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Abstract

This paper proposes an Exponential HEAVY (EHEAVY) model. The model specifies

the dynamics of returns and realized measures of volatility in an exponential form, which

guarantees the positivity of volatility without restrictions on parameters and naturally allows

the asymmetric effects. It provides a more flexible modelling of the volatility than the

HEAVY models. A joint quasi-maximum likelihood estimation and closed form multi-step

ahead forecasting is derived. The model is applied to 31 assets extracted from the Oxford-

Man Institute’s realized library. The empirical results show that the dynamic of return

volatility is driven by the realized measure, while the asymmetric effect is captured by the

return shock (not by the realized return shock). Hence, both return and realized measure

are included in the return volatility equation. Out-of-sample forecast and portfolio exercise

further shows the superior forecasting performance of the EHEAVY model, in both statistical

and economic sense.

Keywords: HEAVY model, High-frequency data, Asymmetric effects, Realized vari-

ance, Portfolio
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1 Introduction

Modelling and forecasting the return volatility has many implications in asset pricing, port-

folio selection and risk management practices. Several studies have introduced non-parametric

estimators of realized volatility using intra-day data (Andersen et al., 2001; Barndorff-Nielsen

and Shephard, 2002; Barndorff-Nielsen et al., 2008, 2009) and voluminous empirical evidence

on modelling and forecasting the realized measure of volatility is developed, for example, the

ARFIMA model in the original or logarithmic form (see Andersen et al., 2003; Chiriac and

Voev, 2011; Koopman et al., 2005; Asai et al., 2012; Allen et al., 2014) and the Heterogeneous

Autoregressive (HAR-RV) model by Corsi (2009).

Recently, the intra-daily estimators of volatility - known as realized measures — have been

used to improve the volatility of return models. One of the popular models is the so-called “High-

rEquency-bAsed VolatilitY”(HEAVY) model, initially proposed by Shephard and Sheppard

(2010). The two-equation system, the HEAVY-r and the HEAVY-RM, which jointly estimates

conditional variances of return and the realized measures of volatility based on daily and intra-

daily data. The HEAVY model adopts to information arrival more rapidly than the classic daily

GARCH process and hence it provides more reliable forecasts. Various extensions of HEAVE

models have been developed. Hansen et al. (2012) introduced the Realized GARCH model

that corresponds most closely to the HEAVY framework. The realized GARCH model is based

on measurement equations that tie the realized measure to the latent conditional variance of

return. An exponential type of realized GARCH model is developed by Hansen and Huang

(2016). Cipollini et al. (2013) refer to the HEAVY model by simply restricting the bivariate

vector multiplicative error representation for squared returns and realized variance. Borovkova

and Mahakena (2015) apply the HEAVY models with different error distributions (student-t and

skewed-t). They also extend the HEAVY-r equation with a news sentiment proxy and a time to

maturity variable alternatively. Keranasos and Yfanti (2020) enrich the HEAVY with the long

memory features and asymmetric effects. Yfanti et al. (2020) add a range based Garman–Klass

volatility into the HEAVY framework. The multivariate specification of HEAVY model is also

developed by Noureldin et al. (2012) and extended by Opschoor et al. (2017), Creal et al.

(2013), Sheppard and Xu (2019) and Bauwen and Xu (2021).

The HEAVY models proposed so far are linear models. To guarantee the positivity of
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volatility, the parameters in HEAVY-r and HEAVY-RM equations are constrained to be positive,

which is too restrictive. In addition, the asymmetric effect, in which the variances respond

asymmetrically to positive and negative shocks, is not well addressed. In the HEAVY models,

the past shock can either be represented by return shock, or by realized return shock. It is

unclear which one should be used for the asymmetric effects. In the HEAVY model of Shephard

and Sheppard (2010), the dynamics of volatility is only driven by lagged realized measure. It

is straightforward to use lagged realized measures to capture the asymmetric effect. However,

in the Realized GARCH model of Hansen et al. (2012, 2016),the asymmetric effects in both

the return and realized measure equation are captured by the return shocks. In Keranasos and

Yfanti (2020)’s ”double asymmetric effects” HEAVY model, both return shocks and realized

measures are used in modelling the asymmetric effects.

In this paper, we extend the HEAVY model to an EHEAVY model, in which both the

return and realized measure equation takes an exponential form. The EHEAVY maintains the

advantages of the EGARCH model. The conditional variance of return and realized measure

is guaranteed to be positive without restrictions on the parameter set. In addition, both types

of asymmetric effects are included as additional exogenous variables. Within the EHEAVY

framework, we empirically study the asymmetric effects, without any positivity restrictions on

the parameters. In our full EHEAVY model, we have both types of asymmetric. We estimate

the EHEAVY model of 31 stocks from the Oxford man institution of realized lib. Indeed, we find

that both two types of asymmetric effect are significant if only one is included. However, if both

are included, only the standardized return is significant, while the standardized realized return

is insignificant. The log-likelihood and BIC comparison confirm the finding. This indicates

that the asymmetric effects in the conditional variance of return equation are captured by

the return shock, not the realized return shock. Interestingly, this finding also holds for the

realized measure of volatility. That is, the asymmetric effect in realized measure equation is

also captured by return shock, not the realized measure.1

We then conduct an out-of-sample forecasts exercise and compare the EHEAVY model

with HEAVY, asymmetric HEAVY (AHEAVY) of Shephard and Sheppard (2010) and Realized

EGARCH model of Hansen and Huang (2016) at the daily, weekly and monthly horizon. The

1For a robustness check, we also estimate an extended Asymmetric HEAVY (AHEAVY) model of Shepard
and Shepperd (2010). Similar results hold. That is, the asymmetric effect in the return and realized measure
equation is captured by return shock, not the realized measure. The results are available upon request.
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results suggest that EHEAVY model outperforms the benchmark HEAVY, AHEAVY model

when forecasting the conditional variance of return and realized measure. It has a similar per-

formance with Realized EGARCH model when forecasting the conditional variance of return.

But it performs better than the realized EGARCH model when forecasting the realized mea-

sure. The super forecasting performance is further illustrated in a portfolio exercise, where the

EHEAVY strategy results in a portfolio with higher Certain Equivalent Return and Sharpe’s

Ratio. The empirical evidence indicates the gain of using the EHEAVY model, in both statistical

and economic sense.

It is notable that our EHEAVY model is closely related to the realized EGARCH model of

Hansen and Huang (2016), but it differs with Hansen and Huang (2016) with several aspects.

First, we adopt an EGARCH specification and the absolute standardized return is excluded in

the return equation, which implies that the informative absolute return about future volatility

is small. In the EGARCH model of Hansen and Huang (2016), the absolute standardized

return 2 is included. Secondly, Hansen and Huang use a measurement equation, where the

log of realized volatility is a function of conditional volatility of return in the same period.

In our model, we adopt a HEAVY-RM type of structure, where realized volatility is a lagged

function of return. The empirical results suggest that our model produces better out-of-sample

forecasts of realized volatility than the realized EGARCH model. Third, we derive a joint Quasi

maximum likelihood estimation approach for the EHEAVY model and a closed form multi-step

ahead forecasts procedure.

The remainder of the paper is organized as follows. Section 2 introduces the EHEAVY

models. Section 3 proposes Quasi maximum likelihood estimation and the multi-step ahead

forecasts procedure. Section 4 is the empirical application. Section 5 concludes. A supplemen-

tary appendix (SA) includes additional empirical results.

2 The Exponential HEAVY Models

The benchmark HEAVY specification of Shephard and Sheppard (2010) use two variables:

daily financial returns (rt) and a corresponding sequence of daily realized measures of volatility,

RMt. Realised measures are theoretically high-frequency, nonparametric-based estimators of

2Hansen and Huang use a squared standardized return. Actually, the effect between the absolute and squared
standardized return is rather close. We adopt the absolute standardized return in line with the EGARCH model.
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the variation of open-to-close returns. We form the signed square rooted realized measures as

follows: R̃Mt =sign(rt)
√
RMt, where the sign(rt) = 1, if rt > 0 and sign(rt) = −1, if rt < 0.

R̃Mt is also known as realized return. Then, the return and realized measure are characterized

by the following relation:

r2
t = htεrt

RMt = mtεRt

or
rt =

√
htert

R̃Mt =
√
mteRt

(1)

The first representation is multiplicative error specification, where the stochastic term εit

(i = r,R) is independent and identically distributed, which is positively defined and has a unit

mean. This implies that E(r2
t |Ft−1) = ht. The second representation is a GARCH type model,

where eit is independent and identically distributed, which has zero mean and unit variance.

This implies that Var(rt |Ft−1 ) = ht. In other words, the GARCH model for the conditional

variance of the returns (or the realized returns), is similar to the multiplicative error model

(MEM)3 for the conditional mean of the squared returns (or the realized measures).

We firstly present the full EHEAVY model, which consists of the following two equations:

log ht = ωr + βr log ht−1 + αrr|ert−1|+ γrrert−1 (2)

+αrR|eRt−1|+ γrReRt−1,

logmt = ωR + βR logmt−1 + αRR|eRt−1|+ γRReRt−1

+αRr|ert−1|+ γrRert−1.

where corr(ert, eRt) = ρ.

The first equation is the EHEAVY-r equation and the second equation is EHEAVY-RM

equation. In the EHEAVY-r equation, the parameter βr summarizes the persistence of volatility,

whereas αrR represents how informative the realized measures are about future volatility of

return. The asymmetric effect is represented by γrrert−1 and γrReRt−1. In the EHEAVY-RM

equation, the parameter βR summarizes the persistence of realized measure volatility and the

asymmetric effect is represented by γRrert−1 and γRReRt−1. EHEAVY model is stationary if

βr < 1 and βR < 1. One advantage of the EHEAVY versus HEAVY model is that the positivity

3Engle (2002) first proposed the MEM model using the various GARCH family specifications to estimate the
volatility, which is a non-negative process.
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of variance is guaranteed without any restrictions on the parameter set.

In the empirical applications, we find that αrr and γrR are often insignificant in EHEAVY-r

equation, and αRr and γRR are insignificant in EHEAVY-RM equation. Take the EURO50

index close-to-close return for example, the estimated full EHEAVY model is given by

log ht = −0.193
(0.028)

+ 0.970
(0.003)

log ht−1 + 0.001
(0.018)

|ert−1| − 0.151
(0.017)

ert−1

+0.305
(0.042)

|eRt−1| − 0.005
(0.018)

eRt−1

logmt = −0.225
(0.002)

+ 0.967
(0.004)

logmt−1 + 0.002
(0.020)

|ert−1| − 0.146
(0.017)

ert−1

+0.339
(0.047)

|eRt−1| − 0.012
(0.019)

eRt−1

with ρ = 0.841
(0.003)

, The numbers in parentheses are the robust standard errors for each of the

point estimates. More details of estimation are shown in the empirical application Section 4.

Excluding the insignificant terms, we have the chosen EHEAVY model.

The chosen EHEAVY model is

log ht = ωr + βr log ht−1 + αrR|eRt−1|+ γrrert−1,

logmt = ωR + βR logmt−1 + αRR|eRt−1|+ γrRert−1 (3)

Without a further illustration, the EHAVY model thereafter is the chosen model defined in

(3). It is notable that the realized EGARCH model of Hansen and Huang (2016) also includes

αrr|ert−1| in the HEAVY-r equation4. Their representation is more like an EGARCH-X model,

where both αrr|ert−1| and αrR|eRt−1| are included. Consistent with the evidence in HEAVY, we

found that the estimated αrr is very small or insignificant, which implies that the informative

the absolute (or squared) return about future volatility is small. In the EHEAVY model, only

αrr|ert−1| is excluded. The EHEAVY-r equation has the same number of parameters as the

EGARCH model.

The EHEAVY-RM equation is closer to the HEAVY-RM of Shepard and Shepperd (2010)

with the exponential representation. Shepard and Shepperd (2010) suggested an asymmetric

HEAVY model, where the asymmetric effect is captured by the binary lagged realized measure

in the HEAVY-r and HEAVY-RM equation. Our empirical evidence shows that the asymmetric

4Hansen and Huang (2016) use a quadratic form αrr(ert−1)2
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effects are mostly captured by the return shock, not the realized measure. So, the EHEAVY

model includes γrrert−1 and γrRert−1 terms to capture the asymmetric effects. This is the main

feature of the EHEAVY model. The asymmetric effects in both return and realized measure

equation is modelled by the return shock, not by the realized return shock.

The multiple-step ahead forecasts from the EHEAVY model only relies on the HEAVY-r

equation. The information from realized measures is not required. Hence, even if the dynamics

of realized measure is misspecified, the effect to the conditional variances of the return is small.

Shepard and Shepperd (2010) find that the HEAVY model performs not as good as the GARCH

model for multi-step ahead (e.g., 22 step ahead) forecasts, which is also confirmed by Bauwens

and Xu (2021). The EHEAVY model is expected to have better multi-step ahead forecasts than

the HEAVY model.

To better understand the dynamics, we express the EHEAVY models in a vector form. Define

xt = [r2
t , RMt]

′, x̃t = [rt, R̃Mt]
′, µt = [ht,mt]

′ and et = [ert, eRt]
′, the vector multiplicative

representation of EHEAVY model is

x̃t =
√
µt � et, et|Ft−1 ∼ D(0, P ) (4)

logµt = ω +B logµt−1 +Aet−1 + Γ|et−1|

where et are a sequence of independent and identically distributed variables with mean 0 and

time-invariant positive definite covariance matrix P with ones on the main diagonal so that

E(xt|Ft−1) = µt, and

ω=

 ωr
ωR

 , A=

0 αrR

0 αRR

 , Γ=

 γrr 0

γRr 0

 , B=

βr
βR

 . (5)

It is notable that if

A=

 αrr αrR
αRr αRR

 , Γ=

 γrr γrR
γRr γRR

 , (6)

(4) becomes the full EHEAVY model defines in (2). If

A=

αrr 0

0 αRR

 , Γ=

γrr 0

0 γRR

 , (7)
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the top part of (4) becomes the EGARCH model.

3 Estimation and Forecasting

This section presents a quasi-maximum likelihood estimation approach and a multi-step

ahead forecasting procedure.

3.1 Quasi-maximum Likelihood Estimation (QMLE)

The parameters in return and realized measure equation are not variation free in the

EHEAVY models, hence a joint estimation method is required. Below we derive a Quasi-

maximum likelihood estimation approach.

The vector representation of the EHEAVY model is

x̃t =
√
µt � et, et|Ft−1 ∼ D(0, P ) (8)

logµt = ω +B logµt−1 +Aet−1 + Γ|et−1|.

More general, let x̃t as k−dimension process and let θ′ = [θ′1, θ
′
2], where θ′1 = vech(P ), operator

vech stacks the lower triangular elements of an symmetric (k × k) matrix into a k × (k +

1)/2 vector and θ′2 contains the parameters in µt. Assuming et follows a multivariate normal

distribution et|Ft−1 ∼ N(0, P ), the likelihood function is equivalent to the one in the Constant

Conditional Correlation (CCC)-GARCH model (Bollerslev,1990; Jeantheau,1998). The log-

likelihood function for the observation t is given by

lt(θ) = −k
2

log(2π)− 1

2
log |MtPMt| −

1

2
x̃t
′ (MtPMt)

−1 x̃t

= −k
2

log(2π)− log |Mt| −
1

2
log |P | − 1

2
x̃t
′M−1

t P−1M−1
t x̃t (9)

where Mt = diag(
√
µ1t,
√
µ2t, ...,

√
µkt).

Let l(θ) =
∑T

t=1 lt(θ), the QMLE for θ̂ equals

θ̂ = arg max
θ
l(θ)

Explicit expressions for the score vector and the Hessian matrix of the log-likelihood function
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can be derived following the CCC-GARCH literature; see Nakatani and Teräsvirta (2009) lemma

3.1 and 3.2 for example.

The detailed asymptotic distribution theory is not yet available. The asymptotic analysis of

the EHEAVY model is similarly complicated as EGARCH model 5, so it is beyond the scope of

this article to fully establish the asymptotic theory for the estimators. We leave this for future

research.

3.2 Multi-Step Ahead Forecasts

The HEAVY and EHEAVY model can be used to predict both the conditional variance of

return and the realized measure of volatility. The latter has been the subject of very active

literature (see, for example, Andersen et al., 2001, 2003 ; Corsi, 2009 ; Bollerslev et al., 2016;

Taylor, 2017).

Suppose the forecaster models xt and obtains s-step-ahead forecasts given by the conditional

mean of xt; that is E(xt+s|Ft), where Ft is the forecaster’s information set. Let µt+s|t =

E(xt+s|Ft). Now let’s move steps ahead, xt+s, s > 0 is not known and needs to be substituted

with its corresponding conditional expectation µt+s. The multi-step ahead forecasts of the

EHEAVY model are not straightforward, as the conditional expectation of log function is not

equal to the log function of the conditional expectation. To do so, we denote φt = log(µt) and

φt+1|t = ω +Bφt + Γet +A|et|,

φt+2|t = ω +Aē+Bφt+1|t

= ω̄ +Bφt+1|t, (10)

where ē = E(|et|) and ω̄ = ω + Aē. If et is symmetric normally distributed, E(|et|) =
√

2/π.

More wisely, E(|et|) can be estimated by the unconditional mean of |et|

And then, for s > 2,

φt+s|t = ω̄ +Bφt+s−1|t, (11)

5The consistency and asymptotic properties θ̂ for the multivariate EGARCH or EHEAVY model are not
available under general conditions (see for example, Nakatani and Teräsvirta, 2009 and Francq et al., 2013). A
limitation in the development of the asymptotic properties for the (multivariate) EGARCH is the lack of an
invertibility condition (See Wintenberger, 2013 and Martinet and McAleer, 2018 for a discussion). More recently,
Xu and Keranosas (2021) shows that the QML estimates of multivariate EGARCH model are unbiased and
normal distributed, when the sample size is relatively large (i.e., sample size ≥ 2500) by Monte Carlo simulation.
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which can be solved recursively for any horizon s. A closed form forecasts for φt+s|t can also be

derived as:

φt+s|t = ω̃ +Bs−1φt+1|t (12)

where ω̃ = (1−Bs−1)ω̄
1−B .

We then derive a formula for µt+s|t = E(xt+s|Ft). With the log specification one would have

to account for distributional aspects of log(µt+s|t) in order to produce an unbiased forecast of

µt+s|t. Using the second-order approximation 6

µt+s|t ≈ exp(φt+s|t)(1 +
σ2
φ,t+s|t

2
) (13)

where σ2
φ,t+s|t is is the s-step-ahead conditional second moment φt+s|t. The conditional second

moments are estimated using their unconditional sample counterparts.

The EHEAVY model s-step ahead forecasts µt+s|t are derived by setting A,B,Γ to the

matrices defines in (5). Then, the s-step ahead forecast of the conditional variance of return

(ht+s|t) corresponds to the first element of µt+s|t and the s-step ahead forecast of the realized

measure of volatility (mt+s|t) corresponds to the second element of µt+s|t.

4 Estimation Application

4.1 Data

We use daily data for 31 assets extracted from the Oxford-Man Institute’s (OMI) realized

library. Our sample covers the period from 03/01/2000 to 31/5/2021. The OMI’s realized

library includes daily stock market returns and several realized volatility measures calculated

on high-frequency data from the Reuters DataScope Tick History database. The data are

first cleaned and then used in the realized measures calculations. According to the library’s

documentation, the data cleaning consists of deleting records outside the time interval that

the stock exchange is open. Some minor manual changes are also needed, when results are

ineligible due to the rebasing of indices. The library’s realized measures are calculated in the

6The full approximation is given by exp
(
φt+s|t

) (
1 +

∑∞
k=1

1
k!
φk,t+s|t

)
where φk,t+s|t is is the s-step-ahead

kth conditional moment about the conditional mean. See Taylor (2017) for the details of a full approximation.
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way described in Shephard and Sheppard (2010). We adopt the realized kernel as the realized

measure, using Parzen kernal function. This estimator is similar to the well-known realized

variance, but is robust to market microstructure noise and is a more accurate estimator of the

quadratic variation. The realized kernel is calculated as follows: RKt =
∑H

k=−H k(h/(H+1))γh,

where k(x) is the Parzen kernel function with γh =
∑n

j=|h|+1 xjtxj−|h|,t; xjt = Xtj,t −Xtj−1,t are

the 5-minute intra-daily returns where Xtj,t are the intra-daily prices and tj,t are the times of

trades on the t-th day. Shephard and Sheppard (2010) declare that they select the bandwidth

of H as in Barndorff-Nielsen et al. (2009).

The realized measure is directly related to the volatility of open-to-close returns, but only

captures a fraction of the volatility of close-to-close returns. In the estimation, we’ll use both

open-to-close returns and close-to-close returns.

Table 1 presents the 31 assets extracted from the database and provides volatility estimations

for each one’s squared returns and realized kernels time series for the respective sample period.

We calculate the mean and standard deviation (StDev) of the annualized volatility. Annualized

volatility is the square root of 252 times the squared return or the realized kernel. The mean

figures show that the assets have the annualized volatilities of the realized measure between 9%

and 30%, with the corresponding results for the squared close-to-close returns between 14% and

40%. On average, the realized measure is about 63% of squared return. The realized kernel

missed out on the overnight return, which accounts for their lower level. On the other hand side,

the annualized volatility of open-to-close return is similar to the annualized volatility of realized

measure. It is typically a little higher than the realized measure, but the difference is very

small. The StDev figures show much higher standard deviations for the squared return than

the realized measure. The standard deviations of squared close-to-close return are usually twice

as higher as the standard deviations of realized measure. The squared open-to-close returns also

have much higher standard deviation than the realized measure. It turns out that the realized

measure is a more stable measurement of volatility than the squared returns.

4.2 Estimation results

We estimate the EHEAVY model using both the open-to-close returns and close-to-close

returns. First, we compare the performance of the EHEAVY model with the EGARCH and the
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full EHEAVY model. We also estimate an alternative EHEAVY (AEHEAVY) model, where

the asymmetric is only from the realized return shock (see (21) in Appendix B for the model

specification). The estimated parameters are summarized in table 2. Results based on open-to-

close returns are presented in the left panel and the analogous results for close-to-close returns

are presented in the right panel. The detailed estimates for each of the assets are presented in

Appendix A table A2 and A3.

Based on open-to-close returns estimation, the empirical results are summarized as follows.

• The EGARCH estimates are as expected. The persistence parameter β is higher and close

to one. The leverage parameter γ is negative and significant.

• In the full EHEAVY model, the estimated αrr is significant 13 out of 31 cases. The size

is small, with a median value of 0.02 ranging from -0.032 to 0.142. The estimated αrR

is significant in all 31 cases, with the median value of 0.366 ranging from 0.211 to 0.602.

The size of αrR is much large than that of αrr, which is consistent with the findings in

the HEAVY literature. It shows that the future volatility of return is mainly driven by

the information from the realized measure.

• The estimated γrr is relatively large and significant in 28 out of 31 cases. The estimated

γrR is significant only in 4 out of 31 cases with a much smaller size. It indicates that the

leverage effects in the return variance equation are mainly driven by the return shock, not

by the realized return shock.

• The estimated αRr is small and only significant in 15 out of 31 cases. The estimated αRR

is large and significant in all 31 cases, which is consistent with HEAVY literature. The

estimated γrr is relatively large and significant in 27 out of 31 cases. The estimated γRR

is small and significant only in 5 out of 31 cases. It shows that the leverage effect in the

realized measure equation is also driven by the return shock, not by the realized measure.

• In the EHEAVY model, all coefficients are significant in almost all 31 cases. In particular,

the coefficients for asymmetric effect γrr and γRr are negative and significant, showing

that the asymmetric effect is a common stylized fact in volatility modelling.

• In the alternative EHEAVY model, we use the realized measure only to capture asym-

metric effects. Interestingly, γRr and γRR are also negative and significant. The size of

12



γRr and γRR are marginally smaller than γrr and γRr in the EHEAVY model. If we only

estimated the alternative EHEAVY model, we may mis-conclude that the asymmetric

effect can be modelled by the realized return shock.

• The estimates of ρ is about 0.8 and very similar across the assets, showing a high corre-

lation between return and realized return. This is evidence of joint estimation of return

and realized measure, as proposed in section 3.

The analogous results for close-to-close returns are similar. To summarize the main findings,

negative news increase volatility more than positive news. However, the size of the increments

is measured by previous periods’ return shocks, not by the previous period’s realized return

shock. This is true for both conditional variance of return and realized volatility modelling.7

Further insight can be gained from the in-sample partial log-likelihood value and Bayesian

information criteria (BIC). To have a measure of fit that can be compared with conventional

EGARCH and HEAVY model, we follow Hansen et al., (2012) and define the partial log-

likelihood function for the time series of returns

`P (r; θ) = −1

2

T∑
t=1

[
log(2π) + log (ht) + (r2

t /ht
]

(14)

This quantity is the Kullback–Leibler measure associated with the conditional distribution of

returns.

We define the partial log-likelihood function for the time series of realized measure

`P (RM ; θ) = −1

2

T∑
t=1

[log(2π) + log (mt) + (rmt/mt] (15)

The comparison is reported in table 3. The full EHEAVY model has the highest log-

likelihood values. However, The log-likelihood gain of full EHEAVY over EHEAVY is equal to

17 for the 4 additional parameters, hence it appears to be minor. On the contrary, the gains of

full EHEAVY and EHEAVY over EGARCH are substantial (131 and 124 respectively). Further,

the EHEAVY model has a much higher log-likelihood value than the alternative EHEAVY

model, and the log-likelihood gain is 44 which shows that the EHEVY model has a better fits to

7It also raises an interesting question about realized volatility modelling and forecasting (i.e., ARFIMA or
HAR model). When leverage effect is considered, whether the lagged absolute (or squared) return, or lagged
realized measure should be included in the model. We leave this question for future research.
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the data than the alternative EHEAVY model. In addition, there are 19 out of 31 cases where

full EHEAVY has the highest log-likelihood values, and 11 out of 31 cases where EHEAVY

has the highest log-likelihood values. When comparing the BIC criteria, EHEAVY has the

smallest value among all three models. There are 21 out of 31 cases, where the EHEAVY model

achieves the best BIC criteria. Notice that EGARCH, EHEAVY and alternative EHEAVY are

not nested, but they have the same number of parameters, so choosing between them using

their log-likelihood values is equivalent to a choice based on model choice criteria.

In brief, the EHEAVY model strongly dominates the conventional EGARCH models that

rely exclusively on daily returns, and the alternative EHEAVY model that uses realized measure

for asymmetric effect. These results are consistent with the findings in table 2, suggesting that

the return volatility dynamic is mainly captured by the lagged realized measure and leverage

effects is better modelled by the return shock.

4.3 News impact curve

Additional insight about the value of the EHEAVY structure is evident from the news

impact curve. This curve was introduced by Engle and Ng (1993), and is used to illustrate the

impact that return shocks has on volatility. News impact curve is the impact that ert has on

ht+1 measured in percentages, as defined by E (log ht+1 | ert = er)− E (log ht+1)). We plot the

impact curve of the EHEAVY model and the EGARCH, Realized EGARCH model. As the

return shocks are contemporaneously correlated with realized return shocks, one unit return

shocks will also incur ρ̂ unit realized return shock. The news impact curve for EHEAVY model

is given by αrR|eRt−1| + γrrert−1 = ραrR|ert−1| + γrrert−1. For the EGARCH and realized

EGARCH model, the news impact curve is simply given by αrr|ert−1|+ γrrert−1.

Taking EURO50 close-to-close return for example, the news impact curve of EGARCH,

realized EGARCH and EHEAVY model is plotted in Figure 1. As is evident from Figure 1, the

generalized structure of the EHEAVY model has more a profound effect on the news impact

curve than the EGARCH and realized EGARCH model. The news impact curve of realized

EGARCH model is very close to that of the EGARCH model, and it does not show an increasing

news impact curve when news is positive. The EHEAVY model allows good news and bad news

to have a different impact on volatility. It allows big news to have a greater impact on volatility
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than the EGARCH and realized EGARCH model in both directions.

Figure 2 gives another example: SPX close-to-close return news impact curve. Again, the

HEAVY model has the highest variation in both directions among the three completion models.

It allows big news to have a much greater impact on volatility than the other models.

4.4 Out of sample forecasting comparison

Next, we conduct an out-of-sample forecasting comparison. In this application, we consider

forecasting volatility of close-to-close return only, which is more appropriate for most applica-

tions in portfolio allocation or risk management.

The EHEAVY model is compared with the following three models: 1) benchmark HEAVY

model; 2) the asymmetric HEAVY model of Shepard and Shepperd (2010); 3) the realized

EGARCH of Hansen and Huang (2016).8 The out-of-sample period comprises the last 1000

observations of the full-sample period for each asset. The four models are re-estimated every

observation based on an rolling sample windows of sample size T −1000. As shown in Appendix

table A1, the full sample size is around T = 5000 for most of the assets. That leaves the

estimated sample around 4000 observations. We report s = 1, 5 and 22 for horizons of 1-day,

5-day and 22-days ahead out-of-sample forecasts.

We use the following two loss functions for the volatility of the close-to-close return

MSE(r2
t+s, ht+s|t) =

T∑
t=T−1000+s

(r2
t+s − ht+s|t)2

QMLIK(r2
t+s, ht+s|t) =

T∑
t=T−1000+s

(
r2
t+s

ht+s|t
− log

(
r2
t+s

ht+s

)
− 1

)
.

And the corresponding loss functions for the realized measure of volatility are

MSE(RMt+s,mt+s|t) =
T∑

t=T−1000+s

(RMt+s −mt+s|t)
2

QMLIK(RMt+s,mt+s|t) =

T∑
t=T−1000+s

(
RMt+s

mt+s|t
− log

(
RMt+s

mt+s

)
− 1

)
.

Table 4 shows the comparisons of the out-of-sample forecasts by reporting the ratio of the

8See appendix B for the specification of the two models.
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losses for the different models relative to the losses of the benchmark HEAVY model. The

average ratios across the 31 assets are reported. The upper panel is the forecasting of the

conditional variance of return. It can be seen that the average losses between EHEAVY and

realized EGARCH model are very close, and both are smaller than the average losses of the two

HEAVY models at all forecasting horizons. This is not surprising, as the specification of the

return equation between the EHEAVY and realized EGARCH are very close. The asymmetric

HEAVY model is slightly better than the HEAVY model. The lower panel is the forecasting of

the realized measure of volatility. The EHEAVY model has the smallest losses among the four

competition models at the three forecasting horizons. Apparently, the EHEAVY model has a

better forecasting of realized measures of volatility than the HEAVY and realized EGARCH

model. The realized EGARCH model is the second best model.

In order to formally determine whether the quality of the forecasts differ significantly across

the different models, we apply the Model Confidence Set (MCS) of Hansen, Lunde, and Nason

(2011). This approach identifies the (sub)set of models that contain the best forecasting model

with 90% confidence. For each of the two loss functions and three forecast horizon we determine

the subset of models that comprise the MCS.

Table 5 summarizes the MCS of the out-of-sample forecasts by reporting the numbers of

the asset in which each model is part of the 90% MCS. For the conditional variance of return,

EHEAVY and realized EGARCH model belong to the 90% MCS of both MSE and QLIK loss

at the forecasting horizons in almost all assets. There are only a few number of assets that the

HEAVY model is in the 90% MCS of QML loss. The asymmetric HEAVY model has slightly

larger numbers than the HEAVY model. For the realized measure of volatility, the EHEAVY

model is always in the 90% MCS of MSE loss. HEAVY, asymmetric HEAVY and realized

EGARCH model are mostly in the 90% MCS of MSE loss. However, when the QLIK loss

function is used, only EHEAVY model is in the 90% MCS. Realized EGARCH model is in the

90% MCS in a few assets. HEAVY and asymmetric HEAVY model are not in the 90% MCS of

QLIK in almost most all assets at the three horizons.

To summarize, the MCS test suggests that the EHEAVY model performs similarly well

with the REGARC model when forecasting the conditional variance of return. However, the

EHEAVY model outperforms the realized EGARCH and other HEAVY models when forecasting
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the realized measure of volatility throughout the forecast horizons.

4.5 Portfolio exercise

Compared with the statistical gains of volatility predictability, market investors care more

about economic significance. Specifically, they are interested in how well these volatility fore-

casts do in asset allocation. To evaluate the economic value of volatility forecasts, we consider a

mean–variance utility investor who allocates the assets between stock index and risk-free asset

following the literature (see, e.g., g Campbell and Thompson, 2008; Ferreira and Santa-Clara,

2011; Neely et al., 2014; Rapach et al., 2010,Wang, et al., 2016). The utility from investing in

this portfolio is:

Ut (rt) = Et (wtrt + rt.f )− 1

2
γVart (wtrt + rt,f ) (16)

where wt is the weight of stock in this portfolio, rt is the stock return in excess of risk-free

rate, rt,f is the risk-free rate and c is the risk aversion coefficient. Et(.) and V art(.) denote

conditional mean and variance given information at time t. Maximizing Ut(rt) respect to wt

yield the ex-ante optimal weight of stock index at day t+ 1

w∗t =
1

γ

(
r̂t+1

σ̂2
t+1

)
(17)

where r̂t+1 and σ̂2
t+1 are the mean and volatility forecasts of asset excess returns, respectively.

We follow the literature by restricting the optimal weight between 0 and 1.5 (i.e., 0 < w∗t <= 1.5)

to preclude short sales and preventing more than 50% leverage (Rapach et al., 2010; Neely et

al., 2014).

In this way, the portfolio return at day t+ h is given by:

Rt+h = w∗t rt+h + rt+h,f (18)

We employ two popular criteria to evaluate the performance of a portfolio constructed based

on return and volatility forecasts. The first is the Sharpe ratio:

SRt+h =
µ̄p,t+h
σ̄p,t+h

(19)
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where µ̄p,t+h and σ̄p,t+h are the mean and standard deviation of portfolio excess returns over the

out-of-sample period, respectively. The second criterion for evaluating portfolio performance is

the certainty equivalent return (CER):

CERp,t+h = µ̂p,t+h −
γ

2
σ̂2
p,t+h (20)

where µ̂p,t+h and σ̂2
p,t+h are the mean and variance of portfolio returns over the out-of-sample

period, respectively.

We use value 6 for γ 9. For the risk-free rate rt+1,f , we use the 3-month Treasury bill rate.

Actually, the daily risk-free rate is rather close to zero. For the mean forecasts, we use the

popular historical average(HA) forecasts. HA is generally accepted as the benchmark model in

forecasting stock return (see, e.g., Rapach et al., 2010; Neely et al., 2014). Goyal and Welch

(2008) find that it is difficult to beat this benchmark in forecasting stock returns out-of-sample.

In this way, the optimal weights of the stock index are only determined by the volatility forecasts

because different strategies share the same mean forecasts of returns when γ is fixed.

Table 6 shows the Return, Sharpe ratio and CER of portfolios formed by the conditional

variance of return forecasts by the four models. We report the average (Mean), minimum (Min),

maximum (Max) of Return, Sharpe ratio and CER across the 31 assets. From the Mean, we

find that the EHEAVY strategy results in the portfolio with the Return of about 8%, the

Sharpe ratios of about 58% and the CER about 105% higher than the HEAVY strategy. The

asymmetric HEAVY and realized GARCH portfolio has a Return, Sharpe Ratio and CER of

that are close to the HEAVY portfolio. The Min and Max columns show similar results to the

Mean column. Overall, the portfolio exercise shows the greater performances of EHEAVY in

the economic sense. In indicates that the EHEAVY model can improve the economic value of

volatility forecasts significantly.

5 Conclusions

This paper proposes an EHEAVY model. It extends the HEAVY model of Shephard and

Sheppard (2010) in several ways. First, the EHEAVY model guarantees the positivity of vari-

9We also check the values of 3, and 9 for γ, the results in table 6 does not change significantly
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ance without restrictions on the parameter set, hence it is more flexible. Second, the asymmetric

effects, which is an important feature for volatility modelling, are included. Third, a joint quasi-

maximum likelihood estimation and closed form multi-step ahead forecast procedure is derived.

The empirical results show that the dynamic of return volatility is driven by the realized mea-

sure. Further, the asymmetric effects in both HEAVY-r and HEAVY-RM equation are from

the return shock, not from the realized measure. The Out-of-sample forecasting comparison

shows that the EHEAVY model forecasts the conditional volatility of return and realized mea-

sure volatility better than the competition models. This result is also confirmed by a portfolio

exercise, implying the greater performances of EHEAVY in both statistical and economic sense.

The EHEAVY model has a simple structure, a straightforward estimation and inference

procedure. Thus, empirical researchers and practitioners can readily use the model to forecast

volatility. For future research, the EHEAVY model can be extended by adding other real-

ized measures, additional exogenous variables, jump components in return or realized measure

equations.
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[28] Francq, C., Wintenberger, O., and Zaköıan, J.-M. 2013. GARCH models without positivity

constraints: Exponential or Log GARCH? Journal of econometrics, 177(1), 34-46.

[29] Gallo, G.M., Otranto, E., 2015. Forecasting realized volatility with changing average levels.

International Journal of Forecasting 31(3), 620-634.

21



[30] Glosten, L.R., Jagannathan R., Runkle, D.E., 1993. On the relation between the expected

value and the volatility of the nominal excess return on stocks. The Journal of Finance

48(5), 1779-1801.

[31] Hamilton, J.D., 1994. Time Series Analysis. Princeton University Press, Princeton, NJ.

[32] Hansen, P. R. and Huang, Z., 2016. Exponential GARCH modeling with realized measures

of volatility. Journal of Business & Economic Statistics 34(2): 269-287.

[33] Hansen, P.R., Huang, Z., Shek, H., 2012. Realized GARCH: A joint model for returns and

realized measures of volatility. Journal of Applied Econometrics 27, 877-906.

[34] Hansen, P.R., Lunde, A., 2006. Realized variance and market microstructure noise (with

discussion). Journal of Business and Economic Statistics 24, 127-218.

[35] Hansen, P. R., Lunde, A. and Nason, J.M., 2011. The model confidence set. Econometrica,

79, 453-497.

[36] Karanasos, M., Yfanti, S. and Christopoulos, A., 2020. The long memory HEAVY process:

modeling and forecasting financial volatility. Annals of Operations Research, pp.1-20.

[37] Lanne, M., 2006. A mixture multiplicative error model for realized volatility. Journal of

Financial Econometrics 4, 594-616.

[38] Martinet, G. G., and McAleer, M., 2018. On the Invertibility of EGARCH (p, q). Econo-

metric Reviews, 37(8), 824-849.
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Table 1 – Data descriptive statistics

r2
t,oc r2

t,cc rkt
Symbol Mean StDev Mean StDev Mean StDev

Symbol Mean StDev Mean StDev Mean StDev
AEX 19.14 58.66 30.20 90.48 18.94 41.00
AORD 11.37 33.18 14.18 40.78 11.43 33.62
BFX 16.91 53.84 24.97 82.66 15.56 33.11
BSESN 26.52 73.62 34.11 113.67 21.74 55.93
BVLG 10.33 27.44 20.37 63.63 9.61 18.94
BVSP 32.46 84.07 52.22 154.24 30.25 59.08
DJI 19.23 62.21 22.57 87.40 17.04 40.12
FCHI 20.99 55.16 31.85 89.56 21.01 40.85
FTMIB 21.79 66.42 39.34 140.98 18.84 28.39
FTSE 21.33 64.90 21.73 65.81 20.27 51.21
GDAXI 24.64 66.65 33.99 98.28 24.44 48.37
GSPTSE 15.27 59.91 17.63 76.25 12.04 42.55
HSI 17.00 60.45 33.57 104.67 15.53 32.19
IBEX 23.02 65.02 33.73 101.83 23.17 41.90
IXIC 27.46 84.76 40.05 118.11 23.86 57.06
KS11 20.55 62.85 34.64 106.81 17.60 33.17
KSE 24.59 58.84 29.44 73.34 19.17 33.58
MXX 23.59 64.79 25.83 70.04 17.69 32.61
N225 19.72 71.59 35.04 100.69 17.60 49.25
NSEI 22.07 70.98 33.46 115.24 18.65 52.81
OMXC20 21.14 63.40 26.12 74.09 19.12 48.68
OMXHPI 21.90 61.17 28.30 77.33 20.08 44.57
OMXSPI 21.60 67.17 27.65 85.35 19.03 53.95
OSEAX 27.16 77.85 30.13 89.10 21.63 60.62
RUT 23.10 68.98 38.58 117.01 18.65 45.35
SMSI 22.77 69.16 32.52 107.83 21.71 47.22
SPX 19.90 64.16 24.46 86.94 16.68 40.08
SSEC 30.76 74.33 37.52 99.60 26.41 43.12
SSMI 14.76 52.42 21.43 68.79 13.74 35.12
STI 10.50 24.38 18.40 78.33 9.05 15.51
STOXX50E 26.55 75.92 32.56 90.84 25.59 57.26

Average 21.23 62.72 29.89 92.57 18.91 42.49
This table provides descriptive statistics for the dataset of 31 assets. Columns 2-3 report the
corresponding time-series averages (Mean) and standard deviations (StDev) of the squared
open-to-close returns (r2

t,oc). Columns 4-5 report the corresponding Mean and StDev of the
squared close-to-close returns (r2

t,cc). Columns 6-7 report the corresponding Mean and StDev
of the realized kernel (rkt).
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Table 2 – EHEAVY models estimated parameters

Penal A: EGARCH model estimation results
Open-Close Returns Close-Close Returns

Min Med Max No Sig. Min Med Max No Sig.
wr -0.111 -0.059 -0.022 28 -0.087 -0.043 0.005 24
αrr 0.118 0.160 0.227 31 0.103 0.158 0.214 31
βr 0.960 0.978 0.988 31 0.956 0.976 0.985 31
γrr -0.143 -0.09 -0.023 31 -0.152 -0.106 -0.025 31

Penal B: Full EHEAVY model (2) estimation results
Open-Close Returns Close-Close Returns

Min Med Max No Sig. Min Med Max No Sig.
wr -0.414 -0.273 -0.115 30 -0.468 -0.316 -0.038 30
αrr -0.032 0.021 0.142 13 -0.013 0.044 0.205 23
αrR 0.221 0.366 0.602 31 0.051 0.195 0.619 30
βr 0.919 0.965 0.980 31 0.939 0.949 0.998 31
γrr -0.158 -0.106 0.001 28 -0.169 -0.138 -0.013 29
γrR -0.072 0.009 0.059 4 -0.068 -0.028 0.087 2

wR -0.441 -0.305 -0.158 31 -0.515 -0.376 -0.162 31
αrR -0.018 0.040 0.201 15 -0.011 0.026 0.220 20
αRR 0.232 0.389 0.573 31 0.231 0.315 0.640 31
βR 0.888 0.959 0.978 31 0.920 0.946 0.998 31
γRr -0.160 -0.107 -0.009 27 -0.175 -0.134 -0.031 30
γRR -0.067 0.010 0.084 5 -0.031 -0.015 0.091 1
ρ 0.819 0.845 0.890 31 0.780 0.816 0.888 31

Penal C: EHEAVY model (3) estimation results
Open-Close Returns Close-Close Returns

wr -0.432 -0.282 -0.158 31 -0.478 -0.268 -0.104 31
αrR 0.275 0.406 0.588 31 0.277 0.394 0.675 31
βr 0.921 0.966 0.983 31 0.935 0.967 0.990 30
γrr -0.150 -0.093 -0.023 30 -0.154 -0.108 -0.052 31

wR -0.504 -0.327 -0.204 31 -0.523 -0.305 -0.186 31
αRR 0.301 0.448 0.696 31 0.298 0.430 0.685 31
βR 0.887 0.962 0.981 31 0.919 0.962 0.989 31
γRr -0.149 -0.093 -0.026 30 -0.146 -0.105 -0.033 31
ρ 0.818 0.845 0.890 31 0.773 0.815 0.886 31

Penal D: Alternative EHEAVY model (21) estimation results
Open-Close Returns Close-Close Returns

wr -0.455 -0.329 -0.171 31 -0.566 -0.329 -0.113 31
αrR 0.292 0.437 0.613 31 0.289 0.433 0.704 31
βr 0.927 0.967 0.982 31 0.932 0.967 0.986 31
γrR -0.133 -0.077 -0.008 28 -0.142 -0.092 -0.020 30

wR -0.525 -0.360 -0.224 31 -0.585 -0.351 -0.207 31
αRR 0.319 0.481 0.720 31 0.320 0.471 0.698 31
βR 0.894 0.963 0.980 31 0.916 0.967 0.985 31
γRR -0.125 -0.073 -0.014 29 -0.127 -0.085 0.008 30
ρ 0.818 0.845 0.890 31 0.771 0.815 0.887 31
Minimum (Min), median (Med), and maximum (Max) are the summary statistics of the es-
timates for the 31 assets. All estimates are provided the supplementary appendix. No Sig.
denotes the numbers of significance for the corresponding parameters. The total number of
assets is 31. In the alternative EHEAVY model, the asymmetric effect is modelled by realized
return shock only.
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Table 3 – In sample statistics comparison

Close-Close Returns Open-Close Returns
LL BIC LL BIC

Mean No. Mean No. Mean No. Mean No.
EGARCH -19352 1 38738 1 -17834 0 35701 0
FEHEAVY -19221 19 38494 8 -17672 20 35394 6
EHEAVY -19238 10 38510 21 -17674 10 35381 24
AEHEAVY -19282 1 38596 1 -17696 1 35426 1

LL denotes partial log-likelihood value defined in (14) and (15). BIC denotes the Bayesian
information criteria. No. is numbers of assets whereby each model achieves the smallest
criteria. The total number of assets is 31. FEHEAVY is the full EHEAVY model defined in
(3). AEHEAVY is the alternative EHEAVY model defined in (21), where the asymmetric effect
is modelled by realized return shock only.

Table 4 – Out of sample forecasts

Conditional Variance of Returns

s=1 s=5 s=22
(Average) MSE QLIK MSE QLIK MSE QLIK
HEAVY 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AHEAVY 0.9651 0.8811 0.9916 0.9813 1.0003 0.9857
REGARCH 0.9440 0.8249 0.9635 0.9288 0.9620 0.9182
EHEAVY 0.9486 0.8266 0.9660 0.9359 0.9630 0.9118

Realized Measures of Volatility

s=1 s=5 s=22
(Average) MSE QLIK MSE QLIK MSE QLIK
HEAVY 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AHEAVY 0.8983 0.9009 0.9915 0.9429 1.0142 0.9866
REGARCH 0.7642 0.6364 0.9145 0.8931 0.9450 0.9432
EHEAVY 0.7230 0.5878 0.8984 0.8049 0.9244 0.8658
This table reports the ratio of the losses for the different models relative to the losses of the
benchmark HEAVY model. The average ratios across the 31 assets are reported. AHEAVY
denotes the asymmetric HEAVY model. REGARCH denotes the realized GARCH model.
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Table 5 – Out of sample forecasts - MCS test

Conditional Variance of Returns

s=1 s=5 s=22
MSC MSE QLIK MSE QLIK MSE QLIK
HEAVY 31 2 30 10 28 5
AHEAVY 30 8 31 13 26 11
REGARCH 31 29 31 30 31 25
EHEAVY 31 28 31 30 31 27

Realized Measures of Volatility

s=1 s=5 s=22
MSE QLIK MSE QLIK MSE QLIK

HEAVY 29 0 30 7 28 0
AHEAVY 27 1 31 11 29 0
REGARCH 30 12 31 15 30 1
EHEAVY 31 30 31 31 31 31

This table reports the numbers whereby each model is part of the 90% model confidence
set. The total number of assets is 31. AHEAVY denotes the asymmetric HEAVY model.
REGARCH denotes the realized GARCH model.

Table 6 – Performances of portfolios formed by volatility forecasts

Mean Min Max
R SR CER R SR CER R SR CER

HEAVY 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AHEAVY 0.997 0.978 1.030 0.989 0.928 0.637 1.006 1.054 2.063
RGARCH 1.011 1.102 1.009 0.976 0.909 0.631 1.052 1.396 1.369
EHEAVY 1.081 1.579 2.052 1.058 1.160 1.853 1.109 1.800 2.883
This table shows the performances of portfolios formed by the different volatility forecasts. It
gives the mean excess return (R), Sharpe ratio and certainty equivalent return (CER) of each
portfolio. The ratios of the performance for the different models relative to the that of HEAVY
model are calculated. The Mean, Minimum (Min), Maximum (Max) of the ratios across the
31 assets are reported in the table.
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Figure 1 – News impact curve for the EGARCH, Realized EGARCH and EHEAVY model: EURO50
close-to-close return.
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Figure 2 – News impact curve for the EGARCH, EHEAVY and Realized EGARCH model: SPX close-
to-close return
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Supplementary Appendix: Additional Tables

Table A1: Symbol Names

Symbol Name Start Date Obs.(T )
.AEX AEX January 03, 2000 5473
.AORD All Ordinaries January 04, 2000 5422
.BFX Bell 20 January 03, 2000 5471
.BSESN S&P BSE Sensex January 03, 2000 5322
.BVLG PSI All-Share October 15, 2012 2207
.BVSP BVSP BOVESPA January 03, 2000 5282
.DJI Dow Jones Industrials January 03, 2000 5380
.FCHI CAC 40 January 03, 2000 5475
.FTMIB FTSE MIB June 01, 2009 3056
.FTSE FTSE 100 January 04, 2000 5414
.GDAXI DAX January 03, 2000 5440
.GSPTSE S&P/TSX Composite May 02, 2002 4786
.HSI HANG SENG January 03, 2000 5258
.IBEX IBEX 35 January 03, 2000 5440
.IXIC Nasdaq 100 January 03, 2000 5384
.KS11 Korea Composite January 04, 2000 5283
.KSE Karachi SE 100 January 03, 2000 5229
.MXX IPC Mexico January 03, 2000 5384
.N225 Nikkei 225 February 02, 2000 5219
.NSEI NIFTY 50 January 03, 2000 5313
.OMXC20 OMX Copenhagen 20 October 03, 2005 3902
.OMXHPI OMX Helsinki All Share October 03, 2005 3943
.OMXSPI OMX Stockholm All Share October 03, 2005 3943
.OSEAX Oslo Exchange All-share September 03, 2001 4931
.RUT Russel 2000 January 03, 2000 5381
.SMSI Madrid General July 04, 2005 4069
.SPX S&P 500 January 03, 2000 5383
.SSEC Shanghai Composite January 04, 2000 5184
.SSMI Swiss Stock Market January 04, 2000 5377
.STI Straits Times January 03, 2000 3439
.STOXX50E EURO STOXX 50 January 03, 2000 5472

This table provides descriptive statistics for the dataset of 31 assets. The sample ending date
is June 24, 2021. Column 2 show the asset names. Column 3 show the sample starting date.
Column 4 is in the number of observations (or the sample size T ) of the asset.
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Table A2: EHEAVY models Estimated parameters: Open-Close Returns

HEAVY-r: Stock Returns HEAVY-RM: Realized Measure
Symbol w αRR βR γRr LL w αRR βR γRr ρ LL
AEX -0.287 0.378 0.971 -0.120 -18627 -0.310 0.412 0.967 -0.120 0.833 -18636
AORD -0.187 0.275 0.970 -0.104 -16490 -0.208 0.301 0.968 -0.110 0.890 -16233
BFX -0.323 0.432 0.964 -0.107 -18377 -0.337 0.445 0.964 -0.101 0.837 -17974
BSESN -0.422 0.588 0.952 -0.064 -20360 -0.504 0.696 0.941 -0.059 0.841 -19099
BVLG -0.407 0.497 0.970 -0.064 -6636 -0.424 0.519 0.967 -0.064 0.845 -6511
BVSP -0.236 0.384 0.962 -0.071 -22071 -0.294 0.473 0.953 -0.080 0.864 -21470
DJI -0.328 0.463 0.957 -0.146 -18132 -0.329 0.462 0.956 -0.137 0.833 -17603
FCHI -0.245 0.352 0.967 -0.115 -19767 -0.248 0.360 0.966 -0.112 0.838 -19774
FTMIB -0.358 0.516 0.951 -0.115 -11535 -0.354 0.501 0.952 -0.111 0.818 -11081
FTSE -0.300 0.405 0.969 -0.093 -19310 -0.341 0.456 0.966 -0.081 0.836 -19093
GDAXI -0.234 0.326 0.972 -0.109 -20444 -0.252 0.346 0.971 -0.114 0.828 -20174
GSPTSE -0.260 0.337 0.975 -0.096 -14759 -0.264 0.344 0.972 -0.108 0.859 -13711
HSI -0.244 0.338 0.971 -0.023 -18324 -0.299 0.420 0.961 -0.025 0.846 -17965
IBEX -0.312 0.411 0.971 -0.088 -20435 -0.339 0.448 0.969 -0.083 0.831 -20496
IXIC -0.327 0.447 0.965 -0.109 -20077 -0.362 0.488 0.962 -0.110 0.836 -19240
KS11 -0.326 0.393 0.983 -0.047 -18679 -0.341 0.412 0.981 -0.049 0.846 -18044
KSE -0.158 0.424 0.921 -0.066 -20175 -0.212 0.560 0.887 -0.063 0.866 -18901
MXX -0.252 0.410 0.955 -0.078 -20552 -0.327 0.512 0.942 -0.077 0.837 -19042
N225 -0.269 0.401 0.963 -0.057 -18818 -0.293 0.436 0.958 -0.070 0.863 -18157
NSEI -0.432 0.551 0.966 -0.073 -19105 -0.464 0.598 0.959 -0.070 0.834 -18192
OMXC20 -0.262 0.437 0.948 -0.076 -14503 -0.355 0.565 0.935 -0.079 0.846 -13957
OMXHPI -0.231 0.335 0.970 -0.100 -14382 -0.282 0.408 0.962 -0.112 0.863 -13890
OMXSPI -0.273 0.376 0.972 -0.135 -13966 -0.293 0.402 0.968 -0.149 0.864 -13343
OSEAX -0.237 0.364 0.966 -0.093 -19049 -0.274 0.407 0.962 -0.100 0.857 -17775
RUT -0.192 0.345 0.954 -0.116 -20173 -0.204 0.344 0.955 -0.120 0.855 -18928
SMSI -0.321 0.431 0.971 -0.092 -15299 -0.349 0.465 0.968 -0.093 0.855 -15042
SPX -0.282 0.406 0.960 -0.150 -18218 -0.283 0.404 0.959 -0.146 0.840 -17358
SSEC -0.387 0.511 0.972 -0.040 -21147 -0.466 0.612 0.964 -0.043 0.836 -20196
SSMI -0.422 0.559 0.950 -0.087 -17316 -0.441 0.565 0.954 -0.072 0.825 -16734
STI -0.406 0.513 0.962 -0.047 -10360 -0.438 0.550 0.958 -0.043 0.846 -9884
EURO50 -0.207 0.320 0.967 -0.138 -20799 -0.223 0.344 0.964 -0.133 0.847 -20619

Mean -0.294 0.417 0.963 -0.091 -17674 -0.326 0.460 0.958 -0.091 0.846 -17068
This table provides QML estimates of EHEAVY model for the dataset of 31 assets. All parameters are statisti-
cally significant at 5% level.
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Table A3: EHEAVY models Estimated parameters: Close-Close Returns

HEAVY-r: Stock Returns HEAVY-RM: Realized Measure
Symbol w αRR βR γRr LL w αRR βR γRr ρ LL
AEX -0.235 0.341 0.970 -0.154 -20928 -0.259 0.356 0.969 -0.137 0.807 -18617
AORD -0.181 0.278 0.970 -0.107 -17547 -0.200 0.298 0.966 -0.113 0.886 -16222
BFX -0.338 0.450 0.970 -0.121 -20266 -0.337 0.430 0.972 -0.105 0.815 -17962
BSESN -0.362 0.536 0.955 -0.075 -21524 -0.451 0.643 0.943 -0.064 0.804 -19085
BVLG -0.366 0.526 0.954 -0.106 -8136 -0.388 0.517 0.952 -0.099 0.809 -6501
BVSP -0.130 0.296 0.961 -0.091 -24674 -0.268 0.439 0.955 -0.080 0.815 -21449
DJI -0.343 0.478 0.959 -0.132 -18813 -0.312 0.428 0.963 -0.133 0.824 -17586
FCHI -0.268 0.394 0.967 -0.141 -21842 -0.290 0.401 0.968 -0.113 0.811 -19761
FTMIB -0.389 0.626 0.938 -0.140 -13167 -0.416 0.599 0.942 -0.109 0.779 -11070
FTSE -0.278 0.371 0.973 -0.103 -19409 -0.332 0.436 0.969 -0.091 0.835 -19079
GDAXI -0.240 0.335 0.975 -0.129 -22124 -0.272 0.354 0.977 -0.118 0.810 -20152
GSPTSE -0.214 0.307 0.970 -0.124 -15426 -0.223 0.305 0.970 -0.113 0.850 -13693
HSI -0.189 0.295 0.972 -0.074 -21655 -0.222 0.319 0.969 -0.057 0.785 -17947
IBEX -0.317 0.458 0.963 -0.108 -22331 -0.368 0.500 0.962 -0.086 0.806 -20478
IXIC -0.299 0.427 0.967 -0.128 -21883 -0.305 0.418 0.967 -0.123 0.797 -19215
KS11 -0.308 0.412 0.975 -0.082 -21169 -0.326 0.420 0.973 -0.064 0.787 -18026
KSE -0.104 0.277 0.954 -0.056 -21268 -0.186 0.445 0.919 -0.068 0.841 -18884
MXX -0.231 0.383 0.958 -0.081 -20975 -0.323 0.506 0.943 -0.070 0.831 -19037
N225 -0.124 0.362 0.937 -0.104 -22153 -0.228 0.420 0.939 -0.098 0.824 -18140
NSEI -0.271 0.327 0.990 -0.078 -22000 -0.422 0.483 0.989 -0.063 0.773 -18200
OMXC20 -0.230 0.459 0.935 -0.093 -15350 -0.289 0.495 0.936 -0.092 0.834 -13948
OMXHPI -0.177 0.302 0.967 -0.115 -15525 -0.268 0.404 0.961 -0.109 0.838 -13882
OMXSPI -0.260 0.395 0.965 -0.151 -15115 -0.338 0.472 0.962 -0.146 0.835 -13334
OSEAX -0.244 0.360 0.971 -0.087 -19406 -0.276 0.397 0.966 -0.098 0.853 -17771
RUT -0.172 0.295 0.968 -0.119 -22618 -0.190 0.308 0.962 -0.128 0.810 -18899
SMSI -0.335 0.454 0.972 -0.118 -16590 -0.401 0.519 0.970 -0.107 0.815 -15026
SPX -0.284 0.422 0.959 -0.141 -19172 -0.257 0.373 0.961 -0.145 0.830 -17342
SSEC -0.410 0.571 0.962 -0.052 -22109 -0.478 0.651 0.955 -0.054 0.813 -20200
SSMI -0.375 0.539 0.947 -0.140 -19147 -0.408 0.536 0.952 -0.111 0.812 -16706
STI -0.478 0.675 0.940 -0.071 -12173 -0.523 0.685 0.938 -0.033 0.792 -9890
EURO50 -0.192 0.301 0.970 -0.147 -21887 -0.224 0.337 0.967 -0.136 0.841 -20602

Mean -0.269 0.408 0.962 -0.109 -19238 -0.316 0.448 0.959 -0.099 0.818 -17055
This table provides QML estimates of EHEAVY model for the dataset of 31 assets. All parameters are statisti-
cally significant at 5% level.

Appendix B: AHEAVY and Realized GARCH model specification

In this appendix, we present the specification of alternative EHEAVY model, asymmetric

HEAVY of Shepard and Shepperd (2010) and realized EGARCH Hansen and Huang (2016)

model.

The alternative EHEAVY model, where the asymmetric is modelled by realized return shock

only, is given by

log ht = ωr + βr log ht−1 + αrR|eRt−1|+ γrReRt−1,

logmt = ωR + βR logmt−1 + αRR|eRt−1|+ γRReRt−1 (21)
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The AHEAVY model of Shepard and Shepperd (2010) is

ht = ωr + (αrR + γrRst−1)RMt−1 + βrht−1, (22)

mt = ωR + (αRR + γRRst−1)RMt−1 + βRmt−1.

where st = 0.5[1−sign(rt)], that is, st = 1 if rt < 0 and 0 otherwise; γii, γij (i 6= j) are the

own and cross leverage parameters, respectively10; positive γii, γij means a larger contribution

of negative ‘shocks’ in the volatility process.

The realized EGARCH model of Hansen and Huang (2016) is

log ht = ωr + βr log ht−1 + αrre
2
rt−1 + γrrert−1 + αrRuRt−1, (23)

logRMt = ωR + βR log ht + αRre
2
rt−1 + γRreRt−1 + uRt.

where uRt ∼ N(0, σu). The first equation is referred to GARCH equation, and the second

one is referred to measurement equation. It can be seen that the GARCH equation is close

to our EHEAVY-r equation, where the measurement equation has a different specification as

EHEAVY-RM equation.

10This type of asymmetry was introduced by Glosten et. al., (1993).
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