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1. Introduction24

Panel data consist of repeated observations over time on the same set of cross-sectional25

units, which can be individuals, firms, schools, cities, local authorities or any collection26

of units one can follow over time. In the recent years, in the attempt to answer complex27

empirical questions many researchers recognise the need to exploit the rich information28

available in panel data sets. Accordingly, panel data and methods of econometric analysis29

appropriate to such data have become increasingly important in the discipline. Recently,30

we have witnessed fast methodological developments in various areas of panel data analysis.31

This paper focuses on two important areas, namely (i) spatial error dependence (SED),32

and (ii) varying coefficient panel data models.33

Spatial models for panel data are important tools in economics, regional science and34

geography in analysing a wide range of empirical issues. By far the most widely used35

spatial models are variants of that originated by Cliff (1973) (see also Cliff and Ord36

(1981)). Spatial panel data models with spatial autoregressive (SAR) disturbances are37

considered in Baltagi et al. (2003), Kapoor et al. (2007), Liu and Yang (2015), and Su and38

Yang (2015) among others. Gao et al. (2020) consider an alternative assumption on the39

dependence that is shown to be closely related to the SAR. Moreover, varying coefficient40

models are a useful extension of classical linear models and have been the main focus of41

many methodological studies in the literature (see e.g. Fan and Zhang (1999), Cai et al.42

(2000) and Xia et al. (2004)). Varying coefficient panel data models have also attracted43

considerable attention in the past two decades. For example, Sun et al. (2009) propose a44

panel data varying coefficient model by imposing a widely-used identification restriction45

such that the sum of the fixed effects is zero, whereas Rodriguez-Poo and Soberon (2014)46

propose to use the first difference to remove the fixed effects. Furthermore, Feng et al.47

(2017) consider varying coefficient panel data models where all covariates are categorical.48

So far, methodological developments in these two areas have progressed as two sepa-49

rate directions. In this paper, we establish estimation procedure and various novel infer-50

ence methods for varying-coefficient panel data models that include spatially correlated51

error components. We begin by constructing alternative varying-coefficient specifications52

in which both relevant and irrelevant regressors are included. In addition, our spatial53

model allows the individual effects themselves to be spatially correlated. This differs from54

previous studies in the literature (e.g. Baltagi et al. (2012)), who consider only spatial55

dependence in the error term. Then, we establish the model’s estimation procedure that56

can be viewed as an extension of the quasi-maximum likelihood method for spatial panel57

data regression (e.g. Lee and Yu (2010), and Liu and Yang (2015)) to the conditional58

local kernel-weighted likelihood (see e.g. Fan et al. (1998), Cai et al. (2000), and Fan and59

Zhang (2008)). In this regard, we derive a set of asymptotic results based on a collection60

of primitive assumptions that also appear in other existing studies (e.g. Robinson (2011)).61
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Asymptotically, our analysis is tailored for the case where the time dimension is fixed and62

the cross section dimension tends to infinity. In the other words, T is fixed and N → ∞63

and thus is geared towards samples where N is large relative to T as is frequently the64

case. Moreover, we establish a novel procedure for selecting necessary regressors. Wang65

and Xia (2009) introduced the so-called Kernel Least Absolute Shrinkage and Selection66

Operator (KLASSO) technique. We show that this technique is ineffective when applied67

to the panel data where there exists the Cliff-Ord-type models of spatial error dependence68

and suggest an alternative procedure. We also extend our procedure to handle selection69

in a more complex specification known in the literature as the semi-varying coefficient70

model. Finally, we conduct extensive simulation exercises in order to examine the finite71

sample performance and robustness of our proposed (estimation and inference) procedures.72

Importantly, we show that addressing spatial error dependence and using random effects73

enables important efficiency gain that leads to more effective statistical inference.74

The analytical tools developed in this paper can be used for a broad range of ap-75

plications. To illustrate their empirical relevance and applicability, we apply the newly76

established model and methods to analyse municipal disparities in mental health service77

(MHS) spending by councils in England. Our study explains the MHS spending in relation78

to a set of risk factors (e.g. percentages of male population and of population under 14 year79

of age) and supply factors of mental health needs (e.g. medians house price and weekly80

wage). Moreover, we study the interaction between these explanatory variables and some81

important local authority-specific attributes, namely (i) political preferences and ideology,82

and (ii) level of total public health expenditure by local authorities. The idea behind the83

former stems from the hypothesis that some councils may give more weight in terms of84

resources to some risk factors (e.g. standardised mortality ratio and percentages of male85

population) and such decision is influenced by political preferences or beliefs within the86

local authorities, for example whether left- or right-wing political party is in power. On87

the other hand, studying the latter, in which the MHS is a part of, can help to highlight88

local authorities’ views about each of the explanatory variables. To understand this idea89

more clearly, let us first recall the Engel’s law in economics which suggests that the poorer90

a family is, the larger the budget share it spends on nourishment. Correspondingly to91

the Engel’s law, a relatively stronger impact of the share of population under 14 on MHS92

when the total public health expenditure is low, for example, suggests that the variable93

is considered by the local authorities to be an essential determinant. On the contrary, a94

relatively smaller impact of the percentage of male population on MHS when the total95

public health expenditure is low suggests, for instance, that the variable is considered to96

be important though not essential. A more detailed discussion of these points is presented97

in Section 4.98
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The rest of the paper is organised as follows. In Section 2.1, we propose a varying-99

coefficient panel data model that includes spatially correlated error components. In Sec-100

tions 2.2, we illustrate the model’s estimation procedure and establish its relevant asymp-101

totic properties, whereas in Section 2.3 we introduce the alternative variable selection102

procedure. In Section 3, we conduct extensive simulation exercises in order to exam-103

ine the finite sample performance and robustness of our proposed procedures, while we104

present the application of our model and methods to analyse municipal disparities in men-105

tal health service spending by councils in England in Section 4. Finally, Section 5 presents106

conclusions and further discussion. Technical proofs are provided in the Appendix.107

2. Varying coefficient model with spatially correlated error components108

We begin by introducing the model specification and basic assumptions.109

2.1. Model specification110

Let yit ∈ R1 be a response of interest, Xit = (Xit,1, . . . , Xit,D) ∈ RD and Zit ∈ [0, 1],

which are referred to as the D-dimensional “regressors” and “covariate”, respectively, in

order to differentiate and avoid confusion. For i = 1, . . . , N and t = 1, . . . , T, we assume

that we observe yit generated by

yit = Xitβ0(Zit) + uit, (2.1)

where β0(z) = {β1,0(z), . . . , βD,0(z)}⊤ ∈ RD is a vector of smooth nonparametric functions

in z and uit ∈ R1 denotes an error term of which E(uit|Xit, Zit) = 0 almost surely. To

specify the spatial error dependence we define

uN = (u11, u21, . . . , uN1, u12, . . . , uN2, u13, . . . , uNT )
⊤,

where we have grouped the data by time periods rather than spatial units as commonly

done in panel data literature, yN as a NT × 1 vector of yit with a similar structure, and

XN = (X⊤
11, X

⊤
21, . . . , X

⊤
N1, X

⊤
12, . . . , X

⊤
N2, X

⊤
13, . . . , X

⊤
NT )

⊤.

Accordingly, the model in (2.1) can be expressed in matrix notation as

yN = (B0 ◦XN )eD + uN , (2.2)

where B0 = {β0(Z11), β0(Z21), . . . , β0(ZN1), β0(Z12), . . . , β0(ZNT )}⊤, eD is D×1 vector of

1s and “◦” denotes the Hadamard product. We assume that uN follows the SAR process

uN = (IT ⊗ ρ0WN )uN + εN , (2.3)
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where ⊗ signifies the Kronecker product, WN is an N ×N spatial weights matrix which

is nonstochastic, ρ0 is a scalar auto-regressive parameter and εN is an NT × 1 vector of

innovations. Moreover, εN follows a classical one-way error component model (see e.g.

Baltagi et al. (2008))

εN = (eT ⊗ IN )µN + vN ,

where µN denotes a vector of the unit specific error component, eT is a T × 1 vector of 1s111

and vN is an NT ×1 vector of independent and identically distributed (i.i.d) idiosyncratic112

errors. For the sake of clarity, hereafter we refer to uN and εN as vectors of “disturbance”113

and “innovation”, respectively.114

With regard to the model in (2.1), we impose:115

Assumption A1. WN is row-normalized in the sense that elements in a given row sum116

up to one and non-stochastic spatial weights matrix with zero diagonal elements.117

Assumption A2. Let SN (ρ) = IN − ρWN for an arbitrary ρ. SN (ρ) is invertible for all118

ρ ∈ P, where the parameter space P is compact and ρ0 ∈ (−1, 1) is in the interior of P.119

Assumption A3. WN and S−1
N (ρ) are uniformly bounded in both row and column sums120

in absolute value.121

Assumption A4. Let T be a fixed positive integer. In addition, {vit}, i = 1, 2, . . . , N and122

t = 1, 2, . . . , T, are i.i.d. across i and t with zero mean, variance σ2
v,0, E(|vit|4+ς) < ∞ for123

some ς = 2ϱ, where 0 < ϱ ≤ 2.124

Assumption A5. The unit specific error components {µi}, i = 1, 2, . . . , N are i.i.d.125

across i with zero mean, variance σ2
µ,0 and E(|µi|4+ς) < ∞ for some ς = 2ϱ, where126

0 < ϱ ≤ 2.127

Assumption A6. The processes {vit} and {µi} are independent of each other.128

Assumption A1 implies that no unit is a neighbour to itself. Although the elements

of WN are assumed independent of t, the number of neighbours, which a given unit has,

may depend on the number of cross-sectional units, N. Assumption A2 ensures that the

model is closed in the sense that we can write

uN = [IT ⊗ (IN − ρ0WN )−1]εN , (2.4)

which clearly suggests that our SAR random effect model allows the individual effects129

themselves to be spatially correlated. This differs from previous studies in the literature130

(see e.g. Baltagi et al. (2012)) who focus only on spatial dependence on the error term.131

Assumption A3 restricts the extent of association between the cross sectional units. In132

practice these are satisfied given that each of the units is associated only with a limited133
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number of neighbours, or in the other words, if WN is sparse. Alternatively, they may134

be satisfied when WN is not sparse if its elements decline with a distance measure that135

increases sufficiently rapidly as the sample size increases.136

The remaining assumptions are standard and lead to the variance-covariance matrix

E[uNu⊤N ] of the form

Ω0
u,N = [IT ⊗ (IN − ρ0W ))−1]Ω0

ε,N [IT ⊗ (IN − ρ0W
⊤)−1], (2.5)

where Ω0
ε,N ≡ E[εNε⊤N ] = σ2

v,0Q0,N + σ2
1,0Q1,N and σ2

1,0 = σ2
v,0 + Tσ2

µ,0. As such, Q0,N =137

(IT − (JT /T ))⊗ IN and Q1,N = (JT /T )⊗ IN are symmetric, idempotent and orthogonal138

to each other, where JT = eT e
⊤
T is a T×T matrix of ones, and are standard transformation139

matrices frequently used in the error component literature.140

Alternatively, we can write Ω0
u,N = σ2

v,0Q
0
N , where

Q0
N =

[
IT ⊗ (IN − ρ0WN )−1

]
{Q0,N + (1 + ϕ0T )Q1,N}

[
IT ⊗ (IN − ρ0W

⊤
N )−1

]
(2.6)

and ϕ0 = σ2
µ,0/σ

2
v,0, which suggests that Q0

N = (1/σ2
v,0)E[uNu⊤N ]. In this regard,(

Q0
N

)−1
= Q̄0⊤

N Q̄0
N , (2.7)

where Q̄0
N =

{
Q0,N + (1 + Tϕ0)

−1/2Q1,N

}
[IT ⊗ (IN − ρ0WN )] by using the orthogonality141

of Q0,N and Q1,N . We now use these results to establish the model estimation procedure.142

2.2. Estimation procedure143

To establish the estimation procedure, we need to first introduce a transformation of

the original model. Let Ẍ0N = Q̄0
NXN and ü0N = Q̄0

NyN , where Q̄0
N is defined in (2.7).

Then, the transformed model is written as

ÿ0N = (B0 ◦ Ẍ0N )eD + ü0N , (2.8)

where ÿ0N = Q̄0
NyN − {Q̄0

N (B0 ◦XN )eD − (B0 ◦ Q̄0
NXN )}. Such a model can be viewed as144

a combination of the Cochrane-Orcutt/RE-GLS transformations in econometrics.145

Correspondingly, let Q̄N =
{
Q0,N + (1 + Tϕ)−1/2Q1,N

}
[IT ⊗ (IN − ρWN )] represent

an arbitrary expression of Q̄0
N , and ÿN and ẌN denote that of ÿ0N and Ẍ0N , respectively.

Also, let Ẍjs be the js-th row of ẌN , üjs = ÿjs − Ẍjsβ be the js-th element of üN =

ÿN − (B ◦ ẌN )eD, and

QN =
[
IT ⊗ (IN − ρWN )−1

]
{Q0,N + (1 + ϕT )Q1,N}

[
IT ⊗ (IN − ρW⊤

N )−1
]

be an arbitrary expression of Q0
N .146
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For a given bandwidth parameter h and a kernel function K(·) in Kh(·) = K(·/h)/h,147

we can then construct the conditional local kernel-weighted log-likelihood as follows148

ℓ(β, σ2
v , ϕ, ρ) = − 1

2
log{2πσ2

v}
N∑
j=1

T∑
s=1

Kh(Zjs − z) + log{|QN |}
N∑
j=1

T∑
s=1

Kh(Zjs − z)

− 1

2σ2
v

N∑
j=1

T∑
s=1

{ÿjs − Ẍjsβ}2Kh(Zjs − z). (2.9)

Given δ = (ϕ, ρ)⊤ ∈ ∆, where ∆ denotes a compact parameter space, the local likelihood

function in (2.9) is maximised at

β̃(z) =

 N∑
j=1

T∑
s=1

Ẍ⊤
jsẌjsKh(Zjs − z)

−1
N∑
j=1

T∑
s=1

Ẍ⊤
jsÿjsKh(Zjs − z), (2.10)

which can also be expressed as β̃(z) =
{
Ẍ⊤

NKNẌN

}−1
Ẍ⊤

NKN ÿN in matrix notation,

where KN = diag{Kh(Z11 − z), . . . ,Kh(ZN1 − z),Kh(Z12 − z), . . . ,Kh(ZNT − z)}, and

σ̃2
v(z) =

 N∑
j=1

T∑
s=1

Kh(Zjs − z){ÿjs − Ẍjsβ̃(z)}2
 N∑

j=1

T∑
s=1

Kh(Zjs − z)

−1

.

These suggest formulating the concentrated log-likelihood ℓ̃cz(δ) ≡ maxβ,σ2
v

ℓ(β, σ2
v , ϕ, ρ)

as follows

ℓ̃cz(δ) = − 1

2

[
log(2πσ̃2

v) + log |QN |+ 1
] N∑
j=1

T∑
s=1

Kh(Zjs − z). (2.11)

Suppose that ℓ̃cz(δ) is maximised by δ̂ = (ϕ̂, ρ̂)⊤, i.e. δ̂ is the quasi-maximum likelihood149

estimator of δ0 = (ϕ0, ρ0)
⊤. To establish its asymptotic properties requires a number of150

additional conditions. We introduce first some conditions of standard nature on the kernel151

function and the bandwidth.152

Assumption B1. K(z) is a symmetric density function with a compact support. In153

addition, K(z) has a first derivative K ′(z), by which
∫
v(K ′(z))2dv is bounded.154

Assumption B2. The bandwidth parameter is any monotonic sequence h = h(N) ∝155

(N)−1/5 implying that {Nh}−1 = N−4/5.156

Now we introduce some conditions on the regressors and the covariate.157

Assumption C1. Zit is independent and identically distributed (i.i.d.) over i and t. In158

addition, the density function f(z) of Zit is continuous, positively bounded away from 0159

on [0,1], and has bounded second derivative.160
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Assumption C2. For ∀z ∈ D, i = 1, . . . , N and t = 1, . . . , T, E[Xit|Zit = z] = µX(z)161

and E[X⊤
itXit|Zit = z] = ΣX(z) is non-singular and has bounded second order derivatives162

on [0, 1]. Also, E[∥X⊤
NXN∥2F |Zit = z] is bounded, where ∥ ·∥F denotes the Frobenius norm.163

Xit is independent of Zjs for (i, t) ̸= (j, s).164

Finally, we impose some standard conditions on the functional coefficient.165

Assumption D1. Second order derivatives of β0,d(z), d = 1, . . . , D, are continuous. Also,166

E(∥β0,d(z)∥4) is bounded.167

Assumptions B1 and B2 are primitive and used regularly in nonparametric studies (see168

e.g. Okui and Takahide (2018)), whereas Assumption C1 ensures that the observed index169

values are sufficiently dense on the support. This implies that maximal distance between170

two consecutive index variables is only of the order OP

(
logNT
NT

)
. In addition, Assumption171

C2 replaces assumptions in spatial panel regression models. For example, it is required172

in those studies that elements of XN are uniformly bounded constants for all N and173

limNT→∞(NT )−1X⊤
NQ−1

N XN exists and is nonsingular for all δ ∈ ∆, (e.g. Assumption 6 of174

Lee (2004)). For an arbitrary index value z ∈ [0, 1], let z∗ be its nearest neighbor among the175

observed index values, i.e. z∗ = argminz̃∈{Zit:1≤i≤N,1≤t≤T} |z− z̃|. Assumption D1 imposes176

a smoothness condition on the functional coefficient, which implies that ∥β0(z)−β0(z
∗)∥ =177

OP

(
logNT
NT

)
(see e.g. Xia et al. (2004)). This is an order substantially smaller than the178

optimal nonparametric convergence rate, which is (NT )−2/5.179

Furthermore, Lemma 2.1 below is useful for deriving consistency and identifiability of180

the spatial estimation, which are stated in Theorem 2.1.181

Lemma 2.1. Let Assumption A to D hold. Also, let E{ℓz(β, σ2
v , ϕ, ρ)|z} ≡ ℓ̄z(β, σ

2
v , ϕ, ρ)182

and ℓ̄cz(δ) ≡ max
β,σ2

v

ℓ̄z(β, σ
2
v , ϕ, ρ). Then (a)183

ℓ̄(β, σ2
v , ϕ, ρ) = −1

2
log{2πσ2

v}
N∑
j=1

T∑
s=1

Kh(Zjs − z) + log{|QN |}
N∑
j=1

T∑
s=1

Kh(Zjs − z)

− 1

2σ2
v

{(β0(z)− β(z))⊤E[Ẍ⊤
NKNẌN |z](β0(z)− β(z))}

− 1

2σ2
v

{σ2
0vtr[Q0N Q̄

⊤
NKN Q̄N ]}, (2.12)

where E[Ẍ⊤
NKNẌN |z] =

∑N
j=1

∑T
s=1E[Ẍ⊤

jsẌjs|z]Kh(Zjs − z), and (b)

ℓ̄cz(δ) = − 1

2

[
log(2πσ̄2

v) + log |QN |+ 1
] N∑
j=1

T∑
s=1

Kh(Zjs − z) (2.13)

where σ̄2
v = (1/NT )σ2

v0TR[Q0N Q̄⊤
NKN Q̄N ]

[∑N
j=1

∑T
s=1Kh(Zjs − z)

]−1
.184
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Theorem 2.1. Let Assumption A to D hold. Also, let

lim sup
N→∞

{
max

δ∈D̄ϵ(δ0)∩∆
ℓ̄cz(δ)

}
̸= lim sup

N→∞
ℓ̄cz(δ0)

for any δ, where D̄ϵ(δ0) is the complement of ϵ-neighbourhood of δ0. Then, δ0 is uniquely185

identifiable and δ̂ = δ0 +OP

(
(NT )−1/2

)
as N → ∞.186

Moreover, the estimators of β0(z) and σ2
v,0, which are based explicitly on δ̂, can be187

formulated as follows188

β̂(z) =

 N∑
j=1

T∑
s=1

X̂⊤
jsX̂jsKh(Zjs − z)

−1
N∑
j=1

T∑
s=1

X̂⊤
jsŷjsKh(Zjs − z)

=
{
X̂⊤

NKNX̂N

}−1
X̂⊤

NKN ŷN , (2.14)

where X̂N = ˆ̄QNXN in which ˆ̄Q = {Q0,N + (1 + T ϕ̂)−1/2Q1,N}[IT ⊗ (IN − ρ̂WN )], and

σ̂2
v(z) =

 N∑
j=1

T∑
s=1

Kh(Zjs − z){ŷjs − X̂jsβ̂(z)}2
 N∑

j=1

T∑
s=1

Kh(Zjs − z)

−1

. (2.15)

Since σ2
v,0 does not depend on the location z, it can be estimated based on

σ̂2
v =

1

NT

N∑
i=1

T∑
t=1

σ̂2
v(Zit).

Hereafter, we refer to β̂(z) and σ̂2
v as “unpenalised estimators” and present their189

asymptotic properties in Theorems 2.2 and 2.3. To state these properties, let D(z) =190

fz(z)E(Ẍ⊤
0jsẌ0js|z), B= E[Ẍ⊤

0jsẌ0js|z](β′
0(z)f

′(Xjs, Zjs)/f(Xjs|Zjs = z)+1
2β

′′
0 (z)fz(z))],191

and V (z) = σ2
v,0E(Ẍ⊤

0jsẌ0js|z)f(z)K2, where K2 =
∫
K2(u)du and K2 =

∫
u2K(u)du.192

Theorem 2.2. Let Assumption A to D hold. Then (a) σ̂2
v = σ2

v,0 +OP

(
(NT )−1/2

)
, and193

(b) β̂(z) = β0(z) +OP

(
(NT )−2/5

)
as N → ∞.194

Theorem 2.3. Let Assumption A to D hold and inf
||z||≤cN

fz(z) > 0, where cN = h−δ with

δ > 0 being arbitrarily small. Then, as N → ∞,

√
NTh

(
β̂(z)− β0(z)−Bias

)
→D N(0,Σ),

where Bias = D−1(z)K2h
2B and Σ = D−1(z)V (z)D−1(z).195
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2.3. SAREC-KLASSO method196

So far, we have assumed that all the regressors are necessary. In this section, we relax197

this assumption, and introduce a procedure for selecting relevant regressors. Particularly,198

we extend the KLASSO technique to the panel data context of (2.1), where there exists the199

Cliff-Ord-type models of spatial error dependence. We refer to this procedure as spatial200

autoregressive error component KLASSO or SAREC-KLASSO. To this end, we assume201

without loss of generality that there exists an integer D0 such that ∞ > E{β2
d,0(Zit)} > 0202

for any d ≤ D0, while E{β2
d,0(Zit)} = 0 for any D0 < d. Accordingly, define Xita =203

{Xit,1, . . . , Xit,D0} ∈ RD0 and Xitb = {Xit,D0+1, . . . , Xit,D} ∈ RD−D0 . In other words,204

there are D0 regressors, which are truly relevant, but the rest are not.205

Let B = {β(Z11), . . . , β(ZN1), β(Z12), . . . , β(ZNT )}⊤ ≡ {b1, . . . , bD0 , bD0+1, . . . , bD},
which is an NT ×D matrix, and

Q̃λ(B) =
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{ÿjs − Ẍjsβ(Zit)}2Kh(Zit − Zjs) +
D∑

d=1

λd∥bd∥, (2.16)

where λ = (λ1, . . . , λD)
⊤ ∈ RD are the tuning parameters, bd ∈ RTN×1 is the dth column206

of B and ∥ · ∥ stands for the usual Euclidean norm. Under the conditions of the model,207

the last (D −D0) columns of the B matrix should be 0, which suggests that the task of208

variable selection is equivalent to identifying sparse columns in the B matrix. By following209

the group LASSO idea of Yuan and Lin (2006), we note firstly the penalized estimation210

B̃λ = {β̃λ(Z11), . . . , β̃λ(ZN1), β̃λ(Z12), . . . , β̃λ(ZNT )}⊤

= argminB∈RTN×D Q̃λ(B) ≡ (b̃λ,1, . . . , b̃λ,D0 , b̃λ,D0+1, . . . , b̃λ,D). (2.17)

The above estimator can be viewed as the penalized counterpart of that in (2.10). In other

words, the (i, t)-row of B̃λ is defined as the transpose of

β̃λ(Zit) =

 N∑
j=1

T∑
s=1

Ẍ⊤
jsẌjsKh(Zit − Zjs) + D̃

−1
N∑
j=1

T∑
s=1

Ẍjs
⊤
ÿjsKh(Zit − Zjs), (2.18)

where D̃= diag(λ1/∥b̃1∥, . . . , λD/∥b̃D∥).211

Similarly to the unpenalised procedure, β̃λ(z) is useful for formulating conditional212

local kernel-weighted log-likelihood213

ℓ̃λ,z(θ) = −1

2
log{2πσ2

v}
N∑
j=1

T∑
s=1

Kh(Zjs − z) + log{|QN |}
N∑
j=1

T∑
s=1

Kh(Zjs − z)

− 1

2σ2
v

N∑
j=1

T∑
s=1

{ÿjs − Ẍjsβ̃λ(z)}2Kh(Zjs − z), (2.19)
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where θ = (σ2
v , ϕ, ρ)

⊤ ∈ Θ for which Θ is a compact parameter space. Furthermore, the

estimator

σ̃2
λ,v =

1

NT

N∑
i=1

T∑
t=1

ãλ(Zit),

where

ãλ(Zit) =

 N∑
j=1

T∑
s=1

Kh(Zjs − Zit){ÿjs − Ẍjsβ̃λ(Zit)}2
 N∑

j=1

T∑
s=1

Kh(Zjs − z)

−1

enables the formulation of the concentrated log-likelihood214

ℓ̃cλ(δ) = − 1

2

[
log{2π}+ 1 + log(σ̃2

λ,v)
] N∑
j=1

T∑
s=1

Kh(Zjs − z)

+ log |QN |
N∑
j=1

T∑
s=1

Kh(Zjs − z). (2.20)

Now, let δ̂λ denotes quasi-maximum likelihood estimates of δ0. Then, the penalized215

estimate of B0 = {β0(Z11), . . . , β0(ZN1), β0(Z12), . . . , β0(ZNT )}⊤ is216

B̂λ = {β̂λ(Z11), . . . , β̂λ(ZN1), β̂λ(Z12), . . . , β̂λ(ZNT )}⊤

= argminB∈RTN×D Q̂λ(B) ≡
(
b̂λ,1, . . . , b̂λ,D0 , b̂λ,D0+1, . . . , b̂λ,D

)
(2.21)

in which

Q̂λ(B) =
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ŷjs − X̂jsβ(Zit)

}2
Kh(Zit − Zjs) +

D∑
d=1

λd∥bd∥, (2.22)

where λ = (λ1, . . . , λD)
⊤ ∈ RD are the tuning parameters, bd ∈ RTN×1 is the dth column

of B and ∥ · ∥ stands for the usual Euclidean norm. In other words, the (i, t)-row of B̂λ is

defined as the transpose of

β̂λ(Zit) =

 N∑
j=1

T∑
s=1

X̂⊤
jsX̂jsKh(Zit − Zjs) + D̂

−1
N∑
j=1

T∑
s=1

X̂⊤
jsŷjsKh(Zit − Zjs), (2.23)

where D̂= diag(λ1/∥b̂1∥, . . . , λD/∥b̂D∥).217

To discuss the asymptotic properties of the penalized estimators, we need to impose218

some conditions on the amount of shrinkages being applied to the relevant and irrelevant219

coefficients as follows.220

Assumption E1. For aN = max{λd : 1 ≤ d ≤ D0} and bN = min{λd : D0 < d ≤ D},221

assume that (N)11/10aN → 0 and (N)11/10bN → ∞.222
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We now present theoretical properties of the above penalized estimators. To this end,223

let β̂λ(Zit) = {β̂λ,a(Zit), β̂λ,b(Zit)}⊤, where β̂λ,a(Zit) = {β̂λ,1(Zit), . . . , β̂λ,D0(Zit)}⊤ and224

β̂λ,b(Zit) = {β̂λ,D0+1(Z11), . . . , β̂λ,D(Z11)}⊤.225

Theorem 2.4. Let Assumptions A to E hold. Then

P

(
sup

z∈[0,1]
∥β̂λ,b(z)∥ = 0

)
→ 1,

where β̂λ,b(z) = (β̂λ,(D0+1)(z), . . . , β̂λ,D(z))
⊤.226

Theorem 2.5. Let Assumptions A to E hold. Then

sup
z∈[0,1]

∥β̂λ,a(z)− β̂a(z)∥ = oP {(NT )−2/5},

where

β̂a(z) =

[
1

NT

N∑
i=1

T∑
t=1

X̂⊤
itaX̂itaKh(Zit − z)

]−1
1

NT

N∑
i=1

T∑
t=1

X̂⊤
itaŷitKh(Zit − z). (2.24)

Theorem 2.4 suggests that the true model can be consistently selected as long as the227

tuning parameters satisfy the conditions listed in Assumption E1. Moreover, since it is228

associated with D0, β̂a(z) can be viewed as the oracle estimators. Theorem 2.5 suggests229

that the asymptotically optimal nonprametric convergence rate can be achieved as long230

as the tuning parameters satisfy the conditions listed in Assumption E1.231

In spite of the results in Theorems 2.4 and 2.5, practical selection of up to D shrinkage

parameters, i.e. λ1, . . . , λD, is not straightforward. In order to overcome such a difficulty,

we follow an idea often used in the literature (see e.g. Zou (2006), Wang and Leng (2007)

and Zou and Li (2007)) that is to specify

λd =
λ0

(NT )−1/2∥b̂d∥
, (2.25)

where b̂d is the d-th column of the unpenalised estimate B̂ and λ0 > 0. In this regard, it

is important to note that

(NT )−1/2∥b̂d∥ =

{
(NT )−1

N∑
i=1

T∑
t=1

β̂2
k(Zit)

}1/2

→P

{
E[β2(Zit)]

}1/2
, 1 ≤ d ≤ D0 (2.26)

and {
(NT )−1

N∑
i=1

T∑
t=1

β̂2
k(Zit)

}1/2

= OP {(NT )−2/5}, (D0 + 1) ≤ d ≤ D, (2.27)
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which are direct results of Lemma C.5 in the appendix. While (2.26) suggests that λd232

converges to a positive constant for 1 ≤ d ≤ D0, (2.27) implies λd converges to infinity for233

(D0+1) ≤ d ≤ D. Therefore, in order to maintain (N)11/10aN → 0 and (N)11/10bN → ∞,234

it must be the case that λ0(NT )11/10 → 0 and λ0(NT )3/2 → ∞.235

The specification in (2.25) helps to reduce the original D-dimensional problem about

λ ∈ RD to a univariate problem about selecting λ0 > 0. In practice, such a selection is

done by minimising the following BIC-type criterion

BICλ = log{RSSλ}+ df × log{(NT )h}
(NT )h

, (2.28)

where 0 ≤ df ≤ D is the number of nonzero coefficients identified by B̂λ and

RSSλ = (NT )−2
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ŷjs − X̂jsβ̂λ(Zit)

}2
Kh(Zit − Zjs). (2.29)

Let B̂λ̂ denote a penalised estimator in (2.21), which corresponds to λ̂ = argminλ BICλ,236

and Ŝλ represent the model identified by B̂λ̂. Theorem 2.6 below states that the turning237

parameter λ̂ selected by the BIC criterion is able to consistently identify the true model.238

Theorem 2.6. Let Assumptions A to E hold. Then

P (Ŝλ = ST ) → 1 (2.30)

as N → ∞, where ST = {1, . . . , D0} denotes the true model.239

Remark 2.1. A final point to clarify regarding the variable-selection procedure is the240

use of ŷit and X̂it in the calculation of RSSλ in (2.29). In this regard, the conceptual241

discussion in Section suggests that we can rely on the following steps: (i) compute spatial242

estimates of δ = (ϕ, ρ)⊤ based on maximizing the concentrated log-likelihood under the243

unpenalized estimation in (2.10), (ii) compute ŷit and X̂it, then (iii) apply the SAREC-244

KLASSO method as discussed in the previous and current sections.245

2.4. Identifying constant coefficients in semi-varying coefficient models246

Another useful procedure is to identify constant coefficients amongst those associated

with the relevant regressors selected in the previous section. This enables modelling of the

so-called semi-varying coefficient specification. In this section, we suggest an approach for

identifying constant coefficients, which can be viewed as an alternative to the shrinkage

method introduced in Hu and Xia (2012). Our approach consists of two important steps.

In the first step, we select the relevant variables using the shrinkage method introduced

in Section 2.3. Theorems 2.4 to 2.6 ensures that all relevant variables that are associated

with nonzero (functional or constant) coefficients are consistently identified as long as

13



the tuning parameters satisfy the conditions listed in Assumption E1. Let D̂ denote the

number of relevant regressors identified by B̂λ̂. The second step involves hypothesis testing

for coefficient constancy in the varying-coefficient model. More specifically, we test the

hypotheses

H0 : βd(z) = Cd versus H1 : βd(z) ̸= Cd, 1 ≤ d ≤ D̂, (2.31)

where Cd is a constant.247

Corollary 2.1. Let the conditions of Theorem 2.2(a) hold. Then

sup
z∈[0,1]

∥β̂(z)− β̃(z)∥2 = oP {(NT )−2/5}. (2.32)

Corollary 2.1 suggests that the difference between β̂(z) and β̃(z) (defined in (2.10))

is negligible uniformly over the entire index support. This is critical since it ensures that

above hypothesis test can be implemented based on asymptotic property established in

Cai et al. (2000), Fan and Zhang (2000b). The test statistic is written as

Tj = (−2 log h)1/2

[
sup

z∈[0,1]

∣∣∣{v̂ar(β̂j |D)}−1/2(β̂j(z)− Ĉj − b̂ias(b̂j(z)|D))
∣∣∣− dN

]
, (2.33)

in which the components of the test can be defined as follows:248

v̂ar(β̂j(z)|D) = e⊤j,p

{
X̂⊤

NKNX̂N

}−1
X̂⊤

NK2
NX̂N

{
X̂⊤

NKNX̂N

}−1
ej,pσ̂

2
v ,

dN = (−2 log h)1/2 + 1
(−2 log h)1/2

log
{

1
4ν0π

∫
{K ′(t)}2dt

}
,

b̂ias(β̂j(z)|D) ≈ e⊤j,p

{
X̂⊤

NKNX̂N

}−1
X̂⊤

NKN âN ,

Ĉj =
1

NT

∑T
i=1

∑T
t=1 β̂j(Zit),

where ait =
{
β̂(1)(z)(Zit − z) + 2−1β̂(2)(z)(Zit − z)2

}
X̂it and K ′(t) = ∂K(t)/∂t. Finally,249

the null hypothesis is rejected when the test statistic exceeds the asymptotic critical value250

cα = − log(−0.5 logα).251

2.5. Local quadratic approximation of the penalty function252

In the spirit of Hunter and Li (2005) (see also Fan and Li (2001)), the computation253

in practice is based on an iterative algorithm in which the loss function in (2.22) is locally254

approximated by255

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ŷjs − X̂⊤

jsβ(Zit)
}2

Kh(Zit − Zjs) +

D∑
d=1

λd
∥bd∥2

∥b̂(m)
λ,d ∥

(2.34)

=
N∑
i=1

T∑
t=1


N∑
j=1

T∑
s=1

{
ŷjs − X̂⊤

jsβ(Zit)
}2

Kh(Zit − Zjs) +
D∑

d=1

λd
β2
d(Zit)

∥b̂(m)
λ,d ∥

 ,
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where B̂
(m)
λ =

{
β̂
(m)
λ (Z11), β̂

(m)
λ (Z21), . . . , β̂

(m)
λ (ZNT )

}⊤
=
(
b̂
(m)
λ,1 , b̂

(m)
λ,2 , . . . , b̂

(m)
λ,D

)
denotes256

the estimates obtained in the mth iteration. The minimiser of which is B̂
(m+1)
λ such that257

the (i, t)-row is defined as the transpose of258

β̂
(m+1)
λ (Zit) =


N∑
j=1

T∑
s=1

X̂⊤
jsX̂jsKh(Zit − Zjs) + D̂(m)


−1

×


N∑
j=1

T∑
s=1

X̂⊤
jsŷjsKh(Zit − Zjs)

 ≡ β̂
(m+1)
it , (2.35)

where D̂(m) = diag(λ1/∥b̂(m)
λ,1 ∥, . . . , λD/∥b̂(m)

λ,D∥).259

We next study the dynamics of β̂
(m+1)
λ (z) as m → ∞. The results are presented as260

corollaries of Theorems 2.4 and 2.5 since their mathematical proof is closely related.261

Corollary 2.2. Let Assumptions A to E hold. Then

P

(
sup

z∈[0,1]
∥β̂(m+1)

λ,b (z)∥ = 0

)
→ 1,

where β̂
(m+1)
λ,b (z) = (β̂

(m+1)
λ,(D0+1)(z), . . . , β̂

(m+1)
λ,D (z))⊤.262

Corollary 2.3. Let Assumptions A to E hold. Then, we have

sup
z∈[0,1]

∥β̂(m+1)
λ,a (z)− β̂a(z)∥ = oP {(NT )−2/5},

where β̂
(m+1)
λ,a (z) = (β̂

(m+1)
λ,1 (z), . . . , β̂

(m+1)
λ,D0

(z))⊤.263

3. Simulation studies264

In this section, we present a set of simulation exercises that examine the finite-sample265

performance of the procedures introduced in the previous sections. These are (3.1) spatial266

estimation, which involves estimation of δ0 = (ϕ0, ρ0)
⊤, using the concentrated likelihood;267

(3.2) nonparametric estimation of coefficient functions β0(z) = {β0,1(z), . . . , β0,D(z)}⊤268

based on the oracle, unpenalised and the penalised estimators; (3.3) variable selection,269

i.e. relevant versus irrelevant variables, based on the SAREC-KLASSO and KLASSO270

methods; and (3.4) hypothesis testing of coefficient constancy, i.e H0 : β0,d(z) = Cd versus271

H1 : β0,d(z) ̸= Cd, where 1 ≤ d ≤ D̂ and Cd is a constant.272

In order to achieve these, we assume that yit is generated based on two types of data273

generating process, namely:274

Model I yit = 2 sin(2πZit)Xit,1 + 2 cos(2πZit)Xit,2 + uit

Model II yit = 2 sin(2πZit)Xit,1 + 2 cos(2πZit)Xit,2 + 0.5Xit,3 + 0.7Xit,4 + uit
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Table 1: Spatial estimation: Model I

P = 2 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.063 0.068 0.075 0.044 0.045 0.046 0.037 0.039 0.038

RMSE 0.078 0.086 0.090 0.055 0.056 0.059 0.047 0.048 0.048

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.221 0.253 0.245 0.172 0.203 0.189 0.113 0.159 0.141

RMSE 0.269 0.303 0.291 0.207 0.241 0.228 0.146 0.195 0.178

P = 5 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.090 0.081 0.099 0.064 0.066 0.073 0.054 0.055 0.059

RMSE 0.109 0.103 0.128 0.081 0.083 0.092 0.068 0.072 0.077

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.214 0.252 0.241 0.173 0.203 0.190 0.115 0.162 0.143

RMSE 0.265 0.300 0.288 0.208 0.241 0.230 0.148 0.197 0.181

P = 8 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.096 0.092 0.123 0.078 0.078 0.096 0.063 0.065 0.074

RMSE 0.120 0.116 0.151 0.095 0.099 0.119 0.082 0.084 0.098

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.213 0.254 0.238 0.173 0.204 0.190 0.115 0.162 0.144

RMSE 0.265 0.303 0.287 0.209 0.243 0.231 0.148 0.198 0.182

Note: Estimates computed based on maximizing the concentrated log-likelihood

(i) under the unpenalised estimation, ρ̂, (ii) under the penalized estimation, ρ̂λ, and

(iii) under the oracle estimation, ρ̂or.

The difference between Models I and II lies in the fact that the former includes zero275

constant-coefficients, whereas the latter includes two, i.e. 0.5 and 0.7. Hence, Model II276

is an example of the semi-varying coefficient models. We set Xit,1 = 1, and generate277

(Xit,2, . . . , Xit,7)
⊤ from multivariate normal distribution by setting cov(Xit,j1 , Xit,j2) =278

0.5|j1−j2| for any 2 ≤ j1, j2 ≤ 7. We also generate Zit from uniform distribution U [0, 1].279

Furthermore, the disturbance follows the SAR and EC processes explained in Section 2.1280

with ρ0 = 0.3 and σ2
µ,0 = σ2

v,0 = 1. Regarding the required spatial weight matrix, we follow281

Kelejian and Prucha (1999) and employ matrices that differ in their degree of sparseness.282

Particularly, we construct what known in the literature as the “P -ahead-and-P -behind”283

spatial association. For example, P = 1 leads to the “1-ahead-and-1-behind” matrix,284

whose ith row has nonzero elements in positions i + 1 and i − 1, so that the ith element285

is directly related only to two other elements, namely the ones in front and behind it. We286

construct three spatial weight matrices based on P = 2, P = 5 or P = 8, which lead to 4,287

10 and 16 nonzero elements in a given row, respectively.288
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Moreover, in the practical computation, we follow the results of Magnus and Muris

(2010) and compute inverse and determinant of the matrix QN based on

(QN )−1 = (1/T )JT ⊗ C−1
1 + {IT − (1/T )JT } ⊗ C−1

2 and |QN | = |C1||C2|T−1,

where C1 = (1 + ϕT )C2 and C2 = {(IN − ρWN )⊤(IN − ρWN )}−1. This can help to289

alleviate a serious computational burden caused by repeated evaluations of this TN ×TN290

matrix during the optimisation process. Other necessary computational parameters are291

selected as follows. For each simulation repetition, we select the optimal bandwidth based292

on the method of leaving-one-out cross validation within the context of the unpenalised293

estimation since the asymptotic theory for such selection is already well developed in the294

literature (see e.g. Lee and Yu (2010)). The bandwidth selected in this step is also used in295

the penalized estimation. In addition, the optimal shrinkage parameter is selected based296

on the BIC criterion defined in (2.6), whereas the total number of iteration of the iterative297

algorithm in Section 2.5 is set at 15. In the simulation exercises that follow, a total of298

200 repetitions are conducted for each of the model setups. Tables 1 to 3 summarise the299

simulation-results obtained. Below, we discuss a number of important findings.300

3.1. Autoregressive parameter and variance ratio301

In Tables 1 and 2, ρ̂or, ρ̂un and ρ̂λ denote estimates of the spatial parameter ρ0

that are computed based on maximizing the concentrated log-likelihood under the oracle,

unpenalised and penalised estimation, respectively. Similarly, ϕ̂or, ϕ̂un and ϕ̂λ, are those of

the variance ratio ϕ0 = σ2
µ,0/σ

2
v,0. For comparison, we consider two measures of accuracy,

namely the mean absolute error (MAE) and root mean squared error (RMSE). While

the RMSE closely resembles a standard definition that is often seen in the literature, it

is based instead on quantiles, which exist with certainty, rather than moments (see also

Kapoor et al. (2007)). In particular, we compute

RMSE =

{
bias2 +

(
IQ

1.35

)2
}1/2

, (3.1)

where bias refers to the difference between the median of the estimates and ρ0, IQ is the302

inter-quantile range c1−c2 in which c1 and c2 are the 0.75 and 0.25 quantiles, respectively.303

The results in the tables show that ρ̂or and ρ̂un perform almost equally well when N304

is small. Although MAE and RMSE for ρ̂λ converge to zero as N increases, the estimator305

does not perform as well as the oracle and the unpenalised-based counterpart at small N.306

However, all the three estimators of the spatial parameter perform almost equally well307

at larger N. Regarding those of the variance ratio, it is clear that ϕ̂or performs the best.308

Unlike that of the spatial parameter, here ϕ̂λ performs much better than its unpenalised-309

based counterpart. These results are not surprising given the fact that the oracle and310
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Table 2: Spatial estimation: Model II

P = 2 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.068 0.068 0.079 0.044 0.046 0.048 0.038 0.039 0.039

RMSE 0.083 0.086 0.096 0.056 0.056 0.061 0.047 0.048 0.050

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.236 0.254 0.257 0.170 0.203 0.191 0.123 0.159 0.155

RMSE 0.283 0.303 0.304 0.206 0.241 0.229 0.157 0.195 0.190

P = 5 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.095 0.081 0.102 0.066 0.066 0.075 0.054 0.055 0.061

RMSE 0.119 0.103 0.129 0.084 0.083 0.098 0.070 0.072 0.080

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.232 0.252 0.252 0.171 0.203 0.194 0.125 0.162 0.157

RMSE 0.279 0.300 0.301 0.207 0.241 0.232 0.159 0.198 0.193

P = 8 N = 100 N = 200 N = 300

ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ ρ̂or ρ̂ ρ̂λ

MAE 0.095 0.092 0.121 0.080 0.078 0.096 0.063 0.065 0.075

RMSE 0.119 0.116 0.148 0.098 0.099 0.121 0.082 0.084 0.099

ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ ϕ̂or ϕ̂ ϕ̂λ

MAE 0.232 0.254 0.253 0.170 0.204 0.194 0.125 0.162 0.158

RMSE 0.279 0.303 0.301 0.207 0.243 0.232 0.159 0.198 0.193

Note: ρ̂, ρ̂λ, and ρ̂or are defined as in Table 1.

the penalised estimation are able to provide the much more accurate estimates of the311

coefficient functions (we will discuss this further below). At N = 300, ϕ̂λ performs almost312

as well as the oracle-based counterpart. Moreover, an increase in P, which leads to a313

higher number of nonzero elements in a give row of the weighting matrix, renders less314

accurate estimation of both the spatial parameter and the variance ratio. However, that315

of the former seems to be affected more significantly. Finally, similar results are obtained316

for both of the model examples.317

3.2. Nonparametric estimation of the coefficient functions318

In order to investigate the relative accuracy of the penalized estimators compared to

that of the unpenalised and oracle based counterparts, we compute the following relative

estimation error (REE)

REE = 100×
∑K

k=1

∑N
i=1

∑T
t=1 |β̂λ,k(Zit)− β0,k(Zit)|∑K

k=1

∑N
i=1

∑T
t=1 |ϑk(Zit)− β0,k(Zit)|

, (3.2)

where ϑk(Zit) may be either the unpenalised β̂k(Zit) or oracle estimator β̂or,k(Zit).319
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Table 3: Nonparametric estimation of the coefficient functions

Model I N = 100 N = 200 N = 300

REEor REEun REEor REEun REEor REEun

P = 2 1.278 0.391 1.079 0.357 1.032 0.350

P = 5 1.289 0.393 1.075 0.354 1.032 0.350

P = 8 1.291 0.394 1.074 0.354 1.030 0.349

Model II N = 100 N = 200 N = 300

REEor REEun REEor REEun REEor REEun

P = 2 1.048 0.608 1.011 0.604 0.998 0.599

P = 5 1.057 0.611 1.014 0.605 0.998 0.601

P = 8 1.057 0.609 1.013 0.604 0.997 0.600

Table 3 presents the related simulation results. In the table, REEor and REEun320

represent the REE measures when ϑk(Zit) is β̂or,k and β̂k(Zit), respectively. In all cases,321

it is clear that REEor converges to one, while REEun converges away from one as N322

increases. This implies the penalised based estimator performs at least as well as the oracle323

estimator as N → ∞, but definitely better than the unpenalised counterpart. Moreover,324

the penalised based estimator perform well asymptotically for the models that involve zero325

coefficients. However, it performs even better asymptotically for the model that involves a326

mixture of functional and constant coefficients. In fact, the penalised estimator is already327

performing as well as the oracle counterpart at N as low as 300. Finally, these results are328

quite robust across P.329

3.3. Variable selection330

We now discuss finite sample performance of the SAREC-KLASSO procedure for331

selecting between relevant and irrelevant regressors. Table 4 summarises the simulation332

results. Prior to considering these results, it is useful to note that the vector of relevant333

regressors is X⊤
ita = {Xit,1, Xit,2}⊤ for Model I, whereas it is X⊤

ita = {Xit,1, . . . , Xit,4}⊤ for334

Model II, so that the numbers of relevant regressors are K0 = 2 and K0 = 4, respectively.335

Table 4 presents percentages of the simulation repetitions where the SAREC-KLASSO336

procedure is not only able to obtain the correct number of relevant regressors, but also337

able to accurately select the regressors in questions.338

These results show that the performance of our procedure is not affected by the fact339

that Model II contains constant coefficients. Such a finding paves way for identifying340

constant coefficients in semivarying coefficient models using the procedure introduced in341

Section 2.4. A higher number of nonzero coefficients leads to better finite sample perfor-342

mance at smaller N. Nonetheless, the results for the two models converge when N increases343

to 300. Moreover, the finite sample performance of our selection procedure seems to be344
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Table 4: Variable selection

Model P = 2 N = 100 N = 200 N = 300

I KLASSO 0.020 0.167 0.533

SAREC-KLASSO 0.353 0.800 0.960

II KLASSO 0.007 0.053 0.340

SAREC-KLASSO 0.627 0.880 0.967

Model P = 5 N = 100 N = 200 N = 300

I KLASSO 0.027 0.200 0.560

SAREC-KLASSO 0.360 0.820 0.960

II KLASSO 0.007 0.067 0.353

SAREC-KLASSO 0.613 0.860 0.960

Model P = 8 N = 100 N = 200 N = 300

I KLASSO 0.027 0.213 0.580

SAREC-KLASSO 0.367 0.867 0.967

II KLASSO 0.007 0.087 0.387

SAREC-KLASSO 0.593 0.833 0.967

worsen as P increases, but only marginally. This likely reflects the performance of the345

spatial estimation, which was discussed in the previous section. Finally, it is important to346

note that the KLASSO procedure is totally incapable of operating under models associated347

with spatially correlated error components.348

3.4. Hypothesis testing for coefficient constancy349

In the current section, we examine finite sample performance of the Fan and Zhang’s

(2000) hypothesis testing procedure of coefficient constancy for models associated with

spatially correlated error components. We compare two scenarios, namely Fan and Zhang’s

(2000) procedure with and without spatial error dependence being addressed and the

random effect being utilised in order to obtain efficiency gain. Furthermore, in order to

allow an investigation into the ability of the test to reject an untrue null hypothesis we

assume that observation yit is generated based on:

Model III yit = 2 sin(2πZit)Xit,1 + 0.5 cos(2πZit)Xit,2 + 0.5Zit(1− Zit)Xit,3 + uit

Otherwise, the remaining details are as previously specified.350

Table 5 summarises the simulation results. The table shows percentages of correct351

rejections and non-rejections (out of 150 replications) obtained by applying the Fan and352

Zhang’s (2000) testing procedure with and without spatial error dependence being ad-353

dressed and the random effect being utilised in order to obtain efficiency gain. Before354

discussing our findings, it is important to note that, in Model III, β0,1(z) demonstrates a355

much strong nonlinearity compared to β0,1(z) and β0,1(z). The results obtained seem to356
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Table 5: Hypothesis test of coefficient constancy

P = 2 N = 100 N = 200 N = 300

Null Hypothesis with without with without with without

H0 : β1(z) = C1 100 100 100 100 100 100

H0 : β2(z) = C2 65 60 84 75 94 84

H0 : β3(z) = C3 67 69 81 77 85 77

H0 : β4(z) = 0 74 69 85 83 89 84

H0 : β5(z) = 0 76 64 84 77 83 81

H0 : β6(z) = 0 72 70 83 74 84 77

H0 : β7(z) = 0 81 66 82 77 88 83

P = 5 N = 100 N = 200 N = 300

Null Hypothesis with without with without with without

H0 : β1(z) = C1 100 100 100 100 100 100

H0 : β1(z) = C2 67 63 81 79 94 85

H0 : β1(z) = C3 69 65 77 76 80 76

H0 : β1(z) = 0 74 67 85 79 90 86

H0 : β1(z) = 0 73 66 85 77 83 79

H0 : β1(z) = 0 73 72 82 74 83 79

H0 : β1(z) = 0 81 67 83 78 88 84

P = 8 N = 100 N = 200 N = 300

H0 : β1(z) = C1 100 100 100 100 100 100

H0 : β1(z) = C2 65 63 81 81 94 85

H0 : β1(z) = C3 66 65 77 75 80 75

H0 : β1(z) = 0 75 70 83 79 90 85

H0 : β1(z) = 0 73 66 85 77 82 77

H0 : β1(z) = 0 74 72 83 71 83 77

H0 : β1(z) = 0 81 68 83 75 88 85

Note: The table shows percentages of correct rejections and non-rejections obtained by applying the Fan

and Zhang’s (2000) testing procedure with and without spatial error dependence being addressed and the

random effect being utilised in order to obtain efficiency gain.

reflect this fact. The null hypothesis of a constant coefficient is easily rejected for β0,1(z)357

such that the percentages of rejections reach 100% even for N = 100. For β0,1(z) and358

β0,1(z), having addressed spatial error dependence and utilised random effect in order to359

obtain efficiency gain clearly makes a significant impact on the power of the test. A similar360

benefit is also evidence for β0,4(z) to β0,7(z). In this regard, the correct null hypothesis is361

rejected much less frequently. Finally, the results are robust across P.362

4. Public mental health expenditure in England363

In the UK, Department for Communities and Local Government’s (DCLG) revenue364

account budget records Mental Health Support (MHS), which covers services where the365
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Table 6: Our data and its sources

Symbols Descriptions

vote Percentage of voters with right-wing ideology

Source: Percentage of voters that have voted for the Conservative and UK Independence

Parties in local government elections available at www.electionscentre.co.uk

tph Population-standardised total public health by local authority

Source: Reported in the DCLG’s Revenue Outturn, Social Care and Public Health data

available at www.ons.gov.uk

mhs Per capita measure of standardised MHS for persons age between 18 and 64

Source: Reported in the DCLG’s Revenue Outturn, Social Care and Public Health data

available at www.ons.gov.uk

nuc Claimants of unemployment-related benefits on Benefits Agency Administrative System

Source: Regional labour market Claimant Count by unitary and local authority

available at www.ons.gov.uk

pmp Percentage of male population by local authority

Source: Estimates of the population for the UK available at www.ons.gov.uk

pu14 Percentage of population under 14 year of age

Source: Estimates of the population for the UK available at www.ons.gov.uk

smr Age-standardised mortality rates for 2016 to 2019 standardised to the 2013

European Standard Population expressed per 100,000 population

Source: Deaths registered by area of usual residence available at https://data.gov.uk

noj Number of jobs is measured by the Labour Force Survey as the sum of employee jobs;

self-employment jobs, and government-supported trainees

Source: Regional labour market available at https://data.gov.uk

plp Percentage of households headed by lone parent by local authority

Source: Estimated number of households by household types, local authorities in England

available at www.ons.gov.uk

mhp Median house price paid by local authority

Source: Median house prices for administrative geographies available at www.ons.gov.uk

mww Median weekly wage-Gross (£) for all employee jobs by local authority in England

Source: Earnings and hours worked, place of residence by local authority

available at www.ons.gov.uk

psq Population density defined as population per square kilometre

Source: Estimates of the population for the UK available at www.ons.gov.uk

primary support reason for their care is related to mental health support. These include366

nursing, supported accommodation, direct payments, homecare, supported living, other367

long term care, and other short term support, which are recorded under “Social Care”.368

Intriguingly, the DCLG revenue account reveals evidence that the budget allocated to369

MHS varies substantially across the English (upper tier) local authorities. For example,370

in 2016/17 MHS spending by these local authorities ranged between 0.11% (Wandsworth)371

and just below 53% (Harrow) of their total public health budgets, respectively. While the372

figures were similar in 2017/18, they were between 0.43% (Halton) and just above 61%373
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(North Somerset) in 2018/19. Such disparities grew significantly in 2019/20.374

In this section, we employ the newly established model and methods to analyse the375

municipal disparities in the MHS spending in England. Being able to explain such phe-376

nomenons is an important step toward having a better understanding of impacts and377

implications of the UK 2013 public health reforms. Particularly, we would like to under-378

stand whether their intended objectives, i.e. to improve the nation’s health and well-being379

and to reduce inequalities at both national and local levels, are achieved. A number of380

previous studies have applied a traditional reduced form demand and supply framework in381

which local authorities are treated as statistical units and the municipal disparity in their382

spending is explained in relation to a set of risk factors. In our view, this is an example of383

empirical questions where a varying-coefficient panel data model incorporating spatially384

correlated error components, can render the investigation much more fruitful. Within the385

context of the MHS, the varying-coefficient process enables non-linear interactions between386

risk factors of mental health need (e.g. percentage of people aged under 14) and authority387

specific attributes that represent local preferences and policies. Moreover, the error com-388

ponent structure on the disturbance incorporates unobservable spatial interaction among389

the local authorities as well as individual heterogeneity.390

The study in this section focuses on 151 councils in England, which have social services391

responsibility, out of 333 local authorities. However, two local authorities, namely City of392

London and Isles of Scilly, are excluded from our analysis due their unusual socio-economic393

and demographic characteristics. On the time dimension, we focus on the observation394

period between 2016/17 and 2019/20, which reflects our interest on the impact of the395

2013 government’s public health reform and the reduction in its spending on the public396

health grant during the period. These lead therefore to N = 149 and T = 4. Below we397

begin by first establishing the empirical model.398

4.1. Empirical model399

Since the objective of our study is to analyse the disparities of mental health spendings

across local authorities in England, our dependent variable is the MHS by local authority

standardized by the total population in each local authority. In the study that follows, we

denote per capita measure of the standardised MHS by mhs, and assume that the data

generating process behind the mhs is

mhs = Xβ0(Z) + u, (4.1)

where β0(Z) is a vector of smooth functions and u follows a spatially correlated error400

component process, which was thoroughly defined in Section 2.1. We will now discuss the401

individual components that comprise model (4.1) in more detail.402
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4.1.1. Regressors and covariate403

Let us begin withX = (X1, . . . , XD) and Z. Regarding the former, the first proposition

is to include an intercept term in the model by setting X1 = 1, which implies that

mhs = β0,1(Z) +X∗β∗
0(Z) + u, (4.2)

where X∗ = (X2, . . . , XD) and β∗
0(Z) = (β0,2(Z), . . . , β0,D(Z))⊤. The remaining regressors404

are derived from two sources. Firstly, we selected a set of explanatory variables suggested405

by the literature as area-level characteristics potentially linked to mental health needs (see406

e.g. McCrone and Jacobson (2004), Aziz et al. (2003), and Moscone et al. (2007)). Our407

study explains the municipal disparity in mental health spending based on a set of risk408

factors, namely: (i) Population density, (ii) Percentage of male population, (iii) Percentage409

of population under 14 year of age, (iv) Standardized mortality ratio, (v) Number of jobs,410

(vi) Percentage of households headed by lone parent, and (vii) Number of unemployment411

claimants. Finally, we include (ix) Median house price, and (x) Median weekly wage in412

order to control for the supply-side factors. Table 6 presents descriptions and sources of413

the data used in detail.414

Moreover, it is important to note that the English local authorities have considerable415

autonomy under the reformed system to (a) allocate resources from central government416

among various local services (e.g. education, housing, leisure, community resources and417

social services), and (b) prioritise particular areas and client groups in line with local418

interpretations of need. Therefore, their actual spending will likely reflect local policies419

and preference rather than the standard spending assessment by the central government.420

Hence, it is implausible to assume, for example, that the percentage of people aged under421

14 (%POPu14) would have the same effect on mhs across all the local authorities. In422

the light of this argument, we will focus our study on two strategies. Firstly, we define423

the covariate Z in order to take into account a political influence. The basis of this idea424

is from a hypothesis that there might be councils that decide (based on their political425

beliefs, for example) to give more weight in terms of resources to the elderly while others426

to the youths. In the practical analysis, the covariate is represented by the percentage427

of voters with right-wing ideology, vote hereafter. More specifically, it is the percentage428

of voters that have voted for the Conservative and UK Independence Parties in the local429

government elections. Secondly, the covariate Z is defined as total public health spending430

by local authority standardized by the total population in each authority, tph hereafter.431

The purpose of this is to take into consideration a type of Engel’s law, which might432

be in operation within the context of MHS. To understand this idea more clearly, let433

us recall the Engel’s law in economics which suggests that the poorer a family is, the434

larger the budget share it spends on nourishment. Within our panel data model, the435

varying coefficient specification helps to highlight local authorities’ views about each of436
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the exogenous variables. For example, effect of the percentage of population under 14437

on MHS is higher when TPH is low suggests that the variable is considered an essential438

determinant. On the other hand, effect of the percentage of male population on MHS is439

lower when TPH is low suggests that the variable is considered to be important though440

not essential.441

Figure 1: Dependence implied by weight matrices under consideration

4.1.2. Spatial Error Dependence (SED) versus Spatial Lag Dependence (SLD)442

There often exists an association between MHS spendings made by two or more local443

authorities. In the literature, such an association is often modelled based on either the444

SLD or SED. The SLD model is useful for modelling endogenous effects, which explain445

variations in individual behaviour by the prevalence of the behaviour in a group, contextual446

effects, which explain individual behaviour by the variation of background characteristics447

of the group, and correlated effects, which assess whether individuals facing a similar envi-448

ronment or sharing similar individual characteristics will behave the same way. However,449
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Table 7: Descriptive statistics

Mean StD Min Max

tph 65.793 24.372 29.739 172.647

mhs 13.265 7.163 0.100 53.710

nuc 5,169.98 4,228.38 105.00 48,145.00

pmp 0.495 0.009 0.473 0.553

pu14 0.172 0.020 0.135 0.247

smr 967.366 131.461 583.100 1345.800

noj 202,926 175,994 19,000 2,130,000

plp 0.107 0.028 0.042 0.216

mhp 274,133 173,263 105,000 1,425,000

mww 469.094 77.396 332.100 784.400

psq 2823.152 3367.706 63.000 16425.320

its usefulness is diminished by its inability to disentangle or to identify these effects, i.e.450

the so-called reflection problem posed by Manski (1993). Within the context of our model,451

there are enough reasons to believe that a more relevant type of dependence is the SED. In452

(4.2), since Z represents the authorities specific socio-demographic/economic attributes,453

β0,1(Z) can help to indirectly model the contextual and correlated effects. Furthermore,454

the non-linear interactions, which are modelled via our varying coefficient specification,455

can help to capture these effects even more effectively. In addition, measurement errors456

that spill across grid boundaries, for example, can easily lead to the SED. Otherwise,457

there may exist unobservable latent variables that might be unaccounted for in the model.458

For instance, closure of a large psychiatric hospital, which serves patients from various459

municipalities, clearly has an impact on social care sector across a wide territory. Such a460

closure of hospitals, which has been one of the most prominent features of mental health461

policy in the UK for some years, will substantially increase the need for social care ser-462

vices across a wide area and ultimately influencing expenditure. Another example would463

be the provision of high-secure and medium-secure units for people with forensic needs,464

often organised at multi-regional level in line with nationally agreed population catchment465

areas. Their funding may be a NHS hospital, NHS trust, or other independent provider’s466

responsibility, but there will be again a social care shared (spatial) resource effect of not467

providing these services. Other sources of unobserved spatial concentration could be sug-468

gested as the high psychiatric hospital admission in two or more neighbouring authorities,469

which may be caused by noise pollution from airports. Noise has been the major environ-470

mental issue in the field of aviation, primarily impacting residential communities close to471

airports by affecting community annoyance, sleep deprivation, and mental health issues.472
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4.1.3. Spatial weight matrices473

Regarding the SAR in (2.3), how and to what extent the MHS by a local authority474

depends on that of the others are captured by elements in the matrix WN . In spatial475

econometrics in general, a weight matrix is constructed based either on geographical or476

socio-economic/demographic distances of individuals. Within the context of our model,477

we argue that geographical-based weight matrices are more effective due to a number478

of reasons. Firstly, they are exogenous to the model and also time-non-varying. These479

conditions are required, but cannot be guaranteed when adopting weights based on socio-480

economic/demographic distance metrics. Moreover, our varying-coefficient specification481

enables modelling non-linear interactions between the risk factors of mental health need482

and authorities specific socio-economic/demographic attributes. Hence, it is reasonable to483

assume that socio-economic/demographic interactions of MHS spending are fully captured484

within the model. In the current section, we consider a similar set of weight matrices to485

that used in Section 3, so that we can analyse if and how estimation results change with486

weight matrices that differ in their degree of sparseness. In particular, we consider weights487

matrices, which are constructed based on (i) the k-nearest neighbours criteria, where k is 4,488

10, or 16, and (ii) sphere of influence. Figure 1 depicts spatial dependence implied by these489

weight matrices, which are referred to hereafter as K4, K10, K16 and SW, respectively.490

4.2. Empirical analysis491

We begin with basic data exploration before discussing estimation results in detail.492

4.2.1. Basic data exploration493

Table 7 presents descriptive statistics, which describe basic features of the data used in494

our study. Figure 2 presents the averagemhs (i.e. per capita measure of standardised MHS495

for persons age between 18 and 64) for all the local authorities over 2016/17 to 2019/20.496

It is evident that mhs tends to distribute in clusters, with the highest concentrations in497

metropolitan areas such as Greater London, Greater Manchester and Birmingham.498

4.2.2. Estimation results499

The steps taken in our analysis coincide with the methodological development in

Section 2. We first estimate the spatial parameters using the likelihood methods discussed

in Section 2.2, then perform variable selection using the SAREC-KLASSO method. Once

irrelevant regressors are identified, we employ the test procedure discussed in Section

2.4 (as the third step) to check whether associated functional coefficients are constant

functions. The estimation results are summarised in Table 8, and graphically presented

in Figures 3 to 12. In these figures, the red lines are confidence bands drawn at the 90%

confidence level [
β̂j(z)− d̂N , β̂j(z) + ∆(z)

]
, (4.3)
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Figure 2: Per capita measure of standardised MHS for persons age between 18 and 64 (mhs)

where β̂j(z) is an unpenalised estimate obtained after excluding irrelevant regressors,

∆(z) =
{
dN + [log 2− log {− log(1− α)}] (−2 log h)−1/2

}
× ˆSD

{
β̂j(z)

}
,

α = 0.1, dN and ˆSD2
{
β̂j(z)

}
are both defined in (2.33), whereas the broken blue line is

computed as follows

Ĉj =
1

NT

T∑
i=1

T∑
t=1

β̂j(Zit). (4.4)

Below we begin by discussing some important findings on the modelling specifications.500

� In both panels of the table, the estimates of the autoregressive parameter increase501

as higher number of nearest neighbours being taken into consideration. Moreover,502

the estimates listed in panel (a) are closely similar to those in (b).503

� Also in both cases, the outcomes of the variable selection do not variate across504

different weight matrices used. The selected number of relevant variables are 5 and505

3 when z is defined as the percentage of right-wing voters, vote, and total public506

health, tph, respectively. Similarly, the outcomes of the coefficient constancy test507
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Table 8: Estimation results

(a) z is defined as percentage of right-wing voters (vote)

W ρ ϕ K̂ inct nuc pmp pu14 smr noj plp mhp mww psq

K4 0.159 1.767 5 ✖ · × · × · · · × ×
3.833 · 2.561 · 2.277 · · · 0.151 0.723

K10 0.208 1.786 5 ✖ · ✖ · × · · · × ×
3.738 · 3.415 · 2.139 · · · 0.455 1.182

K16 0.266 1.812 5 ✖ · ✖ · × · · · × ×
3.268 · 3.453 · 1.872 · · · 0.127 1.239

SI 0.208 1.747 5 ✖ · ✖ · × · · · × ×
3.633 · 3.745 · 2.341 · · · 0.374 0.752

K0 · · · ✖ · ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖

13.007 · 8.765 4.967 10.846 10.743 6.547 4.292 9.829 8.586

(b) z is defined as total public health (tph)

W ρ ϕ K̂ inct nuc pmp pu14 smr noj plp mhp mww psq

KW4 0.185 1.785 3 ✖ · · · · · · · ✖ ✖

5.891 · · · · · · · 3.376 5.489

KW10 0.255 1.761 3 ✖ · · · · · · · ✖ ✖

5.11 · · · · · · · 3.259 5.294

KW16 0.298 1.815 3 ✖ · · · · · · · ✖ ✖

4.743 · · · · · · · 3.334 5.416

SW 0.212 1.769 3 ✖ · · · · · · · ✖ ✖

5.709 · · · · · · · 3.511 5.021

K0 · · · ✖ · ✖ × ✖ ✖ × ✖ ✖ ✖

17.025 · 5.327 2.137 13.679 8.945 2.214 5.898 5.282 6.606

Note: “×” signifies variables (i) which are selected to be relevant and (ii) whose associated functional

coefficients are statistically tested to be constant functions at 5% level. “✖” signifies variables (i) which

are selected to be relevant and (ii) whose associated functional coefficients are statistically tested to be

non-linear functions at 5% level.

remain largely unchanged across different weight matrices used. However, without508

taking into consideration the potential SAR and error component structure, the509

selection suggests that all (but one) variables in each of the panels are relevant.510

Such a finding is in significant contrast to that based on the SAREC-KLASSO511

method. In addition, the test statistics of the coefficient constancy test are much512

larger compared to those associated with K4, K10, K16, SI and K0.513

� By applying the SAREC-KLASSO method, we have found that the intercept and514

two other regressors are relevant in explaining the disparities between mental health515

spending by councils in England, namely median weekly wage (mww) and population516

per square kilometre (psq). While the effects of these regressors depends non-linearly517

on total public health (tph), they are independent of the percentage of right-wing518

voters (vote). These findings are also supported by the confidence bands drawn519

in Figures 3 to 8. These confidence bands are drawn at the 10% significance level520

and suggest consentaneously that estimates of the functional coefficients for the521

intercept, mww and psq are statistically significant. Furthermore, the dependence522

of their effects on tph and independence from vote, which we highlighted earlier, are523

also confirmed.524

� Interestingly, the percentage of male population (pmp) and standardized mortality525
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Figure 3: Estimates coefficient function of the intercept: Z represents vote

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

ratio (smr) are also selected as relevant, but only when z is defined as vote. In this526

regard, the coefficient constancy test suggests that the effect of pmp on mhs is de-527

pendent of vote, whereas that of smr is independent. The second part of this finding528

is unusual because, if they exist, such constant effects of smr should also be found529

in the bottom panel of the table. A closer inspection of the test statistic suggests530

that the effect of smr is a borderline case in which the null hypothesis of coefficient531

constancy can be rejected by increasing the significant level slightly. Furthermore,532

the confidence bands drawn in the top-right panel Figures 4 to 8 confirm that the533
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effects of smr on mhs indeed are dependent of vote.534

Figure 4: Estimates coefficient functions based on KW4: Z represents vote

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).
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Figure 5: Estimates coefficient function of the intercept: Z represents tph

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

We now shift our attention to the empirical implications of the functional coefficients.535

Let us begin with Figures 3 and 5, which present the estimates of β0,1(Z) in (4.2) for each536

of the weight matrices used.537

� From the figures, it is clear that these estimates (and their associated confidence538

bands) are consistent across the weight matrices used. As the results, our discussion539

will only concentrate on the top left panels of each figure, which are based on KW4,540

for Z defined by vote and by tph, respectively.541

� The estimate of the functional coefficient suggests that per capita spending on mental542

health services is higher among the councils, which are dominated by central-right543
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politics. However, being dominated by central-left politics does not seem to have544

statistically significant effect.545

� Furthermore, we find that mhs is treated as a luxury goods in the lower region of546

the tph support, whereas it is viewed as an inferior goods in the higher region.547

We now analyse estimates of the remaining functional coefficients, which are presented in548

Figures 3 to 12.549

� From the figures, it is clear that these estimates (and their associated confidence550

bands) are quite consistent across the weight matrices used. As the results, our551

discussion will only concentrate on Figures 4 and 9, which are based on KW4, for552

Z defined by vote and by tph, respectively.553

� The impact of population density on spending is positive and significant as we ex-554

pected since we anticipate higher mental health expenditure in inner-city areas that555

are more densely populated.556

� Furthermore, we find strong evidence that mww should have a demand-side inter-557

pretation instead since councils with higher median weekly earnings seem to spend558

more on mental health services. Such a result is consistent with that reported in559

Moscone et al. (2007) for their spatial error model. The estimate of the functional560

coefficient suggests that impact of mww on mhs increases between low to medium561

tph (i.e. mww plays a similar role to the luxury goods in the Engel curve literature),562

but decreases between medium to high mhs (i.e. mww plays a similar role to the563

inferior goods in the Engel curve literature).564

� Moreover, independently to vote and tph, the percentage of male population does565

not seem to have a significant effect on the mental health service spending across566

councils. However, by conditioning its effect on the UK political spectrum, it seems567

that pmp has a positive (negative) impact on mhs in councils that are dominated568

by central-left (central-right) politics.569

� Similarly, independently to vote and tph, the standardised mortality ratio does not570

seem to have a significant effect on the mental health service spending across councils.571

However, by conditioning its effect on the UK political spectrum, it seems that smr572

has a positive impact on mhs in councils that are dominated by central-left politics.573

574

5. Conclusions575

The research in this paper focuses on two of the most discussed areas of methodological576

development in panel data analysis, namely spatial error dependence and varying coeffi-577

cient panel data models. We established a new varying-coefficient panel data model that578

includes spatially correlated error components and introduced the model’s estimation pro-579

cedure and various novel inference methods. Our estimation procedure is an extension of580

the quasi-maximum likelihood method for spatial panel data regression to the conditional581

33



Figure 6: Estimates coefficient functions based on KW10: Z represents vote

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

local kernel-weighted likelihood, whose asymptotic properties were established based on a582

set of primitive assumptions often seen in studies in the nonparametric literature. More-583

over, we established a novel variable selection procedure by extending the Kernel Least584

Absolute Shrinkage and Selection Operator technique to panel data analysis where there585

exists the Cliff-Ord-type models of spatial error dependence. We also extended our pro-586

cedure to handle selection in a more complex specification known in the literature as the587

semi-varying coefficient model. Furthermore, we conduct extensive simulation exercises in588

order to examine the finite sample performance and robustness of our proposed procedures589
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Figure 7: Estimates coefficient functions based on KW16: Z represents vote

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

and illustrated their practical applicability by applying them to analyse municipal dispar-590

ities in MHS spending by councils in England. Specifically, we studied the interaction591

between a set of demand and supply factors of mental health needs and local authorities592

specific political and economic attributes, namely the political preference/ideology and593

total public health spending.594
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Figure 8: Estimates coefficient functions based on SW: Z represents vote

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).
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Figure 9: Estimates coefficient functions based on KW4: Z represents tph

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

Figure 10: Estimates coefficient functions based on KW10: Z represents tph

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).
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Figure 11: Estimates coefficient functions based on KW16: Z represents tph

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).

Figure 12: Estimates coefficient functions based on SW: Z represents tph

Note: The red solid curves are 90% confidence bands defined in (4.3). The blue broken line is Ĉj in (4.4).
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6. Appendices595

This section consists of seven appendices. Appendix A provides a set of useful definitions,596

whereas Appendix B discusses the proof of Lemma 2.1 , Theorem 2.1 , and Theorem 2.2(a).597

Appendix C presents a set of lemmas that will be useful for the proof in Appendices D to G that598

follow. Appendices D presents the proof of Theorem 2.2(b) and Theorem 2.3, while Appendices E599

to G provide detailed proof for the results in Sections 2.3 to 2.5, respectively.600

A. Definitions601

For an arbitrary vector P ∈ Rn×1, define its Euclidean norm as

∥P∥ :=
√

p21 + · · ·+ p2n.

For an arbitrary matrix Q ∈ Rn×m, define its Frobenius norm as ∥V ∥F :=
(∑n

i=1

∑m
j=1 |vij |2

)1/2
.

Also, define a sequence of combination pairs (i, t) ≡ it = {11, 21, . . . , N1, 12, . . . , N2, 13, . . . , NT}.
Let m = (mit,d) ∈ RNT×D denote an arbitrary NT ×D matrix with rows

m⊤
11,m

⊤
21, . . . ,m

⊤
N1,m

⊤
12, . . . ,m

⊤
N2,m

⊤
13, . . . ,m

⊤
NT ,

i.e. mit is D× 1 and m⊤
it is 1×D, and columns v1, v2, . . . , vD, i.e. vd is NT × 1. Moreover, define

B0 = (β⊤
0 (Z11), . . . , β

⊤
0 (ZN1), β

⊤
0 (Z12), . . . , β

⊤
0 (ZN2), . . . , β

⊤
0 (ZNT ))

⊤ ∈ RNT×D

and

B̃ = (β̃⊤(Z11), . . . , β̃
⊤(ZN1), β̃

⊤(Z12), . . . , β̃
⊤(ZN2), . . . , β̃

⊤(ZNT ))
⊤ ∈ RNT×D.

B. Proof of Lemma 2.1, Theorem 2.1 and Theorem 2.2(a)602

B.1. Proof of Lemma 2.1:603

The derivation of (2.12) is straightforward since the third term of (2.9) can be written as604

− 1

2σ2
v

{u⊤
N Q̄

⊤
NKN Q̄NuN} = − 1

2σ2
v

{(β0(z)− β(z))⊤Ẍ⊤
NKN ẌN (β0(z)− β(z))}

− 1

2σ2
v

{ü⊤
0NKN ü0N}. (B.1)

In addition, the solutions for the optimization problem ℓ̄cz(δ) ≡ max
β,σ2

v

ℓ̄z(β, σ
2
v , ϕ, ρ) are:

β̄(z) = {E[Ẍ⊤
NKN ẌN |z]}−1E[Ẍ⊤

NKN ẌN |z]β0(z) = β0(z)

and

σ̄2
v = (1/NT )σ2

v0TR[Q0N Q̄
⊤
NKN Q̄N ]

 N∑
j=1

T∑
s=1

Kh(Zjs − z)

−1

Hence, substitution of these into (2.12) leads immediately to (2.13).605

39



B.2. Proof of Theorem 2.1:606

We first recall ℓ̃cz(δ) ≡ maxβ,σ2
v
ℓ(β, σ2

v , ϕ, ρ), which was shown in (2.11) to be

ℓ̃cz(δ) = − 1

2

[
log(2πσ̃2

v) + log |QN |+ 1
] N∑
j=1

T∑
s=1

Kh(Zjs − z), (B.2)

and ℓ̄cz(δ) ≡ max
β,σ2

v

ℓ̄z(β, σ
2
v , ϕ, ρ) for which

ℓ̄cz(δ) = − 1

2

[
log(2πσ̄2

v) + log |QN |+ 1
] N∑
j=1

T∑
s=1

Kh(Zjs − z) (B.3)

established in Lemma 2.1. Given the unique identification of δ0, consistency of δ̂ = (ϕ̂, ρ̂)⊤ as607

stated in the theorem follows from the convergence of 1
NT [ℓ̃

c
z(δ) − ℓ̄cz(δ)] uniformly to zero on ∆.608

This can be established in two steps, namely (i) establishing point-wise convergence of 1
NT ℓ̃

c
z(δ) to609

1
NT ℓ̄

c
z(δ), and (ii) establishing uniform Lipschitz continuity of 1

NT [ℓ̃
c
z(δ)− ℓ̄cz(δ)] over δ ∈ ∆.610

To perform the first step, we need to note firstly that

1

NT
[ℓ̃cz(δ)− ℓ̄cz(δ)] = −1

2
log

(
σ̃2
v

σ̄2
v

)
.

Therefore, we only have to show that σ̃2
v = σ̄2

v + OP ((NT )−1/2). To this end, let us write ũjs =611

ÿjs − Ẍjsβ̃it = Ẍjs(β0 − β̃it) + ü0js, where ü0js = ÿjs − Ẍjsβ0, so that612

ũ⊤
jsũjs = {Ẍjs(β0 − β̃it) + ü0js}⊤{Ẍjs(β0 − β̃it) + ü0js}

= {β0 − β̃it}⊤Ẍ⊤
jsẌjs{β0 − β̃it}+ {β0 − β̃it}⊤Ẍ⊤

jsü0js + ü⊤
0jsẌjs{β0 − β̃it}+ ü⊤

0jsü0js.

Making use of (2.10) enables writing β̃it = β0 + û0it, where

ũ0it =

 N∑
j=1

T∑
s=1

Ẍ⊤
jsẌjsKh(Zjs − Zit)

−1
N∑
j=1

T∑
s=1

Ẍ⊤
jsü0jsKh(Zjs − Zit)

and hence

ũ⊤
jsũjs = ũ⊤

0itẌ
⊤
jsẌjsũ0it − ũ⊤

0itẌ
⊤
jsü0js − ü⊤

0jsẌjsũ0it + ü⊤
0jsü0js. (B.4)

Moreover,613

σ̃2
v =

1

NT

N∑
j=1

T∑
s=1

ũ⊤
jsũjsKh(Zjs − Zit)

=
1

NT

N∑
j=1

T∑
s=1

{
ũ⊤
0itẌ

⊤
jsẌjsũ0it − ũ⊤

0itẌ
⊤
jsü0js − ü⊤

0jsẌjsũ0it + ü⊤
0jsü0js

}
Kh(Zjs − Zit)

and614

σ̃2
v − σ̄2

v =
1

NT

N∑
j=1

T∑
s=1

{ü⊤
0jsü0js − E(ü⊤

0jsü0js)

+ [R1,js − E(R1,js)]− [R2,js − E(R2,js)] + E(R1,js)− 2E(R2,js)}Kh(Zjs − Zit)
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where

R1,js = ũ⊤
0itẌ

⊤
jsẌjsũ0it and R2,js = ũ⊤

0itẌ
⊤
jsü0js. (B.5)

In this regard, we note firstly that

1

NT
ü⊤
0N ü0N = σ̄2

v +OP ((NT )−1/2) (B.6)

under conditions required in Assumption A. The remaining terms in (B.5) can be dealt with:

E

 1

NT

N∑
j=1

T∑
s=1

R1,js

 =
1

NT

N∑
j=1

T∑
s=1

E{ũ⊤
0itẌ

⊤
jsẌjsũ0it} = O((NT )−2h−1) (B.7)

and

E

(
1

NT

N∑
i=1

T∑
t=1

R2,js

)
=

1

NT

N∑
j=1

T∑
s=1

E
{
ũ⊤
0itẌ

⊤
jsü0it

}
= O((NTh1)−1/2). (B.8)

To obtain these results requires noting firstly that we have, by using the spectral decomposition615

of a symmetric positive (or negative) definite matrix and the Cauchy-Schwartz inequality,616

N∑
j=1

T∑
s=1

E
{
ũ⊤
0itẌ

⊤
jsẌjsũ0it

}
≤
( √

p

γ̃min
it

)2 N∑
j=1

T∑
s=1

E
{
ǔ⊤
0itẌ

⊤
jsẌjsǔ0it

}

≤

(
1

γ̃min
js

)2

λ̈max
js {E||ǔ0N ||2}1/2{E||ǔ0N ||2}1/2 = O((NT )−2h−1), (B.9)

where ǔ0it =
1

NT

∑N
j=1

∑T
s=1 Ẍ

⊤
jsü0jsKh(Zjs−Zit), λ̈

max
it is the maximum eigenvalue of the D×D

symmetric positive definite matrix of Ẍ⊤
N ẌN , and

E

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

T∑
t=1

ǔ0it

∣∣∣∣∣
∣∣∣∣∣
2

=

p∑
l=1

N∑
i=1

T∑
t=1

E(ǔ2
0it,l) = O((NT )−2h−1). (B.10)

This is so because617

N∑
i=1

T∑
t=1

E(ǔ2
0it,l) =

N∑
i=1

T∑
t=1

E[E
(
ǔ2
0it,l|Zjs, Zit

)
]

=
1

(NTh)2

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

∫
E(Ẍ2

js,lü
2
0js|Zjs, Zit)K

2

(
Zjs − Zit

h

)
fz(Zjs)fz(Zit)dZjsdZit

=
1

(NT )2h

N∑
j=1

T∑
s=1

∫ { N∑
i=1

T∑
t=1

E(Ẍ2
js,lü

2
0js|Zjs, Zit)fz(Zit)dZit

}
fz(Zjs)K

2(v)dv

≤ 1

(NT )2h
σ2
v,0K

2
N∑
j=1

T∑
s=1

E(Ẍ2
js,l|Zjs)fz(Zjs) =

1

(NT )2h
σ2
v,0K

2E(Ẍ2
js,l)

= O((NT )−2h−1). (B.11)

Finally, applying the Markov inequality to (B.7) and (B.8) and (B.6) lead to

σ̃2
v = σ̄2

v +OP ((NT )−1/2), (B.12)

so that ℓ̃cz(δ) = ℓ̄cz(δ) +OP ((NT )−1/2).618
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Now, we consider the uniform Lipschitz continuity of σ̃2
v − σ̄2

v . Let us begin with619

sup
||δ−δ∗||<ϵ

|σ̃2
v(δ)− σ̄2

v(δ)− {σ̃2
v(δ

∗)− σ̄2
v(δ

∗)}|

≤ sup
||δ−δ∗||<ϵ

∣∣∣∣∣∣{σ̃2
v(δ̄)}(1) − {σ̄v(δ̄)}(1)

∣∣∣∣∣∣ · ||δ − δ∗|| = oP (1),

where δ∗ ∈ ∆ lies on an ϵ-neighborhood of δ such that ||δ − δ∗|| = 0 as ϵ → 0, δ̄ lies on the line

segment {λδ + (1 − λ)δ∗);λ ∈ (0, 1)} and {σ̃2
v}(1) and {σ̄2

v}(1) denote the gradients of σ̃2
v and σ̄2

v ,

respectively. Hence, the uniform Lipschitz continuity is established by showing∣∣∣∣∣∣{σ̃2
v(δ̄)}(1) − {σ̄2

v(δ̄)}(1)
∣∣∣∣∣∣ = OP (1). (B.13)

In order to show the boundedness of (B.13), let us expand the difference of the gradients as follows

{σ̃2
v(δ̄)}(1) − {σ̄2

v(δ̄)}(1) =
1

NT

{
R′

N − σ2
v0TR

[
Q0N

∂Q−1
N (δ̄)

∂δ̄

]
+R′

1,N −R′
2,N

}
,

whereR′
N ,R′

1,N andR′
2,N denote gradients ofRN = u⊤

NQ−1
N (δ̄)uN ,R1,N (δ̄) =

∑N
i=1

∑T
t=1 R1,it(δ̄)620

and R2,N (δ̄) =
∑N

i=1

∑T
t=1 R2,it(δ̄), respectively. Moreover, E(R′

N ) = σ2
v,0TR

[
Q0N

∂Q−1
N (δ̄)

∂δ̄

]
and621

therefore 1
NT R′

N = 1
NT σ

2
v,0TR

[
Q0N

∂Q−1
N (δ̄)

∂δ̄

]
+OP ((NT )−1/2) by using similar arguments to (B.6).622

The rest of the terms can be similarly worked out as follows E(R′
1,N ) = O((NTh)−3/2) and623

E(R′
2,N ) = O((NTh)−1/2). The detailed derivation of these results are available upon request624

from the authors. Finally, (B.13) holds due to the Markov inequality.625

Now let us consider the unique identification conditions of δ0. The unique identification of δ0
is firstly considered by showing the counter argument. Consider the Jensen’s inequality below

1

NT

{
ℓ̄cz(δ)− ℓ̄cz(δ0)

}
=

1

NT
log |QNQ−1

0N | − 1

2
log

(
TR[Q0N Q̄⊤

NKN Q̄N ]

NT

)
≤ 0. (B.14)

The equality of (B.14) holds when QNQ−1
0N = Q−1

N Q0N = INT . Hence δ0 is not uniquely identified

when there is a sequence such that δN ∈ Dϵ(δ
∗) converges to δ∗ ∈ D̄ϵ(δ0)∩∆ where Dϵ(·) and D̄ϵ(·)

represent an open ϵ-neighborhood and its complement, respectively, and lim
N→∞

QN (δ∗) → lim
N→∞

Q0N .

Hence the unique identification condition requires that

lim sup
N→∞

{
max

δ∈D̄ϵ(δ0)∩∆
ℓ̄cz(δ)

}
̸= lim sup

N→∞
ℓ̄cz(δ0)

for any δ.626

B.3. Proof of Theorem 2.2(a):627

The proof of Theorem 2.2(a) follows from that of Theorem 2.1; see in particular the proof of628

(B.12).629
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C. Useful lemmas630

In this section, we present a set of lemmas that will be useful for the proof that follows. For631

the sake of clarity in the proof, we simplify the notations, so that Ẍ0N ≡ ẌN and ÿ0N ≡ ÿN . Also,632

let Ẍjs be the js-th row of ẌN and ÿjs be the js-th element of ÿN = ÿN .633

Lemma C.1. Let Assumptions A to D hold. Then,

sup
z∈[0,1]

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
Ẍ⊤

it ẌitKh(Zit − z)− E
{
Ẍ⊤

it ẌitKh(Zit − z)
}]∣∣∣∣∣ = OP

{
h2 +

(
log(1/h)

(NT )h

)1/2
}

E
{
Ẍ⊤

it ẌitKh(Zit − z)
}
= f(z)Ω(z) +O(h2), (C.1)

where Ω(z) = E[Ẍ⊤
it Ẍit|Zit = z], which is assumed to have bounded derivative.634

Proof of Lemma C.1: Let us consider firstly a more general case of this result635

sup
z∈[0,1]

∣∣∣∣∣(NT )−1
N∑
i=1

T∑
t=1

[Kh(Zit − z)ξit − E {Kh(Zit − z)ξit}]

∣∣∣∣∣
= OP

{
h2 +

(
log(1/h)

(NT )h

)1/2
}
, (C.2)

where (ξit, Zit) are i.i.d. random vectors, ξit are scalar random variables with E|ξit|s < ∞, and636

supz
∫
|y|sf(z, v)dv < ∞ (where f denotes the joint density of (ξ1, Z1)). The proof of (C.2) can be637

found in various existing works, e.g. Fan and Zhang (2000a). Regarding (C.1):638

E
{
Ẍ⊤

it ẌitKh(Zit − z)
}

= E
{
E[Ẍ⊤

it ẌitKh(Zit − z)|z]
}

= h−1

∫
E[Ẍ⊤

it Ẍit|z]f(Zit)K

(
Zit − z

h

)
dZit

= h−1

∫
E[Ẍ⊤

it Ẍit|z]f(z + vh)K(v)hdv

=

∫
E[Ẍ⊤

it Ẍit|z]{f(z) + f ′(z)vh+ (1/2)f ′′(z)h2v2 +O(h3)}k(v)dv

= E[Ẍ⊤
it Ẍit|z]f(z) +O(h2),

where f(z + vh) = f(z) + f ′(z)vh+ (1/2)f ′′(z)h2v2 +O(h3) is used for the fourth equality.639

Lemma C.2. Let Assumptions A to D hold. Then,

sup
z∈[0,1]

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
X̂⊤

it X̂itKh(Zit − z)− Ẍ⊤
it ẌitKh(Zit − z)

]∣∣∣∣∣ = OP ((NTh)−1). (C.3)

Proof of Lemma C.2: Let us represent (C.3) by using Taylor expansion as follows640

sup
z∈[0,1]

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
X̂⊤

it X̂itKh(Zit − z)− Ẍ⊤
it ẌitKh(Zit − z)

]∣∣∣∣∣
≤ sup

z∈[0,1]

{
||δ̂ − δ|| ·

∣∣∣∣∣∣∣∣X⊤
NKN

∂Q−1
N

∂δ
XN

∣∣∣∣∣∣∣∣
F

}
, (C.4)
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where641

∂Q−1
N

∂ρ
= 2[IT ⊗ (IN − ρW⊤

N )]{Q0,N + (1 + Tϕ)−1Q1,N}[IT ⊗ (IN −WN )], (C.5)

∂Q−1
N

∂ϕ
= [IT ⊗ (IN − ρW⊤

N )]

{
1

(1 + Tϕ)2
Q1,N

}
[IT ⊗ (IN − ρWN )]. (C.6)

The uniform consistency of δ̂ in (C.4) over z ∈ [0, 1] was already established in Theorem 2.1.642

Lemma C.3. Let Assumptions A to D hold, and Σ̃(z) = (NT )−1
∑N

j=1

∑T
s=1 Ẍ

⊤
jsẌjsKh(z−Zjs).

Then,

sup
z∈[0,1]

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
E
{
Ẍ⊤

it ẌitKh(Zit − z)− f(z)Ω(z)
}]∣∣∣∣∣ = OP

{
h2 +

(
log(1/h)

(NT )h

)1/2
}
, (C.7)

sup
z∈[0,1]

∣∣∣Σ̃(z)− f(z)Ω(z)
∣∣∣ = OP

{
h2 +

(
log(1/h)

(NT )h

)1/2
}
. (C.8)

Proof of Lemma C.3: Lemma C.3 follows immediately from (C.1).643

Lemma C.4. Let Assumptions A to D hold. Then644

ûit = h1/2(NT )−1/2
N∑
j=1

T∑
s=1

X̂⊤
js{X̂js[β0(Zit)− β0(Zjs)] + ûjs}Kh(Zit − Zjs)

= h1/2(NT )−1/2
N∑
j=1

T∑
s=1

Ẍ⊤
js{Ẍjs[β0(Zit)− β0(Zjs)] + üjs}Kh(Zit − Zjs) +R1,it +R2,it,

where

üjs = ÿjs − Ẍjsβ0(Zit)

R1,it = h1/2(NT )−1/2X⊤
NKN

∂Q−1
N

∂δ
XN [β0(Zit)− β0(Zjs)] · ||δ̂ − δ||

R2,it = h1/2(NT )−1/2X⊤
NKN

∂Q−1
N

∂δ
uN [β0(Zit)− β0(Zjs)] · ||δ̂ − δ||.

In addition,
1

NT
∥û∥2 = OP (1), (C.9)

where ∥û∥ =
∑N

i=1

∑T
t=1 |ûit|2.645

Proof of Lemma C.4: By using the same argument as in Lemma C.2, i.e. the uniform consistency646

of δ̂ over z ∈ [0, 1] established in Theorem 2.1, R1,it and R2,it are op(1) uniformly over z ∈ [0, 1]647

and are therefore negligible. As the results, we simply write ûit = û1,it + û2,it, where648

û1,it = h1/2(NT )−1/2
N∑
j=1

T∑
s=1

Ẍ⊤
jsẌjs[β0(Zit)− β0(Zjs)]Kh(Zit − Zjs)

û2,it = h1/2(NT )−1/2
N∑
j=1

T∑
s=1

Ẍ⊤
jsüjsKh(Zit − Zjs).
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We intend to show that649

1

NT
E∥û∥2 =

1

NT

N∑
i=1

T∑
t=1

E|ûit|2

≤ 1

NT

N∑
i=1

T∑
t=1

E
{
|û1,it|2 + |û2,it|2 + 2|û1,it| · |û2,it|

}
= O(1). (C.10)

Firstly, we start by writing

û2
1,it =

h

NT

∑
j ̸=ı

∑
s̸=τ

qjs,ıτ,it +
h

NT

N∑
j=1

T∑
s=1

rjs,it = |û1,it|2

E|û1,it|2 =
h

NT

∑
j ̸=ı

∑
s̸=τ

Eqjs,ıτ,it +
h

NT

N∑
j=1

T∑
s=1

Erjs,it, (C.11)

where650

qjs,ıτ,it = [β0(Zit)− β0(Zjs)]
⊤Ẍ⊤

jsẌjsẌ
⊤
ıτ Ẍıτ [β0(Zit)− β0(Zıτ )]Kh(Zit − Zjs)Kh(Zit − Zıτ )

rjs,it = [β0(Zit)− β0(Zjs)]
⊤Ẍ⊤

jsẌjsẌ
⊤
jsẌjs[β0(Zit)− β0(Zjs)]K

2
h(Zit − Zjs).

We consider firstly Eqjs,ıτ,it. Observe that qjs,ıτ,it = qjs,ıτ,it,1 + qjs,ıτ,it,2, where651

qjs,ıτ,it,1 = {β′
0(Zit)}⊤Ẍ⊤

jsẌjsẌ
⊤
ıτ Ẍıτβ

′
0(Zit)(Zjs − Zit)(Zıτ − Zit)Kh(Zit − Zjs)Kh(Zit − Zıτ )

qjs,ıτ,it,2 = CẌ⊤
jsẌjsẌ

⊤
ıτ Ẍıτ (Zjs − Zit)

2(Zıτ − Zit)
2Kh(Zit − Zjs)Kh(Zit − Zıτ ).

In addition, Eqjs,ıτ,it = Eqjs,ıτ,it,1 + Eqjs,ıτ,it,2. Regarding the first term,652

Eqjs,ıτ,it,1 = E{E[qjs,ıτ,it,1|Zjs = Zit, Zıτ = Zit]}

=

∫
{β′

0(Zit)}⊤Ω(Zjs)Ω(Zıτ )β
′
0(Zit)(Zjs − Zit)(Zıτ − Zit)

Kh(Zit − Zjs)Kh(Zit − Zıτ )f(Zit)f(Zjs)f(Zıτ )dZitdZjsdZıτ

= h2

∫
{β′

0(Zit)}⊤Ω(Zjs)Ω(Zıτ )β
′
0(Zit)v1v2K(v1)K(v2)dv1dv2f(Zjs)f(Zıτ )f(Zit)dZit

= h2

∫
{β′

0(Zit)}⊤Ω(Zjs)f(Zjs)Ω(Zıτ )f(Zıτ )β
′
0(Zit)f(Zit)dZit

∫ ∫
v1v2K(v1)K(v2)dv1dv2

= O(h2)o(1),

where Ω(Zjs) = E[Ẍ⊤
jsẌjs|Zjs = Zit] and Ω(Zıτ ) = E[Ẍ⊤

ıτ Ẍıτ |Zıτ = Zit], by which the third and653

forth equality are obtained based on Zjs = Zit + v1h and Zjs = Zıτ + v2h, and654 ∫
{β′

0(Zit)}⊤Ω(Zjs)f(Zjs)Ω(Zıτ )f(Zıτ )β
′
0(Zit)f(Zit)dZit

= E{β′
0(Zit)Ẍ

⊤
it ẌitẌ

⊤
it Ẍitβ

′
0(Zit)} = O(1),

respectively. Regarding the second term, Eqjs,ıτ,it,2 = O(h4) uniformly over all pairs (i, t), i =655

1, . . . , N and t = 1, . . . , T, that is656

Eqjs,ıτ,it,2 ≤ CE
{
|Ẍ⊤

jsẌjsẌ
⊤
ıτ Ẍıτ |

∣∣(Zjs − Zit)
2(Zıτ − Zit)

2Kh(Zit − Zjs)Kh(Zıτ − Zjs)
∣∣}

= O(h4)
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by using the similar argument for Eqjs,ıτ,it,1. Hence, Eqjs,ıτ,it = O(h4). Regarding Erjs,it, in the

same spirit as the above, we can show that

Erjs,it = O(h3) (C.12)

uniformly over all pairs (i, t), i = 1, . . . , N and t = 1, . . . , T. Hence, by applying these results to657

(C.11), we obtain658

E∥û1,it∥2 = (NT )−1h(NT ){(NT )− 1}O(h4) + (NT )−1h(NT )O(h3)

= O((NT )h5)−O(h5) +O(h4) = O(1). (C.13)

Secondly,

û2
2,it =

h

NT


N∑
j=1

T∑
s=1

Ẍ⊤
jsüjsKh(Zit − Zjs)


2

,

so that659

E|û2,it|2 =
h

NT

N∑
j=1

T∑
s=1

E
{
∥Ẍ⊤

jsüjs∥2K2
h(Zit − Zjs)

}
= h−1(NT )−1{(NT )− 1}E

{
∥Ẍ⊤

11ü11∥2K2

(
Z22 − Z11

h

)}
+ h−1(NT )−1K2(0)E

{
∥Ẍ⊤

11ü11∥2
}
. (C.14)

Observe that660

E

{
∥Ẍ⊤

11ü11∥2K2

(
Z22 − Z11

h

)}
= E

{
E

[
∥Ẍ⊤

11ü11∥2K2

(
Z22 − Z11

h

)
|Z11 = Z22

]}
=

∫
ϱ2(Z11)K

2

(
Z22 − Z11

h

)
f(Z11)f(Z22)dZ22dZ11 (by using Z22 = Z11 + vh)

= h

∫
ϱ2(Z11)K

2(v)f(Z22)f(Z11)dZ11dv

≤ Ch

∫
K2(v)dv

∫
ϱ2(Z11)f(Z22)f(Z11)dZ11 = ChKE∥Ẍ⊤

11ü11∥2,

where ϱ2(Z11) = E
{
∥Ẍ⊤

11ü11∥2|Z11 = Z22

}
. Such a result leads to661

E∥û2,it∥2 ≤ (NT )−1{(NT )− 1}CKE
{
∥Ẍ⊤

11u11∥2
}
+ h−1(NT )−1K2(0)E

{
∥Ẍ⊤

11ü11∥2
}

= O(1). (C.15)

Finally, applications of (C.13) and (C.15) in (C.10) complete the proof.662
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Lemma C.5. Let Assumptions A to D hold and h ∝ (NT )−1/5. Then

1

NT

N∑
i=1

T∑
t=1

∥∥∥β̂(Zit)− β0(Zit)
∥∥∥2 = OP

{
(NT )−4/5

}
. (C.16)

Proof of Lemma C.5: In the spirit of Fan and Li (2001), it suffices to show that for any small

probability ϵ > 0 we can always find a constant C > 0 such that

lim inf
NT→∞

P

[
inf

(NT )−1∥m∥2
F=C

Q(B0 + {(NT )h}−1/2m) > Q(B0)

]
= 1− ϵ, (C.17)

where m is as defined in Appendix A. To do so requires observing firstly that663

h(NT )−1
∑N

i=1

∑T
t=1

∑N
j=1

∑T
s=1

{
ŷjs − X̂js

[
β0(Zit) + {(NT )h}−1/2mit

]}2

Kh(Zit − Zjs)

− h(NT )−1
∑N

i=1

∑T
t=1

∑N
j=1

∑T
s=1

{
ŷjs − X̂jsβ0(Zit)

}2

Kh(Zit − Zjs). (C.18)

Furthermore, let α ≡ {(NT )h}−1/2 and observe that664 {
ŷjs − X̂js [β0(Zit) + αmit]

}⊤ {
ŷjs − X̂js [β0(Zit) + αmit]

}
−
{
ŷjs − X̂jsβ0(Zit)

}⊤ {
ŷjs − X̂jsβ0(Zit)

}
=
{
ÿjs − Ẍjs [β0(Zit) + αmit]

}⊤ {
ÿjs − Ẍjs [β0(Zit) + αmit]

}
−
{
ÿjs − Ẍjsβ0(Zit)

}⊤ {
ÿjs − Ẍjsβ0(Zit)

}
+R3. (C.19)

In this regard,665

R3 = − αy⊤N
∂Q−1

N

∂δ
KNXN ||δ̂ − δ||+ αβ0(Zit)

⊤X⊤
N

∂Q−1
N

∂δ
KNXN ||δ̂ − δ||

+ αm⊤
itX

⊤
N

∂Q−1
N

∂δ
KNyN ||δ̂ − δ|| − αm⊤

itX
⊤
N

∂Q−1
N

∂δ
KNXNβ0(Zit)||δ̂ − δ||

+ αm⊤
itX

⊤
N

∂Q−1
N

∂δ
KNXNmitα||δ̂ − δ|| = OP {(NT )−4/5}

by using Theorem 2.1. Hence, the first two terms of (C.19) are the leading terms. A slight rewriting666

of these terms gives667 {
ÿjs − Ẍjs [β0(Zit) + αmit]

}⊤ {
ÿjs − Ẍjs [β0(Zit) + αmit]

}
−
{
ÿjs − Ẍjsβ0(Zit)

}⊤ {
ÿjs − Ẍjsβ0(Zit)

}
= − 2αm⊤

itẌ
⊤
jsẌjs[β0(Zjs)− β0(Zit)] − 2αm⊤

itẌ
⊤
jsüjs + αm⊤

itẌ
⊤
jsẌjsmitα.
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This suggests writing668

R4 = h(NT )−1
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ÿjs − Ẍjs

[
β0(Zit) + {(NT )h}−1/2mit

]}2

Kh(Zit − Zjs)

− h(NT )−1
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ÿjs − Ẍjsβ0(Zit)

}2

Kh(Zit − Zjs).

= − 2h(NT )−1
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{(NT )h}−1/2m⊤
itẌ

⊤
jsẌjs[β0(Zjs)− β0(Zit)]Kh(Zit − Zjs)

− 2h(NT )−1
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{(NT )h}−1/2m⊤
itẌ

⊤
jsüjsKh(Zit − Zjs)

+ h(NT )−1
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{(NT )h}−1/2m⊤
itẌ

⊤
jsẌjsmit{(NT )h}−1/2Kh(Zit − Zjs)

= (NT )−1
N∑
i=1

T∑
t=1

m⊤
itΣ̃(Zit)mit − 2(NT )−1

N∑
i=1

T∑
t=1

m⊤
it ũit (C.20)

where669

Σ̃(Zit) = (NT )−1
N∑
j=1

T∑
s=1

Ẍ⊤
jsẌjsKh(Zit − Zjs)

ũit = h1/2(NT )−1/2
N∑
j=1

T∑
s=1

Ẍ⊤
js{Ẍjs[β0(Zjs)− β0(Zit)] + üjs}Kh(Zit − Zjs).

Moreover,670

2(NT )−1
N∑
i=1

T∑
t=1

m⊤
it ûit ≤ 2(NT )−1

N∑
i=1

T∑
t=1

∥m⊤
it∥∥ũit∥

(NT )−1
N∑
i=1

T∑
t=1

m⊤
itΣ̃(Zit)mit ≥ (NT )−1

N∑
i=1

T∑
t=1

γ̃min
it ∥mit∥2,

where γ̃min
it denote the smallest eigenvalue of Σ̃(Zit). As the results,671

R4 ≥ (NT )−1
N∑
i=1

T∑
t=1

m⊤
itΣ̃(Zit)mit − 2(NT )−1

N∑
i=1

T∑
t=1

∥m⊤
it∥∥ũit∥

≥ (NT )−1
N∑
i=1

T∑
t=1

γ̃min
it ∥mit∥2 − 2(NT )−1

N∑
i=1

T∑
t=1

∥m⊤
it∥∥ũit∥

≥ (NT )−1
N∑
i=1

T∑
t=1

γ̃min
it ∥mit∥2 − 2

{
(NT )−1∥m∥2

}1/2 {
(NT )−1∥ũ∥2

}1/2 ≥ R5,

where the third inequality is due to the Cauchy–Schwarz inequality and672

R5 = γ̃min · (NT )−1∥m∥2 − 2
{
(NT )−1∥m∥2

}1/2 {
(NT )−1∥ũ∥2

}1/2
= γ̃minC2 − 2C

{
(NT )−1∥ũ∥2

}1/2
, (C.21)

C = {(NT )−1∥m∥2}1/2.
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In this regard, it is the case that γmin
0 > 0. Since (NT )−1∥ũ∥2 = OP (1) using Lemma C.4, positivity673

of R5 is ensured for sufficiently large C. Finally, note that h(NT )−1 = (NT )−4/5.674

Lemma C.6. Let Assumptions A to E hold. Then

(NT )−1
N∑
i=1

T∑
t=1

∥∥∥β̂λ,a(Zit)− β0(Zit)
∥∥∥2 = OP

{
(NT )−4/5

}
, (C.22)

where β̂λ,a(Zit) = {β̂λ,1(Zit), . . . , β̂λ,D0
(Zit)}⊤.675

Proof of Lemma C.6: Given Lemma C.5 and its proof, we may begin by noting that676

h(NT )−1
{
Qλ(B0 + {(NT )h}−1/2m)−Qλ(B0)

}
= R4 + OP

{
(NT )−4/5

}
+ h(NT )−1

D∑
d=1

λd

[
∥b0d + {(NT )h}−1/2vd∥ − ∥b0d∥

]
.

To prove Lemma C.6 only requires showing that677

R6 = h(NT )−1
D∑

d=1

λd

[
∥b0d + {(NT )h}−1/2vd∥ − ∥b0d∥

]
= h(NT )−1

{
D0∑
d=1

λd

[
∥b0d + {(NT )h}−1/2vd∥ − ∥b0d∥

]
+

D∑
d=D0+1

λd∥{(NT )−1/2vd∥

}
→ 0.

With regard to the first term,678

R7 = h(NT )−1
D0∑
d=1

λd

[
∥b0d + {(NT )h}−1/2vd∥ − ∥b0d∥

]
≤ h1/2(NT )−3/2

D0∑
d=1

λd∥vd∥

≤ h1/2(NT )−3/2aNT

D0∑
d=1

∥vd∥ ≤ h1/2(NT )−1aNT

{
(NT )−1

D0∑
d=1

∥vd∥2
}1/2

=
{
h1/2(NT )−1aNT

}
C,

which converges to zero since
{
h1/2(NT )−1aNT

}
∝ (NT )11/10aN → 0 under the conditions of the679

lemma. Furthermore, the second term can be similarly worked out. That is680

R8 =

D∑
d=D0+1

λd∥{(NT )−1/2vd∥ ≤ h1/2(NT )−3/2
D∑

d=D0+1

λd∥vd∥

≤ h1/2(NT )−3/2aNT

D∑
d=D0+1

∥vd∥ ≤ h1/2(NT )−1aNT

{
(NT )−1

D∑
d=D0+1

∥vd∥2
}1/2

=
{
h1/2(NT )−1aNT

}
C → 0.

Lemma C.7. Let Assumptions A to E hold. Also, let

α23t =

N∑
j=1

T∑
s=1

Ẍk,jsẌjs[β0(Zit)− β̂λ(Zit)]Kh(Zit − Zjs).
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Then, (
N∑
i=1

T∑
t=1

α23t

)1/2

≤ OP {(NT )h−1/2}. (C.23)

Proof of Lemma C.7: Observe that

α2
23t ≤ ∥β0(Zit)− β̂λ(Zit)∥2

∥∥∥∥∥∥
N∑
j=1

T∑
s=1

Ẍk,jsẌjsKh(Zit − Zjs)

∥∥∥∥∥∥
2

,

so that681

N∑
i=1

T∑
t=1

α2
23t ≤ (NT )

{
1

NT

N∑
i=1

T∑
t=1

∥β0(Zit)− β̂λ(Zit)∥2
}

×(NT )2

∥∥∥∥∥∥ 1

NT

N∑
j=1

T∑
s=1

Ẍk,jsẌjsKh(Zit − Zjs)

∥∥∥∥∥∥
2

.

= (NT )OP

{
(NTh)−1

}
OP {(NT )2},

where the final result is based on Lemma C.5 and since

1

NT

N∑
j=1

T∑
s=1

Ẍk,jsẌjsKh(Zit − Zjs) = OP (1),

which follows Lemma C.1.682

Lemma C.8. Let Assumptions A to E hold. Then

P
(∥∥∥b̂λ,d∥∥∥ = 0

)
→ 1 for any D0 < d ≤ D.

Proof of Lemma C.8: Consider the D-th column of B̂λ, i.e. b̂λ,D. Such solution must satisfy

0 =
∂Qλ(B)

∂bD

∣∣∣B=B̂λ
= α1 + α2, (C.24)

where

Qλ(B) =

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{
ŷjs − X̂jsβ(Zit)

}2

Kh(Zit − Zjs) +

D∑
d=1

λd∥bd∥

as in (2.22), α1 = λD(bD/∥bD∥) and α2 is also a NT × 1 vector in which

α2,it = −2

N∑
j=1

T∑
s=1

X̂D,js{ŷjs − X̂jsβ̂λ(Zit)}Kh(Zit − Zjs). (C.25)

Let us first consider α2. Observe that

{ŷjs − X̂jsβ̂λ(Zit)} = {(X̂jsβ0(Zjs) + ûjs)− X̂jsβ0(Zit) + X̂jsβ0(Zit)− X̂jsβ̂λ(Zit)}.

This leads to

α2,it = α21,it + α22,it + α23,it,
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where

α21,it =

N∑
j=1

T∑
s=1

ẌD,jsüjsKh(Zit − Zjs) +R21,it,

α22,it =

N∑
j=1

T∑
s=1

ẌD,jsẌjs(β0(Zjs)− β0(Zit))Kh(Zit − Zjs) +R22,it,

α23,it =

N∑
j=1

T∑
s=1

ẌD,jsẌjs(β0(Zit)− β̂λ(Zit))Kh(Zit − Zjs) +R23,it.

Since R21,it, R22,it and R23,it are respectively defined in the same manner as R1,it, R2,it and R3,683

they are asymptotically negligible.684

We are able to obtain the following results by omitting these negligible terms. Firstly, (C.14)

suggests that α2
21,it = O

(
h−2

)
, so that(

N∑
i=1

T∑
t=1

α2
21,it

)1/2

= OP

(
{(NT )2h−2}1/2

)
= OP

(
(NT )h−1

)
.

Similarly, (C.12) implies α2
22,it = O(h), so that(

N∑
i=1

T∑
t=1

α2
22,it

)1/2

= OP

(
(NT )h−1/2

)
.

Moreover, Lemmas C.1 and C.6 point to685

α23,it ≤

{
N∑
i=1

T∑
t=1

∥β0(Zit)− β̂λ(Zit)∥2
}1/2


N∑
i=1

T∑
t=1

∥∥∥∥∥∥
N∑
j=1

T∑
s=1

ẌD,jsẌjsKh(Zit − Zjs)

∥∥∥∥∥∥
2


1/2

=
[
(NT )OP ((NT )−4/5) ·OP ((NT )2)

]1/2
= OP

(
(NT )h−1/2

)
.

These implies collectively that686

∥α2,it∥ =

(
N∑
i=1

T∑
t=1

α2
2,it

)1/2

≤

(
N∑
i=1

T∑
t=1

α2
21,it

)1/2

+

(
N∑
i=1

T∑
t=1

α2
21,it

)1/2

+

(
N∑
i=1

T∑
t=1

α2
23,it

)1/2

+

{
2

(
N∑
i=1

T∑
t=1

α21,it

)(
N∑
i=1

T∑
t=1

α22,it

)}1/2

+

{
2

(
N∑
i=1

T∑
t=1

α21,it

)(
N∑
i=1

T∑
t=1

α23,it

)}1/2

+

{
2

(
N∑
i=1

T∑
t=1

α22,it

)(
N∑
i=1

T∑
t=1

α23,it

)}1/2

= OP

(
(NT )h−1/2

)
. (C.26)

Finally, it is the case that

∥α2∥ =
√
α2
2,11 + · · ·+ α2

2,NT ≤
√
α2
2,11 + · · ·+

√
α2
2,NT = OP

(
(NT )h−1/2

)
(C.27)

since
√
α2
2,it =

√
α2
2,it,1 + · · ·+ α2

2,it,D = ∥α2,it∥.687
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Next, we consider α1 = λD(bD/∥bD∥). Since bd = (βd(Z11), . . . , βd(ZNT ))
⊤ and ∥bd∥ =688 √∑N

i=1

∑T
t=1 β

2
d(Zit), it is the case that689

∥α1∥ = ∥λd(bd/∥bd∥)∥

= λd

√√√√ N∑
i=1

T∑
t=1

{
β2
d(Zit)

/ N∑
i=1

T∑
t=1

β2
d(Zit)

}

≥ bn ∝ OP

(
(NT )h−1/2

)
.

As the results, P (∥α1∥ > ∥α2∥) → 1 as (NT ) → ∞ as such the condition in (C.24) cannot hold.690

This suggest that b̂λ,d must be located at the place where the objective function is not differentiable,691

i.e. the origin. This leads to P (b̂λ,d = 0) → 1 and completes the proof.692

D. Proof of the results in Section 2.2693

D.1. Proof of Theorem 2.2(b):694

The proof of Theorem 2.2(b) follows immediately from Lemmas C.1 to C.5.695

D.2. Proof of Theorem 2.3:696

Firstly, by using the results of Theorem 2.1, the Taylor expansion of Q̂−1
N can be expressed as

Q̂−1
N = Q−1

0N +
∂Q−1

0N

∂ρ
(ρ̂− ρ0) +

∂Q−1
N

∂ϕ
(ϕ̂− ϕ0) + oP ((NT )−1/2). (D.1)

Accordingly, β̂(z) formula in (2.14) can be re-written as697

β̂(z) = β0(z) +


 N∑

j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z) + Ḋjs(z)OP ((NT )−1/2)

−1

×

 N∑
j=1

T∑
s=1

{X̂⊤
jsX̂js(β0(Zjs)− β0(z)) + X̂⊤

jsû
0
js}Kh(Zjs − z)

 , (D.2)

where û0
js = ŷjs − X̂jsβ0(Zjs). In this regard, Ḋjs(z) = Ḋjs,ρ(z) + Ḋjs,ϕ(z) in which698

Ḋjs,ρ(z) =
1

NT

N∑
j=1

T∑
s=1

Ẋ⊤
0js,ρẊ0js,ρKh(Zjs − z),

Ḋjs,ϕ(z) =
1

NT

N∑
j=1

T∑
s=1

Ẋ⊤
0js,ϕẊ0js,ϕKh(Zjs − z),

where Ẋ⊤
0N Ẋ0N = X⊤

N
∂Q−1

0N

∂δ XN and Ẋ⊤
0N u̇N = X⊤

N
∂Q−1

0N

∂δ uN . In addition, we obtain by using the

Triangular inequality and following standard nonparametric analysis

E||Ḋjs(z)||F ≤ E||Ḋjs,ρ(z)||F + E||Ḋjs,ϕ(z)||F = O(1). (D.3)

52



By using and (D.3), we re-write (D.2) as follows699

β̂(z) = β0(z) +


 N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z) + oP (1)

−1

×

 N∑
j=1

T∑
s=1

Ẍ⊤
0js{Ẍ0js(β0(Zjs)− β0(z)) + ü0

js}Kh(Zjs − z)


+ {R11,N (z) + R12,N (z)}OP ((NT )−1/2), (D.4)

where ü0
js = ÿ0js − Ẍ0jsβ0(Zjs), and700

R11,N (z) =

 N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z)

−1
N∑
j=1

T∑
s=1

Ẋ⊤
0jsu̇

0
jsKh(Zjs − z),

R12,N (z) =

 N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z)

−1
N∑
j=1

T∑
s=1

{
Ẋ⊤

0jsẊ0js(β0(Zjs)− β0(z))
}
Kh(Zjs − z).

We firstly consider the denominator of the above terms. In this regard,701

E

 1

NT

N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z)

 = f(z)E(Ẍ⊤
0jsẌ0jz|Zjs = z)

≥ inf
||z||≤cN

f(z)E(Ẍ⊤
0jsẌ0js|z). (D.5)

By denoting inf
||z||≤cN

fz(z)E(Ẍ⊤
0jsẌ0js|Zjs = z) = D∗, we have

E||R11(z)|| ≤ D∗−1E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

NT

N∑
j=1

T∑
s=1

Ẋ⊤
0jsu̇

0
jsKh(Zjs − z)

∣∣∣∣∣∣
∣∣∣∣∣∣ = O((NTh)−1/2) (D.6)

by using Triangular and Cauchy-Schwartz inequalities, and the standard nonparametric analysis.702

Similarly,703

E||R12(z)|| ≤ D∗−1E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

NT

N∑
j=1

T∑
s=1

{
Ẋ⊤

0jsẊ0js(β0(Zjs)− β0(z))
}
Kh(Zjs − z)

∣∣∣∣∣∣
∣∣∣∣∣∣

= O((NT )−1/2h1/2) +O(h2).

These suggest that we re-write (D.4) as follows704

β̂(z) = β0(z) +


 N∑

j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsKh(Zjs − z)

−1

×
N∑
j=1

T∑
s=1

Ẍ⊤
0js{Ẍ0js(β0(Zjs)− β0(z)) + ü0js}Kh(Zjs − z)

+ oP (1).
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The rest of the proofs is straightforward as shown in the standard varying-coefficient literature.

Let us present the denominator case as follows

E

 1

NTh

N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsK

(
Zjs − z

h

) = D(z) +O(h2),

where D(z) = fz(z)E(Ẍ⊤
0jsẌ0js|z) and

Var

 1

NTh

N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0jsK

(
Zjs − z

h

) = O((NTh)−1),

and705

E

 1

NTh

N∑
j=1

T∑
s=1

Ẍ⊤
0jsẌ0js(β0(Zjs)− β0(z))K

(
Zjs − z

h

) = K2h
2B.

Finally,

E

 1

NTh

N∑
j=1

T∑
s=1

Ẍ⊤
0jsü0jsK

(
Zjs − z

h

) = 0

and706

Var

 1√
NTh

N∑
j=1

T∑
s=1

Ẍ⊤
0jsü0jsK

(
Zjs − z

h

) = V (z).

Therefore, √
NTh

(
β̂(z)− β0(z)−Bias

)
→D N(0,Σ),

where Bias = D−1(z)K2h
2B and Σ = D−1(z)V (z)D−1(z).707

E. Proof of results in Section 2.3708

The following definitions are useful for providing proof of Theorems 2.4 and 2.5 :709

M̂(z) =

(
M̂aa(z) M̂ab(z)

M̂ba(z) M̂bb(z)

)
, N̂(z) =

(
N̂a(z)

N̂b(z)

)
, D̂ =

(
D̂aa 0

0 D̂bb

)
,

where D̂aa and D̂bb are (D0 ×D0) and (D −D0 ×D −D0) diagonal block matrices, respectively,710

whose diagonal elements are λj/∥b̂j∥. In addition,711

M̂aa(z) =
1

NT

N∑
j=1

T∑
s=1

X̂⊤
a,jsX̂a,jsKh(Zit − Zjs), M̂bb(z) =

1

NT

N∑
j=1

T∑
s=1

X̂⊤
b,jsX̂b,jsKh(Zit − Zjs),

M̂ab(z) =
1

NT

N∑
j=1

T∑
s=1

X̂⊤
a,jsX̂b,jsKh(Zit − Zjs) = M̂ba(z),

N̂a(z) =
1

NT

N∑
j=1

T∑
s=1

X̂⊤
a,jsŷjsKh(Zit − Zjs) and N̂b(z) =

1

NT

N∑
j=1

T∑
s=1

X̂⊤
b,jsŷjsKh(Zit − Zjs).
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Moreover,
[
M̂(z) + (NT )−1 D̂

]−1

=

(
Ω̂aa Ω̂ab

Ω̂ba Ω̂bb

)
, where712

Ω̂aa =

(
M̂aa(z) + D̂aa − M̂ab(z)

{
M̂bb + D̂bb

}−1

M̂ba

)−1

,

Ω̂ab = −
{
M̂aa(z) + D̂aa

}−1

M̂ab(z)Ω̂aa, Ω̂ba = −
{
M̂bb(z) + D̂bb

}−1

M̂ba(z)Ω̂bb,

Ω̂bb =

(
M̂bb(z) + D̂bb − M̂ba(z)

{
M̂aa + D̂aa

}−1

M̂ab

)−1

.

An example for the use of the above definitions is to rewrite the penalized estimators as

β̂λ(z) =
[
M̂(z) + (NT )−1 D̂

]−1

N̂(z). (E.1)

E.1. Proof of Theorem 2.4:713

The penalized estimators of β0,b(z) = {β0,D0+1(z), . . . , β0,D(z)}⊤ , i.e. the coefficient vector

associated with the irrelevant regressors, can be expressed as

β̂λ,b(z) = Ω̂ba(z)N̂a(z) + Ω̂bb(z)N̂b(z).

We note firstly that both N̂a(z) and N̂b(z) are uniformly bounded in a similar fashion to Lemmas

C.1 and C.2. Hence, to prove that β̂λ,b(z) → 0 as NT → ∞ uniformly on z ∈ [0, 1] only requires

showing that every elements of Ω̂ba and Ω̂bb converge to zero in the same manner. To this end, we

note that the diagonal elements of D̂bb are λd/∥b̂d∥ for (D0 + 1) ≤ d ≤ D, and

sup
z∈[0,1]

∥β̂(z)∥ → 0,

which is in accordance with Theorem 2.2. Hence,

min
∥∥∥D̂bb

∥∥∥ =

∥∥∥∥∥∥diag
 bN∥∥∥b̂D0+1

∥∥∥ , . . . , bN∥∥∥b̂D∥∥∥

∥∥∥∥∥∥→ ∞ (E.2)

due to Assumption E1. This completes the proof.714

E.2. Proof of Theorem 2.5715

The penalized estimator of β0,a(z) = {β0,1(z), . . . , β0,D0
(z)}⊤ , i.e. the coefficient vector asso-

ciated with the relevant regressors, can be expressed as

β̂λ,a(z) = Ω̂ab(z)N̂b(z) + Ω̂aa(z)N̂a(z),

whereas the unpenalized counterpart is

β̂a(z) = Φ̂ab(z)N̂b(z) + Φ̂aa(z)N̂a(z),

where716

Φ̂aa =

(
M̂aa(z)− M̂ab(z)

{
M̂bb

}−1

M̂ba

)−1

, Φ̂ab = −
{
M̂aa(z)

}−1

M̂ab(z)Φ̂aa,

Φ̂bb =

(
M̂bb(z)− M̂ba(z)

{
M̂aa

}−1

M̂ab

)−1

, Φ̂ba = −
{
M̂bb(z)

}−1

M̂ba(z)Φ̂bb.
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Hence, the difference between these estimators is

β̂λ,a(z)− β̂a(z) = {Ω̂ab(z)− Φ̂ab(z)}N̂b(z) + {Ω̂aa(z)− Φ̂aa(z)}N̂a(z). (E.3)

This implies that proving the theorem requires showing that every elements of Ω̂ab and Ω̂aa converge

to zero. In the other words, the convergence of maxz∈(0,1) ∥β̂λ,a(z) − β̂a(z)∥ depends entirely on

that of

max ∥D̂aa∥ =

∥∥∥∥∥diag
{

aN

∥b̂1∥
, . . . ,

aN

∥b̂D0
∥

}∥∥∥∥∥ . (E.4)

Hence, the claimed result is obtained immediately by noting Assumption E1 and Theorem 2.2.717

E.3. Proof of Theorem 2.6718

An arbitrary model Sλ may be correctly-fitted, under-fitted or over-fitted. Accordingly, we

can create three mutually exclusive sets, R0 = {λ ∈ RD : Sλ = ST }, R− = {λ ∈ RD : Sλ ̸⊃ ST } and

R+ = {λ ∈ RD : Sλ ⊃ ST ,Sλ ̸= T}, which belong to correctly-fitted, under-fitted and over-fitted,

respectively. Also, let λNT denote a reference tuning parameter that satisfies the conditions of

Assumption E1. This can be obtained, for example, by setting λ0 = (NT )−3/2 log(NT ). Moreover,

we can deduce from the proof of Theorem 2.1

RŜSF →P RS̃SF whereas RS̃SF →P σ2
v,0, (E.5)

and from Lemmas C.2 and C.3

Σ̂(z) →P Σ̃(z) whereas Σ̃(z) →P f(z)Ω(z). (E.6)

Furthermore,

∥β̂(Zit)− β̂λ(Zit)∥2 ≥
∥∥∥∥β̂(Zit)∥2 − ∥β̂λ(Zit)∥2

∥∥∥2
due to the reverse triangle inequality.719

We consider first the case of under-fitting, i.e. λ ∈ R−. Recall and rewrite720

RŜSλ = (NT )−2
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{ŷjs − X̂jsβ̂λ(Zit)}2Kh(Zit − Zjs)

= RŜSF + R̂λ, (E.7)

where β̂λ(z) = {β̂λ,1(z), . . . , β̂λ,D(z)}⊤, and721

RŜSF = (NT )−2
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{ŷjs − X̂jsβ̂(Zit)}2Kh(Zit − Zjs),

R̂λ = (NT )−1
N∑
i=1

T∑
t=1

{β̂(Zit)− β̂λ(Zit)}⊤Σ̂(Zit){β̂(Zit)− β̂λ(Zit)}.
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In this regard, these suggest that (i) RŜSF →P σ2
v,0, (ii) for R̂λ we concentrate directly on722

(NT )−1
N∑
i=1

T∑
t=1

{β̂(Zit)− β̂λ(Zit)}⊤Σ̃(Zit){β̂(Zit)− β̂λ(Zit)}

≥ γ̃min

{
(NT )−1

N∑
i=1

T∑
t=1

∥β̂(Zit)− β̂λ(Zit)∥2
}

≥ γ̃min

{
(NT )−1

N∑
i=1

T∑
t=1

∥∥∥∥β̂(Zit)∥2 − ∥β̂λ(Zit)∥2
∥∥∥2}

≥ γ̃min

{
(NT )−1

N∑
i=1

T∑
t=1

∥β̂1(Zit)∥2
}

→P γmin
0 E{β2

0,1(Zit)}, (E.8)

where the third inequality is obtained by assuming that the first coefficient is selected as being

irrelevant, i.e. β̂λ,1(Zit) = 0. Therefore,

RŜSλ = σ2
v + γmin

0 E{β2
0,1(Zit)} (E.9)

in probability. We may similarly define

RŜSλNT
= RŜSF + R̂λNT

,

where

R̂λNT
= (NT )−1

N∑
i=1

T∑
t=1

{β̂(Zit)− β̂λNT
(Zit)}⊤Σ̂(Zit){β̂(Zit)− β̂λNT

(Zit)},

but focus instead on723

(NT )−1
N∑
i=1

T∑
t=1

{β̂(Zit)− β̂λNT
(Zit)}⊤Σ̃(Zit){β̂(Zit)− β̂λNT

(Zit)}

≤ γ̃max

{
(NT )−1

N∑
i=1

T∑
t=1

∥β̂(Zit)− β̂λNT
(Zit)∥2

}

≤ γ̃max

{
(NT )−1

N∑
i=1

T∑
t=1

∥β̂(Zit)− β0(Zit)∥2
}

+ γ̃max

{
(NT )−1

N∑
i=1

T∑
t=1

∥β0(Zit)− β̂λNT
(Zit)∥2

}
,

which converges to zero in probability according to Lemmas C.5 and C.6. Therefore,724

inf
λ∈R−

{BICλ −BICλNT
} = inf

λ∈R−
(RSSλ −RSSλNT

) + (dfλ − dfλNT
)

{
log{(NT )h}
(NT )4/5

}
> 0 in probability. (E.10)

Now, we consider the case where λ ∈ R+, so that an arbitrary model Sλ is over-fitted. In725

addition, let B̂Sλ
= (β̂Sλ

(Z11), . . . , β̂Sλ
(Z11))

⊤ denote an unpenalised estimate, which belongs to726
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the over-fitted model Sλ. Similarly to (E.7), we may define727

RŜSSλ
= (NT )−2

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

{ŷjs − X̂jsβ̂Sλ
(Zit)}2Kh(Zit − Zjs)

= RŜSF + R̂Sλ
,

where

R̂Sλ
= (NT )−1

N∑
i=1

T∑
t=1

{β̂(Zit)− β̂Sλ
(Zit)}⊤Σ̂(Zit){β̂(Zit)− β̂Sλ

(Zit)}.

In this regard, we deduce from the over-fitting nature and the consistency of the unpenalised728

estimator, i.e. Lemma C.5, that R̂λ ≥ R̂Sλ
, so that RSSλ ≥ RSSSλ

. In addition,729

logRSSλ ≥ logRSSSλ

logRSSλ − logRSSF ≥ logRSSSλ
− logRSSF .

Moreover,730

logRSSSλ
− logRSSF

= log

{
1 +

1

(NT )σ̂2
v

n∑
i=1

T∑
t=1

{β̂(Zit)− β̂Sλ(Zit)}
⊤Σ̂(Zit){β̂(Zit)− β̂Sλ

(Zit)}

}
.

In accordance with (E.6), we can concentrate directly on731

log

{
1 +

1

(NT )σ̂2
v

N∑
i=1

T∑
t=1

{β̂(Zit)− β̂Sλ(Zit)}
⊤Σ̃(Zit){β̂(Zit)− β̂Sλ

(Zit)}

}

≥ − 1

σ̂2
v

· 1

(NT )

N∑
i=1

T∑
t=1

{β̂(Zit)− β̂Sλ
(Zit)}⊤Σ̃(Zit){β̂(Zit)− β̂Sλ

(Zit)}

≥ − 1

σ̂2
v

(
γ̃max

{
(NT )−1

N∑
i=1

T∑
t=1

∥β̂(Zit)− β0(Zit)∥2
}

+ γ̃max

{
(NT )−1

N∑
i=1

T∑
t=1

∥β0(Zit)− β̂Sλ
(Zit)∥2

})
= −|OP {(NT )−4/5}|. (E.11)

The first inequality is since log(1 + b) ≥ − log(1 + b) ≥ −b for b ≥ 0. The second inequality is due

to the triangle inequality, whereas the third inequality is in accordance with Lemma C.5. It can

be similarly shown that

logRSSλNT
− logRSSF ≥ −|OP {(NT )−4/5}|, . (E.12)

Hence, we are able to deduce from (E.11) and (E.12)

inf
λ∈R+

(RSSλ −RSSλNT
) ≥ −|OP {(NT )−4/5}|. (E.13)
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Moreover,732

inf
λ∈R−

{BICλ −BICλNT
} = inf

λ∈R−
(RSSλ −RSSλNT

) + (dfλ − dfλNT
)

{
log{(NT )h}
(NT )4/5

}
> 0 in probability. (E.14)

In order to obtain the result in (E.14), observe that (i) P (dfλNT
= D0) → 1 which is an implication733

of Assumption E1, (ii) since λ ∈ R+ and Sλ is an over-fitted model, we must have P (dfλ ≥734

D0 + 1) → 1, and (iii) under Assumption B2 we have log((NT )h) ∝ log(NT ) → ∞ and so735

dfλ − dfλNT
≥ 1 with probability tending to one.736

F. Proof of Corollary 2.1737

Similarly to Theorem 2.2(b), Corollary 2.1 follows immediately from Lemmas C.1.738

G. Proof of results in Section 2.5739

Proof of Corollary 2.2:740

The proof of Corollary 2.2 relies heavily on Theorem 2.4. We commence by noting that the

penalized estimators under the local quadratic approximation, i.e. β̂
(m+1)
λ (z), differs from β̂λ(z)

only by replacing the diagonal matrix D̂ with

D̂(m) = diag

{
λ1

∥b̂(m)
λ,1 ∥

, . . . ,
λK

∥b̂(m)
λ,D∥

}
. (G.1)

We know that ∥b̂(m)
λ,d ∥ = ∥b̂λ,d∥ as m → ∞, for every 1 ≤ d ≤ D, by using the results in Hunter741

and Li (2005). By Theorem 2.4, we also know that P
(∥∥∥b̂λ,d∥∥∥ = 0

)
→ 1 for any (D0 +1) ≤ d ≤ D742

and P
(∥∥∥b̂λ,d∥∥∥ ̸= 0

)
→ 1 for 1 ≤ d ≤ D0. Hence, it must be the case that ∥b̂(m)

λ,d ∥ converges to 0 for743

every D0 < d ≤ D, while converging to a positive number for every d ≤ D0.744

Next we partition D̂(m) into sub-matrices D̂
(m+1)
aa , i.e. upper D0 ×D0 diagonal sub-matrix,745

and D̂
(m+1)
bb , i.e. lower (D − D0) × (D − D0) diagonal sub-matrix. By the definitions in (2.25)746

and (G.1), it must be the case that all the diagonal elements of D̂
(m+1)
aa converge to some finite747

number, whereas those of D̂
(m+1)
bb diverge to infinity when m → ∞.748

Finally, since these conclusions are similar to those drawn for D̂aa and D̂bb, the rest of the749

proof closely follows that of Theorem 2.4.750

Proof of Corollary 2.3:751

The proof of Corollary 2.3 follows that of Corollary 2.2 and Theorem 2.5.752
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