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Abstract

I extend the Bayesian Factor-Augmented Vector Autoregressive model (FAVAR)
to incorporate an identification scheme based on an exogenous variable approach. A
Gibbs sampling algorithm is provided to estimate the posterior distributions of the
models parameters. I estimate the effects of a monetary policy shock in the United
States using the proposed algorithm, and find that an increase in the Federal Fund
Rate has contractionary effects on both the real and financial sides of the economy.
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as the discrepancies among the impulse responses obtained with different monetary
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Non-technical summary

A key question in macroeconomics and for policy makers is understanding the impact of
a change in monetary policy on one or more economies of interest. In order to answer
this question, economists can rely on an increasingly large number of data potentially
containing useful information on current and past conditions of the economy of inter-
est. Including large set of informative data in the analysis is useful for various reasons.
First, it can help the economist or the policy maker to better understand the propaga-
tion mechanisms of the monetary policy shock across the various sides of the economy
considered; second, a more accurate representation of economic concepts that would be
otherwise summarised in aggregate figures can be captured in the model; third, large
datasets can help in capturing more accurately the driving forces of the underlying econ-
omy of interest. Unfortunately, models which are typically used to study the impact of a
certain shock suffer from the so called ”curse of dimensionality” issue, meaning that they
do not allow for the inclusion of a large number of variables due to the fast increasing
number of coefficients.

Another issue that economists always face when studying an unexpected change in
monetary policy is how to identify the shock they are interested in. Economic systems
are complex by nature and hit by many interconnected shocks at the same time. As a
consequence, disentangling the effect of each individual shock is not a trivial task. Identi-
fying the effect of an unexpected monetary policy change becomes even more challenging
if the interest lies in the response of fast-moving variables such as asset prices. Asset
prices react swiftly to news concerning monetary policy. It follows that their observed
response response is particularly sensitive on whether the shock is actually exogenous
to the economy. Finally, a desirable aspect that one might want to explore, is whether
and how the reactions of the economy to a change in monetary policy varies depending
on the period taken into account.

This paper proposes a modelling framework which aims to overcome the issues men-
tioned above. The proposed model can encompass a large set of informative variables
by including the so-called unobserved factors, which are able to summarise the infor-
mation contained in many individual series. This dimensionality-reduction technique
is combined with a shock identification scheme which allows to identify the shock of
interest without imposing restrictions on the model that can be difficult to justify from
an economic point of view. Finally, the model can be easily extended to the case of
time-variation in parameters, which allow to study how the policy impact differs across
different time periods.

The model presented in this paper is employed to study the effects of an unexpected
increase in the monetary policy rate in the United States over the period 1991-2015,
using a large set of macroeconomic and financial variables. It finds that an increase in
the policy rate has contractionary effects on both real and financial side of the economy
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ad well as on prices. Moreover, results suggest that including a large set of information
in the model helps achieving results which seem more in line with economic theory.

1 Introduction and review of the relevant literature

Vector Autoregressive models (VARs) are broadly used to study the effects of a shock
on an economy of interest. This is done mainly through the use of impulse response
functions, which allow to observe the estimated dynamic responses of a variable over
time given the occurrence of a certain structural shock. In order to correctly draw con-
clusions about the impact of a given shock on one or more variables, VARs should hold
two desirable properties: i) a strong model specification which is able to properly rep-
resent the dynamics of the economy of interest; and ii) a credible identification scheme.
A VAR that correctly captures the original data generating process ensures that the
reduced form coefficients are unbiased and hence that the transmission of the shock is
correctly traced. At the same time, a credible identification scheme is needed to recover
the structural shocks from the reduced form residuals without making assumptions that
are economically not meaningful.
A well-known criticism of VARs relates to the small amount of information they can
take into account due to the fast-increasing number of parameters. If the model omits
information which are relevant to explain the dynamics of the economy of interest (omit-
ted variable problem) then the estimated dynamic responses will biased and leading to
possibly wrong economic conclusions. Stock & Watson (2018) suggests to overcome this
major issue by augmenting VARs with latent factors able to summarise a large amount
of information (FAVAR); FAVAR models, originally introduced in the macroeconomic
literature by Bernanke et al. (2005), represent a popular solution to effectively expand
the information set taken into account.
In the context of shock identification, a growing strand of literature uses external instru-
ments as a proxy of the shock of interest. In order to be a valid proxy, an instrument
should be correlated only with the structural shock of interest and not with the other
shocks. Stock (2008) firstly introduced the idea of using these instruments for identi-
fication in SVAR; subsequently this idea has been used in a growing number of works,
most notably in Stock & Watson (2012) Mertens & Ravn (2013) and Gertler & Karadi
(2015) (Proxy SVARs). Since these seminal papers, the so called narrative approach
has become very popular in the literature because, contrarily to widely used recursive
identification schemes, it allows to map reduced form residuals into structural shocks
without relying on restrictions which tend to be hard to defend.
The narrative approach has been applied in several works to study the effects of mon-
etary (Caldara & Herbst (2016), which proposes a Bayesian framework for the Proxy
SVAR; Jarociński & Karadi (2020)) or fiscal (Mertens & Ravn (2014)) policies. More
recently, Plagborg-Møller & Wolf (2021) and Paul (2020) have proposed alternative
strategies to use narrative instruments to identify structural shocks in VARs. In the
former case (SVAR-IV), the authors include the instrument as an extra endogenous
variable ordered first and use recursive identification to recover the structural shocks.
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In the latter case (VARX), the instrument enters the model as an exogenous variable 1.
These two methodologies differs from those previously proposed in the way in which the
proxy enters into the model. While in Mertens & Ravn (2014), Stock & Watson (2012)
and in Caldara & Herbst (2016) the proxy enters the model through an extra equation
(two-steps appraoch), in Paul (2020) and Plagborg-Møller & Wolf (2021) it is added
directly to the reduced form specification (one-step approach). It is worth noting, as
mentioned in Paul (2020), that the SVAR-IV coincides with the VARX if the instrument
is uncorrelated with the regressors in the VAR, including lags of the instrument itself.
A growing number of works have developed instruments to proxy a monetary policy shock
in the US, which will be the shock of interest in this paper. A prominent example is the
highly-cited narrative measure by Romer & Romer (2004). After the Great Financial
Crisis, monetary policy has become more and more a multi-dimensional phenomenon.
The Fed can rely on various instruments to affect the economy, both conventional and
unconventional, such as changes in the target policy rate, large-scale asset programs and
forward guidance (Jarociński & Karadi (2020) and Jarociński (2021)). The literature on
this topic presents instruments which characterise the Fed policy with one compounded
instrument as well as instruments which distinguish between these policy tools. A non-
exhaustive list of works which propose instruments to proxy a monetary policy shock in
the US is given by Gürkaynak et al. (2005), Bu et al. (2021) Gertler & Karadi (2015)
and Miranda-Agrippino & Ricco (2021).
This paper aims to contribute to the literature which offers solutions to encompass a
large set of information in VAR models while relying on a narrative identification scheme.
It does so by proposing an algorithm which allows to incorporate the exogenous variable
identification approach à la Paul (2020) within the modeling framework of a FAVAR. The
algorithm presented here can be seen as a valid alternative to the Proxy FAVAR models
already existing in the literature (Miescu & Mumtaz (2019); Bruns (2021); Kerssenfischer
(2019)). I employ the FAVAR with exogenous identification to revisit the transmission
of monetary policy in the US. Moreover, in order to study the importance of including a
large set of information in the model, I compare the results obtained with a FAVAR with
an exogenous variable with those obtained with the smaller-scale VARX by Paul (2020).
Furthermore, I estimate the FAVAR with exogenous variable using different identifying
instruments, to understand whether using a data-rich model can mitigate the discrep-
ancies in the impulse responses observed in the literature. The reminder of the paper
is the following: section 2 presents the modelling framework; section 3 describes the
Gibbs sampling algorithm used to estimate the model; section 4 presents the Monte
Carlo experiment; section 5 shows the empirical applications and section 6 concludes.

2 A FAVAR model with exogenous variable

In this section I present the FAVAR model with an identification scheme through an ex-
ogenous proxy; section 2.1 presents the FAVAR model as originally proposed in Bernanke

1Bagliano & Favero (1999) have used a VARX in a similar way, but did not show that this approach
consistently identifies the true (relative) impulse responses, as Paul (2020) does.
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et al. (2005), while in section 2.2 I show how this is extended to allow for identification
through an exogenous instrument. More details on the model’s state-space representa-
tion can be found in Appendix A.

2.1 The FAVAR model à la Bernanke et al. (2005)

The observation equation
Let us suppose to observe a large number of macroeconomic and financial variables

containing useful information on the current and past conditions of an economy of in-
terest. I assume that this large number of variables can be summarised by a relatively
small number of latent and observable factors, according to the following observation
equation:

Xi,t = Λf
i Ft + Λy

i Yt + vi,t (1)

vi,t ∼ N(0, R) (2)

Where Xi,t is a TxM matrix collecting the set of ’informational’ series2. The K
latent factors are denoted by Ft and Yt contains N observable variables.

The informational variables are related to the contemporaneous values of the latent
factors via the M ×N matrix of factor loading Λf

i and to the contemporaneous values of
the observable factors contained in Yt by Λy

i
3. Typically, in the literature on monetary

policy shocks, Yt includes only the policy rate. In general, Yt never includes variables
contained in Xi,t.

Finally, vi,t contains the error terms, which are assumed to be zero mean, normally
distributed and with a variance-covariance matrix equal to:

V AR(vi,t) = R =

R1 0 0 0

0
. . . 0 0

0 0 RM 0

 (3)

The transition equation
The unobserved factors are then modelled jointly with the observed variables in a VAR.
The idea is that, thanks to the inclusion of unobserved factors summarising a large
amount of information in a VAR, one can capture that additional information not fully
captured by the limited number of variables typically included in the VAR. The dynamics
of the unobserved factors Ft and the observed variables in Yt are assumed to evolve
according to the following VAR process:

2Note that M is ”large” and can be potentially larger than the number of observed periods T
3In the original specification of the FAVAR proposed in Bernanke et al. (2005) the elements of Λy

i are
non-zero for those variables in Xi,t that are assumed to react quickly to monetary policy interventions
(”fast moving variables”). Given the different strategies used to identify the structural shock of interest,
the model presented here does not include this distinction and the vector Λy

i is zero regardless of the
nature of the variable in Xi,t.
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Zt = c+

P∑
j=1

BjZt−j + ut (4)

ut ∼ N(0, Q) (5)

Where Z = {F1,t, ...FK,t, Yt}.
Equation (4) is a VAR in Ft and Yt and can be interpreted as a reduced form model

involving both observable and unobservable components. If the true data generating
process is given by a FAVAR, omitting the introduction of the unobserved factors in
the model will lead to a biased estimate of the VAR coefficients and related impulse
responses. The error term ut is mean zero and with a covariance matrix Q, given by:

V AR(ut) = Q =



Q1,1 Q1,2 . . . Q1,θ 0 . . . 0

Q1,2
. . . . . . Q2,θ 0 . . . 0

...
...

. . .
...

...
...

Q1,θ . . . . . . Qθ,θ 0 . . . 0
0 . . . . . . 0 0 . . . 0

0 . . .
. . . 0 0 . . . 0

0 . . . . . . 0 0 . . . 0


(6)

where θ = K + N . The zeros result from the fact that the last θ equations in the
transition equation describe identities. Note that the matrix Q is singular. This will be
taken into account in the estimation of the model. Details on the algorithm used for
estimation can be found in section 3.

2.2 The identification problem and the exogenous variable approach

As mentioned above, equation (4) can be seen as a reduced-form VAR of order L in Zt.
The object of interest here is in understanding the structure of the economy by uncov-
ering the causal relationship among variables in the model; in particular, by exploiting
the advantages of the FAVAR, I want to observe the effect of a given shock of interest
on the large variables set contained in Xt.
This can not be done with the reduced-form representation because the error terms ut
are correlated with each other (as can be seen from the non-zero elements in the off-
diagonal of the Q matrix) and hence I can not distinguish the impact of the shock on one
variable from all the others. In other words, they can not be interpreted as structural
shocks. The corresponding structural form of equation (4) is given by:

A0Zt = c+

P∑
j=1

BjZt−j + et (7)

et ∼ N(0,Ω) (8)
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Where Ω is a θ × θ (θ is the number of endogenous variables in the model) identity
matrix and A0 collects the contemporaneous relationships among endogenous variables.
The innovations of the structural form are uncorrelated with each other and, hence,
they can tell us something about the structure of the economy. However, this structural
form can not be estimated because its innovations are not observed in the data. In
order to circumvent this problem, I premultiply all the right-hand side elements of the
structural equation by the matrix A−1

0 . By doing so, I obtain the reduced form described
in (4). It follows that the relationship between reduced form innovations and structural
disturbances is given by:

ut = Set (9)

where
S = A−1

0 (10)

and
SS′ = Σ (11)

where the θ×θ matrix S contains the contemporaneous effect of the structural shocks
on the dependent variables, or the impulse response vector of the shock.

Note that the relationship described in (11) produces a system of θ(θ+1)
2 equations

with θ2 unknown parameters. Since θ2 > θ(θ+1)
2 we are not able to exactly identify this

system of equation; in order to do so, we would need to impose θ(θ−1)
2 restrictions.

In summary, the econometric problem with identifying the true impulse responses is
that the structural shocks are not observed, hence from the data we can not estimate
the parameters in the matrix S. In addition, the covariance matrix of the reduced-form
innovations does not provide enough identifying restrictions to obtain at least one of the
columns in S.
The identification strategy consists of finding a way to estimate the elements in S in an
economically meaningful way.
Now let us assume that we are interested in uncovering the effect of a shock of one
specific dependent variable on the others. More formally, we can separate the shock of
interest from the others by re-writing equation (9) as follows:

ut = se1,t + S̄e2,t (12)

where s is the impulse vector associated with e1t and the (θ − 1) × 1 vector e2t
collects all other structural shocks.
In the same vein as Paul (2020), I distinguish between absolute and relative impulse
responses. Absolute impulse responses represent the change in Zt to units of standard
deviation of e1t; relative impulse responses are normalised contemporaneous responses of
one of the endogenous variables. The contemporaneous relative response of any variable
i in Zt with i ̸= j is given by:
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rij =
si
sj

(13)

Where si and sj are the elements in s associated to i and j respectively. Note that in
order to identify the relative impulse response, I do not need to identify all the elements
of the vector s but only the ratios of them. However, neither columns in S nor the ratios
of elements within such columns can be identified.
I assume that a proxy for the shock of interest exists and that it satisfies the two follow-
ing conditions:

E(mte1,t) = ϕ (14)

E(mte2,t) = 0 (15)

Where mt is the proxy for the shock of interest, e1,t is the shock of interest and e2,t
contains all the other shocks. Equation (14) captures the so called relevance condition:
the instrument has to be correlated with the shock of interest. The covariance between
proxy and shock is ϕ ̸= 0. Equation (15) describes the exogeneity condition, namely
that the proxy has to be uncorrelated with all the other shocks; mt is assumed to have
zero mean for simplicity 4.
I include the instrument in the transition equation described in (4), which becomes:

Zt = c+

P∑
j=1

BjZt−j +Amt + ut (16)

Where the instrument mt enters the transition equation as an extra exogenous vari-
able and the vector A contains the contemporaneous relations between the instrument
and the endogenous variables. The contemporaneous impulse responses now become
equal to the elements of A which link the instrument and the contemporaneous values
of the endogenous variables. It follows that the contemporaneous relative impulse re-
sponses become:

r∗ij =
ai
aj

(17)

Where ai and aj are elements of A (with i ̸= j). The impulse responses for the subse-
quent periods are obtained by tracing an initial impulse through the model described in
(16) via the lagged endogenous variables. It can be shown analytically that this approach
to identification delivers consistent relative impulse responses, both contemporaneous
and subsequent. The intuition behind this result differs between contemporaneous and
subsequent impulse responses. In the case of contemporaneous impulse responses, this

4I assume that mt is not serially correlated.
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is true because any element âi in the matrix Â based on (16) converges to the product
between a constant and the associated elements si in s. By taking the ratio of the ele-
ments âi and âj with i ̸= j, the constants cancel out and the ratio of âi and âj equals
the ratio of si and sj , hence giving a consistent estimate of the true impulse responses
defined in (13).
In order for the model in (16) to deliver consistent estimates of the subsequent values
of relative impulse responses, the instrument mt has to be uncorrelated with the other
regressors. If this is the case, then the estimated coefficients of the other regressors
will not change whether the instrument is included in the model or not. Since these
coefficients are used to trace the initial response through the system via the lagged en-
dogenous variables, any subsequent response will be equivalent to the true response. An
instrument which is uncorrelated with the other regressors can always be obtained by
projecting the instrument itself onto all the other regressors and by using the error from
this projection instead of mt.
For more details on the analytical proof of the consistency of the estimated relative im-
pulse responses, the reader is invited to read Paul (2020). The proofs presented in the
latter refer to a standard VAR but they remain valid for the case of the FAVAR.

2.3 Comparison with the external instrument approach (proxy FAVAR)

The modeling approach proposed in this paper represents an alternative option to the
Bayesian Proxy FAVAR (Miescu & Mumtaz (2019); Bruns (2021)). The Proxy FAVAR
and the FAVAR with the exogenous variable share the main advantages of the FAVAR
model and of the identification through narrative approach. The main difference be-
tween the two approaches lies in the way in which the instrument is used to achieve the
identification. In the case of the Bayesian Proxy FAVAR the instrument is used in a
two-step framework: in the first step, the coefficients of the reduced-form innovations
are estimated using least square, while in the second step, the estimated innovations
are regressed against the instrument. The FAVAR with exogenous variable instead is
estimated by simply including the instrument as an exogenous variable in the transition
equation, as shown in section 2.
Paul (2020) shows that both techniques always deliver the same contemporaneous rela-
tive impulse responses, also in small samples, and that if the sample is large enough, the
obtained contemporaneous responses converge to the ratio of the true contemporaneous
impulse responses. Given that the FAVAR can be seen as a standard VAR where the
controls are the latent factors, the same conclusions hold for both models.
Regarding the subsequent values of the relative impulse responses, they can differ across
the two methodologies in small samples. In the case of large samples however, differences
can arise only if the instrument is correlated with the other regressors and not because
of measurement errors due to the instrument.
More details on the equivalence of the contemporaneous and subsequent relative impulse
responses between a Proxy VAR and a VAR with an exogenous variable can be found
in Paul (2020).
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2.4 Advantages of the methodology

The methodology proposed in this paper is useful to perform structural analysis involving
a large number of information and, at the same time, relying on a credible identification
strategy.
On one hand, the ability to encompass a large amount of information in the model
implies a number of advantages. First, biases stemming from misspecification and infor-
mation insufficiency can be mitigated. In this context, Stock & Watson (2018) notes that
using an external instrument for identification enables, if the instrument meets certain
validity requirements, the model to estimate dynamic causal effects without assuming
invertibility of the VAR. While this argument is of extreme relevance for this discussion,
it is also worth stressing that in the VARX the subsequent values of the relative impulse
response functions (IRFs) are traced using the coefficients of the reduced-form model.
Hence, if the econometrician erroneously omits relevant information in the model, this
will be absorbed in the reduced-form residuals and the estimated values of the coeffi-
cients needed to estimate the IRFs will be distorted. This in turns will result in biased
values of subsequent relative impulse responses. A second remark is that the condition
for validity of of the instrument mentioned in Stock & Watson (2018) includes a strong
lead-lag exogeneity requirement that the instrument be uncorrelated with past and fu-
ture shocks, which is hard to meet.
A second advantage related to the inclusion of a rich information set is the possibility
to have a more accurate representation of economic concepts that would be otherwise
summarised in aggregate figures can be captured in the model and hence measurement
errors can be mitigated. For instance, the concept of ”economic activity” can be rep-
resented by a larger number of series rather than only industrial production. Third,
impulse responses can be observed for a large number of variables, which can help to
uncover the transmission of the shock through the economy.
On the other hand, the reliance on external information has the important advantage to
decrease the amount of restrictions required to identify the contemporaneous responses,
which can be potentially controversial or hard to defend.
Finally, as previously pointed out, the one-step procedure allows for an easy extension
to the time varying parameters case.

3 Estimation

The parameters of the observation and transition equations are estimated with a Gibbs
sampling algorithm, while the factors are retrieved using a Kalman filter and Carter and
Kohn algorithm (1994).
In order to start the algorithm, let us imagine to observe the latent factors Ft. Given
the factors, the observation equation in (1) can be seen as M linear regressions of the

form Xi,t = Λf
i +Ft +Λy

iFFRt + vi,t where the elements in Λf , Λy and R can be drawn
from their conditional distributions. Similarly, given the factors, the transition equation
is a VAR model where the elements in B, u and Q can be drawn from their conditional
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distributions. Given a draw for Λf , Λy, R, B, u and Q the model is cast into state-space
form as in equations (1) and (4) and the Carter and Kohn algorithm can be used to
draw Ft from its conditional distribution. A more detailed description of the steps for
the estimation are shown in the Appendix B.

4 Monte Carlo Experiment

In order to test the performance of the algorithm presented above, I run the latter by
using artificial data obtained from a FAVAR as a data generating process. In particular,
artificial data is generated from a factor model with 5 unobserved factors and 1 observed
factor, described by the following equations:

Xi,t = biFt + ΓiYt + vt (18)

Ft = c+BFt−1 +Amt + ut (19)

ϵt = A−1
0 ut (20)

Where the B parameters are calibrated to estimate a VAR with 1 lag and containing
5 factors extracted from the FRED-MD database and the 1-year government bond rate
for the US. I generate 500 data sets and discard the first 100 in order to remove the
influence of initial conditions. The estimation of the model with simulated data involves
5000 Gibbs iterations with a burn-in of 1000 iterations. I then compared the responses
obtained by estimating the model with artificial data against the true impulse responses.
Figure 1 shows the impulse responses of selected variables to a 100 basis point shock
on the interest rate at horizon 0 to 40. The paths of the responses along the horizon
taken into account are very similar, which suggests that the algorithm performs well at
tracking the true responses.

5 Empirical application

In the following subsections, I use the framework described in section 2 to study the
effect and transmission of a monetary policy shock in the US. Moreover, I compare
the results obtained with the FAVAR with exogenous variable to those obtained with a
smaller-scale model but with the same identification approach, with the aim to shed light
on the role played by the inclusion of a larger information set on the estimated impulse
responses. Furthermore, I compare the estimated impulse responses obtained using
different instruments available in the literature to proxy a monetary shock to observe
whether the use of a large set of data can help mitigating some of the discrepancies
across estimated impulse responses observed in the literature.
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5.1 Data and the choice of the proxy for a monetary policy shock

The set of informational series used to extract the factors is sourced from the FRED-
MD monthly dataset by St.Louis Fed5 and it contains 128 macroeconomic and financial
series at a monthly frequency. This dataset is augmented with four extra series, i.e.
the Excess Bond Premia and credit spread by Gilchrist & Zakraǰsek (2012), the 30-
year mortgage rate and Shiller’s real dividends. The series taken from FRED-MD are
transformed following McCracken & Ng (2015) 6, the Excess Bond Premia, credit spread,
and mortgage rate enter into levels while the real dividends are transformed into log-
difference. I use the one-year government bond rate as the relevant monetary policy
indicator, as in Gertler & Karadi (2015). The latter suggests that using a rate with
a longer maturity than the Federal Fund Rate allows to consider shocks to forward
guidance in the overall measure of policy shocks. Regarding the choice of the instrument
to proxy a monetary policy shock, a number of options are available in the literature.
I compare three instruments looking at measures of their association to the structural
shock of interest, as shown in Table 1. 7

Reliability measure and F-statistics of the monetary policy instruments
Instrument MPI FF4GK MP1

F-statistics 12.48 [6.96 14.92] 39.77 [18.65 48.67] 23.4 [10.83 30.5]

Reliability 0.21 [0.15 0.23] 0.41 [0.29 0.43] 0.56 [0.37 0.57]

Table 1: Relevance of monetary policy instruments. First line shows F-statistics of the first-stage regression of the reduced-
form innovations of the proxy SVAR on the instrument. The second line shows the reliability measure proposed in Mertens &
Ravn (2013). Monetary Policy Instrument (MPI) by Miranda-Agrippino & Ricco (2021); high-frequency instrument (FF4) by
Gertler & Karadi (2015); monetary surprise (MP1) by Gürkaynak et al. (2005). VAR specification includes industrial production,
unemployment rate, consumer price index, commodity price index, excess bond premium and one-year rate. Sample: 1978M1 -
2019M12.

The Monetary Surprise (MP1) by Gürkaynak et al. (2005) displays the highest level
of reliability across the instruments taken into account. However, the Monetary Policy
Instrument (MPI) proposed Miranda-Agrippino & Ricco (2021) has the advantage to
account for the presence of information friction. This is achieved by constructing the
instrument by projecting the market-based monetary surprises on their own lags and on
the Central Bank’s information set, as summarised by the Greenbook forecast. For this
reason, I will use the MPI (plotted in Figure 2) for the benchmark specification. The
MPI spams from January 1991 to December 2015, which will be the sample used for the

5Data set available at research.stlouisfed.orgeconmccrackefred − databases. The vintage used is
2020-06

6see https : s3.amazonaws.comfiles.fred.stlouisfed.orgfred−mdAppendixT ablesUpdate.pdf . The
series transformed into second difference or log second difference have been transformed into first differ-
ence and log difference respectively.

7The structural shocks have been extracted by using the Bayesian Proxy SVAR à la Caldara &
Herbst (2016). The reason for this is that the Bayesian VAR with exogenous instrument does not allow
to recover the series of the structural shock of interest as the impact matrix is only partially identified
and hence can not be inverted.
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benchmark estimates.

5.2 Model specification and the choice of the number of factors

The benchmark model includes 10 factors and the one-year rate with 13 lags, as it is
common in the literature. The choice of the number of factors is found to be a key
element in the overall model specification and for the reliability of the estimated impulse
responses. Jushan Bai (2002) provides a criterion to determine the number of factors
present in the data. However, as noted in Bernanke et al. (2005), this does not necessarily
address the question of how many factors should be included in the VAR. In order to
have a better understanding of the optimal number of factors to include in the FAVAR,
I perform the ”structuralness” test for the shock of interest as proposed by Forni &
Gambetti (2014). The aim of the structuralness test is to check whether a model contains
sufficient information to correctly retrieve the structural shock of interest. The test is
based upon the idea that, under suitable conditions, if a shock recovered from a certain
specification is orthogonal to the lags of all the variables included in the model, then it
is a linear combination of the structural shocks. On the basis of the latter statement,
the test suggests checking for information sufficiency by looking at the orthogonality
of the structural shock of interest with respect to the lags of principal components. In
practice, orthogonality is tested by regressing the structural shock onto the past values of
a number of principal components 8. I implement the test following a similar procedure as
in Forni & Gambetti (2014). First, a model with a low number of principal components
is considered and the structural shock of interest is initially extracted from this model
specification and regressed against all the other principal components taken once at time.
If orthogonality is rejected, then the past values of the principal components considered
are likely to contain information useful to predict the shock, hence these will be included
in the model. The model augmented with the principal components which are found
to have explanatory power for the shock of interest will be used in the subsequent step
and the procedure will be repeated until no further principal components are found
to be informative. Following this procedure, the test suggests including 10 principal
components (1 to 4, 10, 12, 16 and 18 to 20). This specification will be used in the
benchmark exercise shown in the following section. The results of the test are displayed
in Table 2.

5.3 Transmission of a monetary policy shock in the US

Figure 3 shows the results for a one-standard deviation monetary policy shock nor-
malised to give an increase of 100 basis points to the one-year government bond rate.
Overall, I find that a tighter monetary policy surprise has contractionary effects on both
the demand and supply side of the economy, as well as on prices. In terms of financial

8It is worth noting that, also in this case, the monetary policy shock has been extracted by using the
frequentist Proxy FAVAR à la Mertens & Ravn (2013), as for the computation of the reliability measure.
Moreover, the principal components are used as proxy for the factors
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Specification P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 P=13 P=14 P=15 P=16 P17 P=18 P=19 P=20

1-4 ω4
t 0.60 0.35 0.61 0.95 0.70 0.52 0.32 0.81 0.96 0.28 0.71 0.00 0.20 0.10 0.29 0.68

16 ω5
t 0.88 0.58 0.32 0.88 0.95 0.46 0.71 0.72 0.84 0.53 0.80 - 0.47 0.12 0.22 0.13

18,20 ω6
t 0.48 0.71 0.41 0.47 0.45 0.10 0.53 0.18 0.77 0.96 0.87 - 0.25 - 0.28 -

10 ω7
t 0.67 0.78 0.46 0.84 0.39 - 0.75 0.40 0.24 0.83 0.86 - 0.80 - 0.12 -

19 ω8
t 0.52 0.75 0.74 0.21 0.62 - 0.49 0.04 0.65 0.75 0.97 - 0.72 - - -

12 ω9
t 0.52 0.56 0.49 0.44 0.53 - 0.89 - 0.34 0.80 0.18 - 0.95 - - -

Table 2: p-values of the orthogonality test. F-test for the estimated monetary policy shock.The rows correspond to different

specifications ωi
t where i is the number of principal components included. P refers to the number of principal components used in

the test. Structural shocks are extracted from a proxy FAVAR with 13 lags, the proxy for the monetary policy shock is the MPI
by Miranda-Agrippino & Ricco (2021) and the baserate is given by the one-year rate.

variables, financing conditions tighten, leading to a decline in credit and asset prices.
As it can be seen from the top-left panel in figure 1, industrial production declines across
the time horizon observed. The decline in the overall figure reflects a decline in both
durable and non durable goods, with the latter reacting more strongly. Consistently,
sales contract across various market segments (in the figure it can be seen the path for
manufacturing and trade sales). As firms contract their production and sales decline,
business inventories also contract as well as new orders. The response of the ratio of
business inventories over sales in the manufacturing market remains marginally positive
over the whole horizon, signaling that sales contracts stronger than inventories. As a
result, capacity utilization in the economy declined. A drop on impact in housing starts
signal lower levels of investments in the housing market.
Looking at the top-right panel, it can be seen as the labour market is also negatively af-
fected. The unemployment rate increases and the number of employed people goes down.
The impact on employment is uneven, with employees in manufacturing being more im-
pacted than employees in the public sector. The average number of hours worked also
goes up, suggesting that firms are cutting their costs of personnel. The average earnings
diminish as expected in a labour market where employees lose their bargaining power
due to the higher unemployment rate. Real personal income declines persistently over
the horizon as a consequence of lower earnings. Consistently, personal consumption de-
creases.
The bottom-left panel shows the reaction of various measures of prices. As the economy
contracts and production and sales decline, prices also adapt by declining, as one would
expect, with some adjusting faster than others. Strong uncertainty surrounds the esti-
mated responses of prices, but they are consistent with what theory suggests and none
of them is suggestive of the presence of a price puzzle.
Finally, the bottom-right panel shows the responses of credit and financial market vari-
ables. Both short-term and long-term cost of credit increase, as suggested by the increase
in the short-term rate and the excess bond premium respectively. As a consequence, both
consumer and mortgage financing decline with the latter leading to declining property
investments (housing starts in the top left panel). It is worth noting that both tightening
financing conditions and weakened demand factors negatively weight on lending dynam-
ics, which might explain the magnitude of the observed decrease. Consistently, asset
prices also decline, as reflected in the response of the stock market and house prices,
and the increase in the trade weighted dollar exchange rate. Declining asset prices are,
in turn, consistent with a deterioration in households and firms’ wealth levels, which
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corroborates the insights suggested by the responses of real economic variables in the
top panels.

5.4 The role of information sufficiency (I): Comparison between FAVAR
with exogenous instrument and VARX

In this section, I study the importance of taking into account a large information set on
the estimation the dynamic responses to a shock of interest. I do so by comparing the
results obtained with the small-scale VARX as proposed in Paul (2020) and the FAVAR
with the exogenous instrument. In order to observe solely the effect played by the infor-
mation contained, I keep fixed the instrument, the data sample, the number of lags and
the priors across the two models. The impulse responses estimated by the two models
are shown in Figure 4. Both models deliver standard responses for macroeconomic and
financial variables. A contractionary monetary policy shock leads to a decline in asset
prices and dividend yields as well as a decrease in industrial production. However, the
response of consumer prices in the case of the small-scale VARX is positive on impact
and along the horizon considered. The price response estimated with the data-rich mod-
els is very similar on impact, but it declines within the first three months and stays
negative throughout the estimation horizon, which seems more consistent with standard
economic theory. One possible interpretation of these results is that data-rich models, by
ensuring a correct retrivement of the original data-generating process and hence of the
reduced-form coefficients, can help avoiding misleading or counter-intuitive estimations
of dynamic responses of the endogenous variables to the structural shock one wants to
study (see also section 2.4). As a further illustration of this, Figure 5 shows the re-
sponses of CPI and industrial production estimated with a FAVAR model including a
lower number of factors than those suggested by the structuralness test and how these
responses changes as relevant factors are added to the model specification. The more
relevant factors are added, the more puzzles are solved.

5.5 The role of information sufficiency (II): using different identifying
instruments in a data-rich model

While in the previous subsection I explored the importance of having a data-rich model
on the estimation of dynamic responses, here I consider this aspect in conjunction with
the choice of the instrument used. As documented in Coibion (2012) and Ramey (2016),
dynamic responses to monetary policy shocks can vary depending on the information
contained in the instrument used as well as on the sample and the model specification.
In this section, I explore the performance of different instruments available in the liter-
ature when used in within a data-rich model and how these compare when used within
a standard VAR, with the aim to shed light on the potential role of data-rich models
in mitigating the discrepancies observed across the dynamic responses estimated when
using different instruments available in the literature. Figure 6 shows the responses

15



obtained using three different instruments, both in a FAVAR with exogenous variable
(left-hand side panels) and a in a VARX (right-hand side panels) model. Overall, the
responses obtained with the three instruments are in line with what the economic the-
ory would suggest. However, the responses obtained with the FAVAR model seem to
lead to fewer contradictions. For example, responses of CPI estimated with the VAR
suggest the presence of a positive long-run impact on consumer prices if I identify the
shock with one instrument, as opposed to what observed for the case of the other two
proxies. This discrepancies vanish in the responses obtained with the FAVAR, which
point to a negative long-run impact regardless the instrument that is employed to proxy
the monetary policy shock. Similarly, the response of house price shows opposite paths
depending on the instrument used for identification.

6 Conclusions

The main goal of this paper is to propose an algorithm to integrate an identification
scheme based on an exogenous instrument approach within a FAVAR model. The
FAVAR model with exogenous instrument approach can be seen as a valid alternative to
the Proxy FAVAR model existent in the literature. The main advantage of the proposed
methodology with respect to the Proxy FAVAR lies in its computational simplicity and
the easy extension to time-variation in parameters. The FAVAR with exogenous vari-
able is employed to revisit the transmission of a monetary policy shock in the US. The
obtained dynamic responses seem consistent with the economic theory, as they suggest
that a tightening monetary policy has contractionary effects on real economic variables,
it causes a decline in various measures of prices, and it tightens financial conditions.
Furthermore, the proposed modelling framework is used to study the importance of
including sufficient information in the model. Results suggest that including rich infor-
mation sets play an important role in mitigating price and real economic puzzles in the
estimated impulse responses as well as the discrepancies among the impulse responses
obtained with different monetary policy instruments.
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Appendix

A State-space form representation of FAVAR with exoge-
nous variable

Let’s rewrite the observation equation in (1) as:
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(21)

The left-hand side of the equation contains the panel of informational variables Xt

and the vector of observables Yt (hence, Xi,t = {Xi,t, Yt}). Note that the set of observ-
ables in Yt is assumed to include only one variable as this is typically the case in the
literature on monetary shocks. The K latent factors are denoted by Fi,t with i = 1...K
and they summarise the information in Xt.
The structure of this observation equation implies that the informational variables are
related to the contemporaneous values of the latent factors via the MxN matrix of factor
loading, given by the elements λf

ij in matrix H (with i = 1...M and j = 1...N); moreover,
these informational series are related to the contemporaneous values of the observable
factors contained in Yt by the elements λy

i (where, again, i = 1...M).
In the original specification of the FAVAR proposed in Bernanke et al. (2005) the

elements of the γi are non-zero for those variables in Xt that are assumed to react quickly
to monetary policy interventions (”fast moving variables”). Given the different strategy
used to identify the structural shock of interest, which allows for a non-zero contempora-
neous impact on all the endogenous variables, the model presented here does not include
this distiction and the vector λy

i is zero regardless of the nature of the variable in Xi,t.

The remaining (M+N)*L elements of matrix H beyond λf
ij and the γi are equal to zero;

this implies that all the elements in X̃i,t only depend on the current and not on the
lagged values of the factors, contained in the β vector (or the state vector). The reason
why the lags of the state variables are still included in the state vector is that we want
these lags to enter the VAR that forms the transition equation, described below. It is
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worth noting that assuming that the elements in Xi,t depend only on contemporaneous
values of the latent factors is not restrictive as the FAVAR framework allows for dynamic
relationships between the informational variables in Xi,t and the latent factors. If Xi,t

is assumed to depend on an arbitrary number of lags of the factor, then we would have
a dynamic factor model (Stock and Watson [1998]).

Regarding the observable in Yt, it is simply described as an identity, as indicated by
the zeros in the last rows of the H matrix and the 1 placed below the λy vector.

The unobserved factors are then modeled jointly with the observed variables in the
VAR. The idea is that, thanks to the inclusion of unobserved factors summarising a
large amount of information in the VAR one can capture that additional information
not fully captured by the limited number of variables typically included in the VAR. The
dynamics of the unobserved factors Ft and the observed variables in Yt are assumed to
evolve according to the following VAR process:
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(22)

Where θ = K+N and Z = {F1,t, ...FK,t, Yt}. Equation (22) is a VAR in Ft and Yt and
can be interpreted as a reduced-form model involving both observable and unobservable
components, written in first order companion form to be consistent with the usual form
of a transition equation (i.e. the transition equation needs to be in AR(1) form). It is
worth noting that this model reduced to a standard form VAR if the coefficients that
relate Yt to past values of Z are zero. If those elements are different from zero, then we
have a FAVAR. As noted in Bernanke (2005), if the true system is given by a FAVAR,
omitting the introduction of the unobesrved factors in the model will lead to a biased
estimate of the VAR coefficients and related impulse responses.

B Estimation via Gibbs sampling algorithm

B.1 Priors and starting values

The observation equation: the prior for the factor loadings is normal. Let’s define
H = {Λf

i ,Λ
y
i } then p(H) ∼ (H0,ΣH). The diagonal elements of the variance-covariance
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matrix of the error terms Ri are drawn from an Inverse Gamma p(Ri) ∼ IG(Rii0, VR0).
As a starting values, the elements of R are arbitrarly set equal to one and ΣH = I.

The transition equation: I introduce a natural conjugate prior for the VAR parame-
ters à la Sims and Zah (1998) as in Banbura et al. (2010), slighlty modified to accomodate
the presence of the extra exogenous variable.

YD,1



diag(γ1σ1...γNσN )
τ

0N×(P−1)×N

. . .
diag(σ1 . . . σN )

. . .
0ex×N

 (23)

XD,1


JP⊗diag(σ1...σN )

τ 0NP×ex

0N×NP+ex 0NP×ex

. . .
0ex×N c

 (24)

Where γ1 and γN denotes the prior mean for the coefficients of the first lag, τ
is the tightness of the prior of the VAR coefficients ex is the number of exogenous
variables in the VAR and c is a exXex matrix for the tightness of the constant and
the proxy. Following Alessandri and Mumtaz (2017), the prior means are chosen as the
OLS estimates of the coefficients of an AR(1) regression estimated for each endogenous
variable. As is standard for US data, τ is set equal to 0.1. The scaling factors σi are set
using the standard deviation of the error terms from the AR(1) regressions. The values
in c are set equal to 1/1000. Additionally, for those variables that have a unit root I
impose a sum of coefficients prior. This incorporates the belief that coefficients on lags
of the dependent variable sum to 1 (see Robertson and Tallman (1999)). This prior can
be implemented in the transition equation in (4) via the following dummy observations.

YD,2

(
diag(γ1µ1...γNµN )

λ

)
(25)

XD,2

(
(11×P )⊗diag(γ1µ1...γNµN )

λ 0NP×ex

)
(26)

Where µi denotes the sample means of the endogenous variables. As in Banbura et
al. (2010), the tightness of this sum of coefficients prior is set as λ = 10τ The variance-
covariance of the error terms is drawn from an Inverse Wishart p(Bi) ∼ N(B0,ΣB) and
p(ri) ∼ IG(Rii0, VR0).
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Finally, the Kalman filter requires the initial value of the state vector; for this pur-
pose, the principal components extracted from the set of informational variables are used
as a first estimate of the factors to set the initial values of the state vector in the Kalman
filter.

B.2 Steps of the Gibbs sampling algorithm

Step 1 - Sample the matrix of factor loadings
Conditional on the (starting values) of the factors F and on Rii, sample the factor
loading from their conditional prosterior. For each variable in the informational set Xt

the factor laodings have normal conditional posteriors H(Hi|Ft, Rii) ∼ N(Hi, H
∗
i , V

∗
i ),

where:

H∗
i = (Σ−1

Hi
+

1

Rii
Z ′
tZt)

−1(Σ−1
Hi

Hi0 +
1

Rii
Z ′
tXt) (27)

V ∗
i = (Σ−1

Hi
+

1

Rii
Z ′
tZt)

−1 (28)

Where Zt = {F1, . . . , FK} .It is worth noting that in the original FAVAR specification
outlined in Bernanke et al. (2005), Zt = {F1, . . . , FK , FEDFUND} if a data series
is fast moving, it has a contemporaneous relationship with the policy rate. On the
contrary, for those series considered slow-moving, Zt = {F1, . . . , FK}. In the FAVAR
with exogenous variable this distinction is not needed as the exogenous variable approach
allows for the shock to impact all the variables contemporaneously.

Also, note that, as the factors and Hi are both estimated, the model is unidentfied.
Following Bernanke et al. (2005), the topK×K block of bij is fixed to an identity matrix.

Step 2 - Variance of the errors of the observational equation
Conditional on the factors Ft and the factor loadings Hi = {λf

ij , λ
y
i }, sample the variance

of the error terms of the observation equation Rii from the inverse Gamma distribution
with scale parameter (XijZtHi)

′(XijZtHi)+Rii with degrees of freedom T +VR0 where
T is the length of the estimation sample. Prior degrees of freedom and the prior scale
matrix are set to 0 (hence I use information from the data only).

Step 3 - Coefficients of the transition equation
Conditional on the factors Ft and the error covariance matrix Ω, the posterior for the
coefficients of the transition equation B is normal and given by H(B|Ft,Ω) ∼ N(B∗, D∗)
where:

B∗ = vec((X̄ ′
tX̄

′
t)
−1(X̄ ′

tȲt)) (29)
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D∗ = (Ω⊗ X̄ ′
tX̄

′
t)
−1 (30)

Where

X̄ =

 X
XD,1

XD,2

 (31)

Ȳ =

 Y
YD,1

YD,2

 (32)

Step 4. Error covariance of the error of the transition equation

Conditional on the factors F and the VAR coefficients B, the error covariance Ω has
a inverse Wishart posterior with scale matrix (Yt− (̂X)B)′(Yt− (̂X)B)+Ω0 and degrees
of freedom T + V0.

Step 5 - Backward recursion to obtain the factors

Given H,R,B and Ω the model can be cast into state-space form and then the factors
Ft are sampled via the Carter and Kohn algorithm. In the Carter and Kohn algorithm
I have to take into account the fact that the matrix Q is singular in the FAVAR model.
This implies that the recursion has to be generalised slightly to take this singularity into
account. This modification implies that I use µ∗, F ∗, Q∗ and β∗

t+1, where µ∗, F ∗, Q∗

and β∗
t+1 denote the first jv rows of µ, F , Q and βt+1 and jv is the number of factors

plus the number of observable variables in the model, which corresponds to the size of
the non-zero elements in matrix Q. It is worth noting that while in the FAVAR with a
Cholesky identification as originally proposed in Bernanke et al. (2005) the µ vector is
fixed as it contains the coefficients associated with the constant, in the FAVAR proposed
here, the µ also contains the coefficients associated with the exogenous proxy for the
structural shock of interest; hence, the µ vector will change in every time period through
the Kalman filter and the the backward recursion.

Repeat steps 1 to 5 as many times as needed to reach convergence.

C Convergence of the Gibbs sampler

I assess the convergence of the Gibbs sampling algorithm by looking at the efficiency
factors for the estimated coefficients of the observation equation. The inefficiency factor
is defined as the ratio of the numerical variance of the sample posterior mean to the vari-
ance of the sample mean from the hypothetical uncorrelated draw (see Chib, 2001). The
ineffciency factors for the estimated coefficients range between 2.7 and 10.8, suggesting
good mixing properties of the Gibbs sampler (see Figure 7).
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D Comparison between exogenous instrument approach
and Cholesky

Figure 8 compares the responses of a number of selected variables obtained with the
FAVAR with the exogenous variable against the ones obtained with a standard FAVAR
with shock identified via Cholesky decomposition, as originally proposed in Bernanke et
al. (2005). The two sets of responses look substantially different. In general, responses
obtained through the exogenous variable approach are greater in magnitude than the
ones obtained when the shock is identified through zero restictions. Moreover, the latter
present a price puzzle in the response of CPI and a real economy puzzle in the responses
of personal consumption and unemployment.
The impact on industrial production is substantially stronger in the case of the exogenous
variable than with Cholesky, but both lie in negative territory over the whole horizon.
Inflation responds positively in the short-term in the case of Cholesky, indicating the
presence of a prize puzzle, which disappears with the exogenous variable approach. The
impact on consumption diverges in the two cases; it increases in the case of Cholesky,
contrarily to what theory would suggest. The unemployment rate reacts with delay in
the case of Cholesky, while it increases on impact and over the rest of the sample in
the case of the exogenous variable approach. Finally, the impact on the equity market
is visibly different. When the shock is identified with zero restrictions, the impact is
marginally positive but close to zero, while with FAVAR with exogenous variable it
declines sharply in the short-term before rebounding.
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Figure 1: Monte Carlo Simulation
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Figure 1: Comparison between impulse responses estimated with a FAVAR with exogenous instrument and the true impulse
responses. Dotted lines represent the true IRFs; the blue lines reproduce the median and 68 bands.

26



Figure 2: Monetary Policy Instrument (MPI)
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Figure 2: Monetary Policy Instrument by Miranda-Agrippino & Ricco (2021). Sample: 1991M1-2015M12.
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Figure 3: Benchmark results - transmission of a monetary policy shock
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Figure 3: Transmission of a Monetary Policy shock in the US. Impulse responses to a contractionary monetary policy shock,
normalized to give an initial increase in the federal funds rate of 100 basis points. Blue solid lines and light blue areas correspond
to the responses obtained with FAVAR with exogenous proxy and 68 percent confidence bands. The FAVAR includes 10 factors
extracted from the FRED dataset augmented with extra variables and the Federal Fund Rate. The instrument used to proxy the
policy shock is the Monetary Policy Instrument (MPI) by Miranda-Agrippino & Ricco (2021). Sample: 1991M1-2015M12.
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Figure 4: Small-scale VARX and FAVAR with exogenous proxy
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Figure 4: Impulse responses to a contractionary monetary policy shock, normalized to give an initial increase in the federal funds
rate of 100 basis points. Dashed-lines indicate the median response obtained with the small-scale VARX along with 68 percent
confidence intervals. Blue solid lines and gray areas correspond to the responses obtained with FAVAR with exogenous proxy and
68 percent confidence bands. The small-scale VARX includes stock prices, dividends, house prices, excess bond premium, CPI,
industrial production, and the Federal Fund Rate. The FAVAR includes 13 factors extracted from the FRED dataset augmented
with extra variables and the Federal Fund Rate. The instrument used to proxy the policy shock is the monetary surprise (MP1)
by Gürkaynak et al. (2005). Sample: 1988M11-2017M9.
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Figure 5: Information sufficiency, price and real activity puzzles
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Figure 5: Price and Industrial Production puzzles with different numbers of factors. Impulse responses to a contractionary
monetary policy shock, normalized to give an initial increase in the federal funds rate of 100 basis points. The instrument used to
proxy the Monetary Policy Instrument (MPI) by Gürkaynak et al. (2005). Sample: 1988M11-2017M9. Figure (a): CPI responses
obtained with different number of factors. Green line: 8 factors; light-blue line: 9 factors; dark blue line: 10 factors. Figure (b):
IP responses obtained with different number of factors. Green line: 5 factors; light-blue line: 6 factors; dark blue line: 7 factors.
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Figure 6: Different identifying instruments and information sufficiency
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Figure 6: Monetary policy instruments comparisons - Impulse responses to a one-standard deviation shock normalised to have
an increase of 100 basis points in the one-year government bond rate estimated with FAVAR with exogenous variable (left-hand
side panels) and VARX (right-hand side panels). Solid blue lines indicate impulse responses resulting from a shock identified the
MPI by Miranda-Agrippino & Ricco (2021); dashed-blue lines indicate the impulse response resulting from a shock identified using
the MP1 by Gürkaynak et al., (2005). Gray solid lines represent responses to a shock using the MPI by FF4 by Gertler & Karadi
(2015). Model specifications: FAVAR with MPI and GK include 10 factors as in the benchmark specification; FAVAR with MP1
includes 13 factors; VARX includes stock prices, dividends, house prices, excess bond premium, CPI, industrial production, and
the Federal Fund Rate. For each instrument all the available sample is used.
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Figure 7: Inefficiency Factors
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Figure 7: Inefficiency factors for the parameters of the transition equation, obtained from a 100000 iteration of the Gibbs sampler,
50000 burns and retaining every 10th iteration. Lags for the autocorrelation=20.
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Figure 8: Comparison between the exogenous instrument approach and Cholesky
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Figure 8: FAVAR including 10 factors plus the one-year rate. Impulse responses to a one-standard deviation shock normalised to
have an increase of 100 basis points in the one-year government bond rate. The gray-dashed lines indicate the impulse response
resulting from a shock identified with Cholesky scheme. Blue lines represent responses to a shock with the exogenous variable
approach. The instrument used is the MPI narrative instrument by Miranda-Agrippino and Ricco (2021). Sample 1991-2015.
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