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Abstract

Previous evidence shows that better insurance coverage increases medical expenditure. How-
ever, formal studies on the effect of spending on health outcomes, and especially mental health, 
are lacking. To fill this gap, we reanalyze data from the Rand Health Insurance Experiment and 
estimate a joint non-linear model of spending and mental health. We address the endogeneity of 
spending in a flexible copula regression model with Bernoulli and Tweedie margins and discuss its 
implementation in the freely available GJRM R package. Results confirm the importance of account-
ing for endogeneity: in the joint model, a $1000 spending in mental care is estimated to reduce 
the probability of low mental health by 1.3 percentage points, but this effect is not statistically 
significant. Ignoring endogeneity leads to a spurious (upwardly biased) estimate.

Key Words: Binary response; Co-payment; Copula; Health expenditures; Penalized regression 
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1 Introduction

It is quite common in empirical health economics to specify models where two or more outcome vari-

ables are potentially associated conditional on a set of covariates. Modeling such association matters

for efficiency, but also for addressing endogeneity in a recursive system of equations. The choice of

model is dictated by the nature of the dependent variables. For example, for two jointly determined

binary responses, the bivariate probit is frequently used (see Waters (1999), Farbmacher et al. (2017),

Humphreys et al. (2014), among others). Often, however, there will be a mix of outcomes. As typical

example, consider a joint model for insurance status and health care utilization, as in Deb & Trivedi

(2006) and Marra et al. (2020). In such cases, one can use copulae to introduce dependence between

outcomes with known arbitrary margins. In fact, the copula approach allows the marginal distribu-

tions to be chosen to best fit the data.

In this paper, we are interested in expenditures for medical services (per person and quarter or

year), and their effect on a health outcome (a binary indicator), based on a joint model with associated

outcomes. Modeling medical expenditure data is a challenge because they display a substantial frac-

tion of zeros, often more than 50%, in combination with a continuous distribution of positive amounts

that is highly skewed. In single equation models, which neglect the presence of associated outcomes, es-

timation of regression parameters does not rely on a correctly specified distribution, and determinants

of expenditure have often been estimated using the Gamma pseudo maximum likelihood estimator

(Manning et al., 1987), linear regression for logarithmic non-zero expenditures (Manning & Mullahy,

2001), or a variety of two-part models (Mullahy, 1998). For the copula approach, however, it is im-

portant to find a suitable marginal distribution for expenditures. Kurz (2017) recently argued that

a compound Gamma distribution can provide a good characterization of health care expenditures.

Specifically, assume that expenditures Y is a sum ofN independent and identically distributed Gamma

random variables, where N is distributed as Poisson(ω). Then the probability of a zero expenditure

is given by exp(−ω) and the distribution of positive amounts is skewed to the right. The compound

gamma distribution is a special case of the more general Tweedie family of distributions. A plot based

on quantile residuals confirms the suitability of the Tweedie for modeling the marginal distribution

of health care expenditures in our application.

Our main technical contribution is then to build a flexible copula regression model for the joint

determination of a Tweedie variable and a Bernoulli response (in our application an indicator of
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good health) and describe the steps for an efficient estimation algorithm. The proposed model is

flexible in the sense that it is possible to: choose several link functions for the Bernoulli margin,

incorporate (linear and non-linear) covariate effects into any distributional parameter, and allow for

the exploration of a wide set of copulae. Moreover, it can be made fully interdependent, recursive, or

“seemingly unrelated”, by imposing zero-constraints on corresponding coefficients. A similar model

has been proposed by Marra et al. (2020) who focused on binary and count margins (see, also, the

references therein for alternative simpler versions, with different types of margins). The model is

implemented in the R package GJRM (Marra & Radice, 2022), written for the programming language R

(R Core Team, 2022). To the best of our knowledge, this is the first freely available implementation

of a flexible copula regression model involving the Tweedie distribution.

In terms of substantive application, we use the proposed framework for estimating the causal

effect of expenditure on health. We revisit data from the Rand Health Insurance Experiment (RHIE,

e.g., Manning et al., 1987; Aron-Dine et al., 2013). The experiment generated exogenous variation in

expenditure, by providing more or less insurance coverage to participant households. The experiment

lasted for a period of up to 5 years, and health evaluations were conducted both before and after.

Unfortunately, the public use files only contain information on mental rather than physical health,

and that is one reason why our analysis is focused on the effect of mental health expenditures on

mental health.

The other reason is that empirical studies on mental health expenditures are relatively scarce,

despite their policy relevance. The OECD assesses that more spending on mental health (often

outpatient psychotherapy) could massively increase productivity and well-being (OECD, 2014). The

United Nations include improved mental care provision among the sustainable development goals

(United Nations, 2015). Nevertheless, among the stream of papers that came out of the RHIE,

only one dealt explicitly with mental health (Manning et al., 1986). A possible explanation is that

mental spending in the RHIE accounted only for around 4% of overall spending. Regarding overall

expenditures, earlier analyzes of the data suggested a strong “first-stage” effect (i.e., more generous

insurance coverage increased expenditures) but no systematic “reduced-form” effect (of more generous

insurance cover on actual health, or mental health, as in Manning et al. (1989)). A formal analysis

of the direct effect of increased mental spending on mental health was, to the best of our knowledge,

never conducted.

The bivariate model we implement is recursive: it postulates a direct effect of the Tweedie dis-
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tributed health expenditure variable on the Bernoulli outcome “low mental health”, but not vice-versa.

Joint estimation using the copula approach allows for common unobserved components. Ignoring this

would bias the effect size. Direct reverse causation is not an issue here because of the ordering of

events: spending precedes the health measurement. Hence, the recursive model is appropriate. To

better achieve empirical identification, we instrument spending using RHIE’s random assignment of

individuals to insurance plans with different levels of cost-sharing. Our approach is superior to ad-hoc

endogeneity corrections, such as plug-in or control function approaches, as they are not designed for

non-normal and non-linear reduced forms as evidently required for the mixed discrete-continuous vari-

able “mental spending” (e.g., Rivers & Vuong, 1988; Wooldridge, 2010). Using the copula approach

with appropriate margins for the binary mental health indicator and the semi-continuous mental

spending variable, we address the endogeneity of spending in a model-consistent way, based on a

specification of the joint probability function that could have generated the observed data.

Our main findings are as follows. The Tweedie margin fits the expenditure data well, as evidenced

by approximately normally distributed quantile residuals. Among the eleven copulae and three binary

link functions considered, the Gaussian copula with probit link has the smallest Akaike information

criterion (AIC) value. The instrument for mental spending (made up of several categories) is highly

significant (p-value of 0.00027 using the Wald test). Substantively, we find that the probability of low

mental health is strongly predicted by the initial mental health score. The probability is higher for

women and for the less educated, although the latter effect is not statistically significant (p-value of

0.14). The estimated Gaussian copula parameter indicates positive dependence. Ignoring this leads to

a spurious estimate in the univariate model, where a $1000 increase in spending predicts an increase

of 3.3 percentage points in the probability of low mental health. Once the endogeneity of spending is

accounted for, the average partial effect switches sign. The point estimate of -1.3 percentage points

is of modest size and is not statistically significant.

The paper is organized as follows. Section 2 introduces the Tweedie-Bernoulli copula model by

discussing its components. Section 3 provides some details on parameter estimation and the related

implementation in R. Section 4 presents the application whereas Section 5 concludes the paper.
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2 Copula model

The copula regression model introduced in this paper aims at modeling in a flexible and versatile way

the joint distribution of a Bernoulli outcome variable and a semi-continuous (endogenous) variable.

In the application, Y1 ∈ {0, 1} is the binary outcome “low mental health” and Y2 ∈ R
+
0 is mental

spending. Assume that

F12(y1, y2|ϑ) = C (F1(y1|π), F2(y2|µ, σ, ν); θ) , (1)

where ϑ = (π, µ, σ, ν, θ)′, F1(y1|π) and F2(y2|µ, σ, ν) represent the marginal cumulative distribution

functions (cdfs) of Y1 and Y2 taking values in (0, 1), C : (0, 1)2 → (0, 1) is a two-place copula function

whose specification does not depend on the marginals, and θ is a copula dependence parameter

that quantifies the association between the two random variables (see, e.g., Nelsen, 2006, for further

details). Variable Y1 is modeled via a Bernoulli distribution with parameter π ∈ [0, 1] (representing

the probability that the outcome is equal to 1), and Y2 using a Tweedie distribution with parameters

µ, σ and ν (see Section 2.1). Note that π, µ, σ, ν and θ can be specified as functions of covariate

effects as detailed in Section 2.2. Hence, the marginal model for Y1 can be regarded as a generalized

additive model and that for Y2 as a generalized additive model for location scale and shape (e.g.,

Rigby & Stasinopoulos, 2005; Wood, 2017). Function C can be specified as in Table 1 of Marra et al.

(2020) which reports several copulae.

As opposed to classical copula regression settings, the variable Y2 appears as an explanatory

variable in π, hence giving the model a recursive structure which in turn implies that Y2 is endogenous

with respect to Y1 if the dependence between the two marginals (captured by θ) is statistically

significant; see Han & Vytlacil (2017), Marra et al. (2020) and references therein for some works

which have adopted the same logic for copula regression models. Note that, for the model adopted in

this paper, Sklar (1973)’s result can only guarantee that the copula is unique over the range of the

outcomes. However, for applied purposes, in a regression contest, this is not problematic as noted by

several authors including Joe (2014), Nikoloulopoulos & Karlis (2010) and Trivedi & Zimmer (2017).

The joint density f12 (y1, y2), required for calculating the model’s log-likelihood, is built by con-
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sidering the four possible combinations of values that (Y1, Y2)
′ can take. That is,

f12 (y1, y2) =















































C (F1(0|π), F2(0|µ, σ, ν); θ) if y1 = 0 and y2 = 0

F2(0|µ, σ, ν)− C (F1(0|π), F2(0|µ, σ, ν); θ) if y1 = 1 and y2 = 0

f2 (y2|µ, σ, ν)
∂C(F1(0|π),F2(y2|µ,σ,ν);θ)

∂F2(y2|µ,σ,ν)
if y1 = 0 and y2 > 0

f2 (y2|µ, σ, ν)
{

1− ∂C(F1(0|π),F2(y2|µ,σ,ν);θ)
∂F2(y2|µ,σ,ν)

}

if y1 = 1 and y2 > 0

, (2)

where f2(y2|µ, σ, ν) = ∂F2(y2|µ, σ, ν)/∂y2 denotes the density function of the Tweedie distribution.

The first two lines of (2) show the probabilities associated with their respective events, whereas the

last two lines show the densities obtained by differencing the first two lines of the equation with

respect to y2 when y2 > 0. For notational convenience, we dropped observation index i from the

formulae above. However, it should be clear from the context of the paper that a set of n observations

is assumed to be available for practical modeling.

2.1 Tweedie distribution

The Tweedie distribution is a linear exponential dispersion model (Jørgensen, 1987) with a power

mean-variance relationship, that is

var(Y ) = σµν ,

where µ = E(Y ), σ > 0 is a scale parameter and ν ∈ R controls the shape of the relationship.

Widely used distributions such as the Gaussian, Poisson and Gamma are nested by the Tweedie

family and can be recovered by setting ν to the relevant value (e.g., ν = 0 for the Gaussian). In this

work, we are interested in the interval ν ∈ (1, 2), for which a Tweedie-distributed random variable

can be represented as the sum of N independent Gamma-distributed random variables, where N

is Poisson distributed. The resulting density is supported on the non-negative real line and has a

positive mass at y = 0. Prior applications of the Tweedie compound Poisson-Gamma distribution are

mainly known from the actuarial sciences, where the distribution is used to model insurance claim

payments data (see, e.g., Smyth & Jørgensen, 2002). Kurz (2017) provides an application to total

medical expenditures.

Fitting reliably the proposed copula regression model involving a Tweedie margin, using the

method that will be mentioned in Section 3, requires the ability to compute the Tweedie proba-
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bility density function and cdf as well as their first and second order derivatives with respect to µ, σ

and ν. As we detail in the rest of this section, such quantities are not trivial to compute.

The density of the Tweedie is

f(y|µ, σ, ν) = a(y, σ, ν) exp

[

1

σ
{yθ − κ(θ)}

]

,

where

θ =
µ1−ν

1− ν
for ν 6= 1 and θ = logµ for ν = 1,

and

κ(θ) =
µ2−ν

2− ν
for ν 6= 2 and κ(θ) = logµ for ν = 2.

As explained in Dunn & Smyth (2005), evaluating the Tweedie density requires approximating the

factor a(y, σ, ν), which does not have a closed-form expression, using specifically designed numerical

methods. Wood et al. (2017) provide methods for computing the first and second order derivatives of

the log-density, while avoiding numerical problems. In the next section, we explain how to compute

the Tweedie cdf and its derivatives.

2.1.1 Tweedie cdf and its derivatives

For 1 ≤ ν ≤ 2, a Tweedie variable Y can be written as the sum of N independent Gamma-distributed

random variables W1, . . . ,WN with shape −α and scale γ, while N follows a Poisson distribution with

rate ω. In terms of the Tweedie parameters, we have

ω =
µ2−ν

σ(2− ν)
, α = (2− ν)/(1− ν), γ = σ(ν − 1)µν−1.

Hence, the cdf of Y is

F (y) = P

(

N
∑

i=1

wi < y

)

=
∞
∑

k=1

PG

(

k
∑

i=1

wi < y

)

PP (N = k), (3)

where the second equality holds due to the Law of Total Probability, PG is equivalent to the cdf (F k
G)

of a Gamma distribution with parameters −kα and γ, while PP is the probability mass function (fP )

of a Poisson with rate ω.

7



We approximate the infinite sum in (3) by

F (y) ≈ F̂ (y) =

kmax
∑

k=kmin

F k
G(y)fP (k),

for some kmax ≥ kmin whose values are chosen as follows. Given that fP is maximal at k = ⌊ω⌋ and

then monotonically decreases as k moves away from the mode, a reasonable approach is to choose

kmin and kmax such that fP (k) < ǫfP (⌊ω⌋) for k < kmin or k > kmax, for some small ǫ. If we do so, it

is clear that a very pessimistic upper bound on the approximation error is

|F (y)− F̂ (y)| < PP (N < kmin or N > kmax) = 1− PP (kmin < N < kmax),

which is easy to compute. Of course, kmin and kmax are not known in advance, but we can initialize k

to ⌊ω⌋ and then increase k until fP (k) < ǫfP (⌊ω⌋), which leads to kmax. Then k is set to the Poisson

mode and decreased until kmin is found or k = 0.

First and second derivatives of the (approximate) Tweedie cdf, F̂ (y), w.r.t. θ = {µ, σ, ν} are

obtained by firstly calculating the derivatives w.r.t. ψ = {α, γ, ω} and then using the Jacobian of

the transformation to convert them to the θ-based parametrization. The gradient of F̂ (y) and the

diagonal entries of the Hessian w.r.t ψ are

∂jF̂

∂αj
≈

kmax
∑

k=kmin

∂jF k
G

∂αj
fP ,

∂jF̂

∂γj
≈

kmax
∑

k=kmin

∂jF k
G

∂γj
fP ,

∂jF̂

∂ωj
≈

kmax
∑

k=kmin

F k
G

∂jfP
∂ωj

,

for j = 1 or 2, while the non-diagonal Hessian elements are

∂2F̂

∂α∂γ
≈

kmax
∑

k=kmin

∂2F k
G

∂α∂γ
fP ,

∂2F̂

∂α∂ω
≈

kmax
∑

k=kmin

∂F k
G

∂α

∂fP
∂ω

,
∂2F̂

∂γ∂ω
≈

kmax
∑

k=kmin

∂F k
G

∂γ

∂fP
∂ω

.

The derivatives w.r.t. γ and ν are given by

∂F k
G

∂γ
= −

1

Γ(−kα)

y

γ2

(

y

γ

)−kα−1

e
− y

γ ,
∂2F k

G

∂γ∂α
= k

∂F k
G

∂γ

{

Γ(1)(−kα)

Γ(−kα)
− log

y

γ

}

,

∂2F k
G

∂γ2
=

y exp
{

−y
γ − (ka+ 1) log

(

y
γ

)

− log Γ(−kα)
}{

γ(1− ka)− y
}

γ4
,
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∂fP
∂ω

= fP (k)

(

k

ω
− 1

)

,
∂2fP
∂ω2

=
∂fP
∂ω

(

k

ω
− 1

)

−
k

ω2
fP (k),

where Γ is the gamma function and Γ(1)(−kα)/Γ(−kα) is the digamma function. Derivatives w.r.t. α

require computing the derivative of the lower incomplete gamma function w.r.t. its first argument. To

our best knowledge, no numerical routine is currently available to approximate this quantity efficiently

and stably, hence we use finite differences to approximate (mixed) derivatives of F̂G w.r.t. α. The

gradient of F̂ w.r.t. θ is obtained by ∇θF̂ = J∇ψF̂ , where

J =













∂ω
∂µ

∂α
∂µ

∂γ
∂µ

∂ω
∂σ

∂α
∂σ

∂γ
∂σ

∂ω
∂ν

∂α
∂ν

∂γ
∂ν













=













2−ν
µ ω 0 ν−1

µ γ

−ω
σ 0 γ

σ

µ2−ν{1+(ν−2) log µ}
(ν−2)2σ

1
(ν−1)2

γ(log µ+ 1
ν−1)













is the Jacobian of the transformation. The Hessian is then obtained by

∇′
θ∇θF̂ = J∇′

ψ∇ψF̂JT +

[

∂J

∂µ
∇ψF̂ ,

∂J

∂σ
∇ψF̂ ,

∂J

∂ν
∇ψF̂

]

,

where

∂J

∂µ
=













J11

(

1−ν
µ

)

0 J13

(

ν−2
µ

)

−J11

σ 0 J13

σ

2−ν
µ J31 +

1
µ

µ2−ν

(ν−2)σ 0 γ
µ + J13(log µ+ 1

ν−1)













,
∂J

∂σ
=













2−ν
µ J21 0 ν−1

µ J23

−2J21

σ 0 0

−J31

σ 0 J23(log µ+ 1
ν−1)













,

∂J

∂ν
=













2−ν
µ J31 −

ω
µ 0 ν−1

µ J33 +
γ
µ

−J31

σ 0 J33

σ

−J31

(

logµ+ 2
ν−2

)

+ µ2−ν log µ
(ν−2)2σ

− 2
(ν−1)3

−γ 1
(ν−1)2

+ J33(log µ+ 1
ν−1)













,

with Jij indicating the element in row i and column j of the Jacobian.

2.2 Additive predictor

Each of the parameters in ϑ is linked to covariate effects via an additive predictor η ∈ R and a

known monotonic one-to-one transformation function g that maps the parameter space to the real

line. For the proposed model, we have gπ(π) = ηπ, gµ(µ) = ηµ, gσ(σ) = ησ, gν(ν) = ην and gθ(θ) =

ηθ, where gπ(·) can be specified using a logit, probit or cloglog link function, gµ(µ) = log(µ),
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gσ(σ) = log(σ), gν(ν) = log((ν − 1.001)/(1.999 − ν)), and gθ depends on the chosen copula (e.g.,

for Gumbel gθ(θ) = log(θ − 1)). Dropping for simplicity the subscript denoting the parameter the

additive predictor belongs to, ηi can be written as

ηi = β0 +
K
∑

k=1

sk(zki), i = 1, . . . , n, (4)

where β0 ∈ R is an overall intercept, zki denotes the k
th sub-vector of the complete covariate vector zi

(potentially containing various types of covariates) and theK functions sk(zki) represent generic effects

which are chosen according to the type of covariate(s) considered. Each sk(zki) can be approximated

as a linear combination of Jk basis functions bkjk(zki) and regression coefficients βkjk ∈ R, i.e. (e.g.,

Wood, 2017)

sk(zki) =

Jk
∑

jk=1

βkjkbkjk(zki). (5)

This formulation implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)}
′ can be written as Zkβk

with βk = (βk1, . . . , βkJk)
′ and design matrix Zk[i, jk] = bkjk(zki). This allows equation (4) to be

written as

η = β01n + Z1β1 + . . .+ ZKβK , (6)

where 1n is an n-dimensional vector made up of ones. Equation (6) can also be written as η = Zβ,

where Z = (1n,Z1, . . . ,ZK) and β = (β0,β
′
1, . . . ,β

′
K)

′.

Each βk has an associated quadratic penalty λkβ
′
kDkβk whose role is to enforce specific properties

on the kth function, such as smoothness. Matrix Dk only depends on the choice of basis functions.

Smoothing parameter λk ∈ [0,∞) controls the trade-off between fit and smoothness, and plays a

crucial role in determining the shape of ŝk(zki). The overall penalty can be defined as β′Dλβ, where

Dλ = diag(0, λ1D1, . . . , λKDK). Note that the first term in Dλ is set to 0 since β0 is not penalized

in estimation. However, it could be replaced with 0 should some parameter vector(s) in β also

be unpenalized. Finally, the smooth functions are subject to centering (identifiability) constraints,

which impose that
∑n

i=1 sk(zki) = 0 for every k (see Wood (2017) for more details). The above

smooth function representation allows one to specify a rich variety of covariate effects (such as linear,

nonlinear and spatial Markov random field effects) and we refer the reader to Wood (2017) for full

details.

Consider the compact form for the random vectors Y1 = (Y11, . . . , Y1n)
′ and Y2 = (Y21, . . . , Y2n)

′.
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Then, by some slight abuse of notation, Y1 ∼ D1(π) and Y2 ∼ D2(µ,σ,ν), where D1 and D2

denote the Bernoulli and Tweedie distributions, respectively, and π = (π1, . . . , πn)
′, µ = (µ1, . . . , µn)

′,

σ = (σ1, . . . , σn)
′ and ν = (ν1, . . . , νn)

′ are modeled through

ηπ = gπ(π) = β101n + βendY2 + Z11β11 + . . .+ Z1Kβ1K ,

ηµ = gµ(µ) = β201n + Z21β21 + . . .+ Z2Kβ2K ,

ησ = gσ(σ) = β301n + Z31β31 + . . .+ Z3Kβ3K ,

ην = gν(ν) = β401n + Z41β41 + . . .+ Z4Kβ4K ,

where the functions g are applied element-wise. The same specification can also adopted for the de-

pendence parameter vector θ = (θ1, . . . , θn)
′ where ηθ = gθ(θ) = β501n+Z51β51+. . .+Z5Kβ5K . Term

βendY2, the endogenous effect of the semi-continuous variable on the binary response, here modeled

using representation (5), enters equation ηπ, hence giving the model setup a recursive structure as

explained in Section 2. In terms of specification, covariates might be common across the additive

predictors, except for the equation(s) related to the endogenous variable which should include at least

one variable (an instrument) that is not included in the other predictors (e.g., Han & Vytlacil, 2017).

Finally, note that not all parameters have to be specified as functions of predictors.

3 Some fitting details

Let us assume that a random sample {(y1i, y2i, zi)}
n
i=1 is available, then the log-likelihood function,

ℓ(δ), can be obtained by taking the logarithm of f12(y1, y2) defined in (2) and creating the indicator

variables corresponding to the four possible combinations of the responses. The parameters are defined

as πi = g−1
π (ηπi), µi = g−1

µ (ηµi), σi = g−1
σ (ησi), νi = g−1

ν (ηνi) and θi = g−1
θ (ηθi), and δ is given by the

coefficient vectors associated with ηπi , ηµi , ησi ,ηνi and ηθi , that is δ = (β′
π,β

′
µ,β

′
σ,β

′
ν ,β

′
θ)

′.

Because of the modeling flexibility offered by the additive predictors in the model, parameter

estimation is achieved by maximizing the penalized log-likelihood

ℓp(δ) = ℓ(δ)−
1

2
δ′Sλδ, (7)

where Sλ = diag(λπDπ,λµDµ,λσDσ,λνDν ,λθDθ), each smoothing parameter vector in Sλ contains

all the smoothing parameters related to the correspondingD component, and λ = (λ′
π,λ

′
µ,λ

′
σ,λ

′
ν ,λ

′
θ)

′.
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Estimation of δ and λ is based on an extension of the efficient and stable trust region algorithm with

integrated automatic multiple smoothing parameter selection discussed in Marra et al. (2020), which

uses analytical derivative information of ℓp(δ). We would like to mention that, while the implemen-

tation of the proposed model exploited the infrastructure of GJRM as well as several of its internal

functions, extending GJRM to accommodate a Tweedie marginal required a great deal of programming

work.

Inferential results are derived using known theory for general penalized likelihood-based mod-

els. Specifically, at convergence, reliable intervals for any linear function of δ are obtained using the

Bayesian large sample approximation δ
a
∼ N(δ̂, (H(δ̂)+Sλ)

−1), whereH(δ̂) is the observed informa-

tion matrix (Hessian of the negative log likelihood) at δ̂. Intervals for non-linear functions of δ can be

conveniently obtained via posterior simulation (e.g., Marra et al., 2020), whereas p-values for all the

terms in the model can be obtained by using the results in Wood (2017) which are based onHp(δ̂)
−1.

Under some classical model assumptions, it can be proved that δ̂− δ0 = OP (n
−1/2) as n → ∞, where

δ0 denotes the ‘true’ parameter vector. For more information, the reader can consult the on-line

supplementary material of Marra et al. (2020) which provides general asymptotic arguments that can

also be applied to the current context. Appendix A, in the on-line supplementary material, reports

the results of a simulation study which support the empirical effectiveness of the model discussed in

this paper.

3.1 Fitting the model in R

The proposed copula model can be employed via the gjrm() function in the R package GJRM (Marra & Radice,

2022). An example of the syntax is

fl <- list(y1 ~ y2 + z1 + s(z3),
y2 ~ z1 + s(z2) + s(z3),

~ z1 + s(z3),
~ z1 + s(z2) + s(z3)
~ z1 + s(z3))

mo <- gjrm(fl, margins = c("probit", "TW"), data = md, BivD = "C0", Model = "B")

where fl is a list containing five equations: the first equation is for parameter π of the Bernoulli

distribution of the binary outcome y1 with probit link function (logit and cloglog are also allowed

for); the second, third and fourth equations are for parameters µ, σ and ν of the Tweedie distribution

used to model y2; the fifth equation is for the copula dependence parameter θ. Argument BivD specifies

the copula function (Clayton in this case), Model = "B" implies that a bivariate model is employed

12



and md is a data frame. Symbol s() refers to the smooth function mentioned in Section 2. Default

is bs = "tp" (penalized low rank thin plate spline) with k = 10 (number of basis functions) and m =

2 (order of derivatives). However, argument bs can also be set to, for example, cr (penalized cubic

regression spline), ps (P-spline) and mrf (Markov random field), to name but a few. Note that, e.g., for

uni-dimensional smooth functions of continuous covariates, the specific choice of spline definition will

not have an impact on the estimated curves. Furthermore, the default value of k = 10 (which can be

increased if desired) is arbitrary although it generally offers enough modeling flexibility in applications.

Functions such as AIC(), summary() and predict() can be employed in the usual manner. Function

post.check() will produce, for the Tweedie margin, a histogram and normal Q-Q plot of modified

normalized quantile residuals constructed as follows. For a continuous distribution, F2(y2i|µi, σi, νi) is

uniform. Under correct specification, therefore, the sample values F2(y2i|µ̂i, σ̂i, ν̂i), i = 1, . . . , n, should

be approximately uniform, and the transformed values Φ−1(F2(y2i|µ̂i, σ̂i, ν̂i)), where Φ−1(·) is the

quantile function of a standard normal distribution, approximately standard normal. To account for

the probability mass at zero, we employ an adjustment based on the idea of sampling uniform variates

with bounds given by 0 and the upper probability of those observations (Dunn & Smyth, 1996).

Residual analysis for the binary margin is not informative (e.g. Collett, 2002). Here, a sensitivity

analysis based on different link functions can be carried out; experience suggests that the model fit

will not be significantly affected by this choice.

4 Application to mental care spending and health

The main aim of the present empirical application is to estimate the effect of mental care spending

on mental health, using data from the RHIE whose purpose was to determine the impact of health

insurance on expenditures and health, if any. The experiment was conducted between 1974 and

1982 at six different sites in the U.S. It randomly assigned, for a period of 3 or 5 years, about

5800 participants, living in 2000 mostly middle-class households, to 14 different insurance plans.

Plans can be classified into essentially four types of coverage: full insurance; individual deductible

plans; coinsurance plans; and catastrophic coverage only. The data are available as public use files

from https://www.icpsr.umich.edu/icpsrweb/NACDA/studies/06439; see Deb & Trivedi (2002)

or Aron-Dine et al. (2013) for a more detailed description of data and variables, and the latter also

for a discussion of enrollment refusal and attrition.
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Although the RHIE data collection was completed almost 40 years ago, the study continues

to attract interest by researchers and policymakers to this day (e.g., Newhouse & Normand, 2017;

Lin & Sacks, 2019). A series of methodological papers in the wake of the RHIE dealt with semi-

continuous outcomes when there is a substantial fraction of zeros, as is typically the case for health

expenditure or utilization data (e.g., Duan et al., 1983; Deb & Trivedi, 2002). One option is to analyze

the number of episodes of treatment separately from the cost per episode, using count data models for

the former and linear regression models for the latter (e.g., Keeler & Rolph, 1988). A recent example

for a direct analysis of total spending is Kurz (2017), who used a single-equation Tweedie model and

showed that it provides a better description of the data than other distributions within the class of

generalized linear models.

Our application departs from the earlier literature in a number of ways. First, we focus on spending

on mental health care and its effect on mental health. The RHIE provides a mental health score both

at baseline and on exit from the program. In addition, mental health expenditures are listed as a

separate cost category in the data. It is true that overall spending is small, a possible reason why it

has not been much analyzed (Aron-Dine et al., 2013). However, this is mostly due to the high share

of non-users (90% in our sample). The average annual amount spent among users is $236. While the

high share of zeros can be a problem for traditional modeling approaches, it is compatible with the

compound Poisson-Gamma framework of the Tweedie distribution.

Second, we use random plan-assignment as an instrument for spending on mental care. This is

in contrast to most of the previous literature that has focused on intention-to-treat effects of plan

assignment on expenditures or health. We find evidence for relevance: spending is higher for plans with

more generous coverage. Assuming plan-type has no direct effect on mental health then this allows us

to estimate the effect of spending on actual health. Our approach addresses the obvious endogeneity

problem when regressing mental health on spending. A negative association (more spending, lower

health) is likely, simply because low-mental health individuals tend to have a history of low mental

health which leads to higher spending on related care. But this is not the causal effect we are interested

in. While we can condition on a mental health score at entry, this may be insufficient to control for

the full extent of time-invariant, or highly persistent, unobserved heterogeneity in mental care needs.

Hence, a joint model that accounts for endogeneity of expenditures is called for.

Third, we specify a recursive copula two-equation model for spending (a semi-continuous variable

with a mass point at zero) and mental health (coded as a binary variable). Association between the
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two outcomes is modeled using copulae. The benchmark specification combines Bernoulli (with probit

link) and Tweedie marginal models using a Gaussian copula. Other variants are explored. The effects

of continuous covariates are modeled via spline functions.

Our application also provides an analysis template, as the same methodology can be used to

estimate the effect of any type of health care spending on any type of binary health outcome. Also,

the order of the equations can be reversed to accommodate a situation of a Tweedie model with binary

endogenous regressor.

4.1 Description of data and model

To obtain our final sample, we excluded all individuals under the age of 18, as well as those with

missing information on any of the variables employed in the analysis. This leaves us with 2777

observations. Of those, 69% were enrolled in the program for 3 years and the remaining 31% for five

years. The spending variable is obtained as the average yearly spending for mental care during the

enrollment period (mentalexp). Mental health was evaluated upon exit from the program, on a 0-100

scale with mean 76; we classify all individuals with a score under 50 as having “low mental health”

(lowmhix). This applies to 5% of the sample. We thereby focus on the more severe mental health

conditions that typically would require, and benefit most from, medical attention. Setting the cut-off

at 60, 70 and 75 did not change the substantive conclusions.

For the Tweedie model, only the location parameter µ is specified as a function of covariates;

modeling σ and ν using additive predictors does not alter the substantive conclusions, hence we focus

on the location parameter only. Therefore, the model equations for the Bernoulli and Tweedie margins

are

πlowmhix = g−1
π (β10+β11s11(mentalexp)+β12female+β13white+β14poor+s12(mhi)+s13(age)+s14(educ))

and

µmentalexp = exp(β20+ β21female+ β22white+ β23poor+ β241(plantype = 2)+ β251(plantype = 3)

+β261(plantype = 4) + s21(mhi) + s22(age) + s23(educ))

were π is the binary response probability, g−1
π is derived according to the link function chosen for
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π, and µ is the expected value of mental expenditure. Thus, both equations have six variables in

common, namely the mental health score at enrollment (mhi), age, gender (female = 1), race (white

= 1), the education of the household head in years (educ), as well as the indicator variable poor.

Participants are classified as being poor if the per-capita household income falls into the lower tercile

of the distribution.

The factor variable plantype is an instrument, i.e., it is included in the second equation but

excluded from the first equation. In our data, 33% of observations are assigned to the first, full

coverage plan; 22% to the deductible plan; 27% to the coinsurance plan, and the remaining 18% to

the catastrophic coverage plan. F -tests for balancing of the pre-treatment variables by plan type do

not reject the null hypothesis of no difference (p-values between 0.16 and 0.64) except for the variable

poor, which is underrepresented in the catastrophic plan, a finding echoing Aron-Dine et al. (2013).

4.2 Results for the univariate models

Table 1 shows estimation results obtained using the univariate approach where the Bernoulli and

Tweedie marginals have been estimated separately, as single equation models. The model fits have

been obtained using the R code reported in the on-line supplementary material (Appendix B). For the

Bernoulli margin, using information criteria, the probit link was selected.

The Tweedie coefficients determine the relative change in expected spending associated with an

increase in the covariate value. For example, women are predicted to spend [exp(0.5692)− 1]× 100 =

76.7% more than men, keeping everything else constant. The omitted plantype1 is “full insurance”,

so plantype4 (catastrophic insurance) cuts spending on mental care relative to full insurance by

approximately 60% (exp(−0.8792)−1 = −0.5849). The plantype variable as a whole has a significant

impact on the response (p-value = 0.00027 obtained using the Wald test), as are all the covariates as

well as the three spline functions for mhi, age and educ.

Significant predictors of lowmhix are female, initial mhi as well as educ. Age, race and poverty

status seem not to matter. Note that we initially considered a smooth function of mentalexp, that

is s11(mentalexp). Since this resulted in a straight line estimate, we eventually let the variable enter

the equation parametrically. Spending on mental care has a positive coefficient and a z-value of 2.762.

Thus, we find indeed that, in this univariate model, higher spending is associated with an increased

probability of low mental health. Specifically, the probit average partial effect (APE) predicts a 3.3

percentage points increase in low mental health per 1000 increase in spending. A 95% interval for the
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Dependent variable: mentalexp (Tweedie) lowmhix (Bernoulli with probit link)
Estimate Std. Error Estimate Std. Error

(Intercept) 0.2965 0.4213 -2.1539 0.1528
mentalexp×103 0.6444 0.2333
female 0.5692 0.1881 0.3157 0.0991
white 1.9382 0.4009 0.0717 0.1330
poor 0.4539 0.2114 -0.0025 0.1023
plantype2 0.1550 0.2279
plantype3 -0.6482 0.2403
plantype4 -0.8792 0.2873

s(mhi) 1.611 p-val < 2e-16 2.051 p-val < 2e-16
s(age) 6.389 p-val = 0.028 1.000 p-val = 0.551
s(educ) 6.059 p-val < 2e-16 1.002 p-val = 0.022

σ 69.9 (64.2,76.2)
ν 1.55 (1.53,1.59)

Table 1: Results from single equation models (n = 2777). The first two columns refer to the Tweedie
margin and the last two to the Bernoulli (with probit link) margin. As for the smooth functions, we
report effective degrees of freedoms (representing the degrees of complexity of the estimated curves)
and p-values. 95% intervals for σ and ν are obtained by posterior simulation.

APE obtained by Bayesian posterior simulation (based on the result mentioned in Section 3) is given

by [0.010, 0.059], confirming the statistical significance of the effect. This counterintuitive finding

likely reflects associated “shocks”. During the enrollment period of three or five years, individual

unobserved traits related to mental problems can drive up both mentalexp as well as the probability

of low mental health upon exit, hence generating a spurious positive association in the univariate

model. This is exactly the type of problem that estimation of the joint model can address.

We tested for interactions between poor and plantype, but found no significant evidence for

heterogeneous effects. For the sake of completeness, we report in Figure 1 the histogram as well

as the QQ-plot for the Tweedie quantile residuals, the latter together with 95% confidence bands.

Almost all points are within the intervals, hence supporting the fact that the Tweedie distribution

provides an appropriate characterization for mental spending.

4.3 Results for the bivariate model

The great advantage of the copula approach in conjunction with flexible model margins is the mod-

ularity that gives the practitioner the opportunity to explore many unique combinations of elements

in order to determine, on one hand, the best fitting model, and, on the other, the sensitivity of key

results of interest to modeling assumptions. In our case, we take the Tweedie margin as well as the

set of covariates as given. In contrast, we consider three link functions for the Bernoulli lowmhix
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Figure 1: Histogram and normal Q–Q plot (with 95% confidence bands) of normalized quantile
residuals for the mental spending variable produced after fitting a Tweedie univariate regression
model.

equation (probit, logit and cloglog) and eleven different copulae to account for the dependence

between the two equations. The copula models were based on the equations shown in the previous

section and were fitted using the syntax discussed in Section 3. Specifying the dependence parameter

as function of covariates did not, in this case, return any interesting results as all covariate effects

were insignificant. We employed the AIC and Bayesian information criterion (BIC) in order to find

the best fitting model given the covariates and the Tweedie margin for spending. Results are provided

in Table 2.

The information criteria select the same copula function, namely the Gaussian, but not the same

link function for the binary response (probit using the AIC and cloglog using the BIC), although

the substantive conclusions are robust with respect to the selected copula and link function. The full

results of the joint Gaussian copula model with Bernoulli (with probit link) and Tweedie margins are

given in Table 3, whereas the three estimated smooth functions (for mhi, age and educ) are shown in

Figure 2, panel for the mental health equation).

We find that better initial mental health is associated with lower spending as well as a reduced

probability of low mental health on exit from the program. The estimated smooth functions are
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Link function Copula AIC BIC

probit N 5891.504 6107.676
logit N 5895.133 6100.153
cloglog N 5896.859 6095.220
probit C0 5897.271 6114.967
logit C0 5900.432 6106.005
cloglog C0 5901.629 6103.694
probit C180 5895.136 6110.731
logit C180 5898.891 6102.091
cloglog C180 5900.447 6098.598
probit J0 5899.430 6114.035
logit J0 5903.010 6105.085
cloglog J0 5904.366 6101.348
probit J180 5897.499 6115.236
logit J180 5900.621 6107.059
cloglog J180 5901.842 6104.033
probit G0 5897.583 6112.597
logit G0 5901.302 6104.262
cloglog G0 5902.787 6100.008
probit G180 5891.693 6108.226
logit G180 5895.074 6100.828
cloglog G180 5896.893 6095.932
probit AMH 5896.485 6106.838
logit AMH 5899.617 6098.679
cloglog AMH 5901.260 6096.626
probit FGM 5895.972 6105.752
logit FGM 5899.083 6097.999
cloglog FGM 5900.974 6095.574
probit T 5897.080 6113.935
logit T 5901.212 6108.210
cloglog T 5903.132 6099.329
probit F 5893.310 6110.670
logit F 5896.291 6103.940
cloglog F 5898.574 6098.664

Table 2: AIC and BIC values by different copulae and link functions for the Bernoulli margin.

nearly linear in both cases. The positive and significant association indicates that controlling for

initial mental health takes out at least some of the individual heterogeneity that drives both spending

and subsequent mental health. The effect of age is again similar in both equations, displaying a

pronounced M-shape with estimated peaks in the late twenties and mid-fifties. The effect of education

is less uniform and only imprecisely determined, especially for the spending equation.

The main result of interest is the effect of spending on mental health. The point estimate in the

probit equation of the bivariate recursive copula model is given by −0.2647, with a standard error of
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Dependent variable: mentalexp (Tweedie) lowmhix (Bernoulli with probit link)
Estimate Std. Error Estimate Std. Error

(Intercept) 0.3344 0.4168 -2.1177 0.1520
mentalexp×103 -0.2647 0.2821
female 0.5793 0.1868 0.3298 0.0979
white 1.8936 0.3960 0.0492 0.1308
poor 0.4685 0.2096 -0.0334 0.1004
plantype2 0.1614 0.2246
plantype3 -0.6830 0.2365
plantype4 -0.8356 0.2825

s(mhi) 1.461 p-val < 2e-16 2.219 p-val < 2e-16
s(age) 6.270 p-val = 0.0461 4.458 p-val = 0.469
s(educ) 6.050 p-val < 2e-16 1.000 p-val = 0.144

σ 70 (63.1,77)
ν 1.55 (1.52,1.58)
θ 0.386 (0.249,0.492)

Table 3: Results from the chosen copula model (n = 2777). 95% intervals for σ, ν, and θ are obtained
by posterior simulation.

0.2821. Allowing for endogeneity of spending overturns the earlier finding of a positive and statistically

significant association from the single-equation approach. The point estimate as such corresponds to

an APE of −0.013 (with a Bayesian 95% confidence set equal to [−0.044, 0.015]), slightly negative

but statistically insignificant. Not finding an effect of mental health spending on mental health may

be surprising at first. However, this in line with Brook et al. (1983), who use the same data source

and show that there is no significant effect of insurance status on mental health. Using a regression

discontinuity design that exploits the onset of medicare when turning 65, Rhodes (2018) also finds no

effect of insurance coverage on mental health. The authors above employed reduced form regression

analyzes. This is opposed to our approach which, by modeling the joint distribution of the outcomes

with carefully chosen marginals and flexible covariate effects, can reduce the detrimental impact of

potential biases due to mis-specification and also yield efficiency gains, aspects that could have led to

different substantive conclusions.

There are a number of potential explanations for this null-finding. First, using a subjective eval-

uation of mental health may suffer from substantial measurement error, hence reducing the precision

of estimated effect sizes. Second, in our case, the exogenous change in spending initiated by the

insurance instrument may be small, on average, to make a sizeable difference. For example, from

the first column of Table 3, the average effect of moving a person from catastrophic coverage to full

coverage (from plantype 4 to plantype 1) points to a decrease in the probability of no spending by
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Figure 2: Estimated smooth effects of mhi, age and educ and associated 95% point-wise intervals
obtained when fitting a Gaussian copula model with Bernoulli (with probit link) and Tweedie margins
to data from the RHIE. The top plots refer to the probit equation whereas the bottom ones to the
Tweedie equation. The jittered rug plot, at the bottom of each graph, shows the covariate values. The
number in brackets in the y-axis caption represents the effective degrees of freedom of the respective
smooth curve.

about 4 percentage points, and an increase in the average amount spent among those having at least

some expenditure by $93, on average per year; these are quantitatively not large shifts in spending.

And third, health benefits may accumulate only slowly over time, and thus not be visible when the

outcome is measured in the short run.

In summary, there is strong evidence that the single-equation adverse “effect” of mental spending

on mental health is driven by the endogeneity of spending, for example due to health “shocks” ocurring

after the initial mental health score is determined. A copula model can address this endogeneity

problem in the context of joint estimation of two non-linear outcome equations. Doing so leads to a

null-finding that mirrors the consensus of the previous RHIE literature: while insurance generosity

had a sizable effect on spending (of any type, not only mental care), its effects on health outcomes

measured upon conclusion of the experimental period were negligible.
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5 Conclusions

At a time of ever increasing health expenditures in many developed economies, it is a pressing question

whether this is money “well-spent”, i.e., whether more spending delivers improvements in health

outcomes. Prior research has mostly considered country-level evidence on, for example, child mortality

or life expectancy over time and countries. Here, we take a different tack on the issue, by reconsidering

individual level data from the Rand Health Insurance Experiment. In either case, with individual or

country level data, the main empirical challenge is how to obtain causal effects of spending on health

in the presence of the endogeneity: there are potentially many factors unobserved to the analyst that

affect both spending and outcome. In our case, the random insurance plan assignment provides a

potential instrument for spending. A further issue is the semi-continuity of the individual expenditure

variable which in our case has around 90% of zeros and we argue for using the Tweedie distribution

in this context.

This paper presents an estimation approach, based on copulae, that consistently estimates the

effect of an endogenous semi-continuous regressor on a binary outcome, and applies it to estimating

the effect of mental care spending on mental health. The method allows for a great deal of flexibility

in the specification of the model and also provides, via the copula dependence parameter, a convenient

means to assess the presence of endogeneity. The proposed model can be easily employed via the R

package GJRM.

The methodology presented in this paper is fundamentally parametric and as a such it may suffer

from the usual potential drawbacks resulting from model mis-specifications. However, the modeling

framework enables a large amount of model exploration via the various functional forms available

in GJRM which indeed allows for a wide set of copulae as well as a large degree of flexibility in

the way regressor effects are specified. Therefore, a researcher can straightforwardly explore several

permutations of functional forms and regressor effects. Such exploration is in a way consistent with

the philosophy of non-parametric methods in that it enables the data to point to meaningful model

structures.
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On-Line Supplementary Material

Appendix A: Simulation Study

This section provides simulation evidence on the practical performance of the proposed approach.

The data generating process (DGP) has been designed to mimic some of the features of the data as

well as results from the case study discussed in Section 4 of the article. For instance, the distributions

of the binary and semi-continuous variables have been simulated to look very similar to their observed

versions, and the values for σ, ν and θ chosen to be very close to the estimates obtained from the

empirical analysis. The DGP has the form

Y2 ∼ TW with µ = g−1
µ (1 + s2(z1) + s3(z2) + z3), σ = g−1

σ (4.24), ν = g−1
ν (0.22),

Y1 ∼ Bernoulli with π = Φ {−3 + βendy2 + s1(z1) + z2} ,

where s1(z) = z + exp
{

−30(z − 0.5)2
}

, s2(z) = 0.6 {exp(z) + sin(2.9z)} and s3(z) = 0.6 sin(2πz),

and the inverses of the g functions can be worked out from the expressions reported in Section 2.2 of

the paper. In line with the results from the empirical analysis βend is set to 0. Variables z1, z2 (the

instrument) and z3 are generated using a multivariate standard Gaussian with correlation parameters

set at 0.5, and then transformed using the distribution function of a standard Gaussian. Regressor

z3 is dichotomised by rounding it. Associated responses are generated via function BiCopSim(),

from the package VineCopula (Schepsmeier et al., 2019), using the Gaussian copula with dependence

parameter specified as θ = tanh(0.41). We considered sample sizes of 1500 and 3000, while the number

of replicates was set to 500. Appendix B reports the code used to simulate the data.

Using gjrm() we fitted models with probit and TW marginals, and a handful of copulae available

in package, specifically N, C0, J180, G0, G180, FGM, F and PL. Using gamlss() within GJRM, we also

fitted the univariate model with TW distribution. The correct model is the one based on the Gaussian

copula, whereas all the others served to assess the impact that misspecifying the copula has on the

endogenous effect of interest. The smooth components in the models were represented using penalized

low rank thin plate splines with second order penalty and 10 bases (Wood, 2017). For each replicate,
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curve estimates were constructed using 200 equally spaced fixed values in the (0, 1) range.

Figure 3 shows the estimates for the endogenous parameter of interest βend when using several

copulae. As expected, the simple univariate model (univariate), which does not correct for endo-

geneity, is clearly not able to capture the true parameter value; the estimates are upwardly biased,

reflecting the positive copula dependence. All in all, when the copula is misspecified the results show

some non-vanishing bias, hence suggesting that mis-modeled dependence structure plays a role in the

estimation of the effect of interest. However, the estimates are still reasonable if we consider how

biased the estimates from the univariate model are. The results obtained under the correct copula

(N) exhibit the best bias-variance tradeoff.

We also report the simulation results for the other model’s terms, namely β12, β21, σ, ν, θ, s1(·),

s2(·) and s3(·); these are displayed in Figures 4 and 5. The findings further support the empirical

effectiveness of the proposed approach since the true values are overall well recovered.
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Figure 3: Estimates for βend (the endogenous parameter of interest) obtained by applying gjrm() and
gamlss(), both from GJRM, to simulated data based on the Gaussian copula with probit and Tweedie
margins. The correct model is denoted by N, while the other models are misspecified. Circles indicate
mean estimates while bars represent the estimates’ ranges resulting from 5% and 95% quantiles. The
true value is 0 and is denoted by the dashed horizontal line.
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Figure 4: Estimates of other model’s parameters obtained by applying gjrm() to simulated data
based on a Gaussian copula with probit and Tweedie margins when fitting correctly specified models.
Circles indicate mean estimates while bars represent the estimates’ ranges resulting from 5% and 95%
quantiles. True values are indicated by dashed horizontal lines.
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Figure 5: Estimates of smooth effects obtained by applying gjrm() to simulated data based on a
Gaussian copula with probit and Tweedie margins when fitting correctly specified models. True
functions are represented by black solid lines, mean estimates by dashed lines and point-wise ranges
resulting from 5% and 95% quantiles by shaded areas.
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Appendix B: R code

Univariate models

eq1 <- lowmhix ~ mentalexp + s(mhi) + female + white + s(age) + s(educ) + poor
eq2 <- mentalexp ~ s(mhi) + female + white + s(age) + s(educ) + plantype + poor

# gam() from mgcv
out1 <- gam(eq1, data = mydata, family = binomial(link = "probit"))

# gamlss() from GJRM
out2 <- gamlss(list(eq2, ~ 1, ~ 1), data = mydata, margin = "TW")

Simulated data

library(GJRM)

library(VineCopula)

library(tweedie)

n <- 1500 # 3000

n.rep <- 500

cor.cov <- 0.5

s1 <- function(x) x + exp(-30*(x-0.5)^2)

s2 <- function(x) 0.6*(exp(x) + sin(2.9*x))

s3 <- function(x) 0.6*sin(2*pi*x)

cor.cov <- matrix(0.5, 3, 3); diag(cor.cov) <- 1

cov <- rMVN(n, rep(0,3), cor.cov)

cov <- pnorm(cov)

z1 <- cov[, 1]

z2 <- cov[, 2]

z3 <- round(cov[, 3])

theta <- tanh(0.41)

u1u2 <- BiCopSim(n, family = 1, par = theta)

u1 <- u1u2[,1]

u2 <- u1u2[,2]

mu.st <- 1 + s2(z1) + s3(z2) + z3

sigma.st <- 4.24

nu.st <- 0.22

mu <- exp(mu.st)

sigma <- esp.tr(sigma.st, "TW")$vrb

nu <- enu.tr(nu.st, "TW")$vrb

y2 <- NA

for(j in 1:n) y2[j] <- qtweedie(u2[j], xi = sigma, mu = mu[j], phi = nu)
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y1 <- as.numeric( ( -3 + s1(z1) + z2 + qnorm(u1) ) > 0 )

md <- data.frame(y1 = y1, y2 = y2, z1 = z1, z2 = z2, z3 = z3)
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