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Abstract

We derive and empirically apply an input-oriented distance function based on the

stochastic ray production function suggested by Löthgren (1997, 2000). We show that

the derived ray-based input distance function is suitable for modeling production

technologies based on logarithmic functional forms (e.g., Cobb-Douglas and Translog)

when control over inputs is greater than control over outputs and when some productive

entities do not produce the entire set of outputs — two situations that are jointly present

in various economic sectors. We also address a weakness of the stochastic ray function,

namely its sensitivity to the outputs’ ordering, by using a model-selection approach and

a model-averaging approach. We estimate a ray-based Translog input distance function

with a data set of Danish museums. These museums have more control over their inputs

than over their outputs, and many of them do not produce the entire set of outputs

that is considered in our analysis. Given the importance of monotonicity conditions in

efficiency analysis, we demonstrate how to impose monotonicity on ray-based input

distance functions. As part of the empirical analysis, we estimate technical efficiencies,

distance elasticities of the inputs and outputs, and scale elasticities and establish how

the production frontier is affected by some environmental variables that are of interest

to the museum sector.

Keywords: Stochastic ray production frontier, distance function, input-oriented effi-

ciency, zero output quantities, model averaging, monotonicity, museums.

JEL codes: C51 - D22 - D24
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1 Introduction

In econometric efficiency and productivity analysis, multi-output production tech-

nologies are usually modeled by so-called distance functions (Färe and Primont, 1990;

Kumbhakar and Lovell, 2000), with the most commonly used functional forms being

the Cobb-Douglas and Translog specifications. However, these functional forms are

unsuitable whenever some producers in a given data set do not produce all outputs so

that logarithms of the quantities of the non-produced outputs are undefined. Replacing

zero output quantities with arbitrarily small numbers has been suggested but this

approach has proven problematic (Henningsen et al., 2015; N’guessan et al., 2017).

The Cobb-Douglas and Translog stochastic ray production frontier functions (Löthgren,

1997, 2000), which are in fact output-oriented distance functions (Henningsen et al.,

2015), can be applied to data with zero output quantities. However, in many production

processes, managers are expected to have more control over inputs than over outputs

and, hence, an input-oriented distance function would be more appropriate for an

empirical analysis than an output-oriented distance function.1 In this paper, we propose

a solution to this problem which involves deriving input-oriented Cobb-Douglas and

Translog distance functions based on stochastic ray production frontier functions.

We assess these specifications empirically by analyzing input-oriented technical effi-

ciency with data from state-recognized museums in Denmark. This data set appears

to be especially suitable for empirically assessing the ray function because many of

these museums only produce some of the six outputs that we consider in our analysis.

For instance, some museums produce exhibitions, educational programs and engage in

conservation but do not do research. Furthermore, these museums have less control

over outputs and more control over inputs. Although these entities are not owned by

the state, they still receive public funding and the goals in terms of some outputs, such

as research and educational programs, are in part defined jointly with the granting and

regulatory body, the Danish Agency for Culture and Palaces. Furthermore, the number

of visitors is, to a great extent, a demand driven indicator, which in turn determines

decisions in terms of the number of exhibitions and other events. Hence, using an

input-oriented distance function is more appropriate than using an output-oriented

distance function.
1See Kumbhakar et al. (2015) regarding the importance of choosing the correct orientation for the

distance function.

3



As part of this empirical analysis, we address a weakness of the stochastic ray function,

namely its sensitivity to the ordering of the outputs, by using both a model-selection

approach and a model-averaging approach. Given the importance of monotonicity

conditions in efficiency analysis (O’Donnell and Coelli, 2005; Henningsen and Henning,

2009), we derive the monotonicity conditions for the inputs and outputs and demon-

strate how to impose them on ray-based input distance functions. Furthermore, we

derive and estimate the distance elasticities of the inputs and outputs, the elasticity of

scale, and how the production technology is affected by environmental variables that

are of interest in this sector, both from managerial and regulatory perspectives.

In the following section, we derive and present the methodology and the specification of

our model. Section 3 presents the data. Section 4 presents the results. The last section

presents our conclusions and possible limitations.

2 Empirical model specification

2.1 Derivation of a ray-based input distance function

As mentioned in the introduction, traditional distance functions based on logarithmic

functional forms cannot handle observations where one (or more) outputs have a quan-

tity equal to zero. An alternative specification that solves this problem is the stochastic

ray production function, which was originally proposed by Löthgren (1997). This

functional form represents the vector of output quantities as polar coordinates rather

than as Cartesian coordinates, i.e., the vector of output quantities is represented by its

(Euclidean) length and its direction rather than by the individual output quantities.

A stochastic ray production frontier model is defined as:

ln
∥∥∥y∥∥∥ =f ∗ (lnx,ϕ (y) , z)−u∗ + v∗, (1)

where x = (x1,x2, . . . ,xN )⊤ ∈ R
N
>0 is a vector of N strictly positive input quantities,

y = (y1, y2, . . . , yM)⊤ ∈RM≥0 is a vector of M non-negative output quantities with at least

one strictly positive output quantity ∃i ∈ 1, . . . ,M : yi > 0, ϕ (y) =
(
ϕ1 (y) ,ϕ2 (y) , . . . ,

ϕM−1 (y)
)⊤

is a vector of the angles of the vector of output quantities y with ϕi (y) =

arccos
(
yi

/√∑M
j=i y

2
j

)
∀ i = 1, . . . ,M − 1,

∥∥∥y∥∥∥ =
√∑M

j=1 y
2
j is the (Euclidean) length of the

vector of output quantities, z = (z1, z2, . . . , zK )⊤ ∈ RK is a vector of K ‘environmental’
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variables, u∗ ≥ 0 is the inefficiency term, v∗ is the noise term, and f ∗ (·) is a function

that can take various functional forms, e.g., linear for a Cobb-Douglas stochastic ray

production frontier or quadratic for a Translog stochastic ray production frontier. The

stochastic ray production frontier (1) can be seen as a Shephard output distance function

(Henningsen et al., 2015):

lnDo (x,y,z) = −u∗ =f (lnx,ϕ (y) , z) + ln
∥∥∥y∥∥∥+ v, (2)

where Do (x,y,z) = e−u
∗

with 0 ≤Do (x,y,z) ≤ 1 is a Shephard output distance function,

f (·) = −f ∗ (·), and v = −v∗.

This specification of a stochastic-ray-based output distance function can be generalized

to the following ‘general’ distance function:

lnD (x,y,z) =f
(
lnx,ϕ (y) , ln

∥∥∥y∥∥∥ , z)+ v. (3)

If function exp(f (·)) is linear homogeneous in output quantities y (e.g., f (lnx,ϕ(y),

ln
∥∥∥y∥∥∥ , z) = f (lnx,ϕ(y), z) + ln

∥∥∥y∥∥∥), function D (x,y,z) can be seen as a Shephard output

distance function. However, if function exp(f (·)) is linear homogeneous in input

quantities x, function D (x,y,z) can be seen as a Shephard input distance function.

We can make this function linear homogeneous in input quantities x so that we get a

Shephard input distance function, e.g., by modifying equation (3) to:

lnD i (x,y,z) =f
(
ln x̃,ϕ (y) , ln

∥∥∥y∥∥∥ , z)+ lnxN + v, (4)

where x̃ = (x̃1, x̃2, . . . , x̃N−1)⊤ = (x1/xN ,x2/xN , . . . ,xN−1/xN )⊤ is a vector of normalized

input quantities.

By replacing the logarithm of the Shephard input distance measure D i (x,y) ≥ 1, i.e.,

lnD i (x,y) ≥ 0, with the inefficiency term u ≥ 0 and a little re-arranging, we get:

− lnxN =f
(
ln x̃,ϕ (y) , ln

∥∥∥y∥∥∥ , z)−u + v, (5)

which we can estimate using stochastic frontier analysis.
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Assuming a quadratic functional form for f (·), we get the following equation, which

can be easily estimated as a stochastic frontier model:2

− lnxN =α0 +
N−1∑
i=1

αi ln(x̃i) +
1
2

N−1∑
i=1

N−1∑
j=1

αij ln(x̃i) ln
(
x̃j

)
(6)

+
M−1∑
i=1

βiϕi (y) + βM ln
∥∥∥y∥∥∥+

1
2

M−1∑
i=1

M−1∑
j=1

βijϕi (y)ϕj (y)

+
M−1∑
i=1

βiMϕi (y) ln
∥∥∥y∥∥∥+

1
2
βMM

(
ln

∥∥∥y∥∥∥)2

+
K∑
i=1

δizi +
1
2

K∑
i=1

K∑
j=1

δijzizj

+
N−1∑
i=1

M−1∑
j=1

ψij ln(x̃i)ϕj (y) +
N−1∑
i=1

ψiM ln(x̃i) ln
∥∥∥y∥∥∥

+
N−1∑
i=1

K∑
j=1

ξij ln(x̃i)zj

+
M−1∑
i=1

K∑
j=1

ζijϕi (y)zj +
K∑
i=1

ζMi ln
∥∥∥y∥∥∥zi −u + v

with αij = αji ∀ i, j = 1, . . . ,N −1, βij = βji ∀ i, j = 1, . . . ,M −1, and δij = δji ∀ i, j = 1, . . . ,K .3

2.2 Distance elasticities

Assuming that the inefficiency term u and the noise term v are both independent from

the explanatory variables (x̃, y, z), the distance elasticities of the N inputs and the

M outputs are:

∂ lnD i (x,y,z)
∂ lnxi

= αi +
N∑
j=1

αij lnxj +
M−1∑
j=1

ψijϕj (y) +ψiM ln
∥∥∥y∥∥∥ (7)

2The Cobb-Douglas functional form is a special case with αij = 0∀ i, j = 1, . . . ,N , βij = 0∀ i, j = 1, . . .M,
δij = 0∀ i, j = 1, . . . ,K , ψij = 0∀ i = 1, . . . ,N ; j = 1, . . . ,M, ξij = 0∀ i = 1, . . . ,N ; j = 1, . . . ,K , and ζij = 0∀ i =
1, . . . ,M; j = 1, . . . ,K . As mentioned in Section 4, we test the Translog specification defined in equation (6)
against the corresponding Cobb-Douglas specification. The test rejects the Cobb-Douglas specification
in favor of the Translog specification. Therefore, the following derivations are based on the Translog
specification.

3In Appendix A, we present the derivation of equation (6).
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+
K∑
j=1

ξijzj ∀ i = 1, . . . ,N

∂ lnD i (x,y,z)
∂ lnyi

=
M−1∑
j=1

βjyiΩji + βM
y2
i∥∥∥y∥∥∥2 +

M−1∑
j=1

M−1∑
k=1

βjkϕk (y)yiΩji (8)

+
M−1∑
j=1

βjM

yiΩji ln
∥∥∥y∥∥∥+ϕj (y)

y2
i∥∥∥y∥∥∥2

+ βMM
ln

∥∥∥y∥∥∥ y2
i∥∥∥y∥∥∥2

+
N∑
j=1

M−1∑
k=1

ψjk lnxjyiΩki +
N∑
j=1

ψjM lnxj
y2
i∥∥∥y∥∥∥2

+
M−1∑
j=1

K∑
k=1

ζjkzkyiΩji +
K∑
j=1

ζMjzj
y2
i∥∥∥y∥∥∥2 ∀ i = 1, . . . ,M,

respectively, with:

Ωji ≡
∂ϕj (y)

∂yi
=



0 if i < j ∨
(
i = j ∧ yj > 0∧

∑M
k=j+1 yk = 0

)
undefined if i ≥ j ∧ yj = yj+1 = . . . = yM = 0
yj

∥y∥2j
if i > j ∧

∑
k∈[(j+1)..M]\i yk = 0

yiyj−Ii=j∥y∥2j
∥y∥2j ∥y∥j+1

otherwise

(9)

∀ i = 1, . . . ,M,j = 1, . . . ,M − 1,

∥∥∥y∥∥∥
i
≡

√√√√ M∑
j=i

y2
j , (10)

αN = 1 −
∑N−1
i=1 αi , αNj = −

∑N−1
i=1 αij ∀ j = 1, . . . ,N , αiN = −

∑N−1
j=1 αij ∀ i = 1, . . . ,N , ψNj =

−
∑N−1
i=1 ψij ∀ j = 1, . . . ,M, ξNj = −

∑N−1
i=1 ξij ∀ j = 1, . . . ,K , and Icond being an indicator

function that takes the value one if the condition in the subscript cond is fulfilled and

the value zero otherwise.

In order to quantity the effects of the environmental variables on the production

technology, we derived the following semi-elasticities:4

∂ lnD i (x,y,z)
∂ zi

= δi +
K∑
j=1

δijzj +
N∑
j=1

ξji lnxi +
M−1∑
j=1

ζjiϕj (y) + ζMi ln
∥∥∥y∥∥∥ (11)

4If zi is in logarithm, equation (11) indicates elasticities rather than semi-elasticities.
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∀ i = 1, . . . ,K.

2.3 Monotonicity conditions

Monotonicity conditions derived from microeconomic theory imply that the Shephard

input distance functions (technical inefficiency) should be non-decreasing in input

quantities and non-increasing in output quantities, i.e., ∂D i (x,y,z) /∂xi ≥ 0 ∀i = 1, . . . ,N

and ∂D i (x,y,z) /∂yi ≤ 0 ∀i = 1, . . . ,M, respectively. As D i (x,y,z) > 0 and xi > 0∀ i =

1, . . . ,N , the monotonicity condition ∂D i (x,y,z) /∂xi ≥ 0 is equivalent to the condition

(∂D i (x,y,z) /∂xi) (xi/D i (x,y,z)) = ∂ lnD i (x,y,z) /∂ lnxi ≥ 0. Hence, we can use the right-

hand side of equation (7) as the monotonicity condition regarding the input quantities.

However, as we allow output quantities to be zero, we cannot use the right-hand side

of equation (8) as the monotonicity condition regarding the output quantities because

if an output quantity is zero (i.e., yi = 0), the right-hand side of equation (8) is zero

and, thus, non-positive even if the monotonicity condition regarding this output is

violated, i.e., ∂D i (x,y,z) /∂yi > 0. In order to have monotonicity conditions that can also

be applied in case of zero output quantities, we use the semi-elasticity of the outputs

(i.e., ∂ lnD i (x,y,z) /∂yi ≤ 0 ∀i = 1, . . . ,M) as the monotonicity conditions regarding the

output quantities. Using only the estimated coefficients and replacing the non-estimated

coefficients by the respective homogeneity restrictions (e.g., αN = 1−
∑M−1
i=1 αi) and the

respective symmetry normalizations (e.g., αij = αji ∀ i > j), we obtain the following

monotonicity conditions for xi ; i = 1, . . . ,N − 1, xN , and yi ; i = 1, . . . ,M:

0 ≤αi +
i∑
j=1

αji ln x̃j +
N−1∑
j=i+1

αij ln x̃j (12)

+
M−1∑
j=1

ψijϕj (y) +ψiM ln
∥∥∥y∥∥∥+

K∑
j=1

ξijzj ∀ i = 1, . . . ,N − 1,

−1 ≤ −
N−1∑
k=1

αk −
N−1∑
j=1

N−1∑
k=j

αjk
(
ln x̃j + Ij,k ln x̃k

)
(13)

−
M−1∑
j=1

N−1∑
k=1

ψkjϕj (y)−
N−1∑
k=1

ψkM ln
∥∥∥y∥∥∥− K∑

j=1

N−1∑
k=1

ξkjzj , and

0 ≤ −
M−1∑
j=1

βjΩji − βM
yi∥∥∥y∥∥∥2 −

M−1∑
j=1

M−1∑
k=j

βjk
(
ϕk (y)Ωji + Ij,kϕj (y)Ωki

)
(14)
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−
M−1∑
j=1

βjM

Ωji ln
∥∥∥y∥∥∥+ϕj (y)

yi∥∥∥y∥∥∥2

− βMM ln
∥∥∥y∥∥∥ yi∥∥∥y∥∥∥2

−
N−1∑
j=1

M−1∑
k=1

ψjk ln x̃jΩki −
N−1∑
j=1

ψjM ln x̃j
yi∥∥∥y∥∥∥2

−
M−1∑
j=1

K∑
k=1

ζjkzkΩji −
K∑
j=1

ζMj
zjyi∥∥∥y∥∥∥2 ∀ i = 1, . . . ,M,

respectively.

As all these monotonicity conditions are linear in the estimated coefficients, we can

represent them in matrix form as Rθ ≥ r, where θ = (α0,α1, . . . ,αN−1, α11, . . . ,α1,N−1,

α22, . . . ,α2,N−1, . . . ,αN−1,N−1, β1, . . . ,βM , β11, . . . ,β1M , β22, . . . ,β2M , . . . ,βMM , δ1, . . . ,δK ,

δ11, . . . ,δ1K , δ22, . . . ,δ2K , . . . ,δKK , ψ11, . . . ,ψ1M , ψ21, . . . ,ψ2M , . . . ,ψN−1,M , ξ11, . . . ,ξ1K ,

ξ21, . . . ,ξ2K , . . . ,ξN−1,K , ζ11, . . . ,ζ1K , ζ21, . . . ,ζ2K , . . . ,ζMK ) is a vector of all estimated

coefficients, R =
[
Ri,θ

]
is a matrix with one row i for each of the N +M monotonicity

conditions and one column for each of the coefficients in θ, and r is a vector with

one element for each of the N +M monotonicity restrictions. Each element of the

matrix R and of the vector r is defined in Appendix B. Given that all these monotonicity

conditions are linear in the estimated coefficients, we can use the method suggested by

Henningsen and Henning (2009) to impose the monotonicity conditions.5

3 Data

We estimate our model with data from state-recognized Danish museums6. The data set

includes information from 93 museums over a six-year period: 2012 and 2014-20187.

This is an unbalanced panel database with 528 observations. The following inputs,

outputs, and environmental variables are considered:

Inputs

5As the method proposed by Henningsen and Henning (2009) requires monotonicity conditions
that are linear in the estimated coefficients, we cannot use the monotonicity conditions ∂D i (x,y,z) /∂xi
= (D i (x,y,z) /xi) (∂D i (x,y,z) /∂xi) ≥ 0 ∀i = 1, . . . ,N and ∂D i (x,y,z) /∂yi (D i (x,y,z) /yi) (∂D i (x,y,z) /∂yi)
≤ 0 ∀i = 1, . . . ,M, because they are non-linear in the estimated coefficients (given that D i (x,y,z) depends
on the estimated coefficients).

6State-recognized museums are not owned by the state but receive public funding and are obliged to
preserve, register, research and exhibit their collections. Complying with this wide set of responsibilities
entails delivering multiple cultural and educational services so that evaluating their technical efficiency
in a multi-output setting is warranted.

7Data for 2013 is not available.
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• Scientific labor: This includes conservationists, researchers, and other scientific

staff (full time equivalents).

• Non-scientific labor: This category consists of management, administrative and

maintenance staff (full time equivalents).

• Capital: The sum of running and maintenance costs is used as proxy for the capital

stock. This appears to make economic sense as larger collections require more

space for both storage and exhibition, which in turn requires additional operating

and maintenance costs8. These costs have been expressed in real terms (Danish

Kroner of 2014).

Outputs

• Visitors: Number of (physical) visitors.

• Research: Number of scientific articles published.

• Exhibitions: Number of temporary exhibitions (i.e., excluding the permanent

exhibition).

• Education: Number of primary school classes on educational visits to the museum.

It seems better, from a supply perspective, to consider the number of school

classes regardless of the number of students in each group, as there are fixed costs

involved in each visit.

• Events: Number of events other than exhibitions (e.g., workshops, conferences,

book presentations) that take place on the premises of the museums.

• Conservation: This output corresponds to the expenditure on conservation activi-

ties, expressed in real terms (Danish Kroner of 2014).

Environmental variables
8Information about the capital stock of museums is generally not available. This has been pointed

out in the existing literature for other countries (O’Hagan, 1998; Feldstein, 1991; Frey and Meier, 2006;
Grampp, 1989; Peacock and Godfrey, 1974) and it is also the case in Denmark. To cope with this problem,
Bishop and Brand (2003) use the same proxy as we use, whereas del Barrio et al. (2009) and del Barrio-
Tellado and Herrero-Prieto (2019) use the area of museums in square meters. We chose the first of these
proxies because information about the area of the museums is not available in our data set.
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In order to control for factors that might affect the production frontier (i.e., the

minimum input quantities museums require to produce a certain level of output

quantities), we include two environmental variables:

• Number of visit sites: Some museums manage two or more visit sites (up to twenty).

Therefore, it is expected that these museums require more inputs for every given

level of outputs than those that manage only one site. For example, museums that

manage several (small) sites must have guards and receptionists at each visit site

and, thus, they are expected to need more inputs than museums that produce the

same outputs but manage only one (large) visit site. We use the natural logarithm

of the number of visit sites as an environmental variable.9

• Special responsibilities: Some museums have responsibilities that go beyond those

specified by the legislation. Examples include taking care of the archaeological

sites located in their municipality and collaborating on archaeological investi-

gations. It is expected that these museums require more inputs for every given

level of outputs under analysis than those that do not have special responsibilities.

We consider a dummy variable that takes the value one if museums have special

responsibilities and zero otherwise.

Table 1 presents descriptive statistics of the input quantities, output quantities, and

environmental variables. In order to make our results invariant to units of measurement,

we mean-scale all output quantities.

4 Results

We estimate the ray-based Translog input distance function defined in equation (6) as

stochastic frontier model10 by using the R software (R Core Team, 2020) and its add-on

packages “sfaR” (Dakpo et al., 2021) and “quadprog” (Turlach and Weingessel, 2011).

Given that one of our ‘environmental’ variables (z2: special responsibilities) is a dummy

9The purpose of using the natural logarithm is to reduce the occurrence of extreme values and to
reduce the skewness of the distribution of this variable.

10 Although ignoring the panel structure of the data set likely results in a violation of the i.i.d.
assumption, we conduct a ‘pooled’ estimation because, in our data set, the variation of the variables
between years is very low and the number of time periods in the data set is so small that individual
effects at the museum level capture almost all variation in the variables, which means there is not enough
variation to estimate the parameters of the distance function. Furthermore, we would like our efficiency
scores to be based on the benchmarking of museums against each other, but a true fixed effects or a true
random effects stochastic frontier model would remove the variation between the museums and, thus,
prevent benchmarking between the museums.
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variable, we make one adjustment to equation (6). As the quadratic term z2
2 of the

dummy variable for special responsibilities equals its non-squared term z2, i.e., z2
2 = z2,

we exclude the term z2
2 in order to avoid perfect multicollinearity. This corresponds to

imposing the restriction δ22 = 0.11

As the estimation results of ray-based production or distance functions depend on the

ordering of the outputs, we estimate the model with all 720 possible orderings of the

outputs12 and select the ordering that gives the best fit in terms of the log-likelihood

value as suggested by Henningsen et al. (2017). This is the so-called model-selection

method. Additionally, we use the model-averaging method and obtain weighted aver-

ages of estimation results (e.g., distance elasticities, elasticities of scale, and technical

efficiency estimates) for all possible orderings of outputs as suggested by Huang and

Lai (2012) for stochastic frontier models in general and as suggested by Tsionas et al.

(2021) for the stochastic ray production frontiers.

In order to include all observations in all orderings of outputs (so that the obtained

log-likelihood values are comparable), we apply a small trick for the orderings of

outputs where there are observations for which the quantities of the last two (or more)

outputs are zero. This is because whenever the quantities of outputs j to M are zero

for j ≤M − 1 (i.e., yi = 0 ∀ i = j, . . . ,M with j ≤M − 1), the angles θi ; i = j, . . . ,M − 1 are

undefined. In these (few) cases,13 we calculate the undefined angles by assuming that

yi = κ ∀ i = j, . . . ,M, where κ is an arbitrarily small strictly positive value. Under this

assumption, we get θi = arccos
(
1/
√

2
)

= π/4 ∀ i = j, . . . ,M − 1, i.e., a 45-degree angle,

independent of the value of κ.14 This problem does not occur when using the ordering

of outputs that gives the best fit to the model. Hence, we use this trick only when

11We keep the quadratic term z2
1, the interaction term z1z2, and also the interaction terms between the

environmental variables and the other explanatory variables in the model.
12As the ordering of the last two outputs should, theoretically, not affect the results (Henningsen et al.,

2017), it should be sufficient to estimate the model with 360 different orderings of the outputs. As
numerical inaccuracies could result in different estimates for the two models that only differ in terms of
the last two outputs, we estimate the model with all 720 different orderings of the outputs. However, our
estimates for models that only differ in terms of the last two outputs are always very close to each other
or are even virtually identical.

13In none of the 720 orderings of outputs are more than two of the last outputs zero. When the last
two outputs are ‘exhibitions’ and ‘research’, there are 7 observations for which the last two outputs are
zero. When the last two outputs are ‘conservation’ and ‘research’, there are 5 observations for which
the last two outputs are zero. When the last two outputs are ‘conservation’ and ‘exhibition’, there are 2
observations for which the last two outputs are zero. In all other orderings, we do not need to apply the
trick.

14It is worth pointing out that in our approach, the values of ϕi (y) and, thus, the estimation results do
not depend on the size of the arbitrarily small value of κ. Hence, this is not a naive solution such as the
one that replaces zero values with an arbitrarily small number.
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searching for the ordering of outputs that gives the highest log-likelihood value and

when applying the model averaging method.

After estimating the models, we determine the extent to which they fulfill the mono-

tonicity conditions by calculating the right-hand sides of equations (12), (13), and (14).

These conditions are violated for at least some of the observations regardless of which

ordering of outputs is used. For instance, when using the ordering of outputs that

gives the best fit, monotonicity conditions regarding the inputs are violated at 8%,

1%, and 10% of the observations while monotonicity conditions regarding the outputs

are violated at 4%, 52%, 9%, 16%, 38%, and 16% of the observations reported in the

order of inputs and outputs used in Table 1. We proceed by imposing the monotonicity

conditions using a procedure that is based on Henningsen and Henning (2009), which

has been adapted to the ray-based Translog input distance function as explained in

Appendix C.

We select the ordering of the outputs that results in the highest log-likelihood value

of the restricted model.15 This ordering is the one that is used in Table 1. The results

of the unrestricted estimation and the coefficients of the restricted estimation (with

monotonicity conditions imposed) for this ordering of outputs are presented in Table 2.

Given that we use a Translog functional form, most coefficients presented in Table 2 do

not have a relevant interpretation. In order to obtain estimation results with relevant

real-world meanings, we calculate distance elasticities of the inputs and outputs, the

elasticity of scale, the effects of the ‘environmental’ variables on the production frontier,

and the technical efficiency estimates (see Figures 5, 6, 7, and 8 in Appendix D).

Figure 1 presents scatter plots between the log-likelihood value (indicating the fit

of the model) and four important estimation results (i.e., mean and median technical

efficiency estimates and mean and median elasticity of scale) for each of the 720 possible

orderings of the outputs. The estimation results depend on the ordering of the outputs

to a moderate extent. If one disregards the 50% of the orderings that give the worst fit,

the estimation results depend even less on the ordering of the outputs. In our empirical

application, the model-averaged estimates (indicated by the horizontal red lines in

Figure 1) are rather close to the estimates based on the ordering of the outputs that

gives the best fit (indicated by the dot furthest to the right in each panel of Figure 1).

15As the number of estimated coefficients is the same for all orderings of the outputs, selecting the
ordering of the outputs that gives the highest log-likelihood value is equivalent to using the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) to select the ordering that gives
the best fit to our data.
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Table 2: Estimation results: unrestricted and restricted estimates
Coef. Estimate S.E. Restricted Coef. Estimate S.E. Restricted
α0 3.6032*** 0.8286 3.2826 β66 -0.0882 0.0552 -0.1408
α1 -0.0386 0.2214 0.2341 ψ11 0.1437 0.1157 0.0144
α2 0.6640** 0.2112 0.5252 ψ12 -0.1017 0.0750 -0.0206
β1 -0.9030 0.8261 -1.5916 ψ13 0.0211 0.0653 -0.0407
β2 -1.7180*** 0.5207 -0.9470 ψ14 -0.0607 0.0628 -0.0310
β3 -0.8821 0.4783 -0.8465 ψ15 0.2496*** 0.0610 0.0740
β4 -0.9488 0.4978 -0.5256 ψ16 0.0064 0.0391 -0.0023
β5 -0.4071 0.3744 -0.2079 ψ21 -0.0418 0.1212 0.0156
β6 -0.8938*** 0.2493 -1.1746 ψ22 -0.0426 0.0705 -0.0032
δ1 0.7211* 0.2820 0.4557 ψ23 -0.0885 0.0624 -0.0067
δ2 -2.2628*** 0.5002 -0.6835 ψ24 0.1115 0.0633 0.0371
α11 -0.0734 0.0381 -0.0508 ψ25 -0.0149 0.0649 -0.0308
α12 0.0611 0.0331 0.0278 ψ26 0.0167 0.0396 -0.0066
α22 0.1717*** 0.0455 0.0890 δ11 -0.1430* 0.0727 -0.1554
β11 0.6188 0.5872 1.7856 δ12 -0.2756*** 0.0740 -0.2978
β12 0.3395 0.2530 -0.0488 ξ11 -0.1014* 0.0465 -0.0596
β13 -0.1134 0.2287 -0.0611 ξ12 0.1918* 0.0778 0.1732
β14 0.3249 0.2534 0.0523 ξ21 0.0571 0.0388 0.0158
β15 0.2831 0.2027 0.0555 ξ22 -0.3986*** 0.0757 -0.3006
β16 0.2269 0.1300 0.3080 ζ11 -0.6834*** 0.1508 -0.3542
β22 0.5025* 0.2447 0.6827 ζ12 1.4213*** 0.2780 0.6247
β23 0.2947* 0.1353 0.0590 ζ21 0.1180 0.0647 0.0880
β24 -0.0093 0.1171 -0.0068 ζ22 0.2147 0.1367 -0.0404
β25 0.1398 0.1102 0.0343 ζ31 0.0637 0.0627 0.0280
β26 -0.0661 0.0781 0.0113 ζ32 -0.1254 0.1355 -0.1020
β33 0.9841*** 0.2269 0.9535 ζ41 0.0711 0.0765 0.0037
β34 -0.3160** 0.1113 -0.1310 ζ42 0.2244 0.1454 0.1323
β35 -0.1964 0.1033 -0.0192 ζ51 0.0296 0.0727 -0.0166
β36 0.1712* 0.0666 0.0975 ζ52 0.0832 0.1372 0.0086
β44 0.8215*** 0.2204 0.5828 ζ61 0.0454 0.0442 0.0983
β45 0.1825 0.1058 0.0151 ζ62 -0.0148 0.0875 -0.0855
β46 -0.1135 0.0738 0.0073 log(σ2

u ) -2.6487*** 0.3871 -2.0672***
β55 -0.0242 0.2088 0.1562 log(σ2

v ) -2.8951*** 0.1754 -3.0046***
β56 -0.0021 0.0630 0.0224

Notes: Asterisks indicate significance levels, where: *** ≤ 0.001, ** ≤ 0.01, * ≤ 0.05. Column ‘Restricted’ indicates the restricted

estimates. The restricted estimates of the model coefficients, i.e., all coefficients except for the variance parameters log(σ2
u )

and log(σ2
v ), are obtained in the second-step minimum-distance estimation and, thus, do not have standard errors or significance

levels. The restricted estimate of the intercept is adjusted by the intercept of the third-step stochastic-frontier estimation. The

variance parameters log(σ2
u ) and log(σ2

v ) of the restricted estimation are obtained in the third-step stochastic-frontier estimation.
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This result not only holds for mean and median values of the estimated measures (as

presented in Figure 1) but also for the values of these measures at the level of individual

observations (see Figures 9, 10, 11, and 12 in Appendix E). However, this result should

not be generalized as it could be different in other empirical applications.
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Figure 1: Relationships between the fit of the model and the mean and median technical
efficiency estimates and the mean and median elasticities of scale for all possible
orderings of outputs (the horizontal red line indicates the model-averaged estimate;
models with a better fit, i.e., dots on the right-hand side of each panel, have a higher
weight than models with a worse fit, i.e., dots on the left-hand side of each panel)

Figure 2 presents the model-averaged efficiency estimates and elasticities of scale while

the corresponding distance elasticities of the inputs, outputs, and ‘environmental’

variables are presented in Figures 13, 14, and 15, respectively, in Appendix F. Average

technical efficiency is 1.33 (median: 1.27), which indicates that the museums use, on

average, 33% more of each input than required to produce the given output quantities.

The average elasticity of scale is 1.44 (median: 1.43), indicating considerable productiv-

ity gains from getting larger. While almost all museums with less than 70 employees

(full-time equivalents, FTE, including both scientific and non-scientific staff) and less

than 300,000 visitors per year operate under substantial increasing returns to scale,
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most large museums experience decreasing returns to scale (see Figure 3). Hence, the

most productive size is roughly around 70 employees (FTE) and 300,000 visitors per

year.
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Figure 2: Model-averaged efficiency estimates and elasticities of scale
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Figure 3: Relationship between the size of the museum and model-averaged elasticities
of scale

Figure 4 presents the model-averaged distance elasticities and semi-elasticities of the

two ‘environmental’ variables for museums with different numbers of visit sites. For

museums with one to three visit sites, changing the number of visit sites can be positively

or negatively related to productivity. However, for almost all museums with more

than three visit sites, increasing the number of visit sites is related to a decrease in

productivity. Given that museums with more than three visit sites usually have distance

elasticities of visit sites between −0.2 and −0.4, increasing the number of visit sites by

10%, e.g., from 10 to 11 visit sites, requires an increase in all inputs of two to four

percent to produce the same output quantities as with the current number of visit

17



sites.16 Hence, extending a museum to more than three visit sites seems to be associated

with considerable additional costs.

The right panel of Figure 4 indicates that having additional responsibilities can be

positively or negatively related to productivity for museums with just one visit site

while having special responsibilities requires substantially higher input use for virtually

all museums with more than one visit site. As only around 9 percent of museums with

only one visit site have special responsibilities while around 71 percent of museums

with more than one visit site have special responsibilities, we can conclude that the

majority of museums that have special responsibilities need to substantially increase

their input quantities (up to doubling the quantities as implied by a semi-elasticity

of −1) to fulfill these additional tasks.

5 Conclusions

In this paper, we have derived an input-oriented distance function based on the stochas-

tic ray production frontier, which is suitable for modeling production technologies

based on logarithmic functional forms when control over inputs is greater than control

over outputs and when some productive entities do not produce the entire set of outputs

under analysis.
16The interpretation of distance elasticities of ‘environmental’ variables requires some thoughts: a

distance elasticity of ∂ lnD i(x,y,z)/∂ lnzi = Γi indicates that increasing the ‘environmental’ variable zi
by one percent changes the distance measure D i(x,y,z) by Γi percent. As we want to assess the effect of
‘environmental’ variables on the technology rather than on the (in)efficiency level, our interpretations
have to assume a constant distance measure D i(x,y,z), e.g., D i(x,y,z) = 1, which means that we are
looking at the production frontier. As the input distance function is linearly homogeneous in input
quantities, i.e., D i(k · x,y,z) = k ·D i(x,y,z)∀k > 0, an increase in the distance measure D i(x,y,z) of one
percent corresponds to an increase in all input quantities x of one percent. Similarly, in order to reverse a
change in the distance measureD i(x,y,z) of Γi percent due to an increase in the ‘environmental’ variable zi
of one percent, all input quantities x need to change by −Γi percent so that the distance measure D i(x,y,z)
once again has the same value as it had before the change in the ‘environmental’ variable zi . Hence, an
increase in the ‘environmental’ variable zi of one percent is related to a change in all inputs of −Γi percent
when holding the (in)efficiency level constant. Thus, if a distance elasticity of an ‘environmental’ variable
is positive, i.e., ∂ lnD i(x,y,z)/∂ lnzi = Γi > 0, an increase in the ‘environmental’ variable zi of one percent
is related to a decrease in all inputs of Γi percent and, thus, to an increase in productivity when holding
the (in)efficiency level constant. A more formal (although perhaps less intuitive) derivation of this result
can be obtained with the implicit function theorem holding the distance measure D i(k · x,y,z) constant
while allowing the input quantities to change proportionally by a factor k > 0. Hence, the relative change
in all input quantities due to a change in the ‘environmental’ variable zi evaluated at the original input
quantities, i.e., k = 1, can be obtained by:

∂ lnk
∂ lnzi

= −
∂ lnDi (k·x,y,z)

∂ lnzi
∂ lnDi (k·x,y,z)

∂ lnk

= −
∂ lnD i(x,y,z)

∂ lnzi
= −Γi .
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Figure 4: Relationship between the number of visit sites and model-averaged distance
elasticities and semi-elasticities of the environmental variables

We have applied this model empirically to a data set of state-recognized Danish mu-

seums. As part of this empirical analysis, we have estimated the technical efficiencies,

distance elasticities, and elasticity of scale and determined that some ‘environmental’

variables that are of interest to the museum sector are related to the required level

of inputs. One has to be cautious when interpreting our results as causal effects be-

cause unobserved variables that affect the ‘production technology’ of the museums are

certainly present and these may be correlated to some of our explanatory variables.17

However, the main contribution of this paper is the development of ray-based input dis-

tance functions and the illustration that this specification is a useful tool for empirical

analyses when inefficiency should be measured in an input-oriented way.

As part of this analysis, we also demonstrate how to impose monotonicity on ray-based

input distance functions. Finally, we address a weakness of the stochastic ray function,

namely its sensitivity to the ordering of the outputs. We follow two approaches. Firstly,

we estimate the model with all possible ordering of outputs and select the ordering

that outperforms the others based on the log-likelihood value. Secondly, we use model

averaging over all possible orderings of the outputs. In our empirical application, the

results based on the model with the highest log-likelihood value are very similar to our

results based on model-averaging. However, whether this finding can be generalized or

is just a coincidence in our empirical application is a question for future research.

17Time-invariant unobserved variables could be controlled for by estimating panel data models but—as
previously mentioned in footnote 10—our data set does not allow us to do this.
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A Derivation of the ray-based Translog input distance

function

Using the notation of Henningsen et al. (2017), a Translog stochastic ray production

frontier is defined as:

ln
∥∥∥y∥∥∥ =α∗0 +

N∑
i=1

α∗i lnxi +
1
2

N∑
i=1

N∑
j=1

α∗ij lnxi lnxj (15)

+
M−1∑
i=1

β∗iϕi (y) +
1
2

M−1∑
i=1

M−1∑
j=1

β∗ijϕi (y)ϕj (y)

+
K∑
i=1

δ∗izi +
1
2

K∑
i=1

K∑
j=1

δ∗ijzizj

+
N∑
i=1

M−1∑
j=1

ψ∗ij lnxjϕi (y) +
N∑
i=1

K∑
j=1

ξ∗ij lnxizj

+
M−1∑
i=1

K∑
j=1

ζ∗ijϕi (y)zj −u∗ + v∗

with the normalizations α∗ij = α∗ji ∀ i, j = 1, . . . ,N , β∗ij = β∗ji ∀ i, j = 1, . . . ,M − 1, and δ∗ij =

δ∗ji ∀ i, j = 1, . . . ,K . Function (15) can be seen as a Shephard output distance function

(Henningsen et al., 2015):

lnDo (x,y,z) = −u∗ =α0 +
N∑
i=1

αi lnxi +
1
2

N∑
i=1

N∑
j=1

αij lnxi lnxj (16)

+
M−1∑
i=1

βiϕi (y) + ln
∥∥∥y∥∥∥+

1
2

M−1∑
i=1

M−1∑
j=1

βijϕi (y)ϕj (y)

+
K∑
i=1

δizi +
1
2

K∑
i=1

K∑
j=1

δijzizj

+
N∑
i=1

M−1∑
j=1

ψij lnxiϕj (y) +
N∑
i=1

K∑
j=1

ξij lnxizj

+
M−1∑
i=1

K∑
j=1

ζijϕi (y)zj + v,

where Do (x,y,z) = e−u
∗

with 0 ≤Do (x,y,z) ≤ 1 is a Shephard output distance function

and α0 = −α∗0, αi = −α∗i ∀ i = 1, . . . ,N , αij = −α∗ij ∀ i, j = 1, . . . ,N , βi = −β∗i ∀ i = 1, . . .M,
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βij = −β∗ij ∀ i, j = 1, . . .M, δi = −δ∗i ∀ i = 1, . . . ,K , δij = −δ∗ij ∀ i, j = 1, . . . ,K , ψij = −ψ∗ij ∀ i =

1, . . . ,N ; j = 1, . . . ,M, ξij = −ξ∗ij ∀ i = 1, . . . ,N ; j = 1, . . . ,K , ζij = −ζ∗ij ∀ i = 1, . . . ,M; j =

1, . . . ,K , and v = −v∗.

This specification of a stochastic-ray-based output distance function can be generalized

to the following ‘full’ Translog distance function:

lnD (x,y,z) =α0 −
N∑
i=1

αi lnxi +
1
2

N∑
i=1

N∑
j=1

αij lnxi lnxj (17)

+
M−1∑
i=1

βiϕi (y) + βM ln
∥∥∥y∥∥∥+

1
2

M−1∑
i=1

M−1∑
j=1

βijϕi (y)ϕj (y)

+
M−1∑
i=1

βiMϕi (y) ln
∥∥∥y∥∥∥+

1
2
βMM

(
ln

∥∥∥y∥∥∥)2

+
K∑
i=1

δizi +
1
2

K∑
i=1

K∑
j=1

δijzizj

+
N∑
i=1

M−1∑
j=1

ψij lnxiϕj (y) +
N∑
i=1

ψiM lnxi ln
∥∥∥y∥∥∥

+
N∑
i=1

K∑
j=1

ξij lnxizj

+
M−1∑
i=1

K∑
j=1

ζijϕi (y)zj +
K∑
i=1

ζMi ln
∥∥∥y∥∥∥zi + v

where linear homogeneity in output quantities (as required by a Shephard output

distance function) requires βM = 1, βiM = 0∀ i = 1, . . . ,M, ψMi = 0∀ i = 1, . . . ,N , ζMi =

0∀ i = 1, . . . ,K .

If restrictions
∑N
i=1αi = 1,

∑N
i=1αij = 0∀ j = 1, . . . ,N ⇔

∑N
j=1αij = 0∀ i = 1, . . . ,N ,∑N

i=1ψij = 0∀ j = 1, . . . ,M, and
∑N
i=1ξij = 0∀ j = 1, . . . ,K are fulfilled, function (17) is

linearly homogeneous in input quantities and, thus, it can be used as a specifica-

tion for a Shephard input distance function. We can impose these restrictions by

replacing αN by 1 −
∑N−1
i=1 αi , replacing all αNj , j = 1, . . . ,N by −

∑N−1
i=1 αij , replacing

all αiN , i = 1, . . . ,N by −
∑N−1
j=1 αij , replacing all ψNj , j = 1, . . . ,M by −

∑N−1
i=1 ψij , and

replacing all ξNj , j = 1, . . . ,K by −
∑N−1
i=1 ξij so that we get a Shephard input distance
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function:

lnD i (x,y,z) =α0 +
N−1∑
i=1

αi ln(x̃i) + lnxN +
1
2

N−1∑
i=1

N−1∑
j=1

αij ln(x̃i) ln
(
x̃j

)
(18)

+
M−1∑
i=1

βiϕi (y) + βM ln
∥∥∥y∥∥∥+

1
2

M−1∑
i=1

M−1∑
j=1

βijϕi (y)ϕj (y)

+
M−1∑
m=1

βiMϕi (y) ln
∥∥∥y∥∥∥+

1
2
βMM

(
ln

∥∥∥y∥∥∥)2

+
K∑
i=1
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1
2
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i=1
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j=1

δijzizj
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i=1

M−1∑
j=1

ψij ln(x̃i)ϕj (y) +
N−1∑
i=1

ψiM ln(x̃i) ln
∥∥∥y∥∥∥

+
N−1∑
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K∑
j=1

ξij ln(x̃i)zj

+
M−1∑
i=1

K∑
j=1

ζijϕi (y)zj +
K∑
i=1

ζMi ln
∥∥∥y∥∥∥zi + v.

By replacing the logarithm of the Shephard input distance measure D i (x,y,z) ≥ 1, i.e.,

lnD i (x,y,z) ≥ 0, by u ≥ 0 and a little re-arranging, we get:

− lnxN =α0 +
N−1∑
i=1

αi ln(x̃i) +
1
2

N−1∑
i=1

N−1∑
j=1

αij ln(x̃i) ln
(
x̃j

)
(19)

+
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+
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ξij ln(x̃i)zj
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+
M−1∑
i=1

K∑
j=1

ζijϕi (y)zj +
K∑
i=1

ζMi ln
∥∥∥y∥∥∥zi −u + v,

which can be easily estimated as a stochastic frontier model18. The Cobb-Douglas

functional form is a special case with αij = 0∀ i, j = 1, . . . ,N , βij = 0∀ i, j = 1, . . .M,

δij = 0∀ i, j = 1, . . . ,K , ψij = 0∀ i = 1, . . . ,N ; j = 1, . . . ,M, ξij = 0∀ i = 1, . . . ,N ; j = 1, . . . ,K ,

and ζij = 0∀ i = 1, . . . ,M; j = 1, . . . ,K .

B Monotonicity conditions in matrix form

We represent these monotonicity restrictions in matrix form as Rθ ≥ r, where

θ = (α0, α1, . . . ,αN−1, α11, . . . ,α1,N−1,α22, . . . ,α2,N−1, . . . ,αN−1,N−1, β1, . . . ,βM , β11, . . . ,β1M ,

β22, . . . ,β2M , . . . ,βMM , δ1, . . . ,δK , δ11, . . . ,δ1K , δ22, . . . ,δ2K , . . . ,δKK , ψ11, . . . ,ψ1M , ψ21, . . .,

ψ2M , . . . ,ψN−1,M , ξ11, . . . ,ξ1K , ξ21, . . . ,ξ2K , . . . ,ξN−1,K , ζ11, . . . ,ζ1K , ζ21, . . . ,ζ2K , . . . ,ζMK ), is

a vector of all estimated coefficients, R =
[
Ri,θ

]
is a matrix with one row i for each of the

N +M monotonicity restrictions and one column for each of the coefficients in θ, and

r is a vector with one element for each of the N +M monotonicity restrictions. The

elements of R =
[
Ri,θ

]
are:

Ri,αo = 0∀ i = 1, . . . ,N +M (20)

Ri,αj =

1 if i = j

0 if i , j
∀ i = 1, . . . ,N − 1; j = 1, . . . ,N − 1 (21)

RN,αj = −1∀ j = 1, . . . ,N − 1 (22)

RN+i,αj = 0∀ i = 1, . . . ,M; j = 1, . . . ,N − 1 (23)

Ri,αjk =


0 if i , j ∧ i , k

ln(x̃k) if i = j

ln
(
x̃j

)
if i = k

∀ i = 1, . . . ,N − 1; j = 1, . . . ,N − 1;k = j, . . . ,N − 1 (24)

RN,αjk = −
(
ln

(
x̃j

)
+ Ij,k ln(x̃k)

)
∀ j = 1, . . . ,N − 1;k = j, . . . ,N − 1 (25)

RN+i,αjk = 0∀ i = 1, . . . ,M; j = 1, . . . ,N − 1;k = 1, . . . ,N − 1 (26)

Ri,βj = 0∀ i = 1, . . . ,N ; j = 1, . . . ,M (27)

RN+i,βj =

−Ωji if j < M

−yi/
∥∥∥y∥∥∥2

if j =M
∀ i = 1, . . . ,M; j = 1, . . . ,M − 1 (28)

18This equation is identical to equation (6).
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Ri,βjk = 0∀ i = 1, . . . ,N ; j = 1, . . . ,M;k = 1, . . . ,M (29)

RN+i,βjk =


−
(
ϕk (y)Ωji + Ij,kϕj (y)Ωki

)
if j < M ∧ k <M

−Ωji ln
∥∥∥y∥∥∥−ϕj (y)yi/

∥∥∥y∥∥∥2
if j < M ∧ k =M

− ln
∥∥∥y∥∥∥yi/ ∥∥∥y∥∥∥2

if j =M ∧ k =M

∀ i = 1, . . . ,M; j = 1, . . . ,M;k = j, . . . ,M

(30)

Ri,δj = 0∀ i = 1, . . . ,N +M; j = 1, . . . ,K (31)

Ri,δjk = 0∀ i = 1, . . . ,N +M; j = 1, . . . ,K ;k = 1, . . . ,K (32)

Ri,ψjk =


0 if i , j

ϕk (y) if i = j ∧ k <M

ln
∥∥∥y∥∥∥ if i = j ∧ k =M

∀ i = 1, . . . ,N − 1; j = 1, . . . ,N − 1;k = 1, . . . ,M (33)

RN,ψjk =

−ϕk (y) if k <M

− ln
∥∥∥y∥∥∥ if k =M

∀ j = 1, . . . ,N − 1;k = 1, . . . ,M (34)

RN+i,ψjk =

− ln
(
x̃j

)
Ωki if k <M

− ln
(
x̃j

)
yi/

∥∥∥y∥∥∥2
if k =M

∀ i = 1, . . . ,M; j = 1, . . . ,N − 1;k = 1, . . . ,M (35)

Ri,ξjk =

0 if i , j

zk if i = j
∀ i = 1, . . . ,N − 1; j = 1, . . . ,N − 1;k = 1, . . . ,K (36)

RN,ξjk = −zk ∀ j = 1, . . . ,N − 1;k = 1, . . . ,K (37)

RN+i,ξjk = 0∀ i = 1, . . . ,M ∧ ∀ j = 1, . . . ,M ∧ ∀k = 1, . . . ,K (38)

Ri,ζjk = 0∀ i = 1, . . .N ; j = 1, . . . ,N ;k = 1, . . . ,K (39)

RN+i,ζjk =

−zk ∗Ωji if j < M

−zkyi/
∥∥∥y∥∥∥2

if j =M
∀ i = 1, . . . ,M; j = 1, . . . ,M;k = 1, . . . ,K (40)

and the elements of r are:

ri =

−1 if i =N

0 if i ∈ {1, . . . ,N − 1,N + 1, . . . ,N +M}
(41)

The monotonicity restrictions Rθ ≥ r defined above impose monotonicity at one data

point (x1, . . . ,xN , y1, . . . , yM , z1, . . . , zK ). If one wants to impose monotonicity at more than

one data point, e.g., at each observation in a data set, one needs to create one R matrix

and one r vector for each data point where monotonicity should be imposed and stack
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these matrices and vectors vertically:

R̃ =


R1

R2
...

RG


(42)

r̃ =


r1

r2
...

rG


, (43)

where G is the number of data points where monotonicity should be imposed, Rg ;g =

1, . . . ,G is the matrix R at the gth data point where monotonicity should be imposed,

and rg ;g = 1, . . . ,G is the vector r at the gth data point where monotonicity should be

imposed. In this case, R̃θ ≥ r̃ defines the G · (N +M) monotonicity restrictions.

C Procedure to impose monotonicity conditions

Following the three-step procedure proposed by Henningsen and Henning (2009)19, in

the first step, we estimate the following (unrestricted) stochastic frontier model:

− lnxN = lnD
(
x
xN
, y,z,θu

)
−u + v, (44)

where θu is the vector of the estimated unrestricted coefficients.

In the second step, we use a constrained optimization procedure to find the vector of

restricted coefficients. This is a minimum distance estimation, i.e., we search for the

vector of coefficients that is closest to (has the minimum distance to) the unrestricted

vector of coefficients, conditional on fulfilling the monotonicity conditions and using the

inverse of the variance-covariance matrix of the unrestricted coefficients as weighting

matrix:

θ̂r = argmin
θ̂r

(
θ̂r − θ̂u

)⊤
Σ̂−1

(
θ̂r − θ̂u

)
,

s.t. Rθ̂r ≥ r,

19Other methods for imposing monotonicity conditions include O’Donnell and Coelli (2005).
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where θ̂r is the vector of the estimated monotonicity-restricted coefficients and Σ̂ is the

estimated variance-covariance matrix of the unrestricted coefficients θ̂u .

In the third-step, we estimate the stochastic frontier model:

− lnxN − lnD
(
x
xN
, y,z, θ̂r

)
= a0 −u + v (45)

− lnD
(
x,y,z, θ̂r

)
= a0 −u + v. (46)

In contrast to equation (12) in Henningsen and Henning (2009), we only adjust the

intercept in θ̂r , i.e., α0, but we do not adjust the other coefficients in θ̂r as done by

Henningsen and Henning (2009). This is because the input distance function must be

linearly homogeneous in input quantities, and an adjustment of the slope coefficient

in θ̂r would either abandon the homogeneity restriction or—if one adjusts the non-

estimated coefficients to maintain homogeneity—potentially abandon the monotonicity

restrictions (that were just imposed). In order to avoid these problems, we do not adjust

the slope coefficients in θ̂r by having the predicted distance values D
(
x/xN , y,z, θ̂r

)
on

the left-hand side of equation (45) rather than as explanatory variable on the right-hand

side (as already suggested by Henningsen and Henning, 2009, in their footnote 7).

However, we suggest adjusting the intercept in θ̂r , i.e., α0, by estimating coefficient a0

(rather than restricting it to zero) because this allows the “height” of the restricted

frontier and, thus, the general (in)efficiency level to change after restricting the shape of

the frontier (by imposing monotonicity conditions) as the latter may change the general

(in)efficiency level.
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D Results based on the ordering of outputs that gives the

best fit
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Figure 5: Distance elasticities of the inputs based on the ordering of outputs that gives
the best fit
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F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
20

40
60

80

distance elasticity of output 'conservation'
F

re
qu

en
cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
10

0
20

0
30

0
40

0

distance elasticity of output 'research'

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
50

10
0

15
0

distance elasticity of output 'exhibitions'

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
50

10
0

15
0

20
0

distance elasticity of output 'education'

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
50

10
0

15
0

distance elasticity of output 'events'

F
re

qu
en

cy

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
50

10
0

15
0

20
0

Figure 6: Distance elasticities of the outputs based on the ordering of outputs that gives
the best fit
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Figure 7: Elasticities and semi-elasticities of the environmental variables based on the
ordering of outputs that gives the best fit
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Figure 8: Efficiency estimates and elasticities of scale based on the ordering of outputs
that gives the best fit
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E Comparison of model-averaged estimates and esti-

mates of the selected model
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Figure 9: Comparison of the distance elasticities of the inputs based on model averaging
and the ordering of outputs that gives the best fit
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Figure 10: Comparison of the distance elasticities of the outputs based on model
averaging and the ordering of outputs that gives the best fit
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Figure 11: Comparison of the distance (semi-)elasticities of the ‘environmental’ variable
based on model averaging and the ordering of outputs that gives the best fit
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Figure 12: Comparison of the distance efficiency estimates and elasticities of scale based
on model averaging and the ordering of outputs that gives the best fit
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F Model-averaged distance elasticities
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Figure 13: Model-averaged distance elasticities of the inputs
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Figure 14: Model-averaged distance elasticities of the outputs
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Figure 15: Model-averaged distance elasticities and semi-elasticities of the environmen-
tal variables
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