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 Abstract  

The purpose of this paper is to investigate the nature of professionals’ 
inflation forecasts inattentiveness. We introduce and empirically investigate 
a new generalized model of inattentiveness due to informational rigidity. In 
doing so, we outline a novel model that considers the non-linear relationship 
between inattentiveness and aggregate uncertainty, which crucially 
distinguishes between macro-economic and data (measurement error) 
uncertainty. The empirical analysis uses the Survey of Professional 
Forecasters data and indicates that inattentiveness due to imperfect 
information explains professional forecasts’ dynamics.  
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I: Introduction:  

Inflation forecasts and, indeed, macroeconomic forecasts are permeated by inattentiveness. 

Professional forecasters, or experts, are no less susceptible to this issue, as established clearly 

in recent investigations (see Andrade and Le Bihan (2013), Coibion and Gorodnichenko 

(2015), Dovern et al (2015), Jain (2019), and Easaw and Golinelli (2021)). The purpose of the 

current paper is to investigate how aggregate uncertainty affects the inattentiveness of 

professionals’ inflation forecasts.    

A number of models have focused on deviations from full-information rational 

expectations due to informational rigidities (see, for example, Mankiw and Reis (2002), 

Woodford (2003) and Sims (2003)). The different forms of information rigidities, or agent’s 

inattentiveness, form the basis of the competing rational expectations models with alternative 

types of informational frictions1. Coibion and Gorodnichenko (2015) contend that both types 

of models predict quantitatively similar forecast errors.  

Using their simple framework where forecast errors are investigated empirically as 

deviations from the full-information rational expectations (FIRE), we consider a generalized 

framework that encompasses both the noisy and sticky information models. The paper extends 

the existing literature in three ways. Firstly, we introduce a generalized model of inflation 

forecast which encompasses the two main forms of inattentiveness or information rigidities, 

notably due to sticky and imperfect (noisy) information. In the generalized model, information 

rigidities due the sticky information model is nested within the imperfect information model 

and, hence, the features of both can be verified by testing the relevant parameters. The empirical 

analysis finds the significance of the additional explanatory variable of our model, which 

measures the noise capturing measurement errors due to data revisions. Secondly, we introduce 

a novel model that explicitly derives the non-linear relationship between inattentiveness and 

uncertainty. This non-linear relationship is modelled in two ways: as a multiplicative-

interactions model and as a state-dependent model, which does not need to specify a functional 

form. Thirdly, we specifically introduce the concept of measurement error (e.g., data revisions) 

whose variance (i.e. data uncertainty) is distinct from macroeconomic uncertainty. In an 

 
1 The first type of informational friction models is the sticky-information model of Mankiw and Reis (2002) where 
agents update their information set sporadically. Such sticky information expectations have been used to explain 
not only inflation dynamics (Mankiw and Reis (2002)) but also aggregate outcomes in general (Mankiw and Reis 
(2006)) and the implications for monetary policy (Ball et al., 2005). The second type of informational friction 
models is the noisy information model of Woodford (2003) and Sims (2003) where the agents continuously update 
their information set, but can never fully observe the true state because of signal extraction problems.   
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innovative approach, we distinguish the effect of macroeconomic and data uncertainty on the 

inattentiveness of professional forecasters when forecasting inflation.   

Recently, too, there has been a heighten interest in understanding and explaining the role 

macroeconomic uncertainty when forming subjective macroeconomic expectations and 

forecasts (see, for instances, Dick et al (2013) and Clements (2021)). Indeed, as Lahiri and 

Sheng (2010) and Dovern (2015) show, even disagreements amongst professional forecasters 

can be related to macroeconomic uncertainty. The issue of uncertainty is a pertinent one for 

both forms of inattentiveness. Regardless, the distinct micro-foundations of the two models 

suggests that the source and nature of the uncertainty are crucial. Hence, an important 

contribution of this paper is to distinguish between uncertainty resulting from macroeconomic 

shocks and noisy data, and resultant measurement error. We are, thereby, able to assess their 

different impact on inattentiveness.  

Our empirical results indicate that the professionals’ forecast errors display micro-

foundations and dynamics that are consistent with imperfect, or noisy, information. This result 

is robust to different definitions of measurement error. When assessing the impact of 

uncertainty on professionals’ inattentiveness, the distinction between macro and data 

uncertainty is both revealing and pertinent. We find that during periods of high macro 

uncertainty inattentiveness reduces, and that increasing data uncertainty leads to greater 

inattentiveness, as predicted by our theoretical model. 

The structure of the paper is as follows. The next section outlines a simple generalized 

model encompassing both imperfect and sticky information models. The ensuing empirical 

investigations are outlined and discussed. Section III then introduces a new model that 

explicitly sets the relationship between inattentiveness due to information rigidities and 

uncertainty. Section IV estimates the relationship by using both multiplicative-interactions and 

state-dependent models. Finally, Section V outlines the summary of the key results and draws 

the concluding remarks.  
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II: Imperfect Information and Sticky Information Model:  
A Generalized Aggregation of Individual Forecasters: 

 

In this section, we introduce a generalized model of professionals’ inflation forecasts which 

nests both the imperfect, or noisy, information (NI) and sticky information (SI) models. In an 

influential paper, Nordhaus (1987) introduced the concept of ‘weak efficiency’ forecast. 

Following Coibion and Gorodnichenko (2015) extension and adapting this concept into the 

recent inattentiveness literature, we introduce a generalized version here. Specifically, our 

model outlines an aggregated version of the individual forecaster behaviours. The model 

considers the distinct microfoundations of the NI and SI models and, consequently, the 

dynamics of the ensuing forecast error. This is the basis for empirically investigating the main 

features of both the NI and SI models.  

In the case of the NI model, agents know the structure of the model and its parameters 

and keep updated information sets, but never observe the actual state of inflation tx  (they only 

receive a noisy signal of it). Regarding the model, Coibion and Gorodnichenko (2015) assume 

that inflation evolves as a stationary AR model, and more recent models have assumed different 

versions of this. For instance, Jain (2019) assumes a stationary version of the UC model. 

Ryngaert (2017) also assumes that inflation evolves as a stationary AR(1) model with a 

constant. Of course, the stationarity assumption is better suited to representing the inflation 

dynamics in short samples, where inflation is deemed to revert to a constant long-run (core) 

inflation with no regime breaks or changes to core inflation.  

Following Easaw and Golinelli (2021), we start from a general specification − more 

appropriate for longer sample periods − that crucially allows for breaks to the core inflation 

level.2 Since the seminal Perron (1989), if a limited number of m fundamental shocks occur in 
B
jT  (j = 1, 2, …, m), the inflation dynamics will be affected by m deterministic shifts (producing 

m+1 regimes) which are interpretable as fluctuations of the core inflation 1mτ + , plus a sequence 

of transitory shocks to the stationary inflation gap tξ . In this context, we assume that the 

forecaster estimates (either formally or qualitatively) the core inflation as 1mτ + , and that uses 

the most recent regime estimate to forecast inflation over long horizons.  

 
2 Nevertheless, for shorter sample periods and/or without significant breaks, this model collapses to the Ryngaert 
(2017) specification. 
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Formally, the unobservable inflation state tx  is 

1t m tx τ ξ+= +           (1) 

where 1mτ +  is a series of m+1 constants along m+1 inflation regimes, and the inflation gap tξ  

is assumed to evolve according to the stationary AR(1) process 1t t tξ ρξ υ−= +  (the shock tυ  is 

a zero-mean martingale difference with ( ) 2
tVar υυ σ=  and can be heteroskedastic, as 2

υσ  may 

vary over time).3 

The specification assumes that the ith professional forecaster knows the structure of 

model (1) and its underlying parameters but does not directly observe the actual state of 

inflation at t, while individual agents only receive the signals ity  pertaining to tx . The 

measurement equation (2) defines that the individual forecaster i can only observe the sum of 

the state tx  plus the iid zero-mean individual measurement noise itω : 

1it m t ity τ ξ ω+= + +         (2) 

where the measurement noise is such that )( kjtitCov −ωω  is equal to zero when i=j and k>0 (i.e. 

individual noises are not serially correlated) while, when i=j and k=0, the variance of noises is 

equal to 2
ωσ , which may also be generalized, i.e. varying by individual i and period t.  

Measurement noise may be correlated simultaneously across agents in period t. Hence, 

when i≠j, 2)( ijkjtitCov σωω =−  if 0k = , and 0it jt kCov( )ω ω − =  if 0k > . The existence of 

simultaneous covariances across agents suggests that the individual perceptions of the state 

variable x can be contemporaneously related across agents (for instance, individuals’ 

perception of x can be influenced by the same provisional data releases). In the absence of 

noise, that is when 2
ωσ  tends to zero, agents' measurements are closer to each other, and they 

are perfectly informed about the state x. Finally, individual measurement errors itω  are assumed 

unrelated with the macroeconomic shocks tυ  (for example, the measurement errors due to 

preliminary data releases are not related with the macroeconomic shocks).  

Given that the state tx tit xF

 
3 This point will be explored further in Section III below. When forecasting inflation, Stock and Watson (2007) 
explicitly model the variability of permanent and transitory disturbances to their UC model with stochastic 
volatility processes. 
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tit xF 1− , only depends on the knowledge of the process 

prior to t. The a posteriori state estimate in t, tit xF , additionally requires the knowledge of the 

measurement ity .  

In the Kalman filter framework, the objective is to estimate the optimal a posteriori 

state tit xF  as a linear combination of the a priori estimate tit xF 1−  and the weighted difference 

between the actual measurement ity  available in t and its prediction made in t-1:  

( )titittittit xFyGxFxF 11 −− −+=       (3) 

where the Kalman gain G is the optimal weight, assumed to be the same across i and over time, 

with 10 ≤≤ G .4 Equation (3) can also be rearranged as the weighted sum of the new 

information (2) and the past forecast:  

tit xF ( )1 1(1 )m t it it tG G F xτ ξ ω+ −= + + + −      (4) 

Using the a posteriori state estimate tit xF  depicted in equation (4), the agent may iterate 

it forward h steps ahead using the information about the data generation process of x given in 

equation (1): 

( )1 1 1( ) (1 )h h
it t h m t it it t mF x G G F xτ ρ ξ ϑω ρ τ+ + − += + + + − −    (5) 

where ϑ  parameter measures the rate at which the measurement error in t is forecast forward.5 

Since, ( )1 1 1 1
h

it t m it t h mF x F xρ τ τ− + − + +− = − , equation (5) now becomes: 

1 1( ) (1 )h
it t h m t it it t hF x G G F xτ ρ ξ ϑω+ + − += + + + −     (5’) 

Following the definition of the FIRE forecast error h-steps ahead, FIRE
thte |+ ,6 we can substitute in 

equation (5’) the FIRE forecast h-steps ahead, 1
h

m tτ ρ ξ+ + , with the difference between the 

actual values of x in t+h and the FIRE error, FIRE
ththt ex |++ − , to obtain: 

| 1( ) (1 )FIRE
it t h t h t h t it it t hF x G x e G F xϑω+ + + − + = − + + −      (6) 

Model (6) can be rearranged to define the ith agent’s forecast error as follows: 

 
4 The assumption of constant G is dropped in Section III. 
5 If we assume the NI agents iterate forward their forecasts by treating the measurement error as a part of the 
inflation gap, we have hϑ ρ= .  

6 See equations (A1.3) and (A1.4) in Appendix A1. 
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1 |
1 ( )t h it t h it t h it t h it h t

Gx F x F x F x
G

ς+ + + − + +
−

− = − +         (7) 

where the individual error | |
FIRE

it h t t h t iteς ϑω+ += −  consists of two orthogonal components: the 

FIRE forecast error (the same across agents) and the individual noise itω .  

We derive the aggregate specification of this model by averaging individual forecasts 

across agents, with t = 1, 2, ..., T denoting the time when the forecast is made: 

|1

1 1 1 1

1N N N N
it h tit t h it t h it t h

t h
i i i i

F x G F x F xx
N G N N N

ς ++ + − +
+

= = = =

−  − = − + 
 

∑ ∑ ∑ ∑     (8) 

As stressed above, the Kalman gain G is assumed to be the same across individuals and over 

time.7 Equation (8) represents the aggregate linear model, whose average error term depends 

on both the FIRE error over the forecast horizon and the average across all forecasters of the 

individual noise itω  at the time of the survey: 

| |
|

1 1 1

FIREN N N
it h t t h t it FIRE it

t h t
i i i

e
e

N N N
ς ϑω ωϑ+ +

+
= = =

−
= = −∑ ∑ ∑       (8’) 

Therefore, the aggregate NI linear model can be written more explicitly as: 

1
|

1 1 1 1

1N N N N
FIREit t h it t h it t h it

t h t h t
i i i i

F x F x F xGx e
N G N N N

ωϑ+ + − +
+ +

= = = =

−  − = − − +  
∑ ∑ ∑ ∑     (9) 

 The individual noise itω  can be further decomposed into two parts:  

titit c−= µω            (10) 

where tc  is the noise component which varies only over time as the result of measurement 

error, and that can be defined as: tc  = 1
tt yx − , where tx  is the "final" estimate of inflation in 

t, and 1
ty  its first release, known by the forecaster at the time of the forecast. In the context of 

the decomposition (10), the inflation signal can be re-defined as: ( )1
ttittit yxxy −−+= µ

itty µ+= 1 . In short, the individual information about the variable to be forecasted is given by 

the sum of the first release 1
ty  and the idiosyncratic noise itµ  representing subjective 

interpretation errors. Taking the average of equation (10), we can express the aggregate noise 

measure tω  as the sum of two parts:  

 
7 We relax the assumption of time invariance in Section III by allowing the Kalman gain to be related to the time-
varying uncertainty. 
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∑
=

=
N

i

it
t N1

ωω ∑∑
==

−=
−

=
N

i
t

it
N

i

tit c
NN

c
11

µµ = tt c−µ    (10’) 

where ∑
=

=
N

i

it
t N1

µµ  is the average of the individual idiosyncratic noise. Therefore, if we focus 

on the aggregate individual noise tω , the linear NI model (9) becomes:  

[ ]1 |
1 FIRE

t h t t h t t h t t h t t h t
Gx F x F x F x e

G
ϑω+ + + − + +

−
− = − − +   (11) 

where ∑
=

+
+ =

N

i

htit
htt N

xFxF
1

 and ∑
=

+−
+− =

N

i

htit
htt N

xFxF
1

1
1  respectively.  

While, if we explicitly account for both the parts tµ and tc  of the average noise, the linear NI 

model (9) becomes: 

[ ]1 |
1 FIRE

t h t t h t t h t t h t t t h t
Gx F x F x F x c e

G
ϑµ ϑ+ + + − + +

−
− = − − + +   (12) 

Further, if we assume that: 0
1

==∑
=

N

i

it
t N

µµ  (i.e. that the statistical average removes the 

idiosyncratic noises) the aggregate specification of the linear NI model (9) becomes: 

[ ]1 |
1 FIRE

t h t t h t t h t t h t t h t
Gx F x F x F x c e

G
ϑ+ + + − + +

−
− = − + +   (13) 

The SI model nests in the aggregate NI model (13). Following Coibion and 

Gorodnichenko (2015) and Carrol (2003, 2006), the sticky information (SI) model inflation 

forecast − where the measurement noise is unaccounted for − is defined: 

1 2(1 ) {(1 ) [(1 ) ...]}FIRE FIRE FIRE
t t h t t h t t h t t hF x F x F x F xλ λ λ λ λ+ + − + − += − + − + − +  (14) 

where FIRE
t t hF x +  is the FIRE h-steps ahead forecast dated at t, and λ  is a parameter measuring 

the probability of agents of acquiring no new information (that is, the degree of information 

rigidity). By substituting the definition of the FIRE forecast into equation (14) and rearranging, 

we derive the following forecasts error structure for the SI model:  

 [ ]1 |1
FIRE

t h t t h t t h t t h t h tx F x F x F x eλ
λ+ + + − + +− = − +

−
     (14’) 
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A crucial distinction between the linear NI and the SI models, respectively in (13) and 

(14’), is the inclusion of the time-varying common noise component tc  in the NI model8. 

Therefore, the SI model is a valid representation of the forecast errors and parsimoniously 

encompasses NI only if 0ϑ = . Conversely, if 0ϑ ≠ , the SI model omits the common noise tc . 

The empirical investigation and comparison of the linear NI and SI models is based on 

the Survey of Professional Forecasters (SPF) data9. We use surveyed professionals’ inflation 

forecast pertaining to GDP deflator inflation, x. The forecast horizon, h, is set to 3, that is, one-

year ahead prediction from t-1 (i.e., starting from the most recent information available at the 

survey date t). The one-year ahead forecast error t h t t hx F x+ +− , the dependent variable of 

models (11) to (13), is regressed against two explanatory variables. The first, common to all 

models, is the forecast revision from quarter t-1 to t, 1t t h t t hF x F x+ − +− .10 The second 

explanatory variable is a measure of the aggregate individual noise related to the process of 

data revisions. The presence of the noise as a regressor in models (11) to (13) supports the 

validity of the NI with a noise component which we measure in three different ways.11  

Firstly, we estimate tω  in model (11) with the average of the individual measures of 

the forward noise which are defined as the revisions of the individually perceived GDP deflator 

levels for t-1 from SPF vintage t to t+4. This measure has the advantage of embodying the 

idiosyncratic noise component itµ too. In addition, we provide two aggregate measures of data 

revisions (one backward-looking, B
tc , and the other forward-looking, F

tc ) that can be used in 

model (13) under the assumption that 0tµ =  (i.e. that the idiosyncratic noise vanishes when 

averaging). 

 
8 Indeed, in a recent paper Croushore (2020) concluded that bias found in survey-based forecasts, due to their 
choice of actuals, tend to depend considerably on data that are subject to revisions.  

9 The SPF survey is currently conducted by the Federal Reserve Bank of Philadelphia; individual data about 
inflation forecasts are available from the survey of 1968q4. For further information and data downloads, see the 
website: http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/ 
10 Details about data sources and definitions of the forecast error and of the forecast revision are in Appendix A2. 
11 Note that the relevant concept of noise here pertains to the quality of the forecasters’ information set and not 
the concept of noise (and news) to model the data revisions of the statistical agencies (see e.g. see Jacobs and van 
Norden (2011)). In other terms, the point of interest here is to quantify the noise affecting the forecasters’ 
knowledge of the state (and so, their predictive ability as shown in Finzen and Stekler (1999)).  
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The fluctuations of the aggregate forward-looking measure of noise F
tc  are similar to 

those of tω .12 The only difference is that F
tc  measures the first data release of the GDP deflator 

in t for t-1 using the official NIPA data, while tω  measures it with the individually perceived 

data as they are reported by the forecaster in the survey t. The forward-looking measures of 

noise component F
tc  and tω , by definition, use information that is available only after one 

year. Instead, the aggregate backward-looking B
tc  is the only measure of noise that is known 

when the forecasters are surveyed. It averages the four most recent inflation revisions at the 

time of survey t, specifically during the past four quarters. 

Both the forward- and backward-looking definitions of noise are of interest for the 

present paper. On the one hand, the two forward-looking definitions of noise, F
tc  and tω , have 

the advantage of quantifying the contribution of the actual measurement error faced by the 

forecaster at the time when the forecast is released. This unavoidably becomes part of the ex 

post forecast error, if the NI model is an accurate representation of the forecaster behaviour. 

On the other hand, the backward-looking definition of noise B
tc  is more “realistic” as it 

represents the forecasters’ knowledge of the most recent data revisions when the forecast is 

released. Consequently, the knowledge of B
tc  can lead to better forecasts of the target.13  

The availability of these three alternative noise measures allows us to assess the 

robustness of the empirical findings. The preliminary assessment of the univariate properties 

of the forecast error, forecast revision, and three measures of aggregate noise are undertaken 

using both visual inspection of the time patterns and the Elliott et al (1996) unit root test.14 

Evidence suggests that all the series are stationary, and that the OLS estimator (with 

Heteroskedasticity and Autocorrelation Consistent, HAC, standard errors of Newey and West, 

1987) can be used to estimate the parameters of models (11) and (13). In fact, the residuals, 

which are orthogonal to both forecast revisions and noise, are consistent estimates of the FIRE 

errors. Thereby, assumed to be unrelated to the whole information set dated t or earlier. More 

explicitly, the specification of models (11) and (13) circumvents the potential pitfall of 

 
12 As clearly shown in Figure A4.2 of Appendix A4. 
13 The detailed description of our three measures of noise is in Appendix A3.  
14 Detailed results are in Appendix A4. 
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endogenous explanatory forecast revisions due to the omission of the explanatory noise (see 

Coibion and Gorodnichenko (1995), and Easaw and Golinelli (2021)). 

The three columns in Table 1 report different OLS estimates corresponding to the 

alternative noise measures: the aggregate backward noise ˆB
tc , the aggregate forward noise 

ˆ ,F
tc  and the average of forward individual noise tω̂ .  

Table 1 here 

Results, reporting significant “forecast revisions” parameter estimates, clearly reject the FIRE 

expectations, but are not sufficient to support any alternative specific model. The implicit 

estimates of Ĝ  (the constant Kalman gain parameter) are remarkably similar (in the 0.47-0.49 

range).  

The “noise measures” parameter estimates (ϑ̂ ) are at least 10% significant. 

Additionally, the point estimates are also remarkably close to each other and to one. The latter 

finding supports a representation of actual inflation where the core dynamics is highly 

persistent.  

 
III: Inflation Expectations, Imperfect Information and Uncertainty: 

Macroeconomic Uncertainty versus Data Uncertainty: 
 

Having established the importance of measurement errors due to data revisions, in the 

remainder of the paper we outline a theoretical model that considers the impact of uncertainty 

on inattentiveness in the context of the NI model. 

We distinguish between two sources of uncertainty faced by a professional forecaster: 

macroeconomic and data (measurement error) uncertainty. The former pertains to the volatility 

over time of the macroeconomic shocks, while the latter is due to the volatility over time of 

noise component (which comes from data revisions). We have shown in the preceding section 

the significant effect of noise on the professional forecast error. The question now is how its 

variability over time (i.e. data uncertainty, DU) does affect forecasters’ inattentiveness, and 

how does this differ from macroeconomic uncertainty (MU). The model will deliver a new 

non-linear representation of the uncertainty-inattentiveness nexus, while the literature usually 

assumes that parameters driving inattentiveness are constant over time and across individual 

forecasters.  
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Theoretical models focussing on macroeconomic uncertainty and inattentive behaviour 

are scant with contrary views. Moscarini (2004) argues that if macroeconomic shocks become 

more volatile and persistent, the price setting task of the firm becomes informationally more 

demanding and, therefore, firms optimally choose to obtain and to process this information 

only infrequently. On the other hand, Reis (2006) expresses that more volatile shocks lead to 

more frequent updating since inattentiveness is costlier in a world that is rapidly changing. The 

latter view is supported by the empirical outcomes in Coibion and Gorodnichenko (2015) and 

Mitchell and Pearce (2017). Before proceeding with the empirical assessment, the micro-

foundations of professionals’ inflation forecasts based on imperfect information must be 

established.  

In the context of the Kalman filter the a priori forecast error ttt xFx 1−−  embodies the 

effects of the innovations tυ  to the inflation gap which crucially affect the predictability of x: 

the higher the variability of tυ , the higher the variability of the a priori forecast error 

( )2
1 ttt xFxE −−  will be. As far as the a posteriori forecast error t t tx F x−  is concerned, its 

variance ( )2
ttt xFxE −  is minimized by setting an optimal weight G by following three steps.15  

First, the a posteriori forecast error ttt xFx −  can be redefined by substituting t tF x  with 

the average across individuals of equation (4) and by combining it with the average of 

decomposition (1), i.e. with ( ) 1(1 )t t t tx G F xω −+ + − :  

 ttt xFx − = ( )[ ]ttttttt xFxGxFx 11 −− −++− ω = tttt GxFxG ω−−− − ))(1( 1  (15) 

where, tω  is the average across individuals of the measurement noise, see equation (10’). 

Second, given that the covariance between the a priori and a posteriori errors is zero, using 

equation (15) we can rewrite the a posteriori error variance ( )2
ttt xFxE −  as the weighted sum: 

[ ]21 ))(1( tttt GxFxGE ω−−− − = 222
1

2 )()()1( tttt EGxFxEG ω+−− −   (16) 

Third, setting the derivative of the a posteriori error variance with respect to G equal to zero: 

0)(2)()1(2 22
1 =+−−− − tttt GExFxEG ω

 
15 Appendix A5 extends the approach to the general case of r unobservable states and n measurements in matrix 
form (in the present context, r = n = 1). The matrix form is useful to understand the SDM algorithm outlined in 
Section IV and detailed in Appendix A6.  
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2
1( )t t tE x F x−− , and the volatility of the 

measurement error 2( )tE ω , as follows:  

2
1

2 2
1

( )
( ) ( )

t t t

t t t t

E x F xG
E x F x E ω

−

−

−
=

− +
       (17) 

Equation (17) shows that G varies inversely with 2( )tE ω , which is related to the data 

uncertainty (DU), while it varies positively with 2
1( )t t tE x F x−− , which is related to the 

macroeconomic uncertainty (MU). Given that in the three aggregate NI specifications (11)-

(13) the forecast revision effect (depicting information rigidities) is measured by the ratio 

1 G
G
− , we can rearrange the definition (17) as:  

 
2

2
1

( )1
( )

t

t t t

EG
G E x F x

ω

−

−
=

−
       (18) 

When 2( )tE ω  approaches zero (i.e. small data revisions because of low DU) or when 

2
1( )t t tE x F x−−  is high (because of large MU, like during the Great Recession), the forecast 

error approaches the FIRE as 1 G
G
−  tends to zero. Conversely, when 2

1( )t t tE x F x−−  

approaches zero (e.g. during the Great Moderation) or when 2( )tE ω  is large (because data 

releases substantially revise previous vintages), the inattentiveness effect, captured by 1 G
G
− , 

becomes larger, indicating widening discrepancies between actual forecast errors and FIRE 

errors. 

Events such as the Great Moderation and the Great Recession suggest that the volatility 

of the macroeconomic shocks (MU) is time-varying and the same applies to DU (see e.g., the 

stochastic volatility model for inflation in Stock and Watson, 2007). Accordingly, if the 

variances in equations (17) and (18) vary over time, the corresponding Kalman smoother G 

(and the related forecasters’ inattentiveness) will be no longer constant as in Section II, but a 

time series tG  driven by DUt and MUt fluctuations through the non-linear ( )Ψ .  function: 

1 ,t
t t t

t

G MU DU
G

β ψ
− +−  = =  

 
       (19) 

Given that MU represents the variability of general macroeconomic and political shocks 

pertaining to a wide range of variables and events (such as the current pandemic), in the 
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application below we use the Economic and Policy Uncertainty (EPU) measure of Baker et al 

(2016)16. Therefore, we assume that, in uncertain times, forecasters use more of the new 

information and their prediction errors are closer to FIRE. In addition, we measure data 

uncertainty (DU) with the variance of inflation data revisions by extending the alternative 

measures listed in Croushore (2011). 

In the next section, we will approach the nonlinear relationship (19) by using both the 

parsimonious multiplicative interactions model (see Brambor et al., 2005), and the general 

state-dependent framework, that extends the first approach because the non-linear dependency 

of inattentiveness to uncertainty is modelled without the need of any ex ante linearity 

assumption (see Priestely, 1980). 

 

IV: Macroeconomic Uncertainty versus Data Uncertainty:  
Empirical Results  

 

The use of the multiplicative interactions model (MIM) is fairly common in the 

empirical literature when the relationship between inputs (the forecast revisions) and outcomes 

(the forecast errors) varies depending on the state of another variable (the uncertainty). In fact, 

if we assume that in equation (18) the numerator is positively related to DU, and the 

denominator is positively related to MU, the time-varying effect βt of the forecast revisions on 

the forecast error is given by a constant (β) and a linear relationship with DU and MU: 

( )
( ) ( )( )

2

2

11 1 1
1

DU DU tt
t DU t MU t

t MU MU t

DUG DU MU
G MU

σ γ
β β γ γ

σ γ
+−

= = ≈ + −
+

  (20) 

where: 
2

2
DU

MU

σβ
σ

=  is the effect corresponding to the zero-uncertainty case; DUγ  and 0MU ≥γ  are 

parameters measuring the slopes of the linear relationships in equation (20). Therefore, by 

substituting the assumption (20) in model (13), we obtain: 

( )( )[ ]1 |1 1 FIRE
t h t t h DU t MU t t t h t t h t t h tx F x DU MU F x F x c e+ + + − + +− = + − − + +β γ γ ϑ  (21) 

The estimated results are found in Table 2 where the OLS estimates of model (21) are 

in column (1), together with two alternative estimates, where the DU and of MU slopes are 

restricted to zero (respectively in columns 2 and 3). 

 
16 EPU is not only a very broad uncertainty measure largely used in empirical works, but also captures subjective 
(i.e., ex ante, forward looking) components of uncertainty, as recently shown in Bontempi et al. (2021). Details 
about EPU are in Appendix A3. 
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Table 2 here 

Results are clear: the expected sign of parameters is always consistent with priors. 

However, the MU parameter is significant, while the DU parameter is not. The estimate 

outlined in column (2) of the restricted model for the MU slope only (i.e., without the DU 

effect) is close to the unrestricted model in column (1). This is always consistent with 

theoretical a priori, independently from the presence in the model of the interaction with DU. 

This relationship is reported in the right panel of Figure 1, where the downwards slope between 

the actual MU (restricted to lay between 0 and 1, in the x-axis) and the measure of the state-

dependent effect of the forecast revisions on the forecast error clearly emerges. The left panel 

of Figure 1 plots the decreasing pattern of the relationship between forecast revisions and the 

forecast errors. Note that in the final part of the sample it is close to zero  

Figure 1 here 

Following this result, our model predicts that at present, when the MU levels are at their 

historical highs, forecasters should be very close to FIRE prediction errors. 

Alternatively, the empirical analysis can be made by using a general class of non-linear 

time series called State Dependent Models (henceforth SDM), where the coefficients of the 

model are functions of a “state vector”. The principal advantage of SDM is that it allows for a 

general form of non-linearity and can be fitted without any specific prior assumption about the 

form of non-linearity. In this part, we apply the SDM approach to equation (14) to capture the 

effect of uncertainty on inattentiveness in the general non-linear context. It is worth noting that 

in the SDM context we will have the possibility to investigate whether the non-significant role 

played by DU in the MIM above is motivated by the linearity assumption there. To simplify 

the exposition, the state-dependent representation of the aggregate NI model (13) can be 

simplified as follows: 

( )1 1 t,   t t t t t t tY C MU DU Xκ ϕ ψ ε− −= + + +      (22) 

Following the linear specification outlined in equation (13), Y is the forecast error t h t t hx F x+ +−

, X the forecast revision 1t t h t t hF x F x+ − +− , C the noise variable (or, the data revisions tc ), and ε 

is a sequence of independent zero-mean random shocks corresponding to the FIRE errors | .FIRE
t h te +  
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The parameters of the SDM are estimated recursively through an extended Kalman 

filter algorithm.17 The intercept κ  (which is zero if the forecast errors are unbiased) and the 

slope φ (which corresponds to hρ ) are simple time-varying parameters. The state dependent 

parameter ψ, instead, is assumed to be locally a linear function of both the measures of 

uncertainty entering the state vector at time t-1, ( )1 1 1,t t tu MU DU− − −
′= .  

We focus on the estimation of the parameters tκ , tϕ  and 1( )tuψ − , and the estimation 

problem involves the specification of this non-linear dependency. A simple assumption is that 

the state dependent ψ  is a linear function of the state-vector 1 tu − : ( ) (0)
1 1t tu uψ ψ γ− −

′= + , where 

(0)ψ  is constant and ( )1 2γ γ γ ′=  is the "gradient" vector. Although this assumption cannot 

represent all types of non-linear models, it seems reasonable to point out that ψ  can be locally 

represented as a linear function of 1tu − . Regarding the time-varying parameters tκ  and tϕ , we 

simply assume that: (0)
tκ κ=  and (0)

tϕ ϕ= , that is without state-dependency.  

Based on these assumptions, the parameter “updating” equations may be written as: 

( ) ( )1 1

1

1

t t t t

t t

t t

u u uψ ψ ∆ γ

κ κ
ϕ ϕ

+ +

+

+

′= +

=
=

 

where 1t t tu u u∆ −= −  denotes the changes over time of both our uncertainty measures: tMU∆

1t tMU MU −= −  and tDU∆ 1t tDU DU −= − . However, the vector ( )1 2t t tγ γ γ ′=  is unknown 

and thus must be estimated. The strategy is to allow it to evolve as a random walk, i.e., 

1 1t t tγ γ ν+ += + , where 1tν +  is a sequence of independent random shocks such that: 

),0(~1 νν ∑+ Nt . 

The estimation procedure determines in each period t those values of t1γ  and t2γ  which 

minimize the discrepancy between the observed value of 1tY +  and its prediction 1t̂Y +  computed 

by the model fitted at time t. The algorithm is sequential in nature and resembles the recursive 

 
17 We introduce a recursive method - similar to what was originally used by Priestley (1980) - where the estimation 
algorithm is detailed in Appendix A6; see also Priestley and Heravi (1986).. 
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procedure of the Kalman filter algorithm.18 The starting values for the parameters are obtained 

by the OLS method using all the available observations. The recursion starts from the second 

quarter of 1969. In the application of SDM below, we use the same measures of index of data 

revisions used for the previous MIM.  

The time-varying effects of the intercept tκ  (measuring the forecast bias), the noise tϕ  

(measuring those data revisions which are only part of the NI model), and the forecast revisions 

(measuring the degree of inattentiveness) are depicted in Figure 2, and suggest the following 

points. 

Figure 2 here 

Firstly, the point estimates of bias in the left-hand plot are never significantly different from 

zero. Secondly, the point estimates of the effect over time of data revisions in the middle plot 

are significantly different from zero, although accompanied by wide intervals. This outcome is 

again supportive of the NI model in explaining forecasters' behaviour in the non-linear context. 

In addition, the estimates of these noise parameters indicate strong inflation persistence over 

time and are consistent with the unit root process usually found to drive the inflation rate when 

structural breaks are disregarded. Finally, as outlined in the right-hand plot, the rigidity due to 

the forecast revisions is almost always significant. This finding indicates the central role played 

by inattentiveness in explaining the way the professional forecasters update their predictions, 

which always deviate from FIRE. Specifically, inattentiveness seems larger during the 1970s 

and the beginning of 1980s when the joint effect of MU and DU results in Kalman gain G 

estimates around 0.43, with an upper-bound at 0.35, and this is not far from those levels 

experienced during the Great Moderation. It suggests, despite the troubled oil shocks period, 

forecasters did not update their forecast regularly. Conversely, towards the end of the sample, 

during the period of the Great Recession and low data uncertainty results in lower 

inattentiveness. The lower-bound estimates of G are around 0.7. Coincidentally, the outcome 

of Coibion and Gorodnichenko (2015) is supported by the evidence here. 

The most relevant feature of the SDM model (22) is that it allows the effect of ψ̂  on 

the forecast errors to depend on the state of uncertainty. The panels in Figure 3 plot the state-

dependent ψ̂  estimates against MU and DU. 

Figure 3 here 

 
18 Appendix A6 outlines model (21) in state-space form and details the recursions to estimate its parameters 
through the Kalman filter. 
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The visual inspection of these plots is of interest and suggests a non-linear relationship. A key 

feature of the SDM approach is that it operates purely on data without any prior knowledge of 

the underlying functional form. In the model, the pattern of ψ̂ , when both types of uncertainty 

(MU and DU) increase, is monotonic, especially for MU. This supports the theoretical 

predictions outlined in previous section. When MU and DU pass from their respective 5th to 

the 95th centile,19 the fluctuations of ψ̂  imply the following: when MU increases from minimum 

levels to maximum levels, G estimates rise from about 0.45 to about 0.6. A similar min-max 

increase in DU has a slightly lower effect (in absolute value). This effect is clearly non-linear. 

It indicates that the most relevant changes for the inattentiveness effect are when the DU 

fluctuations are below the average. This could explain the low relevance of the DU effect in 

the earlier MIM estimates. 

 

V: Concluding Remarks 
The purpose of the current paper is to investigate the dynamic nature of professionals’ inflation 

forecasts inattentiveness. We outline and empirically investigate a generalized model of 

inattentiveness due to informational rigidity. In doing so, we also introduce a novel theoretical 

model that considers the relationship between inattentiveness and uncertainty and crucially 

distinguishing between macroeconomic and data uncertainty.  

The ensuing empirical investigation uses the Survey of Professional Forecasters. In the 

first instances, we find that ‘noise’ significantly affects forecast errors. This result is robust 

regardless of the definition or measure to capture noise. Subsequently, the paper investigates 

the role of uncertainty in determining professional forecasters’ inattentiveness. We use the EPU 

measure of Baker et al (2016) to represent macroeconomic uncertainty, while we use the 

variance of the noise measure to capture data uncertainty. As predicted by our theoretical 

model, macro and data uncertainty have a distinct effect. Notably, inattentiveness decreases 

with increasing macro uncertainty, and increases with rising data uncertainty.  

Overall, the empirical results – supported by using both multiplicative-interaction and 

state-dependent models – clearly indicate that professional forecasters are depicted by 

inattentiveness which is driven over time by (mainly macroeconomic) uncertainty.  

 
19 To ensure the readability of plots we reported only the 10% trimmed cases of both MU and DU. 
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This outcome predicts that in recent times, when macroeconomic uncertainty is 

peaking, the behaviour of professional forecasters is quite close to the FIRE case. In the context 

of the NI model, this can be interpreted as, in the current pandemic, any update of the statistical 

information is very important (despite consequence of measurement errors). Indeed, it is the 

best predictor of what the current the inflation gap is. In the SI model, the probability of 

forecasters of acquiring no new information is close to zero, as inattentiveness would be more 

costly. 
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Table 1 – Estimates of the forecast error models (11) and (13) (a)  

 (1)  (2)  (3)  

Intercept -0.1003  -01036  -0.1144  

s.e. 0.0727  0.0670  0.0702  

Forecast revisions 1.0523 *** 1.1407 *** 1.0623 *** 

s.e. 0.2683  0.2700  0.1533  

Noise measures (4) 0.7505 * 0.9562 ** 0.8159 ** 

s.e. 0.4250  0.4377  0.4049  

T 205  205  205  

R2 0.2014  0.2111  0.2732  

SER 1.0137  1.0075  0.9695  

(a) OLS estimates in bold and, below, HAC standard errors. Estimation period 1969q1-2020q1.  

(1) Model (13) with aggregate backward noise, ˆB
tc . 

(2) Model (13) with aggregate forward noise, ˆF
tc . 

(3) Model (11) with average forward individual noise, tω̂  and unreported 73q3 impulse dummy. 

(4) Given that the sample variability of the backward noise measure ˆB
tc  in column (1) is about one-

third of the forward ones ˆF
tc and tω̂ , we scaled the latter measures by a factor of 3 for 

comparability. 
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Table 2 – Estimates of the multiplicative interaction model (a) 

 
(1)  (2)  (3)  

Intercept (b) -0.1501  -0.1486  -0.1193  

s.e. 0.1128  0.1120  0.1159  

β  (c) 2.1278 ** 2.3922 ** 0.8764 
** 

s.e. 0.8529  1.0378   
 

MUγ  -1.5738 *** -1.6433 *** -- 
 

s.e. 0.3709  0.3317   
 

DUγ  0.3885  --  1.2629 
 

s.e. 0.9494    1.5425  

ϑ  0.8210 * 0.8155 * 0.7801  

s.e. 0.5000  0.5005  0.5032  

       

T 205  205  205  

R2 0.2224  0.2209  0.2107  

SER 1.0053  1.0038  1.0103  

(a) OLS estimates in bold and, below, HAC standard errors of model (21): 
( )( )[ ]1 |1 1 FIRE

t h t t h DU t MU t t t h t t h t t h tx F x DU MU F x F x c e+ + + − + +− = + + − + +β γ γ ϑ  
where DU variable is restricted to lay in the 0-1 range, while MU is first  
restricted to lay in the 0-1 range and then smoothed using a backward moving  
average of order 4. c is the aggregate backward noise.  
Estimation period 1969q1-2020q1.  

(b) In the theoretical model (21) the intercept should be zero. 

(c) β measures the forecast revisions coefficient in the zero-uncertainty cases,  
i.e., when MU and DU are at their minimum sample values. 
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Fig. 1 - The macro uncertainty-driven effects of forecast revisions on forecast errors over time (left) and across states (right) 
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Figure 2 – SDM estimation results: The pattern of the SDM estimation results over time 
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Appendix A1:  
FIRE inflation forecast and the Noisy Information Model 

The state equation outlining the unobservable inflation gap is 

1t t tξ ρξ υ−= +  

and the measurement equation for the inflation rate is: 

1t m t ty τ ξ ω+= + +  

where 1mτ +  is a deterministic variable and assumed to be known (through the breaking intercept 

inferences about inflation rate) before modelling and forecasting, while tω  is a zero-mean 

stochastic noise affecting inflation. Hence, the unobservable state of inflation is: 

1t t t m tx y ω τ ξ+= − = +  

If tω  is zero, the observable inflation model is 

( ) ( )1 1 1t m t m tx xτ ρ τ υ+ − +− = − +        (A1.1) 

Therefore, from model (A1.1) we can derive the one-step ahead FIRE forecast for actual 

inflation as follows: 

( )1 1 1
FIRE

t t m t mF x xτ ρ τ+ + += + −  

while the ex post realization is: ( )1 1 1 1t m t m tx xτ ρ τ υ+ + + += + − + . Consequently, the one-step ahead 

forecast error is given by the difference: 

1| 1 1 1
FIRE FIRE
t t t t t te x F x υ+ + + += − =  

with one forward iteration more, the two-steps ahead forecast becomes: 

( )2
2 1 1

FIRE
t t m t mF x xτ ρ τ+ + += + −  

and the ex post realization follows:  

( )2
2 1 1 1 2t m t m t tx xτ ρ τ ρυ υ+ + + + += + − + +  

Subsequently, the 2-steps ahead forecast error can be defined as: 

2| 2 2
FIRE FIRE
t t t t te x F x+ + += − = 1 2t tρµ µ+ ++  

This can be further generalized to the h-steps ahead prediction, where the ex post realization 

is:  

( )1 1
1

h
h h j

t h m t m t j
j

x xτ ρ τ ρ υ−
+ + + +

=

= + − +∑       (A1.2) 

and the FIRE forecast is:  
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( )1 1 1
FIRE h h

t t h m t m m tF x xτ ρ τ τ ρ ξ+ + + += + − = +       (A1.3) 

the h-steps ahead forecast error in our context is then defined as: 

|
FIRE FIRE
t h t t h t t he x F x+ + += − =

1

h
h j

t j
j
ρ υ−

+
=
∑       (A1.4) 

Finally, from the FIRE forecast definition (A1.3) we can estimate the long horizon forecast of 

the inflation rate which corresponds to the deterministic component of our model: 

1
FIRE

t t h mhF x τ+ +→∞→          (A1.5) 

It is noteworthy that this long horizon forecast is equivalent to “core inflation” definition, see 

Morley et al (2015) and the literature cited herein. 

We know from (A1.4): |( | ) 0 0FIRE
t h t t kE e I k+ − = ∀ ≥ , that is the FIRE forecast error |

FIRE
t h te +  

is always unrelated with the full information set available in t or earlier. In addition, we note 

that the h-steps ahead FIRE forecast error of the simple the AR (1) model outlined in Coibion 

and Gorodnichenko (2012, 2015) would lead to the same FIRE forecast error as in (A1.4). 

Therefore, by introducing the notion of inflation rate stationarity around a breaking constant – 

denoting core inflation - the one advantage of our derivation is relaxing the unreliable 

assumption (without further qualification) of a stationary inflation rate. Hence, we are 

consistent with the need for forecasters to handle with caution the issue of modelling the 

inflation gap, as already noted by Cogley et al (2010), Nason and Smith (2016), and Morley et 

al (2015). 

Appendix A2:  
Data sources and definition of the forecast error and the forecast revision 

The forecast error, the dependent variable of models (11)-(13) and (14’), is defined as 

3
3

1

N
it t

t
i

F xx
N

+
+

=

−∑ . It is  the difference between the historical inflation rate data 3+tx  (released 

three quarters after the SPF survey date) and the average of the one-year ahead individual SPF 

forecast 3+tit xF , labelled as "nowcast" because in t (the first quarter of the forecast horizon) 

some information about the inflation in the year to be forecast is known. The explanatory 

∑∑
=

+−

=

+ −
N

i

tit
N

i

tit

N
xF

N
xF

1
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1

3  is the revision of the average forecast, the change from t-1 to t 

in the predicted average inflation because of the accrual in t of new information.  
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Data for the historical GDP deflator inflation rate 3tx +  are computed using the 

vintages v of the levels of NIPA GDP deflator Pv. The vintages of interest are those available 

one year later for the same months when the SPF survey was conducted (February, May, 

August and November), i.e., v = t+4, when data for quarter t+3 are released for first time. The 

source of Pv vintages is the Real-Time Data Set for Macroeconomists at the Federal Reserve 

Bank of Philadelphia.20 Given the vintage t+4, we define the historical inflation rate as: 









−×= +

−

+
+

+ 1100 4
1

4
3

3 t
t

t
t

t P
Px . 

Individual nowcast data can be obtained from SPF forecasts of GDP deflator levels 

as:21 







−×=+ 1

1
51003

it

it
tit PGDP

PGDPxF . From the same survey in t, it is also possible to compute 

the "pure" forecast, 4+tit xF (i.e., the one-year ahead prediction from t, the survey date) as: 









−×=+ 1

2
61004

it

it
tit PGDP

PGDPxF .  If we subtract the pure forecast published in the survey of the 

previous quarter (in t-1) from the nowcast in t, we obtain the forecast revision from t-1 to t, i.e., 

the first explanatory variable of the NI model: 

 







−×=−

−

−
+−+

1

1
313 2

6
1
5100

it

it

it

it
tittit PGDP

PGDP
PGDP
PGDPxFxF . 

Appendix A3:  
Data sources and definition of alternative noise and uncertainty measures 

Measures of the individual noise itω  (the main “additional” explanatory variable of the NI 

model specification) can be proxied using information from the process of data revisions. At 

the survey date t, deflator levels in t-1 of the vintage t (labelled as t
tP 1−

) are the latest available 

information of the ith forecaster which are reported as itPGDP1  in the survey. The two figures 

can be different but, when 011 =−− it
t

t PGDPP , the forecaster starts the prediction from the latest 

published figures. While a discrepancy would suggest alternative behaviours: either the 

forecaster information set is not fully updated, or (in the opposite direction) the forecaster 

 
20 The first available monthly vintage is that of 1965m11. For further information and data downloads, see the 
website: https://www.phil.frb.org/research-and-data/real-time-center/real-time-data 
21 The definitions in this section are labelled as in the SPF survey. For details, see the Table 3 of the SPF 
documentation available at the SPF link (see the main text). 
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estimates the present situation differently than the statistical agency does. However, this 

potential discrepancy is not the only source of noise in t, as it is well known that statistical 

agencies make a number of data revisions after the first release to ensure a better measure of 

inflation. In our context, we define the "final" (better) measure of the GDP deflator the one 

which is in the denominator of the inflation rate 3+tx , i.e., the deflator level for t-1 available 

in vintage t+4, 4
1
+
−
t

tP . Therefore, the individual noise in t can be estimated as: 









−×=

+
− 1

1
100ˆ

4
1

it

t
t

it PGDP
Pω , the percent deviation of the "final" deflator measure for t-1 from 

its perceived value by the forecaster at the survey date t, when the forecast is made. As it is a 

comparison between levels belonging to different vintages (as 4
1
+
−
t

tP  belongs to vintage t+4 and 

itPGDP1  to vintage t), the percent deviation above must be adjusted to account for changes in 

deflator's base years. This adjustment is accomplished for the four quarters between vintage t 

and vintage t+4 when the change in the base year occurs.22 In the light of the definition above, 

the ˆitω  average across individuals, 
1

ˆ ˆ
N

it
t

i N
ω ω

=

= =∑
4

1

1

100 1
1

tN
t

i it

P
N PGDP

+
−

=

 
− 

 
∑ , can be used as the 

measure of the aggregate of noise in model (11). We label this first measure as “average 

forward individual noise”. 

A second estimate of the aggregate measure of noise does not use individual survey 

information but only data revisions of NIPA deflator vintages: 







−×=

−

+
− 1100ˆ

1

4
1

t
t

t
tF

t P
Pc . We 

label this second measure as “aggregate forward noise”. With respect to the average forward 

individual noise tω̂ , this alternative aggregate forward noise ˆF
tc  ignores PGDP1 information 

of the SPF survey, as if the individual idiosyncratic components would vanish in averaging 

itω̂ , as we assume in model (13).23  

Although both tω̂  and ˆF
tc  estimates are forward looking (as they exploit t+4 vintage 

information made available only after the survey date t), they should not be related with the 

FIRE error FIRE
tte |3+  because the latter embodies the unforecastable macroeconomic shocks 

 
22 The adjustment of itω̂  is equal to the ratio between the average level of the old base deflator in the new base 
year and 100 (i.e., the average level of the new base deflator in the new base year). 

23 Also, in this case, we must adjust F
tĉ  data by using the same ratios as those above for itω̂ . 
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occurring over the forecast horizon (from t to t+3). The information exploited in estimating tω̂  

and ˆF
tc  embodies either future noise-reduction revisions of the first released inflation in t-1 

or the future inclusion of news about inflation data in t-1.  

However, given the paramount importance of a significant hρ  coefficient significance 

to distinguish between NI and SI models, we also estimate the time series of the aggregate 

noise tc  with a purely backward-looking measure. It exploits only the information in those 

vintages available up to the survey date t. In doing so, we assume that tc  is related to the mean 

of the past inflation revisions corresponding to the four most recent quarters of the data vintage 

t, in symbols: ∑
=

−
−−

−
−−

−−

−−











−=

4

1 5

1

5

1

4
100ˆ

j
jt

jt

jt
jt

t
jt

t
jtB

t P
P

P
P

c , where inflation revisions are in brackets, the 

vintage is in the superscript and the calendar date in the subscript. We label this third measure 

as “aggregate backward noise”, and again it refers to the noise in model (13). 

If we compare the formulas of the three forward- and backward-looking estimators 

described above, ˆB
tc  is a mean of four backward revisions of inflation. The two alternative 

forward estimates tω̂  and ˆF
tc focuses only one (forward) revision of the level of prices. 

Therefore, the NI model ϑ  estimates coming from the alternative noise measures tω̂ , ˆF
tc  and 

ˆB
tc  cannot be compared as the variances of tω̂ , ˆF

tc  and ˆB
tc  are structurally different. tω̂  and 

ˆF
tc  are “one-revision” series that come from a distribution whose variability is higher than 

that of the mean-revision ˆB
tc . The latter is smoothed by averaging over four quarters (see also 

Figure A4.2). Therefore, to make comparable the estimates of ϑ  using tω̂  and ˆF
tc  with the 

one using ˆB
tc  we must increase them by a factor equal to the ratio of the sample standard 

deviation of ˆB
tc  to that of tω̂  and ˆF

tc  (very close each other).24  

In our sample, the backward ˆB
tc tω̂  and ˆF

tc

 
24 In addition, as it arises prices revisions rather than inflation revisions, the hρ  estimate with tω̂  and F

tĉ

should also be divided by a factor equal to ( )*1 x+ , where *x  can be proxied by the steady state inflation. 
However, such adjustment is irrelevant for our estimates as they are historically between the range of 1.10-1.01. 
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ϑ tω̂  and ˆF
tc  by a factor of 3 or, equivalently, to divide the levels of tω̂  and 

ˆF
tc  by the same amount.  

Regarding the unobservable uncertainty series, in this paper we need proxy measures 

for two distinct uncertainties: the macroeconomic and the data uncertainty.  

In the case of data uncertainty (DU), we use the information coming from three 

estimates. The first one (DU1) is the variability of the professionals’ information set coming 

from SPF individual data. The second one (DU2) comes from : the GARCH error component 

of the univariate ARMA representation of the classical revision error, i.e. of the difference 

between the “final”25 and the first release of the GDP inflation (measured by the growth rate 

of GDP deflator from t-4 to t). The third one (DU3) is the average of the squared past inflation 

revisions for the four most recent quarters. These three variability measures are both forward- 

and backward-looking.26 Figure A3.1 reports the normalized time pattern of the three estimates 

of DU. In general, it emerges the tendency of data uncertainty to go down over time. 

Figure A3.1 here 

In the case of the macroeconomic uncertainty (MU), we used the economic and policy 

uncertainty index of Baker et al (2016).27 This indicator is news-based (uncertainty is 

quantified by the number of times that newspapers report specific terms related with uncertain 

moods regarding economy and policy events).28 Figure A3.2 depicts the normalized pattern of 

BBD. 

Figure A3.2 here 

  

 
25 In the context of GDP inflation, the final data released for t are those reported eight quarters after their first 
release. 
26 In using them, we lag the forward-looking measures eight quarters to ensure its availability at the time in which 
the forecast is made. The first measure (DU1) is what we use in the text, but unreported results show the robustness 
of the estimates using the three alternatives. 
27 Regularly updated statistical information for the economic and policy uncertainty index can be downloaded 
from the web site: http://www.policyuncertainty.com/ 
28 For a comparison of the statistical properties of alternative measures of economic uncertainty, see Bontempi et 
al, (2021). 
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Appendix A4:  
Preliminary evidence about the variables of interest 

Figures A4.1 and A4.2 depict the time pattern of the forecast errors and the forecast revisions 

described in Appendix A2, and of the alternative measures of noise described in Appendix A3. 

Figures A4.1 and A4.2 here 

In addition to suggesting stationary patterns, the forecast errors and revisions series depicted 

in Figure A4.1 also show a declining variability over time (from the noisy 1970s to the Great 

Moderation period), that continues to stay low over the Great Recession, at the end of the 

sample period. 

The forward noise estimates (aggregate ˆF
tc  and average of individual data tω̂ ) 

outlined in Figure A4.2 are very similar each other. They only differ in the outlying 1971q3 

and 1973q3 surveys. In addition, as anticipated in the discussion in Appendix A3, the 

fluctuations (in red) of the backward noise ˆB
tc  are evidently smaller than those of the forward 

measures. 

The outcomes of the unit root test of Elliott et al (1996) are reported in Table A4.1 and 

corroborate the diagnosis of stationarity also emerging from the visual inspection of the 

historical patterns. In fact, for all the variables of interest, the test statistics are always at least 

5% significant. 

Table A4.1 here 

 

Appendix A5: 
The general specification of the state space equation 

Using the Kalman approach, the general specification of the state space equation for r 

unobservable states in matrix form is: 

-1t t t= +x F x u         (A5.1) 

where x is a r×1 vector of states containing the terms of interest for the system, u is a r×1 white 

noise vector of shocks drawn from a zero-mean multivariate normal distribution with r×r 

covariance matrix ( )t tE u u′  = Q; F is the r×r matrix of state transition parameters. 

Measurements of the system are represented by the observation equation: 

t t t= +y H x ω         (A5.2) 

where y is a n×1 vector of measurements, ω is a n×1 white noise vector of measurement errors 

drawn from a zero-mean multivariate normal distribution with n×n covariance matrix ( )t tE ωω′  
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= R; H is the n×r transformation matrix that maps the state vector x into the measurement y 

domain. 

The a posteriori forecast |ˆ t tx  of the unobservable current state is equal to the a priori 

forecast | 1ˆ t t−x  from the previous period of the current state, plus an updating term that depends 

on innovations in the measurement equation: 

( )| | 1 | 1ˆ ˆ ˆt t t t t t t− −= + −x x G y H x       

 (A5.3) 

The updating is driven by the r×n matrix G of the Kalman gain that minimizes the r×r 

covariance matrix of the a posteriori forecast errors, ( )( )| | |ˆ ˆt t t t t t t tE  ′= − −  
P x x x x . We start 

with the definition of |t tP  and substituting (15) for |ˆ t tx  and (16) for ty  to obtain:  

( )( )
( )( )

( ) ( )

| | 1 | 1

| 1 | 1

| 1

ˆ ˆ

ˆ ˆ

t t t t t t t t

t t t t t t t

t t

var

var

− −

− −

−

 = − + − 
 = − + + − 

′ ′= − − +

P x x G y H x

x x G H x ω H x

I G H P I G H G R G

    (A5.4) 

where ( )( )| 1 | 1 | 1ˆ ˆt t t t t t t tE− − −
 ′= − −  

P x x x x  is the r×r covariance matrix of the a priori forecast 

errors, and ωΣ . 

The optimal Kalman gain G, is derived by solving the FOC | 0t t∂
=

∂
P
G

, as follows: 

( ) 1

| 1 | 1t t t t

−

− −′ ′= +G P H H P H R       (A5.5) 

It is evident from the definition (A5.5) that, although we have n measurements, the optimal 

vector of the Kalman gain consists of r parameters (that is, the number of states).  

 

 

Appendix A6: 
The State Dependent Model in state space form 

The SDM model (19) can be rewritten in a state-space form by outlining the observation and 

the state equations. The observation equation is  

 tttt HY εθ +=         (A6.1) 
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where the state-vector tθ  is the model’s vector of parameters that measures the respective 

effect of all the explanatory variables outlined in vector tH  on the forecast error tY . Finally, 

tε  is a sequence of independent zero-mean random error terms corresponding to the FIRE 

error, |
FIRE
t h te + . The state equation is: 

 tttt WF += −− 11θθ         (A6.2) 

where 1tF −  is the transition matrix, and the vector tW  embodies tν , which is a sequence of 

independent random shocks: ),0(~ νν ∑Nt . 

 We incorporate the observation and the state equations into a single component in 

model (A5.5) and represent the observation (measurement) equation (A6.1) as follows:  

 ( ) 1

1

2

1 0 0

t

t

tt t t t

t

t

Y C X

κ
ϕ
ψ ε
γ
γ

−

 
 
 
 = +
 
 
 
 

 

 

and the state (transition) equation (A6.2) as: 

 

 1 1

1

1

1 2

11 1 1

22 2 1

01 0 0 0 0
00 1 0 0 0
00 0 1

0 0 0 1 0
0 0 0 0 1

t t

t t

t t

t t

tt t

tt t

MU DU
v

∆ ∆

κ κ
ϕ ϕ
ψ ψ
γ γ

νγ γ

− −

−

−

− −

−

−

      
      
      
      = +
      
      

            

 

 

 Applying the Kalman algorithm directly to equations (A6.1) and (A6.2) we obtain the 

recursion equations: 

( )1 1 1 1
ˆ ˆ ˆ
t t t t t t t tF K Y H Fθ θ θ− − − −

 = + −        (A6.3) 

The recursion equation (A6.3), tK  is the Kalman gain vector given by: 

2
t t t eK HΦ σ −′=  

where tΦ  is the variance-covariance matrix of the one-step prediction error of tθ , that is:  
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( )( )1 1 1 1
ˆ ˆ

t t t t t t tE F FΦ θ θ θ θ− − − −

 ′= − − 
 

 

and, given that the one-step ahead prediction error of tY  is defined as: 

( )1 1 1 1
ˆ ˆ

t t t t t t t t t te Y H F H Fθ θ θ ε− − − −= − = − +  

its variance 2
eσ  can be stated as: 

 2 2
e t t tH H εσ Φ σ′= + . 

 If denotes tQ  the variance-covariance matrix of ( )ˆ
t tθ θ− , successive values of t̂θ  may 

be estimated by using the standard recursive equations of the Kalman Filter: 

( ) 1
2

t t t t t tK H H H εΦ Φ σ
−′ ′= +  

1 1 1t t t t WF Q FΦ Σ− − −
′= +  

( )2
t t t t t t tQ K H H KεΦ Φ σ′ ′= − +  

where: 0 0
0W

ν

Σ
Σ

 
=  
 

 

In practice, this recursive procedure must start with some value of t=t0 and, hence, 

initial values are required for 
0 1t̂θ −  and 

0 1
ˆ

tR − . Assuming that equation (19) represents a locally 

linear model, we apply the OLS estimation procedure in order to find the initial values of κ̂ , 

ϕ̂ , ψ̂  and of model residuals' variance 2ˆεσ . Therefore, we can start the recursion at to by setting 

the initial vector as ( )
0 1

ˆ ˆ ˆ ˆ 0 0tθ κ ϕ ψ−
′=  and the initial matrix as 

0 1
ˆ

tR − = , ,
ˆ 0

0 0
Rκ ϕ ψ

 
 
 

, 

where , ,R̂κ ϕ ψ  is the estimated variance-covariance matrix of κ̂ , ϕ̂  and ψ̂  obtained from the 

initial OLS model fitting. It also seems reasonable to set all the initial gradients to zero if the 

initial values are reasonably accurate at to. 

Given that reasonable values are also required for νΣ

1tν + , we note that the choice of νΣ  will drive the “smoothness” of the parameters. 

Hence, in the present case, the diagonal elements of νΣ  are set equal to 2ˆεσ  multiplied by some 
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constant α  called the “smoothing factor”, and the off-diagonal elements are set equal to zero.29 

In this paper, we follow Haggan et al. (1984), who suggest a smoothing factor in the range of 

10-1 to 10-3.30 
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29 In doing so, we must bear in mind if the elements of νΣ  are set too large the estimated parameters become 

unstable. But if the elements of νΣ  are made too small it is difficult to detect the non-linearity present in the data.  

30 Alternatively, parameters could have been smoothed by a multi-dimensional form of the non-parametric 
function fitting technique, see for example Priestley and Chao (1972).  
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Table A4.1 - Elliott-Rothenberg-Stock DF-GLS test statistic 

FORERR (forecast error)   -2.203604** 

Lag Length: 0 

FORREV has a unit root (forecast revision) -3.724952*** 

Lag Length: 5  

OMEGA_PGDP (aggregate forward noise, F
tĉ ) -4.395977*** 

Lag Length: 0  

OMEGA_IT (average forward individual noise, tω̂ ) -2.890573*** 

Lag Length: 5  

RE4AVG (aggregate backward noise, B
tĉ ) -5.180261*** 

Lag Length: 0  

     
Deterministic component: only the constant   

Automatic Lag Length, based on Modified AIC 

Test critical values: 1% level   -2.576753 

 5% level   -1.942448 

 10% level   -1.615628 

*** and ** respectively denotes 5% and 1% significance 
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 Fig. A3.1 – The measure of the data uncertainty, DU 
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Fig. A3.2 – The macroeconomic uncertainty MU of Baker et al. (2016) 
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Fig. A4.1 – The dependent forecast error and explanatory forecast revision 
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Fig. A4.2 – The alternative measures of forecast noise 
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