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Abstract Research into “algorithmic discrimination” has largely dismissed the fact
that algorithms are often developed and used by organizations. In this article, we
show that organizational sociology can contribute to a more nuanced perspective
on “algorithmic decision-making.” Drawing on the concept of decision premises,
we differentiate between various formal structures, particularly between different
decision programs (conditional and purposive). This allows us to challenge two key
assumptions, namely that human decision-makers rely heavily on algorithmically
generated recommendations and that discrimination against protected groups needs
to be solved mainly at the level of code.

We identify the usefulness of distinguishing between conditional and purposive
decision programs via a case study centered on the legal context: the risk assessment
software “Correctional Offender Management Profiling for Alternative Sanctions”
(COMPAS) that is employed in the US criminal justice system to inform judicial
personnel about the recidivism risk of defendants. By analyzing the organizational
structures, according to which the COMPAS score is formally and informally em-
bedded in courts, we point out that the score represents an ambiguous and redundant
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information source for judges. The practice of minimizing the relevance of the score
and decoupling it from the legal reasoning backstage particularly reflects the profes-
sional decision autonomy of judges, which is inherent in the legal system. The core
finding of our approach is that strategies to reduce discrimination should not only
scrutinize data quality or the statistical model but also consider the specific forms,
functions, and consequences of the organizational structures that condition the ways
in which discriminatory differences may or may not be (re)produced.

Keywords Organization · Discrimination · Automated decision making (ADM) ·
Legal system · COMPAS · Court · Predictive analytics · Risk assessment

Warum Organisationen einen Unterschied bei „algorithmischer
Diskriminierung“ machen

Zusammenfassung Die Forschung über „algorithmische Diskriminierung“ hat bis-
lang weitgehend außer Acht gelassen, dass Algorithmen von Organisationen ent-
wickelt und eingesetzt werden. Durch den Rückgriff auf die Unterscheidung von
formalen und informalen Organisationsstrukturen im Allgemeinen und das Entschei-
dungsprämissenkonzept im Besonderen, so unser Argument, können zwei zentrale
Thesen über den Einsatz von Software in Organisationen relativiert werden: Organi-
sationstheoretisch zu problematisieren sind zum einen die Annahme, dass algorith-
misch generierte Daten bruchlos in Entscheidungsstrukturen übernommen würden,
und zum anderen die Behauptung, dass diskriminierende Folgen hauptsächlich auf
der Ebene des Software-Codes zu lösen seien.

Den Erkenntnisgewinn einer organisationssoziologischen Perspektive verdeutli-
chen wir exemplarisch anhand einer Fallstudie aus dem Rechtsbereich: der Risi-
kobewertungssoftware COMPAS, die in der US-amerikanischen Strafjustiz zur Be-
wertung des Rückfallrisikos von Angeklagten eingesetzt wird. Durch die Analyse
der Entscheidungsstrukturen, nach denen der COMPAS-Score inter- und intraor-
ganisatorisch eingebettet ist, zeigen wir auf, dass der Score eine mehrdeutige und
redundante Information für richterliche Entscheidungen darstellt. Die in empirischen
Studien beobachtete Praxis, dass Richterinnen und Richter die Relevanz des Scores
minimieren und ihn bei der juristischen Entscheidungsfindung auf der Hinterbüh-
ne abkoppeln, spiegelt insbesondere ihre professionelle Entscheidungsautonomie als
formale Organisationsmitglieder von Gerichten wider. Die wichtigste Erkenntnis un-
seres Beitrags ist, dass Strategien zur Verringerung von diskriminierenden Folgen
nicht nur die Qualität der Daten und der statistischen Modelle untersuchen sollten.
Vielmehr gilt es, insbesondere die spezifischen, eigenlogischen Formen, Funktionen
und Folgen der Organisationsstrukturen zu verstehen, welche die Art und Weise
bedingen, wie diskriminierende Unterschiede (re-)produziert werden können oder
auch nicht.

Schlüsselwörter Organisation · Diskriminierung · Automated decision making
(ADM) · Rechtssystem · COMPAS · Gericht · Prädiktive Analytik ·
Risikobewertung
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1 Introduction

“There’s software used across the country to predict future criminals. And it’s bi-
ased against blacks.” This is the conclusion of an investigative news story published
by ProPublica (Angwin et al. 2016). The story was based on a research report that
ignited a major international controversy about the question of whether risk assess-
ment software is more racially biased than judges. The debate prompted an academic
response in the newly emerged fields of fairness, accountability, and transparency
in machine learning, critical algorithm studies, and AI ethics and data justice, but
much less so in areas that study organizational decision-making. The aim of this
article is to identify the benefits of adding an organizational perspective to the study
of what is called “algorithmic discrimination.”

“Algorithmic systems” have been established for a long time in history, although
in the form of regulations or recipes for structuring almost every human interaction
by minimizing (human) interpretation (Daston and Galison 2007). In the last few
decades, “algorithmic systems” have often been simply automated standardized risk
instruments, in the form of ratings and rankings, for example, used in financial
institutions (Carruthers and Ariovich 2010; Kette 2008; Schwarting 2010; Sinclair
2008; Strulik and Willke 2007), to “rationally” calculate and categorize uncertain
behavior in financial markets (Poon 2007; Rona-Tas and Hiss 2010), or in public
organizations, such as universities, hospitals, and prisons (for the UK, see Mennicken
2013).

Consistent with the common definition in computer science, we see an algo-
rithm as “an abstract, formalized description of a computational procedure” (Dour-
ish 2016). Although the term “algorithm” is a central point of reference in current
studies, we argue that it is both over- and undergeneralized for the purposes of so-
ciological research. A single algorithm or its linkage in a computer program does
not represent a social problem per se as there is no a priori dichotomy; there is not
even a hierarchy between algorithms and social interaction in general or between
algorithms and organizational decision-making in particular. Rather, and in line with
organizational sociology, we presume that members of organizations and algorith-
mically generated data cooperatively interact, sometimes one before the other and
sometimes one after the other; they do not do so in a clear order but according to
need.

To take account of a social-constructivist perspective on algorithms that reflects
their technical and social embeddedness as rules, we acknowledge that algorithms
are not necessarily relevant for the structuring of social actions (Dourish 2016;
Foot et al. 2014; Yeung 2018).1 What is called “algorithmic decision-making” is
therefore simply decision-making that is somehow associated with algorithms. The
relationship may be loose, in the form of “recommendations,” or rigid, described
as “automated decision making” (ADM). In addition, we define discrimination as

1 It is noteworthy that, outside computer science, the attribute “algorithmic” is often used to refer to mod-
els of automation (Dourish 2016). In these cases, the analysis does not focus on the lines of code of an
algorithm or on a set of algorithms and data (often coined “algorithmic systems”) but rather the social
practices that are shaped by some degree of automation.
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something that takes place when specific group-related differences (e.g., age, gender,
race) structure communication and thereby create disadvantages for groups that are
legally protected. By “algorithmic discrimination,” we understand processes in which
algorithmic phenomena, mostly software,2 contribute to discriminatory effects. In
this sense, discrimination related to algorithms can take many forms, as we elaborate
later on.

Research on the relation between algorithms (including the “big data” gener-
ated in the process) and discrimination is highly inter-disciplinary, fragmented, and
methodologically diverse, but has not yet delved deeply into sociological theory on
the conditions and consequences with regard to discrimination and organizational
decision-making. Relevant studies are often aimed at identifying the scope of dis-
crimination and the criteria upon which discrimination takes place and at exploring
different mechanisms that lead to “algorithmic discrimination,” be they the data sets
(which can be “biased”), the calculative models (which may not adequately account
for heterogeneity), and the execution or interpretation of algorithmic recommenda-
tions (which can be too decontextualized, too inflexible, too selective, etc.) (Mitchell
et al. 2021).

Empirical studies have identified forms of “algorithmic discrimination” against
legally protected groups in search engines (Araújo et al. 2016; Caliskan et al. 2017;
Lambrecht and Tucker 2016; Noble 2018; Sweeney 2013; Kay et al. 2015); on plat-
forms such as Uber (Rosenblat et al. 2017) or Airbnb (Edelman et al. 2017; Gilheany
et al. 2015); and on self-described “social networks” like Facebook (Angwin et al.
2017; Hofstra and Schipper 2018). In addition to the “algorithmic discrimination”
associated with commercial platforms that privately organize, curate, and commodify
large parts of both private and public exchange because of their market concentra-
tion (Dolata 2019), risk assessment software has also been characterized as biased.
Prominent cases have been revealed in the credit industry (Avery et al. 2012), in
criminal justice (Angwin et al. 2016; Benjamin 2019; Chouldechova 2017; Hamil-
ton 2019a, b), in social policy (Cech et al. 2019), or in recruitment (Lowry and
MacPherson 1988; Rosenblat et al. 2014).

However, these studies mainly focus on the design of digital technologies and
the divergent impacts on protected groups, but not on the concrete day-to-day han-
dling of data in actual decision-making. Such perspectives neglect the fact that, in
modern societies, communication is differentiated by various forms of social or-
der that can conflict, such as families, organizations, networks, or functional fields.
These contexts vary in their constitutive structures and therefore in how political,
administrative, and economic logics shape data usage. Indeed, scholars who the-
orize algorithms as a form of social ordering through quantification (Beckert and
Aspers 2011; Heintz and Wobbe 2021; Mehrpouya and Samiolo 2016), governance
by numbers (Heintz 2008), or algorithmic governance/regulation (see, for example
Katzenbach and Ulbricht 2019; Yeung 2018) have occasionally pointed out that the

2 Algorithms and computer programs (or software) are different entities: Programs may embody or im-
plement algorithms, but “programs are both more than algorithms (in the sense that programs include
non-algorithmic material) and less than algorithms (in the sense that algorithms are free of the material
constraints implied by reduction to particular implementations)” (Dourish 2016).
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implementation and effects of “big data” are likely to vary along with the organi-
zational contexts in which they appear. Based on neoinstitutionalist theory, a few
studies view “datafication” (Couldry and Yu 2018) and “algorithmification” (Gille-
spie 2014) as coupling mechanisms between societal subsystems (e.g., the economy
and the legal system) and different types of organization (e.g., companies and courts)
that might change their formal structures and logics (or not). Additionally, Caplan
and Boyd (2018) have identified an “algorithmic logic,” which they consider to be
both a macro-trend and a mechanism through which different organizations in a field
align themselves with regard to their formal structure; this results in a process of
increasing “institutional homogeneity” and “isomorphism” (DiMaggio and Powell
1983; Meyer and Rowan 1977).3

Given that organizations and their history are essential for understanding the
use of algorithms (see also Graeber 2016, p. 40), it is striking that none of these
studies makes use of the rich body of organizational theory. From an organizational
perspective, algorithms are, on the one hand, products and services of organizations;
on the other hand, they are used by organizations to regulate their interactions with
their members, clients, and (or including) other organizations. Consequently, in this
article, we ask whether and how concepts from organizational theory can contribute
to a differentiated perspective on algorithmic decision-making in organizations.

To flesh out our argument, we suggest a conceptual framework for assessing
how organizations process algorithmic information in criminal justice and how it
is used to make decisions about defendants. Our approach draws on the concepts
of bounded rationality (Cohen et al. 1972, 1994) and decision programs (March
and Simon, 1958; Simon 1947, 1991) elaborated in systems theory (Luhmann 1966,
2018) as well as on current studies on resistance to change in organizations (Ybema
and Horvers 2017). We argue that the ways in which information generated by
data-driven technologies is used in organizations and made relevant for decision-
making depend on how it is integrated into organizational settings (see also Alaimo
and Kallinikos 2020; Beverungen et al. 2019; Büchner 2018; Büchner and Dosdall
2021).

In a first step, we present our general argument on why organization matters in
algorithmic discrimination. By conceptualizing discrimination from a sociological
perspective as group-related inequalities, we point out that group-related exclusion
is an inherent feature of modern societies. To specify the practices of reproducing,
ignoring, or neutralizing group-related differences, we draw on organizational soci-
ology and distinguish between the specific decision-making structures (personnel,
rules/programs, and hierarchies and/or networks) of different types of organizations
and their conflicting rationalities and purposes (e.g., economic, legal, or adminis-
trative logics). In particular, we differentiate between two different decision rules,
namely conditional and purposive programs. Based on this framework, the third
section of this article analyzes the risk assessment software “Correctional Offender
Management Profiling for Alternative Sanctions” (COMPAS) in the context of US
courts. We point out that the score represents an ambiguous and redundant source

3 Neoinstitutionalism also provides valuable insights for gender-sensitive organizational research (Funder
2018), which, however, has not dealt with digital technologies in particular.
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of information for judges owing to its limited accuracy and the pre-existing biases
inscribed in the data. After identifying the decisional structures that guide how (al-
gorithmically generated) information is (not) made relevant, we turn to the actual
use of the COMPAS score by judges, which can be characterized as “resistance
through compliance”—this entails strategies of open resistance, foot-dragging, and
criteria-tinkering. The final section discusses the implications of our contribution
and possible further research.

2 An Organization-Based Framework for “Algorithmic Decision-
Making” and Discrimination

Organizational sociology studies organizations as a specific form of social order; it
looks at their formal and informal structures, professional norms, and the related ef-
fects. Apart from systematizing various types of organization, this body of research
examines the diverse tensions between organizational autonomy and the relation be-
tween organizations and their environment (Cohen et al. 1972, 1994; DiMaggio and
Powell 1983; Luhmann 2018; Thompson 1967). We introduce two concepts from
organizational theory that contribute to a deeper understanding of how protected
groups’ personal features may structure decision-making. First, drawing on theo-
ries of societal and social differentiation, we distinguish between different social
contexts, namely families or networks, where interactions are mostly informal, and
formal organizations, including courts, where interactions are both formal and in-
formal. Second, we propose the concept of “decision premises” (March and Simon
1958; Simon 1947, 1991) and present two types of organizational decision programs
that may attribute different functions to algorithmic recommendations.

Generally speaking, the use of these distinctions reveals that whether discrim-
inatory differences, such as age, race, or gender differences, become relevant in
communication relies on the expectations of an observer and on the structures of
the social contexts into which modern societies are broken down. The fact that
group-related differences no longer entirely determine a person’s inclusion in so-
ciety is a distinctive feature of modern societies. In the course of history, formal
organizations were established as a novel type of social order between society-at-
large and individual interactions in friendships, networks, or families. With the rise
of organizations (Etzioni 1961; Perrow 1991; Zald 1990), individuals were only
partially included in various organizations based on roles that were both temporal
and subject to possible exclusions. A person could thus maintain multiple member-
ships and associated roles. However, many studies have pointed out that, although
organizations formally reject discrimination based on law and equality standards,
they have not been able to root it out entirely. This is because there are infor-
mal practices in organizations that are not subject to formal expectations and that
enable discrimination. Put differently: Although at the formal level, group-related
differences are restricted by factual considerations, informal interactions in organi-
zations lack functional specifications. Indeed, in communication that is not framed
formally, face-to-face interactions not only transmit information but also serve to
express feelings, to present oneself, and to motivate contacts through the multi-
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ple biological channels of human sensation. Under such conditions of physical co-
presence—which is key in legal administration and court hearings dealing with life
and death decisions—group-related characteristics are likely factors that structure
communication and decisional heuristics in order to absorb uncertainty (Gigerenzer
and Engel 2006),4 owing to their “simple informational manageability” (Tacke 2008,
p. 259). Consequently, when seeking to understand how discriminatory differences
associated with automated, data-driven technologies in organizations do or do not
serve as a reference for decision-making, it is important to specify the extent to
which decision rules are formalized and thus given binding power.

Research into decision science has traditionally assumed a strong link between
information and decisions—it regards decision-making as a one-sided, essentially
rational operation in which individuals process information in a decontextualized
manner. In contrast, constructivist decision theory has revealed the various forms
and mechanisms of bounded rationality associated with decision-making (Simon
1991). For instance, Martha Feldman and James March (1981) have pointed out that
much of the information that is gathered and communicated in organizations has
little decision-making relevance: Regardless of the information available, informa-
tion is often neglected and more information is requested. They explain this practice
of information ignorance and overload with reference to the symbolic function of
information. The information collected by organizations (e.g., in the form of risk
assessments) is not necessarily obtained in “decision mode” but also in “surveil-
lance mode,” for instance, to justify and rationalize decisions ex post (Feldman and
March 1981, p. 175; see also March and Shapira 1987). Hence, the relevance and
collective meaning of information for decision-making cannot be taken for granted:
As a product of communication information is a social thing, and researchers should
consider the decision structures within a specific organization.

As previously stated, organizations link decisions to exclude group members
to the nonfulfillment of their membership conditions. The expectations associated
with membership are part of the formal order of an organization; and structures
are relatively constant expectations of behavior. However, expectations do not fully
determine communication but merely regulate it; structures thus make certain be-
havior more likely while discouraging alternatives.5 According to March and Simon
(1958), past decisions function as a reference for an indefinite number of future de-
cisions, serving as unquestioned principles known as “decision premises” (Simon,
1947). Elaborating on these pioneering works in a systems-theoretical account on
organizations, Luhmann distinguishes between three decision premises: communica-
tion channels (hierarchies and/or networks), decision rules/programs, and personnel.
Communication channels define how and when members may formally get in touch
with each other. Decision programs characterize the rules that represent the proper

4 However, it is worth noting that the importance of physical characteristics in face-to-face interaction can
also be reduced by other forms of (standardized) self-presentation—such as uniform clothing or deperson-
alized names.
5 It is important to differentiate between decisional rules in the sense of executing predefined tasks and
legal procedures as a specific type of social interaction aimed at deriving a legitimate verdict (Luhmann
1983; Schwarting 2020).
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Table 1 Two types of decision programs

Type of
decision
program

Means Purpose Coupling
means-
purpose

Logic Locus of “(un)fair”
treatment and public
accountability

Conditional Defined Not
specified

Pre-defined “If A, then B.” Data and algorithm

Purposive Not
specified

Defined Not speci-
fied

“What is required
to attain B?”

Entire information
selection process

Source: own representation

conditions for the execution of tasks. Personnel implies that a person’s cognitive
competence and physical ability make a difference about the decisions that they
take (Luhmann 2018, p. 210 ff.).

By concentrating on the rules that orient whether and how algorithmically gen-
erated information becomes relevant for decision-making in organizations, scholars
account for the fact that rules can also be understood as “depersonalized authority”
in that they regulate the execution of a decision on information independently of the
presence of a person-related rank. Decision programs may be further broken down
into two types of rules: conditional programs and purposive programs (Luhmann,
1966, p. 36 ff., 77, 2018, p. 210 ff.; March and Simon 1958, p. 165 ff., 185 ff.). Con-
ditional programs are strict if-then rules that define the conditions for decisions. In
contrast, purposive programs draft the ends for which appropriate means are to be
chosen. A famous example is “management by objectives.”

We exemplify the difference between conditional and purposive programs in
the table below. Note that for the sake of illustration it is schematic: Generally
speaking, the two forms of executing decisions can be described in situations where
A represents the means and B the purpose (Tab. 1). In the case of court decisions,
A includes all information that is taken into consideration for a judge’s decision,
and B is a “rightful verdict” (i.e., a verdict that is legitimate, etc.). Conditional
programs essentially follow the principle of “if A, then B.” The means are specified
and therefore called “conditions,” and lead to a purpose that can change as a direct
consequence of the conditions. Means and purposes are therefore rigid, or more
or less tightly coupled, and human decision-makers are not held responsible for
decisions.

Instead, purposive programs ask, “What means are required to attain B?”. The
purpose typically does not unambiguously define the action but only functions as
a reference point to compare and select the appropriate means. Although the purpose
is more or less pre-defined, the means are unspecified and can be chosen rather by
the decision-makers, who are therefore—and in contrast to the situation in condi-
tional programs—responsible for their decision. Here, means are unspecified; the
final decision is taken based on many informational factors and not just one risk
score—for example, a psychological report, the hearing, the judge’s intuition, etc.
Although this is often neglected in classical decision theory, the selection of infor-
mation can be risky and contradictory, because purposes are abstract and thus give
little indication of the exclusion of other means. Purposive programs require more
ambiguity tolerance, whereas conditional programs establish an elevated level of
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authority when processing information and executing decisions. Against this back-
drop, where statistically “fair” software computing and modelling are important to
prevent the (re-)production of discriminatory data, the structures (including person-
nel, rules/programs, and communication channels) according to which information
is selected and considered “legitimate” for decision-making in organizations are
equally crucial.

The distinction between conditional and purposive programs is central as it can
be applied to the type of organization, to the specification of the organizational
structures, and to “technical systems” or “classes of algorithms”. At an organiza-
tional level, the scope of and relationship between conditional and purposive pro-
grams varies depending on the type of organization. Although enterprises, because
of their higher decision autonomy, may alter their purposes, public administrations
and courts traditionally operate via conditional programs (Luhmann 1966).

Likewise, digital technologies can be understood as decision premises defining
rules for the execution of repeatable tasks. Algorithms quite perfectly materialize
decision programs for the execution of decisions. The exact design, however, has
already been decided within an organization. For example, classic regression mod-
els can be understood as largely conditionally programmed. In contrast, what is
called “semi-supervised machine learning” can be regarded as a purposive program
(composed of various conditional programs)—that is, it can be viewed as a kind of
algorithm that has been pre-structured with a certain selection of means to achieve
a pre-selected output. With this in mind, it is apparent that algorithms themselves
do not decide on their features in contingent ways. Rather, algorithms execute pre-
viously defined rules with reference to decontextualized input data, sophisticated
output functions, and formal logics.

In a similar way, decision programs help us to distinguish between two modes of
human–computer interaction. The first mode concerns systems where computer-gen-
erated decisions are automatically implemented (by technical means, or by human
decision-makers who systematically stick to certain recommendation information);
this is often called “ADM” and would qualify as a conditional program. The sec-
ond mode implies that “algorithmic recommendations” need to be interpreted by
human decision-makers who take the final decision—the currently debated “human-
in/on-the-loop” model that is common in many “assistance systems”; this represents
a purposive program.

3 Mediating Algorithms in Organizations: The COMPAS Score in US
Courts

Taking the example of the COMPAS score, we will demonstrate how the concepts
of decision premises developed in the previous section can help us to understand the
use of big data in organizations and its potential for (re)producing discriminatory
effects.

The software COMPAS was developed in 1998 by the company Northpointe and
designed to assess the likelihood of a defendant committing a crime within the next
two years. According to the promotional materials, the score was introduced as
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a “case management and decision support tool” to more efficiently deploy resources
in largely privatized, “overloaded and crowded criminal justice systems” (North-
pointe 2015, p. 2). It has been used by a number of jurisdictions, including Florida,
New York, Wisconsin, and California. In addition to COMPAS, more than 60 other
risk instruments are now in use throughout the United States in almost all areas of
criminal justice, from preliminary proceedings to probation and conviction. Other
countries, such as Canada, Australia, and several European states, are also devel-
oping similar risk assessments (for the origin and development of risk assessment
systems in criminal justice, see Kehl et al. 2017; Monahan and Skeem 2016).

We have chosen COMPAS for three reasons. The first reason is that courts are
organizations with a long tradition of setting up rules for documenting and processing
data. The fact that courts are different from other types of organization, as they
cannot modify their purpose, is often neglected. Legal public administration is—in
contrast to companies—mainly structured by conditional premises that are aimed
at neutralizing the effect of personal expectations on decisions. A company sees
the computer as an instrument of management and of improving the quality of
decision-making. This is because, in private-sector organizations, the purposes are
specific, and the choice of means is variable. In the production of administrative
acts; however, the result is politically and legally pre-determined. In public legal
administration, various considerations must be taken into account, and these are not
easily quantifiable. It may not be better or worse to use technology than it would be
to perform the same task manually (Luhmann 1966, p. 16 f.).

Secondly, courts are a special type of professional organization, and like (pri-
mary) schools or hospitals, they cannot choose or reject their clients but have to
“wait” to take actions (Schwarting 2020). Thus, they find themselves in a difficult
double role: on the one hand, they have to select and therefore produce or reproduce
social inequality; on the other hand, they are supposed to be the place where previ-
ous social inequality—or society’s conception of equality—can still be “corrected”.
Also, and in contrast to nurses, teachers, or social workers (Ackroyd 2016; Etzioni
1969), judges and lawyers are recognized as full professions in sociology. Unlike
expert fields that encompass fuzzier occupations such as journalism, professions
exercise a monopoly on their jurisdiction, including the strict control of admission
to and the organization of knowledge and work by disbarring outsiders in cases
of malpractice (Abbott 1988). With these privileges and their expertise, they have
significant autonomy in how they categorize and diagnose situations, with serious
consequences for the individual lives and death of their “clients” or “customers.” For
these reasons, many professions used to be protected from quantitative evaluation.
However, as the COMPAS score also reveals, even professional organizations are
now asked to comply with a growing number of metrics and standards (Brunsson
and Jacobsson 2000).

Thirdly, and more empirically speaking, there are further aspects that make courts
a rich setting for studying the regulation of big data in organizations. For one, there is
the abundant evidence for the COMPAS system, its data, its calculative procedures,
and its use by legal professionals. Moreover, its daily use by professionals who are
supposed to have limited training in statistics, algorithmic design, and data analytics
make it an intriguing example through which to examine the interplay between data
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analytics and the different organizational roles and rules of courts—that, finally,
represent a context that has been studied comparatively little so far in organizational
research (Schwarting 2020).

3.1 Biased Data: Organizational Inscription of Social Inequalities

If information is to play a role in organizational decision-making, it needs to be
considered a legitimate source. For the introduction of the COMPAS software, the
company Northpointe referred to studies that assumed that statistical methods would
be more accurate and objective than human judgment (Casey et al. 2014, p. 4; North-
pointe 2015, p. 2). Scores would therefore counteract the possibly racially biased
“subjectivities” of judges with the “objective” information of a computer-generated
calculation (Angwin et al. 2016). However, before we identify the organizational
structures according to which the score does (not) gain collective relevance for ju-
dicial subsumption, we will show in this section how the statistical “accuracy” and
“fairness” of the score have already been challenged.

So far, COMPAS scores have been collected from over one million people. The
scoring relies on a questionnaire with approximately 137 differently weighted vari-
ables that are combined in a variety of subscales. In addition to the type and number
of criminal records, socio-demographic features are modelled (e.g., age, gender, drug
use, education, income and employment status, residential stability, family structure,
community ties, and personal attitudes).6 A rating of 1 to 4 indicates a low risk, 5 to
7 a moderate risk, and 8 to 10 a high recidivism risk. The risk level itself is noted
in a report that is sent to the judges. The results are usually shared with the defen-
dant’s attorney. However, the details of the calculative procedures are not publicly
available, which Northpointe justifies with reference to trade secrecy and the risk
that defendants might want to “game the system.” A study that was aimed at recon-
structing the COMPAS model found that the public statements made by Northpointe
about the formal logic of its model—for instance, concerning the linearity of the age
factor—do not hold true (Rudin et al. 2019, p. 2). Another analysis concluded that
the COMPAS model does not deliver better predictions than those made by people
with little or no criminal justice expertise and a model with only two determinants,
age and criminal history. The latter model yielded a prediction with which the au-
thors were satisfied (67%) and which, interestingly, was better than the one from
COMPAS (65%) (Dressel and Farid 2018). These studies cast serious doubt about
the accuracy of the COMPAS score and openly question the value of a large variety
and quantity of input data and the underlying calculative model.

In addition, and also in contrast to its intended aim, the score has been criticized
for reproducing racial bias (Angwin et al. 2016). Specifically, the analysis show
that “blacks” were almost twice as likely to be classified with higher risk values
as “whites,” although they did not reoffend. Conversely, whites were more likely
to be classified as low recidivists than blacks, even though they had reoffended.

6 Part of the questionnaire is filled in by the defendants, which is why the developers responded to the
related survey problem of “social desirability” by incorporating a “Lie Scale” in the form of supplementary
questions.
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The aforementioned study by Dressel and Farid (2018) found similar correlations
with race, revealing that “Black” defendants were disproportionately more likely
to receive false predictive values than “white” defendants. It is noteworthy that
in accordance with anti-discrimination law, explicit information about race is not
part of the COMPAS data set. However, as the two analyses have pointed out,
there are many other indicators that seemingly have little to do with race (such
as income, employment status, or prior convictions) but correlate highly with race
and therefore act as proxies for race. Other studies found COMPAS to be less
accurate for women and Hispanics, to the detriment of these groups (Hamilton
2019a, b). When statistical models are generated by software, race proxies may
end up determining the model (Kirkpatrick 2017). In public debates, this insight
was summarized by the statement that the discriminatory effects were not produced
by the algorithm but by the data. The group-based exclusions and discriminations
that emerge in societies—for example, owing to racial profiling in policing (see for
example Silva and Deflem 2019), discrimination in education and the labor market,
etc. (see for example Alexander and West 2012; Christin et al. 2015)—are inscribed
in the data and then reproduced by software. Therefore, the seemingly neutral data
about a defendant’s employment, community, or marital status reflect the societal and
organizational structures according to which he or she has been (partially) included
in society.

3.2 Algorithmic Recommendations as Purposive Programs

Zooming in on the case of COMPAS, we see that the software itself works as
a conditional program. Depending on the input information, a certain risk value is
automatically assigned to defendants. But the de facto judicial use of the COMPAS
score, as we argue, represents a more or less purposive program, at least formally:
According to its developers (Northpointe 2015) and as outlined in a report about
the introduction of COMPAS in various jurisdictions (Casey et al. 2014, p. 2), the
score is not intended to replace but to “support” practitioners at crucial decision
points within the criminal justice system, for instance, in placement decisions. Like-
wise, the Wisconsin Supreme Court has ruled (2016) that the COMPAS risk score
may be considered in sentencing by judges, but it does not necessarily have to be
taken into account. The score is therefore not a requirement but rather serves as
one piece of information among others—in effect as an administratively introduced
recommendation.

From the judges’ perspective, we point out that the score is not only problematic
with regard to statistical accuracy and “fairness” but above all because of the high
level of uncertainty and ambiguity concerning the role that it should play in court
decisions. Meaning-making requires information to be recognizable to others, and
collectively acceptable explanations and accounts vary according to social context;
hence, different institutions have different ways of reasoning that count as legit-
imate (Berger and Luckmann 1966; Mills 1940). In organizational contexts, it is
essential for information to be uniformly “applicable” across different departments
and situations (Tacke and Borchers 1993, p. 136). Collective sense-making of me-
diated information thus requires consistent and coherent organizational rules and
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professional personnel that help to transform data into organizationally meaningful
information. On these grounds, the COMPAS score is, first of all, organizationally
“meaningless” because it is disconnected from the informational “richness” of the
context from which it emerged. As a matter of fact, the mediatized reduction of
communication in the form of a score, which is a highly aggregated form of data, is
problematic, especially in organizations, because information does not simply have
to be understood as such by the (legal) personnel (Henriksen and Bechmann 2020).
In fact, the “human-in-the-loop” decision model embodies a paradox: Algorithms
are developed to process an amount and complexity of data that surpass not only
human agents but organizational boundaries, hence leaving the final decision to the
very same decision-maker, who is, by definition, not in a position to meaningfully
assess the data of the computer output.

Moreover, in the specific context of courts, and as mentioned above, sentencing
decisions can be viewed as high-risk decisions about life and death that in particular
take place under the condition of uncertainty. Consequently, these decisions are only
made by judicial professionals and bound to individual case work and independent
reasoning. In their decision-making, they have to apply the law by weighing various
societal norms incorporated in the law when considering the differently provided
facts in the claims. It is here that the legal profession shows that public administration
is more than the logical execution and conditioned reading of law: To pursue the
difficult task of subsumption, the physical co-presence of professional specialists
and lay persons is key, as it allows for increased personal perceptions and cognition.

By asking direct questions—as well as by observing the language, facial expres-
sions, and gestures throughout the procedural interaction of defendants, plaintiffs,
and victims—judges seek to detect contradictions between data (text) and context
and to add a whole background layer of meanings, inner attitudes, and memories.
Machines could never do that. Thus, to apply the law according to professional stan-
dards, it is during the hearing in the courtroom that a judge is formally obliged to
check the reliability of a defendant’s presentation of self (including its comparison
with those of the plaintiff and victims). Thus, interpreting perceptions is an ex-
tremely important function in organizations, especially when making discretionary
and supplementary decisions in administrative contexts.

Against this backdrop, the COMPAS score can be regarded as decontextualized
data that hardly help to absorb the uncertainty regarding both the plausibility and
credibility of a defendant’s narrative. On the contrary, as the questionnaire mostly
reproduces (possibly discriminatory) data documented in previous parts of the file,
it is not only negligible from a professional standpoint but also appears to be a re-
dundant source of information (or even information overload) from the procedural
and administrative perspective of the legal system, increasing judges’ decisional
complexity. Whereas Rudin et al. highlight that “the thought process of judges is
(like COMPAS) a black box that provides inconsistent error-prone decisions” (2019,
p. 25), it should be noted that court procedures are strongly formalized and that the
judges’ professional autonomy and neutrality are not only backed by the constitu-
tion but also covered by both relatively narrow organizational and procedural rules
(namely the dominance of applying conditional programs instead of purposive pro-
grams).
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To summarize, we have shifted the attention from the statistical production of
scorings to their intra- and interorganizational reception. Our claim is that the com-
municative relevance of the COMPAS score for legal decision-making, in particular
judicial subsumption, is not self-evident and the people using the score face the
challenge of dealing with its many insecurities and ambiguities associated with their
specific membership roles.

3.3 Patterns of Informal Behavior in Criminal Justice Organizations

The question remains whether and how the COMPAS score is factually granted
relevance and authority in legal practice and its organizations. Few studies provide
scientific evidence about the way in which the COMPAS score is actually inte-
grated into judges’ decisions. Among these, the ethnographic study by sociologist
Angèle Christin (2017), in which she relies on observations, interviews, and doc-
ument analysis, is particularly illuminating. As a core finding, Christin identifies
an overall tendency of (reverse) “decoupling” (Meyer and Rowan 1977; see also
Brunsson 1989) between “intended use and actual uses,” which means in particular
that judges minimize the impact of the COMPAS score in their daily work (Christin
2017, p. 8). Another recent empirical analysis confirms that the COMPAS score is
perceived by court staff as a useful input, which is, however, routineously referred
to as one among many informational elements when making a decision (Hartmann
and Wenzelburger 2021). Christin observes three related strategies: foot-dragging,
gaming, and open critique. In sociological research, such strategies can also be
considered as “resistance through compliance” (Ybema and Horvers 2017): “While
frontstage resistance derives its subversive potential from mixing open critique with
implicit complaisance, backstage resistance functions via a benign appearance of
carefully staged compliant behavior” (Ybema and Horvers 2017, p. 1233).

In what follows, we apply a theoretically inspired interpretation to Christin’s case
study. In doing so, we refine her main observations as an expression of the various
intersections between “formal compliance” and “informal resistance” when using
algorithmically generated information in organizations, ranging from open resistance
to foot-dragging and criteria-tinkering. Similar to the result of Maiers’ (2017) study,
our analysis indicates that the users of data and analytics do not always make sense
of and use analytics in the ways intended by their designers. We finally relate these
practices to the phenomenon that scholars have termed the “social embeddedness of
courts” (Ng and He 2017).

3.3.1 Open Resistance at the Outer Frontstage: Maintaining Professional Autonomy

Christin observes that in interviews, judges explicitly report that they ignore the risk
score. They do so by referring to their judicial expertise, training, and experience
(for a similar observation, see Angwin et al. 2016). Such claims can be understood
as professional “accounts” (Garfinkel 1967; Orbuch 1997) that highlight the notion
that judges are autonomous and not subjected to public opinion, political demands,
or economic considerations. Here, another important difference between humans
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and machines operating via decision premises becomes relevant—we will elaborate
on this at the end of this section.

3.3.2 Foot-Dragging at the Inner Frontstage: Neutralizing the Relevance of Risk
Scores

Christin (2017) also observes an informal refusal to consider COMPAS in criminal
courts, which is a form of foot-dragging: She witnesses that even though risk scores
were systematically added to defendants’ files by pretrial and probation officers,
none of the judges, prosecutors, or attorneys ever mentioned the scores during the
hearings. Reading through the files of defendants, she found that the risk-score sheets
were usually placed towards the end of the extensive files and, in contrast to the
other pages of the file, were not annotated with hand-written remarks (Christin 2017,
p. 9). This observation is consistent with those of other studies of decision-making
processes based on algorithmic scores—such studies find that staff members engage
in “conditioned reading” of scores, which they filter and temper in relation to other
kinds of information, such as experience, intuition, and other pieces of “knowledge”.
In cases where the score is taken as a legitimate sign, it can be a powerful force
in shaping the meaning of other signs of information and the categorization of
defendants as being at a “high,” “low,” or “moderate” risk of recidivism. These
conditioned readings have been observed in courts (Hartmann and Wenzelburger
2021) and hospitals (Maiers 2017).

3.3.3 Criteria-Tinkering at the Backstage: Synthetizing Tensions Within “Embedded
Courts and Prisons”

Finally, judicial staff, more precisely probation officers, have developed strategies
of “criteria-tinkering” (Hannah-Moffat et al. 2009, p. 405) by adapting the data that
they enter into the risk-assessment tool in order to obtain the score that they thought
was adequate for a given defendant (Christin 2017). This practice can be understood
as an attempt to synthesize managerial requests, such as the score, and professional
expectations of legal autonomy. Indeed, in many aspects, the COMPAS score re-
flects economic expectations in administration. Historically, the introduction of the
COMPAS score was accompanied by managerial initiatives to (re-)gain an efficient
allocation of resources: One of the aims was to reduce the number of incarcerations
and assign convicted individuals who show little risk of re-offending to social pro-
grams. Economic rationales that take place at backstage of organized jurisdiction,
including court management in general and the case flow in particular, can conflict
with legal logics and lead judicial personnel to practices of symbolic compliance. In
addition to criteria-tinkering, for instance, “legal professionals” sometimes redirect
problematic files to alternative courts, subdivisions, or attorneys, in order to reduce
their incarceration numbers and therefore “improve” their performance statistics
(Christin 2017).

Comparing these three dynamics of formal and informal practices of (not) relat-
ing to the COMPAS score, an important difference between humans and machines
operating via decision premises emerges: For lawyers, the process of drawing a con-
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clusion from a fact and transforming it into a legal consequence is the final form
in which they present their work results, but this is not a logic image or model
of their factual decision-making activity. As legal norms are not ready-made con-
ditional programs, the logical form has a representational function. In addition to
the important function of perceiving, the actual legal decision-making performance
thus consists in the interpretation of the decisional programs and the “incoming”
information so that they comply with this requirement of representing (acceptable)
decisions and risks to others. Put differently, legal decisions are less controlled by
the process of their production and more by the requirements of their representation
(Goffman 1959). This important fact is due to the special function of organized law
in modern societies, as mentioned above. In contrast to private sector decisions,
legal decisions take place in a political environment as courts produce binding de-
cisions that have a direct external effect on each individual case and the subjects of
that case—by law, these decisions may be neither improved nor worsened by using
machines (Luhmann 1966, p. 20).

This structural compulsion to issue decisions and justifications gives rise to
a strong disciplining of the (retro- and intersubjectively comprehensible) presenting
of legal decision production that necessarily takes place as a means of collective
uncertainty absorption. Uncertainty absorption occurs when information that comes
from relatively uncertain decision premises is used as the basis for further decisions
without recourse to the original information. This is precisely the specific function
of the legal problem processing technique and its role protection, which allows de-
cisions to be presented as correct (March and Simon 1958; see also March and
Shapira 1987; Weick et al. 2005).

Legal uncertainty absorption also sheds light on one of the central requirements
of modern organizations—to represent themselves in front of nonmembers. In this
case, the function of automation resides in its symbolism (Espeland and Sauder
2007): To implement risk scores as purposive programs (and not as conditional
programs) in courts may be seen as a facilitator for the intraorganizational connec-
tion of three different subsystems, the judicial, the political, and the managerial (or
economic), with the result of competing logics and indissoluble tensions.7 Against
this background, the discourse on “algorithmic discrimination,” with its focus on
technological, statistical, and ethical aspects, entails the risk of neglecting or even
undermining the struggles and trade-offs in organizations between economic, polit-
ical, and professional rationalities.

7 It is outside the scope of this article but noteworthy that algorithmic risk assessments are also used
to evaluate jurisdiction itself. In the United States and the United Kingdom, it is common for judge’s
decisions to be analyzed in detail. In contrast, French law is aimed at preventing organizations from de-
ploying litigation analytics and prediction, banning the publication of statistical information about French
judges’ decisions—with a 5-year prison sentence as the potential penalty in case of infringement (see
ArtificialLawyer 2019).
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4 Discussion and Conclusion

Our point of departure was the claim that the discourse about “algorithmic discrimi-
nation” leaves the fact widely unattended that software is embedded in organizations
and shaped by formal and informal structures that both drive and limit the use of
algorithmically generated data.

We point out that what is called “algorithmic discrimination” in the literature does
not originate from algorithms as such, but either from behavioral data that reflects
informal and particularistic norms in society and/or from the use of software that
inscribes potentially discriminatory information (deriving from other social contexts
that rely upon group-related distinctions) into other organizational decision struc-
tures. We therefore highlight that, when seeking to assess the risk of algorithms for
discrimination, it is not enough to study the data and/or the mathematical model
underlying the algorithms as such. It is equally important to identify the decision
rules within an organization that exert (depersonalized) authority on algorithmically
generated data.

To understand how group-based expectations take effect regarding the deploy-
ment of software in organizational contexts, we drew on organizational theory and
introduced the distinction between conditional and purposive programs. Illustrat-
ing this distinction with the formal structures and informal practices of using the
COMPAS score in US courts to assess the recidivism risk of defendants, we showed
that the COMPAS score is not always a decisive factor but is often minimized and
even ignored in legal decision-making owing to its organizational embeddedness
as a purposive program. In contrast to conditional programs, purposive programs
give decision-makers more leeway to consider different pieces of (algorithmically
generated) information and therefore allow decision-makers to mitigate (or to aggra-
vate) discrimination. Hence, adopting an organizational perspective allows scholars
to challenge simple narratives, such as the hypothesis of a general over-reliance of
human decision-makers on information generated by software.

These observations have numerous implications that mirror the main organiza-
tional boundaries of public administration: First, the question of information com-
plexity and “errors” in partially automated settings that occur in contact with its
“customers”; second, the problem of public accountability; and third, the questions
of the economic efficiency of automation at the boundary to the political system.

First, when we study decision-making structures in organizations, we see that
sophisticated predictive scores do not necessarily reduce information complexity
and “errors” for decision-makers. In most cases, they may do both—they decrease
and increase uncertainty—in particular when data analytics are introduced as a pur-
posive program and thus used as one source among others. Decision-makers now
have more (sometimes redundant) sources of information to consider, especially
when there is more than one score at hand (Hartmann and Wenzelburger 2021), but
they often lack sufficient capacity and guidance to select, interpret or question the
often unduly ambiguous, redundant, and opaque status of behavioral data and of
“algorithmic recommendations.” Indeed, experimental evidence indicates that when
faced with an increasing amount of information, human decision-makers make “less
accurate” predictions about recidivism, because they are receiving, perceiving, and
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processing “more” communication (Lin et al. 2020). Therefore, in the administrative
systems of all kinds of support bodies, key staff members (police officers and wel-
fare officers, judges, social workers, or supervisors) cooperate in short-information
circuits to (re-)assess the usefulness of information for establishing the facts that
make a decision program snap into place. This means, to avoid discrimination, the
implementation of software in organizations should not only be subject to serious
supervision—for example, by qualified data protection officers and other oversee-
ing authorities—but possibilities for intervention and organizational learning should
also be established (March 1991; see also Büchner and Dosdall 2021).

Second, societal requests for public accountability should be directed toward the
structures and rules that condition that actual use of scores in organizations. Although
most scoring systems are proprietary software and therefore not easily accessible for
public scrutiny, the rules and practices employed when using a score are determined
by the organizations in question. In the case of state agencies and courts, these
organizations have an obligation to be responsive to public transparency requests.
At the same time, formal rules cannot entirely eradicate unlawful practices, such as
racial profiling in sentencing. Thus, as the algorithmic logics underlying technology
and automation are inextricably interwoven with organizational structures, strategies
to reduce algorithmic biases in data models will not necessarily trickle down to actual
use in practice. Rather, this points us to the importance of adopting an organizational
approach that investigates the role and dynamics of professions and personnel as
“decisional premises” in organizations in follow-up studies—in addition to analyzing
the purposive and conditional programs in organizations.

Third, our findings point toward a need for research that explores how the intro-
duction of software into public administration is linked to market-oriented account-
ing frameworks—e.g., under the umbrella of “new public management” (Dunleavy
et al. 2005; Katz 2012)—reflecting attempts to increase efficiency in the allocation
of financial and human resource predictions. In this realm, it would be worth study-
ing how the use of digital technologies (or even the discourse about it) camouflages
previous organizational reforms (Brunsson and Jacobsson 2000; Brunsson and Olsen
1993) aimed at transforming rule-based bureaucracy to a performance-oriented, cal-
culating “accounting entity.” Various studies have shown that the incorporation of
managerial practices into public administration may conflict with professional val-
ues; in the case of judges, the values in question would be the rehabilitation of
convicts, the safety of victims, and societal security. In the same vein, it is necessary
to explore the epistemic logics underlying data models and how conflicting organi-
zational and professional norms (such as sanctioning versus social integration) are
inscribed and weighed up in algorithms. Given that public administrations face pres-
sures to become more efficient, to reduce their use of resources, and to legitimate
their practices in accordance with (norms of) technological innovations, the im-
plications we sketched may become more standardized. Professionals and scholars
are thus more likely to (re)distribute scarce resources (attention, competencies, and
time) on designing organizational contexts and decision premises that may leverage
the advantages of data for nonlegal decisions while preserving the independence of
legal subsumption and reasoning forms of knowledge as well.
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Finally, in terms of further research, there is a need for more analyses that take into
consideration the organizational uncertainty and ambivalence under which decisions
are made and the structures within which they operate. Although many laboratory
studies explore the conditions for human decision-making, there are very few field
studies and ethnographies on the organizational development and use of software
that take the intra- and interorganizational environments of decision-making, includ-
ing efficiency pressures into account. Knowing that employees show very different
degrees of awareness and critical distance toward algorithms and automation (Gran
et al. 2020; Kolkman 2020), we also encourage analyses that compare how members
of different professional occupations, in contrast to non- or semi-professionals, such
as social workers or police officers, etc., deal with “algorithmic recommendations”
in organizations. It is possible that members of established professions, such as
judges and lawyers and doctors and nurses (see Maiers 2017), show relatively high
autonomy vis-à-vis machine recommendations when taking decisions, and coping
with “external” (political, administrative, or managerial) norms.

To conclude, organization matters with regard to the discriminatory effects of
algorithms. The data and the calculative models are far from the only components
of what is misleadingly understood as algorithm-driven decisions. The formal and
informal structures of the organization, including the type of decision premises and
decision programs, as well as the societal organizational context and the professional
identities, need to be considered when searching for ways to mitigate discrimination.
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