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Abstract 

This paper explores the foundations and properties of the quantal response statistical 
equilibrium (QRSE) model developed by Scharfenaker and Foley (2017). The QRSE 
model provides a behavioral foundation for the formation of aggregate economic 
outcomes in social systems characterized by negative feedbacks. It can approximate a 
wide range of commonly encountered theoretical distributions that have been identified 
as economic statistical equilibrium and displays qualitatively similar behavior to the 
Subbotin and Asymmetric Subbotin distributions that range from the Laplace to the 
Normal distribution in the limit. Asymmetry in the frequency distributions of economic 
outcomes arises from the unfulfilled expectations of entropy- constrained decision 
makers. This paper demonstrates the logic of the QRSE model in an application to US 
stock market data dating back to 1926. The model provides a parsimonious explanation 
for the distribution of rates of return on private equities as well as clear behavioral 
foundation for asset price fluctuations.   
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1 Introduction

Many economic and social outcomes are the result of the actions of individuals in-

teracting in an institutional structure. A significant share of economic theory tends

to abstract away from the complex ways individual actions shape social outcomes

by assuming that the individual actions have a zero impact on the outcome. For

example, a theoretical cornerstone of Walrasian general equilibrium theory is that no

individual firm or consumer can impact the equilibrium price system through their

own buying and selling decisions. There are at least two obvious reasons for abstract-

ing away from the ways individual actions shape social outcomes. First, is that the

level of detail required to model and predict such a system becomes formidable when

the number of individual participants becomes large. Second, information or data

about individual behavior and actions tends to be either of a limited nature or is in

principle unobservable.

Situations in which the actions of individual participants have a non-zero impact

on the social outcome tend to produce important qualitatively di↵erent equilibrium

properties of the system under analysis. In particular, such systems tend to pro-

duce central tendencies in the distribution of the outcome as well as endogenous

fluctuations around these tendencies that reveal information about the underlying

forces that shape the system frequency distributions. This paper examines economic

systems characterized by social interactions that are conditionally dependent on per-

ceived social outcomes but that also shape those social outcomes through stabilizing

and equilibrating e↵ects.

The quantal response statistical equilibrium (QRSE) model developed by Scharfe-

naker and Foley (2017) applies maximum entropy reasoning for predicting the behav-

ior of such systems when data provides only limited information about the system.
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When observations or statistical properties of social outcomes are available, but there

is no direct information about the actions and behavior of individual participants that

determine that social outcome, the problem of inferring the joint state space over the

actions and outcome and thus predicting the configuration of the system is an ill-posed

underdetermined problem.

While the unobservable component in such underdetermined models may in prin-

ciple be observable, data rarely provides such information beyond the individual case-

study level. Situations in which the macroeconomic outcomes are observable, but the

details about individual actions that determine these outcomes are unobservable arise

frequently in economics. For example, the buying/selling decisions of individual in-

vestors are determined by and determine observable equity prices, but are themselves

unobservable at the system level. Firm decisions to allocate capital in particular sub-

markets depend on the expected profit rate and determine the observable profit rate,

but only aggregate firm balance sheet data is observable. Individual labor-market

decisions depend on expected remuneration and shape the income distribution, but

only income frequencies are observable.

In order to make inferences about the mutual dependence of individual actions

and the resulting social outcomes requires we know the structure of a joint frequency

distribution over the actions and outcomes. In most economic applications both

dimensions of the problem are assumed to be known (e.g. Manski and McFadden

(1981)) and the problem lies only in estimating the probability of individual actions

through a parametric statistical model. If either dimension of the problem is unknown,

however, we face the inverse problem of having to reconstruct the joint distribution

based on whatever information we have about the system. Operationally, this requires

that we impose constraints on the system in the form of a prior hypothesis. One of the

most successful approaches to solving such underdetermined inverse problems is the
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Principle of Maximum Entropy (PME) inference championed by E.T. (Jaynes, 2003)1.

The PME provides a straightforward and logical way to incorporate prior hypothesis

in a model that produces the least biased estimate of such a probability distribution.

A maximum entropy probability distribution is also a predictive statistical model that

indicates whether or not the theoretical priors put into the calculation are relevant

in the sense of providing a good fit to the data.

This paper details the logic of maximum entropy inference for underdetermined

social interactions problems and examines some of the implications for the resulting

statistical model. It turns out that many of the widely used statistical models used

for modeling the frequency distributions of economic and social outcomes, including

the Subbotin and Asymmetric Subbotin Distribution, can be usefully understood as

special cases of the more general behaviorally founded QRSE model. Thus, many

social phenomena that give rise to macroscopic statistical regularities turn out to

have a clear interpretation from the QRSE framework.

This paper also illustrates the logic of QRSE by extending the model to monthly

firm-level equity price data dating back to 1926. The results provide a remarkable fit

to the data as well as a clear behavioral interpretation of asset price fluctuations that

may serve as an indicator of speculative activity.

2 Statistical Equilibrium

Modeling and predicting the properties and behavior of a social system comprised

of many individuals is a forbidding task. Physicists faced similar problems in the

19th century while trying to derive the phenomenal laws of gas behavior from the

hypothesis that gases were constituted from particles such as molecules and atoms.

1The methods of maximum entropy inference are extensively detailed in Golan (2018).
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In both cases the number of degrees of freedom in the system poses a serious problem

when viewed from a deterministic predictive theory. Enumerating the details of the

system is combinatorially impractical. The statistical equilibrium methods developed

by Boltzmann (1871), Maxwell (1860) and Gibbs (1902) overcame this di�culty in-

geniously by borrowing statistical methods from social sciences and by substituting

a statistical model of the system for a detailed dynamic description of all degrees of

freedom in the system.2 The physicist E. T. Jaynes (1957) showed that the reasoning

supporting statistical equilibrium methods in physics was in principle applicable to

any complex system with many degrees of freedom, including biological and social

systems. Jaynes’ insight was that the most likely state of a system is maximally

random given whatever constraints the properties of the system and its constituents

put on its states.

The statistical equilibrium of a system is the probability distribution over the state

space that maximizes entropy subject to whatever constraints describe the behavior

of the system. The nontrivial part of modeling with statistical equilibrium methods is

typically to find the constraints that parsimoniously express the theory relevant to the

problem. Constraints are anything that modify the predictive statistical model. In

the context of social sciences, constraints usually arise as physical constrains such as

limited resources, monetary constraints such as a budget constraint, non-negativity of

prices, or accounting identities, purposive human behavior such payo↵ maximization

or “satisficing” behavior, and institutional structures such as social norms and laws.

Constraints reflect the underlying theory and like any acceptable method of analysis,

the predictive relevance of maximum entropy inference is conditional on the ability of

the statistical model to produce observable regularities in the system under analysis.

When the resulting model fails to produce empirical regularities this is an indication

2See Porter (1986) for a thorough history of statistical reasoning in the physical sciences.
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that the theory and constraints are incomplete or incorrect. Many of the standard

econometric principles of inference, such as likelihood analysis, hypothesis testing,

and model selection follow directly from the principle of maximum entropy (Golan,

2018).

3 Quantal Responses in Social Interactions

In the simplest scenario there are just two components that determine the constraints

on the system that define a statistical equilibrium in social interactions. First, indi-

vidual agents respond to some economic variable, such as individual buy/sell decisions

in response to price spreads in equity markets. Second, the economic variable is con-

ditionally dependent on the actions taken, e.g. selling (buying) decision slow down

(speed up) the rate of return on equities. Such statistical equilibrium models require

that we think in terms of a joint frequency distribution over the actions of individu-

als, and the distribution of the economic variable. Letting the economic variable be

x 2 R and the action variable be a 2 A, where A is the set of possible actions, we

are interested in the equilibrium joint distribution f [a, x] = f [a|x]f [x] = f [x|a]f [a].
The first component of the model represents a behavioral theory of the typical

agent in terms of the probability that she will choose a particular action a conditional

on the variable x and is expressed in the conditional distribution f [a|x]. This condi-
tional distribution expresses the response probabilities over the action set given x and

quantifies the impact of x on the individual action frequencies. The second component

of the model reflects the impact of the action on the outcome variable which is ex-

pressed in the conditional distribution f [x|a]. This conditional distribution expresses

a theory of the formation of social outcomes. If the actions of individual participants

had no impact on the outcome then f [x|a] = f [x] as is the standard general equi-
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librium framework. A statistical equilibrium model of the joint distribution f [a, x]

requires theoretical closures on the microeconomic behavioral and macroeconomic

outcome dimensions of the problem.

4 Feedback Constraints

If there is a non-zero impact of individual actions on the social outcome then f [x|a] 6=
f [x]. How individual actions shape social outcomes will depend on whether or not a

particular action positively or negatively impacts x. Economic variables that exhibit

statistical regularities such as a central moment and stable endogenous fluctuations

can be considered in equilibrium precisely because there are negative forces that sta-

bilize the distribution. Capitalist firms’ profit rates, for example, display remarkably

stable statistical properties such as a sharp peak and fat tails because the competi-

tive behavior of firms imply that firms will tend to enter any particular market with

above average profitability and exit markets with below average profitability. The act

of entering, however, increases the supply in that market which drives down prices

and profit rates. Exiting has the converse e↵ect of lowering supply and rising prices

and profit rates for firms that remain (Smith, 1776 [1982]). Implicit in this reasoning

is the corse-graining of markets into various sub-markets in which firms compete.

These might be specific goods such as watches or computers, or sub-industries such

as hospitality and fast food. The negative feedback of a on x is because a a↵ects a

specific sub-market due to crowding e↵ects and other competitive interactions.

In the simplest case the action set is the binary set a = {a
0

, a
1

}, for example,

investors’ decision to buy/sell assets in a particular sub-market, or firms’ decisions

to enter/exit a particular sub-market. In general, a
0

represents the “positive” action

that raises x when it is below some value ⇠ and a
1

represents the “negative” action
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that reduces x when it is above ⇠. Statistical equilibrium in the joint distribution

f [a, x] implies that x is statistically regulated by a through negative feedbacks. The

variable ⇠ represents the central tendency around which x statistically fluctuates.

This information can be specified as a moment inequality:

Z

x

f [a
0

, x]x dx  ⇠ 
Z

x

f [a
1

, x]x dx (1)

This inequality says that the expectation of the outcome conditional on the “neg-

ative” action should be above the expectation of the outcome conditional on the

“positive” action and implies the following:

Z

x

f [x, a
1

](x� ⇠) dx�
Z

x

f [x, a
0

](x� ⇠) dx

= f [a
1

]E[(x� ⇠)|a
1

]� f [a
0

]E[(x� ⇠)|a
0

] dx

=

Z

x

(f [a
1

|x]� f [a
0

|x]) f [x](x� ⇠) dx � 0

(2)

If there was no impact of the action on the outcome then maximizing the entropy

of f [a, x] would make this di↵erence as large as possible. If there is a negative feedback

of the action on the outcome then this di↵erence will be constrained to some positive

but finite value ✏:

Z

x

(f [a
1

|x]� f [a
0

]) f [x](x� ⇠) dx  ✏ (3)

When ✏ is constrained to be finite agents’ actions will stabilize the marginal out-

come frequency, by tending to lower the outcomes for the agents who take the action

a
1

and raise the outcomes for the agents who take the action a
0

. Such negative
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feedbacks are characteristic of a wide range of social interactions.

In Eq. 3 ✏ is an indirect measure of the dependence of a on x. The smaller

✏ is, the more e↵ective are the actions in changing the outcome x. When ✏ = 0
R
x

f [a
0

, x]x dx =
R
x

f [a
1

, x]x dx = ⇠ which implies the actions have an infinite e↵ect

on stabilizing the outcome at the central tendency. A very large ✏ represents a very

weak impact of the action on the outcome. This interaction between the actions and

outcomes is presented graphically in Figure 4 below.

Constraining the actions to impact the outcome variable in this way in addition

to the normalization constraint define the maximum entropy program:

Max
{f [a,x]�0

H[a, x] = �
X

a

Z

x

f [a, x] log[f [a, x]] dx (4a)

subject to
X

a

Z

x

f [a, x] dx = 1 (4b)

and

Z

x

(f [a
1

|x]� f [a
0

|x]) f [x](x� ⇠) dx  ✏ (4c)

To solve this maximum entropy problem, it is convenient write the joint entropy

as the entropy of the marginal distribution plus the average entropy of the conditional

distribution and solve for f [x]:

H[a, x] = H[x] +

Z

x

f [x]H[f [a|x]]dx (5)

= �
Z

x

f [x] log[f [x]]dx�
Z

x

f [x]
X

a

f [a|x] log[f [a|x]]dx (6)
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Thus, 4 can be equivalently written as:

Max
{f [x]�0}

H[x] +

Z

x

f [x]H[f [a|x]]dx (7a)

subject to

Z

x

f [x] dx = 1 (7b)

and

Z

x

(f [a
1

|x]� f [a
0

|x]) f [x](x� ⇠) dx  ✏ (7c)

This programming problem has an associated Lagrangian:

L[f [x],�, �, ⇠] = H[x]+

Z

x

f [x]H[f [a|x]]dx� �

✓Z

x

f [x] dx� 1

◆
(8)

��

✓Z

x

(f [a
1

|x]� f [a
0

|x]) f [x](x� ⇠) dx� ✏

◆
(9)

Because the entropy is a strictly concave function of the probabilities, and the con-

straints are linear or concave functions of the probabilities, the first-order conditions

are su�cient to characterize the solution:

f̂ [x] = e�(1+�)eH[f [a|x]]e��(f [a

1

|x]�f [a

0

|x])(x�⇠) (10)

Plugging 10 into the normalization constraint 7b and solving for f̂ [x] gives:

f̂ [x] =
1

Z[x, �]e
H[f [a|x]]e��(f [a

1

|x]�f [a

0

|x])(x�⇠) (11)

where Z[x, �] =
R
x

eH[f [a|x]]e��(f [a

1

|x]�f [a

0

|x])(x�⇠) dx is the normalizing factor or “parti-

tion function” and � is the Lagrange multiplier associated with the constraint on the
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conditional dependence of a and x.

Scharfenaker and Foley (2017) refer to this solution as the quantal response sta-

tistical equilibrium (QRSE) model. Any social system in which the quantal actions of

individuals shape the social outcome through a negative feedback will tend to equili-

brate in the statistical sense towards 11. The QRSE model is completely characterized

by the the conditional distribution f [a|x] and the Lagrange multiplier �. The distri-

bution f [a|x] represents the action of agents conditional on the aggregate variable x

and is thus a representation of the response probabilities in a decision environment.

Di↵erent behavioral assumptions will lead to di↵erent closures of the QRSE model.

5 Behavioral Constraints and Expectations

In many economic settings perceived deviations from the average realization of a

variable are what incentivize the actions of individual agents (Dos Santos, 2017). For

example, in Scharfenaker and Foley (2017) the deviation of profit rates from the aver-

age rate of profit motivates firms to relocate capital, away from below average profit

sectors and into above average profit sectors. In Yang (2018) decisions of firms to

adopt a new technology are conditional on the expected average cost reduction above

a “premium” required for the firm to adopt the technology. In Ömer (2018) buy/sell

decisions in the housing market are conditional on the changes in the deviation of ac-

tual housing prices from the expected rate of a fundamental price increase of a house.

In Blackwell (2018) buy/sell decisions are conditional on bond market spreads, and

in Wiener (2019) workers’ labor market participation is based on di↵erences between

a segmental wage and a reference wage.

In general, these circumstances imply the typical agents’ response probability

f [a|x] will depend on the payo↵ v for choosing an action, which is the di↵erence
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between the expected outcome variable x and the agent’s expected average payo↵,

or fundamental valuation of x, which we call µ such that v[a, x] = x � µ. In this

case, the conditional distribution will be a functional ⌦
f [a|x�µ]

: v ! [0, 1] that maps

the payo↵ function into a response probability. Because the QRSE model captures

both the micro behavioral dimension as well as the macro social outcome dimension,

this specification of the payo↵ function v requires we di↵erentiate between agents’

expectations of the fundamental µ and the actual central tendency of the outcome,

⇠.

Agents’ actions are determined by the perception of the social outcome through

their estimated “fundamental” value µ. Because their actions determine the social

outcome x, if expectations are self fulfilling then the 3 implies ⇠ = µ. Agents’ expec-

tations of the fundamental µ, however, need not be correct. If ⇠ 6= µ expectations

may be unfulfilled incentivizing agents to revalue their estimate of the fundamental

through some type of market-based punishment for acting incongruous with the mar-

ket. If ⇠ = µ then expectations are fulfilled and there are no market-based incentives

for the typical agent to change her estimate of µ (Foley, 2017). The di↵erence ⇣ = µ�⇠

measures of the spread of the typical agent’s expectations about the reference rate

from the actual location of market and thus serves as a measure of unfulfilled ex-

pectations. In some contexts this divergence of expectations from the actual market

can be usefully interpreted as a measure of speculative activity. Accordingly, we can

write the solution to 11 as:

f̂ [x] / eH[f [a|x]]e��(⌦
f [a

1

|x�µ]

�⌦

f [a

0

|x�µ]

)(x�⇠) (12)

Individual expectations shape the outcome only to the extent that ⌦
f [a|x�µ]

influ-
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ences f̂ [x]. Only in the special case when ⇠ is constrained to equal µ will individual

agents be able to fully determine the reference locations of the outcome through ex-

pectations alone, i.e. expectations are rational and self fulfilling in line with Friedman

(1957) and Muth (1961).

5.1 Logit Quantal Responses

Research dating back to the work of Gustav Fechner and Ernst Weber has long

recognized the limited cognitive capacity of individual decision makers leading to

the observation that individual choice behavior is not always optimal. In economics,

Herbert Simon (1955) introduced an analog to non-optimizing choice behavior in

what he called “bounded rationality.” Interpreted from the perspective of the theory

of individual choice behavior, bounded rationality implies that choice decisions are

best described as a probabilistic phenomenon as opposed to the deterministic rational

theory of choice which assumes choices are always associated with probabilities equal

to unity.

The probabilistic approach to individual choice was most famously introduced by

the psychologist Duncan Luce (Luce & Rai↵a, 1957; Luce, 1959; Suppes, Krantz,

Luce, & Tversky, 1989) and was developed along game theoretic and econometric

lines by McFadden (1976, 2001), McKelvey and Palfrey (1995, 1998), and Manski

and McFadden (1981). Both Luce’s choice axioms and the random utility models

developed by McFadden lead to multinomial logit functions for discrete choice prob-

abilities. More recently Matějka and McKay (2015), Scharfenaker and Foley (2017),

Sims (2003), Wolpert (2006) have derived the same choice probabilities by iden-

tifying bounded rationality with informational processing constraints, or “entropy-

constrained behavior.”
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If the typical agent chooses a mixed strategy, f [a|x] : A ⇥ X ! (0, 1) over ac-

tions a 2 A to maximize the expected payo↵,
P

a

f [a|x]v[a, x] subject to a minimum

informational entropy then the agent’s expected payo↵ maximization program and

associated Lagrangian are:

Max
{f [a|x]�0}

X

a

f [a|x]v[a, x]

subject to
X

a

f [a|x] = 1

�
X

a

f [a|x] log[f [a|x]] � H
min

L = �
X

a

f [a|x]v[a, x]� �

 
X

a

f [a|x]� 1

!

+ T

 
X

a

f [a|x] log[f [a|x]]�H
min

!

(13)

The solution to this programming problem is the logit quantal response (LQR)

distribution:

f [a|x] = e
v[a,x]

T

P
a

02A e
v[a,x]

T

(14)

The Lagrange multiplier T represents the attentiveness of the typical agent. The

lower is T the more alert the actor is to di↵erences in payo↵, and the more closely the

action approximates the unconstrained payo↵-maximizing outcome. While entropy-

constrained behavior is a generalization of rational choice theory there are several

important di↵erences with far reaching implications. When T > 0 individual agents

preferences no longer satisfy the assumptions of consistency and completeness. Pre-

sented with the same set of options entropy-constrained individuals with identical

preferences will sometimes choose one option and sometimes the other. More im-

14



portantly, many of equilibrium conditions and welfare implications based on uncon-

strained rational choice no longer hold when T > 0.

Entropy-constrained behavior also leads to the logit quantal response distribution

without having to imposing awkward distributional assumptions on the errors that

a↵ect decision making. Rather than treating the distribution over the individual’s

mixed strategy as arising from random error of noisy players or oscillating utility

as is the convention in random utility theory, the informational entropy constrained

model gives meaning to the observed dispersion of behavior as the the relative payo↵

of di↵erent actions.

Alternatively, we can view the problem from the dual perspective of the observer

of the system in order to find the most probable distribution of actions. Maximizing

the entropy of the mixed strategy subject to a constraint on the expected payo↵ being

a minimum v̄:

Max
{f [a|x]�0}

�
X

a

f [a|x] log[f [a|x]]

subject to
X

a

f [a|x] = 1

X

a

f [a|x]v[a, x] � v̄

(15)

The associated Lagrangian to this dual problem is:

L = �
X

a

f [a|x] log[f [a|x]]� �

 
X

a

f [a|x]� 1

!

+ �

 
X

a

f [a|x]v[a, x]� v̄

! (16)

In this case we are imposing a constraint on our uncertainty of the distribution of

actions conditional on the outcome for a set of agents subject to the constraint that
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individuals have a minimum expected payo↵ for acting, which might be viewed as a

“participation constraint” or reflecting what Herbert Simon referred to “satisficing”

behavior, a form of bounded rationality in which agents do not maximizing their

payo↵ per se, but are content with doing “well-enough” by some criterion. The most

probable distribution of actions (the one with the maximum informational entropy)

is again:

f [a|x] = e�v[a,x]P
a

02A e�v[a,x]
(17)

For the binary action case with the linear payo↵ function v[a, x] = x�µ the solution

becomes:

f [a
0

|x] = 1

1 + e
x�µ

T

(18)

f [a
1

|x] = 1

1 + e�
x�µ

T

(19)

where T = 1/�. The LQR conditional probabilities capture a wide rage of probabilis-

tic choice behavior as is shown in Figure 1.

As long as T > 0 there is a positive probability for each action an individual will

make. As T ! 0, the LQR function converges to the Heaviside step function and

as T ! 1 the actions of individual agents are random and conditionally indepen-

dent of the outcome x and f [a|x] ! f [a]. These two limiting cases have important

implications for the QRSE distribution.
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Figure 1: Logit quantal response conditional probabilities.

5.2 Fulfilled Expectations

Plugging the LQR conditional probabilities into 11 and assuming expectations are

fulfilled such that ⇠ = µ we get the following expression:

f̂ [x] /
 

1

1 + e�
x�µ

T

� 1

1+e

�x�µ

T

1

1 + e
x�µ

T

� 1

1+e

x�µ

T

!
e�� tanh[x�µ

2T

](x�µ) (20)

= eHµ,T

[x]e�� tanh[x�µ

2T

](x�µ) (21)

Where T > 0, � > 0, and µ 2 R. Eq. 21 turns out to have some important properties

and wide ranging implications as pointed out in Blackwell (2018).3

In the limiting case where T ! 0 agents will always chose the action a
1

whenever

x > µ and a
0

whenever x < µ. In this case the conditional frequencies are:

f [a
1

|x] = ✓[x� µ] (22)

f [a
0

|x] = 1� ✓[x� µ] (23)

3In the spirit of the maximum entropy formalism it is worth noting that the QRSE model can
be derived in a single optimization problem that includes the constraints on f [a|x].
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where ✓ is the Heaviside step function. Plugging these response probabilities into 11

we find:

f̂ [x] / e��|x�µ| (24)

Solving for the constraints 7b and 7c produces � = ✏�1 and Z[x, �] = 2

�

. Thus

lim
T!0

f̂ [x] = Laplace[µ, ��1].

�[��|�]
�[��|�]

x

0.2

0.4

0.6

0.8

1.0
f[a|x]

�[����]
�[����]

�
�
[�]

x

0.5

1.0

1.5

2.0

f�[x]

Figure 2: Marginal, conditional, and joint frequency distributions for Heaviside re-
sponse probabilities for � = 2.

Interestingly, the Heaviside response probabilities predict Laplace distributed fluc-

tuations of the outcome variable and not a degenerate Dirac delta function f̂ [x] =

�[x�µ]. This result implies that the fluctuations of x are determined by the feedback

constraint and not just the response probabilities. Only as the constraint becomes

increasingly binding and � ! 1, does the the entropy H[x] = log[2e
�

] decreases to

its minimum and the endogenous fluctuations of x reduce to zero. Systems of social

interactions producing negative feedbacks that are attended to with infinite precision

thus stabilize the social outcome into a Laplace distribution. In this extreme case the

partition function Z[x, �] has a simple analytical solution. This result can act as a

benchmark for social interaction models with self-fulfilling expectations and infinitely

rational agents. While the Laplace distribution implies a zero-entropy constraint, it

18



may be di�cult in many situations to distinguish between T = 0 and T ⇡ 0. When

T is very low f [x] may appear to be Laplace distributed, but as mentioned above,

the same conclusions cannot be drawn from the knife-edge case when T = 0.

On the other hand, when T ! 1 actions become conditionally independent of

the outcome and the response probabilities become random. When this happens the

marginal outcome frequencies f [x], ceterus peribus, converge to a uniform distribu-

tion. We need to consider, however, that there is an implicit interaction between T

and �. This multivariate limit can be easily calculated by transforming the parame-

ters into polar coordinates. Letting � = r cos[✓] and T = r sin[✓] for ✓ 2 [0, ⇡/2]

lim
T!1,�!1

e�� tanh[x�µ

2T

](x�µ) = lim
r!1

e�r cos[✓] tanh[ x�µ

2r sin[✓]

](x�µ)

= e�
cot[✓](x�µ)

2

2

= e�
�(x�µ)

2

2T

(25)

Because f [a
1

|x] � f [a
0

|x] = 1/2 � 1/2 = 0 in the limit, ✏ = 0 as the logic of the

constraint would confirm. Solving for the normalization constraint produces Z[x, �] =
q

2⇡ T

�

implying

lim
T!1,�!1

f̂ [x] = Normal[µ,
T

�
] (26)

In this case marginal, conditional, and joint frequencies are equal as is shown in

Figure 3. The corresponding entropy is H[x] = 1

2

log[2⇡eT̄ ].

In between these the Laplace and Normal limiting cases the QRSE distribution

with fulfilled expectations is capable of generating a wide range of symmetric dis-

tribution functions and approximating many well-known distributions with varying

kurtosis much like the Subbotin distribution. Figure 4 plots the marginal and joint
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Figure 3: Marginal, conditional, and joint frequency distributions are all equal in the
limiting case when T ! 1 and � ! 1.

predicted frequencies from the QRSE model when agents face LQR probabilities and

have fulfilled expectations for a range of parameter values.

The feedback constraint corresponding to Eq. 3 is clearly seen in middle row of

Figure 4. Because � is the Lagrange multiplier associated with the constraint it is

the dual to and varies inversely with ✏. When � is very small the di↵erence in the

weighted expected outcomes is very large and the actions have a negligible impact on

stabilizing the marginal distribution f [x]. When � is very large this di↵erence is very

small and f [x] becomes highly peaked. Conceptually, as ✏ ! 1, ceterus paribus, we

would expect f [x] to become uniform. The parameter �, however, interacts with T

in determining f [x] such that when � ! 0 the var[x] ! 1 but strictly speaking f [x]

only becomes uniform when T ! 1 as well.

The use of symmetric distributions with varying kurtosis have been identified

as equilibrium distributions in a variety of economic contexts, including the distri-

bution of firm growth rates (Bottazzi & Secchi, 2006; Stanley et al., 1996), firm

profit rates (Alfarano, Milaković, Irle, & Kauschke, 2012; Scharfenaker & Semieniuk,

2016), global GDP growth rates (Williams, Baek, Li, Park, & Zhao, 2017), interest

rates (Klein, 1993; Kozubowski & Podgórski, 1999), stock market returns (Madan &

Seneta, 1990), option pricing (Longsta↵, 1995), and currency exchange rates (Kotz,
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Figure 4: Marginal and joint frequency distributions for LQR probabilities. Top:
� = 1 while T varies from 0.075 to 2, Middle: T = 1 while � varies from 0.075 to 2,
Bottom: Varying T and � together from 0.1 to 2.

Kozubowski, & Podgórski, 2001). In many of these models there is often an explicit

if not implicit behavioral theory that determines the frequency distribution of the

outcome. The QRSE model makes this dimension explicit in the model and can

thus serve as an e↵ective alternative to these equilibrium distributions. It is also a
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behaviorally founded alternative to the widely used Subbotin distribution (Alfarano

& Milaković, 2008; Bottazzi & Secchi, 2006; Mundt, Alfarano, & Milaković, 2015;

Subbotin, 1923) for distributions with excess kurtosis between 0 and 3, for which the

Subbotin produces Laplace and Normal outcomes4.

5.3 Unfulfilled Expectations

When agents’ expectations of the market are allowed to be incorrect µ is no longer

constrained to be equal to ⇠. If the typical agent also faces behavioral constraints in

the form of the LQR conditional probabilities the QRSE model for µ, ⇠ 2 R is defined

by the kernel:

f̂ [x] / eHµ,T

[x]e�� tanh[x�µ

2T

](x�⇠) (27)

Allowing for the possibility that expectations of the average social outcome µ 6= ⇠

introduces a skew to the distribution. An important implication of the general QRSE

model with unfulfilled expectations is that not only do individual agents behave prob-

abilistically according to the LQR function, but agents beliefs can be mistaken leading

the typical agent to, for example, buy or sell at too high or too low a rate of return

relative to their expectations. When agents act on mistaken beliefs and expectations

go unfulfilled the distribution of the social outcome becomes asymmetric.5 Figure 5

plots the marginal, conditional, and joint frequency distributions for the QRSE model

4Empirically, these are the relevant limit values for applications of the Subbotin distribution.
Most economic data is shown to approximate the Laplace limit. To this author’s knowledge, no
application of the Subbotin distribution has identified excess kurtosis greater than 3.

5Dos Santos and Scharfenaker (2019) come to a similar conclusion and identify unfulfilled ex-
pectation as indicative of bullish speculator behavior. Recently, Hansen, Szöke, Han, and Sargent
(2019) have been developing “twisted relative entropy” probabilities to reflect such mistaken beliefs.
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with unfulfilled expectations.
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Figure 5: Marginal, conditional, and joint frequency distributions for LQR response
probabilities and unfulfilled expectations. Top: µ = �2, � = 1, T = 1, ⇠ = 0, Middle:
µ = 0, � = 1, T = 1, ⇠ = 0, Bottom: µ = 2, � = 1, T = 1, ⇠ = 0.

The general form of the QRSE model with mistaken beliefs also approximates

many well-known closed form skew distributions and may serve as a useful alterna-

tive to the five parameter Asymmetric Power Exponential Distribution (APED) or

Asymmetric Subbotin Distribution (Bottazzi & Secchi, 2011), which has been used

to model the statistical equilibrium of outcomes such as the profit rate (Mundt &
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Oh, 2019), consumption expenditures (Fagiolo, Alessi, Barigozzi, & Capasso, 2010),

and firm growth rates (Bottazzi, Li, & Secchi, 2019). One of the major obstacles

with the APED and similar distributions is justifying the modulus in the kernel of

the pdf in a theoretically compelling way. As the logic of the QRSE model shows,

the APED assumes that agents or firms maximize the function v[a, x] = |x�µ

�

|↵, i.e.
maximize the scaled absolute value of deviations from their estimated fundamental

with a constrained dispersion, which may only make economic sense in some contexts.

In the profit rate example (Alfarano et al., 2012; Mundt et al., 2015; Mundt & Oh,

2019; Scharfenaker & Semieniuk, 2016) capitalist firms are not aiming at a target

profit rate and disappointed equally if they exceed or fall short of it as the modulus

function implies. They are simply trying to get the highest profit rate. It is the

feedback of firms’ entry and exit decisions that stabilizing the resulting distribution

of profit rates, which is only made explicit in the QRSE model. Further, the modulus

function implies the limiting Heaviside step behavior, which e↵ectively assumes zero

informational entropy on the typical agent’s mixed strategy, an assumption with little

empirical support.

The general QRSE model describes systems in which the economic outcome is

brought into statistical equilibrium by the deliberate actions of boundedly rational

agents and whose expectations may be mistaken. It can capture many of the same

economic phenomena as the AEPD for 0  ↵  3, but o↵ers the benefit of inter-

pretability and theoretical consistency for models that implicitly or explicitly rely on

behavioral foundations, but fail to incorporate this dimension as a determining factor

of the economic outcome.
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6 Application to US Stock Market Data

The QRSE model can be easily applied to the market for tradable securities and

provide a behavioral foundation for the distribution of asset prices. Blackwell (2018),

for example, develops a Keynesian model of asset pricing and applies the QRSE

distribution to cross-sectional US equity returns in the Wikiprice database for daily,

weekly, and monthly realized returns from 1990 to 2017. The model presented here

follows the same logic, but examines a di↵erent historical dataset dating back to 1929.

In the simplest scenario, a QRSE model of asset prices implies that individuals

buy and sell some asset in a large number of separate sub-markets based on the rate

of increase in the asset’s price. In this model individual stocks are used as proxies

for the corse-grained sub-markets. The action in this model is a = {buy, sell}. The

frequency of buying/selling decisions in a particular sub-market is conditional on the

actual rate of return p̂ of an asset, which is the outcome of the social interactions of

all stock market participants. The expectation of the market participants µ, is the

estimate of the fundamental rate of price increase of an asset. The typical agent’s

payo↵ function is the di↵erence between the two: v[a, p̂] = p̂�µ. Accordingly, agents’

behavior is described probabilistically by the logit-quantal response function:

f [buy|p̂] = 1

1 + e
p̂�µ

T

(28)

f [sell|p̂] = 1

1 + e�
p̂�µ

T

(29)

Individual acts of buying or selling have a non-zero impact on the rate of return

in the sub-market such that buying assets will raises the price faster and selling will

slow it down. This impact of actions on outcomes limits the rate of price appreci-

ation conditional on buying and selling, which constrains the equilibrium marginal
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frequency distribution f [p̂]. When the equilibrium distribution of rates of return is

asymmetric, the typical agent incurs losses relative to the average market rate. These

losses appear as long tails and a skew to f [p̂].

Using monthly CRSP price data for all exchanged securities on the US stock

market from 1926-2018 Eq. 27 is fit to the average annual rate of return as measured

by the log return.6 This data comprises on average 37, 990 observations per year with

a total of 3, 533, 145 observations spanning over a 90 year period. Estimation is done

using a Robust Adaptive Metropolis (RAM) algorithm (Vihola, 2012)7.
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Figure 6: QRSE parameter estimates for the rate of price increases across all US
security exchange markets 1929-2018 with 95% credibility intervals. NBER recession
dates are plotted as gray bars. Data source CRSP.

Figure 6 plots the evolution of QRSE model parameters applied to cross sections

of the rate of price increases for US securities for over 90 years. The results are telling

and confirm the similar findings of Blackwell (2018). The behavioral temperature T ,

6Using annual average rather than the monthly data eliminates much of the high-frequency noise
and is done for visual clarity. See Appendix A: for details on data.

7R code is available upon request.
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which represents the responsiveness of individual agents to changes in the rate of

return appears in line with business cycle frequencies as well as lower frequencies. It

is confined to low, but positive levels throughout the sample which implies that the

typical agent’s buy/sell decisions are probabilistic and not deterministic as with the

Heaviside step response function. It appears that in times leading up to a recession

perceptual limitations of individual investors to price di↵erentials become increasingly

binding and that after a downturn T is brought back to its trend. This result could

be due to the increased amount of trading activity in booms that leads to greater

inattentiveness in market participants.

The parameter � is dual to the constraint ✏ and thus these variables move in

opposition of one another. The parameter ✏ is easier to interpret, it represents the

limiting di↵erence between the feedback of buy/sell decisions on the rate of return.

This spread tends to increase leading up to a downturn which implies a less binding

feedback constraint and declining �. Because the feedback constraint implies that

buying decisions raise the rate of prices faster and selling decisions slow it down, the

spike in ✏ prior to a downturn indicates that buying decisions in speculative times

e.g. from 2001 to about 2006 tend to have a strong impact on the rate of return, but

that this e↵ect weakens leading up to a recession.

The parameter ⇣ = µ� ⇠ measures the spread between individual’s expectations

about the fundamental value of rates of return and the actual average market outcome.

When ⇣ > 0 expectations of the rate of return outpace their actual value. Not

surprisingly, this value tends to peak prior to a downturn. ⇣ thus appears a leading

indicator for recessions that may be interpreted as a measure of speculative activity

(Dos Santos & Scharfenaker, 2019).

For comparison, the data and the QRSE model for 2004, a year in the middle of

a business cycle is compared to 2008 in Figure 7:
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Figure 7: Frequency distribution of p̂ with QRSE model fits 2004 and 2008.

Looking at the estimated marginal frequencies f [buy] and f [sell] we can also

see that investors’ are far more likely to buy leading up to a recession. From the

logic of the model this suggests that expectations of gains are due to a perception

of undervaluation of asset prices. Eventually, this exuberance is brought into check

by some punitive mechanism and expectations are dramatically reversed during and

following a recession. The stationarity of ⇣ around zero is a good indication that such

behavioral is cyclical and the relation to f [a] suggests it is also endogenous to the

system.
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Figure 8: Left: Marginal frequencies of buying/selling 1926-2018. NBER recession
dates are plotted as gray bars. Data source CRSP. Right: Relationship between
buying frequencies and ⇣.

7 Discussion and Conclusions

The principle of maximum entropy has been applied fruitfully to many economic

and social situations. One limitation of such applications, however, is the tendency

neglect of the joint determination of social outcomes and the actions that shape them

in the formal modeling despite the fact that both dimensions of the problem are

typically articulated in the theoretical exposition. The fact that closed-form marginal

distributions such as the Laplace or Subbotin distributions are good model candidates

for many economic variables in statistical equilibrium based on fit has the unfortunate

consequence of leading to economic rationalization based on mathematical necessity of

the constraints.8 From the Principle of Maximum Entropy perspective (Jaynes, 2003)

the use of closed-form distributions seems somewhat premature. While there may be

good reasons to rely on such distributions for modeling statistical equilibrium in some

situations, in general this limits inference to an arbitrary subset of models. The QRSE

model does not have a closed-form solution, but due to the low dimensionality of the

8This reasoning is admittedly evident in Scharfenaker and Semieniuk (2016) who attempt to
rationalize the Laplace and Asymmetric Laplace as the equilibrium distribution of profit rates based
on entry/exit dynamics without explicitly considering the how those dynamics shape the profit rate
distribution.

29



model, the partition function is more an inconvenience than an obstacle.

As mentioned above the di�cult part of using the method of maximum entropy is

to find the constraints that parsimoniously express the theory relevant to the problem.

In this respect the QRSE model makes some milage over the univariate models that

focus only on the marginal distribution of the social outcome by incorporating the

causal mechanism as an additional dimension of the statistical problem. The QRSE

model is also a very good example of the potential of maximum entropy reasoning in

social sciences and may be used as a template for more complex problems that require

careful reasoning in formulating the correct constraints consistent with theory.

The model developed by Scharfenaker and Foley (2017) is applicable to a wide

range of social interaction problems. Any system constrained by negative feedbacks

and boundedly rational individuals will tend to generate outcomes of the QRSE form.

Not surprisingly, due to the limited constraints placed on the system, the QRSE model

is highly flexible and capable of generating many unimodal symmetric and asymmet-

ric distributions, including those with fat-tails. By di↵erentiating between individual

expectations and average social outcomes the QRSE model is also capable of bridging

an important theoretical gap between the micro-behavioral and the macroeconomic

dimensions. Because the maximum entropy framework only incorporates the infor-

mation put into the calculation, each parameter in the statistical equilibrium model

has a clear theoretical interpretation consistent with the constraint.
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Kozubowski, T., & Podgórski, K. (1999). A class of asymmetric distributions. Actu-

arial Research Clearing House, 1, 113–134.

Longsta↵, F. A. (1995). Stochastic volatility and option valuation: A pricing-density

approach. The Anderson Graduate School of Management, UCLA.

Luce, D. R., & Rai↵a, H. (1957). Games and decisions. New York: Wiley.

Luce, D. R. (1959). Individual choice behavior. New York: Wiley.

Madan, D., & Seneta, E. (1990). The variance gamma (v.g.) model for share markets

returns. Journal of Business, 63, 511–524.

32



Manski, C. F., & McFadden, D. (1981). Structural analysis of discrete data with

econometric applications. MIT Press.
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8 Appendix A: Data

Data was gathered

9 Appendix B: QRSE Transformations

There are at least two useful coordinate transformations of 27 that make the QRSE

model applicable to a wider range of possible economic problems. The first is to

transform the kernel of 27 to coordinates based on the odds against the action q[x] =

e�
x�µ

T :

f̂ [q] / eH[q]e(
¯

⇣� ¯

T log[q]) tanh[ log[q]
2

] (30)

The second is to transform the kernel of 27 to the frequency of the action p[x] =

1

1+e

�x�µ

T

:

f̂ [p] / eH[p]e(
¯

⇣� ¯

T log[ 1
p

�1]) tanh[ 1
2

log[ 1
p

�1]] (31)
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where ⇣̄ = �(µ� ⇠), and T̄ = �T become the only e↵ective parameters in the model

and

H[p] = �(1� p) log[(1� p)]� p log[p]

H[q] = � 1

1 + q
log[

1

1 + q
]� q

1 + q
log[

q

1 + q
]

(32)

These transformation restrict the domain of q 2 [0,1] and p 2 [0, 1]. The resulting

marginal frequencies f̂ [q] and f̂ [p] approximate the behavior of the Generalized Beta

(GB2) distribution and the Beta distribution respectively.
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Figure 9: Marginal and joint frequency distributions transformed QRSE. Left: Log-
odds of action, Right: Frequency of action. Top: ⇣̄ = �2, T̄ = 1, Middle: ⇣̄ = 0, T̄ =
1, Bottom: ⇣̄ = 2, T̄ = 1.
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