. Thus it suffices to show y′x′ /∈ E. To see this, note [b] and the definition
of an oriented tree imply y′x′ /∈ E′, which by [a] implies y′x′ /∈ E.

The Selten definition forH isH = {H ′∈H′ |H ′⊆X }. To show the forward direc-
tion, take H ∈ H. Then (iii) implies H ∈ H′. Further, [C2] for Θ implies H ⊆ W ,
which implies H ⊆ X. Conversely, take [e] H ′ ∈ H′ such that [f] H ′ ⊆ X. In steps,
[e] by [C2] for Θ′ implies H ′ ⊆ W ′, which by [f] implies H ′ ⊆ X∩W ′, which by
Lemma B.7(b) and the preceding two paragraphs impliesH ′ ⊆ W , which by [C2] for
Θ implies [g] H ′ ⊆ ∪H. Meanwhile, since H ⊆ H′ by (iii), and since both H and H′
are partitions by [C2] for Θ and [C2] for Θ′, H′ = H ∪ {H ′∈H′|H ′⊆(∪H′)r(∪H)}.
Thus [e] and [g] imply H ′ ∈ H.

The Selten definition for λ is λ = λ′|E,λ′(E). To show this, first note that the

domain of λ is E by [C3] for Θ. Thus, the domain of λ equals the domain of
λ′|E,λ′(E). Further, to show that the graph of λ equals the graph of λ′|E,λ′(E), it

suffices to show that (∀xy∈E) λ(xy) = λ′(xy). Toward that end, take xy ∈ E. In
steps, λ(xy) by the definition of F is equal to idF (x)(λ(xy)), which by (i)’s action-
transformation statement is equal to αx(λ(xy)), which by (i) and Proposition 2.1(f)
is equal to λ′(τ(x)τ(y)), which by (i) reduces to λ′(xy). Finally, λ is surjective by
[C3] for Θ and λ′|E,λ′(E) is surjective by construction. Thus, since their graphs are

equal, the codomain of λ is equal to the codomain of λ′|E,λ′(E).

Claim 4: Suppose [Γ, Γ ′] satisfies (i∗), (ii), (iii), and (iv). Then Γ is a Selten
subgame of Γ ′. Note (i∗) and [gZ] imply (i). Thus (ii), (iii), and Claim 3 imply
that Θ is a Selten subCLT of Θ′. Hence it remains to show that Γ satisfies the
Selten definitions for µ and U .

The Selten definition for µ is µ = µ′|W,µ′(W ). To show this, first note that the

domain of µ is W by [G2] for Γ . Thus, the domain of µ equals the domain of
µ′|W,µ′(W ). Further, (i∗) and [gM] imply (∀x∈W ) µ(x) = µ′(x). Thus the graph

of µ equals the graph of µ′|W,µ′(W ). Finally, µ is surjective by [G2] for Γ , and

µ′|W,µ′(W ) is surjective by construction. Thus, since their graphs are equal, the

codomain of µ is equal to the codomain of µ′|W,µ′(W ).

The Selten definition for U is (a) U = 〈Ui:Z→R〉i∈I and (b) (∀i∈I, Z∈Z)
Ui(Z) = U ′i(P

′(r)∪Z). To show (a), take i ∈ I. Then (iv) implies Ui = U ′i◦ζ.
The domain of ζ is Z by the definition of ζ, and the codomain of U ′i is R by [G3]
for Γ ′. To show (b), take i ∈ I and Z ∈ Z. Then Ui(Z) by (iv) is equal to U ′i(ζ(Z)),
which by the definition of ζ is equal to U ′i(P

′(r)∪Z). 2

Proof B.13 (for Theorem 3.2). (a). This is equivalent to Lemma B.12(a). In
particular, the theorem’s (i) implies the lemma’s (i) by inspection. The converse
holds because incX,X′ is an injective τ , which by Proposition 3.1(a) implies [Θ,Θ′, τ ]
is monic. Finally by inspection, the theorem’s (ii) and (iii) are the same as the
lemma’s (ii) and (iii).

(b). This is equivalent to Lemma B.12(b). In particular, the theorem’s (i∗)
implies the lemma’s (i∗). The converse holds because incX,X′ is an injective τ ,
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which implies an injective ζ, which by Proposition 3.1(b) implies that [Γ, Γ ′, τ ] is
monic. Finally by inspection, the theorem’s (ii)–(iv) are the same as the lemma’s
(ii)–(iv). 2

Appendix C. For Isomorphisms

Lemma C.1. Suppose that (X,E) and (X ′, E′) are nontrivial out-trees, that
τ :X→X ′ is a bijection, and that { τ(x)τ(y) |xy∈E } ⊆ E′. Then the following
hold.

(a) E 3 xy 7→ τ(x)τ(y) ∈ E′ is a bijection.26

(b) (∀x∈X, y∈X) x 4 y ⇔ τ(x) 4′ τ(y).
(c) (∀x∈X, y∈X) x ≺ y ⇔ τ(x) ≺′ τ(y).
(d) τ(r) = r′.
(e) (∀y∈X) τ̄(P (y)) = P ′(τ(y)).
(f) τ |W,W ′ is a bijection.
(g) τ |XrW,X′rW ′ is a bijection.
(h) τ̄ |Z,Z′ is a bijection.

Proof. For part (a), it suffices to show that { τ(x)τ(y) |xy∈E } ⊇ E′.
To begin, define E = { {x, y} |xy∈E }, E ′ = { {x′, y′} |x′y′∈E′ }, and

Eτ = { {τ(x), τ(y)} |xy∈E }.
The assumption { τ(x)τ(y) |xy∈E } ⊆ E′ implies [1] Eτ ⊆ E ′. Also, because
(X ′, E′) is an out-tree, [2] (X ′, E ′) is an unoriented tree. Also, because (X,E)
is an out-tree, (X, E) is an unoriented tree, which by the bijectivity of τ implies
[3] (X ′, Eτ ) is an unoriented tree. Together, [1]–[3] state that (X ′, Eτ ) is an unori-
ented tree within the unoriented tree (X ′, E ′). This implies [4] Eτ = E ′ because
one cannot add an edge to an unoriented tree without also adding a node (Diestel
2012, Theorem 1.5.1).

Now take [5] x′y′ ∈ E′. Then {x′, y′} ∈ E ′, which by [4] implies {x′, y′} ∈ Eτ ,
which by definition implies there is [6] xy ∈ E such that [7] {τ(x), τ(y)} = {x′, y′}.
Further, [5] implies x′ 6= y′, which by [7] implies [8] τ(x)τ(y) = x′y′ or [9] τ(x)τ(y) =
y′x′. [6] and [8] would complete the proof. Thus it suffices to show that [9] is
impossible.

Toward that end, suppose [9]. Then [6] and the assumption
{ τ(x)τ(y) |xy∈E } ⊆ E′ imply τ(x)τ(y) ∈ E′, which by [9] implies y′x′ ∈ E′,
which by [5] contradicts (X ′, E′) being an out-tree.

Parts (b)–(h) follow by inspection from part (a). 2

Lemma C.2. Suppose [Θ,Θ′, τ ] is a morphism and τ is bijective. Then the
following hold.

(a) (∀x∈W ) αx is bijective.
(b) [Θ,Θ′, τ ] is end-preserving and ζ = τ̄ |Z,Z′ .
Proof. (a). Take x ∈ W . Since Lemma B.6 shows αx is injective, it suffices

to show that αx is surjective. Thus, since αx:F (x)→F ′(τ(x)) by definition, it
suffices to show αx(F (x)) ⊇ F ′(τ(x)). Toward that end, take a′ ∈ F ′(τ(x)). By the
definition of F ′, there is y′ ∈ X ′ such that a′ = λ′( τ(x) y′ ). Thus by the bijectivity
of τ , there is y ∈ X such that a′ = λ′( τ(x) τ(y) ). Thus Proposition 2.1(f) implies

26This is equivalent to (X,E) and (X′, E′) being graph-isomorphic.
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[1] a′ = αx(λ(xy)). Meanwhile, the definition of F implies λ(xy) ∈ F (x). So [1]
implies a′ ∈ αx(F (x)).

(b). Lemma C.1(g) implies [Θ,Θ′, τ ] is end-preserving. Recall ζ:Z→Z ′ is defined
by ζ(Z) = P ′◦τ(r)∪τ̄(Z). Lemma C.1(d) implies P ′◦τ(r) = ∅. Thus ζ = τ̄ |Z,Z′ .
2

Lemma C.3. Suppose [Γ, Γ ′, τ ] is a morphism and τ |W,W ′ is bijective. Then ι
is surjective.

Proof. Since ι:I→I ′ by the definition of a morphism, it suffices to show that
ῑ(I) ⊇ I ′. Toward that end, take i′ ∈ I ′. By the definition of I ′ and [G2] for Γ ′,
there is x′ ∈ W ′ such that [1] µ′(x′) = i′. By the bijectivity of τ |W,W ′ there is
x ∈ W such that [2] τ(x) = x′. Since µ(x) ∈ I by the definition of I, it suffices to
show that ι(µ(x)) = i′. In steps, ι(µ(x)) by [gM] for [Γ, Γ ′, τ ] is equal to µ′(τ(x)),
which by [2] is equal to µ′(x′), which by [1] is equal to i′. 2

Proof C.4 (for Proposition 4.1). (a) follows from Claims 1 and 3. (b) follows
from Claims 2 and 4.

Claim 1: Suppose [Θ,Θ′, τ ] is an isomorphism. Then the following hold.
(a) τ is a bijection.
(b) The inverse is [Θ′, Θ, τ−1].
(c) τ |W,W ′ is a homeomorphism.
(d) (∀x∈W ) αx is a bijection.
(e) The inverse’s action transformation is 〈α−1

τ−1(x′)〉x′∈W ′ .
(a) and (b) hold by inspection. For (c), note τ |W,W ′ is a bijection by (a) and

Lemma C.1(f). Then, τ |W,W ′ is continuous by [cI] for [Θ,Θ′, τ ], and (τ |W,W ′)−1 is
continuous by (b) and [cI] for [Θ′, Θ, τ−1].

For (d) and (e), let 〈α∗x′〉x′∈W ′ be the action transformation of [Θ′, Θ, τ−1]. Since
τ |W,W ′ is bijective by (c), it suffices for both (d) and (e) to show 〈α∗x′〉x′∈W ′ =

〈α−1
τ−1(x′)〉x′∈W ′ . First note (b) implies [Θ′, Θ, τ−1]◦[Θ,Θ′, τ ] = idΘ, which by

Proposition 2.2(b) and Lemma A.5 implies [1] 〈α∗τ(x)◦αx〉x∈W = 〈idF (x)〉x∈W . Sec-

ond note (b) implies [Θ,Θ′, τ ]◦[Θ′, Θ, τ−1] = idΘ′ , which by Proposition 2.2(b)
and Lemma A.5 implies [2] 〈ατ−1(x′)◦α∗x′〉x′∈W ′ = 〈idF ′(x′)〉x′∈W ′ . It suffices to

show (∀x′∈W ′) α∗x′ = α−1
τ−1(x′). Toward that end, take x′ ∈ W ′. By definition,

α∗x′ :F
′(x′)→F (τ−1(x′)), and by the definition of 〈αx:F (x)→F ′(τ(x))〉x∈W at x =

τ−1(x′), ατ−1(x′):F (τ−1(x′))→F ′(x′). Further, [2] implies ατ−1(x′)◦α∗x′ = idF ′(x′),

and [1] at x = τ−1(x′) implies α∗x′◦ατ−1(x′) = idF (τ−1(x′)). Hence α∗x′ = α−1
τ−1(x′).

Claim 2: Suppose [Γ, Γ ′, τ ] is an isomorphism. Then the following hold.
(a) τ is a bijection.
(b) The inverse is [Γ ′, Γ, τ−1].
(c) τ |W,W ′ is a homeomorphism.
(d) ζ is the bijection τ̄ |Z,Z′ .
(e) The inverse’s run transformation is ζ−1.
(f) ι is a bijection.
(g) The inverse’s player transformation is ι−1.
(h) (∀i∈I, Z1∈Z, Z2∈Z) Ui(Z1) ≥ Ui(Z2) ⇔ U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2).

(a) and (b) hold by inspection. (c) holds by Claim 1(c) (and Proposition 2.5’s
forgetful functor).
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For (d) and (e), note (a) and Lemma C.2(b) imply that [1] ζ = τ̄ |Z,Z′ . Sym-
metrically, since (b) implies [Θ′, Θ, τ−1] is a morphism, Lemma C.2(b) implies

that [2] [Θ′, Θ, τ−1]’s run transformation is τ−1|Z′,Z . In addition, (a) implies that

[3] τ̄ |Z,Z′ and τ−1|Z′,Z are inverses. [1] and [3] imply (d). Further, [1] and [3]

imply ζ and τ−1|Z′,Z are inverses, which by [2] implies ζ−1 is [Θ′, Θ, τ−1]’s run
transformation, which by (b) implies (e).

For (f) and (g), let ι∗ be the player transformation of [Γ ′, Γ, τ−1]. It suffices for
(f) and (g) to show ι∗ = ι−1. (b) implies [Θ′, Θ, τ−1]◦[Θ,Θ′, τ ] = idΘ, which by
Proposition 2.4(b) and Lemma A.9 implies [1] ι∗◦ι = idI . Similarly, (b) implies
[Θ,Θ′, τ ]◦[Θ′, Θ, τ−1] = idΘ′ , which by Proposition 2.4(b) and Lemma A.9 implies
[2] ι◦ι∗ = idI′ . Since ι:I→I ′ and ι∗:I ′→I, [1] and [2] imply ι∗ = ι−1.

For (h), take i ∈ I, Z1 ∈ Z, and Z2 ∈ Z. First assume Ui(Z1) ≥ Ui(Z2).
Then [gU] for [Γ, Γ ′, τ ] implies U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2). Conversely, suppose

U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2). Then (g), (e), and [gU] for [Γ ′, Γ, τ−1] at i′ = ι(i),

Z ′1 = ζ(Z1), and Z ′2 = ζ(Z2) imply

Uι−1◦ι(i)◦ζ−1◦ζ(Z1) ≥ Uι−1◦ι(i)◦ζ−1◦ζ(Z2).

This reduces to Ui(Z1) ≥ Ui(Z2).

Claim 3: Suppose [Θ,Θ′, τ ] is a morphism, τ is a bijection, and τ |W,W ′ is a
homeomorphism. Then the inverse of [Θ,Θ′, τ ] is [Θ′, Θ, τ−1].

By inspection, it suffices to show that [Θ′, Θ, τ−1] is a morphism. Thus it suf-
fices to show that [Θ′, Θ, τ−1] satisfies [cE], [cI], and [cL]. [cE] for [Θ′, Θ, τ−1]
is (∀x′y′∈E′) τ−1(x′)τ−1(y′) ∈ E, which follows from Lemma C.1(a). [cI] for
[Θ′, Θ, τ−1] is the continuity of τ−1|W ′,W , which follows from τ |W,W ′ being a home-
omorphism.

To show 〈α−1
τ−1(x′)〉x′∈W ′ is the action transformation of [Θ′, Θ, τ−1], it suffices

by definition to show

(∀x′∈W ′, a′∈F ′(x′)) α−1
τ−1(x′)(a

′) = λ( τ−1(x′) τ−1(n′(x′, a′)) ).

Thus, since τ |W,W ′ is a bijection, it suffices to show

(∀x∈W,a′∈F ′(τ(x))) α−1
x (a′) = λ( x τ−1(n′(τ(x), a′)) ).

Thus, since each αx:F (x)→F ′(τ(x)) is a bijection by Lemma C.2(a), it suffices to
show

(∀x∈W,a∈F (x)) a = λ( x τ−1(n′(τ(x), αx(a))) ).

Take x ∈ W and a ∈ F (x). In steps, a by Lemma A.1(c) is equal to λ(xn(x, a) ),
which is equal to λ(x τ−1(τ(n(x, a))) ), which by Proposition 2.1(g) is equal to
λ(x τ−1(n′(τ(x), αx(a))) ).

By the previous paragraph, [cL] is equivalent to the continuity of 〈α−1
τ−1(x′)〉x′∈W ′

from W ′. Since τ |W,W ′ is a homeomorphism, this is equivalent to the continuity
of 〈α−1

x 〉x∈W from W , which is equivalent to the continuity of 〈αx〉x∈W from W ,
which is implied by [cL] for [Θ,Θ′, τ ].

Claim 4: Suppose [Γ, Γ ′, τ ] is a morphism, τ is bijective, τ |W,W ′ is a
homeomorphism, ι is injective, and (∀i∈I, Z1∈Z, Z2∈Z) Ui(Z1) ≥ Ui(Z2) ⇔
U ′ι(i)◦ζ(Z1) ≥ U ′ι(i)◦ζ(Z2). Then [Γ, Γ ′, τ ] is an isomorphism.
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It suffices to show that [Γ ′, Γ, τ−1] is a morphism. Toward that end, note that
the injectivity of ι and Lemma C.3 imply that ι is bijective. Hence it suffices to
show that [Γ ′, Γ, τ−1] satisfies [gZ], [gM] with ι−1, and [gU] with ι−1.

First, [gZ] for [Γ ′, Γ, τ−1] is that [Θ′, Θ, τ−1] is an end-preserving morphism.
[Θ′, Θ, τ−1] is a morphism by Claim 3, and it is end-preserving by Lemma C.1(g).

Second, [gM] for [Γ ′, Γ, τ−1] with ι−1 is ι−1◦µ′ = µ◦τ−1|W ′,W . In steps,
[gM] for [Γ, Γ ′, τ ] is ι◦µ = µ′◦τ |W,W ′ , which by the bijectivity of ι implies µ =
ι−1◦µ′◦τ |W,W ′ , which by the bijectivity of τ |W,W ′ implies µ◦τ−1|W ′,W = ι−1◦µ′.

Finally, consider [gU] for [Γ ′, Γ, τ−1] with ι−1. Lemma C.2(b) implies [a] ζ =
τ̄ |Z,Z′ . Thus ζ is bijective. Since ι is also bijective, the claim’s last assumption can
be rewritten as

(∀i′∈I ′, Z ′1∈Z ′, Z ′2∈Z ′)
Uι−1(i′)◦ζ−1(Z ′1) ≥ Uι−1(i′)◦ζ−1(Z ′2) ⇔ U ′i′(Z

′
1) ≥ U ′i′(Z

′
2).

Thus it suffices to show that the reverse direction of this biconditional is [gU] for
[Γ ′, Γ, τ−1] with ι−1. For this, it suffices to show that ζ−1 is the run transformation
of [Γ ′, Γ, τ−1]. Lemma C.2(b) implies that the run transformation of [Θ′, Θ, τ−1] is

equal to τ−1|Z′,Z , which by [a] is equal to ζ−1. 2

Proof C.5 (for Proposition 4.2). By the forward direction of Proposition 4.1(a),
τ is bijective. Thus Lemma C.1(a–e,g) imply (a–e,f) here. (Lemma C.1(f,h) has
been incorporated into the statement of Proposition 4.1.) 2

Proof C.6 (for Theorem 4.3). (a). To show that S 3 s 7→
〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ∈ S′ is well-defined, take s ∈ S. By the definition of
S′, it suffices to show that

〈ατ−1(x′)(s(τ
−1(x′))) 〉x′∈W ′ is continuous from W ′, and(1)

(∀x′∈W ′) ατ−1(x′)(s(τ
−1(x′))) ∈ F ′(x′).(2)

For (2), take x′ ∈ W ′. The forward direction of Proposition 4.1(b) im-
plies τ |W,W ′ is bijective, which implies τ−1(x′) ∈ W , which by the def-
inition of S implies s(τ−1(x′)) ∈ F (τ−1(x′)). Thus it suffices to show
ατ−1(x′):F (τ−1(x′))→F ′(x′). This holds since the definition of ατ−1(x′) implies

ατ−1(x′):F (τ−1(x′))→F ′(τ(τ−1(x′))), and since F ′(τ(τ(−1(x′)))) = F ′(x′). For (1),

it suffices to show that (∀H ′∈H′) ατ−1(x′)(s(τ
−1(x′))) is constant over x′ ∈ H ′.

Take H ′ ∈ H′. The forward direction of Proposition 4.1(a) implies τ |W,W ′ is a
homeomorphism, which implies [a] τ−1(H ′) ∈ H. Since s is continuous by the defi-
nition of S, [a] implies that [b] the source action s(τ−1(x′)) is constant over x′ ∈ H ′.
Further, [a] and [cL] for [Θ,Θ′, τ ] imply that [c] the function ατ−1(x′) is constant

over x′ ∈ H ′. Finally, [b] and [c] imply that the target action ατ−1(x′)(s(τ
−1(x′)))

is constant over x′ ∈ H ′.
Conversely, to show that S 3 〈α−1

x (s′(τ(x))) 〉x∈W 7→s′ ∈ S′ is well-defined,

first note that each α−1
x exists because each αx is bijective by Proposition 4.1(a).

Next take s′ ∈ S′. By the definition of S, it suffices to show that

〈α−1
x (s′(τ(x))) 〉x∈W is continuous from W , and(1)

(∀x∈W ) α−1
x (s′(τ(x))) ∈ F (x).(2)

For (2), take x ∈ W . Since τ(x) ∈ W ′ by Proposition 2.1(e), the definition
of S′ implies s′(τ(x)) ∈ F ′(τ(x)). Since α−1

x :F ′(τ(x))→F (x) by the definition
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of αx, this implies α−1
x (s′(τ(x))) ∈ F (x). For (1), it suffices to show that

(∀H∈H) α−1
x (s′(τ(x))) is constant over x ∈ H. Take H ∈ H. The forward di-

rection of Proposition 4.1(a) implies τ |W,W ′ is a homeomorphism, which implies
[a] τ(H) ∈ H′. Since s′ is continuous by the definition of S′, [a] implies that [b] the
target action s′◦τ(x) is constant over x ∈ H. Further, [cL] for [Θ,Θ′, τ ] implies
that [c] the function α−1

x is constant over x ∈ H. Finally, [b] and [c] imply that the
source action α−1

x (s′(τ(x))) is constant over x ∈ H.
To show that the first function followed by the second function is idS , take s ∈ S.

Then

〈α−1
x ( ατ−1(x′)(s(τ

−1(x′)))|x′=τ(x) ) 〉x∈W
= 〈α−1

x (αx(s(x))) 〉x∈W = 〈 s(x) 〉x∈W = s.

Further, to show that the second function followed by the first function is idS′ , take
s′ ∈ S′. Then

〈ατ−1(x′)( α
−1
x (s′(τ(x)))|x=τ−1(x′) ) 〉x′∈W ′

= 〈ατ−1(x′)( α
−1
τ−1(x′)(s

′(x′))) 〉x′∈W ′ = 〈 s′(x′) 〉x′∈W ′ = s′.

(b). Take s ∈ S. By the definition of o, [1] o(s) ∈ Z and [2] (∀x∈W∩o(s))
n(x, s(x)) ∈ o(s). Recall Proposition 4.1(b) shows ζ = τ̄ |Z,Z′ . Thus [1] implies
[3] ζ(o(s)) = τ̄(o(s)) and [4] ζ(o(s)) ∈ Z ′. Meanwhile, [2] implies

(∀x∈W∩o(s)) τ(n(x, s(x))) ∈ τ̄(o(s)),

(∀x∈W∩o(s)) n′( τ(x), αx(s(x)) ) ∈ τ̄(o(s)),

(∀x∈W∩o(s)) n′( τ(x), ατ−1(τ(x))(s(τ
−1(τ(x)))) ) ∈ τ̄(o(s)),

(∀x′∈τ̄(W∩o(s))) n′(x′, ατ−1(x′)(s(τ
−1(x′))) ) ∈ τ̄(o(s)),

(∀x′∈W ′∩τ̄(o(s))) n′(x′, ατ−1(x′)(s(τ
−1(x′))) ) ∈ τ̄(o(s)), and

(∀x′∈W ′∩ζ(o(s))) n′(x′, ατ−1(x′)(s(τ
−1(x′))) ) ∈ ζ(o(s)),

where the second statement follows from the first by Proposition 2.1(g), where
the fifth follows from the fourth because (i) τ is bijective and (ii) τ̄(W ) =
W ′ by Proposition 4.1(a), and where the sixth follows from the fifth by [3].
Finally, the sixth statement, [4], and the definition of o′ imply ζ(o(s)) =
o′( 〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ). 2

Lemma C.7. Suppose Γ is a game and i ∈ I. Define Hi = {H∈H |H⊆Wi }
Then the following hold.

(a) Hi generates the subspace topology for Wi that is induced from the topology
for W generated by H.

(b) Hi is a partition of Wi.

Proof. (a). SinceH generates the topology for W , {H∩Wi 6=∅ |H∈H} generates
the subspace topology for Wi. Since Wi = {x∈W |µ(x)=i } by definition, and
since µ is continuous by [G2], Wi is the union of a subcollection of H. Thus
since H is a partition, each H ∈ H is either a subset of Wi or disjoint from Wi.
Hence {H∩Wi 6=∅ |H∈H} = {H⊆Wi |H∈H}, which equals Hi by the lemma’s
definition.

(b). Part (a) implies ∪Hi = Wi. Thus it remains to show that Hi is a pairwise
disjoint collection of nonempty sets. These facts hold because Hi ⊆ H and because
H is a partition. 2
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Proof C.8 (for Theorem 4.4). (a). Take i ∈ I.
To show that τ |Wi,W ′ι(i)

is bijective, note that Proposition 4.1(b) implies τ is

bijective. Thus it suffices to show that τ̄(Wi) = W ′ι(i). For the forward direction,

suppose [a] x ∈ Wi. Note [gM] for [Γ, Γ ′, τ ] implies [b] ι(µ(x)) = µ′(τ(x)). Then
in steps, [a] and the definition of Wi imply µ(x) = i, which by [b] implies ι(i) =
µ′(τ(x)), which by the definition of W ′ι(i) implies τ(x) ∈ W ′ι(i). Conversely, suppose

[c] x′ ∈ W ′ι(i). Note Proposition 4.1(b) implies that the player transformation of

[Γ ′, Γ, τ−1] is ι−1. Thus [gM] for [Γ ′, Γ, τ−1] implies [d] ι−1(µ′(x′)) = µ(τ−1(x′)).
Then in steps, [c] and the definition of W ′ι(i) imply µ′(x′) = ι(i), which by [d] implies

i = µ(τ−1(x′)), which by the definition of Wi implies τ−1(x′) ∈ Wi, which implies
x′ ∈ τ̄(Wi).

To show that τ |Wi,W ′ι(i)
is a homeomorphism, note that Proposition 4.1(b) implies

τ |W,W ′ is a homeomorphism. The definitions of Wi and W ′ι(i) imply τ |Wi,W ′ι(i)
is

a restriction of τ |W,W ′ , and the previous paragraph shows τ |Wi,W ′ι(i)
is a bijection.

Hence τ |Wi,W ′ι(i)
is a homeomorphism (as stated in the text, Wi and W ′ι(i) are

endowed with the subspace topologies).
(b). Take i ∈ I. To show that Si 3 si 7→ 〈ατ−1(x′)(si(τ

−1(x′))) 〉x′∈W ′
ι(i)
∈ S′ι(i)

is well-defined, take si ∈ Si. By the definition of S′ι(i), it suffices to show that

〈ατ−1(x′)(si(τ
−1(x′))) 〉x′∈W ′

ι(i)
is continuous from W ′ι(i), and(1)

(∀x′∈W ′ι(i)) ατ−1(x′)(si(τ
−1(x′))) ∈ F ′(x′).(2)

For (2), take x′ ∈ W ′ι(i). Part (a) implies τ−1(x′) ∈ Wi, which by the def-

inition of Si implies si(τ
−1(x′)) ∈ F (τ−1(x′)). Thus it suffices to show

ατ−1(x′):F (τ−1(x′))→F ′(x′). This holds since the definition of ατ−1(x′) im-

plies ατ−1(x′):F (τ−1(x′))→F ′(τ(τ−1(x′))), and since F ′(τ(τ−1(x′))) = F ′(x′).
For (1), note Lemma C.7(a) implies that the topology for W ′ι(i) is generated

by {H ′∈H′ |H ′⊆W ′ι(i) }. Thus it suffices to show, for each H ′ ∈ H′ such

that H ′ ⊆ W ′ι(i), that the action ατ−1(x′)(si(τ
−1(x′))) is constant over x′ ∈ H ′.

Take such an H ′. Part (a) and Lemma C.7(a) imply [a] τ−1(H ′) ∈ H and
[b] τ−1(H ′) ⊆ Wi. Since si is continuous by the definition of Si, [a] and [b] imply
that [c] the source action si(τ

−1(x′)) is constant over x′ ∈ H ′. Further, [a] and
[cL] for [Θ,Θ′, τ ] imply that [d] the function ατ−1(x′) is constant over x′ ∈ H ′. Fi-

nally, [c] and [d] imply that the target action ατ−1(x′)(si(τ
−1(x′))) is constant over

x′ ∈ H ′.
Conversely, to show that Si 3 〈α−1

x (s′ι(i)(τ(x))) 〉x∈Wi
7→s′ι(i) ∈ S′ι(i) is well-

defined, first note that each α−1
x is well-defined by Proposition 4.1(a). Next take

s′ι(i) ∈ S′ι(i). By the definition of Si, it suffices to show that

〈α−1
x (s′ι(i)(τ(x))) 〉x∈Wi

is continuous from Wi, and(1)

(∀x∈Wi) α
−1
x (s′ι(i)(τ(x))) ∈ F (x).(2)

For (2), take x ∈ Wi. Part (a) implies τ(x) ∈ W ′ι(i), which by the definition of S′ι(i)
implies s′ι(i)(τ(x)) ∈ F ′(τ(x)). Since α−1

x :F ′(τ(x))→F (x) by the definition of αx,

this implies α−1
x (s′ι(i)(τ(x))) ∈ F (x). For (1), note that Lemma C.7(a) implies that

the topology for Wi is generated by {H∈H |H⊆Wi }. Thus it suffices to show, for
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each H ∈ H such that H ⊆ Wi, that α−1
x (s′ι(i)(τ(x))) is constant for x ∈ H. Take

such an H. Part (a) and Lemma C.7(a) imply [a] τ(H) ∈ H′ and [b] τ(H) ⊆ W ′ι(i).
Since s′ι(i) is continuous by the definition of S′ι(i), [a] and [b] imply that [c] the

target action s′ι(i)(τ(x)) is constant over x ∈ H. Further, [cL] for [Θ,Θ′, τ ] implies

that [d] the function α−1
x is constant over x ∈ H. Finally, [c] and [d] imply that

the source action α−1
x (s′ι(i)(τ(x))) is constant over x ∈ H.

To show that the first function followed by the second function is idSi , take
si ∈ Si. Then

〈α−1
x ( ατ−1(x′)(si(τ

−1(x′)))|x′=τ(x) ) 〉x∈Wi

= 〈α−1
x (αx(si(x))) 〉x∈Wi

= 〈 si(x) 〉x∈Wi
= si.

Further, to show that the second function followed by the first function is idS′
ι(i)

,

take s′ι(i) ∈ S′ι(i). Then

〈ατ−1(x′)( α
−1
x (s′ι(i)(τ(x)))|x=τ−1(x′) ) 〉x′∈W ′

ι(i)

= 〈ατ−1(x′)( α
−1
τ−1(x′)(s

′
ι(i)(x

′))) 〉x′∈W ′
ι(i)

= 〈 s′ι(i)(x′) 〉x′∈W ′
ι(i)

= s′ι(i).

2

Proof C.9 (for Theorem 4.5). Because of Theorem 4.3(a), it suffices to show
that (∀s∈S) s is a Nash equilibrium in Γ if and only if 〈ατ−1(x′)(s(τ

−1(x′))) 〉s′∈W ′
is a Nash equilibrium in Γ ′. Toward that end, take s ∈ S. It suffices to argue that

s is a Nash equilibrium in Γ

⇔ (∀i∈I, s+
i ∈Si) Ui◦o(s) ≥ Ui◦o(s+

i , s−i)(1)

⇔ (∀i∈I, s+
i ∈Si) U ′ι(i)◦ζ◦o(s) ≥ U ′ι(i)◦ζ◦o(s+

i , s−i)(2)

⇔ (∀i∈I, s+
i ∈Si) U ′ι(i)◦o′( 〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ) ≥(3)

U ′ι(i)◦o′( 〈ατ−1(x′)((s
+
i , s−i)(τ

−1(x′))) 〉x′∈W ′ )

⇔ (∀i∈I, s+
i ∈Si) U ′ι(i)◦o′( 〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ) ≥(4)

U ′ι(i)◦o′( 〈ατ−1(x′)(s
+
i (τ−1(x′))) 〉x′∈W ′

ι(i)
, 〈ατ−1(x′)(s−i(τ

−1(x′))) 〉x′∈W ′rW ′
ι(i)

)

⇔ (∀i∈I, s+
ι(i)∈S′ι(i)) U ′ι(i)◦o′( 〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ) ≥(5)

U ′ι(i)◦o′( s+
ι(i), 〈ατ−1(x′)(s−i(τ

−1(x′))) 〉x′∈W ′rW ′
ι(i)

)

⇔ (∀i′∈I ′, s+
i′∈S′i′) U ′i′◦o′( 〈ατ−1(x′)(s(τ

−1(x′))) 〉x′∈W ′ ) ≥(6)

U ′i′◦o′( s+
i′ , 〈ατ−1(x′)(s−i(τ

−1(x′))) 〉x′∈W ′rW ′
i′

)

⇔ 〈ατ−1(x′)(s(τ
−1(x′))) 〉x′∈W ′ is a Nash equilibrium in Γ ′.(7)

Equivalence (1) holds by definition, (2) holds by the biconditional in Proposi-
tion 4.1(b), and (3) holds by two applications of Theorem 4.3(b). Equivalence
(4) holds because τ |Wi,W ′ι(i)

is bijective by Theorem 4.4(a), because the domain of

s+
i is Wi, and because the domain of s−i is WrWi. Finally, equivalence (5) holds

by Theorem 4.4(b), (6) holds because ι is bijective by Proposition 4.1(b), and (7)
holds by definition. 2
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Proof C.10 (for Theorem 4.6). (a). Proposition 4.1(a) implies τ is a bijection.
Thus it suffices to show that τ̄(RD) = RE. This is equivalent to the combination of

τ̄(RD) ⊆ RE and RD ⊇ τ−1(RE). Since the two are symmetric it suffices to show
the first.

Toward that end, take rd ∈ RD. Then [a] rd ∈ WD and [b] Θd is a CLT, where
Θd is constructed from ΘD by the Selten definitions at rd. By Lemma B.10, [b]
implies [c] (∀HD∈HD) HD ⊆ Xd or HD ⊆ XDrXd. Since τ |WD,W E is a bijection by

Proposition 4.1(a), [a] implies τ(rd) ∈ W E. Thus we may construct Θe from ΘE by
applying the Selten definitions at τ(rd). It suffices to show that Θe is a CLT. Thus
by Lemma B.10, it suffices to show that (∀HE∈HE) HE ⊆ Xe or HE ⊆ XErXe.

Toward that end, take HE ∈ HE. Since τ |WD,W E is a homeomorphism

by Proposition 4.1(a), τ−1(HE) ∈ HD. Thus [c] implies τ−1(HE) ⊆ Xd or

τ−1(HE) ⊆ XDrXd. Thus the bijectivity of τ implies HE ⊆ τ̄(Xd) or
HE ⊆ XErτ̄(Xd). Thus it suffices to show that τ̄(Xd) = Xe. This is equiva-

lent to the combination of τ̄(Xd) ⊆ Xe and Xd ⊇ τ−1(Xe). For the first, take
xd ∈ Xd. Then the Selten definition of Xd implies rd <D xd, which by Proposi-
tion 4.2(b) for [ΘD, ΘE, τ ] implies τ(rd) <E τ(xd), which by the Selten definition
of Xe implies τ(xd) ∈ Xe. For the second, take xe ∈ Xe. Then the Selten def-
inition of Xe implies τ(rd) <E xe, which by Proposition 4.2(b) for [ΘE, ΘD, τ−1]
implies τ−1(τ(rd)) <D τ−1(xe), which implies rd <D τ−1(xe), which by the Selten
definition of Xd implies τ−1(xe) ∈ Xd.

(b). Part (b) follows from Claims 5, 8, 9(b), and 12.

Claim 1: τ |Xd,Xe is a bijection. Proposition 4.1(a) implies τ is a bijection.

Thus it suffices to show τ̄(Xd) = Xe. This is equivalent to the combination of

τ̄(Xd) ⊆ Xe and Xd ⊇ τ−1(Xe). For the first, take xd ∈ Xd. Then the Selten
definition of Xd implies rd <D xd, which by Proposition 4.2(b) for [ΘD, ΘE, τ ] im-
plies τ(rd) <E τ(xd), which by the Selten definition of Xe implies τ(xd) ∈ Xe. For
the second, take xe ∈ Xe. Then the Selten definition of Xe implies τ(rd) <E xe,
which by Proposition 4.2(b) for [ΘE, ΘD, τ−1] implies τ−1(τ(rd)) <D τ−1(xe), which
implies rd <D τ−1(xe), which by the Selten definition of Xd implies τ−1(xe) ∈ Xd.

Claim 2: Ed 3 xdyd 7→ τ(xd)τ(yd) ∈ Ee is a bijection. Because of Claim 1,
it suffices to show that (∀xdyd∈Ed) τ(xd)τ(xd) ∈ Ee and that (∀xeye∈Ee)
τ−1(xe)τ−1(ye) ∈ Ed. For the first, take [1] xdyd ∈ Ed. Note [1] implies
{xd, yd} ∈ Xd, which by Claim 1 implies [2] {τ(xd), τ(yd)} ∈ Xe. Further, [1]
and the Selten definition of Ed imply xdyd ∈ ED, which by [cE] for [ΘD, ΘE, τ ]
implies τ(xd)τ(yd) ∈ EE, which by [2] and the Selten definition of Ee implies
τ(xd)τ(yd) ∈ Ee. For the second, a similar argument can be made. In particu-
lar, switch d with e, D with E, and τ with τ−1.

Claim 3: τ |W d,W e is a bijection. Because of Claim 1, it suffices to show that

τ̄(W d) = W e. This is the combination of τ̄(W d) ⊆ W e and W d ⊇ τ−1(W e). For
the first, take xd ∈ W d. Then the definition of W d implies there is yd ∈ Xd such
that xdyd ∈ Ed, which by Claim 2 implies τ(xd)τ(yd) ∈ Ee, which by the definition
of W e implies τ(xd) ∈ W e. For the second, a similar argument can be made. In
particular, switch d with e, D with E, and τ with τ−1.

Claim 4: τ |W d,W e is a homeomorphism. Because of Claim 3, it suffices to show

that both τ |W d,W e and τ−1|W e,W d are continuous. For the first, take [1] He ∈ He.
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Note [1] impliesHe ⊆ W e, which by Claim 3 implies [2] τ−1(He) ⊆ W d. Meanwhile,
[1] and the Selten definition of He implies He ∈ HE. Thus, since τ |WC ,WD is a

homeomorphism by Proposition 4.1(a), [3] τ−1(He) ∈ HD. By the Selten definition

of He, [2] and [3] imply τ−1(He) ∈ Hd. For the second, a similar argument can be
made. In particular, switch d with e, D with E, and τ with τ−1.

Claim 5: [Θd, Θe, τ |Xd,Xe ]’s action transformation is 〈αxd〉xd∈W d . Let

〈α∗xd〉xd∈W d denote [Θd, Θe, τ |Xd,Xe ]’s action transformation. It suffices to show

that (∀xd∈W d) α∗xd = αxd . Toward that end, take [a] xd ∈ W d. First consider the

domains and codomains of the two functions. By definition, α∗xd :F
d(xd)→F e(τ(xd))

and αxd :FD(xd)→F E(τ(xd)). Note that [a], with Lemma B.9(a) applied at Θ = Θd

and Θ′ = ΘD, implies F d(xd) = FD(xd). Similarly, [a] and Claim 4 imply
τ(xd) ∈ W e, which by Lemma B.9(a) applied at Θ = Θe and Θ′ = ΘE implies
F e(τ(xd)) = F E(τ(xd)). Thus it suffices to show that (∀ad∈F d(xd)) α∗xd(a

d) =

αxd(ad). Toward that end, take ad ∈ F d(xd). In steps, α∗xd(a
d) by definition is equal

to λe( τ(xd) τ(nd(xd, ad)) ), which by Claim 2 and the Selten definition of λe is equal
to λE( τ(xd) τ(nd(xd, ad)) ), which by Lemma B.9(b) at Θ = Θd and Θ′ = ΘD is
equal to λE( τ(xd) τ(nD(xd, ad)) ), which by definition is equal to αxd(ad).

Claim 6: [Θd, Θe, τ |Xd,xe ] is a morphism. It suffices to show that the tuple sat-
isfies [cE], [cI], and [cL]. [cE] follows from Claim 2. [cI] follows from Claim 4.
For [cL], note that [cL] for [ΘD, ΘE, τ ] implies 〈αx〉x∈WD is continuous from WD.

Thus the restriction 〈αx〉x∈W d is continuous from W d endowed with the subspace

topology. Thus Lemma B.8(a) at Θ = Θd and Θ = ΘD implies that 〈αx〉x∈W d is

continuous from W d with the topology generated by Hd. Claim 5 showed 〈αx〉x∈W d

is the action transformation of [Θd, Θe, τ |Xd,Xe ].

Claim 7: [Θd, Θe, τ |Xd,Xe ] is an end-preserving isomorphism. The tuple is a mor-
phism by Claim 6. It is end-preserving because Claims 1 and 3 imply the stronger
result that τ̄(XdrW d) = XerW e. Finally, it is an isomorphism by Claim 1,
Claim 4, and Proposition 4.1(a).

Claim 8: [Γ d, Γ e, τ |Xd,Xe ]’s run transformation is ζ|Zd,Ze . Let ζ∗ denote

[Γ d, Γ e, τ |Xd,Xe ]’s run transformation. Claim 7 and Proposition 2.3 imply ζ∗ is well-

defined. By definition, [a] ζ∗:Zd→Ze and [b] (∀Zd∈Zd) ζ∗(Zd) = P e◦τ(rd)∪τ̄(Zd).
Because of [a], it suffices to show that (∀Zd∈Zd) ζ∗(Zd) = ζ(Zd). Toward that
end, take Zd ∈ Zd. Then ζ∗(Zd) by [b] is equal to P e◦τ(rd)∪τ̄(Zd), which by the
theorem’s definition of Γ e is equal to P e(re)∪τ̄(Zd), which reduces to τ̄(Zd), which
by Proposition 4.1(b) is equal to ζ(Zd).

Claim 9: (a) ι|Id,Ie◦µd = µe◦τ |W d,W e . (b) [Γ d, Γ e, τ |Xd,Xe ]’s player transfor-
mation is ι|Id,Ie . Parts (a) and (b) are equivalent by the definition of a player
transformation.

Consider (a). The left-hand composition is well-defined since Id is the codomain
of µd by definition. The right-hand composition is well-defined since W e is the
domain of µe by [G2] for Γ e. The domains of the compositions coincide since W d is
the domain of µd by [G2] for Γ d. The codomains coincide since Ie is the codomain
of µe by definition. Thus it suffices to show that (∀x∈W d) ι(µd(x)) = µe(τ(x)).
Toward that end, take [1] xd ∈ W d. Then Claim 3 implies [2] τ(xd) ∈ W e. In steps,
ι(µd(xd)) by [1] and the Selten definition of µd is equal to ι(µD(xd)), which by [gM]
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for [ΓD, Γ E, τ ] is equal to µE(τ(xd)), which by [2] and the Selten definition of µe is
equal to µe(τ(xd)).

Claim 10: ι|Id,Ie is injective. Proposition 4.1(b) for [ΓD, Γ E, τ ] implies ι is injec-
tive. Thus the restriction ι|Id,Ie is injective.

Claim 11: (∀i∈I, Zd
1∈Zd, Zd

2∈Zd) Ud
i (Zd

1) ≥ Ud
i (Zd

2) ⇔ U e
ι(i)(ζ(Zd

1)) ≥
U e
ι(i)(ζ(Zd

2)). Take i ∈ I, Zd
1 ∈ Zd, and Zd

2 ∈ Zd. It suffices to show

Ud
i (Zd

1) ≥ Ud
i (Zd

2)

⇔ UD
i (PD(rd)∪Zd

1) ≥ UD
i (PD(rd)∪Zd

2)(a)

⇔ UE
ι(i)(ζ(PD(rd)∪Zd

1)) ≥ UE
ι(i)(ζ(PD(rd)∪Zd

2))(b)

⇔ UE
ι(i)(τ̄(PD(rd)∪Zd

1)) ≥ UE
ι(i)(τ̄(PD(rd)∪Zd

2))(c)

⇔ UE
ι(i)(τ̄(PD(rd))∪τ̄(Zd

1)) ≥ UE
ι(i)(τ̄(PD(rd))∪τ̄(Zd

2))(d)

⇔ UE
ι(i)(τ̄(PD(rd))∪ζ(Zd

1)) ≥ UE
ι(i)(τ̄(PD(rd))∪ζ(Zd

2))(e)

⇔ UE
ι(i)(P

E(τ(rd))∪ζ(Zd
1)) ≥ UE

ι(i)(P
E(τ(rd))∪ζ(Zd

2))(f)

⇔ U e
ι(i)(ζ(Zd

1)) ≥ U e
ι(i)(ζ(Zd

2)).(g)

Equivalence (a) holds by the Selten definition of Ud
i . Equivalence (b) holds by the

biconditional from Proposition 4.1(b) for [ΓD, Γ E, τ ]. Equivalences (c) and (e) hold
by the equation ζ = τ̄ |Z,Z′ from Proposition 4.1(b) for [ΓD, Γ E, τ ]. Equivalence (f)
holds by Proposition 4.2(e) for [ΓD, Γ E, τ ]. Finally, equivalence (g) follows from [1]
the Selten definition of U e

ι(i) and [2] the fact that τ(rd) is the root node of Γ e by

construction.

Claim 12: [Γ d, Γ e, τ |Xd,Xe ] is an isomorphism. The tuple is a morphism because
[gZ] follows from Claim 7, [gM] follows from Claim 9(a), and [gU] follows from
Claim 8 and the forward direction of Claim 11. Thus the tuple is an isomorphism
by Proposition 4.1(b) with Claim 1, Claim 4, the combination of Claims 9(b) and
10, and the combination of Claims 8 and 11. 2

Proof C.11 (for Theorem 4.7). Because of Theorem 4.3(a), it suffices to
show that (∀sD∈SD) sD is a subgame-perfect equilibrium in ΓD if and only if
〈ατ−1(xE)(s

D(τ−1(xE))) 〉xE∈W E is a subgame-perfect equilibrium in Γ E.

Toward that end, take sD ∈ SD. Let RD be the set of nodes at which ΓD has a
Selten subgame, and let RE be the set of nodes at which Γ E has a Selten subgame.
It suffices to argue that

sD is a subgame-perfect equilibrium in ΓD

⇔ (∀rd∈RD) 〈 sD(xd) 〉xd∈W d is a Nash equilibrium in Γ d

where Γ d is the Selten subgame of ΓD at rd

⇔ (∀rd∈RD) 〈ατ−1(xe)(s
D(τ−1(xe))) 〉xe∈W e is a Nash equilibrium in Γ e

where Γ e is the Selten subgame of Γ E at τ(rd)

⇔ (∀re∈RE) 〈ατ−1(xe)(s
D(τ−1(xe))) 〉xe∈W e is a Nash equilibrium in Γ e

where Γ e is the Selten subgame of Γ E at re

⇔ 〈ατ−1(xE)(s
D(τ−1(xE))) 〉xE∈W E is a subgame-perfect equilibrium in Γ E.
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The first equivalence holds by the definition of subgame-perfect equilibrium. To
show the second equivalence, take rd ∈ RD. Then Theorem 4.6 implies that
[Γ d, Γ e, τ |Xd,Xe ] is an isomorphism. Thus Theorem 4.5 implies that 〈 sD(xd) 〉xd∈W d

is a Nash equilibrium in Γ d iff 〈ατ−1(xe)(s
E(τ−1(xe))) 〉xe∈W e is a Nash equilibrium

in Γ e. The third equivalence holds because τ |RD,RE is a bijection by Theorem 4.6(a).
The fourth equivalence holds by the definition of subgame-perfect equilibrium. 2

Appendix D. For Full Subcategories

Lemma D.1.

(a) Suppose Θ is a CLT, τ :X→X ′ is a bijection, 〈α∗x:F (x)→A∗x〉x∈W is continu-

ous from W , and each α∗x is a bijection.27 Construct the tuple Θ′ = (X ′, E′,H′, λ′)
by combining X ′ with

E′ = { τ(x)τ(y) |xy∈E },
H′ = { τ̄(H) |H∈H}, and

λ′:E′→∪x∈WA∗x defined by λ′(x′y′) = α∗τ−1(x′)(λ(τ−1(x′)τ−1(y′))).

Then Θ′ is a CLT and [Θ,Θ′, τ ] is an isomorphism. Further, ∪x∈WA∗x = A′, each
A∗x equals F ′(τ(x)), and 〈a∗x〉x∈W is the action transformation of [Θ,Θ′, τ ].

(b) In addition, suppose µ and U are such that Γ = (X,E,H, λ, µ, U) is
a game, and suppose ι∗:I→I∗ is a bijection.28 Construct the tuple Γ ′ =
(X ′, E′,H′, λ′, µ′, U ′) by combining Θ′ with

µ′ = ι∗◦µ◦(τ |W,W ′)−1 and

U ′ = 〈U ′i′〉i′∈I∗ defined by U ′i′ = Uι∗−1(i′)◦(τ̄ |Z,Z′)−1.

Then Γ ′ is a game and [Γ, Γ ′, τ ] is an isomorphism. Further, I∗ = I ′ and ι∗ is the
player transformation of [Γ, Γ ′, τ ].

Proof. As the next two paragraphs explain, both parts (a) and (b) are implied
by the following sequence of claims.

For (a), Claims 1(a), 3(a), and 4(a) show the well-definition of E′, H′, and λ′.
Claims 9 and 12 imply Θ′ is a CLT and [Θ,Θ′, τ ] is an isomorphism. The remaining
conclusions follow from Claims 4(b), 10, and 11.

For (b), Claim 13(a,c) shows the well-definition of µ′ and U ′. Claims 14 and 17
imply Γ ′ is a game and [Γ, Γ ′, τ ] is an isomorphism. The remaining conclusions
follow from Claims 13(b) and 16(b).

Claim 1: (a) E′ is well-defined. (b) E 3 xy 7→ τ(x)τ(y) ∈ E′ is a bijection.
(c) (X ′, E′) is a nontrivial out-tree. (a) holds by inspection. (b) follows from the
lemma’s definition of E′ and the assumed bijectivity of τ . (c) follows from [C1] for
Θ, the bijectivity of τ , and (b).

27Part (a) uses 〈α∗x:F (x)→A∗x〉x∈W to construct a CLT Θ′ and a morphism [Θ,Θ′, τ ]. By the

text’s general definitions, Θ′ determines its action set A′ (as the codomain of λ′), and [Γ, Γ ′, τ ]
determines its action transformation 〈αx〉x∈W . The superscript ∗ distinguishes the assumed

entities from the derived entities. Part (a)’s final sentence shows how they relate.
28Part (b) uses ι∗:I→I∗ to construct a game Γ ′ and a morphism [Γ, Γ ′, τ ]. By the text’s general

definitions, Γ ′ determines its player set I′ (as the codomain of µ′), and [Γ, Γ ′, τ ] determines its
player transformation ι. The superscript ∗ distinguishes the assumed entities from the derived

entities. Part (b)’s final sentence shows how they relate.
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Claim 2: (a) τ(r) = r′. (b) τ |W,W ′ is a bijection. (c) τ |XrW,X′rW ′ is a bijection.
(d) τ̄ |Z,Z′ is a bijection. The assumptions of Lemma C.1 are implied by [C1] for
Θ, Claim 1(c), the assumed bijectivity of τ , and the lemma’s definition of E′. Thus
Lemma C.1(d) implies (a), and Lemma C.1(f–h) imply (b–d).

Claim 3: (a) H′ is well-defined. (b) H′ partitions W ′. (c) τ |W,W ′ is a homeo-
morphism. (a) holds by inspection. Further, [C2] for Θ implies H partitions W .
Thus Claim 2(b) and the lemma’s definition of H′ imply (b) and (c).

Claim 4: (a) λ′ is well-defined. (b) A′ = ∪x∈WA∗x. For (a), take x′y′ ∈ E′.
Then the lemma’s definition of E′ implies [1] τ−1(x′)τ−1(y′) ∈ E. [1] and the
general definition of W imply [2] τ−1(x′) ∈ W . Also, [1] and the general defi-
nition of F imply λ(τ−1(x′)τ−1(y′)) ∈ F (τ−1(x′)), which by the lemma’s defini-
tion of α∗τ−1(x′) implies α∗τ−1(x′)(λ(τ−1(x′)τ−1(y′))) ∈ A∗τ−1(x′). This and [2] imply

α∗τ−1(x′)(λ(τ−1(x′)τ−1(y′))) ∈ ∪x∈WA∗x. For (b), A′ by general definition is the

codomain of λ′, which by the lemma’s definition of λ′ is ∪x∈WA∗x.

Claim 5: λ′ is surjective. By the definition of λ′, it suffices to show λ′(E′) =
∪x∈WA∗x. The forward inclusion follows from the well-definition of λ′, which
was shown in Claim 4(a). For the reverse inclusion, take x ∈ W and a′ ∈ A∗x.
Thus, since α∗x:F (x)→A∗x is surjective by assumption, there is [1] a ∈ F (x)
such that [2] α∗x(a) = a′. Further, [1] and the general definition of F im-
ply there is y ∈ X such that [3] xy ∈ E and [4] λ(xy) = a. To conclude, [3]
and the lemma’s definition of E′ imply τ(x)τ(y) ∈ E′. Thus it suffices to show
λ′(τ(x)τ(y)) = a′. In steps, λ′(τ(x)τ(y)) by the lemma’s definition of λ′ is equal
to α∗τ−1(τ(x))(λ(τ−1(τ(x))τ−1(τ(y)))), which reduces to α∗x(λ(xy)), which by [4] is

α∗x(a), which by [2] is a′.

Claim 6: λ′ is deterministic. Suppose x′y′1 ∈ E′ and x′y′2 ∈ E′ satisfy λ′(x′y′1) =
λ′(x′y′2). Then the lemma’s definition of λ′ implies α∗τ−1(x′)λ(τ−1(x′)τ−1(y′1))

= α∗τ−1(x′)λ(τ−1(x′)τ−1(y′2)). Thus the assumed bijectivity of α∗τ−1(x′) implies

λ(τ−1(x′)τ−1(y′1)) = λ(τ−1(x′)τ−1(y′2)). Thus, since λ is deterministic by [C3]
for Θ, τ−1(y′1) = τ−1(y′2). Hence y′1 = y′2.

Claim 7: (∀x′∈W ′) F ′(x′) = α∗τ−1(x′)(F (τ−1(x′))). To prove this, take x′ ∈ W ′.
For the forward inclusion, take a′ ∈ F ′(x′). Then the general definition of F ′

implies there is y′ ∈ X ′ such that a′ = λ′(x′y′). Thus the lemma’s definition of
λ′ implies a′ = α∗τ−1(x′)(λ(τ−1(x′)τ−1(y′))), which by the general definition of F

implies a′ ∈ α∗τ−1(x′)(F (τ−1(x′))).

For the reverse inclusion, take a′ ∈ α∗τ−1(x′)(F (τ−1(x′))). Then there is

[1] a ∈ F (τ−1(x′)) such that [2] a′ = α∗τ−1(x′)(a). Further, [1], the general def-

inition of F , and the bijectivity of τ together imply there is y′ ∈ X ′ such that
a = λ(τ−1(x′)τ−1(y′)). Thus [2] implies a′ = α∗τ−1(x′)(λ(τ−1(x′)τ−1(y′))), which

by the lemma’s definition of λ′ implies a′ = λ′(x′y′), which by the general definition
of F ′ implies a′ ∈ F ′(x′).

Claim 8: 〈F ′(x′)〉x′∈W ′ is continuous from W ′. It suffices to show that
〈F ′(x′)〉x′∈W ′ is constant over each H ′ ∈ H′. Thus by Claim 7, it suffices to show

that 〈α∗τ−1(x′)(F (τ−1(x′))) 〉x′∈W ′ is constant over each H ′ ∈ H′. Toward that end,

take H ′ ∈ H′. Then Claim 3(c) implies [a] τ−1(H ′) ∈ H. Note [C4] for Θ and [a]
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imply that [b] the set F (τ−1(x′)) is constant for x′ ∈ H ′. Meanwhile, the assumed
continuity of 〈α∗x〉x∈W from W and [a] imply that [c] the function α∗τ−1(x′) is con-

stant for x′ ∈ H ′. Together, [b] and [c] imply that the image α∗τ−1(x′)(F (τ−1(x′)))

is constant for x′ ∈ H ′.
Claim 9: Θ′ is a CLT. It suffices to prove that the tuple Θ′ satisfies [C1]–[C4].

[C1] holds by Claim 1(c). [C2] holds by Claim 3(b). [C3] holds by Claims 5 and 6.
Finally, [C4] holds by Claim 8.

Claim 10: (∀x∈W ) A∗x = F ′(τ(x)). To prove this, take x ∈ W . Claim 2(b)
implies τ(x) ∈ W ′. Thus Claim 7 at x′ = τ(x) implies F ′(τ(x)) = α∗x(F (x)). The
right-hand side is equal to A∗x by the assumed surjectivity of α∗x:F (x)→A∗x.

Claim 11: The action transformation of the tuple [Θ,Θ′, τ ] is 〈α∗x〉x∈W . Let
〈αx〉x∈W denote the action transformation of [Θ,Θ′, τ ]. It suffices to show that
(∀x∈W ) αx = α∗x. Toward that end, take x ∈ W . By general definition,
αx:F (x)→F ′(τ(x)) and [1] αx(a) = λ′( τ(x) τ(n(x, a)) ). Meanwhile by the lemma’s
assumption, α∗x:F (x)→A∗x. Thus the domain of αx equals the domain of α∗x. Fur-
ther, Claim 10 implies the codomain of αx equals the codomain of α∗x. Thus it
remains to show that (∀a∈F (x)) αx(a) = α∗x(a).

Toward that end, take a ∈ F (x). The general definition of n
implies xn(x, a) ∈ E. Thus the lemma’s definition of E′ implies
τ(x) τ(n(x, a)) ∈ E′. Thus the lemma’s definition of λ′ implies λ′( τ(x) τ(n(x, a)) )
= α∗τ−1(τ(x))(λ( τ−1(τ(x)) τ−1(τ(n(x, a))) ). This equality reduces to

λ′( τ(x) τ(n(x, a)) ) = α∗x(λ(x, n(x, a))), which by Lemma A.1(c) reduces to
λ′( τ(x) τ(n(x, a)) ) = α∗x(a). This and [1] imply αx(a) = α∗x(a).

Claim 12: [Θ,Θ′, τ ] is an end-preserving isomorphism. The tuple is a morphism
because [cE] holds by the lemma’s definition of E′, [cI] holds by Claim 3(c), and
[cL] holds by Claim 11 and the lemma’s assumption that 〈α∗x〉x∈W is continuous
from W . It is end-preserving by Claim 2(c). Finally, it is an isomorphism by
Proposition 4.1(a), the bijectivity of τ , and Claim 3(c).

Claim 13: (a) µ′ is well-defined. (b) I ′ = I∗. (c) U ′ is well-defined. (a) The
inverse (τ |W,W ′)−1 is well-defined by Claim 2(b). (b) In steps, I ′ by general defini-
tion is the codomain of µ′, which by the lemma’s definition of µ′ is the codomain of
ι∗, which by assumption is I∗. (c) The inverse ι∗−1 is well-defined by assumption,
and the inverse (τ̄ |Z,Z′)−1 is well-defined by Claim 2(d).

Claim 14: Γ ′ is a game. It suffices to show that the tuple Γ ′ satisfies [G1]–
[G3]. [G1] holds by Claim 9. For [G2], note that (i) µ′ = ι∗◦µ◦(τ |W,W ′)−1 by the
lemma’s definition, that (ii) τ |W,W ′ is a homeomorphism by Claim 3(c), that (iii)
µ:W→I is surjective and continuous by [G2] for Γ and the definition of I, and that
(iv) ι∗:I→I∗ is a homeomorphism by its assumed bijectivity and the fact that I
and I∗ are endowed with the discrete topology. Thus µ′:W ′→I∗ is surjective and
continuous. Finally for [G3], take i′ ∈ I ′. Since i′ ∈ I∗ by Claim 13(b), the lemma’s
definition of U ′ implies U ′i′ = Uι∗−1(i′)◦(τ̄ |Z,Z′)−1. Further, Uι∗−1(i′):Z→R by [G3]
for Γ . Thus U ′i′ :Z ′→R.

Claim 15: (a) [Θ,Θ′, τ ]’s run transformation is τ̄ |Z,Z′ . (b) (∀i∈I) Ui =
U ′ι∗(i)◦τ̄ |Z,Z′ . For (a), let ζ denote [Θ,Θ′, τ ]’s run transformation. Claim 12 and

Proposition 2.3 imply ζ is well-defined. By definition, [a] ζ:Z→Z ′ and [b] (∀Z∈Z)
ζ(Z) = P ′◦τ(r)∪τ̄(Z). By [a], it suffices to show that (∀Z∈Z) ζ(Z) = τ̄(Z). Thus
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by [b], it suffices to show that P ′◦τ(r) = ∅. This follows from Claim 2(a). For
(b), note that the lemma’s definition of U ′ implies (∀i′∈I∗) U ′i′◦τ̄ |Z,Z′ = Uι∗−1(i′).
Thus the assumed bijectivity of ι∗ implies (∀i∈I) U ′ι∗(i)◦τ̄ |Z,Z′ = Ui.

Claim 16: (a) [Γ, Γ ′, τ ] is a morphism. (b) Its player transformation is ι∗. Γ
is a game by assumption and Γ ′ is a game by Claim 14. Further, since ι∗:I→I∗
by assumption, Claim 13(b) implies ι∗:I→I ′. Thus for (a), it suffices to show that
the tuple [Γ, Γ ′, τ ] satisfies [gZ], [gM] with ι∗, and [gU] with ι∗. In the process,
(b) will also be proved. [gZ] follows from Claim 12. For [gM] with ι∗, the lemma’s
definition of µ′ states µ′ = ι∗◦µ◦(τ |W,W ′)−1, which is equivalent to µ′◦τ |W,W ′ =
ι∗◦µ. This also proves (b) because [gM] is equivalent to the definition of the player
transformation. Finally, for [gU] with ι∗ follows from Claim 15(a,b).

Claim 17: [Γ, Γ ′, τ ] is an isomorphism. Since [Γ, Γ ′, τ ] is a morphism by
Claim 16(a), it suffices to show that [Γ, Γ ′, τ ] satisfies the four conditions of Propo-
sition 4.1(b). First, τ is bijective by assumption. Second, τ |W,W ′ is a homeomor-
phism by Claim 3(c). Third, the player transformation is injective by Claim 16(b)
and the assumed injectivity of ι∗. Fourth, the utility biconditional follows from
Claim 15(a,b). 2

Lemma D.2. A CLT Θ has distinguished-actions iff
(∀H1∈H, H2∈H, x1∈H1, x2∈H2) H1 6= H2 implies F (x1)∩F (x2) = ∅.

Proof. For the forward direction, suppose Θ has distinguished-actions. Then
suppose [a] x1 ∈ H1 ∈ H and [b] x2 ∈ H2 ∈ H. To prove the contrapositive
of the conditional, suppose a ∈ F (x1)∩F (x2). Then both x1 and x2 belong to
{x∈W | a∈F (x) }, which by distinguished-actions is a member of H. Thus, using
x1 only, [a] and [C2] imply H1 = {x∈W | a∈F (x) }. By similar reasoning, using x2

only, [b] and [C2] imply H2 = {x∈W | a∈F (x) }. Therefore H1 = H2.
For the reverse direction, assume the conditional holds. By the definition of

distinguished-actions, it suffices to prove (∀a∈A) {x∈W | a∈F (x) } ∈ H. Take
a ∈ A. [C4] implies there is H∗ ⊆ H such that {x∈W | a∈F (x) } = ∪H∗. Thus
it suffices to show that H∗ is a singleton. To do so, suppose there were distinct H1

and H2 in H∗. Then [C2] implies there are x1 ∈ H1 and x2 ∈ H2, and thus the
assumed conditional implies [c] F (x1)∩F (x2) = ∅. But, x1 ∈ H1 ∈ H∗ and the
definition of H∗ implies a ∈ F (x1). Similarly, x2 ∈ H2 ∈ H∗ and the definition of
H∗ implies a ∈ F (x2). Thus a ∈ F (x1)∩F (x2) in contradiction to [c]. 2

Lemma D.3. Each game is isomorphic to an distinguished-action game.

Proof. Take a game Γ . A distinguished-action isomorph will be constructed via
Lemma D.1. For that purpose, define τ = idX and ι∗ = idI . To define 〈α∗x〉x∈W ,
take an x ∈ W . By [C2], let Hx be the member of H that contains x. Then define
A∗x = {Hx}×F (x), and define αx:F (x)→A∗x by αx(a) = (Hx, a).

To see that τ , 〈α∗x〉x∈W , and ι∗ satisfy Lemma D.1’s assumptions, first note
that τ , each α∗x, and ι∗ are bijective by inspection. Thus it suffices to show that
〈α∗x〉x∈W is continuous from W . In other words, it suffices to show that 〈α∗x〉x∈W
is constant over each H ∈ H. Toward that end, take Ho ∈ H. The domain of each
αx is F (x), which is constant over x ∈ Ho by [C4]. Thus since each α∗x is surjective,
it suffices to show that (∀a∈F (x)) α∗x(a) is constant over x ∈ Ho. Take a ∈ F (x).
By definition α∗x(a) = (Hx, a), which is constant at (Ho, a) over x ∈ Ho.
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Lemma D.1 constructs a game Γ ′ such that [Γ, Γ ′, τ ] is an isomorphism.
To show that Γ ′ has distinguished-actions, it suffices by Lemma D.2 to show
that (∀H ′1∈H′, H ′2∈H′, x′1∈H ′1, x′2∈H ′2) H ′1 6= H ′2 implies F ′(x′1)∩F ′(x′2) = ∅.
Toward that end, suppose x′1 ∈ H ′1 ∈ H′ and x′2 ∈ H ′2 ∈ H′ and H ′1 6= H ′2.
Because τ |W,W ′ is a homeomorphism by Proposition 4.1(a) applied to

[Γ, Γ ′, τ ], [1] τ−1(x′1) ∈ τ−1(H ′1) ∈ H and [2] τ−1(x′2) ∈ τ−1(H ′2) ∈ H and

[3] τ−1(H ′1) 6= τ−1(H ′2). The definition of 〈A∗x〉x∈W and [1] imply A∗τ−1(x′1) =

{τ−1(H ′1)}×F (τ−1(x′1)). Similarly [2] implies A∗τ−1(x′2) = {τ−1(H ′2)}×F (τ−1(x′2)).

Thus [3] implies A∗τ−1(x′1) and A∗τ−1(x′2) are disjoint. Further, Lemma D.1(a)’s last

sentence implies A∗τ−1(x′1) equals F ′(τ(τ−1(x′1))), which reduces to F ′(x′1). Simi-

larly A∗τ−1(x′2) equals F ′(x′2). The last three sentences imply F ′(x′1) and F ′(x′2) are

disjoint. 2

Lemma D.4 (corollary of Lemma D.1).
(a) Suppose Θ is a CLT and τ :X→X ′ is bijective. Construct the tuple

Θ′ = (X ′, E′,H′, λ′) by combining X ′ with E′ = { τ(x)τ(y) |xy∈E }, H′ =
{ τ̄(H) |H∈H}, and λ′:E′→A defined by λ′(x′y′) = λ(τ−1(x′)τ−1(y′)). Then Θ′ is
a CLT and [Θ,Θ′, τ ] is an isomorphism. Further, A = A′ and 〈idF (x)〉x∈W is the
action transformation of [Θ,Θ′, τ ].

(b) In addition, suppose µ and U are such that Γ = (X,E,H, λ, µ, U) is a
game. Construct the tuple Γ ′ = (X ′, E′,H′, λ′, µ′, U ′) by combining Θ′ with
µ′ = µ◦(τ |W,W ′)−1 and U ′ = 〈U ′i〉i∈I defined by U ′i = Ui◦(τ̄ |Z,Z′)−1. Then Γ ′

is a game and [Γ, Γ ′, τ ] is an isomorphism. Further, I = I ′ and idI is the player
transformation of [Γ, Γ ′, τ ].

Proof. Consider Lemma D.1 in the special case that 〈α∗x〉x∈W = 〈idF (x)〉x∈W ,
〈A∗x〉x∈W = 〈F (x)〉x∈W , ι∗ = idI , and I∗ = I. To see that Lemma D.1’s assump-
tions follow from the assumptions here, note that 〈idF (x)〉x∈W is continuous from
W because 〈F (x)〉x∈W is continuous from W by [C4] for Θ. The remainder of
Lemma D.1’s assumptions follow by inspection. To see that Lemma D.1’s con-
clusions imply the conclusions here, note that A′ = A because, in steps, A′ by
Lemma D.1(a)’s last sentence is equal to ∪x∈WA∗x, which by this proof’s definition
of 〈A∗x〉x∈W is equal to ∪x∈WF (x), which by Lemma A.1(a) is equal to A. The
remainder of the conclusions here follow by inspection. 2

Lemma D.5.29 Suppose Θ is a CLT. Let k(x) denote the height of node x ∈ X,

define q:Xr{r}→A by q(y) = λ(p(y)y), and let Ẋ = { 〈q◦pk(x)−`(x)〉k(x)
`=1 |x∈X }.

Then

X 3 x 7→ 〈q◦pk(x)−`(x)〉k(x)
`=1 ∈ Ẋ

is a bijection. Its inverse is

X 3 n(n(...n(n(r, ẋ1), ẋ2), ... , ẋ|ẋ|−1) , ẋ|ẋ|) 7→ẋ ∈ Ẋ
(to be clear, X 3 r 7→{}∈ Ẋ).

Proof. Let τ be the function from X to Ẋ. It is well-defined by inspection and
the definition of Ẋ. Conversely, let β be the function from Ẋ to X. It is well-defined
by Claim 3 and the definition of Ẋ. The lemma follows from Claims 3 and 4.

29This lemma adapts and extends Streufert 2020a, Lemma B.2.
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Claim 1: (∀y∈Xr{r}) n[p(y), q(y)] = y. To show this, take y ∈ Xr{r}. In
steps, n[p(y), q(y)] by the definition of q is equal to n[p(y), λ(p(y)y)], which by
Lemma A.1(c) is equal to y.

Claim 2: (a) (∀x∈W,a∈F (x)) p(n[x, a]) =x. (b) (∀x∈W,a∈F (x)) q(n[x, a]) = a.
For (a), take x ∈ W and a ∈ F (x). Then the definition of n implies xn[x, a] ∈ E,
which by the definition of p implies p(n[x, a]) = x. For (b), take x ∈ W and
a ∈ F (x). In steps, q(n[x, a]) by the definition of q is equal to λ( p(n[x, a])n[x, a] ),
which by part (a) is equal to λ(xn[x, a] ), which by Lemma A.1(c) is equal to a.

Claim 3: β◦τ is the identity function on X. Take x ∈ X. First, suppose k(x) =
0. In steps, β◦τ(x) by the definition of τ equals β({}), which by the definition
of β equals r, which by k(x) = 0 equals x. Second, suppose k(x) = 1. In steps,
β◦τ(x) by the definition of τ equals β(〈q(x)〉), which by the definition of β equals
n[r, q(x)], which by k(x) = 1 equals n[p(x), q(x)], which by Claim 1 equals x. Third
and finally, suppose k(x) ≥ 2. It will be argued that

β◦τ(x) = β( 〈q◦pk(x)−`(x)〉k(x)
`=1 )

= n[n[...n[n[r, q◦pk(x)−1(x)], q◦pk(x)−2(x)] ... , q◦p(x)], q(x)]

= n[n[...n[n[pk(x)(x), q◦pk(x)−1(x)], q◦pk(x)−2(x)] ... , q◦p(x)], q(x)]

= n[n[...n[n[p◦pk(x)−1(x), q◦pk(x)−1(x)], q◦pk(x)−2(x)] ... , q◦p(x)], q(x)]

= n[n[...n[pk(x)−1(x), q◦pk(x)−2] ... , q◦p(x)], q(x)]

· · ·
= n[p(x), q(x)] = x.

The first equality holds by the definition of τ , the second by the definition of
β, and the third by the definition of k. The fourth and fifth equalities hold by a
rearrangement and Claim 1. The sixth equality holds by k(x)−2 similar applications
of Claim 1, and the final equality holds by a final application of Claim 1.

Claim 4: τ◦β is the identity function on Ẋ. Take ẋ ∈ Ẋ. First, suppose ẋ = {}.
In steps, τ◦β({}) by the definition of β is equal to τ(r), which by the definition of τ is
equal to {}. Second, suppose ẋ 6= {}. Then it suffices to show that (∀`∈{1, 2, ... |ẋ|})
(τ◦β(ẋ))` = ẋ`. Toward that end, take ` ∈ {1, 2, ... |ẋ|}.

First suppose ` < |ẋ|. It will be argued that

(τ◦β(ẋ))` = q(pk(β(ẋ))−`(β(ẋ)))

= q(p|ẋ|−`(β(ẋ)))

= q(p|ẋ|−`(n[n[...n[n[r, ẋ1], ẋ2] ... , ẋ|ẋ|−1], ẋ|ẋ|]))

= q(p|ẋ|−`−1(n[n[...n[n[r, ẋ1], ẋ2] ... , ẋ|ẋ|−2], ẋ|ẋ|−1]))

· · ·
= q(p|ẋ|−`−(|ẋ|−`)(n[n[...n[n[r, ẋ1], ẋ2], ... ẋ|ẋ|−(|ẋ|−`)−1], ẋ|ẋ|−(|ẋ|−`)]))

= q(n[n[...n[n[r, ẋ1], ẋ2] ... ẋ`−1], ẋ`])

= ẋ`.

The first equality holds by the definition of τ , the second holds because k(β(ẋ)) =
|ẋ| by the definitions of k and β, and the third holds by the definition of β. The
fourth holds by Claim 2(a), and the fifth holds by |ẋ|−`−1 similar applications of
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Claim 2(a). The sixth is a rearrangement, and the seventh holds by one application
of Claim 2(b).

Second suppose ` = |ẋ|. It will be argued that

(τ◦β(ẋ))|ẋ| = q(pk(β(ẋ))−|ẋ|(β(ẋ))) = q(p|ẋ|−|ẋ|(β(ẋ))) = q(β(ẋ))

= q(n[n[...n[n[r, ẋ1], ẋ2], ... , ẋ|ẋ|−1], ẋ|ẋ|]) = ẋ|ẋ|,

where the first equality holds by the definition of τ , the second holds because
k(β(ẋ)) = |ẋ| by the definitions of k and β, the fourth holds by the definition of β,
and the fifth by one application of Claim 2(b). 2

Lemma D.6. Suppose Γ is a game. Then there is an isomorphism [Γ, Γ̇, τ ]

whose Γ̇ is a sequence game. Further, A = Ȧ and the isomorphism’s action trans-
formation is 〈idF (x)〉x∈W .

Proof. First use Lemma D.5 to construct a bijection τ :X→Ẋ. Second use τ
and Lemma D.4 to construct a game Γ̇ such that [Γ, Γ̇, τ ] is an isomorphism.

That lemma also shows that A = Ȧ and that [Γ, Γ̇, τ ]’s action transformation is

〈idF (x)〉x∈W . Thus it suffices to show that Γ̇ is a sequence game. By inspection

Ẋ consists of (finite) sequences. Thus the lemma is proved by Claims 2 and 3
below.

Claim 1: (∀y∈Xr{r}) τ(p(y)) = 1[τ(y)]|τ(y)|−1. To show this, take y ∈ Xr{r}.
It suffices to show

τ(p(y)) = 〈q◦pk(p(y))−`(p(y))〉k(p(y))
`=1

= 〈q◦pk(y)−1−`(p(y))〉k(y)−1
`=1 = 〈q◦pk(y)−`(y)〉k(y)−1

`=1

= 1[〈q◦pk(y)−`(y)〉k(y)
`=1 ]k(y)−1 = 1[τ(y)]k(y)−1 = 1[τ(y)]|τ(y)|−1.

The first equality holds by Lemma D.5’s definition of τ , the second because
k(p(y)) = k(y)−1, the third and fourth by rearrangement, the fifth by the defi-
nition of τ , and the sixth because k(y) = |τ(y)| by the definition of τ .

Claim 2: Ė = { 1ẏ|ẏ|−1 ẏ | ẏ∈Ẋr{{}} }. It suffices to show

Ė = { τ(x) τ(y) |xy∈E } = { τ(p(y)) τ(y) | y∈Xr{r} }
= { 1[τ(y)]|τ(y)|−1 τ(y) | y∈Xr{r} } = { 1[ẏ]|ẏ|−1 ẏ | ẏ∈Ẋr{{}} }.

The first equality holds by Lemma D.4’s definition of Ė, the second by the general
definition of p, the third by Claim 1, and the last by the bijectivity of τ together
with the fact that τ(r) = {} by the definition of τ .

Claim 3: (∀ 1ẏ|ẏ|−1 ẏ ∈ Ė) λ̇( 1ẏ|ẏ|−1 ẏ ) = ẏ|ẏ|. To prove this, take 1ẏ|ẏ|−1 ẏ ∈ Ė.
Note that two applications of the Lemma D.5’s last sentence imply

τ−1(ẏ) = n(n(...n(n(r, ẏ1), ẏ2), ... , ẏ|ẏ|−1) , ẏ|ẏ|)

= n(τ−1(1ẏ|ẏ|−1), ẏ|ẏ|).

It suffices to show

λ̇( 1ẏ|ẏ|−1 ẏ ) = λ( τ−1(1ẏ|ẏ|−1) τ−1(ẏ) )

= λ( τ−1(1ẏ|ẏ|−1) n(τ−1(1ẏ|ẏ|−1), ẏ|ẏ|) ) = ẏ|ẏ|,
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where the first equality holds by Lemma D.4’s definition of λ̇, the second equality
holds by the previous sentence, and the third equality holds by Lemma A.1(c) at
xo = τ−1(1ẏ|ẏ|−1). 2

Lemma D.7. Each game is isomorphic to a distinguished-action sequence game.

Proof. Consider a game Γ ∗. Lemma D.3 implies that Γ ∗ is isomorphic to an
distinguished-action game Γ . Thus it suffices to show that Γ is isomorphic to
an distinguished-action sequence game. Lemma D.6 implies there is an isomor-
phism [Γ, Γ̇, τ ] such that Γ̇ is a sequence game. Thus it suffices to show that

Γ̇ has distinguished actions. In other words, it suffices to show that (∀ȧ∈Ȧ)

{ ẋ∈Ẇ | ȧ∈Ḟ (ẋ) } ∈ Ḣ.

For that purpose, take ȧ ∈ Ȧ. Lemma D.6 shows A = Ȧ, which implies ȧ ∈ A.
Thus since Γ has distinguished actions, {x∈W | ȧ∈F (x) } ∈ H. Since [Γ, Γ̇, τ ]
is an isomorphism, Proposition 4.1 implies τ |W,Ẇ is a homeomorphism. Thus

τ̄({x∈W | ȧ∈F (x) }) ∈ Ḣ. Hence it suffices to show that τ̄({x∈W | ȧ∈F (x) }) =

{ ẋ∈Ẇ | ȧ∈Ḟ (ẋ) }.
By general definition, [Γ, Γ̇, τ ]’s action transformation has the form

〈αx:F (x)→Ḟ (τ(x))〉x∈W . Meanwhile, Lemma D.6 shows [Γ, Γ̇, τ ]’s action trans-

formation is 〈idF (x)〉x∈W . Thus (∀x∈W ) Ḟ (τ(x)) = F (x). Finally, in steps,

τ̄({x∈W | ȧ∈F (x) }) by the previous sentence is equal to τ̄({x∈W | ȧ∈Ḟ (τ(x)) }),
which by rearrangement is equal to { τ(x)∈τ̄(W ) | ȧ∈Ḟ (τ(x)) }), which by the bi-

jectivity of τ |W,Ẇ from Proposition 4.1 is equal to { ẋ∈Ẇ | ȧ∈Ḟ (ẋ) }. 2

Proof D.8 (for Theorem 5.2). Lemma D.7 suffices for the entire theorem. 2

Proof D.9 (for Theorem 5.3). (a). Suppose [Θ,Θ′, τ ] is an isomorphism.
It suffices to show that Θ violates no-absentmindedness only if Θ′ violates no-
absentmindedness. Toward that end, suppose Θ violates no-absentmindedness.
Then there is [1] H ∈ H, [2] x ∈ H, and [3] y ∈ H such that [4] x ≺ y. Propo-
sition 4.1(a) implies τ |W,W ′ is a homeomorphism and thus [1] implies τ̄(H) ∈ H′.
[2] and [3] imply τ(x) ∈ τ̄(H) and τ(y) ∈ τ̄(H). Finally, Proposition 4.2(c) and
[4] imply τ(x) ≺′ τ(y). The conclusions of the three previous sentences imply Θ′

violates no-absentmindedness.
(b). Suppose [Θ,Θ′, τ ] is an isomorphism. Proposition 4.1(a) implies τ |W,W ′

is a homeomorphism, which implies that H is discrete iff H′ is discrete, which by
the definition of perfect-information implies Θ has perfect-information iff H′ has
perfect-information. 2

Proof D.10 (for Corollary 5.4). (a). It suffices for all of part (a) to show
that each game with no-absentmindedness is isomorphic to an distinguished-action
sequence game with no-absentmindedness. Toward that end, suppose Γ is a game
with no-absentmindedness. Then Lemma D.7 implies that Γ is isomorphic to an
distinguished-action sequence game. Because no-absentmindedness is invariant by
Theorem 5.3(a), this isomorph has no-absentmindedness.

(b). This is proved as part (a) was proved. In particular, replace part (a)
with part (b), replace no-absentmindedness with perfection-information, and re-
place Theorem 5.3(a) with Theorem 5.3(b). 2
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Lemma D.11. 30 Suppose Θ̇ is a distinguished-action sequence CLT with no-
absentmindedness. Let R be the function, from finite sequences to finite sets, that
takes each sequence to its range.31 Then the following hold.

(a) (∀ẋ∈Ẋ) |R(ẋ)| = |ẋ|
(b) (∀ẏ∈Ẋr{{}}) R(ẏ)rR(1ẏ|ẏ|−1) = {ẏ|ẏ|}.
(c) (∀ẋ∈Ẋ, ẏ∈Ẋ) R(ẋ) ⊆ R(ẏ) ⇒ ẋ = 1ẏ|ẋ|.
(d) R|Ẋ is injective.

Proof. (a). Take ẋ ∈ Ẋ. Suppose |R(ẋ)| 6= |ẋ|. Then since |R(ẋ)| > |ẋ| is
inconceivable, |R(ẋ)| < |ẋ|. Thus there are ` and m such that [1] ` < m and

[2] ẋ` = ẋm. Using sequences implies ẋ` ∈ Ḟ (1ẋ`−1) and ẋm ∈ Ḟ (1ẋm−1). Thus
[2] implies that the same action is feasible from both 1ẋ`−1 and 1ẋm−1. Hence
distinguished actions implies that the two sequences are in the same information
set H. Further, using sequences and [1] imply 1ẋ`−1 ≺ 1ẋm−1. The previous two
sentences contradict no-absentmindedness.

(b). By inspection, R(ẏ)rR(1ẏ|ẏ|−1) can have no more than one element. Thus
it suffices to show that the set contains ẏ|ẏ|. For this, it suffices to show that
ẏ|ẏ| /∈ R(1ẏ|ẏ|−1). Toward that end, note that the alternative ẏ|ẏ| ∈ R(1ẏ|ẏ|−1) im-
plies R(ẏ) = R(1ẏ|ẏ|−1), which implies |R(ẏ)| = |R(1ẏ|ẏ|−1)|, which by part (a)
implies |ẏ| = |1ẏ|ẏ|−1|, which implies the falsehood |ẏ| = |ẏ|−1.

(c). Take ẋ ∈ Ẋ and ẏ ∈ Ẋ. Suppose [1] R(ẋ) ⊆ R(ẏ) and [2] ẋ 6= 1ẏ|ẋ|. Part
(a) and [1] imply |ẋ| ≤ |ẏ|, and thus [2] implies there is m ∈ {1, 2, ... |ẋ|} such that
ẋm 6= ẏm. Let ` be the least such m. Then [3] 1ẋ`−1 = 1ẏ`−1 and [4] ẋ` 6= ẏ`.

Using sequences implies ẏ` ∈ Ḟ (1ẏ`−1) and thus [3] implies [5] ẏ` ∈ Ḟ (1ẋ`−1). Fur-
ther, [1] and [4] imply there is an [6] `∗ 6= ` such that ẋ`∗ = ẏ`. Thus [5] implies

ẋ`∗ ∈ Ḟ (1ẋ`−1). At the same time, using sequences implies ẋ`∗ ∈ Ḟ (1ẋ`∗−1). The
previous two sentences imply that ẋ`∗ is feasible from both 1ẋ`−1 and 1ẋ`∗−1.
Thus distinguished actions imply that the two sequences belong to the same in-
formation set H. Further, [6] implies 1ẋ`−1 ≺ 1ẋ`∗−1 or 1ẋ`∗−1 ≺ 1ẋ`−1. Either
contingency together with the second-previous sentence leads to a contradiction of
no-absentmindedness.

(d). It suffices to show (∀ẋ∈Ẋ, ẏ∈Ẋ) R(ẋ) = R(ẏ) ⇒ ẋ = ẏ. Suppose ẋ ∈Ẋ and

ẏ ∈ Ẋ are such that [1] R(ẋ) = R(ẏ). Then |R(ẋ)| = |R(ẏ)|, so part (a) implies
|ẋ| = |ẏ|. In steps, ẋ by [1] and part (c) is equal to 1ẏ|ẋ|, which by the previous
sentence is equal to 1ẏ|ẏ|, which is ẏ. 2

Lemma D.12. Each distinguished-action sequence game with no-
absentmindedness is isomorphic to an action-set game.

Proof. Consider a distinguished-action sequence game Γ̇ with no-
absentmindedness. Lemma D.11(d) shows that R|Ẋ is injective, where R is
the function, from finite sequences to finite sets, that takes each sequence to its
range. Define X = {R(ẋ) | ẋ∈Ẋ }. Since R|Ẋ is injective, R|Ẋ,X is a bijection. So

use R|Ẋ,X and Lemma D.4 to construct a game Γ such that [Γ̇, Γ,R|Ẋ,X ] is an
isomorphism. Thus it suffices to show that Γ is an action-set game. This follows
from Claims 1–3.

30This lemma extends part of Streufert 2020a, Lemma B.4.
31To be clear, R({}) = {}, and for any nonempty sequence ẋ = (ẋ1, ẋ2, ... ẋm), R(ẋ) =

{ ẋ` | `∈{1, 2, ...m} }.
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Claim 1: X is a collection of finite sets which contains {}. By the assumption of

using sequences, Ẋ is a collection of finite sequences. Thus the previous paragraph’s
definition of X implies X is a collection of finite sets. Further, the assumption of
using sequences implies {} is the root node of Γ̇ , and thus R({}) = {} is a member
of X.

Claim 2: E = {xy∈X2 |x⊆y, |yrx|=1 }. For the forward direction, take
xy ∈ E. Then [C1] for Γ implies xy ∈ X2. Further, Lemma D.4’s definition of

E implies there is [a] ẋẏ ∈ Ė such that [b] R(ẋ)R(ẏ) = xy. Using sequences
and [a] implies ẋ = 1ẏ|ẏ|−1. This implies [c] R(ẋ) ⊆ R(ẏ). It also implies
|ẋ| = |1ẏ|ẏ|−1|, which by Lemma D.11(a) implies |R(ẋ)| = |R(ẏ)|−1, which by
[c] implies [d] |R(ẏ)rR(ẋ)| = 1. Finally, [b]–[d] imply x ⊆ y and |yrx| = 1.

For the reverse direction, suppose [1] xy ∈ X2, [2] x ⊆ y, and [3] |yrx| = 1.

By [1] and the opening paragraph’s definition of X, there exist ẋ ∈ Ẋ and ẏ ∈ Ẋ
such that x = R(ẋ) and y = R(ẏ). Thus [2] and [3] imply [4] R(ẋ) ⊆ R(ẏ) and
[5] |R(ẏ)rR(ẋ)| = 1. [4] and [5] imply |R(ẋ)| = |R(ẏ)|−1, which by Lemma D.11(a)
implies |ẋ| = |ẏ| − 1. In steps, Lemma D.11(c) and [4] implies ẋ = 1ẏ|ẋ|, which by

the previous sentence implies ẋ = 1ẏ|ẏ|−1, which by using sequences implies ẋẏ ∈ Ė.
Thus this paragraph’s definition of ẋ and ẏ and Lemma D.4’s definition of E imply
xy ∈ E.

Claim 3: (∀xy∈E) {λ(xy)} = yrx. Take xy ∈ E. Then Lemma D.4’s def-

inition of E implies there is [a] ẋẏ ∈ Ė such that [b] R(ẋ)R(ẏ) = xy. Using

sequences and [a] implies both [c] ẋ = 1ẏ|ẏ|−1 and [d] λ̇(ẋẏ) = ẏ|ẏ|. Also note

[e] λ(xy) = λ̇(ẋẏ), because λ(xy) by Lemma D.4(a)’s definition of λ is equal to

λ̇((R|Ẋ,X)−1(x)(R|Ẋ,X)−1(y)), which by [b] is equal to λ̇(ẋẏ). Finally, to conclude,

yrx by [b] is equal to R(ẏ)rR(ẋ), which by [c] is equal to R(ẏ)rR(1ẏ|ẏ|−1), which

by Lemma D.11(b) is equal to {ẏ|ẏ|}, which by [d] is equal to {λ̇(ẋẏ)}, which by [e]
is equal to {λ(xy)}. 2

Lemma D.13. Each game with no-absentmindedness is isomorphic to an
action-set game.

Proof. Suppose Γ ∗ is a game with no-absentmindedness. Then Lemma D.7
implies that Γ ∗ is isomorphic to a distinguished-action sequence game Γ̇ . Since
no-absentmindedness is invariant by Theorem 5.3(a), Γ̇ has no-absentmindedness.

Thus Lemma D.12 implies that Γ̇ is isomorphic to an action-set game. In summary,
Γ ∗ is isomorphic to Γ̇ , which is isomorphic to an action-set game. 2

Lemma D.14. Suppose Θ is an action-set CLT. Then Θ satisfies no-
absentmindedness.

Proof. Suppose Θ violates no-absentmindedness. Then there are [a] H ∈ H,
[b] x ∈ H, and [c] y ∈ H such that [d] x ≺ y. Note [d] implies there is a nontrivial
path {x0, x1, ... x`−1, x`} from x0 = x to x` = y. The nontriviality of the path
implies [e] ` ≥ 1. Thus x0x1 ∈ E, which implies xx1 ∈ E, which implies a = λ(xx1)
is well-defined.

Note a = λ(xx1) and the definition of using action sets implies [f] a ∈ x1. By
[e], ` = 1 or ` > 1. If ` = 1, x1 = y. If ` > 1, {x1x2, x2x3, ... x`−1x`} is a subset
of E, and hence the definition of using action sets implies x1 ⊆ x` = y. Thus in
either event, x1 ⊆ y, which by [f] implies [g] a ∈ y.
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Meanwhile, a = λ(xx1) and the general definition of F imply a ∈ F (x). Thus
[a]–[c] and [C4] imply a ∈ F (y). Hence the general definition of F implies there
is y+ ∈ X such that λ(yy+) = a, which by using action sets implies a /∈ y. This
contradicts [g]. 2

Proof D.15 (for Theorem 5.5). Lemma D.14 implies that each action-set game
is a game with no-absentmindedness. Thus AGm is a full subcategory of Gmã.
Hence the theorem follows from Lemma D.13. 2

Proof D.16 (for Corollary 5.6). Easily, AGmp is a full subcategory of Gmp.
Thus it suffices to show that every game with perfect-information is isomorphic to
an action-set game with perfect-information. Toward that end, suppose Γ is a game
with perfect-information. Since, perfect-information implies no-absentmindedness,
Lemma D.13 implies that Γ is isomorphic to an action-set game. Since perfect-
information is invariant by Theorem 5.3(b), this action-set game has perfect-
information. 2
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Distrital Francisco José de Caldas, Colombia, 20 pages.

Kline, J. J., and S. Luckraz (2016): “Equivalence between Graph-Based and Sequence-Based
Extensive Form Games,” Economic Theory Bulletin, 4, 85–94.



60 References

Kohlberg, E., and J.-F. Mertens (1986): “On the Strategic Stability of Equilibria,” Econo-

metrica, 54, 1003–1037.

Kreps, D. M., and R. Wilson (1982): “Sequential Equilibria,” Econometrica, 50, 863–894.
Kuhn, H. W. (1953): “Extensive Games and the Problem of Information,” in Classics in Game

Theory, ed. by H. W. Kuhn, pp. 46–68. Princeton (1997), originally in Contributions to the

Theory of Games, Volume II, ed. by H. W. Kuhn and A. W. Tucker, pp. 193–216, Princeton
(1953).

Lapitsky, V. (1999): “On Some Categories of Games and Corresponding Equilibria,” Interna-

tional Game Theory Review, 1, 169–185.
Machover, M., and S. D. Terrington (2014): “Mathematical Structures of Simple Voting

Games,” Mathematical Social Sciences, 71, 61–68.

McCusker, G. (2000): “Games and Full Abstraction for FPC,” Information and Computation,
160, 1–61.

McKinsey, J. C. C. (1950): “Isomorphism of Games, and Strategic Equivalence,” in Contribu-
tions to the Theory of Games, Volume I, ed. by H. W. Kuhn, and A. W. Tucker, pp. 117–130.

Princeton.

Mertens, J.-F. (2002): “Stochastic Games,” in Handbook of Game Theory, Volume 3, pp. 1809–
1832. North-Holland.

Myerson, R. B. (1991): Game Theory: Analysis of Conflict. Harvard.

Osborne, M. J., and A. Rubinstein (1994): A Course in Game Theory. MIT.
Pacuit, E. (2007): “Some Comments on History Based Structures,” Journal of Applied Logic, 5,

613–624.

Parikh, R., and R. Ramanujam (1985): “Distributed Processes and the Logic of Knowledge,”
in Logic of Programs, Lecture Notes in Computer Science 193, pp. 256–268. Springer.

Piccione, M., and A. Rubinstein (1997): “On the Interpretation of Decision Problems with

Imperfect Recall,” Games and Economic Behavior, 20, 3–24.
Selten, R. (1975): “Reexamination of the Perfectness Concept for Equilibrium Points in Exten-

sive Games,” International Journal of Game Theory, 4, 25–55.
Shoham, Y., and K. Leyton-Brown (2009): Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge.

Streufert, P. A. (2015): “An Elementary Proof that Additive I-Likelihood Characterizes the
Supports of Consistent Assessments,” Journal of Mathematical Economics, 59, 37–46.

(2018): “The Category of Node-and-Choice Preforms for Extensive-Form Games,” Studia

Logica (Special Issue: Logics for Social Behaviour), 106, 1001–1064.
(2019): “Equivalences among Five Game Specifications, including a New Specification

whose Nodes are Sets of Past Choices,” International Journal of Game Theory, 48, 1–32.
(2020a): “The Category of Node-and-Choice Forms, with Subcategories for Choice-

Sequence Forms and Choice-Set Forms,” in Nonclassical Logics and Their Applications, ed. by

S. Ju, A. Palmigiano, and M. Ma, Logic in Asia: Studia Logical Library, pp. 15–66. Springer.
(2020b): “The Category of Node-and-Choice Extensive-Form Games,” arXiv 2004.11196,

also Western University, Department of Economics Research Report Series 2020-4, 47 pages.

Thompson, F. B. (1952): “Equivalence of Games in Extensive Form,” in Classics in Game Theory,
ed. by H. W. Kuhn, pp. 36–45. Princeton (1997), originally RAND Memo RM-759 (1952).

van Benthem, J. (2001): “Correspondence Theory,” in Handbook of Philosophical Logic (Second

Edition), Volume 3, ed. by D. Gabbay, and F. Guenthner, pp. 325–408. Kluwer.
(2014): Logic in Games. MIT.

von Neumann, J., and O. Morgenstern (1944): Theory of Games and Economic Behavior.
Princeton.


	2021-2 A Category for Extensive-Form Games
	1. Introduction
	1.1. A foundational question
	1.2. Examples of equivalences
	1.3. Summary
	1.4. Motivation
	1.5. Organization

	2. Definition
	2.1. Out-trees
	2.2. Continuously labeled trees (CLTs)
	2.3. Games

	3. Monomorphisms
	3.1. Characterizing monomorphisms
	3.2. Selten subgames

	4. Isomorphisms
	4.1. Characterizing isomorphisms
	4.2. Nash equilibrium
	4.3. Subgame-perfect equilibrium

	5. Full Subcategories
	5.1. Distinguished-action games
	5.2. Sequence games
	5.3. Two invariant properties
	5.4. Action-set games

	Appendix A. For Definition
	Appendix B. For Monomorphisms
	Appendix C. For Isomorphisms
	Appendix D. For Full Subcategories
	References

