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Abstract 

The Gini coefficient is based on the sum of pairwise income differences, which can be decomposed into 

separate sums for individuals.  Differences vis-à-vis poorer people represent an individual’s advantage, 

while those with respect to richer people constitute deprivation.  Weighting deprivation and advantage 

differently produces a family of personal Gini coefficients whose population averages each equal the 

overall Gini coefficient.  Properties of the personal indexes explain why the Gini coefficient is most 

sensitive to changes in the middle of typical income distributions.  Behavior of the personal indexes also 

throws light on the inequality impacts of secular changes in income distribution.  In a simple Kuznets-

type process, the Gini coefficient first rises and then falls but, throughout, a personal Gini coefficient will 

be rising for people in the traditional sector, while it is falling for those in the modern sector.  In a leading 

case, the population shifts associated with polarization in labor markets in advanced economies also 

reduce personal inequality at the top and increase it at the bottom.  The shift of population toward the two 

extremes unambiguously raises personal inequality for those in the middle.  The wage changes 

accompanying polarization can, however, reverse these results, particularly at the top, as illustrated by 

calculations for U.S. polarization between 1980 and 2005.  
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I. Introduction 

 

The Gini coefficient has a natural interpretation as the mean of personal inequality assessments.  While 

that fact is obvious once pointed out, it was not emphasized in the original work by Gini (1914) and has 

not been highlighted since.  This paper shows that this straightforward interpretation throws important 

light on the properties of the Gini coefficient.  It also allows us to better understand the reaction of the 

Gini coefficient, and possibly also that of individuals, to secular changes in income distribution.  The 

latter include the hypothetical transition from a traditional to a modern economy analyzed by Kuznets 

(1955), and the polarization in income distribution seen in recent decades in the US and some other 

countries.  Personal assessments of the direction of change in inequality may differ between people at 

different income levels.  These results suggest that our understanding of inequality measurement can be 

enriched by studying what it may mean at the personal level.   

The Gini coefficient can be defined or interpreted in many ways (Yitzhaki, 1998).  For our purposes the 

most useful is that it equals one half the mean difference divided by the mean.  That is, the Gini 

coefficient can be found by taking the sum of all pairwise absolute income differences, S, converting to an 

average and normalizing by the mean income.  S equals the sum across individuals i = 1, .., n of their 

personal sums of income differences with all other individuals, 𝑆𝑖.  The latter provide the basis for a 

personal inequality index whose average across the population is the Gini coefficient.   

For each individual, 𝑆𝑖 is composed of the sum of differences with respect to people at higher incomes 

plus the sum of differences vis- à -vis lower income persons.  Following Yitzhaki (1979) the sum of 

differences with higher incomes may be used to define the individual’s deprivation.  That concept is 

complemented by the individual’s advantage, derived from the sum of differences with respect to lower 

incomes.1  Summing either deprivation or advantage across the whole population produces the same total 

 
1 Yitzhaki (1979) used the term “relative deprivation”, which was introduced by Runciman (1966) to refer to any 

case in which some members of a reference group felt deprived compared to other members of their group.  
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(Yitzhaki, 1979).  Therefore, any weighted average of deprivation and advantage, as well as an 

unweighted average, will generate the Gini coefficient. This means that there is a whole family of 

personal Gini coefficients.  One implication is that if societies choose to base overall inequality 

measurement on an average of individual assessments they may all use the Gini coefficient at the 

aggregate level even if they differ in the weight placed on advantage vs. deprivation at the personal level.   

The personal inequality indexes discussed here have both “top down” and “bottom up” interpretations.    

This paper does not take a position on which viewpoint is preferable.  It is not necessary to make a choice 

in order to pursue the analysis.  A personal Gini coefficient could be regarded as reflecting how a social 

planner would measure personal inequality.  This is a “top down” interpretation.  The “bottom up” view is 

that it would be reasonable for individuals themselves to assess inequality using such a measure. Why 

might they do so?   One possibility is that they could have interdependent utility functions of a form that 

suggests the use of a personal Gini coefficient (Fehr and Schmidt, 1999).  Another may lie in bounded 

rationality.  Holding the mean constant, in a society of two people the difference between their incomes is 

a natural indicator of inequality.  People might, implicitly if not explicitly, extend this to regard the 

average of pairwise differences as an attractive indicator of inequality when there are more than two 

people.  That conclusion could be reinforced by information and computational constraints.  As shown in 

this paper, in order to compute the value of a personal Gini coefficient the individual only needs to know 

the fractions of the population with income above and below her and the average incomes of those two 

groups.  While we should not suppose that real-world individuals know everyone else’s income, they 

might be able to make a serviceable guess at these fractions and averages.  

If the “bottom up” interpretation of personal Gini coefficients is taken, our analysis is clearly related to 

the literature on individual attitudes toward inequality.  A portion of that literature attempts to measure 

 
“Deprivation” is used here simply because it is shorter.  Fehr and Schmidt (1999) referred to the same concept as 

“disadvantageous inequality”, but the term deprivation still dominates in the literature.  Yitzhaki (1979) used 

“satisfaction” rather than “advantage”.  “Advantage” is used here as a more neutral term.      
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attitudes within narrow reference groups, e.g. co-workers or members of the same occupation.   In such 

cases people tend to be averse to deprivation but to like advantage.  As Clark and D’Ambrosio (2015) 

point out, in the income distribution literature the usual reference group is broader.  In that context, 

following Yitzhaki (1979, 1982) and Fehr and Schmidt (1999) the general expectation has been that 

people will be averse to both deprivation and advantage.  There are some empirical or experimental 

studies that have estimated aversion to deprivation and/or advantage with broader reference groups.  

Using the German SOEP survey data, D’Ambrosio and Frick (2007) find strong aversion to deprivation 

(but do not report on attitudes to advantage).  Cojocaru (2014) finds significant aversion to both 

advantage and deprivation using a survey of 27 transition countries.  In experiments with subjects who 

played a sequential public goods game, Teyssier (2012) found that 40% were averse to both advantage 

and deprivation while 18% were averse to neither.  While these studies do not provide strong evidence on 

the relative degree of aversion to deprivation vs. advantage, neural studies find that brain activity reacts 

more strongly to deprivation (Clark and D’Ambrosio, 2015) and there appears to be close to a consensus 

that aversion is stronger to deprivation than to advantage for most people.  

The remainder of the paper proceeds as follows.  For expositional simplicity we start by working with the 

“unbiased” case in which advantage and deprivation are equally weighted.  Section II defines the 

unbiased personal Gini coefficient and derives some of its basic properties.  In Section III we then explore 

how the behavior of this index helps to explain the sensitivity of the Gini coefficient to income changes in 

different ranges of a distribution. The analysis is extended to allow unequal weighting of deprivation and 

advantage in Section IV, which shows that the main insights of the previous two sections survive this 

generalization.  How the personal assessments of inequality vary with income is discussed in Section V 

and the behavior of those assessments during periods of secular change in income distribution is 

examined in Section VI.  Section VII concludes.  
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II. Unbiased Personal Gini Coefficient  

In this section we see how the Gini coefficient can be defined as the average value across individuals of 

an “unbiased” personal Gini coefficient, and begin to examine its properties.  The Gini coefficient for an 

income distribution equals one half the mean difference divided by the mean, as in:  

(1)        𝐺 =
1

2𝑛2�̅�
∑ ∑|𝑦𝑖 − 𝑦𝑗|

𝑛

𝑗=1

𝑛

𝑖=1

=
𝑆

2𝑛2�̅�
 

where 𝑦𝑖 is the income of individual i, �̅� is mean income, n > 1, 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑛, S is the sum of 

differences, and 𝑆/𝑛2 is the mean difference.2   

A natural but previously overlooked interpretation is that G is the mean value across individuals of an 

unbiased personal Gini coefficiet, 𝐺𝑖: 

(2)       𝐺 =  
1

𝑛
∑ 𝐺𝑖

𝑛

𝑖=1

 

where   

(3)       𝐺𝑖 =
1

2𝑛�̅�
∑|𝑦𝑖 − 𝑦𝑗| =

𝑆𝑖

2𝑛�̅�

𝑛

𝑗=1

 

and 𝑆𝑖 is the sum of differences for individual i.  Equation (3) can be rewritten: 

(4)        𝐺𝑖 =
1

2𝑛�̅�
[𝑛𝑖

𝑙(𝑦𝑖 − �̅�𝑖
𝑙) + 𝑛𝑖

ℎ(�̅�𝑖
ℎ − 𝑦𝑖)] 

 
2 As mentioned earlier, the Gini coefficient can be expressed in many different ways (Yitzhaki, 1998). This is one of 

the two principal forms in which it was originally set out in Gini (1914), and is the most convenient for our 

discussion.     
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where 𝑛𝑖
𝑙 is the number of individuals with income less than or equal to 𝑦𝑖, excluding individual i, and 𝑛𝑖

ℎ 

is the number with income strictly greater than 𝑦𝑖, so that 𝑛𝑖
𝑙 + 𝑛𝑖

ℎ = 𝑛 − 1.3   �̅�𝑖
𝑙 and �̅�𝑖

ℎ are mean income 

among those with income less than or equal to 𝑦𝑖, excluding i, and strictly greater than 𝑦𝑖 respectively.   

Let 𝐻𝑖 be the set of all j such that 𝑦𝑗 >  𝑦𝑖 , and 𝐿𝑖 be the set of all j excluding i such that 𝑦𝑗  ≤  𝑦𝑖. 

Equation (4) can be expressed as: 

(4′)        𝐺𝑖 =  
1

2�̅�
(𝐴𝑖 + 𝐷𝑖) 

where: 

(5𝑖)       𝐴𝑖 =
𝑛𝑖

𝑙

𝑛
 (𝑦𝑖 − �̅�𝑖

𝑙) =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑗)

𝑗∈𝐿𝑖

  

(5𝑖𝑖)     𝐷𝑖 =
𝑛𝑖

ℎ

𝑛
(�̅�𝑖

ℎ − 𝑦𝑖) =
1

𝑛
∑ (𝑦𝑗 − 𝑦𝑖)

𝑗∈𝐻𝑖

 

𝐷𝑖 is the discrete analogue of the measure of relative deprivation for an individual, which we will refer to 

simply as deprivation, proposed by Yitzhaki (1979) for a continuous distribution.  It equals the average 

shortfall of i’s income below the income of those who are better off, weighted by the fraction of the 

population in the latter group.  Equation (4΄) shows that 𝐺𝑖is the simple average of 𝐷𝑖 and a 

complementary measure, 𝐴𝑖, normalized by the mean.  We will say that 𝐴𝑖 represents individual i’s 

advantage compared to people with lower income.  Thus, from the individual perspective inequality 

consists of both deprivation with respect to the better off and advantage over the worse off.   

While 𝐺𝑖 is a natural personal inequality index to associate with the Gini coefficient, it is not the only 

such index.  As mentioned earlier, and as shown in Section IV, one can define a more general class of 

 
3 The choice to include individuals who have the same income as i in the lower group rather than in the higher group 

is arbitrary but does not affect the results in any significant way.    
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personal Gini coefficients that are based on a weighted average of 𝐴𝑖 and 𝐷𝑖.  𝐺𝑖 is a special case in which 

the weights on 𝐴𝑖 and 𝐷𝑖 are equal.     

From (4) we have: 

Proposition 1:  𝐺𝑖 is insensitive to a transfer of income within 𝐻𝑖 or within 𝐿𝑖 if the composition of 

neither group changes as a result of the transfer.   

The proposition follows from the fact that transfers of income confined either to 𝐻𝑖 or 𝐿𝑖 do not alter 

𝑛𝑖
𝑙 ,  �̅�𝑖

𝑙  , 𝑛𝑖
ℎ, or �̅�𝑖

ℎ or any other term on the right-hand side of (4).  In terms of (4΄), as noted by Yitzhaki 

(1979) these transfers have no effect on advantage, 𝐴𝑖, or on deprivation, 𝐷𝑖.  The insensitivity of 𝐺𝑖 to 

such transfers means that it does not respect the Pigou-Dalton principle of transfers, which is a 

cornerstone of the theory of aggregate inequality measurement.4  That an aggregate index that respects the 

Pigou-Dalton principle can be built on the basis of personal indexes that violate the principle is striking.   

Sensitivity of 𝑮𝒊 to a transfer of income between 𝑯𝒊 and 𝑳𝒊 

What determines how sensitive 𝐺𝑖 is to a transfer of income between 𝐻𝑖 and 𝐿𝑖?  Consider the transfer of 

a total amount R from 𝐻𝑖 to 𝐿𝑖. Note that such a transfer reduces both 𝐴𝑖and 𝐷𝑖 by R/n, as can be seen 

from (5) where 𝑛𝑖
𝑙(𝑦𝑖 − �̅�𝑖

𝑙) and  𝑛𝑖
ℎ(�̅�𝑖

ℎ − 𝑦𝑖) both fall by R.  We will allow R to be negative, so this also 

handles the case of transfers from 𝐿𝑖  to 𝐻𝑖, which increase 𝐴𝑖  and 𝐷𝑖 by equal amounts.  Using  

                  
𝜕𝐴𝑖

𝜕𝑅
=

𝜕𝐷𝑖

𝜕𝑅
=

−1

𝑛
 

from (4΄) we have: 

 
4 Dalton (1920, p. 351) identified the central importance of the “principle of transfers”, which says that a rank-

preserving transfer from a richer person to a poorer person reduces inequality.  Dalton referred his readers to an 

earlier statement of the same idea by Pigou.  More recently the principle has come to be referred to as the “Pigou-

Dalton” principle of transfers (Sen, 1973).  
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  (6)    
𝜕𝐺𝑖

𝜕𝑅
= −

1

𝑛�̅�
  

which allows us to state: 

Proposition 2: When income is transferred from a person with income strictly above 𝑦𝑖 to someone with 

income strictly below 𝑦𝑖, 𝐺𝑖 falls, while if income is transferred from a person with income strictly below 

𝑦𝑖 to someone with income strictly above 𝑦𝑖, 𝐺𝑖 rises.  In both cases the change in 𝐺𝑖 is proportional to the 

amount transferred and independent of 𝑦𝑖. 

Sensitivity of 𝑮𝒊 to a transfer affecting 𝒚𝒊   

We also need to analyze those cases where distributional changes affect individual i’s own income. There 

are two situations to consider.  One is that of a transfer from i to another person j.  The other is that of a 

transfer from j to i.  We will consider them in turn.  In this analysis, and in the remainder of the paper 

unless indicated otherwise, we will assume 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛.  This assumption will simplify the 

analysis since, for example, it implies that when n is odd there is a unique individual with median income, 

𝑦𝑚𝑒𝑑, and half the remaining population has 𝑦𝑖 < 𝑦𝑚𝑒𝑑 while the other half have 𝑦𝑖 > 𝑦𝑚𝑒𝑑 . 5  If n is even 

there is no individual with 𝑦𝑖 = 𝑦𝑚𝑒𝑑 , but 𝑦𝑚𝑒𝑑, which is defined as the midpoint between 𝑦𝑛/2 and 

𝑦𝑛/2+1, again divides the population into two sub-populations of equal size with incomes above and 

below the median.  

Transfer from i to j:  Let 𝑦𝑖
𝑜 and 𝑦𝑗

𝑜 be initial incomes and consider the effect on 𝐺𝑖 of the transfer of a 

small amount r from individual i to individual j.  From (4) we obtain: 

Proposition 3a:  The effect on 𝐺𝑖 of a small transfer in the amount of r from individual i to an individual 

j is given by: 

 
5 If we assume only 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑛 then there could be multiple individuals with median income and the groups 

with income strictly below the median and strictly above the median need not contain an equal number of members.  

Consider for example a population with the set of incomes (1, 1, 2, 2, 2, 3).  
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(7𝑖)         ∆𝐺𝑖  =
1

2𝑛�̅�
[(𝑛𝑖

ℎ − 𝑛𝑖
𝑙) − 1]r ,        𝑖 > 𝑗 

(7𝑖𝑖)        ∆𝐺𝑖 =
1

2𝑛�̅�
[(𝑛𝑖

ℎ − 𝑛𝑖
𝑙) + 1]r ,        𝑖 < 𝑗 

If we would ignore the -1 and +1 in the square brackets on the right-hand side, (7) would say that 

irrespective of whether i was greater or less than j, a transfer from i to anyone else would increase 𝐺𝑖 if i 

was below the median and reduce 𝐺𝑖 if i was above the median.  This reflects the fact that the main 

impact of the transfer on 𝐺𝑖 is to reduce 𝐴𝑖 and increase 𝐷𝑖.  If 𝑛𝑖
ℎ > 𝑛𝑖

𝑙, individual i is below the median 

and from (5) we see that the increase in 𝐷𝑖 will exceed the drop in 𝐴𝑖, since those changes are 

proportional to 𝑛𝑖
ℎ and 𝑛𝑖

𝑙 respectively.  If 𝑛𝑖
ℎ < 𝑛𝑖

𝑙, individual i is above the median and we have the 

opposite case.  These conclusions are modified only trivially by the -1 and +1 in the square brackets in 

(7).6  

Transfer from j to i:  Here incomes after a transfer are 𝑦𝑖
𝑜 + 𝑟 and 𝑦𝑗

𝑜 − 𝑟. and we have: 

Proposition 3b:  The effect on 𝐺𝑖 of a small transfer in the amount of r from an individual j to individual 

i is given by: 

(8𝑖)         ∆𝐺𝑖 =
1

2𝑛�̅�
[(𝑛𝑖

𝑙 − 𝑛𝑖
ℎ) + 1]r ,        𝑖 > 𝑗 

(8𝑖𝑖)        ∆𝐺𝑖 =
1

2𝑛�̅�
[(𝑛𝑖

𝑙 − 𝑛𝑖
ℎ) − 1]r ,        𝑖 < 𝑗 

 
6 The -1 in (7i) means that the rank at which ∆𝐺𝑖 switches from being positive to negative as we go up the income 

scale in the 𝑖 > 𝑗 case is shifted one position higher because the transfer goes to a person with income lower than the 

“donor” i, reducing �̅�𝑖
𝑙 and 𝐴𝑖 a little.  And the +1 in (7ii) means that when 𝑖 < 𝑗, ∆𝐺𝑖 switches from positive to 

negative is shifted one position lower than would otherwise be the case since the transfer goes to a higher income 

person, raising �̅�𝑖
ℎ and 𝐷𝑖  a little. 
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Now the main effect of the transfer is to raise 𝑦𝑖 and therefore to increase 𝐴𝑖 and reduce 𝐷𝑖, which is 

equalizing if 𝑦𝑖 is below the median and disequalizing if 𝑦𝑖 is above the median.  Again the point at which 

∆𝐺𝑖 switches sign as i rises is offset one position by the small impact of the change in 𝑦𝑗 on 𝐴𝑖 when 𝑖 > 𝑗 

and on 𝐷𝑖 when 𝑖 < 𝑗.   

Summing up, we can say that for an individual whose income is above the median, a small transfer from 

herself to someone else is equalizing, from a personal standpoint, if her income is above the median, and 

is disequalizing if her income is below the median (subject to the small qualification indicated in footnote 

6).  If she is the recipient, a small transfer is equalizing from the personal viewpoint if she is below the 

median and disequalizing if she is above the median (again subject to footnote 6).  Thus, the situation in 

this form of personal inequality measurement is quite different from that in aggregate inequality 

measurement.  In the latter, the impact of a small transfer on inequality is deemed equalizing if the 

donor’s income exceeds the recipient’s and disequalizing if the opposite holds.  In the case of personal 

Gini coefficients, in contrast, whether the transfer is considered equalizing or disequalizing depends 

almost solely on the income of the person for whom the assessment is being made.  For low income 

people, if they make a transfer it is disequalizing while if they receive a transfer it is equalizing.  For high 

income people the opposite holds. 

III.  Explaining the sensitivity of the Gini coefficient to changes in different ranges of the income 

distribution 

From (1) one may derive: 

(9)        𝐺 =
2

𝑛2�̅�
[𝑦1 + 2𝑦2 + 3𝑦3 + ⋯ + 𝑛𝑦𝑛] −

𝑛+1

𝑛
  

(see e.g. Cowell, 2011, p. 114).  This provides insight into the sensitivity of the Gini coefficient to 

changes in different ranges of the income distribution.  Consider a small transfer, r, from individual j to 

individual i where i < j.  This is an example of what would be called an “equalizing transfer” in 
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discussions of aggregate inequality.  From (9), this transfer will produce a change in the Gini coefficient 

given by: 

(10)        ∆𝐺 =
−2𝑟(𝑗−𝑖)

𝑛2�̅�
  

which also tells us the impact of a transfer from i to j, in which case 𝑟 < 0.  We see that the impact on the 

Gini coefficient does not depend on 𝑦𝑖 or 𝑦𝑗, but varies only with r and the difference in income ranks 

between i and j.     

The fact that the sensitivity of the Gini coefficient to transfers is independent of the incomes of the 

transferor and transferee, but depends on the number of people between them in the distribution, is one of 

the most interesting properties of the Gini coefficient. This property follows directly from those of the 

personal inequality index 𝐺𝑖 captured in Propositions 1, 2 and 3 above.  Again considering a small 

transfer, r, from individual j to individual i where i < j , Proposition 1 implies: 

(11𝑖)       ∆𝐺𝑘 = 0.      𝑘 < 𝑖, 𝑘 > 𝑗. 

From Proposition 2 we have: 

(11𝑖𝑖)       ∆𝐺𝑘 =
−𝑟

𝑛�̅�
.      𝑖 < 𝑘 < 𝑗. 

And from Proposition 3 

(12)       ∆𝐺𝑖 =
(𝑛𝑖

𝑙−𝑛𝑖
ℎ−1)𝑟

2𝑛�̅�
.          ∆𝐺𝑗 =

(𝑛𝑗
ℎ−𝑛𝑗

𝑙 −1)𝑟

2𝑛�̅�
  . 

Now, from (2) and (11i), the change in G resulting from a transfer from j to i is given by: 

(13)            ∆𝐺 =
1

𝑛
(∆𝐺𝑖 + ∆𝐺𝑗 + ∑ ∆𝐺𝑘

𝑗−1
𝑘=𝑖+1 ) 

Note first from (11ii) that  
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(14)          ∑ ∆𝐺𝑘 = −(𝑗 − 𝑖 − 1)
𝑟

𝑛�̅�

𝑗−1

𝑘=𝑖+1

 

which is proportional to the number of people between i and j, that is the number of people the transfer 

from j to i “passes over”.   

Next, to complete the analysis of  ∆𝐺, note from (12) that:  

           ∆𝐺𝑖 + ∆𝐺𝑗 =
(𝑛𝑖

𝑙−𝑛𝑖
ℎ−1)𝑟

2𝑛�̅�
+

(𝑛𝑗
ℎ−𝑛𝑗

𝑙 −1)𝑟

2𝑛�̅�
  

                               =
−𝑟

2𝑛�̅�
[(𝑛𝑗

𝑙 − 𝑛𝑖
𝑙) + (𝑛𝑖

ℎ − 𝑛𝑗
ℎ) + 2] 

Since 𝑛𝑗
𝑙 − 𝑛𝑖

𝑙 and 𝑛𝑖
ℎ − 𝑛𝑗

ℎ both equal j – i we have: 

(15)      ∆𝐺𝑖 + ∆𝐺𝑗 =
−𝑟

𝑛�̅�
(𝑗 − 𝑖 + 1)      

Hence, like ∑ ∆𝐺𝑘
𝑗−1
𝑘=𝑖+1  , ∆𝐺𝑖 + ∆𝐺𝑗 is proportional to the size of the transfer and rises linearly, in 

absolute value, with the number of people between i and j.7   In this case the reason for dependence on the 

number of people between i and j is that the effects of the transfer cancel out for 𝐴𝑖  and 𝐴𝑗 on the one 

hand, and for 𝐷𝑖 and 𝐷𝑗 on the other, where the sums they are based on overlap.  The range of overlap 

includes all 𝑘 < 𝑖 for 𝐴𝑖  and 𝐴𝑗, and all 𝑘 > 𝑗 for 𝐷𝑖 and 𝐷𝑗.  The range where effects do not cancel out 

has 𝑗 − 𝑖 + 1 people in it.   

Summing up, substituting (14) and (15) into (13) we have: 

(16)        ∆𝐺 =
−𝑟

𝑛2�̅�
[(𝑗 − 𝑖 + 1) + (𝑗 − 𝑖 − 1)] =

−2𝑟(𝑗 − 𝑖)

𝑛2�̅�
 

 
7 Note that the right-hand-side of (15) is not proportional to the number of people between i and j, which is 𝑗 − 𝑖 −
1.   
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which is the same as (10).  So, we have shown that the mean of the effects on the personal inequality 

indexes resulting from the transfer equals the change in G that one would expect from aggregate 

inequality analysis.   

The purpose of this exercise has been to show that the effects of a transfer on personal inequality explain 

the impact on G.  That the reaction of G is governed by the number of people between transferor j and 

transferee i is due to two things: (i) aside from i and j themselves, the only people whose personal 

inequality is affected by the transfer are the individuals between them in the distribution, and (ii) the 

effects of the transfer on 𝐺𝑖 and 𝐺𝑗 cancel out except for those based on changes in income gaps between i 

or j and individuals in the range (i+1, j-1).    

IV. Unequal Weighting of Deprivation and Advantage 

Yitzhaki (1979) defined relative deprivation for a society as a whole, D, as the average of individual 

deprivation indexes 𝐷𝑖.  He worked with continuous distributions.  The corresponding relationship with a 

discrete income distribution is: 

(17)       𝐷 =  
1

𝑛
∑ 𝐷𝑖

𝑛

𝑖=1

 

We can define overall advantage in a parallel way as: 

(18)       𝐴 =  
1

𝑛
∑ 𝐴𝑖

𝑛

𝑖=1

 

Yitzhaki shows that D is related to the Gini coefficient according to: 

(19)       𝐺 =  
𝐷

�̅�
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This result might appear puzzling, given that, from (4΄), 𝐷𝑖 represents only part of an individual’s 

contribution to 𝐺𝑖 and therefore to G.  The explanation is as follows.  The Gini coefficient is proportional 

to the sum of differences, S.   We can arrange the pairwise differences |𝑦𝑖 − 𝑦𝑗| making up S in a matrix 

M with i indexing rows and j indexing columns.  D is the mean of the elements of M above the main 

diagonal while A is the mean of the below-diagonal elements.  Now, the above-diagonal elements have 

the same mean as the below-diagonal elements in M, since e.g. |𝑦2 − 𝑦1|  =  |𝑦1 − 𝑦2|.  Hence A = D.  To 

get from D to S we must therefore double D and multiply by 𝑛2 (to go from an average to a sum).  The 

same procedure could be used to generate S from A.  Thus we have 𝑆 = 2𝑛2𝐷 = 2𝑛2𝐴 or: 

(20)       𝐴 = 𝐷 =
𝑆

2𝑛2
 

Substituting the expression for D from (20) into (19) we obtain 𝐺 = 𝑆/(2𝑛2�̅�) , that is equation (1).     

While Yitzhaki’s approach and ours are closely related, his 𝐷𝑖 and our 𝐺𝑖 are distinct.  𝐺𝑖 depends not just 

on deprivation, 𝐷𝑖, but also on advantage, 𝐴𝑖.  While, overall, A = D, at the individual level there is no 

such relationship.  𝐴𝑖  rises and 𝐷𝑖 falls as we move up through the income distribution from 𝑦1 to 𝑦𝑛, and 

they do so at rates that rise or fall depending on the shape of the particular income distribution being 

examined.   

The fact that 𝐴 = 𝐷 has important consequences for personal Gini coefficients.  Using (19) and 𝐴 = 𝐷,  

G may be found by taking a weighted average of A and D, as in:  

(21)           𝐺 =
𝜆𝐴 + (1 − 𝜆)𝐷

�̅�
                            0 ≤ 𝜆 ≤ 1 

where we require the weights to be positive.  This in turn reveals that there is a family of personal Gini 

coefficients of the form: 

(22)           𝐺𝑖
𝜆 =

𝜆𝐴𝑖+(1−𝜆)𝐷𝑖

�̅�
                               0 ≤ 𝜆 ≤ 1 
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Hence, while λ may differ across societies, they can nevertheless agree on using G as an aggregate 

measure of inequality.  In the continuous case this result could be generalized to allow λ to differ across 

individuals, as long as the distribution of λ was independent of individual income. 

We may ask which of the results derived above for the λ = ½ case survive once 𝜆 ≠ ½ is allowed.  

Proposition 1, which says that the 𝐺𝑖 are insensitive to transfers entirely within the 𝐻𝑖 or 𝐿𝑖 comparator 

groups, survives.  The principle is not affected by re-weighting income differences with the 𝐻𝑖 and 𝐿𝑖       

groups via λ≠ ½ .  Proposition 2, which says that when income is transferred from those with income 

above (below) 𝑦𝑖 to those with income below (above) 𝑦𝑖 the fall (rise) in 𝐺𝑖 is proportional to the total 

amount transferred, R, and is independent of 𝑦𝑖  is also unaltered because we still have: 

                
𝜕𝐴𝑖

𝜕𝑅
=

𝜕𝐷𝑖

𝜕𝑅
=

−1

𝑛
 

and (6) survives unchanged because in the more general formulation, using (22) we have: 

(6′)        
𝜕𝐺𝑖

𝜆

𝜕𝑅
=

1

�̅�
[𝜆

𝜕𝐴𝑖

𝜕𝑅
+ (1 − 𝜆)

𝜕𝐷𝑖

𝜕𝑅
] = −

1

𝑛�̅�
 

Proposition 3 described the impact on 𝐺𝑖  of making a small transfer from another person to individual i.  

Assuming 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛, the conclusion in the λ = ½ case was that, except for a very small region 

around the median, a transfer from a higher income person would reduce 𝐺𝑖 if 𝑦𝑖was below the median, 

and increase 𝐺𝑖  if 𝑦𝑖 was above the median.  Converse results held if the transfer came from a lower 

income person.  The critical role of the median arose because with λ = ½, advantage, 𝐴𝑖, and deprivation, 

𝐷𝑖, are equally weighted.  In general, the critical percentile is given by 1-λ.  Thus, for example, if one 

placed half as much weight on 𝐴𝑖 as on 𝐷𝑖, i.e. λ = 1/3, the critical percentile would be 2/3.  That means 

that a small transfer from someone with higher income would be regarded as equalizing for or by almost 

everyone in the bottom two thirds of the population, but as disequalizing for almost all of those in the top 
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third.  This occurs because putting a higher weight on 𝐷𝑖 increases the equalizing impact on 𝐺𝑖
𝜆 from the 

fall in 𝐷𝑖 caused by such a transfer.    

V.  Personal Inequality Assessments at Different Income Levels 

This section examines how 𝐺𝑖
𝜆 varies as 𝑦𝑖 rises from 𝑦1 to 𝑦𝑛.  Results are provided for the general case 

where λ can take on any value in the interval [0,1], but specific conclusions for the case where λ = ½ 

are also noted.   

How does 𝐺𝑖
𝜆 change as we move up through the distribution of income?  We continue to assume 𝑦1 <

𝑦2 < ⋯ < 𝑦𝑛.  As we go from individual i to i+1, the absolute income gaps in (3) or implicitly in (22) 

increase in value by 𝑦𝑖+1 − 𝑦𝑖 for all j such that 𝑦𝑗 < 𝑦𝑖 , and the corresponding gaps for all j > i fall by 

the same amount.  Hence we should expect that 𝐺𝑖
𝜆 will initially decline as i rises from 1, since at the start 

there are more people with j > i than with j ≤ i , until some critical point is reached, beyond which 𝐺𝑖 

should begin to increase.  Formally we have: 

Proposition 4:    If  𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛 ,           

           𝐺𝑖+1
𝜆

>
  = 
<

  𝐺𝑖
𝜆    as    

𝑖

𝑛
  

>
=
<

  1 − 𝜆 . 

Proof:  See Appendix. 

 

Proposition 4 indicates that 𝐺𝑖
𝜆 falls up to the (1 − 𝜆)100th percentile of the distribution and increases 

above that.  As indicated above, this U-shaped pattern is based on the fact that moving from income 𝑦𝑖  to 

income 𝑦𝑖+1increases the income gaps with lower income people and reduces those with higher income 

people by the same absolute amount.  The relative impact of changes in the upper gaps compared with 

that of changes in the lower gaps is (1-λ)/λ. This means that 𝐺𝑖
𝜆 will fall more rapidly starting from i = 1 if 
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λ < ½, compared with the λ = ½ case, and less rapidly if λ > ½.  Note that if 𝜆 =
1

2
 ,  𝐺𝑖

𝜆 = 𝐺𝑖 falls up to 

the 50th percentile, that is up to the median, and rises thereafter.  

We can also readily identify the value of 𝐺𝑖
𝜆 at the bottom and top of the distribution (i = 1 and i = n), as 

well as the value of 𝐺𝑖
𝜆 for the median individual, 𝐺𝑚𝑒𝑑

𝜆 , if n is odd.  We have: 

Proposition 5:  If 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛, 

(i)  𝐺1
𝜆 = (1 − 𝜆)(1 −

𝑦1

�̅�
)  

(ii) if n is odd, 𝐺𝑚𝑒𝑑
𝜆 =

𝑛−1

2𝑛�̅�
[(1 − 𝜆)�̅�𝑚𝑒𝑑

ℎ − 𝜆�̅�𝑚𝑒𝑑
𝑙 ]; if n is even, 𝐺𝑚𝑒𝑑

𝜆  is not defined, 

(iii)  𝐺𝑛
𝜆 = 𝜆(

𝑦𝑛

�̅�
− 1) 

Proof: See Appendix. 

 

Proposition 5 allows us to put upper bounds on 𝐺1
𝜆 and 𝐺𝑛

𝜆.  If 𝑦1 is non-negative, the highest possible 

value of 𝐺1
𝜆 is 1 − 𝜆, which occurs when 𝑦1 = 0.  When deprivation and advantage are weighted equally, 

that is when 𝜆 =
1

2
, the maximum value is 

1

2
.  But the maximum value of 𝐺1

𝜆 ranges from 0, when λ = 1 

and personal inequality depends only on advantage, to 1 when λ = 0 and it depends only on deprivation. 

In view of Proposition 4, these maxima also apply to all 𝐺𝑖
𝜆 up to the (1 − 𝜆)100th percentile.8  The 

upper bound on 𝐺𝑛
𝜆 occurs when one individual has all the income and 𝑦𝑛 = 𝑛�̅� .  In that case 𝐺𝑛

𝜆 =

𝜆(𝑛 − 1) , which is also an upper bound for all 𝐺𝑖
𝜆’s above the (1 − 𝜆)100th percentile.    

 

Part (ii) of the proposition is also interesting, in throwing light on the value of the personal inequality 

index for the “average person”, that is on the value of 𝐺𝑚𝑒𝑑
𝜆 .  The latter is based on a weighted average of 

�̅�𝑚𝑒𝑑
ℎ  𝑎𝑛𝑑 �̅�𝑚𝑒𝑑

𝑙 , with the weight on �̅�𝑚𝑒𝑑
ℎ  falling with λ.  In the focal case with 𝜆 = 1/2 , we have: 

 
8 Note that with λ = 1, the (1 – λ)100th percentile = 0, so that 𝐺𝑖

𝜆 has no falling range.  
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𝐺𝑚𝑒𝑑 =
(𝑛 − 1)

4𝑛�̅�
(�̅�𝑚𝑒𝑑

ℎ − �̅�𝑚𝑒𝑑
𝑙 ) 

Since in any real-world example (𝑛 − 1)/𝑛 ≈ 1 , this says: 

𝐺𝑚𝑒𝑑 ≈
�̅�𝑚𝑒𝑑

ℎ − �̅�𝑚𝑒𝑑
𝑙

4�̅�
 

In the U.S. today, for household income before tax, �̅�𝑚𝑒𝑑
ℎ ≈

8

5
𝑦 ̅ and �̅�𝑚𝑒𝑑

𝑙 ≈
2

5
, which yields 𝐺𝑚𝑒𝑑 ≈ 0.3, 

less than the value of the Gini coefficient, which was 0.476 in 2013.9  We may also note values of 𝐺𝑚𝑒𝑑 

under some familiar continuous distributions.  𝐺𝑚𝑒𝑑 would equal  
1

4
 for a uniform distribution, and if 𝑦𝑖 ~ 

N(μ, σ),  it would equal  
2

5

𝜎

𝜇
 , that is two-fifths of the coefficient of variation. 

 

We can see that 𝐺𝑖
𝜆 will generally not be symmetric around the median.  Looking at the 𝜆 = 1/2 case 

again, for example,  𝐺𝑖 will never be greater than 1/2 at the lowest income level, but can be very high at 

the top end.  𝐺𝑖 is not bounded above by 1, unlike the Gini coefficient.  𝐺𝑛 = 1 is reached when 
𝑦𝑛

�̅�
= 3 .  

That ratio is exceeded in almost all real-world cases.  This implies that, in a mathematical sense, from the 

standpoint of the rich there is more inequality than from that of the poor when 𝜆 = 1/2, which is 

intuitive. For the rich there are relatively few people whose incomes is close to theirs, meaning there is a 

large gulf between their income and most others’.   

 

VI.  Personal Inequality During Secular Change in Income Distribution 

This section asks how 𝐺𝑖
𝜆 can be predicted to behave at different income levels during periods of secular 

change in income distribution.  We focus initially in each case on the  𝜆 = 1/2 case, in which deprivation 

and advantage are weighted equally, referring to 𝐺𝑖
1/2

 simply as 𝐺𝑖, as above. We start with the Kuznets 

 
9 With the help of quintile share and other data from U.S. Census Bureau (2021) it can be estimated that �̅�𝑚𝑒𝑑

ℎ =
1.64𝑦 ̅ and �̅�𝑚𝑒𝑑

𝑙 = 0.36𝑦 ̅.   
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transformation and go on to the polarization and rising inequality that has been seen in the U.S. and many 

other high income countries in the last few decades.  The principles at work are explored with the help of 

illustrative examples.    

Kuznets Transformation 

Kuznets (1955) analyzed what may happen to income distribution and inequality in a growing economy 

where production is shifting from an initially large traditional agricultural sector to a modern sector.  The 

modern sector eventually comprises most if not all of the economy.   The consequences for inequality can 

be illustrated using a stylized model in which individual incomes are uniform within each of the sectors, 

higher in the modern sector, and unchanging during the growth process.10  (The assumption that 

individual incomes do not change within the sectors is relaxed below.) In this case the Gini coefficient, G, 

rises until the fraction of the population in the modern sector, p, hits a critical value, after which it 

declines.   This critical value of p is less than one half.  That is because, while the mean difference has a 

maximum at 𝑝 = 1/2, the mean, which appears in the denominator of the expression for G, is rising 

throughout, so G has already started to decline at 𝑝 = 1/2. 

The suggestion that countries should generally be expected to display an inverted U-shaped time profile 

of the Gini coefficient, that is the “Kuznets hypothesis”, has been shown not to describe what has actually 

happened in many countries (Deininger and Squire, 1998; Frazer, 2006; Angeles, 2010).  However, it is 

of theoretical interest and is relevant to the historical experience of some countries.  A current example is 

China, where a vigorous movement of people from the countryside to urban areas with much higher 

average income has been going on since the onset of market reforms in the late 1970s.  At the beginning 

of that transition the Gini coefficient fluctuated around 0.30 (Sicular, 2013).  It rose to a peak of 0.437 in 

 
10 Kuznets considered a richer range of possibilities.  He allowed unequal income distribution within both sectors 

and believed the leading case was one in which there was greater inequality in the modern sector than in the 

traditional, or agricultural, sector.  He also considered the impacts of changes in the relative income, and of income 

inequality, in the modern vs. the agricultural sector over time.  In most cases he found that as the relative population 

of the agricultural sector declined there was an initial increase in inequality followed by a decline.     



 

20 
 

2010 and then began to fall, reaching 0.385 by 2016 (World Bank, 2021).  These trends could plausibly 

be due to a Kuznets process (Knight, 2014). 11 

The behavior of the Gini coefficient and unbiased personal Gini coefficients in rural and urban areas 

during the Kuznets transformation will be illustrated here using an example whose implications are shown 

in Figure 1.  It is assumed that income of each person in the traditional sector is 12% of per capita income 

in the modern sector.  This gap is sufficient for the peak value of G to be 0.5.  

Taking the λ = ½ case to begin with, we will refer to the individual inequality measures of people in the 

low and high income groups as 𝐺𝐿 and 𝐺𝐻 respectively.  Since no one is worse off than those in the low 

income group, 𝐺𝐿 =
𝐷𝐿

�̅�
 , that is it is based entirely on deprivation, while 𝐺𝐻 =

𝐴𝐻

�̅�
  and is based wholly on 

advantage.  Denoting income per person in the traditional sector 𝑦𝐿 and in the modern sector 𝑦𝐻, and 

adopting corresponding notation for the number of persons in each sector, 𝑛𝐿 and 𝑛𝐻, we have: 

(23i)     𝐷𝐿 =
𝑛𝐻

𝑛
(𝑦𝐻 − 𝑦𝐿) 

(23ii)     𝐴𝐻 =
𝑛𝐿

𝑛
(𝑦𝐻 − 𝑦𝐿) 

As shown in Figure 1, when the modern sector is tiny, 𝐺𝐿 is close to zero.  Almost everyone in the society 

has the same low income, so that 𝑛𝐻 and 𝐷𝐿 are very low. The situation in the modern sector is the 

opposite.  Since almost everyone has much lower income than those in the modern sector, the individual 

inequality measure there, 𝐺𝐻 is very high.  Now, as development proceeds, 𝐺𝐿 rises monotonically and 

𝐺𝐻 falls monotonically - - a necessary result in this simple model.12   It is interesting to think what this  

 
11Knight (2014) discussed whether China could be beyond the peak of the Kuznets curve.  His conclusion was that 

that would depend in part on public policy but that there were strong underlying forces pushing in the direction of 

falling inequality in China.  
12 𝐷𝐿  rises with the increase in 𝑛𝐻 and 𝐴𝐻 falls as 𝑛𝐿 declines.  But one must also account for �̅� rising throughout the 

Kuznets process when analyzing 𝐺𝐿 and 𝐺𝐻.  This rise reinforces the decline of 𝐴𝐻 to ensure that 𝐺𝐻 must fall 

throughout.  And while the rise in �̅� , by itself, would make 𝐷𝐿  fall, the increase in 𝑛𝐻 has a stronger effect, so that 

𝐺𝐿 rises all through the process.  
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would mean if the personal inequality assessments reflected individual attitudes.  People in the traditional 

sector would believe that inequality was becoming steadily worse while those in the modern sector would 

think the opposite, hardly a recipe for social harmony.  

How does one resolve the conflict when the trend in inequality looks as radically different from the 

standpoint of two population groups as in the Kuznets transformation?  The Gini coefficient offers a 

solution - - take an average of the personal assessments.  Thus, in the Kuznets curve example, G is a 

population weighted average of the values of 𝐺𝐿 and 𝐺𝐻.  An alternative would be, in effect, to take a vote 

on the question of whether inequality was rising or falling - - a “democratic” approach.  Here the 

democratic approach, based on personal inequality assessments, would say that inequality rises until p = 
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Figure 1: Kuznets Transformation: Personal Gini Coefficients with λ = 1/2 in 
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½ and falls thereafter.  In the example, G says that inequality rises until p = ¼ and falls after that.  That is 

because 𝐺𝐻 falls faster than 𝐺𝐿 rises, so that averaging 𝐺𝐻 and 𝐺𝐿, even using population weights, places 

greater relative importance on the decline in 𝐺𝐻 than on the rise in 𝐺𝐿.   

The above analysis would not be affected significantly by moving from the λ = ½ case to the biased case 

with λ ≠ ½.  There would of course be no impact on the time path of G.  Since personal inequality in each 

sector only depends either on deprivation (in the traditional sector) or advantage (in the modern sector), at 

the individual level there would simply be a rescaling of 𝐺𝐿
𝜆 and 𝐺𝐻

𝜆 at each point in the Kuznets process.  

For a majority of people personal inequality would still be rising until p = ½ is reached, and above that 

point the opposite would still be true.  G would have its peak at the same point as with λ = ½ .  In terms of 

Figure 1, there would be a proportionate shift of the 𝐺𝐿 curve by the factor 2(1 − 𝜆) and a shift of the 𝐺𝐻 

curve in the opposite direction by the factor 2𝜆.  In the case where λ < ½, the 𝐺𝐿 and 𝐺𝐻 curves (now 𝐺𝐿
𝜆 

and 𝐺𝐻
𝜆)  would move towards each other, while if λ > ½ the result would be the opposite.  

What difference does it make if incomes are not constant within the two sectors during the Kuznets 

transformation?   The question is whether changes in (𝑦𝐻 − 𝑦𝐿)/�̅�  can reverse those of 
𝑛𝐻

𝑛
 or 

𝑛𝐿

𝑛
 in the 

calculations of 𝐺𝐻
𝜆 and 𝐺𝐿

𝜆, respectively.   The answer depends on the percentage size of the possibly 

opposing changes.  In the case of China, at least, the income changes appear to have been dominated by 

population shift.  Identifying urban areas as our H sector and rural areas as L, from 1980 to 2014 (𝑦𝐻 −

𝑦𝐿)/�̅�  fell by 18% in China while 
𝑛𝐿

𝑛
 dropped 44% and 

𝑛𝐻

𝑛
 went up 183%.13   

  

 
13 The % changes reported here were calculated using tables 2-1 and 6-6 of National Bureau of Statistics of China 

(2016), which indicate an urbanization rate of 19.4% in 1980 and 54.8% in 2014.  Disposable household income per 

capita in urban areas was 478 yuan in 1980 and 29,381 yuan in 2014; the corresponding rural numbers were 191 and 

989 yuan.    



 

23 
 

Polarization  

There is much theoretical and empirical literature on polarization (including Foster and Wolfson, 1992; 

Esteban and Ray, 1994; Acemoglu and Autor, 2011; Autor and Dorn, 2013; Green and Sand, 2015).   

Polarization in labor markets has received particular attention in the US and other high income countries 

in recent years.  In this case the relative demand for labor shifts away from mid-level occupations to both 

low-skilled and (especially) high skilled occupations.  Other things constant this should result in a shift in 

labor force composition away from the middle toward both the top and bottom.  Such a shift has indeed 

occurred over significant timespans in the US, Canada, the UK, Germany and some other European 

countries (Acemoglu and Autor, 2011; Green and Sand, 2015).  In most cases the wages of highly skilled 

workers have increased while those of workers in mid-level occupations have tended to decline.  In the 

US it has also been found that wages have risen in certain low skilled occupations (Autor and Dorn, 2013) 

although that trend has not been seen in some other leading OECD countries (Green and Sand, 2015). 

We will analyze the effects of labor market polarization on personal inequality in two steps, first  

considering only the effects of population shift, that is a rise in the number of individuals at low and high 

incomes combined with a reduction in the number at middle income.  Subsequently we will look at the 

effect of changes in income.  Assume that there are just three income levels in a society and that they 

display 𝑦𝐿 < 𝑦𝑀 < 𝑦𝐻.  Numbers of individuals in the three groups are 𝑛𝐿 , 𝑛𝑀, and 𝑛𝐻.  As in the 

Kuznets case the personal Gini coefficients of people in the bottom group and top groups are given by 

𝐺𝐿
𝜆 =

𝜆𝐷𝐿

�̅�
 and 𝐺𝐻

𝜆 =
(1−𝜆)𝐴𝐻

�̅�
.    

Once again, qualitative results for  𝐺𝐿
𝜆 and 𝐺𝐻

𝜆 will be the same as for 𝐺𝐿 and 𝐺𝐻, so we will focus on the 

latter for simplicity. The increase in 𝑛𝐻 due to polarization will tend to make 𝐴𝐻 and 𝐺𝐻  decrease since 

(from 5i): 

(24)   𝐴𝐻 =
(𝑛𝐿+𝑛𝑀)

𝑛
(𝑦𝐻 − �̅�𝐻

𝑙 ) 
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However, there is now an offsetting effect because �̅�𝐻
𝑙  falls due to the population shift from the middle to 

lower groups, and therefore (𝑦𝐻 − �̅�𝐻
𝑙 ) increases.  It can readily be shown that: 

(25)   ∆𝐴𝐻 , ∆𝐺𝐻 

>
 =
<

  0   as   
∆𝑛𝐿

−∆𝑛𝑀
 

>
 =  
<

 
𝑦𝐻−𝑦𝑀

𝑦𝐻−𝑦𝐿
 

Now 
𝑦𝐻−𝑦𝑀

𝑦𝐻−𝑦𝐿
< 1 and 

∆𝑛𝐿

−∆𝑁𝑀
< 1 as well, so it is not immediately clear which way the inequality will go.  

However, we can make a prediction in a “leading case”.  With a positively skewed distribution of income 

we would have 
𝑦𝐻−𝑦𝑀

𝑦𝐻−𝑦𝐿
>

1

2
 , so that if half or fewer of those leaving the middle income group go to the 

lower group (which is in line with the experience in the US at least) we have 
∆𝑛𝐿

−∆𝑛𝑀
<

1

2
 

and 𝐴𝐻 and 𝐺𝐻 will decline, as in the Kuznets case.   

Turning to the bottom group, from (5ii) we have: 

 (26)   𝐷𝐿 =
(𝑛𝑀+𝑛𝐻)

𝑛
(�̅�𝐿

ℎ − 𝑦𝐿) 

And it can be shown that: 

(27)   ∆𝐷𝐿, ∆𝐺𝐿 

>
 =
<

  0   as   
−∆𝑛𝑀

∆𝑛𝐻
 

<
 =  
>

 
𝑦𝐻−𝑦𝐿

𝑦𝑀−𝑦𝐿
 

Now, 
𝑦𝐻−𝑦𝐿

𝑦𝑀−𝑦𝐿
> 1 and 

−∆𝑛𝑀

∆𝑛𝐻
> 1 as well, so again there is ambiguity.  However, in the leading case 

identified above  
𝑦𝐻−𝑦𝐿

𝑦𝑀−𝑦𝐿
> 2 and 

−∆𝑛𝑀

∆𝑛𝐻
< 2, so 𝐷𝐿  and 𝐺𝐿 will rise, as in the Kuznets analysis.  This would 

be the result of the increase in �̅�𝐿
ℎ having a larger effect on 𝐷𝐿 and 𝐺𝐿 than the decline in 𝑛𝐿

ℎ = (𝑛𝑀 +

𝑛𝐻).   
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Population shift has unambiguous results for the middle group because, unlike the case of the top and 

bottom groups, the income differences vis-à-vis higher or lower groups are not affected by changes in 

𝑛𝐿 , 𝑛𝑀, and 𝑛𝐻.   𝐺𝑀
𝜆  depends on both 𝐴𝑀 and 𝐷𝑀,  

(28)     𝐺𝑀
𝜆 =

𝜆𝐴𝑀+(1−𝜆)𝐷𝑀

�̅�
 

while personal advantage and deprivation are proportional to 𝑛𝐿  and 𝑛𝐻 respectively: 

(29i)     𝐴𝑀 =
𝑛𝐿

𝑛
(𝑦𝑀 − 𝑦𝐿) 

(29ii)     𝐷𝑀 =
𝑛𝐻

𝑛
(𝑦𝐻 − 𝑦𝑀) 

Since both 𝑛𝐿 and 𝑛𝐻 rise in polarization, the pure effect of population shift is for 𝐺𝑀
𝜆  to increase for any 

value of λ.  

Turning to income changes, as mentioned above, it is typically observed in labor market polarization that 

𝑦𝐻 rises and 𝑦𝑀 declines.  In the US it has also been found that 𝑦𝐿 rises.  The rise of 𝑦𝐻 opposes the 

“leading case” effects of population shift found above for the H group, so that personal inequality may 

rise at the top once income changes are taken into account.  Impacts for both middle and lower groups are 

theoretically ambiguous.  With (𝑦𝐻 − 𝑦𝑀) rising, 𝐷𝑀 also rises, tending to make 𝐺𝑀
𝜆  increase.  But 𝐴𝑀 

may fall if (𝑦𝑀 − 𝑦𝐿) declines sufficiently.  (The example considered below shows this can occur in 

practice.)   If 𝐴𝑀 falls then 𝐺𝑀
𝜆  will also fall if the weight placed on 𝐴𝑀 in (28) is sufficiently large.  

Finally, the impact of income changes on 𝐺𝐿
𝜆 is ambiguous since (�̅�𝐿

ℎ − 𝑦𝐿) in (26) may fall if 𝑦𝐿 rises 

sufficiently and also because the fall of 𝑦𝑀 reduces the change in �̅�𝐿
ℎ, possibly even making it negative.       

Given the theoretical ambiguity of the behavior of 𝐺𝐿
𝜆, 𝐺𝑀

𝜆  and 𝐺𝐻
𝜆 it is helpful to consider a real-world 

example.  Autor and Dorn (2013) set out the changes in employment shares and wage rates for six broad 

occupational groups in the U.S. from 1980 to 2005.  From Table 1, the top group, consisting of managers,  
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Table 1 

Advantage 𝑨𝒊, Deprivation 𝑫𝒊, and Personal Gini Coefficients 𝑮𝒊 with λ = 1/2,  

by Occupation Group - - Polarization Example Based on US Data, 1980 and 2005  

 

Year 

 

Occupation 

Group 

Employment 

Share 

Mean Wage 

(2004 $s) 

𝑨𝒊 𝑫𝒊 𝑮𝒊 

1980 

1 0.316 17.0 3.415 0 0.126 

2  0.048 15.6 2.524 0.412 0.108 

3  0.216 13.6 1.224 1.156 0.088 

4 0.099 11.9 0.528 2.117 0.098 

5 0.222 11.3 0.305 2.589 0.107 

6 0.099 8.2 0 5.364 0.198 

2005 

1 0.409 23.1 6.108 0 0.180 

2 0.030 15.2 1.425 3.241 0.137 

3 0.182 13.9 0.692 3.814 0.133 

4 0.046 12.7 0.399 4.716 0.150 

5 0.204 13.5 0.537 4.069 0.135 

6 0.129 9.6 0 7.413 0.218 

 

Notes: (i) The mean wage is the geometric mean hourly wage derived from the mean log hourly 

wage reported by Autor and Dorn (2013), (ii) 𝐺𝑖 is the personal inequality index 𝐺𝑖
𝜆 when λ = 1/2, 

(iii) the occupational groups are: 

1. managers, professionals, technicians, finance and public safety occupations.   

2. production and craft occupations 

3. transportation, construction, mechanics, mining and farm occupations 

4. machine operators and assemblers 

5. clerical and retail sales occupations 

6. service occupations.     

 Source: Employment share and mean wage are from Autor and Dorn (2013, Table 1) - - see Note 

 (i).   The other columns were calculated by the author.   
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professionals, technicians, finance and public safety occupations experienced a 29% increase in 

employment share and a 36% rise in wage rates over those years.  The middle four groups together had a 

22% drop in employment share and only a 9% increase in wages.  The bottom group, consisting of service 

occupations, had a 30% rise in employment share and a 17% increase in wages.  These changes provide a 

dramatic example of labor market polarization.  

For the sake of this example, assume that everyone within each of the six Autor and Dorn occupational 

groups has the same income.  Using that assumption Table 1 shows 𝐺𝑖 rising for all six groups, as does 

deprivation 𝐷𝑖 (except for the top group, where it is identically zero.)  On the other hand, advantage, 𝐴𝑖, 

falls for groups 2, 3 and 4, because their wages decline relative to the wage of the bottom group.14  These 

results are obtained with 𝜆 = 1/2 .  If 𝐴𝑖 is weighted sufficiently more heavily, 𝐺𝑖
𝜆 declines from 1980 

to 2005 for each of groups 2, 3 and 4.  The critical values of 𝜆 are 0.61, 0.73 and 0.89 for groups 2, 3 and 

4 respectively.  Thus, if these groups were sufficiently more concerned about advantage than deprivation 

they would regard polarization as having reduced inequality between 1980 and 2005.  While worth 

noting, this result may not affect one’s conclusions much in view of the dominant opinion in the literature 

that λ ≤ ½ likely holds for most people. 

VII. Discussion and Conclusion 

The fact that the Gini coefficient can be interpreted as the average of personal Gini indexes produces 

interesting insights.  One important feature is that personal Gini coefficients are completely insensitive to 

transfers of income that occur only among people who have incomes above those of the reference 

individual, or among those with incomes below.  This means that they do not obey the Pigou-Dalton 

principle of transfers.  But they do regard transfers from those in the group above the individual to those 

 
14 Note that in 2005 group 4 has a lower mean wage than group 5.  This is accounted for in the numbers shown in 

Table 1.  In 2005 group 4 only has an advantage over group 6, while group 5 has an advantage over both groups 4 

and 6. 
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in the group below as equalizing and transfers in the other direction as disequalizing.  These properties  

explain why the Gini coefficient’s sensitivity to transfers depends critically on the number of people with 

incomes between those of the donor and recipient, which makes it most sensitive to changes in the middle 

of typical income distributions.  This dependence reflects the fact that, aside from the donor and recipient 

themselves, it is only people between them whose personal Gini coefficients are affected by the transfer.   

As we have seen, each personal Gini coefficient is a weighted average of an individual’s deprivation and 

advantage. That the relative weights placed on these components can vary has a range of implications.  

For example, the weights could vary across societies, perhaps reflecting differences in individual 

attitudes.   At one extreme all the weight could be placed on deprivation in a society where people 

resented others being better off than themselves but had no concern about the income of those below 

them.  At the other extreme all the weight could be put on advantage if everyone had been taught to have 

concern for the “less fortunate” and not to envy the better-off.  And, of course, any weighting between 

these extremes could occur.  But in each society, taking the average of personal Gini coefficient values 

would still yield the conventional Gini coefficient, since it is unaffected by the relative weight placed on 

deprivation vs. advantage.  So, societies with quite different views about inequality at the individual level, 

could still all embrace the Gini coefficient as their aggregate measure of inequality.  It is tempting to 

imagine that this might help to explain the wide international popularity of this index. 

We have also discussed how personal inequality assessments may behave during secular change in 

income distribution.  In the development context, in the simplest model of the Kuznets transformation, 

personal inequality for those in the traditional sector rises throughout, while the opposite occurs in the 

modern sector.  If personal inequality reflects individual attitudes, the resulting scope for 

misunderstanding and conflict seems large.  This may throw some light on the tensions that are observed 

during periods of rapid modernization.  A further insight comes from the fact that the Gini coefficient 

says the Kuznets process stops being disequalizing well before half the population is in the modern sector.  

Thus, the direction of change in the Gini coefficient may not always reflect majority opinion.   
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Under polarization, population shifts not only to the top but also to the bottom, with a shrinking middle 

group.  Income tends to rise at the top, fall in the middle, and may rise little at the bottom.  In a leading 

case, population shifts increase personal inequality at the bottom and reduce it at the top, echoing the 

Kuznets transformation results.  Personal inequality rises in the middle if there are no income changes.  

When income changes are also taken into account it is theoretically possible for any of the population 

shift effects to be reversed.  Given this ambiguity we turned to the real world for some guidance.  In an 

example based on the polarization seen in the US between 1980 and 2005, personal inequality rose for all 

groups when advantage and deprivation were equally weighted.  For three middle groups personal 

inequality would have fallen if sufficiently more weight were placed on their advantage rather than their 

deprivation.  However, if personal inequality reflects individual attitudes, it seems unlikely that the 

middle groups would indeed have regarded inequality as falling, given the broad consensus in the 

literature that most people tend to be more concerned about deprivation than advantage. 

  



 

30 
 

References 

Acemoglu, D. and D.H. Autor (2011), “Skills, tasks and technologies: Implications for employment and 

earnings”, Handbook of Labor Economics 4: 1043-1171. 

Autor, David H. and David Dorn (2013), “The Growth of Low-Skill Service Jobs and the Polarization of 

the US Labor Market”, American Economic Review 103 (5): 1553-1597. 

Clark, Andrew E. and Conchita D’Ambrosio (2015), “Attitudes to Income Inequality: Experimental and 

Survey Evidence”, chapter 13 in Anthony B. Atkinson and François Bourguignon, Handbook of Income 

Distribution Vol. 2a, 1st edition, North-Holland Elsevier: Amsterdam, 1147-1208. 

Cojocaru, A. (2014), “Fairness and inequality tolerance: evidence from the Life in Transition survey”, 

Journal of Comparative Economics 42 (3): 590-608. 

Cowell, Frank A. (2011), Measuring Inequality, 3rd edition, Oxford: Oxford University Press. 

Dalton, Hugh (1920), “The Measurement of Inequality of Incomes”, Economic Journal 30: 348-361. 

D’Ambrosio, Conchita and J.R. Frick (2007), “Income Satisfaction and Relative Deprivation: an 

Empirical Link”, Social Indicators Research 81: 497-519.  

D’Ambrosio, Conchita and J.R. Frick (2012), “Individual Well-Being in a Dynamic Perspective”, 

Economica 79: 284-302. 

Esteban, J. and D. Ray (1994), “On the measurement of polarization”, Econometrica 62: 819–851.  

Fehr, Ernst and Klaus M. Schmidt (1999), “A Theory of Fairness, Competition and Cooperation”, 

Quarterly Journal of Economics 114: 817-868. 

Fehr, Ernst and Klaus M. Schmidt (2003), “Theories of Fairness and Reciprocity: Evidence and 

Economic Applications”, in Dewatripoint, M. L.P. Hansen, and S.J. Turnovsky (eds.), Advances in 

Economic Theory, Eighth World Congress of the Econometric Society, vol. 1, Cambridge University 

Press: Cambridge:  208-257. 

Foster, James E. and Michael C. Wolfson (1992), “Polarization and the decline of the middle class”, 

mimeo, reprinted 2010 in Journal of Economic Inequality 8: 247-273.  

Gini, Corrado (1914), “On the measurement and variability of characters”, METRON-International 

Journal of Statistics, LXIII (Part II): 3-38.   

Green, David A. and Benjamin M. Sand (2015), “Has the Canadian labour market polarized?”, Canadian 

Journal of Economics 48 (2): 621-646. 

Knight, John (2014), “Inequality in China: An Overview”, The World Bank Research Observer 29 (1): 1-

19. 



 

31 
 

Kuznets, Simon (1955), “Economic Growth and Income Inequality”, American Economic Review 45: 1-

28. 

Li, Shi and Terry Sicular (2014), “The Distribution of Household Income in China: Inequality, Poverty 

and Policies”, The China Quarterly 217 (March): 1-41. 

 

National Bureau of Statistics of China (2016), China Statistical Yearbook – 2015, www.stats.gov.cn 

accessed March 20, 2021. 

Runciman, W.G. (1966), Relative Deprivation and Social Justice, London: Routledge and Kegan Paul. 

Sen, Amartya (1973), On Economic Inequality, London: Oxford University Press (Clarendon). 

 

Sicular, Terry (2013), “The Challenge of High Inequality in China”, Inequality in Focus 2(2): 1-8.  

http://www.worldbank.org/content/dam/Worldbank/document/Poverty%20documents/Inequality-In-

Focus-0813.pdf         

 

Teyssier, Sabrina (2012), “Inequity and risk aversion in sequential public good games”, Public Choice 51 

(1-2): 91-119. 

 

Yitzhaki, Shlomo (1979), “Relative Deprivation and the Gini Coefficient”, Quarterly Journal of 

Economics, 93 (2): 321-324. 

 

Yitzhaki, Shlomo (1982), “Relative Deprivation and Economic Welfare”. European Economic Review 17: 

99-113. 

 

Yitzhaki, Shlomo (1998), "More than a Dozen Alternative Ways of Spelling Gini",  Research on 

Economic Inequality 8: 13–30. 

U.S. Census Bureau (2021), “Historical Income Tables: Income Inequality”,  

http://www.census.gov/data/tables/time-series/demo/income-poverty/historical-income-inequality.html  

Accessed March 20, 2021. 

 

 

http://www.stats.gov.cn/
http://siteresources.worldbank.org/INTDECINEQ/Resources/morethan2002.pdf
http://www.census.gov/data/tables/time-series/demo/income-poverty/historical-income-inequality.html


 

32 
 

Appendix 

This appendix provides proofs of propositions 4 and 5.  

Proposition 4:    If  𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛 ,                         

            𝐺𝑖+1
𝜆

>
 =
<

  𝐺𝑖
𝜆    as    

𝑖

𝑛
 
>
=
<

 1 − 𝜆 . 

Proof:  From (4΄), (5) and (22), and using the assumption that 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛 ,  𝐺𝑖+1
𝜆

>
 =
<

  𝐺𝑖
𝜆 as:  

(A1)          𝜆 ∑(𝑦𝑖+1 − 𝑦𝑗) +

𝑖

𝑗=1

 (1 − 𝜆) ∑ (𝑦𝑗 − 𝑦𝑖+1)

𝑛

𝑗=𝑖+2

>
 =
<

  𝜆 ∑(𝑦𝑖 − 𝑦𝑗)

𝑖−1

𝑗=1

+ (1 − 𝜆) ∑ (𝑦𝑗 − 𝑦𝑖)

𝑛

𝑗=𝑖+1

 

Now, the left-hand side of this expression can be written: 

(A2)          𝜆[∑ (𝑦𝑖 − 𝑦𝑗)𝑖−1
𝑗=1 + 𝑖(𝑦𝑖+1 − 𝑦𝑖)] + (1 − 𝜆)[∑ (𝑦𝑗 − 𝑦𝑖) + (𝑛 − 𝑖)(𝑛

𝑗=𝑖+1 𝑦𝑖 − 𝑦𝑖+1)] 

Hence, (A1) simplifies to: 

               𝜆 𝑖(𝑦𝑖+1 − 𝑦𝑖) + (1 − 𝜆)(𝑛 − 𝑖)(𝑦𝑖 − 𝑦𝑖+1) 
>
 =
<

 0 

which is equivalent to: 

                𝜆 𝑖 − (1 − 𝜆)(𝑛 − 𝑖) 
>
 =
<

 0 

which becomes: 

              𝜆𝑛 + 𝑖 − 𝑛 
>
 =
<

 0 

from which one readily derives the result that 

             𝐺𝑖+1
𝜆

>
 =
<

  𝐺𝑖
𝜆    as    

𝑖

𝑛
 
>
=
<

 1 − 𝜆 
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Proposition 5:  If 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛, 

 

(i)  𝐺1
𝜆 = (1 − 𝜆)(1 −

𝑦1

�̅�
)  

 

(ii) if n is odd, 𝐺𝑚𝑒𝑑
𝜆 =

𝑛−1

2𝑛�̅�
[(1 − 𝜆)�̅�𝑚𝑒𝑑

ℎ − 𝜆�̅�𝑚𝑒𝑑
𝑙 ]; if n is even, 𝐺𝑚𝑒𝑑

𝜆  is not defined, 

(iii)  𝐺𝑛
𝜆 = 𝜆(

𝑦𝑛

�̅�
− 1) 

Proof:  (i)  From (5) and (22), given that 𝑛1
𝑙 = 0, 

        𝐺1
𝜆 =

(1 − 𝜆)

𝑛�̅�
[𝑛1

ℎ(�̅�1
ℎ − 𝑦1)] 

             =  
(1 − 𝜆)

𝑛�̅�
[∑ 𝑦𝑗 − (𝑛 − 1)𝑦1]

𝑛

𝑗=2

 

            =  
(1 − 𝜆)

𝑛�̅�
(∑ 𝑦𝑗 − 𝑛𝑦1)

𝑛

𝑗=1

 

             =  
(1 − 𝜆)

𝑛�̅�
(𝑛�̅� − 𝑛𝑦1) 

             = (1 − 𝜆)(1 −
𝑦1

�̅�
) 

(ii)  From (5) and (22), if n is odd we have: 

         𝐺𝑚𝑒𝑑
𝜆 =

𝜆

𝑛�̅�
𝑛𝑚𝑒𝑑

𝑙 (𝑦𝑚𝑒𝑑 − �̅�𝑚𝑒𝑑
𝑙 ) +

(1 − 𝜆)

𝑛�̅�
𝑛𝑚𝑒𝑑

ℎ (�̅�𝑚𝑒𝑑
ℎ − 𝑦𝑚𝑒𝑑) 

Noting that 𝑛𝑚𝑒𝑑
𝑙 = 𝑛𝑚𝑒𝑑

ℎ =
𝑛−1

2
 , 

         𝐺𝑚𝑒𝑑
𝜆 =

𝑛 − 1

2𝑛�̅�
[(1 − 𝜆)�̅�𝑚𝑒𝑑

ℎ − 𝜆�̅�𝑚𝑒𝑑
𝑙 ] 

If n is even there is no individual with median income since 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛 . 

(iii) From (5) and (22), given that 𝑛𝑛
ℎ = 0, 

        𝐺𝑛 =
𝜆

𝑛�̅�
[𝑛𝑛

𝑙 (𝑦𝑛 − �̅�𝑛
𝑙 )] 

             =  
1

𝑛�̅�
[(𝑛 − 1)𝑦𝑛 − ∑ 𝑦𝑗]

𝑛−1

𝑗=1
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            =  
𝜆

𝑛�̅�
[𝑛𝑦𝑛 − ∑ 𝑦𝑗]

𝑛

𝑗=1

 

             =  
𝜆

𝑛�̅�
[𝑛𝑦𝑛 − 𝑛�̅�] 

             =  𝜆[
𝑦𝑛

�̅�
− 1] 
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