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Abstract:

General equilibrium models are typically presented with mathematical methods, such as the
Edgeworth Box, that do not easily generalize to more than two goods and more than two agents.
This is fine as a conceptual introduction, but it may be insufficient in the “Big Data−Machine
Learning−Era”, with gigantic databases filled with data of extremely high dimensionality that
are already changing the practice, and perhaps even the conceptual basis, of economics and
other social sciences. In this paper present what we call the “Gradient Field Method” to solve
these problems. It has the advantage of being, 1) as intuitive as the Edgeworth Box, 2) easily
generalizes to far more complex situations, and 3) nicely mesh with the data friendly techniques
of the new Era. In addition, it provides a unified framework to present both, partial equilibrium,
and general equilibrium problems.
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1 Introduction

One could argue that microeconomics is divided into two fundamental blocks, on the one hand
the competitive general equilibrium theory, and on the other the market failures. The basic prin-
ciples of the general equilibrium theory delve into the idea that, under certain basic assumptions4,
decentralized economic agents can improve each other’s well being, reaching an optimal “equi-
librium” through the ecosystem called the market. An omnipresent and benevolent planner could
replace the market, reaching an efficient distribution of resources, thus achieving the same “op-
timum”. The two fundamental welfare theorems unite the two concepts of general equilibrium;
the first welfare theorem states that “any competitive equilibrium is Pareto optimal”; the second
theorem indicates that “any Pareto optimum can be reached as a competitive equilibrium if the
initial endowments are altered.” The equivalence between the two problems allows us to focus
on one of them, understanding that the tools used for one are applicable to the other without loss
of generality.

As is well known, the economic assumptions that guarantee competitive equilibria (the first
part of microeconomics, as described above), mathematically guarantee the solvability of the
optimization problem by ensuring convexity.

The purpose of this paper is not to propose a new technique for solving the optimization prob-
lems described above, where extremely powerful techniques already exist (see for example
[Boyd and Vandenberghe (2004)]). Rather, the purpose is pedagogical. We present classic prob-
lems that any undergraduate student of economics learns in microeconomics courses, with math-
ematics that: 1) make the solution of general equilibrium problems, and related fundamental
welfare theorems, “obvious”, once the student learns how to solve simple partial equilibrium
problems. 2) Reduces to almost zero the marginal cost of generalizing these problems, say, from
2 variables to 2 million variables. In other words, the generalization difficulties are reduced to a
data processing challenge, but it doesn’t require any conceptual leap. 3) It frames general equi-
librium problems in a “machine-learning ready”5 language, that very likely economic students
will have to learn at some point anyways [Athey and Imbens (2019)], and it may help to learn it
in the context of familiar problems.

2 Constrained maximization in microeconomics

Part of the content and notation in sections 2.1 and 2.2 is in [Pernice (2018 b)]. The reader may
consult that reference for more details.

4Among them, the absence of: 1) Market power, 2) Satiety in preferences, 3) Informative externalities, 4) Real
externalities.

5We will implement machine learning general equilibrium problems in a different work.
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(a) Utility function (2.1) level curves.
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(b) Budget function (2.2) level curves.

Figure 1: 2-D representation of the utility function and the budget function by their level curves.
α = β = 1/2, PX = 1, PY = 2, I = 10. These, and all other figures in this work were generated
with [Mathematica 9.0.1.0].

2.1 Tangency of the level curves method to solve constrained maximization
problems

2.1.1 Utility maximization subject to a budget (linear) constraint

Suppose the utility function of a person for two goods, X and Y , is given by:

U(x, y) = xαyβ, 0 < α, β < 1 (2.1)

where x is the number of the units to be consumed of good X and y the units to be consumed of
good Y . Let us review the standard solution of the classic problem of maximization of U under
the budget constraint

I(x, y) = xPX + yPY = i (2.2)

where PX is the price of good X, PY the price of good Y , both prices are assumed externally
determined, and i is the actual numerical value of the budget constraint. In figure 1 we can see
the level curves of the utility function (2.1) and the budget function (2.2) for specific values of
the parameters.

The standard way of solving this maximization with constraints problem is presented in figure 2
for i = 10 and corresponds to variants of the following line of reasoning.

The “marginal utilities” of goods X and Y are the respective partial derivatives of the utility with
respect to the number of each good:

MUX ≡
∂U
∂x

(2.3)

MUY ≡
∂U
∂y

(2.4)
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√
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2 + 0.5 (yellow) and I = 10
(green).

or how much the utility changes when one consumes one additional unit of a good.

The economic intuition for the optimality condition is that “the marginal utility per dollar spent
on good X must equal the marginal utility per dollar spent on good Y”, otherwise the person
would spend the marginal dollar in the good which increases her utility more:

MUX1

P1
=

MUX2

P2
(2.5)

MRS =
MUX1

MUX1

=

∂U
∂x
∂U
∂y

=
PX

PY
(2.6)

(2.6), which trivially follows from (2.5), provides an equivalent economic intuition. It says that
the “marginal rate of substitution” MRS , i.e., the ratio of the marginal utilities, must equal the
ratio of the prices.

To make a slightly more rigorous derivation of equations (2.5) or (2.6) it is typically pointed
out that the convex form of the level curves of the utility function, makes it obvious that the
maximization of utility compatible with the budget constraint will happen at the point in the (x, y)
plane in which the budget line is tangent to the level curve of the utility function, intercepting it
only once, see figure 2.

Indeed, if the level curve of the utility function intercepts the budget line at two points, as in
the blue curve, it is clear that we can increase utility by choosing higher level curves. If it does
not intercept the budget line, as in the yellow curve, then it is not compatible with our budget
constraint. Therefore the optimum is the level curve of the utility function that intercepts the
budget line just once, as in the purple curve. And since the level curves are smooth, at that point
the budget line must coincide with the tangent line of the level curve of the utility function.

Translating this graphical intuition into equations, the level curves of the utility function in the
(x, y) plane, are curves y(x) implicitly given by the equation U(x, y(x)) = u, where u is just a
number. By the rules of differentiation of implicit functions [Pernice (2018 a)], the slope dy/dx

5



of such curve, is given by ∂U/∂x + (∂U/∂y)(dy/dx) = 0, or

dy
dx

= −

∂U
∂x
∂U
∂y

(2.7)

The intuitive graphical argument above indicates that at the optimum, this slope coincides with
the slope of the budget line (2.2)

dy
dx

= −
PX

PY
(2.8)

From (2.7) and (2.8) we arrive at the equation

∂U
∂x
∂U
∂y

=
PX

PY
(2.9)

which is equation (2.6), equivalent to (2.5), derived with a more geometric argument.

For the specific U in equation (2.1), ∂U/∂x = αxα−1yβ and ∂U/∂y = xαβyβ−1, so (2.9) becomes

αy
βx

=
PX

PY
, or y =

βPX

αPY
x (2.10)

This is the optimal consumption curve (straight line in this case), for any possible budget con-
straint. To determine the specific amounts of X and Y that will be consumed, we have to specify
what the actual budget constraint is, as shown in figure 3 for i = 8, 10 and 12.

Figure 3: The optimal consumption curve (2.9) (in orange), which for the specific U in (2.1) is
the straight line in (2.10), is formed by all the points in the (x, y) ≡ ( f , c)−plane in which the
level curves of U are tangent to the budget constraint.

2.1.2 Maximization problem in 2-D with 1 nonlinear constraint

In the problem solved in section 2.1.1 the constraint (2.2) is linear. The tangent of a linear
function is independent of the specific value of the budget constraint, different values of i simply
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parallelly displace the constraint straight line, keeping the tangent constant, as is evident in figure
3. This is why the right hand side of the optimal consumption curve equation (2.9) is independent
of x and y.

However, the key idea that the local maximum of a function U(x, y), subject to a constraint
V(x, y) = v, happens at a point in the (x, y)−plane where a level curve of U(x, y) is tangent to the
curve y = y(x) defined implicity by the constraint V(x, y(x)) = v, is valid in general, even if the
constraint is nonlinear.

To convince yourself of the above statement consider the following example:

Maximize U(x, y) = xαyβ (2.11)
subject to V(x, y) = xy − 8x − 10y + 80 = 24.45 (2.12)

For simplicity let us consider again the case α = β = 1/2. In figure 4 we see 3 level curves of the

Figure 4: As the level curves of U show, this function increases as we move from the bottom-left
to the top-right corner of the graph. The nonlinear constraint (2.12) corresponds to the green
curve.

function U in (2.11), indicating that U increases as we move from the bottom-left to the top-right
corner of the graph, and the nonlinear constraint (2.12) in the green curve.

It is obvious that the constrained maximum is at the point where the green constraint curve just
touches the level curve U = 4, and that the tangent line of both of these curves coincide at this
point. As surely the reader already knows, the same idea of common tangency that holds at
the constrained maximum for linear constraints also holds for nonlinear ones. Still, to prepare
for what comes in the next section, it is worth to carefully review the logic for this conclusion
beyond the simple graphic observation.

One way to describe the logic is this: since our maximization is constrained, we are not allowed
to visit every point in the (x, y)−plane, we are only allowed to visit the points that satisfy the
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constraint V(x, y) = v, which defines an implicit curve6 y(x), such that V(x, y(x)) = v. Let us visit
all the allowed points, starting, say, at x = 0 and y such that V(0, y) = v. In the example (2.12)
this corresponds to −10y + 80 = 24.45, or y = 5.55.

So, starting at the point (x, y) = (0, 5.55), we make small steps (dx, dy) so as to always satisfy
the constraint. dx and dy are therefore not independent, they are related by dV = 0 so that V
remains equal to v:

dV =
∂V
∂x

dx +
∂V
∂y

dy = 0 (2.13)

therefore the relation between dx and dy is:

dy = −

∂V
∂x
∂V
∂y

dx (2.14)

this condition ensures that as we explore different points, they all satisfy the constraint (2.12).

If we are at an arbitrary point (x, y) not necessarily satisfying the constraint, and we move to
(x + dx, y + dy) with generic (dx, dy), the function U will change its value by:

dU =
∂U
∂x

dx +
∂U
∂y

dy (2.15)

The first order condition for a maximum, dU = 0, imply the well known

∂U
∂x

= 0,
∂U
∂y

= 0 (2.16)

(we will not worry about second order conditions here.) If the point (x, y) do satisfies the con-
straint, and we move to a point (x + dx, y + dy) that also satisfies the constraint, then dx and dy
are related by (2.14), and the change in U given by (2.15) becomes

dU =

(
∂U
∂x
−
∂U
∂y

∂V
∂x
∂V
∂y

)
dx (2.17)

At the constrained maximum dU = 0, and (2.17) implies:

∂U
∂x
∂U
∂y

=

∂V
∂x
∂V
∂y

(2.18)

This is the generalization of (2.9) to nonlinear constraints. The geometric interpretation, as
before, is the equality of the tangents of both, the constraint curve, and the level curve of U that
happens to be tangent at some point to the constraint curve.

6In this work we do not bother by the possibility that this implicit curve may not be unique, etc. We assume
as valid all the necessary technical assumptions to ensure uniqueness and smoothness of these implicitly defined
functions.
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As was the case with (2.9), (2.18) determines the curve of optimal constrained maxima for every
possible value of the of the constraint V = v. The specific solution, for a specific value v, lies
at the intersection between the curve of optimal constrained maxima and the specific constraint,
i.e. the solution of the system of equations.

∂U
∂x
∂U
∂y

=

∂V
∂x
∂V
∂y

(2.19)

V(x, y) = v (2.20)

In figure (5) we see various level curves of the function U in (2.11) for α = β = 1/2, various
constraint curves corresponding to different values of v in (2.12), and the curve of optimal con-
strained maxima (2.18), generalizing for nonlinear constraints the optimal consumption curve
(2.9) in figure 3.

Figure 5: Curve of optimal constrained maxima (2.18) in orange.

2.2 Gradient field method to solve constrained maximization problems in
2-D with 1 constraint

The tangent method of equations (2.5-2.6) is directly motivated by economic intuition. This
intuition grows into the economic student mind from early undergraduate courses, where they
learn simple, low dimensional models, that stress what is viewed as the conceptual gist of the
subject. It is also geometrically very intuitive to solve constrained maximization problems.

Unfortunately, as we will see in section 2.3, it does not generalizes nicely to more than two
dimensions and more than one constraint. And we happen to be living in the “Big Data−Machine

9



Learning−Artificial Intelligence−Era”, with gigantic databases filled with data of extremely high
dimensionality that promises to change the practice, and perhaps even the conceptual basis, of
economics and other social sciences. It may be appropriate then to adapt the mathematics that
economic students learn, from the get go, towards more powerful methods that mesh better with
the data friendly techniques of the new Era.

In this section we will solve again the 2-D, 1-constraint problem solved in section 2.1.2, or,
more accurately, reinterpret that solution, with the gradient field method, which is geometrically
equally intuitive, and will be shown in section 2.3 to easily generalize to any dimensions and any
number of constraints.

To be clear, what we call here the “gradient field method” is none other than the Lagrange
multipliers method, that economic students also learn. The only difference is that while the
method is typically taught as a recipe that happens to give the right result, we present it here
emphasizing its geometrical intuition. In this way it becomes at least as intuitive as the tangent
method, and this intuition doesn’t fade in high dimensional problems with multiple constraints.
This is crucial to bridge the connections between economic problems and machine learning
techniques.

Let us briefly remaind the reader what the gradient field is (for more details see [Pernice (2018 b)]).
From this point on, we will make heavy use of vector algebra, that by this point was already cov-
ered in the course. There are many excellent textbooks and YouTube videos about basic linear
algebra, for example Grant Sanderson’s Essence of linear algebra. For consistency with the no-
tation of the present work the reader may also consult [Pernice (2019)], or, the more concise
[Pernice (2020)]. Here we remind the reader the very basics.

We use bold face for vectors, as in a. Unless otherwise specified, vectors are meant as column
vectors,

a =

Å
a1

a2

ã
(2.21)

Remember that the scalar product between two vectors a and b is

a · b = b · a = b>a = (b1, b2)
Å

a1

a2

ã
= b1a1 + b2a2 = ‖a‖ ‖b‖ cos(θ) (2.22)

The dot “·” means scalar product. It is commutative (first equality). In the second equality, b> is
the transpose of the vector b, so b> is a row vector, and the scalar product is written as a matrix
product, where b> is viewed as a 1 × 2 matrix and a as a 2 × 1 matrix.

In the last equality, ‖a‖ ≡
√

a · a, is the modulus, or length, of the vector a, and the same for the
vector b, and θ is the angle between a and b. Since −1 ≤ cos(θ) ≤ 1, (2.22) indicates that keeping
the length of a and b constant, the absolute value of a · b is maximum when the two vectors are
parallel (θ = 0) or anti-parallel (θ = π). It also says that two no-null vectors are perpendicular to
each other, θ = ±π/2, if and only if their scalar product is zero (cos(π/2) = cos(−π/2) = 0).

A function U(x, y) : R2 → R assigns a real number to each point in the (x, y)−plane. A vector
field F(x, y) : R2 → R2 assigns a real vector to each point in the (x, y)−plane. For any sufficiently
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smooth function U(x, y), the gradient ∇U is the vector field defined by

∇U(x, y) =
∂U
∂x

x̂ +
∂U
∂y

ŷ (2.23)

x̂ is the unit vector in the horizontal direction and ŷ is the unit vector in the vertical direction.
They form an orthonormal basis of R2: x̂ · x̂ = ŷ · ŷ = 1 and x̂ · ŷ = 0.

Equation (2.15) for the change in U when x and y change, respectively, by dx and dy, can be
written in vector notation in terms of the gradient field as

dU(x, y) = ∇U · dr = (∇U)>dr =

Å
∂U
∂x

,
∂U
∂y

ãÅ
dx
dy

ã
=
∂U
∂x

dx +
∂U
∂y

dy (2.24)

Equation (2.24) says that at any point (x, y), dU can be seen as the scalar product of the gradient
vector field ∇U at that point, and the displacement vector dr = dx x̂ + dy ŷ. Applying the last
equality in (2.22) to (2.24), the change dU when the independent variables change by dx and dy,
i.e., when the displacement vector in the (x, y)−plane is dr = dx x̂ + dy ŷ, is

dU(x, y) = ∇U · dr = ‖∇U‖ ‖dr‖ cos(θ) (2.25)

This means that, keeping the length of the displacement ‖dr‖ fixed, the magnitude of the change
in U is maximum when the displacement is parallel (“steepest ascent”) or anti-parallel (“steepest
descent”) to the gradient ∇U at that point. Also, if we want to move in a level curve of U,
i.e., such that dU = 0, the displacement dr has to be perpendicular to the gradient ∇U at that
point. In other words, given the function U(x, y), calculate the gradient ∇U at each point, and
the level curves of U(x, y) at any point will be perpendicular to the gradient at that point, as can
be appreciated in the right side of figures 6 and 7 for the functions U(x, y) = x2 + xy + 2y2 and
U(x, y) = x2 − y2 respectively.

Figure 6: Left: 3-D view of U(x, y) = x2 + xy + 2y2. Center: level curves of U. Right: the
gradient ∇U = (2x + y)x̂ + (x + 4y)ŷ, and some level curves superposed.

The unconstrained first order conditions (2.16) for a maximum, a minimum or a saddle point,
mean that at these points the gradient becomes zero: if ∇U = 0, dU = 0 in equation (2.25) in-
dependently of the direction of the displacement dr. In fact, provided the function is sufficiently
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Figure 7: Left: 3-D view of U(x, y) = x2 − y2. Center: level curves of U. Right: the gradient
∇U = 2xx̂ − 2yŷ, and some level curves superposed.

smooth, the magnitude of the gradient continually decreases as it approaches the critical point,
becoming zero at the critical point. This can be appreciated in the right part of figure 6 for a
minimum and in the right part of figure 7 for a saddle point. In these figures the gradient vector
field is scaled appropriately for viewing purposes.

Incidentally, the “steepest descent method” for minimizing functions (starting at some point in
the space of independent variables and moving in the direction opposite to the gradient at a
velocity proportional to the length of the gradient) turns out to be spectacularly efficient in very
high dimensions and it, or some stochastic variants of it, is the method of choice to minimize, or
“train”, cost functions of deep neural networks in machine learning.

Returning to our constrained maximization problem, let us reinterpret the equations used in
section 2.1.2 in vector notation.

The relation between dx and dy in (2.14), that ensures that we move in a level curve of the
constraint function V , imply that the displacement vector is:

dr =

(
dx

−
∂V
∂x
∂V
∂y

dx

)
∝

Ç
∂V
∂y
−∂V
∂x

å
(2.26)

The symbol ‘∝’ means ‘proportional to’, and comes simply by multiplying the displacement
vector dr by the scalar ∂V

∂y /dx. Remember that multiplying a vector by a scalar simply changes
the scale (which can even be negative) but not direction. (2.26) shows that this dr is indeed
perpendicular to the gradient of V:

∇V · dr = (∇V)>dr ∝
Å
∂V
∂x
,
∂V
∂y

ãÇ ∂V
∂y
−∂V
∂x

å
=
∂V
∂x

∂V
∂y
−
∂V
∂y

∂V
∂x

= 0 (2.27)

so, if we want to change the coordinates (x, y) by (dx, dy) so that we remain in the same level
curve of V , the displacement vector has to be perpendicular to the gradient of V , as explained for
a generic function in equation (2.25).
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Let us now reinterpret equation (2.18), that embodies the fact, obvious to the naked eye in figure
4, that at the constrained optimum the constraint curve V(x, y(x)) = v is tangent to the maximum
level curve of the function U compatible with the constraint.

Consider the function V(x, y) as function on its own right, with the same status as U(x, y), i.e.,
a function of independent variables x and y, not restricted by the constraint V(x, y) = v. As for
any other function, the gradient ∇V is perpendicular at any point to the level curve of V passing
through such point, in particular to the level curve V(x, y) = v defining the constraint.

Similarly, the gradient ∇U will be perpendicular at any point to the level curve of U passing
through such point, in particular to the maximum level curve of the function U compatible with
the constraint at the constrained maximum.

But since the level curve V(x, y) = v and the maximum level curve of the function U compatible
with the constraint are tangent to each other at the constrained maximum (this is the content
of equation (2.18)), their respective gradients have to be proportional to each other (linearly
dependent of each other). Let us see how this is the case:

∂U
∂x
∂U
∂y

=

∂V
∂x
∂V
∂y

⇔

∂U
∂x
∂V
∂x

=

∂U
∂y
∂V
∂y

≡ λ⇔

∂U
∂x

= λ
∂V
∂x

and
∂U
∂y

= λ
∂V
∂y
⇔Å

∂U/∂x
∂U/∂y

ã
= λ

Å
∂V/∂x
∂V/∂y

ã
⇔

∇U = λ∇V

(2.28)

In figure 8 we show the level curves of two functions and the linear dependence of their respective
gradients at the constrained optimum.

Figure 8: Linear dependence of the gradients of U and I at the maximum.

Note that the above argument does not imply that if the level curves are tangent their respective
gradients are equal, it does not even imply that they point in the same direction, it only implies
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that they are linearly dependent of each other. The angle between them may be 0 or it may
be π, no other angle is possible. But the relation between the respective length is completely
undetermined. That is why we introduce the new constant λ in (2.28), whose value has to be
determined as part of the solution of the problem.

So, the above argument shows that at the maximum of U, subject to the constraint V = v,
∇U = λ∇V . These are two equations, one for each component of the gradient, but now we have
three variables, since we introduced the proportionality variable λ. The additional equation is the
constraint itself. So, in the gradient method, the system of two equations (2.19-2.20) is replaced
by the system of three equations

∇U = λ∇V (2.29)
V(x, y) = v (2.30)

as we will see, these equations, and natural generalizations based on analogous geometrical
intuitions, solve the problem with any number of independent variables and any number of con-
straints. But before we show that, we would like to point out two things.

The first point is that you can derive equations (2.29-2.30) by the recipe of optimizing the so-
called “Lagrangian function”

L(x, y, λ) = U(x, y) − λ(V(x, y) − v) (2.31)

with respect to the three variables x, y, and λ. This last variable is known as a Lagrange multi-
plier. The reader can easily take the first derivative of L with respect to each variable, equate it
to zero, and see that it reproduces the three equations (2.29-2.30).

So, as we mentioned at the beginning of the section, the gradient method is really the Lagrange
method for solving constrained optimization problems. We derived equations (2.29-2.30) in a
different way to emphasise the geometric meaning of the method. Unfortunately, it is typically
presented as a vaguely justified recipe to arrive at the right equations, blurring the richness of the
Lagrange method.

The second point, that will become very significant later in the paper, is simply the observation
that, to derive the constrained optimum solution by the gradient method, we were naturally led
to consider the constraint function V(x, y) on an equal footing than the function U(x, y) to be
maximized. For both functions it is true that their gradient is perpendicular to their respective
level curves, and since at the optimum the level curves are tangent, their gradients must be
linearly dependent at that point. One is then naturally lead to the conclusion that maximizing U
under the constraint V = v is equivalent to maximizing V under the constraint U = u, for some
u.

One could argue that this is in fact not the case, because even though one can write equation
(2.29) as ∇V = β∇U, with β = 1/λ, equation (2.30) only refers to the function V , breaking the
equivalence between the two problems.

This counterargument is in a literal sense obviously correct, but it misses the point that while
equation (2.29), or its equivalent ∇V = β∇U, are intrinsic to the constraint maximization prob-
lem, equation (2.30) merely reflects the idiosyncratic fact that we happen to know the value of
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V of the final solution and not the value of U. But it is easy to conceive an equivalent situation
in which we know the value of U and ignore the value of V . In another words, equation (2.30)
reflects the prior knowledge of the person solving the problem, but someone else might know the
value of U, since there is a one to one relation between them.

Needless to say, for some problems, a prior knowledge of V (for example the dollar value of
the budget constraint) is naturally easier to know a priori than the value of U (for example the
utility). But it is conceivable a problem with the same underlying mathematics, but where the
known quantity is the value of the function U. We will see that this in fact the case in section 3.
The point is that if we consider the constrained maximization problem abstractly, the equivalence
becomes transparent. This observation will be very important later in the paper.

2.3 Generalization to n dimensions and m constraints, or why the gradient
field method is far more versatile than the graphic method

2.3.1 n dimensions and 1 linear constraint

Consider the problem of minimizing the function U : R3 → R

Minimize U(x, y, z) = x2 + y2 + z2 (2.32)
Under the constraint V(x, y, z) = x = 0.8 (2.33)

Since the function U(x, y, z) has three independent variables, it has level “surfaces” rather than
curves, which are spherical surfaces centered at the origin and of different radius, shown in figure
9.

In figure 10 we see three different level surfaces of U and the constraint surface (plane) V(x, y, z) =

x = 0.8. The smallest level surface of U (top left) is too small and does not have any point in the
surface constraint. The largest (bottom left) has infinite points in the surface constraint, forming
a circle, but since we want to minimize U subject to the constraint, this is clearly not the opti-
mum one. The level surface on the right of figure 10, with only one point in common with the
surface constraint, is clearly the right one.

Note that at the minimum, the “tangent plane” of the level surface of U coincides with the tangent
plane of the level surface of V (which, since V is linear, it happens to also coincide with the
surface constraint itself). But how can the tangent plane be characterized? Characterizing it by
curves in the level surface passing through the optimal point is not very economical, since there
are infinitely many such curves: the level surface is 2-D, so there are infinitely many different
1-D curves in the surface passing through a unique point.

The easiest way to characterize the plane tangent to a smooth surface at a given point is by a
vector orthogonal to the surface at that point. In 3-D, there is a unique direction orthogonal to
a given 2-D surface at any specific point. And since the surfaces we are interested in happen
to be level surfaces of a given function, and the gradient is orthogonal to the level surfaces, the
gradient must point in the unique orthogonal direction to the surface of interest!
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Figure 9: Level surfaces of the function U(x, y, z) = x2 + y2 + z2.

Figure 10: Three different level surfaces of U and constraint surface (plane) V(x, y, z) = x = 0.8.

Before we continue with the gradient, it is important to realize that the equalities in (2.22) are
valid in any dimension: if

a =

 a1
...

an

 , b =

 b1
...

bn

 (2.34)
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then

a · b = b · a = b>a =

n∑
i=1

aibi = ‖a‖ ‖b‖ cos(θ) (2.35)

And, as in 2-D, ‖a‖ ≡
√

a · a and the same for ‖b‖.

Returning to the gradient and level surfaces, (2.35) imply that the arguments in equations (2.24-
2.25) remain valid in 3-D, and in fact in any dimension:

dU(x, y) = ∇U · dr =

n∑
i=1

(∇U)idri = ‖∇U‖ ‖dr‖ cos(θ) (2.36)

Therefore, the qualitative arguments around equations (2.24-2.25) also generalize to any di-
mension: the gradient of a any function U of n independent variables is perpendicular to the
(n − 1)−dimensional level hypersurfaces of U.

This means that the gradient is perpendicular to everyone of the infinitely-many possible dis-
placements dr =

∑n
i=1 dxi x̂i that, starting in any given point, leave U unchanged, or dU = 0

(there are n − 1 linearly independent displacements that satisfy dU = 0). Notice how much
information is efficiently encapsulated in the gradient of a function.

Putting all of the above together, since at the local optimum the (n−1)−dimensional level surface
of the function U is tangent to the (n − 1)−dimensional constraint surface V = v, and their
gradients ∇U and ∇V are orthogonal to their respective surface, they have no choice but lying
in the unique orthogonal direction to these surfaces. They must be linearly dependent for any
number of independent variables.

Let us consider the specific example in (2.32-2.33) and compute the gradients of U and V:

∇U =

Ñ
2x
2y
2z

é
; ∇V =

Ñ
1
0
0

é
(2.37)

we want to find points in which ∇U and ∇V are linearly dependent. The null second and third
component of ∇V imply that the linear dependence will happen only in the x axis: y = z = 0. So
the x axis is the “V−constrained optimal curve”, and the constant of proportionality (also known
as Lagrange multiplier) is

2x = λ ∗ 1, or λ = 2x (2.38)

Now we need to find the minimum for the specific value of the constraint V = x = 0.8. (2.37)
and (2.38) imply that the minimum is at (x, y, z) = (0.8, 0, 0), and the problem is finished!

Well, not quite, in fact, we still need to prove that (0.8, 0, 0) is in fact a minimum, and not a
maximum or, in general a critical point, with an analysis of the second order conditions. But as
we mentioned earlier, we will not bother about second order conditions in this paper. So, for the
purposes of this paper the problem is solved.
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2.3.2 n dimensions and 1 non-linear constraint

Consider now the problem of the same function U : R3 → R in (2.32) under a nonlinear con-
straint:

Minimize U(x, y, z) = x2 + y2 + z2 (2.39)
Under the constraint V(x, y, z) = (x − 1)2 + y2 + z2 = 0.16 = 0.42 (2.40)

Note that the level curves of V(x, y, z) = (x − 1)2 + y2 + z2 are spherical surfaces centered at
x = 1, y = x = 0.

Figure 11 shows that an argument similar to the one done to describe Figure 10 implies that,
at the constraint minimum, the optimal level surface of U and the constraint surface (2.40) are
tangent, as it was the case for a linear constraint.

Figure 11: Three different level curves of U and half of the constraint nonlinear surface
V(x, y, z) = (x − 1)2 + y2 + z2 = 0.16 = 0.42.

So, at the constraint minimum the gradients of U and V

∇U =

Ñ
2x
2y
2z

é
; ∇V =

Ñ
2(x − 1)
2y
2z

é
(2.41)

have to be linearly dependent: ∇U = λ∇V . This means that the proportionality has to be valid
for the three components simultaneously, i.e., with the same constant of proportionality. The
proportionality of the x component imply that

2x = λ2(x − 1), or λ =
x

x − 1
(2.42)
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inserting this λ into the proportionality of the y component we have:

2y =
x

x − 1
2y ⇒

( x
x − 1

= 1 if y , 0
)

or y = 0 (2.43)

But as the reader can easily check, there is no x that satisfies x/(x − 1) = 1! Therefore the
hypothesis y , 0 is wrong and y = 0. With a similar argument z = 0. So, the “nonlinearly
V−constrained optimal curve” is again the x−axis (one may except the points x = 0 and x = 1,
because the level surface of U become a point at x = 0 and the level surface of V become a point
at x = 1, see equation (2.42)).

For the particular case V = 0.42, since we already know that at the optimum y = z = 0, (2.40)
becomes

(x − 1)2 = 0.42, or x − 1 = ±0.4 (2.44)

which has two solutions: x = 0.6, corresponding to the constrained minimum on the right hand
side of figure 11, and x = 1.4, which we didn’t expect from figure 11! We left as an exercise
to the reader to figure out what this x = 1.4 solution means (hint: in figure 11 only half of the
constraint nonlinear surface V = 0.42 is shown.)

2.3.3 n dimensions and m constraints

Consider now the problem of the same function U : R3 → R in (2.32) under two constraints:

Minimize U(x, y, z) = x2 + y2 + z2 (2.45)
Under the constraints V1(x, y, z) = x = 0.7 (2.46)

V2(x, y, z) = y = 0.5 (2.47)

In figure 12 we see four different level surfaces of U, each one with the constraint planes
V1(x, y, z) = x = 0.7 and V2(x, y, z) = y = 0.5. In the top left U = 0.09, and the level sur-
face is a spherical surface centered at the origin and of radius 0.3 (0.32 = 0.09.) No point of this
level surface is consistent with any of the constraints. The bottom left level surface has radius 0.5
(U = 0.52 = 0.25). One point of this surface is consistent with the constraint V2 = 0.5 but none
with the constraint V1 = 0.7. The top right level surface has radius 0.7 (U = 0.72 = 0.49). Infinite
points of this surface, forming a circle, are consistent with the constraint V2 = 0.5 and one point
is consistent with the constraint V1 = 0.7. However, no point is consistent with both constraints
simultaneously, which is what we want as a solution to the problem (2.45-2.47). Finally, the
bottom right level surface has radius 1 (U = 12 = 1). Infinite points of this surface, forming a
circle, are consistent with the constraint V2 = 0.5 and also infinite point, forming another circle,
are consistent with the constraint V1 = 0.7. Two points are consistent with both constraints, but
clearly this level surface is not the minimum one consistent with both constraints.

In figure 13 we can see, from two different perspectives, the minimum level surface. It is tangent
to the line (0.7, 0.5, z), for arbitrary z, and this line is common to both surface constraints. This
suggest an algorithm to solve problems with more than one constraint: find the intersection of
both 2-D constraints so that, generically, one transforms the problem into a problem with only
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Figure 12: Four different level surfaces of U and the two constraints V1(x, y, z) = x = 0.7 and
V2(x, y, z) = y = 0.5.

Figure 13: Two perspectives of the optimal level surface of U consistent with the two constraints
V1(x, y, z) = x = 0.7 and V2(x, y, z) = y = 0.5.

one 1-D constraint. The problem with this algorithm is that, although for the example (2.45-
2.47), cherry picked for easy visualization, it is very easy to implement in practice, for more
complex, nonlinear constraints, finding the points common to both constraints tends to be as
difficult as the problem we want to solve in the first place!

The gradient, again, is the superior solution. The intersection of the two constraints, by definition
of intersection, necessarily lies in both surface constraints. Since the gradient of each surface
constraint is perpendicular in every point to a neighborhood of that point in the surface, the
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gradient of each surface constraint must be perpendicular to their intersection. In another words,
the scalar product of each gradient with a vector pointing in the direction of the intersection curve
must be zero. Let us see how this works in the example (2.45-2.47).

The vector ẑ clearly points in the direction of the line (0.7, 0.5, z), which is the intersection of the
surface constraints (2.46) and (2.47). The gradients of the constraint functions are

∇V1 =

Ñ
1
0
0

é
, ∇V2 =

Ñ
0
1
0

é
(2.48)

Clearly ∇V1 · ẑ = 0 and ∇V2 · ẑ = 0, which is what we wanted to show.

The vanishing of the scalar product between the gradients of the surface constraints and any
vector tangent to the intersection of these constraints is valid in general, linear or nonlinear,
and in any dimension. The reason is that, as explained before, the intersection lies in both
(hyper)surface constraints, and each gradient is orthogonal to its corresponding (hyper)surface,
therefore they must, in particular, be orthogonal to their intersection. So we have a property valid
in any dimension for any number of constraints!

If ∇V1 · ẑ = 0 and ∇V2 · ẑ = 0, then, for any linear combination

ẑ · (λ1∇V1 + λ2∇V2) = 0 (2.49)

This means that any linear combination of the gradients is also perpendicular to the tangent of
the intersecting line.

Returning to figure 13, we noted already that the optimal level surface of U (the function being
constraint-minimized) is tangent to the intersection of the two constraint surfaces, i.e., the line
(0.7, 0.5, z). This means that at the optimum, the gradient of U, ∇U, is perpendicular to this
line. But if it is perpendicular to the line, it must be a linear combination of the gradients of the
constraint functions:

∇U = λ1∇V1 + λ2∇V2 (2.50)

This equation (which are really three equations in 3-D) is the analogous in a two-constraint
problem to equation (2.29) for one-constraint problems. In the same sense in which (2.29) de-
termines the optimal constrained curve, (2.50) determines the “optimal constrained surface” in
a two constraint problem, corresponding to optima for different values v1, v2 of the constraints
V1(x, y, z) = v1 and V2(x, y, z) = v2.

Now we have five variables: x, y, z, λ1 and λ2, and (2.50) are 3 equations (in Rn (2.50) would
imply n equations, and we would then have n + 2 variables if the problem had two constraints.)
Where are the other two equations? The other two equations are the specific constraints (2.46)
and (2.47). So, our system or equations is

∇U = λ1∇V1 + λ2∇V2 (2.51)
V1(x, y, z) = v1 (2.52)
V2(x, y, z) = v2 (2.53)
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As it was the case for one constraint, where equations (2.29-2.30) could be derived from the
Lagrangian (2.31), (2.51-2.53) can be derived from the Lagrangian

L(x, y, z, λ1, λ2) = U(x, y, z) − λ1(V1(x, y, z) − v1) − λ2(V2(x, y, z) − v2) (2.54)

optimizing for each of the five variables x, y, z, λ1 and λ2. As already mentioned, we are em-
phasising the geometrical intuition of the Lagrangian method for solving optimization problems
with constraints.

Let us apply all this to the specific problem (2.45-2.47). The respective gradients are:

∇U =

Ñ
2x
2y
2z

é
, ∇V1 =

Ñ
1
0
0

é
, ∇V2 =

Ñ
0
1
0

é
(2.55)

applying (2.51) to (2.55) implies that z = 0, 2x = λ1, 2y = λ2. So the optimal constrained
surface is the (x, y)−plane, or the z = 0 plane. This is the plane of constrained minima for all
possible values of v1 and v2. For the specific values (2.46) and (2.47), the constrained minimum
is (0.7, 0.5, 0), as it was already obvious from figure 13.

With exactly analogous geometrical/linear algebra reasoning, if the function U being optimized
has n independent variables, and m constraints Vi = vi, i = 1, . . . ,m, with n ≥ m (otherwise, in the
generic case, there won’t be any solution), the optimum (n−1)−dimensional level hypersurface of
U has to be tangent to the (n−m)−dimensional hypersurface of intersection of the m constraints.
This means that the gradient ∇U has to be linearly dependent of the m gradients ∇Vi, so the
generalization of (2.51-2.53) is

∇U(x1, . . . , xn) =

m∑
i=1

λi∇Vi (2.56)

Vi(x1, . . . , xn) = vi, i = 1, . . . ,m (2.57)

(2.56) is really n equations with n + m variables, (2.57) provides that additional m equations. As
promised, once we get used to the idea that, in any dimension, orthogonality between vectors is
synonymous to vanishing of the scalar product between these vectors , the geometric intuition
remains intact, even for this extremely general case.

Keeping the intuition while working with this level of generality is what is needed to navigate
optimization problems in the Big−data−Machine−learning−Artificial−intelligence Era.

2.4 The Gradient method and the equivalence between constrained opti-
mization problems

The gradient method of sections 2.2 and 2.3 to solve constraint optimization problems maintains
the geometrical intuition of the standard tangency-of-the-level-curves-method of section 2.1, but
the mathematical instruments used to concretize such intuition is far more powerful and easily
generalizes to any number of independent variables and any number of constraints.
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It is nothing other than the Lagrange multiplier method, but emphasising the geometrical in-
tuitions behind it, rather than presenting it as a cooking recipe, as is done in many standard
textbooks and courses in economics.

Interestingly for what comes next, the gradient method makes transparent that there is an equiv-
alence between optimizing a function U under a constraint determined by a function V and op-
timizing the function V under a constraint determined by function the U. And this equivalence
extends to any dimension and any number of constraints.

For example, equation (2.56) indicates that ∇U is linearly dependent of the gradients ∇Vi, i =

1, . . . ,m. More deeply, it indicates that these m + 1 vectors belong to the same m-D subspace in
the embedding n-D space, and any m of these m + 1 vectors can act as a basis of this subspace.
So, this equation could equivalently be expressed as, say, ∇V1 being linearly dependent of ∇U
and ∇Vi for i = 2, . . . ,m, in which case we would be describing the problem as optimizing V1

under the constraints determined by U and the functions Vi’s.

As was pointed out before in the case of only one constraint, equations (2.57) clearly breaks the
symmetry between U, and the Vi’s, but this is not intrinsic to the mathematical problem, it just
means that it happens to be the case that in this particular problem we know the values of the
Vi’s, and we don’t know, and want to know, the value of U. But which functions are the known
ones and which is the unknown could be different in other circumstances, or other problems.

It could happen that in some problems it is more natural to know a priori the values of some
functions, such as the Vi’s, rather than the value of some other function such as U, but what we
want to point out here is that if this was the case, it would be a matter of the specific application,
not an intrinsic feature of the mathematical problem. Mathematically all these problems are
equivalent.

3 General equilibrium problems in microeconomics

Let us consider two apparently very different problems.

Problem 1: consider a policy maker P who has to decide how much to produce of goods X and
Y , knowing that they both require labor L, and capital K, which are limited by the amounts L̄,
and K̄ respectively, and also knowing that the technology for the production of these goods is
given by the functions

X = f (kx, `x) (3.1)
Y = g

(
ky, `y

)
(3.2)

kx + ky = K̄, `x + `y = L̄ (3.3)

where `x and kx are the units of labor and capital allocated to the production of good X, and `y

and ky are the units of labor and capital allocated to the production of good Y . How should she
decide this allocation for efficient production?

The problem has two aspects, one corresponds to the more engineering-type problem of how to
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produce efficiently, the other is how much to produce of each good given the preferences of the
consumers and the costs of production.

It may not be obvious a priori that the problem of efficient production and the utility maximizing
problem can be separated. It might be argued that the very meaning of “efficient production” is
the production that maximizes utility. It is then appropriate to clarify this point from the get go.

Remember the notion of Pareto efficiency, a distribution of goods is Pareto efficient if no individ-
ual can be made better off without making other individual worse off. Extrapolating this notion
to a production setting, given the technology (3.1-3.2) and the resources (3.3), a production of the
goods X and Y is efficient if no additional units of one good can be produced without reducing
the units produced of the other good.

Having clarified the separation between the problem of efficient production and the problem of
utility maximization in problem 1, we will focus here in the first aspect only: efficient production.

Problem 2: consider a two consumer-two goods exchange economy. The consumers are Alice
(A) and Bob (B) and the goods are X and Y . Alice has an initial endowment of Xa units of good
X and Ya units of good Y . Bob has Xb units of good X and Yb units of good Y . Assume that the
number of units of both goods are fixed: Xa + Xb = X̄, Ya + Yb = Ȳ , X̄ and Ȳ fixed.

Alice and Bob both benefit from voluntarily trading goods with each other. Mathematically,
both Alice and Bob can and want to increase their respective utilities Ua(xa, ya) and Ub(xb, yb) by
trading. So the mathematical problem is:

A wants to maximize Ua(xa, ya) with an initial endowment: xa = Xa, ya = Ya (3.4)
B wants to maximize Ub(xb, yb) with an initial endowment: xb = Xb, yb = Yb (3.5)

xa + xb = X̄, ya + yb = Ȳ , X̄ and Ȳ fixed (3.6)

What is going to happen as a result of voluntary trade between Alice and Bob?

Problems 1 and 2 epitomize what microeconomics is all a about. They represent an important
conceptual milestone in the formation of every economist, typically used, in a version or another,
to introduce students to general equilibrium models, the first and second fundamental theorems
of welfare economics, etc.

In the next section, 3.1, we will briefly review the standard textbook method for solving these
problems. In 3.2 we will see how, even though problems 1 and 2 are general equilibrium prob-
lems while the problems in section 2 are partial equilibrium problems, when viewed with the
powerful gradient method of sections 2.2 and 2.3, mathematically these problems are equivalent.

Moreover, as we have seen, the solution through the gradient method automatically generalizes
to n goods and m constraints, and are based on the same methods used in machine learning,
leaving open the door to extend these models to treat them with machine learning power, which
will be done in a different work.

But before doing all that, we would like to point out that, a priori, there is no reason to think
that problem 1 and problem 2, mathematically, are the same problem. There are even much
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less reasons to think than the problems of section 2, mathematically, are also the same problem.
Focusing on problems 1 and 2, in problem 1 there is only 1 optimizer who knows everything
decides the values of xa, xb, ya and yb. In problem 2, on the contrary, Alice optimizes Ua and Bob
optimizes Ub. Moreover, X̄ and Ȳ being fixed, their incentives are misaligned, except that they
both gain from trade. Alice may or may not know Bob’s utility and vice versa, etc. However,
none of this will matter by virtue of the equivalence discussed throughout sections 2.2 and 2.3,
and specifically in section 2.4.

3.1 Graphic methods to solve general equilibrium problems, the Edge-
worth Box

There are many simple ways to solve problems 1 and 2 of the previous section, as long as the
numbers of goods and people are two. The Edgeworth Box is a particularly simple and visually
intuitive mathematical technique. To fix ideas, let us solve problem 1 with the Edgeworth Box
method and then make some comments about problem 2.

Since 0 ≤ kx, ky ≤ K̄ and 0 ≤ `x, `y ≤ L̄ we can represent these quantities in a box. To fix ideas,
suppose that the production functions (3.1-3.2) are f (k, `) = f (k, `) = k1/2`1/2 for both goods,
that K̄ = 10 and L̄ = 8:

X = f (kx, `x) = k1/2
x `1/2

x (3.7)
Y = g

(
ky, `y

)
= k1/2

y `1/2
y (3.8)

kx + ky = K̄ = 10, `x + `y = L̄ = 8 (3.9)

We represent graphically this in figure 14. The lower left corner represents to origin of coordi-
nates of (kx, `x), corresponding to zero X production. The upper right corner represents to origin
of coordinates of (ky, `y), corresponding to zero Y production.

The lower-horizontal axis, from left to right, represents increasing values of kx. The upper-
horizontal axis, from right to left, represents increasing values of ky. Both kx and ky are positive,
and kx + ky = 10, so the horizontal axes have length 10.

The left-vertical axis, bottom up, represents increasing values of `x. The right-vertical axis, top
down, represents increasing values of `y. Both `x and `y are positive, and `x + `y = 8, so the
vertical axes have length 8.

Any point in the 10 × 8 rectangle, or Edgeworth Box, represents a possible allocations of cap-
ital and labor for the production of X and Y . For example, the blue dot corresponds to kx =

7.325, `x = 2.184 and ky = 10 − kx = 2.675, `y = 8 − `x = 5.816. The blue dot is clearly not an
efficient production allocation, since, for example, ascending along the green isoquant of g we
arrive at the rightmost red dot, corresponding to equal production of the Y good, and more pro-
duction of the X good (the yellow isoquant of the f , to which that red dot belongs, corresponds
to larger values of X than the purple isoquant of the f , to which that blue dot belongs.)

Staring at figure 14 the reader will easily convince herself that any point that is not in the brown
straight line, that is, the line where the level curves of f and g are tangent to each other, cannot
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Figure 14: Edgeworth Box. The convex isoquants are level curves of f (kx, `x) = k1/2
x `1/2

x , with
increasing values of f as we move from the lower-left corner to the upper-right corner. The
concave isoquants are level curves of g

(
ky, `y

)
= k1/2

y `1/2
y , with increasing values of g as we

move from the upper-right corner to the lower-left corner.

possibly be an efficient allocation point. But in section 2.1.2 we already solved the problem of
finding the equation for the tangency of the level curves of the implicit functions determined by
level lines of two general functions f (kx, `x), and g

(
ky, `y

)
= g (10 − kx, 8 − `x). The equation is

2.18, or, in our present notation,

∂ f (kx,`x)
∂kx

∂ f (kx,`x)
∂`x

=

∂g(10−kx,8−`x)
∂kx

∂g(10−kx,8−`x)
∂`x

(3.10)

with the functions f and g given in (3.7-3.8), (3.10) becomes

1
2

Ä
`x
kx

ä1/2

1
2

Ä
kx
`x

ä1/2 =
`x

kx
=
−1

2

Ä
8−`x

10−kx

ä1/2

−1
2

Ä
10−kx
8−`x

ä1/2 =
8 − `x

10 − kx
, or 10`x = 8 kx, or `x = 0.8 kx (3.11)

the last expression, `x = 0.8 kx, which is the straight line in figure 14, is the “Efficient Production
Set”. Being the set of all the points where an isoquant of f is tangent to an isoquant of g, for all
possible isoquants, any allocation outside this set can be improved by moving along an isoquant
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of any of these functions towards the efficient production set. Such change in allocations would
keep the production of one good fixed while increasing the production of the other good, as we
did when moving from the blue dot in figure 14 to the rightmost red dot described above.

On the other hand, starting from an allocation in the efficient production set and moving along
this set towards another point in the set, necessarily increases the production of one good and
decreases the production of the other good. Any allocation in this set is “Pareto” efficient. Which
particular point in this set the planner will finally choose depends on preferences. But this is the
second part of the problem described at the beginning of section 3, which, as mentioned there,
we will not address in the present work.

The relation `x = 0.8 kx, together with kx + ky = 10 and `x + `y = 8, imply that in the Efficient
Production Set, these four quantities are all dependent on one, say kx:

`x = 0.8 kx (3.12)
ky = 10 − kx (3.13)
`y = 8 − `x = 8 − 0.8 kx (3.14)

with (3.12-3.14) we can find a parametric expression for the quantity of good X and Y produced
in every point of the Efficient production set. From (3.7) and (3.8):

X = f (kx, `x(kx)) = k1/2
x (0.8 kx)1/2 =

√
0.8 kx (3.15)

Y = g
(
ky(kx), `y(kx)

)
= (10 − kx)1/2(8 − 0.8 kx)1/2 =

√
0.8 (10 − kx) (3.16)

0 ≤ kx ≤ 10 (3.17)

Equations (3.15-3.17) constitute a parametric from of the “Production Possibility Frontier” (PPF),
in terms of the parameter kx. One may prefer a non-parametric, explicit function Y(X) for the
PPF. In this case, from (3.15), kx = X/

√
0.8, inserting this into (3.16), we have:

Y =
√

0.8
Å

10 −
X
√

0.8

ã
=
√

80 − X ≈ 8.944 − X (3.18)

In figure 15 we draw the Production Possibility Frontier, and in the (X,Y)−plane we also draw
the blue point in figure 14, which clearly lies below the PPF, and the rightmost red dot in figure
14, corresponding to equal production of good Y , and more production of good X, and lying in
the PPF.

Two final points before we make some comments about problem 2. The first one is that, although
the economic reasoning is different, the mathematics to find the Efficient Production Set was
essentially identical to the one used in section 2.1 to solve constrained optimization problems
with the tangency of level curves method. The last step, to go from the Efficient Production Set
to the Production Possibility Frontier, is just plugging into the f and g functions (3.7-3.8) the
solution of the Efficient Production Set problem.

At first sight, it may seem unexpected that the mathematics for the solution of general equilibrium
problems addressed in this section is essentially the same as the mathematics of section 2.1 for
the solution of much simpler partial equilibrium problems. But this is due to the fact that the
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Figure 15: Production Possibility Frontier. The blue point in figure 14 is seen here below the
PPF. The rightmost red dot in figure 14, corresponding to equal production of the good Y , and
more production of the good X, lies in the PPF.

tangency of level curves method used in this section, is just the tip of the iceberg of the deeper and
far more general gradient method, as was explained in sections 2.2 and 2.3. In the next section
we will see that the equivalence stressed out in section 2.4, which is completely transparent in the
gradient method, makes the use of exactly the same math for both problems completely natural.

The second point is that, since in the optimum production processes of problem 1 we are as-
suming that the planner knows the technology for the production of both goods (3.7-3.8), the
maximum amounts of inputs for production (3.9), and she is free to allocated these inputs in
whatever way she likes, any point in the Efficient Production Set is accessible to her. Graphi-
cally, not only the red points in figure 14, but the violet points too are accessible to the planner
with the mentioned hypothesis. Which specific point she will finally choose in the Efficient
Production Set depends on the “preferences” aspect of the problem that we are not addressing
here.

For problem 2 of section 3, the reader can easily convince herself that the solution is essentially
identical, and goes along almost the same arguments, as the ones used to solve problem 1. The
only difference is that not Alice nor Bob have the freedom to take possession of the goods that
the planner had in problem 1. We assumed that both, Alice and Bob want to maximize their own
utility, and that the interchange is voluntary, so they will negotiate, and we assume they both are
rational. This means that they will never accept an outcome that leads to less utility than what
their original endowment provides. Therefore, in terms of figure 14, if their initial endowment
corresponds to the blue dot, only the red points (and any point in between them) in the Pareto
efficient curve is a possible outcome of the exchange.
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3.2 The gradient field to solve general equilibrium problems

In the previous section we solved problems 1 and 2 by what is known as the Edgeworth Box,
with the double axes in figure 14. But the constraints (3.3) (or (3.6) for problem 2) are trivially
resolved as ky = K̄ − kx, `y = L̄ − `x (or xb = X̄ − xa, yb = Ȳ − ya). Analytically, we can allow the
variables kx, ky, `x, `y to have any real value (even negative, or greater than K̄ and L̄ respectively)
while keeping the relations ky = K̄ − kx, `y = L̄ − `x, and at the end of the problem consider
only the solutions in the proper range for these variables. Numerically it is trivial to impose the
proper range.

So, for example, problem 1 becomes the problem of finding Efficient Production Set, and the
Production Possibility Frontier given the technologies f and g and the total inputs K̄ and L̄:

X = f (kx, `x) (3.19)
Y = g

(
K̄ − kx, L̄ − `x

)
(3.20)

No double axis are necessary. The simple fact that g, whose level curves are convex in the
(ky, `y)−plane, depends on K̄ − kx and L̄− `x, automatically makes its level curves concave in the
(kx, `x)−plane. This is exactly as in figure 14, but without the need for the upper-horizontal nor
the right-vertical axis.

What we want is an efficient production of goods X and Y , i.e., a production such that no addi-
tional units of one good can be produced without reducing the units produced of the other good.
How do we achieve this?

The arguments in section 2.1.2, from equation (2.13) to (2.18) can be repeated almost word by
word. Making small steps (dkx, d`x) in the (kx, `x)−plane such that we always remain in a level
curve of one product, either a level line of f or a level line of g (it is irrelevant which one, but
the fact that it is irrelevant is important!) Say that we move in a level curve of f . As we make
tiny displacements along this level curve, the quantities produced of X will, of course, remain
constant, but the quantities of Y will in general change. But we will eventually reach a point in
which the additional tiny displacements does not change the quantity produced of good Y . By
the above definition, that point is an efficient production point, and since Y does not chance under
the tiny displacement, it means that we are also moving in a level curve of g. This means that
at the optimum the level curves of f and g are tangent. We arrive to the equivalent of formula
(2.18), which in our present language is

∂ f
∂kx

∂ f
∂ky

=

∂g
∂kx

∂g
∂ky

(3.21)

Note that formula (2.20) doesn’t have any equivalence here, because in the problem we are
intereseted there is no special value of neither f nor g.

By an reasoning equivalent to (2.28), (3.21) is, in turn, equivalent to the linear dependence of the
gradients at the Efficient Production Set

∇ f = λ∇g (3.22)
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For the particular case (3.7-3.9), (3.19-3.20) becomes

X = f (kx, `x) = k1/2
x `1/2

x (3.23)
Y = g (10 − kx, 8 − `x) = (10 − kx)1/2(8 − `x)1/2 (3.24)

and (3.22) Ç
(1/2)`1/2

x /k1/2
x

(1/2)k1/2
x /`1/2

x

å
= λ

Å
−(1/2)(8 − `x)1/2/(10 − kx)1/2

−(1/2)(10 − kx)1/2/(8 − `x)1/2

ã
(3.25)

or, canceling the 1/2’s

`1/2
x

k1/2
x

= −λ
(8 − `x)1/2

(10 − kx)1/2 (3.26)

k1/2
x

`1/2
x

= −λ
(10 − kx)1/2

(8 − `x)1/2 (3.27)

dividing (3.26) by (3.27) leads to (3.11), and the equivalence is manifest.

As mentioned in section 2.3.1 and 2.3.2, in 2-D there is no real advantage of the gradient method
with respect to the standard tangency of level curves method, and the above exercise shows
that much. The real practical advantage appears when we tackle problems of more independent
variables and more constraints, as shown in section 2.3. We will exploit this practical advantage
in future works.

But there was another, subtle, conceptual advantage of the gradient methods described in sec-
tion 2.4, and it was that the method makes transparent the equivalence of optimizing f under a
constraint determined by g and optimizing g under a constraint determined by f . We mentioned
that in constrained optimization problems, equations like (2.57) clearly break this equivalence in
partial equilibrium problems characterized by optimization with constraints. But as we see now,
in general equilibrium problems this equivalence is manifest in its full glory. The gradients of
f and g are exactly on equal footing. And this is the deep reason why, when attacked with the
proper methods, the much more profound general equilibrium problems ultimately use the same
math than the more modest partial equilibrium problems.

4 Conclusions

Throughout the paper we have discussed the advantages of presenting the problems of partial
and general equilibrium with gradient fields. The geometry is quite intuitive, and, with a unified
method, general equilibrium problems are handled as easily as the conceptually much simpler
partial equilibrium problems. With such a simple static optimization tool, we have covered
practically half an entire course in microeconomics, since any subsequent general equilibrium
exercise would replicate the bases covered in the paper.
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In applications to the real economy, if we knew all the n-production functions with all m-inputs,
it would be possible to find, with this simple gradient based algorithm, the contract surface of
any economy. One might think that the lack of knowledge of production techniques, the number
of companies, individuals, products and inputs, would make the problem not feasible in practice.
That the required data storage and processing capacity makes any realistic implementation just
too costly. However, as machine learning practice shows, stochastic versions of the gradient de-
scent algorithm find solutions (“train” deep neural networks in the jargon) whose generalization
capacity is surprising and, in fact, better than what is “reasonable” to expect, see for exam-
ple, [Zhang et al. (2017)], [Bartlett et al. (2021)]. In a future work we will try to implement a
machine-learning-type general equilibrium model where the parameters of the production func-
tions, utilities, etc. are variables to fix in the same optimization process that leads to the the
contract surface of any economy.

Regardless, it seems reasonable to assume that Economics and other social sciences will con-
tinue being drastically transformed by the increasing access to gigantic databases filled with data
of extremely high dimensionality. In this context, the classical two dimensional models, or, in
general, simple models, while still obviously useful conceptually, would be far more useful if
presented with a mathematical formalism that seamlessly extend to any dimensionality and any
number of constraints. This work pretends to add our grain of sand in this direction. Economic
students deserve to learn the powerful techniques of the present times from the beginning. Spe-
cially those techniques that mesh naturally with economic concepts such as gradient methods for
optimization.
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