
MacKinnon, James G.

Working Paper

Using large samples in econometrics

Queen’s Economics Department Working Paper, No. 1482

Provided in Cooperation with:
Queen’s University, Department of Economics (QED)

Suggested Citation: MacKinnon, James G. (2021) : Using large samples in econometrics,
Queen’s Economics Department Working Paper, No. 1482, Queen's University, Department of
Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/260487

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260487
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


QED
Queen’s Economics Department Working Paper No. 1456

Using Large Samples in Econometrics

James G. MacKinnon
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

2-2022
5-2022 (minor revisions)



Using Large Samples in Econometrics∗

James G. MacKinnon†
Queen’s University

mackinno@queensu.ca

May 12, 2022

Abstract

As I demonstrate using evidence from a journal data repository that I manage, the
datasets used in empirical work are getting larger. When we use very large datasets,
it can be dangerous to rely on standard methods for statistical inference. In addition,
we need to worry about computational issues. We must be careful in our choice of
statistical methods and the algorithms used to implement them.
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1 Introduction

As is documented in Section 2, the datasets used in applied econometrics are getting larger.
In many ways, this is a very positive development. However, it has important implications
for both inference (Section 3) and computation (Section 4). Methods that work well for
samples with a few hundred or a few thousand observations may not be suitable for samples
with millions of observations. They may lead to misleading inferences, or they may be
computationally infeasible.

2 Datasets Are Getting Larger

Fifty years ago, almost all of the datasets used in applied econometric work were very small.
Many of them contained annual, quarterly, or monthly time-series data with at most a few
hundred observations. Even for cross-section and panel data, there were rarely more than a
few thousand observations. As the decades have passed, however, datasets with much larger
sample sizes have become available. They include high-frequency time-series data, large
cross-sections such as individual-level census data, panel data that may involve a modest
number of time periods but perhaps millions of individuals, and data for various types of
on-line transactions or other activities. Of course, this list is far from exhaustive.

Since 1994, I have managed the Journal of Applied Econometrics Data Archive. The
authors of all papers published in the journal since that year have been required to deposit
their data in the Data Archive, unless the data are confidential. By observing how the
number of bytes of disk storage per paper has grown over time, we can get a very rough idea
of how much economic datasets have grown.

Each published paper has a unique directory in the JAE Data Archive. I use the total
number of kilobytes (KB) per directory as a measure of how large the dataset(s) associated
with each paper are. This measure is, of course, extremely crude. In addition to data, which
are almost always compressed, a paper’s directory always contains a readme file, and it
may also contain program files and supplementary material of various types. This suggests
that the space per directory may provide an over-estimate. Especially for recent years,
however, these numbers almost certainly understate the average size of actual datasets. The
reason is that many papers use at least some data that cannot legally be stored in the Data
Archive. Administrative datasets, which tend to be quite large, can very rarely be stored
there. Neither can proprietary datasets from commercial providers. In recent years, about
one-third of all papers have used confidential data of one sort or another.

Figure 1 shows the number of KB of disk storage per paper, on a logarithmic scale, in
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Figure 1: Average Disk Space per Paper in JAE Data Archive
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the form of two overlapping bars for each of eight time periods. The most recent period
includes all forthcoming papers as of early January, 2022. The taller bars include the disk
space used by all papers, and the shorter bars omit the space taken by the single largest
paper for each time period. When these outliers are removed, we observe that the shorter
bars increase monotonically in height. Thus there is absolutely no indication that the rate
of increase is slowing down. On average, a paper from 2021-22 uses about 363 times as much
disk space as a paper from 1988-96. This number would be larger if we could correct for
missing confidential datasets. However, sample sizes have probably not grown as fast as disk
storage, because larger samples often involve larger numbers of variables.

3 Are Larger Samples Always Better?

Since many estimators are
√
N -consistent, where N is the sample size, it is tempting to think

that problems of inference become negligible when the sample size becomes sufficiently large.
This is not always true, however. In fact, I suspect that it is rarely true. The fundamental
problem is that the disturbances in the models we estimate are not totally uncorrelated.
Assuming that they are uncorrelated may be a very good approximation when N = 100, but
not when N = 10, 000, 000.
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To illustrate the problem, consider the sample mean ȳ = N−1 ∑n
i=1 yi. The usual formula

for its variance is
Var(ȳ) = 1

N
σ2, (1)

where σ2 denotes either Var(yi), when there is homoskedasticity, or the limit of the average
of the Var(yi), when there may be heteroskedasticity. Under typical regularity conditions,
(1) implies that ȳ− µy = Op(N−1/2), where µy is the population mean. But this equation is
true only if the yi are completely uncorrelated. With even a very small amount of correlation,
it is too optimistic.

A more general formula for the variance of the sample mean is

Var(ȳ) = 1
N2

N∑
i=1

Var(yi) + 2
N2

N∑
i=1

N∑
j=i+1

Cov(yi, yj). (2)

If all the Cov(yi, yj) are zero, then only the first term in (2) is non-zero, and it equals (1).
This term is O(1/N). But if the Cov(yi, yj) are on average positive, then the second term
is O(1), because it involves two summations over N , as well as a factor of 1/N2. Thus, as
N becomes large, the second term becomes dominant. Depending on what happens to the
Cov(yi, yj) as N → ∞, ȳ either does not converge at all, or it converges more slowly than
N−1/2. Andrews (2005) studies an important case in which it does not converge.

For many types of sample data, it seems unrealistic to assume that all correlations among
the observations vanish asymptotically. In fact, non-vanishing correlations can arise in a
great many ways. For example, when there is spatial correlation, the observations generally
do not become further apart in space as N increases, so that adding additional observations
cannot be expected to cause the average correlation among them to diminish. Similarly,
with panel data, there are usually both correlations among cross-section units for each time
period, and correlations across time periods for the same cross-section units. Asymptotic
results often depend on both T , the number of time periods, and Nt, the number of units
for the tth time period, becoming large. Although samples with very large values of the Nt

are becoming common, ones that also have T very large are exceedingly rare. Thus, even
very large panels will almost always involve complicated patterns of correlation among non-
vanishing subsets of the observations. Although including time fixed effects, and maybe also
cross-section fixed effects, almost certainly reduces these correlations, it seems unlikely that
it entirely eliminates them.

One increasingly popular way to deal with correlated observations is to assume that every
observation belongs to one of G disjoint clusters. These might correspond to schools or school
districts; villages, towns, or cities; counties or states; firms or industries; and so on. The
clusters may be small or large. Inference is then based on the assumption that the products
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of the regressors and the disturbances (the scores) are correlated within clusters, with an
unspecified pattern of variances and covariances, but uncorrelated across clusters. Note that
the required lack of correlation across clusters can arise either because the disturbances are
uncorrelated across them or because the regressors are. For example, a treatment regressor
might be uncorrelated across clusters if treatment were randomly assigned at the cluster level.

Assigning observations to disjoint clusters is often used as a way to approximate the
effects of spatial correlation. As an approximation, it is surely imperfect, since there seems
very likely to be correlations among observations in neighboring clusters. If they exist,
these correlations must cause errors of inference for sufficiently large samples. Nevertheless,
clustering by geographic units often seems to work well.

In an influential paper, Bertrand, Duflo and Mullainathan (2004) provide evidence that,
in linear regression models with both time and state fixed effects, clustering by geographic
unit (U.S. states) performs quite well, while clustering by the intersection of geographic
unit and time period performs poorly, and not clustering at all performs even worse. This
conclusion is based on “placebo-law” experiments, which use actual data from the Current
Population Survey for the regressand and all but one of the regressors. The latter is a
treatment dummy variable, similar to the ones in difference-in-differences regressions, which
is generated randomly for each replication. Because the treatment dummy is a completely
artificial variable, the hypothesis that its coefficient is zero should be rejected about 5% of
the time by tests at the .05 level. In the experiments, this is close to being true only for
state-level clustering.

MacKinnon (2016) performs a more extensive set of placebo-law experiments based on
similar data. The results vary dramatically with the sample size. When the full sample
of about 1.16 million observations is used, failing to allow for any level of clustering leads
to rejection percentages of up to 75% for tests at the .05 level, depending on how many
states are “treated.” But as the sample size is reduced, the extent of over-rejection declines.
With subsamples of about 58, 000 observations (1/20 of the original sample), the rejection
percentages without clustering never exceed 22.4%. A similar, but somewhat less extreme,
pattern of over-rejection that increases with the sample size is observed when the standard
errors are clustered at the state-year level. However, no such pattern is observed for state-
level clustering, which works quite well for samples of any size. Thus, at least for these CPS
data, there seems to be strong evidence that clustering at anything less than the state level
leads to errors of inference which become more severe as the sample size increases.

Dividing the samples into clusters and using cluster-robust inference can work very well
when the number of clusters G is large and the clusters are well balanced, but it can work
dreadfully either whenG is small or when the clusters are unbalanced. In particular, inference
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can be extremely problematical when there are few treated clusters, even if both G and
N are large; see Djogbenou, MacKinnon and Nielsen (2019) and MacKinnon and Webb
(2017, 2018). In such cases, increasing the sample size while holding G fixed does not make
inference more reliable. In general, even having an extremely large sample size does not
ensure reliable inference when the data are clustered.

Instead of one-way clustering, it is possible to employ two-way (or three-way, or even
more-way) clustering, as proposed in Cameron, Gelbach and Miller (2011). Multi-way clus-
tering can approximate a much wider range of correlation structures than one-way cluster-
ing can. However, it involves both theoretical and practical complications; see Davezies,
D’Haultfœuille and Guyonvarch (2021), Menzel (2021), and MacKinnon, Nielsen and Webb
(2021). Even when multi-way clustering provides a good approximation, obtaining reliable
inferences can be challenging.

4 Computational Issues

In the early days of econometrics, a computer was a person equipped with a Friden or Monroe
calculator. Needless to say, econometricians cared deeply about efficient computation. The
famous result of Frisch and Waugh (1933), that what we now call “partialing out” the
regressors which are not of intrinsic interest does not affect the coefficients or standard errors
of the remaining regressors, was entirely motivated by computational considerations.

Between the early 1960s and the mid to late 1980s, econometricians primarily used main-
frames or perhaps (from the mid 1970s) mini-computers. These had very limited amounts
of memory by modern standards, and users often had to pay for CPU time. Thus econome-
tricians still cared about efficient computation.

However, once it became feasible to perform most econometric computations on personal
computers, roughly in the late 1980s, econometricians started to think of computing time as
free. Figure 1 suggests that the size of the average dataset increased by a factor of perhaps
25 between 1990 and 2010. But the speed of personal computers increased by far more than
that during the same period. Thus the importance of efficient computation diminished.

In recent years, however, many interesting datasets seem to be becoming larger more
quickly than computers are becoming faster. Moreover, much of the increase in speed over
the past decade has come from increasing the number of cores per processor. For large
samples, doubling the number of cores often does not translate into doubling the speed of
computation, because of cache congestion and constraints on how fast main memory can be
accessed. Thus, at least for the very large datasets that econometricians are increasingly
using, efficient computation has become important again.
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Writing numerical programs so that the calculations are performed efficiently for large
samples is often not hard. The key thing is to avoid any computations which are O(N δ)
for δ >> 1. In particular, any algorithm that involves computations which are O(N2) will
become impractical for sufficiently large N , and any algorithm that requires storing matrices
which are O(N2) will fail for sufficiently large N . In the latter case, N does not have to be
all that large by modern standards. Storing an N × N matrix in 64-bit precision requires
8 × 1012 bytes, or about 7450 gigabytes, when N equals one million. But few personal
computers currently have more than 64 gigabytes of main memory.

As an example, consider an OLS regression with N observations and k regressors. There
are two common ways to run such a regression. One is to use a QR decomposition, and the
other is to form the X>X matrix, call a procedure for inverting positive definite matrices,
such as a Cholesky decomposition, and then multiply (X>X)−1 byX>y. In either case, the
principal calculations are O(k2N), so that either algorithm is feasible for very large samples,
provided that k is fixed or at least is growing much more slowly than N .

It is wise to avoid computational methods that are O(N2) when N may be large, and it
is essential to avoid storing N × N matrices. However, econometricians do not always pay
sufficient attention to these issues. Consider the projection matrix PX = X(X>X)−1X>

and its orthogonal complement MX = I − PX . These are N × N matrices. Although PX ,
MX , and other projection matrices are enormously useful in econometric theory, they should
not be used for computation except in very rare cases. For example, although it is convenient
to write the sum of squared residuals as y>MXy, it is enormously faster to compute it as
(y −Xβ̂)>(y −Xβ̂) after the least-squares estimates β̂ have been obtained. Computing
the SSR in this way requires additional computations that are O((k + 1)N).

It may seem that bootstrap methods are infeasible whenever N is large, because the
computational cost of bootstrapping is often O(NB), where B is the number of bootstrap
samples. However, there are important cases where bootstrap methods can be surprisingly
inexpensive. For linear regression models with clustered disturbances, the cost of the wild
cluster bootstrap (Cameron, Gelbach and Miller 2008) can be either O(k2N) + O(BG2) or
O(k2N) + O(k2BG), depending on what algorithm is used. The trick is to perform all the
computations that areO(N) before the bootstrap loop begins, and then to generate bootstrap
samples at the cluster level instead of the individual level. For details, see Roodman, Mac-
Kinnon, Nielsen and Webb (2019) and MacKinnon (2022).

Similarly, while methods that apply the jackknife at the observation level generally involve
computations that are O(N2), tricks like the one employed in MacKinnon and White (1985)
to obtain a jackknife covariance matrix estimator for linear regression models can sometimes
reduce this to O(N). Moreover, when the jackknife is applied to a linear regression model at
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the cluster level, MacKinnon, Nielsen and Webb (2022) shows how to make the computations
just O(k2N)+O(k2G). The first term here is the same as for OLS estimation, and the second
term is typically much smaller than the first unless G/N is large. Thus, for large values of
N and small to moderate values of G, the additional cost of jackknifing at the cluster level
is negligible.

5 Concluding Remarks

In Section 2, I provided some evidence to support the unsurprising stylized fact that the
samples used in applied econometric work are becoming larger. Figure 1 suggests that this
trend has been under way for more than a quarter of a century and that it shows no signs of
slowing down. I then pointed out that dealing with very large samples raises two important,
and often neglected, issues. In Section 3, I argued that obtaining reliable inferences in very
large samples may actually be harder than obtaining them in samples of moderate size.
In Section 4, I briefly discussed econometric computation, which often receives insufficient
attention. For small samples, it may not matter much whether the computational demands
of a procedure are O(N) or O(N2). But for large samples, it can make the difference between
calculations that are easy and calculations that are infeasible.
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