
MacKinnon, James G.; Nielsen, Morten Ørregaard; Webb, Matthew D.

Working Paper

Leverage, influence, and the jackknife in clustered
regression models: Reliable inference using summclust

Queen’s Economics Department Working Paper, No. 1483

Provided in Cooperation with:
Queen’s University, Department of Economics (QED)

Suggested Citation: MacKinnon, James G.; Nielsen, Morten Ørregaard; Webb, Matthew D. (2022) :
Leverage, influence, and the jackknife in clustered regression models: Reliable inference using
summclust, Queen’s Economics Department Working Paper, No. 1483, Queen's University,
Department of Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/260488

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260488
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


QED
Queen’s Economics Department Working Paper No. 1483

Leverage, Influence, and the Jackknife in Clustered
Regression Models: Reliable Inference Using summclust

James G. MacKinnon
Queen’s University

Morten Ørregaard Nielsen
Aarhus University

Matthew D. Webb
Carleton University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

3-2022
5-2022 (minor revisions)



Leverage, Influence, and the Jackknife
in Clustered Regression Models:

Reliable Inference Using summclust∗

James G. MacKinnon†
Queen’s University

mackinno@queensu.ca

Morten Ørregaard Nielsen
Aarhus University
mon@econ.au.dk

Matthew D. Webb
Carleton University

matt.webb@carleton.ca

May 5, 2022

Abstract

Cluster-robust inference is widely used in modern empirical work in economics and
many other disciplines. When data are clustered, the key unit of observation is the
cluster. We propose measures of “high-leverage” clusters and “influential” clusters for
linear regression models. The measures of leverage and partial leverage, and functions
of them, can be used as diagnostic tools to identify datasets and regression designs in
which cluster-robust inference is likely to be challenging. The measures of influence can
provide valuable information about how the results depend on the data in the various
clusters. We also show how to calculate two jackknife variance matrix estimators, CV3
and CV3J, as a byproduct of our other computations. All these quantities, including the
jackknife variance estimators, are computed in a new Stata package called summclust
that summarizes the cluster structure of a dataset.
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1 Introduction

It is now standard in many fields of economics and other disciplines to employ cluster-robust
inference for the parameters of linear regression models. In the most common case, each
of the N observations is assigned to one of G disjoint clusters, which might correspond to,
for example, families, schools, villages, hospitals, firms, industries, years, cities, counties, or
states. The assignment of observations to clusters is assumed to be known, and observations
in different clusters are assumed to be independent, but any pattern of heteroskedasticity
and/or dependence is allowed within each cluster. Under these assumptions, it is easy to
compute cluster-robust variance matrices that yield asymptotically valid t-tests, Wald tests,
and confidence intervals. However, even when N is very large, the resulting inferences may
be unreliable when G is not large or the clusters are not sufficiently homogeneous.

The literature on cluster-robust inference has grown rapidly in recent years. Cameron
and Miller (2015) is a classic survey article. Conley, Gonçalves and Hansen (2018) surveys
a broader class of methods for various types of dependent data. MacKinnon, Nielsen and
Webb (2022a) explores the implications of key theoretical results for empirical practice. As
that paper discusses, there are at least two situations in which cluster-robust t-tests and
Wald tests are at risk of over-rejecting to an extreme extent, even when G is not small. The
first is when one or a few clusters are much larger than the rest, and the second is when
the only “treated” observations belong to just a few clusters; Djogbenou, MacKinnon and
Nielsen (2019) discusses the first case, and MacKinnon and Webb (2017a, b, 2018) discuss
the second. In both of these cases, one cluster (or a few of them) has high leverage, in the
sense that omitting this cluster has the potential to change the OLS estimates substantially.
When that actually happens, a cluster is said to be influential.

The concepts of leverage and influence are normally applied at the observation level
(Belsley, Kuh and Welsch 1980), but they are equally applicable at the cluster level. Just as
high-leverage observations can make heteroskedasticity-robust inference unreliable (Chesher
1989), so too can high-leverage clusters make cluster-robust inference unreliable. Just as
highly influential observations may lead us to suspect that there is something wrong with
the model or the data, so too may highly influential clusters. Although the two special cases
discussed in the preceding paragraph are particularly important, any situation in which a
few clusters have high leverage or high influence should be worrying.

Note that there are at least two different concepts of leverage. The usual one focuses on
fitted values or, equivalently, residuals. A cluster is said to have high leverage if removing
it has the potential to change the fitted values for that cluster by a lot. It can also be of
interest to study partial leverage (Cook and Weisberg 1980). A cluster is said to have high
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partial leverage for the j th coefficient if removing that cluster has the potential to change
the estimate of the j th coefficient by a lot.

In this paper, we provide computationally efficient ways to identify high-leverage and
influential clusters. These can be used as diagnostic tools to determine how reliable various
methods for cluster-robust inference are likely to be. Of course, it is easy enough to check
cluster sizes and the distribution of treatment status across clusters directly, and many careful
empiricists already do these things. But whether a cluster has high leverage, is influential,
or has both of these features can depend on the sample in rather complicated ways. In our
view, it is best to investigate leverage, partial leverage, and influence at the cluster level
directly. We provide a new Stata package called summclust that implements our procedures
in order to summarize the cluster structure of a dataset.

A byproduct of our calculations is that they make it very fast to compute two jackknife
variance matrix estimators called CV3 and CV3J. These often seem to perform much better in
finite samples than other cluster-robust variance estimators (MacKinnon, Nielsen and Webb
2022b). Although these estimators have been known for some time (Bell and McCaffrey
2002), perhaps under different names, they have rarely been used because they were too
expensive to compute. The summclust package can calculate both of them.

The remainder of the paper is organized as follows. In the next section, we review cluster-
robust inference for the linear regression model. Section 3 introduces our new measures
of leverage, partial leverage, and influence at the cluster level. Section 4 discusses several
special cases in which some or all of these measures can be determined analytically. Section 5
shows how our results can be used to compute the CV3 and CV3J jackknife variance matrix
estimators. Section 6 discusses what quantities should be reported, both for the case of
one-way clustering on which the paper focuses and for the case of two or more clustering
dimensions. Section 7 describes some simulation experiments which suggest that it may be
desirable to report many of these quantities. Section 8 describes the summclust package.
Section 9 presents an empirical illustration in which our methods are highly informative, and
Section 10 concludes.

2 The Linear Regression Model with Clustering

Most of the paper deals with the linear regression model

yg = Xgβ + ug, g = 1, . . . , G, (1)
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where the data have been divided into G disjoint clusters. The g th cluster has Ng observa-
tions, so that the sample size is N = ∑G

g=1Ng. In (1), Xg is an Ng × k matrix of regressors,
β is a k-vector of coefficients, yg is an Ng-vector of observations on the regressand, and ug

is an Ng-vector of disturbances (or error terms). The Xg may of course be stacked into an
N ×k matrixX, and likewise the yg and ug may be stacked into N -vectors y and u, so that
(1) can be rewritten as y = Xβ + u.

Dividing the sample into clusters only becomes meaningful if we make assumptions about
the disturbance vectors ug and, consequently, the score vectors sg = X>g ug. For a correctly
specified model, E(sg) = 0 for all g. We further assume that

E(sgs
>
g ) = Σg and E(sgs

>
g′) = 0, g, g′ = 1, . . . , G, g′ 6= g, (2)

where Σg is the symmetric, positive semidefinite variance matrix of the scores for the g th

cluster. The second assumption in (2) is crucial. It says that the scores for every cluster are
uncorrelated with the scores for every other cluster. We take the number of clusters G and
the allocation of observations to clusters as given. The important issue of how to choose
the clustering structure, perhaps by testing for the correct level of clustering, is discussed in
detail in MacKinnon, Nielsen and Webb (2020).

The OLS estimator of β is

β̂ = (X>X)−1X>y = β0 + (X>X)−1X>u,

where the second equality depends on the assumption that the data are actually generated
by (1) with true value β0. It follows that

β̂ − β0 = (X>X)−1
G∑

g=1
X>g ug =

( G∑
g=1
X>gXg

)−1 G∑
g=1
sg. (3)

From the rightmost expression in (3), we see that the distribution of β̂ depends on the
disturbance subvectors ug only through the distribution of the score vectors sg. Asymptotic
inference commonly uses the empirical score vectors ŝg = X>g ûg, in which the ug are replaced
by the residual subvectors ûg, to estimate the variance matrix of the sg. This should work
well if the sum of the sg, suitably normalized, is well approximated by a multivariate normal
distribution with mean zero, and if the sg are well approximated by the ŝg. However, this
type of asymptotic inference can be misleading when either of these approximations is poor.

It follows immediately from (3) that an estimator of the variance of β̂ should be based
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on the usual sandwich formula,

(X>X)−1
( G∑

g=1
Σg

)
(X>X)−1. (4)

The natural way to estimate (4) is to replace the Σg matrices by their empirical counterparts,
that is, the ŝgŝ

>
g . If, in addition, we multiply by a correction for degrees of freedom, we

obtain the cluster-robust variance estimator, or CRVE,

CV1:
G(N − 1)

(G− 1)(N − k)(X>X)−1
( G∑

g=1
ŝgŝ

>
g

)
(X>X)−1. (5)

This is by far the most widely used CRVE in practice, and it is the default one implemented
in Stata; alternatives to this estimator will be discussed in Section 5. When G = N, the
CV1 estimator reduces to the familiar HC1 estimator (MacKinnon and White 1985) that is
robust only to heteroskedasticity of unknown form.

The fundamental unit of inference when the observations are clustered is the cluster, not
the observation; this is evident from (3), (4), and (5). The asymptotic theory for cluster-
robust inference has been analyzed recently by Djogbenou et al. (2019) and Hansen and
Lee (2019) under the assumption that G → ∞. In general, the quality of the asymptotic
approximation is determined by the number of clusters G and the extent of heterogeneity
of the score vectors (MacKinnon et al. 2022a). The more the distributions of the scores
vary across clusters, the worse the asymptotic approximation will likely be. Heterogeneity
can arise from variation in cluster sizes and/or from variation in the distributions of the
disturbances, the regressors, or both. As we discuss in Sections 3, 6 and 7, leverage, partial
leverage, and summary statistics based on them provide useful measures of heterogeneity
across clusters.

Inference about β is typically based on cluster-robust t-statistics and Wald statistics.
If βj denotes the j th element of β and β0j is its value under the null hypothesis, then the
appropriate t-statistic is

tj = β̂j − β0j

s.e.(β̂j)
, (6)

where β̂j is the OLS estimate, and s.e.(β̂j) is the square root of the j th diagonal element
of (5). Under extremely strong assumptions (Bester, Conley and Hansen 2011), it can be
shown that tj asymptotically follows the t(G − 1) distribution. Conventional inference in
Stata and other programs is based on this distribution.

As the articles cited in the second paragraph of Section 1 discuss, inference based on
tj and the t(G − 1) distribution can be unreliable when G is small and/or the clusters are
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severely heterogeneous. This is true to an even greater extent for Wald tests of two or more
restrictions (Pustejovsky and Tipton 2018). The measures of leverage and partial leverage
at the cluster level that we introduce in the next section may help to identify the sort of
heterogeneity that is likely to make inference unreliable.

Instead of using the t(G− 1) distribution, we can obtain both P values for tj and confi-
dence intervals for βj by employing the wild cluster restricted (or WCR) bootstrap (Cameron,
Gelbach and Miller 2008). It can sometimes provide much more reliable inferences than
the conventional approach; see Section 7 and Djogbenou et al. (2019). Roodman, Mac-
Kinnon, Nielsen and Webb (2019) describes a computationally efficient implementation of
this method in the Stata package boottest. When G is reasonably large and the clusters
are not very heterogeneous, inferences based on the WCR bootstrap and inferences based
on CV1 t-statistics combined with the t(G− 1) distribution will often be very similar. When
they differ noticeably, neither should be relied upon without further investigation.

Section 5 discusses two other CRVEs, which we refer to as CV3 and CV3J, that are both
based on the cluster jackknife. In practice, these estimators are often extremely similar. CV3

and CV3J tend to yield more reliable inferences in finite samples than does CV1, especially
when the clusters are quite heterogeneous; see MacKinnon et al. (2022b) and Section 7.
Based on this simulation evidence, we recommend computing either CV3 or CV3J essentially
all the time. This is easy to do using summclust.

3 Identifying High-Leverage and Influential Clusters

At the observation level, there are three classic measures of heterogeneity, namely, leverage,
partial leverage, and influence (Belsley et al. 1980; Chatterjee and Hadi 1986). In this section,
we propose analogous measures at the cluster level.

Measures of leverage at the observation level are based on how much the residual for
observation i changes when that observation is omitted from the regression. If hi denotes the
ith diagonal element of the “hat matrix” H = PX = X(X>X)−1X>, then omitting the ith

observation changes the ith residual from ûi to ûi/(1− hi). Because 0 < hi < 1, this delete-
one residual is always larger in absolute value than ûi. The factor by which the delete-one
residual exceeds ûi increases with hi. Since the average of the hi is k/N, observations with
values of hi substantially larger than k/N may reasonably be said to have high leverage.

Similarly, dropping the g th cluster when we estimate β changes the g th residual vector
from ûg to (I−Hg)−1ûg, where

Hg = Xg(X>X)−1X>g (7)
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is the Ng × Ng diagonal block of H that corresponds to cluster g. The matrix Hg is the
cluster analog of the scalar hi. Of course, it is not feasible to report the Hg. In fact, when
any of the clusters is sufficiently large, even computing and storing these matrices may be
challenging. As a measure of leverage, we therefore suggest using a matrix norm of the Hg.
Specifically, we suggest the scalar

Lg = Tr(Hg) = Tr
(
X>gXg(X>X)−1

)
. (8)

When the g th cluster contains just one observation, say the ith, then Lg = hi. Thus, in this
special case, the leverage measure that we are proposing reduces to the usual measure of
leverage at the observation level.

The trace in (8) is the nuclear norm of the matrix Hg. In general, the nuclear norm
of a matrix A is the sum of the singular values of A. When A is symmetric and positive
semidefinite, the singular values are equal to the eigenvalues, which are non-negative. Since
the trace of any square matrix is equal to the sum of the eigenvalues, the trace of a symmetric
and positive semidefinite matrix is also its nuclear norm. In principle, we could report any
norm of the Hg matrices, but the nuclear norm is particularly easy to compute, and it has
the advantage of being linear. This implies that we can sum over g and take the sum inside
the norm just as if the Hg were scalars. Since ∑G

g=1X
>
gXg = X>X, this result means that

G−1∑G
g=1 Tr(Hg) = k/G, which is analogous to the result that the average of the hi over all

observations is k/N.
High-leverage clusters can be identified by comparing the Lg to k/G, their average. If,

for some cluster h, Lh is substantially larger than k/G, then cluster h may be said to have
high leverage. Just how much larger Lh has to be is a matter of judgement. A cluster with
Lh = 2k/G probably does not qualify, but a cluster with Lh = 5k/G probably does. Cluster
h can have high leverage either because Nh is considerably larger than G/N or because the
matrix Xh is somehow extreme relative to the other Xg matrices, or both. We can compare
the leverage of any two clusters by forming ratios. For example, if L1 = 3 and L2 = 1, then
we can say that the first cluster has three times the leverage of the second cluster.

Like the classic leverage measure hi, the one we suggest in (8) shows the potential impact
of a particular cluster on residuals and fitted values, but not on any particular regression
coefficient. When interest focuses on just one such coefficient, say the j th, it may be more
interesting to calculate the partial leverage of each cluster. The concept of partial leverage
was introduced, for individual observations, in Cook and Weisberg (1980). Let

x́j =
(
I−X[j]

(
X>[j]X[j]

)−1
X>[j]

)
xj, (9)

7



where xj is the vector of observations on the j th regressor, and X[j] is the matrix of obser-
vations on all the other regressors. Thus x́j denotes xj after all the other regressors have
been partialed out. The partial leverage of observation i is simply the ith diagonal element
of the matrix x́j(x́>j x́j)−1x́>j , which is just x́2

ji/(x́>j x́j), where x́2
ji is the ith element of x́j.

The analogous measure of partial leverage for cluster g is

Lgj =
x́>gjx́gj

x́>j x́j

, (10)

where x́gj is the subvector of x́j corresponding to the g th cluster. This is what (8) reduces
to if we replace X and Xg by x́j and x́gj, respectively. It is easy to calculate the partial
leverage for every cluster for any coefficient of interest. The average of the Lgj is evidently
1/G, so that if cluster h has Lhj >> 1/G, it has high partial leverage for the j th coefficient.
Moreover, as we will see in Section 7, the empirical distribution of the Lgj across clusters
seems to provide useful diagnostic information.

One possible consequence of heterogeneity is that the estimates may change a lot when
certain clusters are deleted. It can therefore be illuminating to delete one cluster at a time,
so as to see how influential each cluster is. To do this in a computationally efficient manner,
we compute the cluster-level matrices and vectors

X>gXg and X>g yg, g = 1, . . . , G. (11)

This is almost costless if we calculate the quantities in (11) first and then use them to
construct X>X and X>y. The vector of least squares estimates when cluster g is deleted
is then

β̂(g) = (X>X −X>gXg)−1(X>y −X>g yg). (12)

Unless k is extremely large, it should generally be fairly inexpensive to compute β̂(g) for
every cluster using (12). Especially when they vary a lot, the β̂(g) can reveal a great deal
about the sample. In addition, as we shall see in Section 5, they may be used to calculate
jackknife variance matrices.

When there is a parameter of particular interest, say βj, it may be a good idea to report
the β̂(g)

j for g = 1, . . . , G in either a histogram or a table. If β̂(h)
j differs greatly from β̂j for

some cluster h, then cluster h is evidently influential. In a few extreme cases, there may be a
cluster h for which it is impossible to compute β̂(h)

j . This will happen, for example, when the
regressor corresponding to βj is a treatment dummy and cluster h is the only treated one.
This is an extreme example of the problem of few treated clusters, and inferences based on
either the t(G− 1) distribution or the WCR bootstrap are likely to be completely unreliable
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in this case (MacKinnon and Webb 2017b, 2018, 2020).
Identifying influential clusters by comparing the β̂(g) from (12) with β̂ is very similar

to identifying influential observations using the classic methods discussed in Belsley et al.
(1980) and Chatterjee and Hadi (1986); for an interesting recent extension, see Broderick,
Giordano and Meager (2021). If influential clusters have been identified, the investigator will
need to decide how to deal with them. Perhaps the influential clusters are atypical in ways
that should make us mistrust the results, either because the model does not seem to apply
to them or because there are measurement errors or observations that have been miscoded.

Regression models often include cluster fixed effects. When one of the regressors is a fixed-
effect dummy for cluster g, the matrices X>gXg and X>X −X>gXg are singular. This will
cause the calculation in (12) to fail unless a generalized inverse routine, such as the invsym
routine in Mata, is used. The problem can be avoided, and some computer time saved, by
partialing out the fixed-effect dummies prior to computing the cluster-level matrices and
vectors in (11) using, for example, the areg procedure in Stata. Partialing these out means
replacing X and y by X̃ and ỹ, the deviations from their cluster means. For example, the
element of ỹ corresponding to the j th observation in the g th cluster is yg,j − N−1

g

∑Ng

i=1 yg,i.
The g th subvector of ỹ is ỹg, and the g th submatrix of X̃ is X̃g. Since there is just one fixed
effect per cluster, ỹg depends solely on yg, and X̃g depends solely on Xg. The calculations
in (8) and (12) are now based on X̃>X̃, X̃>ỹ, the X̃>g X̃g, and the X̃>g ỹg.

We believe that investigators should routinely compute both the Lg and the Lgj for
any coefficient(s) of particular interest. In some cases, the Lg and the Lgj will be roughly
proportional to the Ng (the cluster sizes). That in itself would be informative. It may be
even more interesting, however, if the relative size of Lh and/or Lhj for some cluster(s) h is
much larger, or much smaller, than the relative size of Nh.

When G is small, it may be feasible to report the Lg, along with the Lgj and the β̂(g)
j for

one or a very few values of j, in a table. When G is not small, it may be interesting to report
the empirical distributions of these quantities, either in tabular or graphical form. Measures
of leverage and partial leverage will often help to identify cases in which inference, especially
asymptotic inference, may be unreliable; see Section 7. Unlike the leverage measures, the
β

(g)
j may be either positive or negative, must depend on the yg, and necessarily vary across

clusters. They may sometimes turn up features of the model or dataset that require further
investigation, including data errors.
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4 Simple Examples

In this section, we discuss a number of simple examples in which it is possible to calculate
our measures of leverage and influence analytically. These examples are quite revealing.

Example 1 (Estimation of the mean). Finding the sample mean is equivalent to performing
a least-squares regression in which the only regressor is xi = 1 for all i = 1, . . . , N. In this
case, it is easy to see that X>gXg = Ng and X>X = N. Therefore,

Lg = Tr(Hg) = Ng

N
= Ng∑G

h=1Nh

. (13)

In this simple case, cluster leverage is exactly proportional to cluster size. In other cases, we
can interpret leverage as a generalization of cluster size that takes into account other types
of heterogeneity as well.

Evidently, β̂ = ȳ = N−1∑G
g=1Ng ȳg, where ȳ and ȳg denote the sample average for the

full sample and for cluster g, respectively. This expression can be rewritten as

β̂ =
G∑

g=1

Ng

N
ȳg =

G∑
g=1

Lg β̂g, (14)

so that β̂ is seen to be a weighted average of the G estimates β̂g = ȳg, with the weight for
each cluster equal to its leverage. Similarly, we find that

β̂(g) = N

N −Ng

∑
h6=g

Lh β̂h, (15)

where the first factor simply makes up for the fact that we are summing over G− 1 clusters
instead of G as in (14). Subtracting (14) from (15), we conclude that

β̂(g) − β̂ = Ng

N

(
β̂(g) − β̂g

)
= Lg

(
β̂(g) − β̂g

)
. (16)

Therefore, cluster g will be influential whenever omitting it yields an estimate β̂(g) that
differs substantially from the estimate β̂g for cluster g itself, especially when cluster g also
has high leverage.

Example 2 (Single regressor plus constant). Consider a regression design with a single
regressor, xi, and a constant term. Then

X>gXg =
 Ng

∑Ng

i=1 xg,i∑Ng

i=1 xg,i
∑Ng

i=1 x
2
g,i

 and (X>X)−1 = 1
N2σ̂2

x

 ∑N
i=1 x

2
i −∑N

i=1 xi

−∑N
i=1 xi N

,

10



where σ̂2
x denotes the sample variance of the xi. After some algebra, we find that

Lg = Ng

Nσ̂2
x

(
σ̂2

x + σ̂2
x,g + (x̄g − x̄)2

)
, (17)

where x̄g and σ̂2
x,g denote the sample mean and sample variance of the xi within cluster g.

Expression (17) is a straightforward generalization of (13). The last two terms within the
large parentheses are the sample variance of the xg,i within cluster g and the square of the
difference between x̄g and x̄. The sum of these terms is the sample variance of the xg,i

around x̄ within cluster g. Thus cluster g will have high leverage when the variance of the
xg,i around x̄ within that cluster is large relative to the variance σ̂2

x for the full sample. If
everything except cluster sizes were perfectly balanced, Lg would evidently reduce to 2Ng/N.

The partial leverage for x is just

Lg2 =
Ng

(
σ̂2

x,g + (x̄g − x̄)2
)

Nσ̂2
x

, (18)

the total variation around x̄ within cluster g divided by the total variation within the sample.
If everything except cluster sizes were perfectly balanced, it would reduce to Ng/N.

Example 3 (Single regressor plus fixed effects). Suppose there is a single regressor, xi,
and there are cluster-level fixed effects, which have been partialed out. In this case, we
can write all quantities as deviations from their cluster averages, and there is no distinction
between leverage and partial leverage. Then X̃>g X̃g = ∑Ng

i=1(xg,i − x̄g)2 = Ngσ̂
2
x,g. Similarly,

X̃>X̃ = ∑G
g=1Ng σ̂

2
x,g is the average variance of the xi across all clusters. We find that

Lg =
Ng σ̂

2
x,g∑G

h=1Nh σ̂2
x,h

, (19)

which is again a straightforward generalization of (13). The leverage of cluster g is propor-
tional to Ng times the variance of the xg,i around x̄g. Thus, for example, doubling the vari-
ance of the xg,i has the same effect on leverage as doubling Ng.

In this case, using (19), it is easy to see that

β̂ =
∑G

g=1Ng σ̂xy,g∑G
g=1Ng σ̂2

x,g

=
G∑

g=1
Lg
σ̂xy,g

σ̂2
x,g

=
G∑

g=1
Lgβ̂g, (20)

where σ̂xy,g = (1/Ng)∑Ng

i=1(xg,i − x̄g)(yg,i − ȳg) is the sample covariance of xi and yi within
cluster g. The rightmost expressions in (14) and (20) are identical. In both cases, β̂ is seen
to be a weighted average of the G cluster estimates, with the weight for each cluster equal
to its leverage.
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When cluster g is omitted, we obtain

β̂(g) =
∑

h6=g Nhσ̂xy,h∑
h6=g Nhσ̂2

x,h

=
∑

h6=g Lhβ̂h∑
h6=g Lh

, (21)

which would specialize to (15) if (13) were true. As before, β̂(g) is a weighted average of the
β̂h, with weights proportional to the Lg, which in this case are also the partial leverages.
Subtracting (20) from (21), we find that

β̂(g) − β̂ = Lg

(
β̂(g) − β̂g

)
, (22)

which is formally identical to the rightmost expression in (16), although of course Lg is
defined in (19) not (13). Cluster g will be influential whenever β̂(g) differs substantially from
the estimate β̂g for cluster g itself, especially when cluster g also has high leverage.

Example 4 (Treatment model with a constant term). Now we specialize Example 2 to the
case in which the single regressor is a treatment dummy denoted by di. Let d̄g and d̄ denote
the proportion of treated observations in cluster g and in the sample, respectively. Then
(17) becomes

Lg = Ng

N

(
d̄g

d̄
+ 1− d̄g

1− d̄

)
. (23)

The first factor here is the relative size of the g th cluster. The second factor depends on how
much d̄g differs from d̄. When d̄g = d̄, we see that Lg = 2Ng/N . Otherwise, the first term
inside the parentheses causes leverage to be high whenever d̄g is large relative to d̄, and the
second term causes leverage to be high whenever d̄g is small relative to d̄. As d̄ increases for
given d̄g, the first term becomes smaller relative to the second term. Thus the g th cluster
will tend to be influential either when it has a large proportion of treated observations and
the overall proportion is small, or when it has a small proportion of treated observations and
the overall proportion is large.

We can also obtain the partial leverage of the treatment dummy for this case. Expression
(18) simply becomes

Lg2 = Ng

N

(
d̄g

d̄
+ d̄− d̄g

1− d̄

)
. (24)

Once again, the first factor is the relative size of the g th cluster. The second factor reduces
to 1 when d̄g = d̄, so that Lg2 = Ng/N in that special case.

We can further specialize (23) and (24) to models in which the treatment is applied at
the cluster level. Suppose that all observations in clusters g = 1, . . . , G1 are treated and no
observations in the G0 = G − G1 control clusters from G1 + 1 to G are treated. Then we
find that d̄g = 1 for g = 1, . . . , G1, and d̄g = 0 for g = G1 + 1, . . . , G. Inserting these into
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(23) shows that

Lg =


Ng

N
1
d̄

for g = 1, . . . , G1,

Ng

N
1

(1−d̄)
for g = G1 + 1, . . . , G.

(25)

Inserting them into (24) shows that

Lg2 =


Ng

N
d̄+1

d̄
for g = 1, . . . , G1,

Ng

N
d̄

(1−d̄)
for g = G1 + 1, . . . , G.

(26)

Thus any cluster tends to have high leverage if Ng/N is large. A treated cluster has high
leverage and partial leverage if d̄ is small. Conversely, a control cluster has high leverage
and partial leverage if d̄ is large.

Example 5 (Treatment with fixed effects). Finally, we consider the case of cluster-level fixed
effects, where treatment is randomly applied at the individual level. This is a special case
of Example 3. We cannot consider cluster fixed effects with cluster-level treatment, because
the treatment dummy would be invariant within clusters. We specialize (19) and find that

Lg = Ng d̄g(1− d̄g)∑G
h=1Nh d̄h(1− d̄h)

. (27)

Thus, as before, the leverage of cluster g, relative to the average for the other clusters, is
proportional to its size, Ng. It also depends on the proportion of treated observations in the
cluster. The maximum (relative) leverage for cluster g occurs at d̄g = 1/2 and is symmetric
around 1/2. The result (22) continues to hold. It tells us that cluster g will be influential
when its leverage (27) is large and β̂(g) differs greatly from β̂g.

5 Two Jackknife Variance Matrix Estimators

Although the CV1 variance estimator defined in (5) is very widely used, it does not have
particularly good finite-sample properties. That is one reason why bootstrap methods are
so commonly employed. Two alternative CRVEs, which are usually known as CV2 and CV3,
were proposed in Bell and McCaffrey (2002). They are the cluster analogs of the hetero-
skedasticity-consistent estimators HC2 and HC3, which are appropriate when the ui are
independent. These names were coined in MacKinnon and White (1985), which proposed
HC3 as a jackknife variance estimator. In the remainder of this section, we focus on CV3,
because CV2 is not a jackknife estimator and is not amenable to the computational methods
that we propose; for more on it, see Imbens and Kolesár (2016), Pustejovsky and Tipton
(2018), and Niccodemi, Alessie, Angelini, Mierau and Wansbeek (2020).
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The usual expression for CV3 is

CV3:
G− 1
G

(X>X)−1
( G∑

g=1
s̈gs̈

>
g

)
(X>X)−1, (28)

where the modified score vectors s̈g are defined as

s̈g = X>g M
−1
gg ûg. (29)

HereMgg = INg −Xg(X>X)−1X>g is the diagonal block corresponding to the g th cluster of
the projection matrix MX , which satisfies û = MXu.

Although computing CV3 using (28) works well when all the Ng are very small, it becomes
expensive, or perhaps computationally infeasible, when even one of theNg is sufficiently large.
The problem is that an Ng ×Ng matrix needs to be stored and inverted for every cluster. A
method that is much faster for large clusters has recently been proposed in Niccodemi et al.
(2020). Versions of this procedure apply to both CV2 and CV3. However, recognizing that
CV3 is a jackknife estimator allows us to develop a much simpler and even faster method for it.

The most obvious cluster jackknife estimator of Var(β̂) is

CV3J:
G− 1
G

G∑
g=1

(β̂(g) − β̄)(β̂(g) − β̄)>, (30)

where β̄ is the sample mean of the β̂(g), which were defined in (12). The expression in (30)
is the cluster analog of the usual jackknife variance matrix estimator given in MacKinnon
and White (1985, eqn. (11)). Each of the β̂(g) is obtained by deleting a cluster instead of an
observation, and the summation is over clusters instead of observations.

If β̄ in (30) is replaced by β̂, we obtain the estimator CV3:

CV3:
G− 1
G

G∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)>. (31)

This version of CV3 is numerically identical to the one in (28); see MacKinnon et al. (2022b)
for a proof. Unless all the clusters are very small, computing CV3 using (31) is far faster
than using (28); some timings are reported in MacKinnon et al. (2022b).

Many discussions of jackknife variance estimation follow Efron (1979) and use β̄ as in
(30), but others, including Bell and McCaffrey (2002), use β̂ as in (31). Although these
two jackknife variance estimators are asymptotically the same, they are rarely equal. For
example, in the case of (20), they will coincide only when every cluster has the same (partial)
leverage. Thus CV3 and CV3J will normally differ, with CV3 always larger than CV3J in

14



the sense that the difference between them is a positive semi-definite matrix. In practice,
however, they tend to be very similar (MacKinnon et al. 2022b), and there seems to be no
good reason to expect either CV3 or CV3J to perform better in general.

The factor of (G−1)/G in both (30) and (31) is designed to compensate for the tendency
of the β̂(g) to be too spread out. This factor is the analog of the usual factor of (N−1)/N for a
jackknife variance matrix at the individual level. It implicitly assumes that all clusters are the
same size and perfectly balanced, with disturbances that are independent and homoskedastic.
In this special case, the estimators CV3 and CV3J would be identical and unbiased (Bell and
McCaffrey 2002).

Interestingly, the original HC3 estimator proposed in MacKinnon and White (1985) is
actually the analog of CV3J. The modern version of HC3, which is the analog of CV3, seems
to be due to Davidson and MacKinnon (1993, Chapter 16). This version of HC3 is normally
computed by dividing each residual by the corresponding diagonal element of MX , and the
factor of (N − 1)/N is usually (but incorrectly) omitted.

Both jackknife estimators may readily be used to compute cluster-robust t-statistics. In
view of the fact that there are G terms in the summation, it seems natural to compare these
with the t(G − 1) distribution, as usual. These procedures should almost always be more
conservative than t-tests based on the widely-used CV1 estimator. The results in Section 7
suggest that they can be much more conservative.

When a model includes fixed effects, some care needs to be taken when computing CV3

and CV3J. As noted in Section 3, it is computationally attractive to partial out fixed effects
prior to calculating β̂. However, if we were to partial out any arbitrary regressors prior to
computing the delete-one-cluster estimates in (12), then the computed β̂(g) would depend
on the values of the partialed-out regressors for the full sample, including those in the g th

cluster, which would be incorrect. Consequently, the values of CV3 and CV3J will be incorrect
if we partial out any regressor that affects more than one cluster (such as industry-level fixed
effects with firm-level clustering). An important exception is when the regressors that are
partialed out are cluster fixed effects or fixed effects at a finer level (such as firm-level fixed
effects with industry-level clustering), because each of them affects only one cluster. See the
discussion of the absorb and fevar options in Section 8.

It is possible that the vector β is identified for the full sample but not when one cluster
is deleted. For example, consider the coefficient on a dummy variable that takes on non-zero
values only for observations in the g th cluster. This coefficient cannot be identified when
cluster g is omitted. In such a case, the matrix X>X −X>gXg in (12) is singular, and CV3

and CV3J should not be computable. However, because summclust uses the invsym function
in Stata, and hence a generalized inverse, the offending element of β̂(g) is simply replaced
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by 0. The package therefore checks whether any of the β(g) coefficients of interest are equal
to 0 and issues a warning when they are; see Section 8.

MacKinnon et al. (2022b) studies how to modify the WCR bootstrap (Section 2) to
use CV3 instead of CV1 and how to modify the bootstrap DGP in a similar way. This
yields several new bootstrap procedures. Limited simulation results suggest that, because
using CV3 with the t(G− 1) distribution often works so well, the gains from using the new
procedures for inference based on CV3 tend to be smaller than the gains from using the
classic WCR bootstrap for inference based on CV1.

6 What Should Be Reported

When the number of clusters is small, it is easy enough to look at all the Ng, β(g)
j , Lg, and Lgj

to see whether any clusters are unusually large, unusually influential, or have unusually high
leverage or partial leverage. Once G exceeds 10 or 12, however, it may be more informative
to plot these quantities. This can be done in many different ways, including histograms and
box plots. Another possibility is to report a number of summary statistics. The summclust
package, to be discussed in Section 8, always reports the minimum, first quartile, median,
mean, third quartile, and maximum of the Ng and the Lg. It also reports these quantities
for the Lgj and the β(g)

j for the specified regressor j.
In the remainder of this section, we focus on cluster sizes and leverage. We consider a

generic quantity ag, which might denote any of Ng, Lg, or Lgj for g = 1, . . . , G. It seems
plausible that inference may be unreliable when any of the ag vary substantially across
clusters, and we provide some evidence to support this conjecture in Section 7.

It may be attractive to report a single measure of how much the distribution of the ag

differs from what it would be in the perfectly balanced case. There are many such measures.
One possibility is the scaled variance

Vs(a•) = 1
(G− 1)ā2

G∑
g=1

(ag − ā)2, (32)

where the argument a• is to be interpreted as the entire set of ag for g = 1, . . . , G, and ā

denotes the arithmetic mean, which is N/G for the Ng, k/G for the Lg, and 1/G for the Lgj.
These are all positive numbers, so it is reasonable to scale by their squares. Larger values
of Vs imply that the ag are more variable across clusters, relative to their mean. We could
report either Vs or its square root, which is often called the coefficient of variation. In the
perfectly balanced case, Vs = 0. By default, summclust reports the coefficient of variation
for the cluster sizes, the leverages, the partial leverages, and the β̂(g)

j .
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Another possibility is to report one or more alternative sample means. The more these
differ from the arithmetic mean, the more heterogeneous must be the clusters. Three common
alternatives to the arithmetic mean are the harmonic, geometric, and quadratic means:

āharm =
 1
G

G∑
g=1

1/ag

−1

, āgeo =
 G∏

g=1
ag

1/G

, and āquad =
 1
G

G∑
g=1

a2
g

1/2

. (33)

Unless all the ag are the same, the harmonic and geometric means will be less than the
arithmetic mean ā, and the quadratic mean (which has the same form as the root mean
squared error of an estimator) will be greater than ā. We could either report the three
alternative means directly, or the ratio of each of them to ā. The three ratios provide scale-
free measures of cluster heterogeneity; the closer they are to one, the more homogeneous are
the clusters. summclust can, optionally, report all of these quantities.

Another way to quantify the heterogeneity of the cluster sizes and the regressors is to
calculate G∗, the “effective number of clusters,” as proposed in Carter, Schnepel and Steiger-
wald (2017). The value of G∗ depends on the coefficient j for which it is being computed
and on a parameter ρ to be discussed below, so we denote it G∗j(ρ). It is defined as

G∗j(ρ) = G

1 + Γj(ρ) , Γj(ρ) = 1
G

G∑
g=1

(
γgj(ρ)− γ̄j(ρ)

γ̄j(ρ)

)2
, γ̄j(ρ) = 1

G

G∑
g=1

γgj(ρ), (34)

where 0 ≤ ρ ≤ 1, and the γgj(ρ) are given by

γgj(ρ) = e>j (X>X)−1X>g Ωg(ρ)Xg(X>X)−1ej, g = 1, . . . , G. (35)

Here ej is a k-vector with 1 in the j th position and 0 everywhere else, so that e>j (X>X)−1

is the j th row of (X>X)−1, and Ωg(ρ) is an Ng×Ng matrix with 1 on the principal diagonal
and ρ everywhere else. It is easy to see that

Ωg(ρ) = ριι> + (1− ρ)I, (36)

where ι is an Ng-vector of 1s, and I is an Ng ×Ng identity matrix. Notice that Γj(ρ) is just
the scaled variance of the γgj(ρ); compare (32).

The parameter ρmay be interpreted as the intra-cluster correlation coefficient for a model
with random effects at the cluster level. Since ρ is unknown, Carter et al. (2017) suggests
calculating G∗j(1) as a sort of worst case. However, when there are fixed effects at the cluster
level, or fixed effects at a finer level nested within clusters, those fixed effects will absorb all
of the intra-cluster correlation. This can lead to numerical instabilities, as we discuss below.
Thus it does not make sense to specify ρ > 0 in either of these cases. It does seem natural to
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use G∗j(0), however, because the amount of intra-cluster correlation that remains in models
with cluster fixed effects is often quite small.

From (35) and (36), we see that

X>g Ωg(ρ)Xg = ρ(ι>Xg)>(ι>Xg) + (1− ρ)X>g Xg. (37)

This result makes it inexpensive to compute the γgj(ρ) for any value of ρ by first computing
them for ρ = 0 and ρ = 1. The needed equations are

γgj(0) = w>j X
>
g Xgwj,

γgj(1) = (ι>Xgwj)>(ι>Xgwj), and

γgj(ρ) = ργgj(1) + (1− ρ)γgj(0),

(38)

where wj is the j th column of (X>X)−1. After obtaining the γgj(ρ) from (38), it is trivial to
compute G∗j(ρ) using (34). Evidently, G∗j(ρ) is always less than G. When it is much smaller
than G, it can provide a useful warning.

If we attempt to compute G∗j(ρ) for ρ > 0 when there are cluster fixed effects, numerical
instabilities are likely to arise. Suppose that we have partialed out cluster fixed effects prior
to computing G∗j(ρ). Then the first term on the right-hand side of (37) should in theory be
a zero matrix, because every column of Xg should add to zero. In practice, however, the
limitations of floating-point arithmetic mean that this matrix will actually contain extremely
small positive numbers. When the fixed effects are not partialed out, similar but more
complicated numerical issues arise.

The Stata package clusteff discussed in Lee and Steigerwald (2018) is designed to
calculate G∗j(ρ), with ρ = 0.9999 rather than ρ = 1 by default to avoid numerical instabilities.
However, the only version of this package that we have used does so in a very computationally
inefficient way. It apparently computes the γg(ρ) by brute force instead of using (38). When
any of the Ng is large, this can take a very long time, or even fail because Stata runs out of
memory. For example, it failed with the samples used in MacKinnon et al. (2022a), where
the largest values of Ng were either 35, 995 or 144, 914. To circumvent this problem, one
could use a random sample of the data for each cluster to compute an approximation to
G∗j(ρ), but with (38) that is no longer necessary.

Like Vs(a•) and the alternative sample means for measures of leverage and partial leverage
discussed above, G∗j(ρ) is sensitive not only to variation in cluster sizes but also to other
features of the Xg matrices. However, it is not sensitive to heteroskedasticity or to any
other features of the disturbances. Our summclust package computes G∗j(0), G∗j(1), and
(optionally) G∗j(ρ) for a specified covariate. However, when there are cluster fixed effects,
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or fixed effects nested within clusters, it will only compute G∗j(0). For example, it will not
compute G∗j(ρ) for ρ 6= 0 whenever there are state-level fixed effects and clustering at the
region level.

The quantity G∗j(0) is very closely related to Vs(L•j), where L•j denotes the entire set of
Lgj, for g = 1, . . . , G. It is not hard to see that the γg(0) defined in (35) and (38) are equal
to the Lgj defined in (10) divided by x́>j x́j. Since this makes the γg(0) proportional to the
Lgj, Vs(L•j) is numerically identical to Γ(0); compare (32) and the middle equation in (34).
Thus we see from the first equation in (34) that G∗j(0) is simply a monotonically decreasing
function of the scaled variance of our measures of partial leverage at the cluster level. When
Vs(L•j) is large, G∗j(0) is necessarily much smaller than G.

Up to this point, we have focused on the case of one-way clustering. However, it is also of
interest to compute measures of leverage, partial leverage, and influence when there is multi-
way clustering (Cameron, Gelbach and Miller 2011). When there is two-way clustering, which
is the simplest and most commonly-encountered case, we recommend computing the usual
one-way measures of leverage, partial leverage, and influence for each of the two clustering
dimensions. This requires calling summclust twice. When the number of clusters in either
dimension is small, or any of these measures suggests that the data are seriously unbalanced
in either dimension, then conventional inference can be seriously unreliable. The WCR
bootstrap, applied to the dimension with the fewest clusters or the most unbalanced clusters
(MacKinnon, Nielsen and Webb 2021), is likely to provide less unreliable inferences, but they
may still be problematic.

It would probably also be interesting to calculate the standard measures of leverage,
partial leverage, and influence for the intersection of the two clustering dimensions. This
means calling summclust a third time. Suppose there are two clustering dimensions, with G
clusters in the first dimension and H clusters in the second. Then the number of intersection
clusters is at most GH, but it can sometimes be smaller if some of the intersection clusters
are empty. In order to use summclust for the intersections, it is necessary to create a new
variable that uniquely identifies each of the intersection clusters.

It is important to remember that, when summclust is invoked three times for each of
two clustering dimensions and their intersection, the CV3 standard error that it reports for
each of the three cases is based on a different pattern of one-way clustering. When two-way
clustering is appropriate, none of these standard errors are valid.
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7 Simulation Experiments

In order to investigate the predictive power of various summary measures of leverage and
partial leverage, we perform a few simulation experiments. The objective is to see whether
the rejection frequencies for cluster-robust t-tests, both asymptotic and WCR bootstrap, can
be predicted from summaries of the features of the X matrix. There are 3000 cases, each
corresponding to a particular X matrix. For each case, we generate 10,000 values of y and
use them to estimate rejection frequencies for tests at the .05 level.

In the experiments, there are either 20 clusters and 2000 observations or 30 clusters and
3000 observations. The cluster sizes Ng are determined by a parameter γ ≥ 0, as follows:

Ng =
[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (39)

where [·] denotes the integer part of its argument, andNG = N−∑G−1
j=1 Ng. As γ increases, the

cluster sizes become increasingly unbalanced. The value of γ is varied uniformly between 2
and 4, so that the cluster sizes tend to vary quite a lot. When G = 20, the smallest cluster has
between 8 and 32 observations, and the largest has between 229 and 378. When G = 30, the
smallest cluster has between 7 and 32 observations, and the largest has between 237 and 396.

There are five regressors, one of which is the test regressor, plus a constant term. The
regressors are either 0 or 1. With probability 1− pc, all the observations in a cluster are 0.
With probability pc, they randomly equal either 0 or 1, both with probability 0.5. Thus,
when pc = 1, all variation is at the individual level, and leverage tends to be proportional to
cluster sizes. As pc declines, the samples become more unbalanced. In the experiments, the
values of pc are chosen to be 0.25, 0.30, 0.35, 0.40, 0.50, and 0.60, each for one-sixth of the
cases. Smaller values of pc tend to be associated with larger discrepancies between actual
rejection frequencies and .05, the nominal level of the tests.

For each experiment, we obtain 9000 estimated rejection frequencies. One-third of these
are based on CV1 and the t(G−1) distribution, one-third are based on CV3 and the t(G−1)
distribution, and one-third are based on the WCR bootstrap with 399 bootstrap samples. To
predict these rejection frequencies, we use a generalized additive model based on smoothing
splines; see James et al. (2021, Section 7.7). The base model can be written as

ri = β0 + f1(Vsi) + f2(V 1/2
si ) + β1G

∗
i0 + ui, (40)

where ri is the rejection frequency for case i, Vsi denotes Vs(L•j), the scaled variance of the
partial leverages Lgj for the test regressor for case i, G∗i0 denotes G∗j(0) for the test regressor
for case i (recall that it is a function of the Lgj), and f1(·) and f2(·) are smoothing splines
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Figure 1: Predicted rejection frequencies for asymptotic and bootstrap tests at .05 level
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(a) Asymptotic Tests
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(b) WCR Bootstrap Tests

Notes: Each of the curves shows fitted values from the generalized additive model (40) that predicts observed
rejection frequencies, based on 10,000 replications, using nonlinear functions of the Vs(L•j); see the text for
details. Bootstrap rejection frequencies are based on B = 399. For the asymptotic tests based on CV1, the
R2 is 0.9487 for G = 20 and 0.9404 for G = 30. For the tests based on CV3, the R2 is 0.8709 for G = 20 and
0.8811 for G = 30. For the WCR bootstrap tests, the R2 is 0.4593 for G = 20 and 0.3400 for G = 30.

with five degrees of freedom. Since everything on the right-hand side of (40) is a function of
Vsi, this model is simply using the Vsi to predict the ri in a potentially nonlinear way.

Figure 1 shows the fitted values from (40), which are predicted rejection frequencies,
plotted against the scaled variance of the partial leverages Lgj for three methods of inference
and two sample sizes. Panel (a) shows them for t-tests based on both CV1 (solid lines) and
CV3 (dashed lines) for G = 20 and G = 30, and Panel (b) shows them for WCR bootstrap
tests for the same two cases.

The t-tests based on CV1 often over-reject to an extreme degree. For the very smallest
values of Vs(L•j), the tests tend to over-reject modestly, with predicted rejection frequencies
of 0.058 for G = 20 and 0.055 for G = 30. However, these then rise quite rapidly and almost
linearly. In fact, for G = 30, (40) omits the f2 term because it has very little explanatory
power. Nevertheless, the analysis of variance for nonparametric effects strongly suggests
that there actually is nonlinearity for both G = 20 and G = 30. For G = 30, there are
four cases (out of 3000) for which Vs(L•j) > 15. These are not shown in the figure, but the
approximately linear relationship continues to hold, and the fit for these extreme cases is
reasonably good.

In contrast, the t-tests based on CV3 tend to under-reject for small values of Vs(L•j).
For the very smallest values, the predicted rejection frequencies are 0.033 for G = 20 and
0.039 for G = 30. Although it is not obvious from the figure, the CV3 tests are predicted to
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under-reject somewhat more than half the time, because, in our experiments, most values
of Vs(L•j) are quite small. As Vs(L•j) increases, rejection frequencies increase, although for
G = 20 they start to decline again once Vs(L•j) exceeds about 9.6. The predicted rejection
frequencies never exceed 0.105 for G = 20 and 0.118 for G = 30. In a few cases (74 for
G = 20 and 5 for G = 30), it was impossible to obtain meaningful CV3 estimates because the
matrix that is inverted in (12) was singular. This happened whenever one of the regressors
took the same value for all observations in G− 1 of the clusters. These cases were dropped.

Panel (b) of Figure 1 shows the fitted values from (40) for WCR bootstrap t-tests plotted
against the scaled variance of the Lgj. These curves are not even close to being linear.
For both values of G, the predicted rejection frequencies are extremely close to .05 for the
smallest values of Vs(L•j). They then rise for a while, achieving maxima of 0.061 for G = 20
and 0.057 for G = 30, and subsequently fall to very low levels. In fact, the predicted values
for G = 20 are slightly negative for a few extreme values of Vs(L•j) that are not shown in
the figure, where the actual values that are being predicted are mostly zero.

In one respect, Panel (b) of Figure 1 is a bit misleading. It suggests that the bootstrap
tests under-reject for most values of Vs(L•j). They actually over-reject much more often
than they under-reject, because most of the observed values of Vs(L•j) are relatively small.
For G = 20, the crossover between over-rejection and under-rejection occurs at about 4.66,
with only 380 values of Vs(L•j) (out of 3000) greater than 4.66. For G = 30, the crossover
occurs at about 6.12, with only 139 values of Vs(L•j) greater than 6.12.

The bootstrap tests often under-reject when the number of “treated” clusters (that is,
clusters that have any non-zero values of the test regressor) is small. When this happens,
the asymptotic tests almost always over-reject, especially the ones based on CV1. Given the
way we generate the regressors, this situation inevitably tends to occur more frequently, and
to a greater extent, for G = 20 than for G = 30. Apparently Vs(L•j) tends to be quite large
when this happens, so that (40) is able to predict both the over-rejection by the asymptotic
tests and the under-rejection by the bootstrap tests.

It is natural to ask whether we can improve the fit of (40) by adding additional explana-
tory variables that are not simply functions of the Vs(L•j). The answer is that we can. When
a large number of additional explanatory variables is added to this equation, the variables
āgeo(L•j) and G∗j(1) are always highly significant. In most cases, at least some functions of
the Lg are also significant. However, functions of partial leverage generally seem to have
much more explanatory power than functions of leverage. The spline f1(Vsi) is always highly
significant, even when many other regressors are included. Thus, at least in these experi-
ments, the scaled variance of the partial leverages, which is the square of their coefficient of
variation, seems to be particularly revealing.
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We make no effort to obtain the best possible predictive model, because the specification
of any such model would be extremely dependent on the precise way in which the regressors
in our experiments were generated. In particular, we simply add additional explanatory
variables linearly, not within splines. Nevertheless, for all six experiments, we are able to
reduce the residual standard errors substantially. In the best case, for G = 30 and CV3,
we can reduce it by 21%. In the worst case, for G = 20 and CV1, we can reduce it by 9%.
Thus it appears that no single summary statistic for either partial leverage or leverage can
fully capture the effects of the X matrix on the rejection frequencies of either asymptotic or
bootstrap tests.

Based on these results, which are of course extremely dependent on the way in which the
regressors are generated, it seems sensible for investigators to look at a number of different
summary measures for both leverage and partial leverage. The summclust package therefore
reports several of these. The most informative one seems to be the scaled variance, defined
in (32), of the partial leverage measures Lgj, defined in (10), for the regressor of interest.
However, this recommendation is necessarily very tentative.

8 The summclust Package

The summclust package calculates a large number of statistics to help assess cluster hetero-
geneity. It also provides CV3 and CV3J standard error estimates. The package does not rely
on any other Stata packages, but it does require a version of Stata that provides Mata’s pan-
elsum() function (Version 13 or later). To illustrate summclust’s functionality and syntax,
we consider a simple example using the online dataset nlswork, which contains a sample of
women who were 14–26 years of age in 1968 from the National Longitudinal Survey of Young
Working Women. Key output for this example is shown in this section. Additional output,
along with a brief discussion, can be found in Appendix A. All the output is displayed on
screen, and most is also available in Mata and/or return memory using r(); see Appendix A.

Suppose we are interested in estimating a simple Mincer regression using the nlswork
dataset. We want to ask whether there is a marriage premium for wages. The variable msp is
equal to 1 if the person is married and cohabits with their spouse, and equal to 0 otherwise.
For the purposes of this example, we cluster by industry. The following code opens the
dataset and estimates the regression using Stata’s regress command:

webuse nlswork, clear
reg ln_wage i.grade i.age i.birth_yr union race msp, cluster(ind)

The Stata output provides CV1 standard errors. Alternatively, we can estimate the coefficient
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on msp and two standard errors for it using summclust. The command is:

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) cluster(ind)

This code results in the default output from summclust, which is mostly contained in two
tables. The first one includes the coefficient on the variable specified (in this case msp), the
CV1 and CV3 standard errors for this coefficient, and the associated t-statistics, P values,
and confidence intervals.

Cluster summary statistics for msp when clustered by ind_code.
There are 19130 observations within 12 ind_code clusters.

Regression Output
s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper
------+----------------------------------------------------------------
CV1 | -0.027515 0.009293 -2.9608 0.0130 -0.047969 -0.007061
CV3 | -0.027515 0.014064 -1.9564 0.0763 -0.058470 0.003440

-----------------------------------------------------------------------

Unsurprisingly, the first row matches the output from the regress command. In this case,
the CV1 and CV3 standard errors are noticeably different, with the latter being considerably
larger. The second table from summclust may provide some insight as to why this is so. It
reports summary statistics for Ng, Lg, Lgj, and β(g)

j .

Cluster Variability
Statistic | Ng Leverage Partial L. beta no g

-----------+-----------------------------------------------------
min | 38.00 0.093321 0.001622 -0.033200
q1 | 159.00 0.672924 0.008649 -0.029275

median | 995.50 3.515491 0.056682 -0.027765
mean | 1594.17 5.416667 0.083333 -0.026920

q3 | 2335.50 7.731883 0.120933 -0.025975
max | 6335.00 20.289183 0.312995 -0.015835

-----------+-----------------------------------------------------
coefvar | 1.19 1.152965 1.141326 0.162898

We see that the clusters are extremely heterogeneous. The largest cluster contains almost
one-third of the sample and is 167 times the size of the smallest. There are also extreme

24



differences in both leverage and partial leverage across clusters. The ratio of the largest to
the smallest value is 217 for leverage and 193 for partial leverage. The sum of the leverages
is 12 × 5.416667 = 65, which is the number of estimated coefficients. Although the β(g)

j ,
denoted “beta no g” in the table, vary quite a bit, dropping one cluster never changes the
sign of the coefficient.

The syntax of summclust requires that the first argument be the variable corresponding
to the coefficient of interest, in this case msp. The arguments yvar, xvar, and cluster,
which follow the comma after msp, are required. The dependent variable is specified in yvar.
The clustering variable is specified in the cluster argument.

The treatment of additional independent variables requires a bit more discussion. The
argument xvar is used for listing ‘ordinary’ regressors, such as continuous and binary vari-
ables. In the example above, these are the binary indicators for union and race. Time-series
operators and factor variables are not permitted within xvar. The optional argument fevar
should be used for the latter. This argument includes all the listed variables as factor vari-
ables to be treated as additional independent variables. In the above example, these are
grade, age, and birth_yr. Each argument in fevar will result in the creation of a set of
temporary dummy variables for each value of the argument. These dummy variables are in-
cluded in the regression, and there is no constant term if they are present.

The sample code above does not illustrate several additional options. The most important
of these is the absorb option, which operates like fevar. It treats its argument, a single
variable, as an additional factor variable to include in the set of regressors. absorb(varname)
can be used when including i.varname in a regression would result in many fixed effects.
Speed is increased, perhaps substantially, by partialing out the absorbed fixed effects from
the dependent and all the independent variables. It is advisable to use absorb rather than
fevar whenever their argument corresponds to a set of cluster fixed effects, since the elements
of β̂(g) that correspond to the fixed effects cannot be identified in that case; see Section 3.

The absorb option should be used with care. Partialing out fixed effects is valid for the
measures of leverage and influence and for the jackknife variance matrices only when the
absorbed variable yields fixed effects that can be partialed out on a cluster-by-cluster basis.
That is, absorb should only be used for straight cluster fixed effects or for fixed effects at a
finer level, such as state × year fixed effects for a panel with clustering at the state level. It is
not valid to partial out fixed effects that are not limited to a single cluster. In that case, the
β(g) and quantities based on them would be different for the original data and the data after
partialing out, because the partialed-out observations for the g th cluster would depend on
other clusters as well. Accordingly, summclust checks to ensure that the clustering variable
is invariant within each value of the absorb variable. When it is not, a warning is displayed,
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and the estimates for Lgj, β(g)
j , CV3, and CV3J are not available.

To see the difference between fevar and absorb, we can estimate an expanded regression
that includes industry fixed effects. The following two commands produce identical estimates
for Ng, Lgj, β(g)

j , and CV3. However, the estimates of the Lg are different.

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr ind) cluster(ind)

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) absorb(ind) cluster(ind)

Including the cluster fixed effects changes the coefficient and the two standard errors. Both
commands produce the following regression output:

Regression Output
s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

------+----------------------------------------------------------------
CV1 | -0.020895 0.007086 -2.9487 0.0132 -0.036492 -0.005299
CV3 | -0.020895 0.007931 -2.6345 0.0232 -0.038352 -0.003438

-----------------------------------------------------------------------

However, they produce somewhat different output for cluster variability, as measured by
leverage; see Appendix A.

The option sample allows for sample restrictions. The argument(s) for this option are
whatever would follow the “if” in a standard regress command. For instance, in order
to restrict the analysis to individuals 25 years of age or older in the nlswork example,
sample(age>=25) should be added to the list of options.

The remaining options instruct summclust to print additional output. For the nlswork
example, this output is shown in Appendix A.
jackknife calculates the CV3J standard error and the associated t-statistic, P value, and

confidence interval. These results are displayed in an additional row in the Regression
Output table.

svars prints the alternative means of the Ng, Lg, Lgj, and β(g)
j , as described in Section 6.

For the Ng, Lg, and Lgj, it reports the harmonic, geometric, and quadratic means, as well
as the ratio of each of them to the arithmetic mean. For the β(g)

j , which can be negative,
only the quadratic mean and its ratio are reported, because the harmonic and geometric
means are not defined for negative numbers.
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gstar calculates the effective number of clusters G∗j(0). When there are no cluster fixed
effects, or fixed effects nested within clusters, it also calculates G∗j(1).

rho calculates the effective number of clusters, G∗j(ρ), but only if it is valid to do so. It either
prints G∗j(ρ) in addition to G∗j(0) and G∗j(1), or it reports that G∗j(ρ) cannot be computed
and prints only G∗j(0). This option can be specified with or without also specifying gstar,
and the output will be the same in either case. The value of ρ is specified as rho(ρ),
where ρ must be between 0 and 1. The program stops and displays an error message
when an invalid value of ρ is entered.

table prints a table of the G cluster-specific estimates of Ng, Lg, Lgj, and β(g)
j . If G > 52,

then the unformatted matrix is displayed instead of a table.

9 Empirical Example

We consider an empirical example from Busso and Galiani (2019), which studies an experi-
ment where retail firms were randomly assigned to enter different geographic markets within
the Dominican Republic. Firm entries were assigned across 72 districts, with clustering by
district. After randomization, 21 districts had no entrants and so were in the control group,
18 districts had one entrant, another 18 had two, and the remaining 15 had three. The pri-
mary analysis only distinguishes between the 51 treated districts and the 21 control districts.
The number of observations (stores) per district varies from 20 to 55.

This example is interesting because conventional wisdom (e.g., MacKinnon et al. 2022a)
suggests that, with 72 clusters that do not vary much in size, and with neither few treated nor
few control clusters, inference based on CV1 standard errors and the t(71) distribution should
work well. However, our leverage measures suggest otherwise, and alternative inference
methods yield noticeably different results.

The model we estimate is

Ysd = α + γZd +Xsdβ + εsd. (41)

Here s indexes stores, and d indexes districts. The treatment variable Zd equals 1 if district d
is treated (there was entry) and 0 if it was a control (there was no entry). The coefficient
of interest is γ, which measures the causal effect of increased competition on an outcome Y .
The original paper deals with many outcomes, but we focus on just one of them, the log
of demeaned prices after treatment. The results from this regression are found in Table 5,
Panel B, column 4, row 1 of Busso and Galiani (2019). The table states that there are 72
clusters and 2, 025 observations; however, the replication dataset that we use contains just
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Table 1: Estimates of the Treatment Effect

Method γ̂ Standard Error P value Confidence Interval
CV1 −0.01469 0.00724 0.0461 [−0.02913, −0.00025]
CV3 −0.01469 0.00909 0.1105 [−0.03281, 0.00343]
WCR bootstrap −0.01469 0.0898 [−0.03125, 0.00245]

Notes: There are N = 1, 926 observations and G = 72 clusters. The WCR bootstrap uses B = 999, 999.

Table 2: Leverage and Partial Leverage for γ̂

Statistic Ng Leverage Partial Leverage γ̂(g)

Minimum 20 0.130842 0.000099 −0.017550
First quartile 24 0.204104 0.003166 −0.015089
Median 26 0.235813 0.009001 −0.014791
Mean 26.75 0.263889 0.013889 −0.014663
Third quartile 27 0.292042 0.020926 −0.014070
Maximum 55 0.737797 0.064242 −0.010723
Coef. of variation 0.21 0.388686 1.059813 0.074061

Notes: There are N = 1, 926 observations and G = 72 clusters. The effective numbers of clusters are
G∗γ(0) = 34.16 and G∗γ(1) = 33.33.

1, 926 observations.
Regression (41) includes 17 control variables in the row vector Xsd. These are the first

lag of the outcome variable, the number of retailers in each neighborhood pre-treatment,
a lagged quality index, eight province fixed effects, total neighborhood beneficiaries of a
conditional cash transfer program, percent beneficiaries of that program, average income in
the district, two district education measures, and a binary indicator for the urban status of
the district. Thus the total number of regressors is 19.

The OLS estimate of γ, its CV1 standard error, the P value for a test that γ = 0, and a
.95 confidence interval are shown in the first row of Table 1. Allowing for different numbers
of reported digits, these estimates accord with the ones in Busso and Galiani (2019). The
estimate of −0.01469 has the expected sign (average prices declined). However, the P value
is just slightly less than 0.05, and the confidence interval barely excludes 0.

We next use the summclust package to calculate the cluster-level characteristics of the
model and dataset. Some key ones are reported in Table 2. It is evident that cluster sizes
are well balanced, varying from 20 to 55, with the first and third quartiles equal to 24 and
27. However, both the leverages Lg and the partial leverages Lg1 vary considerably. The
former range from 0.1308 to 0.7378, and the latter from 0.0001 to 0.0642. The coefficients of
variation are 0.3887 and 1.0598, respectively. The latter is moderately large, although not
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enormous. The two values of G∗ are slightly smaller than G/2, which also suggests that the
sample is not well balanced.

Most of the γ̂(g) do not vary much, and thus their coefficient of variation is small. However,
the most extreme values are notable. The estimate of γ, which is −0.01469, could be as
small as −0.01755 or as large as −0.01072 if just one out of 72 clusters were dropped.

These results suggest that CV1, the default CRVE, may not be particularly reliable in
this case. We therefore consider two alternative procedures. The second row of Table 1
reports the CV3 standard error as well as the P value and confidence interval associated with
it, computed using summclust. At 0.1105, the CV3 P value does not even allow us to reject
the null at the .10 level. The third row of Table 1 reports a WCR bootstrap P value and a
.95 confidence interval, both computed using boottest (Roodman et al. 2019). At 0.0898,
the bootstrap P value also does not allow us to reject the null hypothesis at the .05 level.
Of course, both these confidence intervals include 0.

In view of the reasonably large number of clusters and the fact that cluster sizes do not
vary much, the large discrepancy between the results for CV1 and the other two procedures
may seem surprising. However, it is not all that surprising when we note how much the
leverages and, especially, the partial leverages vary.

To explore what is driving the differences in partial leverage, we create a scatter plot.
Figure 2 plots partial leverage against the number of observations per cluster, with different
colors and symbols depending on whether or not a given district (cluster) was treated. The
figure has two interesting features. The first is that the three rather large clusters have fairly
small partial leverage. The second is that the 12 clusters with the highest partial leverage are
all control districts. The first result is quite surprising, since large clusters often tend to have
high leverage. But Figure 2 makes it clear that there is, in general, no simple relationship
between cluster sizes and partial leverage. The second result is not so surprising, because
only 21 out of the 72 clusters are controls. Many of the control clusters presumably have
high partial leverage because control clusters are relatively rare.

10 Concluding Remarks

In modern empirical work, it is very often assumed that the observations belong to a number
of disjoint clusters. No dependence across clusters is allowed, but, as we discuss in Section 2,
there may be arbitrary patterns of heteroskedasticity and correlation within each cluster. In
such cases, the key unit of observation is the cluster. It therefore makes sense to examine
measures of influence, leverage, and partial leverage at the cluster level. As we discuss in
Section 3, these measures are easy to compute and are conceptually very similar to classic
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Figure 2: Partial Leverage vs Cluster Size
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Notes: The figure plots partial leverage against cluster size for 72 clusters. A green X marks a treated
cluster, and an orange circle marks a control cluster.

measures of influence, leverage, and partial leverage at the observation level. In simple cases,
our measures can be obtained theoretically, and studying such cases, as we do in Section 4,
provides some useful insights.

Our measure of influence, which is closely related to the jackknife, can provide valuable
information about how empirical results depend on the data in the various clusters. Inves-
tigators should be wary if dropping one or two clusters changes the results dramatically.

In Section 5, we show how to calculate two jackknife variance matrix estimators, CV3 and
CV3J, very rapidly as a byproduct of our other computations. Although these estimators are
not new (Bell and McCaffrey 2002), they have until recently been difficult or impossible to
compute for large samples. In related work (MacKinnon et al. 2022b), we show that CV3 and
CV3J generally yield extremely similar results, and that they are often much more reliable
than the widely-used CV1 variance matrix estimator. Figure 1 provides additional evidence
on the latter point.

We recommend that our measures of leverage and partial leverage be used as diagnostic
tools to identify datasets and regression designs in which cluster-robust inference is likely
to be challenging. In Section 6, we discuss several ways of summarizing these measures. In
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Section 7, we show that many of these summary statistics, especially the scaled variance of the
partial leverages, can help to explain how well both asymptotic and bootstrap cluster-robust
inference performs when the number of clusters is modest (20 or 30 in our experiments). We
argue that investigators should examine a number of these summary statistics and exercise
caution whenever there seems to be a lot of variation across clusters.

In Section 9, we present an empirical example in which conventional asymptotic inference
based on CV1 seems to work poorly, even though there are 72 clusters that do not vary
much in size, and neither the number of treated clusters nor the number of control clusters
is particularly small. However, since our measures of partial leverage vary quite a lot, with
a coefficient of variation that exceeds one, there is reason to worry about the accuracy of
conventional inferences based on CV1 and the t(71) distribution. In fact, both CV3 and the
WCR bootstrap yield inferences that differ substantially from the conventional ones.

The procedures that we discuss in this paper are implemented in a new Stata package
called summclust, which may be obtained from SSC or https://github.com/mattdwebb/
summclust. A detailed description of the summclust command and its options is given in
Section 8.

A Appendix

Appendix A.1 discusses summclust’s options and their output in more detail than Section 8
did. Appendix A.2 describes where to find the stored results in memory.

A.1 Additional Output

The jackknife option prints out an additional line in the Regression Output table based
on the CV3J standard error.

Regression Output
s.e. | Coeff Sd. Err. t-stat P value CI-lower CI-upper

-------+----------------------------------------------------------------
CV1 | -0.027515 0.009293 -2.9608 0.0130 -0.047969 -0.007061
CV3 | -0.027515 0.014064 -1.9564 0.0763 -0.058470 0.003440

CV3J | -0.027515 0.013925 -1.9760 0.0738 -0.058164 0.003133
------------------------------------------------------------------------

The table option prints out the values of the four quantities Ng, Lg, Lgj, and β
(g)
j for all

clusters. For the example in Section 8, the code is:
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summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) cluster(ind) table

In addition to the two standard tables, this command prints the following table:

Cluster by Cluster Statistics
ind_code | Ng Leverage Partial L. beta no g

-----------+-----------------------------------------------------
1 | 130 0.609953 0.005946 -0.027754
2 | 38 0.093321 0.001622 -0.027775
3 | 185 0.735895 0.009619 -0.027846
4 | 3747 13.687178 0.200637 -0.022575
5 | 1069 3.436310 0.060675 -0.026229
6 | 2912 10.372989 0.150633 -0.030672
7 | 1759 5.090777 0.091233 -0.025721
8 | 572 2.801372 0.027535 -0.029964
9 | 922 3.863913 0.052689 -0.033200

10 | 133 0.424438 0.007678 -0.028587
11 | 6335 20.289182 0.312995 -0.015835
12 | 1328 3.594673 0.078738 -0.026881

-----------------------------------------------------------------

This table makes it easy to see whether the high leverage clusters are also the largest clusters.
That is clearly the case here. After running the program, this table is stored as the Mata
matrix scall.

To obtain summary statistics on the four measures of cluster variability, we can use the
svars option:

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) cluster(ind) svars

This command produces the following table:

Alternative Sample Means and Ratios to Arithmetic Mean
| Ng Leverage Partial L. beta no g

----------------+--------------------------------------------------------
Harmonic Mean | 227.315 0.679104 0.010629 .

Harmonic Ratio | 0.143 0.125373 0.127543 .

32



Geometric Mean | 687.061 2.390709 0.035683 .
Geometric Ratio | 0.431 0.441362 0.428198 .
Quadratic Mean | 2413.502 8.068016 0.123437 0.027245

Quadratic Ratio | 1.514 1.489480 1.481240 -1.012089
-------------------------------------------------------------------------

Once again, we see that there is extreme variability across the clusters. This is particularly
noticeable for the ratio of the harmonic mean to the arithmetic mean, which is between
0.125 and 0.143 for the cluster size, leverage, and partial leverage measures. Recall that
these ratios would be close to one if the clusters were relatively homogeneous. This table is
stored in Mata’s memory as bonus.

To obtain estimates of the effective number of clusters, we can use either the gstar option
or the rho() option. The former prints G∗j(0) and G∗j(1). The latter requires a specified
value of ρ and prints G∗j(0) and G∗j(1) along with G∗j(ρ). For the nlswork example, the first
option could be called as:

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) cluster(ind) gstar

This yields:

Effective Number of Clusters
-----------------------------
G*(0) = 5.469
G*(1) = 1.366
-----------------------------

The second option would be called (using ρ = 0.5 to illustrate) as:

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) cluster(ind) rho(0.5)

This yields:

Effective Number of Clusters
-----------------------------
G*(0) = 5.469
G*(.5) = 1.421
G*(1) = 1.366
-----------------------------
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In this example, it is clear that the effective number of clusters is substantially less than the
actual number of clusters. This provides more evidence that inference using the CV1 standard
error together with the t(G− 1) distribution may be unreliable. These three quantities can
be accessed in Mata’s memory as gstarzero, gstarrho, and gstarone, respectively.

Finally, the following two examples highlight the differences between the fevar and
absorb options. Up to this point, we have only used the fevar option. But suppose that
we wish to control for industry fixed effects. Since the industry fixed effects can be partialed
out on a cluster-by-cluster basis, we can control for them using the absorb option. We could
alternatively use the fevar option, but it will produce different values for leverage. The first
command below uses absorb, and the second one uses fevar.

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr) absorb(ind) cluster(ind)

summclust msp, yvar(ln_wage) xvar(union race) \\\
fevar(grade age birth_yr ind) cluster(ind)

Using the absorb option yields:

Cluster Variability
Statistic | Ng Leverage Partial L. beta no g

-----------+-----------------------------------------------------
min| 38.00 0.087112 0.001561 -0.023382
q1 | 159.00 0.656606 0.008621 -0.022428

median | 995.50 3.442673 0.056073 -0.021258
mean | 1594.17 5.333333 0.083333 -0.020770

q3 | 2335.50 7.605927 0.121546 -0.020189
max | 6335.00 20.011074 0.312377 -0.015001

-----------+-----------------------------------------------------
coefvar | 1.19 1.155829 1.141658 0.120094

In contrast, using the fevar option yields:

Cluster Variability
Statistic | Ng Leverage Partial L. beta no g
-----------+-----------------------------------------------------

min| 38.00 1.087112 0.001561 -0.023382
q1 | 159.00 1.656606 0.008621 -0.022428
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median| 995.50 4.442673 0.056073 -0.021258
mean | 1594.17 6.333333 0.083333 -0.020770

q3| 2335.50 8.605927 0.121546 -0.020189
max| 6335.00 21.011074 0.312377 -0.015001

-----------+-----------------------------------------------------
coefvar | 1.19 0.973329 1.141658 0.120094

Notice that the estimates for partial leverage and the β(g)
j are identical for both options.

However, the leverage estimates are smaller when we use the absorb option. Recall that, for
the original model with no industry fixed effects, the leverages summed to 65. In the first case
just above, where the industry fixed effects are partialed out using absorb, the regression
has 64 coefficients, and the leverages therefore sum to 12 × 5.333333 = 64. In the second
case, where the industry fixed effects are included as regressors in fevar, the regression has
76 coefficients, and the leverages therefore sum to 12×6.333333 = 76. In fact, for the second
case, each of the leverages is larger than the corresponding one for the first case by precisely 1.

A.2 List of Stored Results

All the results that are displayed as output can also be found in Mata’s memory. To access
one of these after running summclust, simply add the following line:

mata: object_name

The object_name can take one of the following values.

cvstuff: This matrix stores the table with the title “Regression Output”. It is 2× 6 when
the jackknife option is not used (the default), and 3× 6 when jackknife is used.

scall: This matrix stores the G×4 table created by the table option with the title “Cluster
by Cluster Statistics”.

bonus: This 6 × 4 matrix contains the alternative sample means and their ratios to the
arithmetic mean created by the svars option.

gstarzero: This scalar contains G∗(0) created by the gstar or rho options.
gstarone: This scalar contains G∗(1) created by the gstar or rho options.
gstarrho: This scalar contains G∗(ρ) created by the rho option.

Scalars within matrices can be referenced on a cell-by-cell basis. For example, the CV3

standard error is stored in the second row and second column of cvstuff, and to display it
one can enter the following command:
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mata: cvstuff[2,2]

Additionally, several results are available as scalars or matrices in return memory using r().
The available scalars are:

beta: The estimate β̂ for the coefficient of interest.
cv1se: The CV1 standard error for the coefficient of interest.
cv1t: The CV1 t-statistic for the coefficient of interest.
cv1p: The P value for the null hypothesis that β = 0 for the coefficient of interest using the

CV1 standard error.
cv1lci: The lower bound of the 95% confidence interval for β using the CV1 standard error.
cv1uci: The upper bound of the 95% confidence interval for β using the CV1 standard error.
gstarzero: The effective number of clusters for the coefficient of interest using ρ = 0.
gstarone: The effective number of clusters for the coefficient of interest using ρ = 1.
gstarrho: The effective number of clusters for the coefficient of interest using the value of

ρ specified in rho(ρ).

The standard error, t-statistic, P value, and confidence interval bounds are also available for
the CV3 and CV3J standard errors. To access these, replace “1” in the above with either “3”
or “3J”; for example, the P value using CV3J is available in cv3Jp.

The available matrices are:

ng: This G× 1 matrix contains the number of observations, Ng, for each cluster.
leverage: This G× 1 matrix contains the leverage, Lg, for each cluster.
partlev: This G× 1 matrix contains the partial leverage, Lgj, for each cluster.
betanog: This G× 1 matrix contains the β(g)

j for each cluster.
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