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Abstract

This paper studies a simple process of demand adjustment in co-

operative games. In the process, a randomly chosen player makes the

highest possible demand subject to the demands of other coalition

members being satisfied. This process converges to the aspiration set;

in convex games, this implies convergence to the core. We further in-

troduce perturbations into the process, where players sometimes make

a higher demand than feasible. These perturbations make the set of

separating aspirations, i.e., demand vectors in which no player is indis-

pensable in order for other players to achieve their demands, the one

most resistant to mutations. We fully analyze this process for 3-player

games. We further look at weighted majority games with two types of

players. In these games, if the coalition of all small players is winning,

the process converges to the unique separating aspiration; otherwise,

there are many separating aspirations and the process reaches a neigh-

bourhood of a separating aspiration.

Keywords: demand adjustment, aspirations, core, stochastic sta-

bility
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1 Introduction

In transferable utility cooperative games, we consider the following process.

Suppose players currently have some demands. These demands can be inter-

preted as what they expect from the game. A player is randomly selected.

This player is in a position to propose a coalition; but the coalition partners

agree to form it only if their demands are satisfied. The player thus looks

for such coalition that, after the demands of coalition partners are satisfied,

leaves the most to the player.

The payoff vectors that allow each player to be able to achieve such

“maximal” demands in at least one coalition are called aspirations in Ben-

nett (1983). (They are also called semi-stable demand vectors in Albers,

1979 and Selten, 1981). Bennett et al. (1997) show that the process de-

scribed in the previous paragraph converges to the set of aspiration payoff

vectors.

We analyze the implication of the process further. First, we show that

in convex games the Bennett et al.’s (1997) result implies that the demand

adjustment process converges to the core of the game.1

The set of aspirations is in general quite large, and there can be aspi-

rations where some players demand very little. Cross (1967) argues that

“scarce” players (players that are underdemanding and hence sought after

as coalition partners) should be able to increase their demands. We formal-

ize this argument by adding to the process the possibility of “mutations”,

with the most likely mutation being to a higher demand. Since in the basic

process players make the maximum feasible demands and the most likely mu-

tations are to higher demands, the process overall can be seen as “greedy”.

We show that separating aspirations, i.e., demand vectors in which no player

is indispensable in order for other players to achieve their demands, are the

1Agastya (1997) and Rozen (2013) have this result for similar adjustment processes. We

discuss the differences between their and our models in the discussion of related literature

at the end of the introduction.
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ones most resistant to such upward mutations.

We fully analyze the process with mutations in 3-player superadditive

games. In these games, if the core is non-empty, demand vectors that are in

the core are stochastically stable (meaning that, as the mutation probability

goes to zero, the process spends almost all of the time in the core). If the core

is empty, the unique separating aspiration is stochastically stable. We then

turn to weighted majority games. In Montero and Possajennikov (2022), we

showed that separating aspirations are stochastically stable in symmetric

weighted majority games and in apex games. In this paper, we analyze

weighted majority games with two types of players further. In these games,

if there are enough small players (i.e., if the coalition of all small players

is winning), the process converges to the unique separating aspiration. On

the other hand, if the coalition of all small players is losing, then there are

many separating aspirations and the process reaches a neighborhood of a

separating aspiration.

The paper contributes to the literature, reviewed in Newton (2018, Sec-

tion 6), that applies evolutionary approaches to predicting outcomes in

cooperative games. Agastya (1997) has a demand adjustment process in

which players simultaneously make demands, and a coalition compatible

with demands forms (with some probability, if several coalition structures

are compatible). Using a myopic best response to incomplete memory sam-

ples, Agastya shows that in convex games the process converges to the core.

Rozen (2013) allows the players, in addition to demands, also name a list

of potential coalition partners, obtaining the same result. With our process

(without mutations), convergence to the core in convex games follows from

the observation that in convex games the set of aspirations coincides with

the core (Moldovanu and Winter, 1994).

Other papers that consider similar processes with mutations focus on

games with a non-empty core. Arnold and Schwalbe (2002) obtain con-

vergence to the core by allowing mutations only outside the core. Various
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models of mutations lead to selection (in the sense of stochastic stability)

of some outcomes in the core in Agastya (1999), Newton (2012) and Sawa

(2019). For matching problems and assignment games, convergence to the

core (and possible selection within it) is obtained in Klaus et al. (2010),

Newton and Sawa (2015), Nax and Pradelski (2015) and Klaus and New-

ton (2016). In contrast, with our model of mutations we are able to obtain

predictions also for some games with an empty core.

2 Basic demand adjustment process

2.1 Demand adjustment in TU games

A transferable utility (TU) cooperative game in characteristic function form

is given by (N, v), where N = {1, 2, . . . , n} is the set of players and v : 2N →
R with v(∅) = 0 is the characteristic function. We assume that the game

is zero-normalized, v({i}) = 0 for all i. A coalition S ∈ 2N is any subset

of players. A demand vector x ∈ Rn is x = (x1, . . . , xn), with xi being the

demand of player i. Let the sum of demands of members of coalition S be

x(S) =
∑

i∈S xi.

Suppose that time is measured in discrete intervals t = 0, 1, . . .. Sup-

pose that at the beginning of time period t, a vector of demands is xt−1 =

(xt−1
1 , . . . , xt−1

n ) (we will also use x without the superscript if no confusion

arises; at t = 0, x0 is exogenously given). One player is randomly chosen;

the only assumption on the probability of being chosen is that it is bounded

away from 0 for each player. Let i be the chosen player. Player i knows the

vector of demands xt−1, and looks for a coalition that allows i to get the

most, provided that the demand of the other coalition members are satisfied.

This means that the player solves the problem

max
S:S∋i

{v(S)− xt−1(S\{i})}. (1)

Suppose that a certain coalition Q ∋ i solves the problem and yi is the

maximum value of the problem (that is, yi = v(Q)− x(Q\{i})). The player
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then sets the demand at yi. Coalition Q forms (for period t) and all players

in Q satisfy their demands.2 The new demand vector at the end of period t

is xt = (xt1, . . . , x
t
n), with xti = yi and xtj = xt−1

j for j ̸= i. This new demand

vector is then used in the next period. Coalition Q does not play a role in

the next period; it is dissolved at the end of period t.

We introduced the above process in Montero and Possajennikov (2022),

in which we analyzed it in specific classes of weighted majority games. The

process is “greedy” in the sense that the player who is chosen in a given

period sets the demand to the maximum payoff that this player can get,

constrained only by the demands of other players. The player’s decision

rule is myopic, taking into account only the possibility to get the demand

in the current period, but this is justified since only this player is able to

change the demand in this period: no other player can.

2.2 Absorbing sets and aspirations

A state of the process defined above is a demand vector x = (xi)i∈N . The

state can change from one period to the next as described above; we denote

the set of all possible states as S. Let Ψ(x) denote the set of states that

the process can move to (depending on which player is chosen) from a given

state x in one step. For an arbitrary subset of states A ⊂ S, let Ψ(A) =

∪x∈AΨ(x).

An absorbing set of states A is such set of states that the process cannot

leave: Ψ(A) ⊂ A. The minimal absorbing set is an absorbing set that does

not contain a strict subset which is absorbing. The union of all minimal

absorbing sets is a absorbing set solution. The absorbing set solution is the

set of states to which the process converges with probability 1; it contains

all the states that the process will be in, or visit, in the long run.

A demand vector x is maximal if x(S) ≥ v(S) for all coalitions S, i.e.,

2If there are several coalitions that solve (1), then any of them can be formed. Note

that Q can be a singleton coalition {i} if {i} solves (1).
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there is no coalition in which players can increase their demands while still

satisfying the demands of the other members. Demand vector x is feasible

if for each i, there exists S ∋ i such that x(S) ≤ v(S), i.e., every player

can find a coalition that satisfies the demand of this player. Bennett (1983)

defines

Definition 1 A demand vector x is an aspiration is x is maximal and

feasible.

Such demand vectors are also called semi-stable (Albers, 1979; Selten, 1981).

Given an aspiration x, the set of coalitions GC(x) = {S : x(S) = v(S)} that

can satisfy the demand of their members is called the generating collection

of aspiration x.

Based on the more general adjustment process in Bennett et al. (1997),

in Montero and Possajennikov (2022), we show the following result:

Proposition 1 The absorbing set solution for the basic process is the set of

aspirations.

The intuition for the proof runs as follows. If a state (current demand vec-

tor) is an aspiration, then every player already makes the maximal demand

possible: by maximality, there is no coalition in which a player can get a

higher demand; by feasibility, each player has a coalition which is able to

satisfy this player’s demand, so the player does not need to lower the de-

mand. Thus every aspiration is a minimal absorbing state. If the current

state is not an aspiration, there are players that either can increase their

demands, or have to lower them to find a feasible coalition. There is always

a sequence of players, some lowering, some increasing demands such that the

new demand vector is an aspiration. Since the probability of this sequence

is non-zero, the process eventually gets to an aspiration, thus there are no

other absorbing sets outside of the aspiration set.
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2.3 Core convergence in convex games

For a cooperative TU game (N, v), the core C(v) is the set of (demand)

vectors that are maximal and feasible for the coalition S = N of all players:

C(v) = {x : x(S) ≥ v(S) for all S and x(N) = v(N)}. The core is one the

main solution concepts for cooperative games; however, it can be empty for

some games. Obviously, demand vectors that are in the core are maximal;

they are also feasible for all players since they are feasible for coalition N .

Therefore, core allocations are also aspirations. The converse statement is

not true, that is, there can be aspirations outside the core even if the core

is nonempty, as the following ”glove game” illustrates.

Example 1 (see Bennett, 1983) N = {1, 2, 3, 4, 5}, R = {1, 2}, L = {3, 4, 5},
v(S) = min(|S ∩ R|, |S ∩ L|). In particular, v({1, j}) = 1 for j = 3, 4, 5,

v({2, j}) = 1 for j = 3, 4, 5 and v(N) = 2. The only point in the core is

(1, 1, 0, 0, 0), but any vector of the form (a, a, 1−a, 1−a, 1−a) with 0 ≤ a ≤ 1

is an aspiration demand vector.

A convex game (Shapley, 1971) is a game in which the marginal contri-

butions of each player is larger to a larger (in terms of set inclusion) coali-

tion: for all i and all T, S such that T ⊂ S ⊂ N\{i}, v(S ∪ {i}) − v(S) ≥
v(T ∪ {i})− v(T ). The core of a convex game is non-empty; indeed, it con-

tains many outcomes. In particular, Shapley (1971) shows that the marginal

contribution vectors are the vertices of the core, hence for each player i there

are core outcomes that give this player his or her stand-alone value v({i}).
Moldovanu and Winter (1994, Lemma 3.5) show that the set of semi-

stable vectors (i.e. aspirations) coincides with the core in convex games.

In particular, they show that in convex games an aspiration (that is, a

demand vector that is maximal and feasible) has to be feasible for coalitionN

(intuitively, in convex games demands that are feasible for smaller coalitions

are also feasible for larger coalitions). But then such an aspiration is in the

core. Since, from the first paragraph of this subsection, demand vectors
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that are in the core are aspirations, it follows that the core and the set of

aspirations coincide in convex games.

An immediate consequence of Proposition 1 for convex games (never-

theless, stated as a proposition rather than a corollary, to emphasize its

importance) is that the “greedy” process converges to the core in these

games.

Proposition 2 In convex games, the basic process converges to the core

with probability 1.

The result relates to the results in Agastya (1997) and Rozen (2013),

who show convergence to the core in convex games for similar processes.

Intuitively, so long as coalitions that make demands of one player “maxi-

mal” while satisfying the demands of other players can form with a positive

probability, processes similar to ours eventually hit the core and stay there.

In our process, such “maximal” demand coalitions form with probability 1;

in Agastya’s paper, such “maximal” demand adjustments by only one player

can happen with a positive probability because of incomplete sampling of

past observations.3

In games that are not convex there can be aspirations that are not in the

core (Example 1). In the next section we introduce certain perturbations in

the process that can help to select among various aspirations.

3 Perturbed demand adjustment process

3.1 Introducing “greedy” perturbations

We now introduce certain perturbation of the process. To have a finite state

space, we assume that the set of possible demands that players can make

3Since in Rozen (2013) players also name a list of potential coalition partners, the

adjustment path to the core is more complicated. The part that is similar to setting

“maximal” demands is the inclusion of one player into an already existing coalition, which

in convex games leads to the core.
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is a finite grid. To have the grid cover relevant allocations, we assume that

all v(S) are rational numbers. Taking m as the common denominator of

these numbers, let δ = 1
lm , where l > 0 is a natural number. Let the grid be

Γδ = {kδ : k ∈ {0, 1, . . . ,K}}, where K = maxS v(S)
δ . If l ≥ n, then for any

choices xj ∈ Γδ of players in S\{i} with
∑

j∈S\{i} xj < v(S), player i can

choose demand xi ∈ Γδ so that x(S) = v(S). Therefore the set of demand

vectors restricted to the grid contain (some) aspirations. The state space of

the process is the finite space S of demand vectors on the grid. The process

then is a finite Markov chain.

Let matrix M with elements mab describe the probability of moving

from state a to state b in one period. Vector µ of size |S| (with
∑

µi =

1) is a stationary distribution for M if µM = µ. Proposition 1 from the

previous section implies that for the basic demand adjustment process we

have considered, any probability distribution with the support on the set

of aspirations on the grid is a stationary distribution. In particular, any

degenerate distribution with all the mass on one particular aspiration is a

stationary distribution.

As in Montero and Possajennikov (2022), we consider the following

perturbation of the process from the previous section. With probability

1 − ε, the choice of demand still follows from maximization problem (1).

With probability ε, the adjusting player i chooses a demand differently;

we refer to such an event as a “mutation”. In particular, if the player

experiences a mutation, then, with probability 1 − ε, the demand is in

the set {xt−1
i , . . . ,maxS v(S)}; with probability ε the demand is in the set

{0, . . . , xt−1
i }. If ε is small, mutations in general are rare, but mutations to

a higher demand are more likely than to a lower demand. This mutation

model is based on intentional play in Naidu et al. (2010), and also has a

flavor of “greediness”: players hope to get a higher demand satisfied.

Let M ε denote the transition matrix of the Markov chain of the process

with mutation probability ε. The process is irreducible, since any demand
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vector can be obtained by a sequence of n mutations. Therefore, for ε > 0,

the process has a unique stationary distribution µε. Let µ0 = limε→0 µ
ε.

States x that have a positive probability in µ0 are stochastically stable:

the process is much more likely to be in them as the mutation probability

becomes arbitrarily small.

Stochastically stable sets are contained in the absorbing set solution

of the process with ε = 0, which is the set of aspiration demand vectors.

However, some aspirations are more easily disturbed than others with the

kind of mutations than we consider.

3.2 Perturbed process and separating aspirations

For an aspiration x, consider its generating collection GC(x). Let Ci(x) =

{S ∈ GC(x) : i ∈ S} be the set of coalitions in GC(x) that contain player

i. Aspiration x is partnered if Ci ⊆ Cj ⇒ Cj ⊆ Ci for all i, j (Bennett,

1983). In a partnered aspiration, for any pair of players i, j, either they are

together in all their feasible coalitions, or, if player i has a feasible coalition

without j, then so does j without i.

The latter property (that each player has a feasible coalition without any

other particular player) is the one that is important for stochastic stability.

In Montero and Possajennikov (2022) we consider the following definition:

Definition 2 Aspiration x is separating if Ci\Cj ̸= ∅ and Cj\Ci ̸= ∅ for

all i, j.

(payoff vectors that are feasible for the grand coalition N with this property

are called “completely separating” by Maschler and Peleg, 1966, and “min-

imally partnered” by Reny et al., 2012). In a separating aspiration, each

player can find a coalition to satisfy his or her demand that does not contain

any other particular player. Therefore mutations to a higher demand by any

one player will not induce any other player to lower his or her demand.

With M0 denoting the process without mutations (ε = 0), let A ⊆ S
be its absorbing set solution (from Proposition 1, it is the set of aspiration
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demand vectors in the game). For an arbitrary set B ⊆ S, let Ψε(B) denote
the set of states that can arise from states in B with one most likely mutation:

of one player to a higher demand. Let Ψ0
∞(B) denote the set of states that

the process without mutations can reach (in any number of steps) starting

from a state in set B.
Following Nöldeke and Samuelson (1993), we define

Definition 3 A set of states B ⊆ A is called minimal locally stable if

Ψ0
∞(Ψε(B)) ⊆ B, and there is no proper subset of B that has this property.

Starting from a state in a (minimal) locally stable set, one mutation can

temporarily take the process out of it, but the process will converge back to

it without further mutations.

Nöldeke and Samuelson (1993) show that the set of stochastically stable

states is a subset of the set of states that are in minimal locally stable sets. In

Montero and Possajennikov (2022, Lemma 3), we show that each separating

aspiration is a minimal locally stable set. We also show that in general games

there can be minimal locally stable sets different from separating aspirations.

However, if a given game has no minimal locally stable sets other than the

set of separating aspirations, then the set of separating aspirations contains

all stochastically stable states.

4 Demand adjustment process in 3-player games

In this section, we apply the demand adjustment process (including pertur-

bations) to 3-player superadditive games. Reordering players if necessary,

a superadditive 3-player game is given by v({12}) = a ≤ v({13}) = b ≤
v({23}) = c ≤ v(N).

The following lemma is well known (see, for example, Okada, 2014, p.

965, Equation 4.19). We include its proof for completeness.

Lemma 1 A 3-player superadditive game has a non-empty core if and only

if a+ b+ c ≤ 2v(N).
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Proof. A vector x = (x1, x2, x3) with x1+x2+x3 = v(N) is in the core if

x1+x2 ≥ a, x1+x3 ≥ b and x2+x3 ≥ c. Consider x = (x1, a−x1, v(N)−a).

It is in the core if x1+v(N)−a ≥ b and v(N)−x1 ≥ c, or if a+b−v(N) ≤ x1 ≤
v(N)−c. If a+b+c ≤ 2v(N), then a+b−v(N) ≤ v(N)−c, thus there exists

x1 satisfying the inequalities. Also, x1+x2+x3 =
1
2(x1+x2+x1+x3+x2+x3).

If the core inequalities are satisfied, then x1+x2+x3 ≥ 1
2(a+b+c). However,

if 2v(N) < a+ b+ c, then no x with x1 + x2 + x3 = v(N) satisfies the core

inequalities.

We know that if an aspiration x has GC(x) ∋ N , then x is in the

core. The following lemma describes what generating collections aspirations

outside the core can have in 3-player superadditive games.

Lemma 2 In a 3-player superadditive game, for an aspiration x outside

the core either GC(x) = {{ij}, {ik}, {jk}}, or GC(x) = {{ij}, {ik}}, or

GC(x) = {{ij}, {ik}, {i}}.

Proof. We divide the proof into two cases, depending on whether there is

a singleton coalition in GC(x). Suppose first that there are no singleton

coalitions in GC(x). Since all players need to have a feasible coalition and

N is not feasible for x, then either GC(x) = {{ij}, {ik}, {jk}} or GC(x) =

{{ij}, {ik}}. Suppose now that {i} ∈ GC(x). Suppose also that {j} ∈
GC(x). By feasibility, either {k} ∈ GC(x), or {ki} ∈ GC(x), or {kj} ∈
GC(x): in all cases, by superadditivity N is feasible, a contradiction. Hence,

there is a most one singleton coalition in GC(x). Thus, if {i} ∈ GC(x), then

GC(x) = {{i}, {ij}, {ik}}.
The first result for our process in 3-player games is about the games with

non-empty core.

Proposition 3 If the core of a 3-player superadditive game is non-empty

(a+ b+ c ≤ 2v(N)), then all states in the core are stochastically stable, and

there are no other stochastically stable states.
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Proof. Consider aspiration x that is in the core, with N ∈ GC(x).

Suppose player i mutates to a higher demand xi + ∆. If {jk} ∈ GC(x),

then players j and k do not adjust their demand. Player i will lower the

demand back to xi; the process without mutations returns to x. Suppose

now that {jk} /∈ GC(x), and suppose that player j is chosen to adjust. If

N is one of the coalitions that solve the maximization problem (1), then

another aspiration in the core is reached.

Suppose N is not a solution of problem (1). Since x is an aspiration,

xi + xj ≥ v({ij}). Player j can form N , setting a demand equal to xj −∆i

or player j can form {ij}, getting v({ij}) − (xi + ∆i). If player j strictly

prefers {ij} to N , it would be the case that v({ij})− (xi +∆i) > xj −∆i,

contradicting xi + xj ≥ v({ij}). Therefore, j forms either {jk} or {j},
setting demand xj −∆j , where ∆j ≥ 0.

After the adjustment of player j, player i has no feasible coalition. In

aspiration x, since N is feasible, v(N)− xj − xk ≥ v({ij})− xj . Therefore,

v(N) − (xj − ∆j) − xk ≥ v({ij}) − (xj − ∆j). Therefore player i cannot

strictly prefer {ij} to N now. Also, in x, v(N)−xj−xk ≥ v({ik})−xk, thus

v(N)−(xj−∆j)−xk ≥ v({ik})−xk and player i cannot strictly prefer {ik}
over N . Finally, in x, v(N)−xj−xk ≥ v({i}), thus v(N)− (xj−∆j)−xk ≥
v({i}) and i cannot strictly prefer {i} over N . Therefore i sets a demand

for which N is a feasible coalition and the demand vector is in the core.

If j has formed {j}, then player k may need to adjust the demand, but,

using analogous reasoning to the one above, k adjusts to a demand that

makes N feasible, thus to a core demand vector.

We have shown that, starting from an aspiration in the core, a mutation

of one player to a higher demand leads to another aspiration in the core.

Consider now aspiration x that is not in the core. By Lemma 2, such

aspirations have {ij} and {ik} in GC(x), meaning that xi + xj = v({ij})
and xi + xk = v({ik}). If also {jk} ∈ GC(x), then 2x(N) = a+ b+ c, and,

since a + b + c ≤ 2v(N), then N is feasible, contradicting that x is not in
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the core. Therefore {jk} /∈ CG(x), i.e., xj + xk > v({jk}).
Since {ij} and {ik} in GC(x), 2xi + xj + xk = v({ij}) + v({ik}). Thus,

2xi+v({jk}) < v({ij})+v({ik}), and, therefore, xi < v({ij})+v({ik})−v({jk})
2 .

Suppose i mutates to v({ij})+v({ik})−v({jk})
2 . Since v({ij}) + v({ik}) +

v({jk}) ≤ 2v(N), then v({ij})+v({ik})+2v({jk})−v({jk})
2 ≤ v(N), and thus

v({ij})+v({ik})−v({jk})
2 ≤ v(N) − v({jk}). Therefore, forming N is at least

as good as forming {jk} for any of the players j and k. Hence, either of

them adjusts to a demand that makes N feasible and thus a demand vector

in the core is reached.

The previous reasoning shows that the core is a locally stable set, and

no aspiration outside the core is in a locally stable set. Consider any two

aspirations in the core, x = (x1, x2, x3) and y = (y1, y2, y3). If x ̸= y, then

there exists player i with xi < yi and player k with xi > xk. Suppose that

xj = yj . If player i mutates to yi, and player k adjusts, aspiration y is

reached. If xj ̸= yj , the aspiration z reached after adjustment of player k

(and possibly j) is not y but it is a core aspiration with zi = yi. One further

mutation of the remaining “underdemanding” player would lead to y then.

Therefore, from any aspiration in the core another aspiration in the

core can be reached by a sequence of most likely mutations, one at a time.

Thus all core states are in the same locally stable set (component). From

Proposition 1 in Nöldeke and Samuelson (1993), all aspirations in the core

are stochastically stable.

That the core is the unique minimal locally stable set is specific to 3-

player games. For larger games, there are other locally stable sets: namely,

separating aspirations (Lemma 3 in Montero and Possajennikov, 2022).

Example 1 (continued) In the 5-player glove game, aspirations (a, a, 1−
a, 1− a, 1− a) are separating for any 0 ≤ a ≤ 1, since each player can pair

with at least two other players. Thus, any aspiration (a, a, 1−a, 1−a, 1−a)

is a (minimal) locally stable set, but only aspiration (1, 1, 0, 0, 0) is in the

core.
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Consider now 3-player games with an empty core. In these games, the

result for our process is actually stronger.

Proposition 4 If the core of a superadditive 3-player game is empty (a +

b+ c > 2v(N)), then the aspiration x∗ = (a+b−c
2 , a+c−b

2 , b+c−a
2 ) is the unique

stochastically stable one.

Proof. Consider x∗ = (a+b−c
2 , a+c−b

2 , b+c−a
2 ). Its generating collection is

GC(x∗) = {{1, 2}, {1, 3}, {2, 3}}. Therefore it is a separating aspiration and

thus is a minimal locally stable set.

Consider aspiration x different from x∗. From Lemma 2, GC(x) contains

{ij}, {ik} (and possibly {i}), i.e., players j and k depend on player i to get

their demands. Since {jk} is not feasible in x, xi < x∗i =
v({ij})+v({ik})−v({jk})

2

and xj > x∗j , xk > x∗k. Suppose that player i mutates to x∗i . If subsequently

players j and k are selected to adjust, they adjust their demand to the cor-

responding demands in x∗. Separating aspiration x∗ is thus reached with

one mutation.

Therefore, there are no other minimal locally stable sets in such games.

Being the only aspiration in a (minimal) locally stable set, the separating

aspiration x∗ is the only stochastically stable one.

We have shown in this section that the process allows selection of aspira-

tions in all 3-player (superadditive) games, including games with an empty

core. The next section considers the application of the process to another

class of games with an empty core.

5 Demand adjustment in weighted majority games

5.1 Weighted majority games and separating aspirations

A TU game in a characteristic function form is a weighted majority game if

there are weights (w1, . . . , wn) of n players and a quota q such that v(S) =

1 if
∑

i∈S wi ≥ q and v(S) = 0 otherwise. If v(S) = 1, then coalition
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S is considered winning; otherwise coalition S is losing. Coalition S is

minimal winning if no T ⊊ S is winning. We assume that there are no null

players, that is, each player belongs to at least one minimal winning coalition

(and hence all weights must be strictly positive). We consider constant-sum

games, in which v(S)+v(N\S) = 1 for any S: if a coalition is winning, then

its complement is losing, and vice versa.

A weighted majority game can be represented by the quota and the

weights as [q;w1, . . . , wn]. In general, there are many representations for

the same game. A representation is homogeneous if for all minimal winning

S,
∑

i∈S wi = q. A weighted majority game is called homogeneous if there

exists a homogeneous representation of it. If the game is moreover constant-

sum, then the homogeneous representation is unique up to a multiplicative

constant (Peleg, 1968).

If (N, v) is a constant-sum homogeneous game (N, v) with homogeneous

representation [q;w1, . . . , wn], then vector x = 1
q (w1, . . . , wn) is a separating

aspiration (we show this in Montero and Possajennikov, 2022; from Peleg,

1968 it also follows that there exists a representation with integer weights

thus x has rational coordinates). In general, there can be other separating

aspirations in constant sum homogeneous games: consider the game with

representation [4; 2, 2, 1, 1, 1]: any aspiration x = (a, a, 1−a
2 , 1−a

2 , 1−a
2 ) with

1
2 ≤ a ≤ 1 is separating. In Montero and Possajennikov (2022) we show that

in some classes of weighted majority games, namely symmetric games and

apex games, the separating aspiration is unique and also unique stochasti-

cally stable one in our “greedy” process. In the next section we analyze a

more general class of weighted majority games.

5.2 Weighted majority games with two types of players

5.2.1 Symmetric and δ-symmetric aspirations

In a weighted majority game, two players i and j are said to be of the

same type if substituting one by the other does not change the value of a

16



coalition: v(S ∪{i}) = v(S ∪{j}) for all S ⊂ N , i, j /∈ S. In a homogeneous

representation of a weighted majority game players i, j of the same type

have the same weight, wi = wj . In this section, we consider games with two

types of players.4

For a (constant-sum homogeneous) weighted majority game, the mini-

mal integer representation has the smallest weight equal to 1. Accordingly, a

constant-sum homogeneous weighted majority game with two types of play-

ers can be represented as [q; a, . . . , a, 1, . . . , 1], with integer a > 1. Let p be

the number of large players (with weight a) and n− p the number of small

players. Without loss of generality, the players are ordered in decreasing

order of weights. We denote the large players as belonging to type ta, and

small players as belonging to type t1 (we use tw for a generic player type).

Let x be a vector of demands. Let dij(x) = |xi − xj | be the abso-

lute value of the difference in demands of players i and j. We denote

da(x) = maxi,j∈ta dij(x) the maximal difference in demands of large players,

and d1(x) = maxi,j∈t1 dij(x) the maximal difference in demands of small

players. Further, let d(x) = max{da(x), d1(x)}. Aspiration x is within-type

symmetric, or simply symmetric, if all players of the same type make the

same demand, d(x) = 0.

We will show that only symmetric aspirations can be separating. A

useful auxiliary result is the following:

Lemma 3 Consider an aspiration x with d(x) > 0, i.e., xi < xj for some

players i, j ∈ tw. Then for any coalition S ∈ GC(x) such that j ∈ S, for

any i with xi < xj, i ∈ S.

Proof. Suppose for a player i with xi < xj , i /∈ S. Consider coalition

T = S\{j} ∪ {i}. T has a lower sum of demands but, since players i and

j are of the same type, the same v(T ) = v(S). This means that x is not

maximal, contradicting that x is an aspiration.

4If there is only one type of players in a game, then the game is symmetric. We analyzed

symmetric majority games in Montero and Possajennikov (2022).
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Lemma 4 Consider an aspiration x. If x is separating, then d(x) = 0.

Proof. Consider aspiration x that has d(x) > 0 and let xi < xj for

players i, j of the same type. By Lemma 3, j does not have a feasible

coalition without i, therefore x is not separating.

Not all symmetric aspirations are separating (for example, aspiration

(0, 1, 1, 1) in the apex game [3; 2, 1, 1, 1] is symmetric but not separating).

The lemma says that aspirations that are not symmetric cannot be sepa-

rating, thus they are vulnerable to upward mutations of some players. How-

ever, sometimes symmetric aspirations cannot be easily reached by such

mutations, as the following example shows.

Example 2 (see Montero and Possajennikov, 2022). Consider the game

[8; 2, 2, 2, 2, 2, 2, 1, 1, 1], with nine players; players 1-6 have weight a = 2 and

players 7-9 have weight 1.

Consider aspiration x = (28 ,
2
8+δ, . . . , 28+δ, 18−δ, 18−δ, 18−δ) in this game.

With one mutation of player 1 (and adjustment of any of the players 2-6)

the process would move to an aspiration which is a permutation of x (within

type t2), or, with adjustment of any of the players 7-9, to a permutation

(within type t1) of aspiration y = (28 + δ, 28 + δ, . . . , 28 + δ, 18 −2δ, 18 − δ, 18 − δ),

but not to a symmetric aspiration.

Motivated by this example, we consider “nearly” symmetric aspirations.

We call an aspiration x δ-symmetric if d(x) ≤ δ, where δ is the finite grid

step size. (We will refer to symmetric aspirations as 0-symmetric.)

The following proposition shows that the process can always reach the

set of δ-symmetric aspirations with a sequence of most likely mutations,

although, as we will see later, it is not always the case that the process stays

within this set.

Proposition 5 From any aspiration x, the process can reach a δ-symmetric

aspiration with a sequence of mutations, one player at a time.
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Proof. If d(x) ≤ δ, then x is already the required aspiration. Suppose

thus that d(x) > δ. Then either da(x) > δ, or d1(x) > δ, or both.

Let tw be the “winning” type, meaning that there exists a winning coali-

tion S made exclusively of players of this type (there exists S such that

v(S) = 1 and for all i ∈ S, i ∈ tw). Let t−w denote the other type (in

a constant-sum game, one type is winning and the other is not: it can-

not be that both are winning or both are losing). Let xm,w = mink∈tw xk,

xM,w = maxk∈tw xk, and xm,−w = mink∈t−w xk, xM,−w = maxk∈t−w xk.

Case 1: At x there exists a feasible coalition U containing only players

of type tw (there exists U such that x(U) = 1 and for all i ∈ U , i ∈ tw).

Case 1(a): Demands of players of type tw are asymmetric (dw > 0).

Suppose xi = xm,w > 1
|U | − δ and xj = xM,w. Then every player in U

demands 1
|U | and thus j /∈ U . By Lemma 3, any feasible coalition for j

must contain all players in U , a contradiction. Therefore xm,w ≤ 1
|U | − δ.

Suppose xM,w < 1
|U | + δ. For U to be maximal, i /∈ U . But a coalition

U\{j}∪{i} is then not maximal. Therefore xM,w ≥ 1
|U | + δ. Suppose player

i mutates to xi + δ. Player j then has to adjust to xj − δ. If there are

further players with xm,w, they would not need to adjust downwards, and

no player with xi ≤ 1
|U | would need to adjust downwards. In a new aspiration

y, either dw(y) = dw(x) but there are fewer players with ym,w = xm,w and

yM,w = xM,w, or dw(y) < dw(x). Continuing, an aspiration z with dw(z) = 0

can be reached.

Case 1(b): Demands of players of type tw are symmetric but demands

of players of type t−w are asymmetric (dw = 0 and d−w > δ). Suppose

xi = xm,−w, xj = xM,−w. If player i mutates to xi + δ, player j would

need to adjust to xj − δ. No player of type tw needs to adjust; also no

player of type t−w with xi ≤ xm,−w + δ would need to adjust downwards.

Therefore in a new aspiration y, either d−w(y) = d−w(x) but fewer players

have ym,−w = xm,−w and yM,−w = xM,−w, or d−w(y) < d−w(x). Continuing,

an aspiration z with d−w(z) = 0 (and dw(z) = 0 still) can be reached.
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Case 2: Any coalition U of players of type tw is infeasible (for any U ⊂ tw,∑
k∈U xk > v(U)).

Case 2(a): Demands of players of type t−w are asymmetric (d−w > 0).

Consider i, j ∈ t−w such that xi = xm,−w < xj = xM,−w. Consider any

player k ∈ tw and consider any U ∈ GC(x), U ∋ k. Suppose i /∈ U . If

j ∈ U , then coalition U\{j} ∪ {i} is not maximal; thus j /∈ U and j does

not have a feasible coalition. Therefore, i ∈ U . Suppose i mutates to xi+ δ.

Player k would need to adjust to xk−δ. No other player with xm,w or xm,w+δ

would need to adjust. In a new aspiration y, either a coalition of players of

type tw will be feasible (Case 1), or d−w(y) = d−w(x) (and yM,−w ≤ xM,−w)

but fewer players have ym,−w = xm,−w, or d−w(y) < d−w(x). In the latter

two cases, continuing, an aspiration z with d−w(z) = 0 can be reached.

Case 2(b): Demands of players of type t−w are symmetric but demands

of players of type tw are not δ-symmetric (d−w = 0 and dw > δ). Consider

i, j ∈ tw such that xi = xm,w < xj = xM,w. By Lemma 3, any coalition

containing j also contains i. If player i mutates to xi+δ, player j would need

to adjust to xj − δ. No player of type t−w would need to adjust, thus d−w

stays at 0. In a new aspiration y, either a coalition of players of type w will

be feasible (Case 1), or dw(y) = dw(x) (and yM,w ≤ xM,w) but fewer players

have ym,w = xm,w, or dw(y) < dw(x). In the latter two cases, continuing, an

aspiration z with dw(z) = δ can be reached.

As we have seen in Example 2, Proposition 5 cannot be strengthened to

convergence to 0-symmetric aspirations.

For further analysis, we consider the following division of the class of

constant-sum weighted majority games with two types. Either there are

enough large players to form a winning coalition (pa ≥ q, for example, game

[4; 2, 2, 1, 1, 1]), or there are enough small players to form a winning coalition

(n−p ≥ q, for example, game [3; 2, 1, 1, 1]). Since the game is constant-sum,

it cannot be that both a coalition of only large players and a coalition of

only small players are winning. We consider each of the subclasses in turn.
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5.2.2 Apex-like games

Suppose that n − p ≥ q, so that small players can form a winning coali-

tion. Such games include apex games and other similar games, such as

[5; 3, 1, 1, 1, 1, 1, 1] and [5; 2, 2, 1, 1, 1, 1, 1]. In this class of games, there is a

unique separating aspiration as the following lemma shows.

Lemma 5 If n − p ≥ q, aspiration vector z = (aq , . . . ,
a
q ,

1
q , . . . ,

1
q ) is the

unique separating aspiration.

Proof. Let x be a separating aspiration. We know from Lemma 4 that x

must be symmetric, hence all players of the same type must make the same

demand. Since n− p ≥ q, there is a minimal winning coalition S comprised

of q players.

Case 1: If S ∈ GC(x), symmetry and maximality of x then imply that

xi =
1
q for all small players. It then follows that xi =

a
q for all large players

(otherwise either feasibility or maximality of x would be violated).

Case 2: If S /∈ GC(x), xi > 1
q for all small players and no coalition

consisting exclusively of small players is feasible. In order for small players

to be able to obtain their demands, xj <
a
q for all large players. Any feasible

coalition T ∈ GC(x) must then contain all large players; if there was a large

player k /∈ T , this player could replace a small players in T (T contains more

than a small players since the set of all large players is losing) and the new

coalition would have the same value but a lower total demand, contradicting

maximality of x. Since any feasible coalition for a small player must contain

all large players, x cannot be a separating aspiration.

The next proposition shows that this unique separating aspiration is the

unique stochastically stable one.

Proposition 6 Consider a constant-sum homogeneous weighted majority

game with representation [q; a, . . . , a, 1, . . . , 1] and suppose n− p ≥ q. Then

z = (aq , . . . ,
a
q ,

1
q , . . . ,

1
q ) is the unique stochastically stable state of the process.
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Proof. In the proof of Proposition 5 (Case 1), if there is a feasible

coalition of only players of the winning type (in the class of apex-like games

under consideration, this is type t1), then a 0-symmetric aspiration can be

reached, with still a feasible coalition of only players of type t1. In this class

of games, there is only one such aspiration, namely the aspiration z.

Consider therefore aspirations with a winning coalition of small players

infeasible. In the proof of Proposition 5 (Case 2), an aspiration with da = 0

and d1 ≤ δ can be reached. Let this be aspiration x = (b, . . . , b, c, . . . , c, c+

δ, . . . , c+ δ). (There may be no players with demand c+ δ.)

In x, any coalition in GC(x) contains all large players. Suppose player 1

mutates to b+δ and a player with c+δ (or, if there is no such player, a player

with c) adjusts downwards. (Other small players may be also infeasible; they

would also adjust downwards.) If there is a feasible coalition of small players,

then Case 1 applies and the aspiration z can be reached with a sequence of

mutations, one player at a time. If not, then we can apply Case 2(a) to get

all large players demand b+ δ. Then all small players would lower demands

to c or c− δ. If a coalition of small players is not feasible, then we have an

aspiration like x but with the minimal demand of large players larger than

before. Mutations of one large player can be continued until large players

demand a
q , and small players demand 1

q , i.e., the separating aspiration.

This result generalizes the result in Montero and Possajennikov (2022)

for apex games, which are a subset of the games with two types. In apex

games, there is only one large player, but the coalition of all small players is

(minimal) winning. That in the process with mutations the unique separat-

ing aspiration is the stochastically stable one applies also for other games in

this class, for example, [5; 2, 2, 1, 1, 1, 1, 1].

5.2.3 Games with large players winning

Consider now weighted majority games with pa ≥ q, so that large players

can form a winning coalition. Examples of such games are [4; 2, 2, 1, 1, 1]
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and [8; 2, 2, 2, 2, 2, 2, 1, 1, 1].

Let u ≤ p be the number of large players necessary of winning by them-

selves (ua = q). Then, winning coalitions consist of either u large players,

or u−1 large players and a small players, or u−2 large players and 2a small

players, etc, until ra > n− p. The maximal number r of small players that

can be in a winning coalition is thus r = a
⌊n−p

a

⌋
. The minimal number

of large players that can be in a winning coalition is s = q−r
a . Separating

aspirations in these games are z = ( bq , . . . ,
b
q ,

c
q , . . . ,

c
q ), for all 0 ≤ c ≤ 1

and b = q−cr
s (then a ≤ b ≤ aq

ap−q+2). (For example, in game [4; 2, 2, 1, 1, 1],

a = 2, q = 4, p = 2, n− p = 3, r = 2, s = 1 and 2 ≤ b ≤ 4.)

If in an aspiration there is a feasible coalition consisting of players of

only winning type ta, then from the proof of Case 1 of Proposition 5 a 0-

symmetric aspiration can be reached, still with a feasible coalition of players

of winning type. There is only one such aspiration, namely the aspiration

(aq , . . . ,
a
q ,

1
q , . . . ,

1
q ). However, if no coalition of players of type ta is feasible,

then a separating aspiration may not necessarily be reached with a sequence

of upward mutations, one player at a time.

Example 3 Consider game [10; 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1], with n = 11 play-

ers, p = 8, n − p = 3. Winning coalitions have either 5 large players, or 4

large players and 2 small players.

Consider aspiration x(1) = (aq ,
a
q ,

a
q +δ, . . . , aq +δ, 1q −δ, 1q −δ, 1q −δ). There

are two players with demand a
q that are in any feasible coalition.

Suppose player 1 mutates upward. Any of the other players would have

to include one more player with demand a
q + δ into a feasible coalition thus

a player lowers the demand by δ. If it is one of the players 3-8, then the

process reaches a permutation of x(1). If it is player 2, then we have, as a

result of the basic process, a permutation of x(2) = (aq − δ, aq + δ, . . . , aq +

δ, 1q − δ, 1q − δ, 1q − δ). If it is one of the players 9-11, we have a permutation

of x(3) = (aq ,
a
q + δ, . . . , aq + δ, 1q − 2δ, 1q − δ, 1q − δ).
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Consider aspiration x(2) = (aq −δ, aq +δ, . . . , aq +δ, 1q −δ, 1q −δ, 1q −δ). Any

feasible coalition includes player 1. If player 1 mutates to a
q , then if one of

players 2-8 adjusts, we are back to a permutation of x(1); if one of players

9-11 adjusts, we have a permutation of x(3). If player 1 mutates to a
q + δ or

more, then if one of players 2-8 adjusts, we have a permutation of x(2). If one

of players 9-11 adjusts, we have x(4) = (aq + δ, . . . , aq + δ, 1q − 3δ, 1q − δ, 1q − δ).

Consider aspiration x(3) = (aq ,
a
q + δ, . . . , aq + δ, 1q − 2δ, 1q − δ, 1q − δ). All

feasible coalitions include player 1 and player 9. Suppose player 1 mutates.

If one of players 2-8 adjust, we have a permutation of x(3). If player 9 adjusts,

we have a permutation of x(4). If one of players 10-11 adjusts, then so does

the other, reaching separating aspiration (aq+δ, . . . , aq+δ, 1q−2δ, 1q−2δ, 1q−2δ).

Suppose player 9 mutates, If player 1 adjusts, we have x(2). If one of players

2-8 adjusts, we have x(1). If one of players 10-11 adjusts, we have x(3).

Finally, consider aspiration x(4) = (aq + δ, . . . , aq + δ, 1q − 3δ, 1q − δ, 1q − δ).

All feasible coalitions include player 9. Suppose player 9 mutates to 1
q − 2δ.

If one of players 1-8 adjusts, we have x(3). If one of players 10-11 adjusts,

then so does the other, reaching separating aspiration (aq + δ, . . . , aq + δ, 1q −
2δ, 1q − 2δ, 1q − 2δ). Suppose player 9 mutates to 1

q − δ or more. If one of

players 1-8 adjust, then we have x(2); if one of players 10-11 adjusts, we have

x(4) as the result of the basic process.

Putting everything together, one-player mutations make the process stay

within permutations of x(1), x(2), x(3), x(4), but there is a non-zero probability

of reaching separating aspiration (aq + δ, . . . , aq + δ, 1q − 2δ, 1q − 2δ, 1q − 2δ).

Once the process is in a separating aspiration, no mutation of one player can

disturb it. Therefore, (minimal) locally stable sets coincide with separating

aspirations in this game.

Example 4 Consider game [16; 2, . . . , 2, 1 . . . , 1], with n = 18 players, p =

13, n− p = 5. Winning coalitions have 8 large players, 7 large players and

2 small players, and 6 large players and 4 small players.

Suppose b = 2
16 and c = 1

16 . Consider aspiration x(1) = (b, b, b+δ, . . . , b+
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δ, c − δ, . . . , c − δ), with coalitions of 6 large players and 4 small players in

GC(x(1)). All such coalitions contain players 1 and 2. If player 1 (or 2)

mutates, the basic process of adjustment reaches a permutation of either

x(1), or of x(2) = (b− δ, b+ δ, . . . , b+ δ, c− δ, . . . , c− δ), or of x(3) = (b, b+

δ, . . . , b+ δ, c− 2δ, c− δ, . . . , c− δ).

Consider x(2). All coalitions in GC(x(2)) contain player 1. If player 1

mutates, we reach a permutation of either x(1), or of x(2), or of x(3), or of

x(4) = (b+ δ, . . . , b+ δ, c− 3δ, c− δ, . . . , c− δ).

Consider x(3). All feasible coalitions contain player 1 and player 14 (with

demand c− 2δ). If player 1 mutates, we reach a permutation of either x(4)

or of x(5) = (b + δ, . . . , b + δ, c − 2δ, c − 2δ, c − δ, c − δ, c − δ). If player 14

mutates, we reach a permutation of either x(1), or of x(2), or of x(3).

Consider x(4). All coalitions in GC(x(4)) contain player 14 with demand

c − 3δ. If player 14 mutates, we reach a permutation of either x(2), or of

x(3), or of x(4), or of x(5) after an adjustment by the basic process.

Finally, consider x(5). All feasible coalitions contain player 14 with de-

mand c − 2δ. If player 14 mutates, the basic adjustment process reaches a

permutation of either x(2), or of x(3), or of x(4), or of x(5).

The set of aspirations that are permutations of x(1), x(2), x(3), x(4), x(5) is

a (minimal) locally stable set in this game. Aspirations that are permuta-

tions of x(4) are 2δ away (by maximal coordinate-wise difference) from the

separating aspiration (b+ 2
3δ, . . . , b+

2
3δ, c−δ, . . . , c−δ) and permutations of

x(2) are 2δ away from (b+δ, . . . , b+δ, c− 3
2δ, . . . , c−

3
2δ), while permutations

of x(1), x(3), x(5) are less than 2δ away from a separating aspiration.

Example 4 illustrates that there may be locally stable sets that do not

coincide (indeed, do not even contain) separating aspirations. Nevertheless,

Proposition 5 shows that a sequence of mutations, one at a time, can come

close to a symmetric aspiration (within δ) in any two-type game. The fol-

lowing proposition describes how far away from a separating (and therefore

symmetric) aspiration can such a sequence get.
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Proposition 7 Consider a constant-sum homogeneous weighted majority

game with representation [q; a, . . . , a, 1, . . . , 1] and suppose ap ≥ q. Then,

for any δ, there exists k such that all aspirations in locally stable sets are

kδ-close to separating aspirations. (In particular, one can choose k = s.)

Proof. From the proof of Proposition 5, either a 0-symmetric aspiration

is reached (Case 1; it is then separating in the class of games under con-

sideration), or an aspiration with d1 = 0 and da ≤ δ can be reached (Case

2(b)). Let this latter aspiration be x(1) = (b, . . . , b, b+ δ, . . . , b+ δ, c, . . . , c).

For it to be an aspiration (i.e. to have all coalitions maximal) b ≥ a
q , c <

1
q

and there is a feasible coalition with the maximal number r = a
⌊n−p

a

⌋
of

small players and the minimal number s = q−r
a of large players in it.

In x(1), all feasible coalitions contain all players with demand b, while

for any other player j (with demand b+ δ or c), for any other player i there

exists S such that i ∈ S, j /∈ S. If any of players like j mutates upwards, no

other player would need to adjust and the process would return to x(1).

Suppose s′ < s players demand b. If each of them mutates in turn, and

each time the same small player adjusts, then, like in Examples 3 and 4,

an aspiration x(k) = (b + δ, . . . , b + δ, c − s′δ, c, . . . , c) can be reached. As

in the examples, of all the aspirations that can be reached by a sequence of

one-player upward mutations, x(k) has the smallest demand (c − s′δ) of a

small player.

If s ≤ r+1 (as in Example 3), then a separating aspiration can be reached

with a non-zero probability because those small players who demand more

than others adjust, and all r small players demand c − δ. In this case,

aspirations in (minimal) locally stable sets are separating, in particular,

they are 0-close to separating aspirations thus also k-close. If s > r + 1

(as in Example 4), then there is not enough small players for all to demand

c−δ. Then a separating aspiration is never reached. But among aspirations

in locally stable sets, the one furthest away from a separating aspiration is

x(k), which is at most sδ away from (b, . . . , b, c, . . . , c).
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Therefore, even if the process with mutations has locally stable sets that

do not coincide with separating aspirations, these locally stable sets, for any

given game, only have aspirations that are close to separating aspirations

(especially for small δ).

On the other hand, for any fixed number k one can construct a game

(with many players) such that locally stable sets contain aspirations that

are more than kδ away from separating aspirations. In particular, to move

kδ away from a separating aspiration, consider a game with an aspiration

in which r = a
⌊n−p

a

⌋
small players demand δ less than in a separating

aspiration, r large players demand δ more, and k < r demand exactly what

is in a separating aspiration. A minimal winning coalition S contains k + r

large players and r small players. This coalition has weight
∑

i∈S wi = a(k+

r)+r = q. The total weight of players is
∑

i∈N wi = 2q−1 = 2a(k+r)+2r−1.

With r + 1 small players, there are thus 2a(k+r)+r−2
a large players. For any

r, a game with the total number of players larger than 2(k+ r)+ r−2
a + r+1

can therefore have locally stable sets that contain aspirations that are kδ

away from separating ones.

6 Conclusion

This paper presented a simple “greedy” process of demand adjustment in

cooperative games, in which players set maximal demands compatible with

the demands of other players. This basic process converges to the set of

aspirations; in convex games this means that it converges to the core.

We further extended the process by introducing “greedy” mutations,

that is, mutations to higher demands. Separating aspirations then play an

important role since they are most resistant to such mutations. We analyzed

this process in 3-player games and weighted majority games with two types

of players.

For 3-player games, we derived complete results: either the core (when

non-empty), or the unique separating aspiration (when the core is empty)
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are stochastically stable. For weighted majority games with two types of

players, we found the following. In games in which the coalition of all

small players is winning, there is a unique separating aspiration, which is

stochastically stable. However, in games in which the coalition of large

players is winning, the process does not necessarily converge to a separating

aspiration. Instead, it can reach a neighborhood of such aspirations, where it

remains. Hence, the simple process, augmented with appropriate mutations,

can provide useful predictions for many games.
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