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The Swing Voter’s Curse in Social Networks∗

Berno Buechel† & Lydia Mechtenberg‡

September 16, 2015

Abstract

We study private communication between jury members who have to de-
cide between two policies in a majority vote. While interests of all agents are
perfectly aligned, only some agents (“experts”) receive a private noisy signal
about which policy is correct. Each expert can, but need not, recommend
a policy to her audience of “non-experts” prior to the vote. We show theo-
retically and empirically that communication can undermine (informational)
efficiency of the vote and hence reduce welfare. Both efficiency and stability
of communication hinge on the structure of the communication network. If
some experts have distinctly larger audiences than others, non-experts should
not follow their voting recommendation. We test the model in a lab experi-
ment and find supporting evidence for this effect and, more generally, for the
importance of the network structure.

JEL-Code: D72, D83, D85, C91.

Keywords: Strategic Voting, Social Networks, Majority Rule, Swing Voter’s Curse,
Information Aggregation, Information Transmission

1 Introduction

Consider a number of voters with common interests who, without knowing the true
state of the world, have to decide in a majority vote which of two alternative policies
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is the “right” one. For instance, a jury has to decide whether to convict or acquit
a defendant; or a parliament aiming at protecting their country from a potential
aggressor has to decide whether imposing economic sanctions on the latter is help-
ing them to do so. There are informed and uninformed voters. Informed voters
(experts) have imperfect private information indicating the right policy; uninformed
voters (non-experts) only know that both policies are equally likely to be correct.
Their lack of information may be due to time constraints or the fact that a specific
education is needed to understand the issue at hand. Hence, the decision must be
made by experts and non-experts together. Assume now that prior to the vote, some
of the experts get the opportunity to privately speak to some of the non-experts.
Do the experts have an incentive to reveal to the non-experts which policy their
information indicates as the “right” one? And do the non-experts have an incen-
tive to follow their recommendation in the vote? How does such communication
affect the information aggregation achieved in the majority vote? We show that,
perhaps contrary to intuition, such communication between experts and non-experts
reduces the informational efficiency of the voting outcome for certain structures of
the communication network, and that this holds true both theoretically and in the
lab. Hence, we analyze private communication in a standard context of jury decision
making and show that it often undermines the quality of the collective decision.

Jury decision making has been prominently analyzed by the Marquis de Con-
dorcet (De Caritat, 1785), Austen-Smith and Banks (1996), and Feddersen and
Pesendorfer (1996, 1997, 1998). In the absence of communication, Feddersen and
Pesendorfer (1996) find that it is optimal for rational voters with common inter-
ests and imperfect knowledge about the state of the world to abstain if they are
uninformed and to vote in line with their independent private signal if they are in-
formed.1 To understand this result, notice that a vote matters only if it is pivotal.
Hence, a strategic voter conditions his considerations about whether – and what –
to vote on his own pivotality. Taking into account the strategies of the other voters,
the uninformed voter concludes that his vote is more likely to be pivotal if it goes
into the wrong direction, i.e. against the majority of the informed votes. Hence,
conditional on pivotality, an uninformed vote is more likely to be wrong than correct.
It is therefore optimal for the uninformed voter to delegate the collective decision to
the informed voters by abstaining from voting himself. By contrast, the informed
voter is always more likely to vote in line with the majority of the other informed
voters, given that all informed voters cast their ballot in accordance with their pri-
vate information. Hence, the informed voter concludes that her vote is more likely
to be correct than wrong, and that it is optimal for her to “vote her signal.” Since
Feddersen’s and Pesendorfer’s ingenious contribution, the finding that uninformed
jury members are better off abstaining from the vote has been dubbed the swing
voter’s curse. More generally, a voter is “cursed” if his optimal strategy conditional
on his pivotality differs from what he would deem optimal if he did not condition
his strategy on being pivotal, i.e. what he would choose as a dictator.

Addressing the question initially raised by the Marquis de Condorcet (De Cari-

1If one deviates from the assumption of common interests by introducing a number of “parti-
sans” who always vote into a pre-specified direction, then abstention does no longer need to be the
optimal strategy of the uninformed voters.
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tat, 1785), namely how to achieve informational efficiency in a vote, the literature on
jury decision making has found that majority votes aggregate private independent
information efficiently under standard conditions (i.e. voters have a prior belief of
one half and equal precision of signals) if voters have common interests and either
behave strategically, i.e., condition on their pivotality, or vote sincerely, i.e. cast
their vote for the alternative that yields the highest expected utility given their
private information (Austen-Smith and Banks, 1996, Theorem 1). Hence, in a com-
mon interest setting with majority voting, the equilibrium in which uninformed
voters abstain and informed voters “vote their signal” also exhibits (informational)
efficiency. In their experimental study of the model of Feddersen and Pesendorfer
(1996), Battaglini, Morton, and Palfrey (2010) find that this equilibrium provides
a good prediction for real behavior. Morton and Tyran (2011) have extended the
model of Feddersen and Pesendorfer (1996) to include heterogeneity in information
quality among the informed voters and found that less well informed voters generally
tend to abstain and delegate the collective decision to the better informed voters.
Hence, the tendency to “delegate to the expert” seems quite strong in the lab. This
suggests that the “let the experts decide” equilibrium might be a good prediction
even in more general models of information aggregation by majority votes.

However, this conjecture hinges on the assumption that all participating voters
enter the majority vote with independent private pieces of information – which is
fulfilled in the standard model of jury decision making.2 But the picture becomes
more complicated when a mechanism is introduced that leads to correlated infor-
mation among voters. To our knowledge, the existing literature on jury decision
making has considered two such mechanisms: Public communication (deliberation),
and public signals.3 Gerardi and Yariv (2007) show that introducing public com-
munication prior to the vote does not change the degree of information aggregation
in the (sequential) equilibria of the model. Intuitively, the information aggregation
that the vote would achieve in the standard model is only shifted up the game tree
and is now obtained in the communication stage already. Goeree and Yariv (2011)
validate this insight experimentally. By contrast, introducing a public signal on the
state of the world prior to the vote changes the picture dramatically. Kawamura
and Vlaseros (2013) find that the presence of a public signal generates a new class
of equilibria in which voters discard their private information in favor of the pub-
lic signal and information aggregation is inefficient, even if voters condition their
strategy on their pivotality.

To our knowledge, we are the first to introduce a third way of correlating voters’

2Levy and Razin (2015) provide a model on informed voting which includes heterogeneous
preferences among voters, different sources of information for each voter and voters who neglect
the correlation between their information sources. They show that correlation neglect may improve
the informational efficiency of the vote since it makes voters put more weight on information than
on the conflict of interest. As the the standard model of informed voting with common interests,
their model assumes that information remains uncorrelated across different voters.

3In a recent theory paper, Battaglini (2015) allows for communication between citizens in
separate audiences so that information becomes correlated among the citizens in one audience.
However, in his model, citizens cannot vote on policies directly but coordinate on public protest
instead, potentially signing a petition against the policy maker’s default policy. Battaglini shows
that communication in social media can improve information aggregation and transmission via
public protests.
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information into the standard model of jury decision making: private communica-
tion between informed and uninformed jury members.4 We show that the way in
which private communication affects information aggregation is closer to the effects
of a public signal than to the effects of public communication: Although efficient
equilibria always exist, there are also equilibria in which information is inefficiently
aggregated. Intuitively, if experts give voting recommendations to non-experts, and
if the other non-experts follow their recommendation, then it might be optimal for
a given non-expert also to follow the recommendation of “his” expert to offset the
“enlarged” voting weights of the other experts. This behavior efficiently aggregates
information in some networks, namely if the experts’ audiences are highly similar
in size. However, if the network structure is more unbalanced in the sense of some
experts having larger audiences than others, then it is possible that experts adhering
to the – wrong – minority opinion nevertheless win the election due to their many
“followers” who vote in line with their recommendation. In such cases, information
is inefficiently aggregated. The general problem in this setting is that private com-
munication between experts and non-experts can correlate the information among
voters without already aggregating it prior to the vote. In this respect, the effects
of private communication differ from those of public communication but less from
the effects of public signals.

The degree of the informational inefficiency caused by private communication
depends on the structure of the social network linking experts to non-experts. We
study communication networks in which experts give private voting recommenda-
tions to non-experts and each non-expert listens to only one expert. Nature draws
the binary state of the world and the imperfect but informative signals on it that
the experts receive. Both states of the world are equally likely. Each expert receives
only one signal, and signals are independent across experts. Some experts have
audiences of one or more uninformed voters and can send one out of two possible
messages to their audience or keep silent. Each audience receives only one message
at most. Then, a vote takes place to decide which of two possible policies shall
be implemented. Only the policy matching the true state of the world generates a
strictly positive payoff for all individuals (the other policy generates a zero payoff for
everyone). Experts and non-experts individually and simultaneously decide between
voting for one or the other policy and abstaining. Voting is costless.5 The policy
that gets a simple majority of votes is implemented. In case the voting outcome is
a tie, the policy to be implemented is randomly drawn, where both policies have
equal probability.

4Bloch, Demange, Kranton, et al. (2014) also allow for private communication between informed
and uninformed voters and investigate how the network structure affects information aggregation
and voting outcomes. However, in their model there is only one informed but potentially biased
voter who sends a truthful or intentionally wrong message, the other voters only decide whether
or not to pass this message on to their neighbors. The authors show that high numbers and / or
intense clustering of biased agents make it less likely that a biased agent can convince the electorate
to vote in his interest.

5With costs of voting, the pivot probability which might change across equilibria in different
networks would affect the willingness to abstain. Since we want to isolate the effects of communi-
cation on voting behavior, we abstract from voting costs. This is also a convention in the literature
on jury voting. In the lab, costless voting makes the “willingness to delegate to the expert” harder
to find and hence more surprising.
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We show that in the networks enabling (some) experts to speak to a non-expert
audience, information aggregation through voting becomes inefficient if (i) informa-
tion transmission occurs prior to the vote and non-experts vote in line with their
policy recommendation, and (ii) the degree distribution in the communication net-
work is too unbalanced in the sense that some experts talk to many non-experts
while the other experts have only relatively small audiences. Hence, in highly un-
balanced networks, e.g., in a network with a star component, the non-experts would
want to abstain or vote the opposite rather than follow a voting recommendation
of an overly powerful opinion leader. This is due to a new type of the swing voter’s
curse: Following the recommendation to vote for a certain alternative is reasonable
(because the recommendation is more likely to be true than the opposite), but sub-
optimal when the own vote makes the difference. Consider an opinion leader who is
so powerful that a large part of the voting population follows her recommendation.
Being pivotal with a vote that follows her recommendation implies that many voters
from the rest of the population voted for the opposite, which implies, in turn, that
they had information contradicting the opinion leader’s recommendation. Hence,
conditioning on pivotality, it is more likely that the voting recommendation of the
opinion leader is wrong rather than correct. More generally, in highly unbalanced
networks following the voting recommendation is neither informationally efficient
nor equilibrium behavior. We theoretically find that voting equilibria are character-
ized by informational efficiency if the communication network is sufficiently balanced
or sufficiently unbalanced. For “mildly unbalanced” communication networks there
are informationally inefficient voting equilibria with information transmission.

Testing our theoretical predictions in a lab experiment, we find that uninformed
voters are indeed more inclined to abstain when they listen to an overly powerful
opinion leader, but that abstention still occurs too rarely to prevent a loss in informa-
tional efficiency induced by highly unbalanced communication. In the experiment,
the loss in informational efficiency is the larger, the more unbalanced the commu-
nication network becomes. Intuitively, the more unbalanced the network structure,
the less balanced is power such that the final outcome is determined by the message
of a few agents, in contrast to Condorcet’s original idea of aggregating information
in a large population.

2 The Model

Nature draws one state of the world, ω, which has two possible realizations, A

and B, that occur with equal probability and are not directly observable. There
is a finite set of agents partitioned into a group of experts M and a group of non-
experts N . Experts j ∈ M receive a private independent signal sj ∈ {A∗, B∗}
about the true state of the world. The signal is imperfectly informative with quality
p = Pr {sj = A∗ | ω = A} = Pr {sj = B∗ | ω = B} ∈

(

1
2
, 1
)

. Non-experts i ∈ N

do not receive a signal, but can potentially receive a message from an expert. A
bipartite graph g, consisting of links (i, j) ⊆ N ×M , represents the communication
structure between non-experts and experts. The degree di is the number of links of
agent i. An expert j with dj > 1 is called sender and all non-experts linked to j
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are called the “audience of j.” Different audiences do not overlap, i.e. the degree of
each non-expert is at most one, and the network structure is common knowledge.6

After receiving the signal, each sender may send message “A” or message “B” or
an empty message ∅ to her audience. Then, all agents simultaneously participate in a
majority vote the outcome of which determines which of two alternative policies, PA

or PB, shall be implemented. Voters simultaneously vote for one of the two policies
or abstain. If one policy obtains a simple majority of votes, it is implemented;
otherwise, the policy to be chosen is randomly drawn with equal probability from
the two alternatives.

All agents have the same preferences: They want the policy to match the state
of the world. More precisely, their utility is u(PA|A) = u(PB|B) = 1 and u(PB|A) =
u(PA|B) = 0.

The sequence of actions is as follows. First, nature draws the state of the world
and the signals of the experts. Second, each sender decides which message to
communicate to her audience, if any. Third, all agents vote or abstain and the
outcome is determined by the simple majority rule. Hence, strategies are defined
as follows: A communication and voting strategy σj of a sender j ∈ M defines
which message to send and whether and how to vote for each signal received, i.e.
σj : {A∗, B∗} → {A,B, ∅} × {A,B, ∅} if dj ≥ 1 and σj : {A∗, B∗} → {A,B, ∅} if
dj = 0. A voting strategy of a non-expert i ∈ N with a link is a mapping from
the set of messages into the voting action σi : {A,B, ∅} → {A,B, ∅}, and a voting
strategy of an agent i ∈ N without a link is simply a voting action σi ∈ {A,B, ∅}.
A strategy profile σ consists of all experts’ and all non-experts’ strategies.

We analyze this model using the concept of perfect Bayesian equilibrium, i.e.,
agents use sequentially rational strategies, given their beliefs, and beliefs are updated
according to Bayes’ rule whenever possible. Equilibrium analysis is restricted to
symmetric pure-strategy equilibria.

Note that if all non-experts in a given audience do not condition their voting
action on the message received, then the outcome of the game is as if communication
was not possible at all (“babbling equilibrium”). Similarly, if all non-experts in a
given audience vote B if the message is A and vote A if the message is B, then
the outcome of the game is as if their sender has chosen another communication
strategy, where messages A and B are permuted (“mirror equilibria”). We will not
differentiate between mirror equilibria, i.e. on the basis of the syntax of information
transmission. Instead, we will identify equilibria via the semantics of information
transmission, i.e. on the basis of the meanings that messages acquire in equilibrium.7

A desirable property of an equilibrium is informational efficiency which is defined
as follows:

Definition 1. A strategy profile σ is efficient if it maximizes the probability of the
implemented policy matching the true state of the world. Equivalently, a strategy

6Under these assumptions on the network structure – being bipartite and admitting each non-
expert to have at most one link – no agent can access more than one piece of information. This
assures that information aggregation can only take place in the voting stage but not in the com-
munication stage. We currently work on an extension of the model that yields insights into the
general case where this assumption is relaxed.

7This is standard in the cheap talk literature.
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profile σ is efficient if it maximizes the sum of expected utilities of all experts and
non-experts.

Let us call the signal that has been received by most experts the majority signal.
In our model, an efficient strategy profile is characterized by always implementing
the policy indicated by the majority signal.8 For convenience, we let the number of
experts m := |M | be odd such that there is always a unique majority signal indicat-
ing the policy that should be implemented.9 While the definition of informational
efficiency above is binary, strategy profiles can also be ranked according to their
informational efficiency by comparing their corresponding probabilities of matching
the true state.

Hereafter, we will slightly misuse notation by using “A” and “B” to denote
the corresponding state of the world, signal content, message content, and policy,
whenever the context prevents confusion.

2.1 Let the Experts Decide

One important feature of the model is that informational efficiency can always be
obtained in equilibrium, regardless of the network structure. Consider for instance
the strategy profile σ∗ in which all experts vote their signal and all non-experts
abstain. Under the simple majority rule this “let the experts decide” strategy profile
σ∗ is efficient since for any draw of nature the signal received by a majority of experts
is implemented. Moreover, because preferences are homogeneous, efficient strategy
profiles do not only maximize the sum of utilities, but also each individual agent’s
utility. Thus, there is no room for improvement, as already argued in McLennan
(1998).

Proposition 1. There exist efficient equilibria for any network structure. For in-
stance, the “let the experts decide” strategy profile σ∗ is efficient and an equilibrium
for any network structure.

Importantly, while efficient strategies constitute an equilibrium, the reverse does
not hold true: Existence of an equilibrium does not imply that it is efficient. On the
contrary, there are (trivial and non-trivial) inefficient equilibria of the game. One
non-trivial inefficient equilibrium will be discussed as Example 3 below.

Among the efficient equilibria, we consider the “let the experts decide” equilib-
rium σ∗ focal for two reasons. First, it is symmetric: Agents of one type all use the
same strategy. Second, it is intuitive to abstain as a non-expert and to vote one’s
signal as an expert, as already argued, e.g., by Feddersen and Pesendorfer (1996).
However, since it is also intuitive for experts to send informative messages and for
receivers to vote their messages, it may nonetheless be difficult to coordinate on this

8Given efficient strategy profiles, the probability of matching the true state is maximized but
not equal to one because it might always happen by chance that most experts receive the wrong
signal. Letting the number of experts grow, this probability approaches one as in Condorcet’s Jury
Theorem.

9Admitting an even number of experts would not change the results qualitatively, but it would
make the analysis cumbersome because more cases had to be distinguished.
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equilibrium. In particular, consider the strategy profile σ̂ in which experts commu-
nicate and vote their signal and non-experts vote their message and abstain if they
did not receive any information. This strategy profile σ̂ is sincere in the sense that
each agent communicates and votes the alternative that she considers as most likely
given her private information.10 We now proceed by investigating conditions under
which the sincere strategy profile is an equilibrium.

2.2 Sincere Voting

The following proposition characterizes under which conditions on the network struc-
ture the sincere strategy profile σ̂ is an equilibrium and how the network structure
affects the extent to which σ̂ aggregates the experts’ information efficiently.

Proposition 2. Let m = |M | ≥ 5, and let m be odd. Let the number of links
l :=

∑m

i=1 di be even and order the degree distribution in M in decreasing order
(d1, d2, ..., dm) such that dj ≥ dj+1. The sincere strategy profile σ̂ is an equilibrium

if (a) d1 +
∑

m−1

2

j=2 dj ≤
l
2
, and only if either (b) d1 +

∑m

k=m+5

2

dk ≤ l
2
or there is an

agent who is never pivotal. The sincere strategy profile σ̂ is efficient if and only if
condition (a) is satisfied.

The two conditions can be interpreted in terms of a sender’s “power” that man-
ifests itself in the size of her audience di. The sufficient condition (a) says that at
most half of the links may be concentrated on the most powerful sender and the m−3

2

most powerful other senders; while the necessary condition (b) says that at most
half of the links may be concentrated on the most powerful sender and the m−3

2
least

powerful senders. We call networks that satisfy condition (a) “strongly balanced”
and networks that satisfy condition (b) “weakly balanced.”

Strong balancedness and hence the sufficient condition (a) in Proposition 2 is
illustrated in the following example.

Example 1 (strongly balanced). Let n = 4, m = 5, and the degree distribution of
experts (d1, d2, d3, d4, d5) = (1, 1, 1, 1, 0) as illustrated in the left panel of Figure 1.
This network is strongly balanced (since d1+d2 ≤

l
2
which is 2 ≤ 2). By Proposition 2

the sincere strategy profile σ̂ is efficient and an equilibrium.

Observe in the example that under the sincere strategy profile σ̂ any three experts
who vote and communicate the same alternative determine the final outcome. Thus,
for any draw of nature the policy indicated by the majority signal is implemented,
which means that information is aggregated efficiently.

Strong balancedness is a very strong condition on the equality of the degree
distribution requiring that almost all experts have the same degree. In the proof of
Proposition 2 we show that strong balancedness is not only equivalent to efficiency
of the sincere strategy profile σ̂, but also equivalent to the following property of
σ̂: The hypothetical outcome of a vote in which the experts M alone participate

10The “let the experts decide” strategy profile σ∗, in contrast, is not “fully sincere” for the
following reason. The aspect that information is not transmitted either means that senders do not
communicate their signal or that receivers do not follow their message.
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coincides with the outcome of voting in the entire society M ∪N for any realization
of the draws of nature (cf. Lemma B.1).

To see the intuition for this equivalence interpret the votes of all non-experts that
form an audience of some sender j as copies of his vote. Consider first the extreme
case when all audiences are of the exact same size d. Then the voting outcome
restricted to the experts must equal the voting outcome in the society since the effect
of the additional non-expert votes is as if d copies of each sender’s vote would be
added. Slightly perturbing the degree distribution does not change this observation
as long as the most powerful minority of experts, i.e. those with degrees d1, ..., dm−1

2

,

cannot determine the outcome against the votes of the remaining majority, i.e. those
with degrees dm−1

2

, ..., dm. Strong balancedness of a network simply incorporates

this condition such that the outcome of voting (under the sincere strategy profile
σ̂) is as if the votes of all non-experts were ignored. To better understand the
equivalence of strong balancedness and efficiency of the sincere strategy profile σ̂

note that in a strongly balanced network the outcome of the sincere strategy profile
σ̂ coincides with the outcome of the “let the experts decide” strategy profile σ∗,
which is efficient. Finally, since any efficient strategy profile is an equilibrium, we
get that strong balancedness of the network is sufficient for the sincere strategy
profile σ̂ to be an equilibrium.

Consider now weak balancedness, which is condition (b) in Proposition 2. The
proposition states that if all players can be pivotal under the sincere strategy profile
σ̂, then weak balancedness is a necessary condition for σ̂ to be an equilibrium. Neces-
sity can be illustrated with an example of a network that violates weak balancedness
when showing that σ̂ is not an equilibrium. Networks violating weak balancedness
also violate strong balancedness and will be called “unbalanced” hereafter.

Example 2 (star). Let n = 4, m = 5, and the degree distribution of experts
(d1, d2, d3, d4, d5) = (4, 0, 0, 0, 0) as illustrated in the right panel of Figure 1. This
network violates weak balancedness (b) (since d1+d5 6≤

l
2
which is 4 6≤ 2) and there-

fore also strong balancedness. Hence, by Proposition 2 the sincere strategy profile
σ̂ is neither efficient, nor an equilibrium (every voter is pivotal for some draw of
nature).

To see why σ̂ is inefficient in the example, consider a draw of nature by which the
most powerful expert, i.e. the expert with the highest degree, receives the minority
signal. Assume now, for the sake of argument, that the sincere strategy profile σ̂

is played. In this case the minority signal determines which policy is implemented;
information is hence aggregated inefficiently. To see why σ̂ is no equilibrium, con-
sider the following two deviation incentives. First, the most powerful expert would
want to deviate to not communicating, but still voting, her signal. This would lead
to an efficient strategy profile of the “let the experts decide” type. Second, the
non-experts, too, can improve by deviating. In particular, consider a non-expert
receiving message A. His posterior belief that A is true is pi(A|A) = p > 1

2
. How-

ever, his posterior belief that A is true, given that he is pivotal, is pi(A|A, piv) <
1
2

because in this simple example pivotality only occurs when all other experts have
received signal B. Thus, abstention or voting the opposite of the message is a strict
improvement for any non-expert.

9



Figure 1

Figure 1: Left: Example 1, which is a network satisfying strong balancedness. Right: Example 2,
the star network, which is an unbalanced network.

Example 2 illustrates the swing voter’s curse in an extremely simple setting of our
model. The argument, however, is much more general. Assume that all agents play
according to the sincere strategy profile σ̂ and consider the receivers who belong to
the largest audience. These receivers know that their sender is very powerful. Hence,
if they are pivotal in the vote, this implies that a considerable number among the
other experts must have got a signal that contradicts the message they received.
Thus, if following the message has any effect on the outcome, it has most likely a
detrimental effect. If a receiver in the largest audience realizes that he is “cursed”
in this sense, he wants to deviate from the sincere strategy and prefers to abstain
or to vote the opposite.

In fact, this is the intuition for the proof of the necessary condition in Propo-
sition 2. If condition (b) does not hold, an agent i listening to the most powerful
sender infers from her pivotality that the received message must be the minority
signal and is thus less likely to match the true state of the world than the opposite
choice. Thus, the necessary condition (b) can be interpreted as an upper bound of
expert power since it restricts the size of the largest audience.

Note that Proposition 2 provides one sufficient and one necessary condition for
the sincere strategy profile σ̂ to be an equilibrium, but no condition that is both
sufficient and necessary. For such a condition, see Proposition B.1 in Appendix B.
For networks that satisfy the necessary condition (weak balancedness), but violate
the sufficient condition (strong balancedness) the sincere strategy profile σ̂ is in-
efficient, but potentially still an equilibrium. More generally, the question arises
whether there are equilibria with information transmission prior to the vote that
are inefficient.

Proposition 3. There are networks in which the sincere strategy profile σ̂ is both
an equilibrium and exhibits informational inefficiency.

One example illustrating the above proposition is given below.
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Figure 2

Figure 2: Example 3, which is a network such that the sincere strategy profile σ̂ is both inefficient
and an equilibrium.

Example 3 (weakly balanced). Let n = 4, m = 5, and the degree distribution of
experts (d1, ..., d5) = (2, 2, 0, 0, 0) as illustrated in Figure 2. In this network the sin-
cere strategy profile σ̂ is inefficient because the network violates strong balancedness.
However, the sincere strategy profile σ̂ is an equilibrium in this network (see proof
of Proposition 3 in Appendix B).

Overall, we can conclude that communication need not, but can impair informa-
tion aggregation in equilibrium, depending on the inequality of the network struc-
ture. In strongly balanced networks (such as in Example 1), σ̂ is both efficient and
an equilibrium. In weakly balanced networks that are no longer strongly balanced
(such as in Example 3), σ̂ can still be an equilibrium, but is always informationally
inefficient. Finally, in unbalanced networks (such as in Example 2) neither property
holds. There the swing voter’s curse occurs such that non-experts can profitably
deviate from σ̂ by not following their message.

Whether real people account for the swing voter’s curse in unbalanced networks
is an empirical question. Therefore, it may be helpful to bring the theory to the
lab and find out how experimental subjects play the game in various networks that
differ in the balancedness of their degree distribution. The second main purpose
of the laboratory experiment is to do equilibrium selection. Recalling that the “let
the experts decide” equilibrium σ∗ always exist, we can have multiple equilibria. In
particular, in the case of weakly balanced networks that are not strongly balanced
the quality of information aggregation depends on whether the agents manage to
coordinate on the efficient “let the experts decide” equilibrium or whether they
coordinate on the inefficient sincere equilibrium, or on other potential equilibria.
This question is hard to answer theoretically, since both the “let the experts decide”
strategy profile σ∗ and the sincere strategy profile σ̂ are intuitive and hence focal.
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3 The Experiment

In our experiment, we test an extended version of the model analyzed above which
includes biased senders. In the extended model, non-experts can no longer be sure
that they listen to an expert sharing their interest in matching the true state of the
world; instead, they have to account for the possibility of being in the audience of
a biased sender (“partisan”) who has a strict preference for one of the two policies,
regardless of the state of the world. Partisans preferring policy PA (PB) will be
called A-partisans (B-partisans). We only consider networks with the same number
of A- and B-partisans which has basically the same effect as decreasing the expected
reliability that non-experts ascribe to their sender’s message. In Appendix C, we
provide a full description of the extended model and show that, unsurprisingly, all
theoretical results obtained for the model without partisans also hold true for the
model with partisans. This extension serves a twofold purpose: First, it shows that
our results are robust in a more realistic setting in which a “sender” of information on
the state of the world is not always an honest expert but can also be biased. Second,
it captures some aspects of propaganda since in reality, partisans and experts both
communicate to audiences of different size, for instance via Internet blogs. Hence,
it is of some interest to test whether propaganda can have an unlimited influence
on the outcome of votes in which the uninformed and the experts have the common
interest of “getting it right,” or whether there is an upper limit to the influence
of propaganda due to the deviation incentive that drives non-experts in over-sized
audiences to abstain.

Our experimental design implements the four different communication networks
depicted in Figure 3. In all networks, seven experimental subjects and four comput-
erized partisans – two A- and two B-partisans – fill the network positions. The four
computerized partisans are randomly assigned to four network positions in M , the
set of potential senders; and the seven experimental subjects are randomly assigned
to the remaining network positions. Each subject knows his own network position
and the structure of the network. In all networks, the quality of the signal that the
three experts receive is p = 0.8.

The four networks differ in the following respects: Network 1 is the empty network
and serves as a benchmark, since the sincere strategy profile σ̂ is impossible to play
in the empty network because no sender can send any message in the empty set.
Hence, the “let the experts decide”-equilibrium is the only focal equilibrium in the
empty network. Network 2 is the weakly balanced network and is the unique network
among the four in which the sincere strategy profile σ̂ is both an equilibrium and
inefficient, as demonstrated in the proof of Proposition 3. Network 3, which we will
call the unbalanced network, makes sender 1 too powerful compared to the other
sender, and the inefficient strategy profile σ̂ is no longer an equilibrium, though
possible to play. The same holds true for network 4, the star network, which is
even more unbalanced. Apart from the baseline treatment, the empty network, the
density of the networks is held constant while the equality of the degree distribution
is varied.
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Figure 3

Figure 3: The four treatments of the experiment.

3.1 Experimental Implementation

The experiment addresses two questions: First, do real people forming the audience
of a potentially informed sender understand that they should stop voting in line
with their sender’s recommendation if the audience becomes too large (compared
to the audiences of other senders)? That is, do they act in accordance with the
comparative statics of the model? If the answer is yes, this will have the follow-
ing consequences. There will be a limit to sincere voting in networks that are not
strongly balanced, and to the resulting informational inefficiency. Moreover, there
will be an upper limit to the influence that partisan propaganda can have on the
outcome of votes in which all non-partisans want to implement the “right” policy.
The second question addressed by the experiment is whether private communication
in networks of varying balancedness can lead to significant inefficiencies in informa-
tion aggregation. This would be true if all participants played sincerely, but, recall,
there is always the option to play “let the experts decide” which is efficient and an
equilibrium.

The experiment was conducted in the WISO-lab of the University of Hamburg
in fall 2014, using the software z-tree. We ran five sessions. In each session, 28
subjects played the game described above in all four networks over 40 rounds in
total. At the beginning of each session, subjects randomly received the role of an
expert or the role of a non-experts. These roles stayed throughout the experiment.
In each round, subjects were randomly matched into groups of seven consisting of
three experts and four non-experts. The four partisans were computerized. In line
with the equilibrium behavior in the extended model, A-partisans always vote A

and send the message A, and B-partisans always vote B and send the message
B. Groups were randomly re-matched each round. Each network game was played
in ten rounds in total, but the order of networks across rounds was randomized.
Instructions that described the experimental session in detail were handed out at
the beginning of each session and were followed by a short quiz that tested the
subjects’ understanding of the game. Hence, the experiment started only after each
subject understood the rules of the game. Moreover, there were four practicing
rounds, one for each treatment, that were not payout relevant. At the end of each
session, three rounds were randomly drawn and payed out in cash and in private.
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On average, sessions lasted for 1.5 hours and subjects earned EUR 16.7.
Table 1 in Appendix A gives a summary of the number of observations. On the

group level we have 800 observations. On the individual level we have 5,600 obser-
vations with 40 decisions per subject. 160 subjects participated in the experiment.

3.2 Results on Individual Behavior Across Networks

In the equilibrium analysis of the model, we focused on two pure and symmetric
strategy profiles that we consider focal, namely on the sincere profile σ̂ and the
“let the experts decide” profile σ∗. Hence, the question arises how often these two
strategy profiles are indeed played in the lab, both in general and depending on the
network structure. All tables reporting our experimental results can be found in
Appendix A.

Playing sincere versus strategic As it turns out, almost 90% of the time experts
vote and communicate in accordance with their signal, which is playing the sincere
strategy σ̂j (Table 2). Importantly, when having an audience, only 3% of the time,
experts send a message that contradicts their signal and only about 7% of the time,
they send no message (which is the residual category in Table 2).

These frequencies are independent of the network structure.11 Thus, most of
the time experts play sincere, independent of the communication structure. Note,
however, that this does not necessarily imply that experts never target the “let the
experts decide” equilibrium; it might also mean that the subjects in the role of the
experts intentionally delegate equilibrium selection (or “strategy profile selection”)
to the non-experts.12

As our experimental data reveal, it is indeed the non-experts who condition their
behavior on the network structure; and what is even more interesting, their behavior
changes in line with what theory predicts: As displayed in Table 3, a large majority
of 70% vote according to their received message in the weakly balanced network,
where the sincere strategy profile is an equilibrium, but only 54% and 47% do so in
the unbalanced network and the (also unbalanced) star network, respectively. These
differences are highly significant as it can be seen from the logistic regressions in
Table 4. Moreover, the frequency with which non-experts who received a message
abstain from voting increases from 27% in the weakly balanced network to 39%
and 47% in the unbalanced network and the star network, respectively (Table 5).
Again, these differences are highly significant. However, an abstention rate of 73%
of the non-esperts in the empty network, compared with the much lower abstention
rates of non-experts in the other networks, suggests that, as predicted, coordination
on the “let the experts decide” equilibrium works best when communication is not
possible.

11Differences in the frequency of sincere behavior arise when comparing experts with an audience
with experts without an audience. This is for the trivial reason that satisfying sincerity is more
demanding when choosing both a voting action and a message compared with only choosing a
voting action.

12Another reason might be lying aversion which is common in lab experiments. Not sending a
message or sending a message that contradicts the own signal might “feel like” lying.
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Figure 4

0,63

0,05

0,14

0,22

0,51

0,32

0,27

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

empty weakly

balanced

unbalanced star

almost LTED

almost sincere

Figure 4: Frequency of strategy profiles σ∗ and σ̂ by treatment. A strategy profile is “almost”
played if at most one agent has chosen a different strategy.

To get even more detailed evidence on the question whether, in the non-empty
networks, non-experts react to the relative degree of their sender as predicted by
the theory, it would be good to test how the network position affects behavior of
the non-experts on top of the network type. Since sender degree and network type
are almost perfectly correlated in our experimental setting, we can do so only by
concentrating on the unbalanced network in which the degree varies across senders.
Indeed, restricting the analysis to the unbalanced network reveals that in qualitative
terms, the sender’s (relative) degree has the predicted influence on behavior of the
non-experts: It is indeed the audience of the sender with the highest degree that
becomes more reluctant to vote their message and more prone to abstain from
voting. As Table 3 reports, the non-experts linked to the less powerful sender vote
their sender’s message in 72% of the time, while the non-experts linked to the more
powerful sender do so in only 48% of the time on average. This difference, too, is
statistically significant.

Proceeding from individual strategies to strategy profiles, Figure 4 shows the
frequency with which groups play either σ∗ or σ̂. We consider a group as playing
almost a strategy profile if at most one of the seven subjects has chosen a different
strategy.13 Considering the empty network, in which σ̂ cannot be played, we find
the highest level of coordination on σ∗. Considering the networks in which both
profiles are possible to play, a decrease in network balancedness leads to a drop in
the frequency with which groups coordinate (almost) on the sincere strategy profile
σ̂ and to a sizable increase in the frequency with which groups coordinate (almost)
on the “let the experts decide” strategy profile σ∗. Fisher exact tests reveal that,
apart from the comparison of unbalanced and star network, these differences are
significant (Tables 6 and 7). Hence, we find support for the comparative statics of
the theory on the group level, too.

Result 1. Experts play sincere regardless of the network structure, but non-experts
do not. With decreasing balancedness of the network, non-experts linked to the expert

13Recall every group consists of seven real subjects and four computerized partisans. The par-
tisans play according to σ∗ and σ̂ by default.
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with the highest degree vote their message significantly less often and abstain signif-
icantly more often, and groups coordinate less often on the sincere strategy profile σ̂

and more often on the “let the experts decide” equilibrium σ∗. Coordination on σ∗

is highest in the empty network.

Hence, we find that, although off-equilibrium play occurs, e.g. playing σ̂ in the
unbalanced network, the comparative-static predictions of the theory are well sup-
ported by our experimental findings. Before we proceed to our results on the effi-
ciency of information aggregation, a few remarks on uninformed voting are in order.
As Table 5 (last column) reveals, non-experts who received no message do not al-
ways abstain but participate in the vote in 28% of the time, independent of the
network structure. This finding is in line with the literature, since positive rates of
uninformed voting are found in all experiments on jury voting. Uninformed voting,
i.e., votes that are no better than flips of a coin, have large detrimental effects on
informational efficiency, as is known from the literature. In our experiment, it is the
empty network in which all non-experts, trivially, receive no message; hence, if they
participate in the vote, this necessarily implies uninformed voting. Consequently,
the absolute number of uninformed votes is much higher in the empty network than
in the other networks. Thus, the possibility to communicate may serve informa-
tional efficiency by reducing the extent of uninformed voting. However, there might
also be detrimental effects of communication as we will see next.

3.3 Informational Efficiency

Figure 5 below displays the degree of informational efficiency of voting outcomes
across networks. Note that all signal distributions are either non-uniform of the
form “2:1” (e.g. when two experts have received signal A and one expert signal B)
or uniform of the form “3:0” (i.e., when all experts have received the same), and
that voting errors are more likely to impair informational efficiency in the first case
than in the second. Hence, Figure 5 displays results separately for these two cases:
The left panel concentrates on votes with signal distributions of the form “3:0” and
the right panel on votes with signal distributions of the form “2:1”. As is easy to see,
in both cases the star network performs worst in terms of informational efficiency.
Moreover, informational efficiency of the unbalanced network lies between the star
network and the other two networks.

To test whether differences in informational efficiency across networks are signif-
icant, we create the variable efficiency that takes the value -1 if the voting outcome
matches the minority signal, the value 0 if a tie occurs, and the value 1 if the vot-
ing outcome matches the majority signal. Fisher exact tests reveal that the star
network exhibits significantly less informational efficiency than the weakly balanced
and the empty network. This holds true for both uniform signals (Table 8) and
non-uniform signals (Table 9). Other differences are not significant (except between
the empty and the unbalanced network for non-uniform signals on the 10 percent
level). Furthermore, using ordered logit and probit models, we regress efficiency on
the network type, controlling for the signal distribution. Results are displayed in
Table 10. We find again that informational efficiency is significantly lower in the
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Figure 5
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Figure 5: Frequency of informationally efficient group decisions by treatment. Results for uniform
signals (of the form “3:0”) are displayed in the left panel; results for non-uniform signals (of the
form “2:1”) are displayed in the right panel. ‘Win’ means that the outcome of voting is the majority
signal. ‘Tie’ means that there were as many votes for A as for B such that the outcome is correct
with probability one half.

star network than in the empty network and the weakly balanced network. There
is also weak evidence that the unbalanced network is less efficient than the empty
network, but this finding is not as robust.

Result 2. Informational efficiency is significantly lower in the star network, com-
pared to the empty and the weakly balanced network. There is also weak evidence
that the unbalanced network exhibits lower informational efficiency than the empty
network.

To test whether the low informational efficiency in the star network, and probably
also in the unbalanced network, affects subjects in an economically meaningful way,
we compute the expected payoff EP for each group in each round.14 If the group
decision matches the true state, each member of the group earns 100 points. Hence
the variable EP coincides with the likelihood (in percentage points) of a correct
decision, given all signals in the group. For instance, if two experts have received
signal A and one expert B and the outcome of the majority vote is A, then EP =

p2(1−p)
p2(1−p)+(1−p)2p

∗ 100 = 80. Computing EP by network type yields on average 80
points in the empty network, 81 points in the weakly balanced network, 77 points
in the unbalanced network, and 73 points in the star network. Note that when
not controlling for whether the signal was uniform or not, there is additional noise
because some treatments might happen to have uniform signals more often than
others which makes higher expected payoffs more likely. We test for significant
differences using OLS regressions and control for uniformity of the signal (Table 11).
The findings are fully analogous to those of Result 2 and thus the inefficiency of the
unbalanced networks, in particular the star network, is confirmed. Moreover, t-tests
reveal that these values of EP found in the data are significantly below the EP of
an efficient strategy profile (not in the appendix).

14Due to the noise induced by imperfect signals and since only three rounds are paid out,
informational efficiency and actual earnings are only loosely coupled.
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Result 3. Expected payoffs are significantly lower in the star network, compared
to the empty and weakly balanced network. There is also weak evidence that the
unbalanced network exhibits lower expected payoffs than the empty network.

Result 3 consists of two separate findings. The comparison among the networks
in which communication is possible shows that the unbalanced communication struc-
ture is detrimental for informational efficiency. The comparison of the unbalanced
networks with the empty network, where communication is precluded, shows that
communication itself can be detrimental for informational efficiency.

Finally, we consider only the inefficient networks and ask how many deviations
would have been necessary in order to induce the efficient outcome. For this purpose
Table 12 reports for all inefficient cases, i.e., for all groups for which the minority
signal has received weakly more votes than the majority signal, how many more
votes the minority signal has received. On average we have a vote difference of
0.68 reflecting that most inefficient outcomes are close calls such as ties (where
the vote difference is zero) or wins of the minority signal by one vote (where the
vote difference is one). We compare this number to the number of experts and the
number of non-experts who voted for the minority signal to see who could have
prevented the inefficiency. Apart from the empty network there are on average
roughly two non-experts who have voted for the minority signal. If they abstained,
the efficient outcome would have been reached in virtually all cases. In the empty
network, inefficiency usually means that a tie has been reached. As there is on
average roughly one non-expert who, without having any information, voted for
the minority signal, we can conclude that also in this network structure inefficiency
could have been avoided by more abstention of the non-experts. This observation
indicates that there are two sources of inefficiency on the side of the non-experts:
uninformed voting when communication is impossible; and following too powerful
leaders under unbalanced communication.

To summarize, it appears that a strong decrease in balancedness, i.e., a sizable
shift of audience from some senders to one other (or a few others), impairs effi-
cient information aggregation and hence also voters’ welfare. Hence, although we
find evidence in favor of the comparative statics of our theory and our subjects do
switch from sincere voting to the “let the experts decide” equilibrium if network bal-
ancedness decreases, this switching behavior is not pronounced enough to prevent
detrimental effects of unbalanced communication on informational efficiency.

4 Conclusion

Our experimental evidence supports the comparative-static predictions of the theory
but contradicts the theory’s predictions on the way in which informational efficiency
depends on the network structure. While experts always play the sincere strategy,
non-experts are highly sensitive to the network structure. The more unbalanced the
network, the more averse are the non-experts linked to the expert with the highest
degree to “follow” her by voting her message, and the more they tend to abstain.
Put differently, non-experts linked to a powerful expert play the less often sincerely
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and the more often strategically, the less balanced the network is. Similarly, groups
coordinate more often on the “let the experts decide” equilibrium and less often on
the sincere strategy profile if network balancedness decreases. Nonetheless, this ten-
dency is insufficient to compensate the negative effects exerted by overly powerful
experts in very unbalanced networks, like the star network. Hence, it is still the
empty network in which coordination on the “let the experts decide” equilibrium
works best. However, the empty network opens the door much wider for uninformed
voting than the other networks and does therefore not exhibit a higher level of infor-
mational efficiency than do networks that are no longer strongly balanced but still
weakly balanced.

We have analyzed preplay communication in a voting game of common interest.
In contrast to public communication, where information aggregation occurs in the
communication stage (Gerardi and Yariv, 2007; Goeree and Yariv, 2011), we have
studied private communication, which only admits information aggregation in the
voting stage. Both scenarios can be considered as extreme cases of more general
communication structures. For instance, if experts’ audiences overlap, non-experts
can listen to multiple senders. Thus, it seems a natural extension of our model to
consider more general networks.
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A Appendix: Tables

Table 1. Observations

Treatment Groups experts non-experts senders receivers

empty 200 600 800 0 0
w.balanced 200 600 800 347 800
unbalanced 200 600 800 178 800
star 200 600 800 83 800
Total 800 2,400 3,200 608 2,400

Table 1: Number of observations. Senders are experts who are in a network position with an
audience. The number of partisan senders is not displayed. Non-experts are receivers if they are
linked to a sender (expert or partisan).
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Table 2. Behavior of experts by position
vote signal vote opposite send signal send opposite sincere

empty 560 21 - - 560
(N = 600) 93.3% 3.5 % - - 93.3%
weakly bal.
position 1-4 321 11 309 11 248
(N = 347) 92.5% 5.2% 90.1% 3.2% 71.5%
position 5-7 229 13 - - 229
(N = 253) 90.5% 5.1% - - 90.5%
unbalanced
position 1 84 1 76 2 60
(N = 86) 97.7% 1.2% 88.4% 2.3% 69.8%
position 2 90 1 82 2 69
(N = 92) 97.8% 1.1% 89.1% 2.2% 75%
position 3-7 378 20 - - 378
(N = 422) 89.6% 4.7% - - 89.6%
star
position 1 82 1 76 1 62
(N = 83) 98.8% 1.2% 91.6% 1.2% 74.7%
position 2-7 474 26 - - 474
(N = 517) 91.7% 5.0% - - 91.7%
Total 2218 101 543 16 2,080
(N = 2, 400) 92.4% 4.2% 89.9% 2.7% 86.7%

Table 2: Behavior of experts by treatment and position. The network positions refer to Figure 3.
The action ‘vote (send) opposite’ means vote (send message) A when signal is B and vice versa.
In addition to the displayed categories ‘vote signal’ and ‘vote opposite’ experts could abstain. In
addition to the displayed categories ‘send signal’ and ‘send opposite’ experts could send an empty
message. Experts without an audience are sincere if they vote their signal. Experts with an
audience are sincere if they vote their signal and also send it.
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Table 3. Behavior of non-experts
vote message vote opposite vote uninformed sincere

empty - - 220 (580)
(N = 800) - - 27.5% (72.5%)
weakly balanced 540 37 6 557
(N = 800) 69.5% 4.8% 26.1% 69.6%
unbalanced 417 61 11 438
(N = 800) 54.3% 7.9% 34.4% 54.8%
position 1-3 278 52 9 293
(N = 600) 48.3% 9.0% 37.5% 48.8%
position 4 139 9 2 145
(N = 200) 72.4% 4.7% 25.0% 72.5%
star 360 59 7 377
(N = 800) 46.4% 7.6% 29.2% 47.1%
Total 1,317 157 244 1,952
(N = 3, 200) 56.7% 4.9% 27.8% 61.0%

Table 3: Behavior of non-experts by treatment (and position). The network positions in the
unbalanced network refer to Figure 3. In the empty network all non-experts are uninformed. In
the other networks this happens only in 79 cases, where an expert sender chose the empty message.
The action ‘vote message’ means that A (B) is voted after message A (B) has been received. In
addition to the displayed categories ‘vote message’ and ‘vote opposite’ non-experts who received
message A or B could abstain. In addition to the displayed category ‘vote uninformed’ non-experts
who received an empty message could abstain.

Table 4. Dependent variable: Following of non-experts

Logit 1 Logit 2
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

unbalanced -0.651∗∗∗ (0.170) -0.639∗∗∗ (0.164)
star -0.968∗∗∗ (0.193) -0.945∗∗∗ (0.186)
Intercept 0.824∗∗∗ (0.200) 0.830∗∗∗ (0.194)
N 2,321 2,400
Log-likelihood -1543.25 -1595.30
χ2
(2) 25.61 25.91

∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Note: Robust standard errors in parentheses adjusted for subjects.

Table 4: Estimation results: Logistic regression with decision to follow message as dependent
variable. Baseline category is the weakly balanced network. Model 1 restricts attention to non-
experts who received message A or B. Model 2 also considers non-experts who received an empty
message, for which following means abstention. Following coincides with sincere behavior of non-
experts.
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Table 5. Abstention

experts non-experts with message without message

empty 3,17% 72,50% - 72,50%
N=600 N=800 - N=800

weakly balanced 3,17% 27,13% 25.7% 73,91%
N=600 N=800 N=777 N=23

unbalanced 4,33% 38,88% 37.8% 65,63%
N=600 N=800 N=768 N=32

star 2,83% 46,75% 46.0% 70,83%
N=600 N=800 N=776 N=24

Total 3,38% 46,31% 36.5% 72,24%
N=2.400 N=3.200 N=2.321 N=879

Table 5: Abstention by treatment. The columns ‘experts’ and ‘non-experts’ contain all agents of
this type. The column with (without) message contains only those non-experts who received a
non-empty (empty) message. If they do not abstain, then this is uninformed voting.

Table 6. Fisher exact test on almost σ∗

weakly balanced unbalanced star

empty 0.000 0.000 0.000
weakly balanced 0.010 0.000
unbalanced 0.048

Table 6: p-values of Fisher exact tests comparing the frequency of the “let the experts decide”
strategy profile σ∗ between two treatments. A group plays “almost” σ∗ if there is at most one
player whose strategy differs from the profile.

Table 7. Fisher exact test on almost σ̂

unbalanced star

w.balanced 0.000 0.000
unbalanced 0.321

Table 7: p-values of Fisher exact tests comparing the frequency of the sincere strategy profile σ̂

between two treatments (in the empty network σ̂ cannot be played). A group plays “almost” σ̂ if
there is at most one player whose strategy differs from the profile.

Table 8. Efficiency for uniform signals

weakly balanced unbalanced star

empty 0.102 0.160 0.034
weakly balanced 0.921 0.050
unbalanced 0.131

Table 8: p-values of Fisher exact tests comparing efficiency between two treatments for the case of
uniform signals. Efficiency is 1 if majority signal wins, 0 in case of a tie, and −1 if majority signal
loses.
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Table 9. Efficiency for non-uniform signals

weakly balanced unbalanced star

empty 0.869 0.070 0.003
weakly balanced 0.151 0.012
unbalanced 0.546

Table 9: p-values of Fisher exact tests comparing efficiency of two treatments for the case of non-
uniform signals. Efficiency is 1 if majority signal wins, 0 in case of a tie, and −1 if majority signal
loses.

Table 10. Dependent variable: Efficiency

ologit 1 oprobit 1 ologit 2
Variable Coeff. (Std. Err.) Coeff. (Std. Err.) Coeff. (Std. Err.)

uniform signal 2.027∗∗∗ (0.135) 1.136∗∗∗ (0.065) 2.027∗∗∗ (0.135)
empty -0.059 (0.140)
w.balanced 0.059 (0.140) -0.001 (0.068)
unbalanced -0.276∗ (0.164) -0.196∗∗ (0.088) -0.335 (0.210)
star -0.711∗∗ (0.319) -0.444∗∗ (0.174) -0.770∗∗∗ (0.243)
Intercept cut 1 -1.611∗∗∗ (0.208) -0.979∗∗∗ (0.115) -1.670∗∗∗ (0.251)
Intercept cut 2 -0.572∗∗∗ (0.122) -0.385∗∗∗ (0.071) -0.631∗∗∗ (0.179)
N 800 800 800
Log-likelihood -513.262 -512.771 -513.262
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Note: Robust standard errors in parentheses adjusted for sessions.

Table 10: Estimation results: Ordered logit and orderd probit. The first and the second model
use the empty network as baseline category. The third model uses the weakly balanced network
as baseline category.

Table 11. Dependent variable: Expected payoff (EP )

OLS 1 OLS 2
Variable Coefficient (Std. Err.) Coefficient (Std. Err.)

uniform signal 31.21∗∗∗ (0.84) 31.21∗∗∗ (0.84)
empty 0.75 (0.80)
weakly balanced -0.75 (0.80)
unbalanced -3.53∗∗ (1.00) -2.77∗∗ (0.91)
star -7.70∗ (2.85) -6.95∗∗ (2.22)
Intercept 64.41∗∗∗ (1.31) 63.66∗∗∗ (1.62)
N 800 800
R2 0.347 0.347
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

Note: Robust standard errors in parentheses adjusted for sessions.

Table 11: Estimation results: OLS with expected payoff (EP ) as dependent variable. The first
model uses the empty network as baseline category. The second model uses the weakly balanced
network as baseline category.
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Table 12. Extent of inefficiency

vote difference “wrong” experts “wrong” non-experts

empty 0.33 1.09 1.13
N=46
weakly balanced 0.56 1.13 2.05
N=39
unbalanced 0.75 0.98 2.06
N=48
star 0.95 0.90 2.30
N=63
Total 0.68 1.01 1.92
N=196

Table 12: Extent of inefficiency. The variable ‘vote difference’ refers to the absolute difference of
the number of votes. A vote difference of, e.g., 2 means that the minority signal has received two
more votes than the majority signal; and a vote difference of 0 means that a tie has occurred. The
label “wrong” refers to an agent who voted for the minority signal. The table reports the mean of
these variables over all inefficient cases, i.e. for all groups where the majority signal did not receive
a majority of votes.

B Mathematical Appendix

To prove Prop. 2 we first state a helpful lemma which is based on the following two
definitions.

Definition 2. (Strong balancedness): Let m =
∣

∣M
∣

∣ be odd and order the degree
distribution in M in decreasing order (d1, d2, ..., dm) such that dj ≥ dj+1. Recall that
l :=

∑m

j=1 dj. We call a network strongly balanced if the degree distribution in M

satisfies condition (a) of Prop. 2, which is d1 +
∑

m−1

2

j=2 dj ≤
l
2
.

Definition 3. (Representation): For a social network g and a strategy profile σ we
say that the agents in M (i.e. the experts) represent the society if the outcome of
voting among the agents in M coincides with the outcome of voting in the society N∪
M for any realization of the draws of nature. We call a network g representative

under strategy profile σ if the agents in M represent the society.

Lemma B.1. Let m =
∣

∣M
∣

∣ be odd. The following statements about a network g are
equivalent:

1. g is such that sincere voting σ̂ is efficient.

2. g is representative under sincere voting σ̂.

3. g is strongly balanced.

Proof. Suppose g is such that σ̂ is efficient. Then for any draw of nature the majority
signal must be implemented. Restricting attention to votes within M , indeed for
any draw of nature the majority signal receives a majority of votes under σ̂ since
each expert simply votes her signal. Thus, (1.) implies (2.).
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To show that (2.) implies (3.) denote the number of links l :=
∑m

j=1 dj and let
the degree distribution be ordered in decreasing order as in Definition 2. Consider
a draw of nature in which the outcome of voting restricted to M is A with one vote
more than B. If all experts with signal B happen to be the most powerful experts,

the number of votes for B is:
∑

m−1

2

j=1 (1 + dj). By representativeness, A must be the
outcome among all voters. Thus, the number of votes for B must be smaller than
m+l
2

(which is half of the total number of votes). Strong balancedness follows from
a simple rearrangement of this condition:

m−1

2
∑

j=1

(1 + dj) <
m+ l

2
(B.1)

d1 +

m−1

2
∑

j=2

dj <
1

2
+

l

2
(B.2)

d1 +

m−1

2
∑

j=2

dj ≤
l

2
(B.3)

The last inequality holds true because we have a sum of integers on the left-hand
side (LHS) (such that “+ l

2
” can be omitted when changing to a weak inequality).

It remains to show that (3.) implies (1.), i.e. in strongly balanced networks the
majority signal is always implemented under σ̂. Without loss of generality let A be
the majority signal of some draw of nature. Since all experts communicate their

signal, the number of votes for B is smaller or equal to
∑

m−1

2

j=1 (1 + dj) (which is the
number of votes of the most powerful minority). If g is strongly balanced, this is
the minority (see inequality B.1) such that the majority signal A wins.

Proof of Proposition 2

Note first that the definition of strong balancedness above is just the condition
labeled (a) in Prop. 2. The efficiency statement in Prop. 2 is the equivalence of
statements (1) and (3) of Lemma B.1 and has been shown in its proof. The suffi-
ciency of property (a) (strong balancedness) for σ̂ to be an equilibrium follows from
its efficiency. By deviating from this strategy profile, expected utility can only be
reduced.

It remains to show that condition (b) is a necessary condition for σ̂ to be an
equilibrium; or there must be an agent that is never pivotal under σ̂.

Suppose that all agents can be pivotal under σ̂. Let i be a non-expert listening to
a sender with maximal degree d1. If i is pivotal under σ̂, the number of votes for i’s
message, say A, is m+l+1

2
such that A wins by one vote (because i can only deviate

by abstaining or voting B and recall that m is odd and l is even). A number d1 + 1
of these votes are due to i′s sender. All remaining votes for A can also be partitioned
such that each vote corresponds to one agent in M . The maximal number of agents
in M for this purpose is attained when the least powerful agents in M (besides i’s
sender) vote for A. If even this maximal number of agents in M (who vote for A) is
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less than or equal to m−1
2

, then A is the minority signal whenever i is pivotal. This
is true if the number of votes under σ̂ that correspond to i’s sender and the m−3

2

“weakest” members of M is already equal or larger than m+l+1
2

what is required by
pivotality. This is incorporated in the following inequality

d1 + 1 +
m
∑

k=m+5

2

(dk + 1) ≥
m+ l + 1

2
,

which simplifies as follows:

d1 +
m
∑

k=m+5

2

dk +
m− 1

2
≥

l

2
+

m+ 1

2
(B.4)

d1 +
m
∑

k=m+5

2

dk ≥
l

2
+ 1 (B.5)

d1 +
m
∑

k=m+5

2

dk >
l

2
. (B.6)

Since these conditions are sufficient for a profitable deviation of i, the converse
condition is necessary for σ to be an equilibrium:

d1 +
m
∑

k=m+5

2

dk ≤
l

2
. (B.7)

Proposition B.1. Let m be odd and
∑

j dj =: l be even. The sincere strategy profile
σ̂ is an equilibrium if and only if the following conditions hold.

1. If ∃i ∈ N with di = 0, then
∑

x=1,3,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

[ν(x, 1)− ν(−x, 1)] ≥ 0, where

ν(x, 1) denotes the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which are of size m+x

2
and whose elements sum up to m+l+1

2
.15

2. ∀dj ∈ {d1, ..., dm} such that dj > 0 and for all ȳ ∈ {1, 2, dj, dj + 1, dj +
2, 2dj, 2dj + 1, 2dj + 2} the following holds:

(i) if ȳ even, then
∑

x=−m+2,−m+4,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

·
∑

y=1,3,...,ȳ−1 ν(x, y|dj) ≥ 0, and

(ii) if ȳ odd, then
∑

x=−m+2,−m+4,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

·
[

∑

y=1,3,...,ȳ−2

(

ν(x, y|dj) +
1
2
ν(x, ȳ|dj)

)

]

≥ 0,

15In a multiset the same numbers can occur several times. In full analogy to the notion of a
subset, we call a multiset that is contained in another multiset a “sub-multiset.”
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where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} which include element dj + 1, are of size m+x

2
, and whose elements sum up

to m+l+y

2
.

Proof. Part I shows necessity; part II shows sufficiency.

Part I. “ONLY IF” Suppose σ̂ is an equilibrium. We show that the two condi-
tions of Prop. B.1 are satisfied.

1. Since σ̂ is an equilibrium, no player can beneficially deviate. In particular, if
there is a non-expert i ∈ N without a link, i.e. the qualification of the first
condition of Prop. B.1 holds, then for any deviation σ′

i ∈ Σ′
i = {A,B}, we have

EU(σ̂−i, σ̂i) ≥ EU(σ−i, σ
′
i). W.l.o.g. suppose that σ′

i = B. Letting y denote
the outcome under σ̂ defined as the number of votes for A minus the number
of votes for B, we observe that the deviation reduces the outcome y by one
vote (because i votes for B instead of abstaining). The deviation σ′

i thus only
affects the outcome if y = +1 and turns it into y′ = 0 (i.e. if A wins by one
vote under σ̂, while there is a tie under σ′ := (σ̂−i, σ

′
i)). Restricting attention

to these draws of nature, we must still have that the sincere strategy profile
leads to higher expected utility since it is an equilibrium by assumption:

EU|y=1(σ̂−i, σ̂i) ≥ EU|y=1(σ̂−i, σ
′
i) =

1

2
. (B.8)

The right-hand side (RHS) is 1
2
because this is the expected utility of a tie.

Some more notation is helpful. Let x denote a distribution of signals defined as
the number of A-signals minus the number of B-signals received by all experts.
Let P (x|A) denote the likelihood that the signals are x when the true state is
A, and likewise for P (x|B). Let P̂ (x, y) designate the probability that signals
x lead to outcome y under σ̂. Then we can rewrite inequality B.8 as

1
2

∑

x=−m,−m+2,...,m P (x|A)P̂ (x, 1)

1
2

∑

x=−m,−m+2,...,m

(

P (x|A)P̂ (x, 1) + P (x|B)P̂ (x, 1)
) ≥

1

2
, (B.9)

since the expected utility under σ̂ when restricting attention to the draws of
nature that lead to a win of A by one vote equals the probability that A is
true under these conditions.

This simplifies to

∑

x=−m,−m+2,...,m

P (x|A)P̂ (x, 1) ≥
∑

x=−m,−m+2,...,m

P (x|B)P̂ (x, 1) (B.10)

and further to

∑

x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0. (B.11)
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Now, we split the sum into positive and negative values of x and finally rejoin
them by using P (x|A) = P (−x|B):

∑

x=−m,−m+2,...,m

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=−m,−m+2,...,−1

(P (x|A)− P (x|B)) P̂ (x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (−x|A)− P (−x|B)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) P̂ (x, 1)

+
∑

x=1,3,...,m

(P (x|B)− P (x|A)) P̂ (−x, 1) ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (x|B)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0

⇔
∑

x=1,3,...,m

(P (x|A)− P (−x|A)) [P̂ (x, 1)− P̂ (−x, 1)] ≥ 0.

Independent of the strategy profile, P (x|A) =
(

m
m+x

2

)

p
m+x

2 (1 − p)
m−x

2 . For a

draw of signals with difference x (in numbers of A-signals and B-signals), the
outcome y = +1 is reached under σ̂ if there are exactly m+l+1

2
votes for A.

All of the A-votes under σ̂ can be partitioned such that each element of the
partition is referred to an expert j with signal A. Such an expert accounts for
dj +1 votes because there is her vote and the votes of her audience. Hence the
probability that draw of nature x leads to outcome y = +1 is determined by
the frequency with which m+x

2
experts who have received signal A account for

exactly m+l+1
2

votes. This frequency is given by the number of “sub-multisets”
of multiset {d1 + 1, ..., dm + 1} which have size m+x

2
and whose elements sum

up to m+l+1
2

.

Considering all possible allocations of m+x
2

A-signals among m experts, there
are

(

m
m+x

2

)

possibilities (which is the number of all “sub-multisets” of multiset

{d1+1, ..., dm+1} of size m+x
2

). Therefore, the probability that signals x lead
to outcome y = +1 is

P̂ (x,+1) =
ν(x, 1)
(

m
m+x

2

) ,

where ν(x, 1) denotes the number of “sub-multisets” of multiset {d1+1, ..., dm+
1} of size m+x

2
and sum m+l+1

2
.

Plugging the equations for P (x|A) and P̂ (x, 1) into the inequality derived
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above yields:

∑

x=1,3,...,m

((

m
m+x
2

)

p
m+x

2 (1− p)
m−x

2 −

(

m
m−x
2

)

(1− p)
m+x

2 p
m−x

2

)

·

[

ν(x, 1)
(

m
m+x

2

) −
ν(−x, 1)
(

m
m−x

2

)

]

≥ 0.

(B.12)

Since
(

m
m−x

2

)

=
(

m
m+x

2

)

, these factors cancel out such that we get

∑

x=1,3,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

[ν(x, 1)− ν(−x, 1)] ≥ 0.

(B.13)
This shows that the first condition of Prop. B.1 is indeed implied by the
assumption that σ̂ is an equilibrium.

2. Let us turn to the second condition of Prop. B.1 by considering some expert
j ∈ M with dj > 0. W.l.o.g. let her signal be A. Under the sincere strategy
profile j will vote and communicate her signal, i.e. A. Abstention reduces
the outcome y by one vote, voting the opposite reduces the outcome y by
two votes. Sending no message reduces the outcome by dj votes. Sending
the opposite message reduces the outcome by 2dj votes. Therefore, there are
feasible deviations for j that reduce the outcome by a number of votes ȳ which
is in the following set {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}.

By the assumption that σ̂ is an equilibrium, there is no beneficial devia-
tion for j. That is, for any deviation σ′

j ∈ Σ′
j, we have EU sj=A∗

(σ̂−j, σ̂j) ≥
EU sj=A∗

(σ̂−j, σ
′
j). Considering some deviation σ′

j and the corresponding reduc-
tion of the outcome by ȳ, the implemented alternatives only differ for draws
of nature such that y > 0 and y′ ≤ 0, i.e for outcomes y such that 0 < y ≤ ȳ

(because only then the reduction of support for the received message has any
effect). Therefore, the inequality of expected utility must also hold when fo-
cusing on these cases, i.e.

EU
sj=A∗

|0<y≤ȳ
(σ̂−j, σ̂j) ≥ EU

sj=A∗

|0<y≤ȳ
(σ̂−j, σ

′
j). (B.14)

(i) Suppose first that ȳ is even. Then the deviation σ′
j turns all outcomes

in which A wins and 0 < y ≤ ȳ − 1 into a win of alternative B (outcomes
y = ȳ are not possible because y is odd). Therefore, the expected utility of
strategy profile σ̂ (respectively, σ′ := (σ̂−j, σ

′
j)), focusing on these cases, is the

probability that A (respectively, B) is true in these cases. Let Psj=A∗(x|ω =
A) =: PA(x|A) denote the probability that the signal distribution is x and
that expert j has received signal A when the true state is A, and similarly for
Psj=A∗(x|ω = B) =: PA(x|B). Moreover, let P̂sj=A∗(x, y) =: P̂A(x, y) be the
probability that the signals x lead to outcome y under σ̂, given that expert j
has received signal A. Note that P̂A(x, y) is not defined for x = −m because if
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all experts have received signal B it is not possible that expert j has received
signal A. Then we can rewrite inequality B.14 as

∑

x=−m+2,−m+4,...,m

PA(x|A)
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥

∑

x=−m+2,−m+4,...,m

PA(x|B)
∑

y=1,3,...,ȳ−1

P̂A(x, y).
(B.15)

inequality B.15 incorporates that the likelihood of A being true is greater or
equal than the likelihood of B being true given that the deviation is effective
and that expert j has received signal A.16 This inequality simplifies to

∑

x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0.
(B.16)

Independent of the strategy profile, PA(x|A) =
(

m
m+x

2

)

p
m+x

2 (1−p)
m−x

2 ·
m+x

2

m
and

PA(x|B) =
(

m
m−x

2

)

p
m−x

2 (1 − p)
m+x

2 ·
m+x

2

m
. The factor before the multiplication

sign is the probability that there are exactly m+x
2

A-signals. Given such a
distribution, the factor after the multiplication sign is the probability that
expert j has received signal A.

For a distribution of signals x, the outcome y is reached under σ̂ if there are
exactly m+l+y

2
votes for A. All of the A-votes under σ̂ can be partitioned

such that each element is referred to an expert k with signal A. Such an
expert accounts for dk + 1 votes (because there is her vote and the votes of
her audience). By assumption, expert j has received signal A and thus there
are at least dj +1 votes for A under σ̂. The probability that draw of nature x
leads to outcome y is determined by the frequency that the m+x

2
experts who

have received signal A account for exactly m+l+y

2
votes. Hence, this frequency

is given by the number of “sub-multisets” of multiset {d1 + 1, ..., dm + 1}
which include element dj + 1, are of size m+x

2
, and whose elements sum up to

m+l+y

2
. Considering all possible allocations of m+x

2
A-signals among m experts

such that j also receives signal A, there are
(

m−1
m+x

2
−1

)

possibilities (which is the

number of all “sub-multisets” of multiset {d1 + 1, ..., dm + 1} which include
element dj + 1 and are of size m+x

2
). Therefore, the probability that signals x

lead to outcome y, given that expert j has received signal A, is

P̂A(x, y) =
ν(x, y|dj)
(

m−1
m+x

2
−1

) ,

where ν(x, y|dj) denotes the number of “sub-multisets” of multiset {d1 +
1, ..., dm + 1} which include element dj + 1, are of size m+x

2
, and whose el-

ements sum up to m+l+y

2
.

16To get the absolute probabilities of A (respectively B) being true, we can divide the LHS
(respectively the RHS) of inequality B.15 by the sum of the LHS and the RHS.
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Hence, we can rewrite inequality B.16 as follows
∑

x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))
∑

y=1,3,...,ȳ−1

P̂A(x, y) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(

(

m
m+x
2

)

p
m+x

2 (1− p)
m−x

2

m+x
2

m

−

(

m
m−x
2

)

(1− p)
m+x

2 p
m−x

2

m+x
2

m

)

∑

y=1,3,...,ȳ−1

ν(x, y|dj)
(

m−1
m+x

2
−1

) ≥ 0

⇔
∑

x=−m+2,−m+4,...,m

(

m
m+x
2

) m+x
2

m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

·
∑

y=1,3,...,ȳ−1

ν(x, y|dj)
(

m−1
m+x

2
−1

) ≥ 0.

We have used that
(

m
m+x

2

)

=
(

m
m−x

2

)

. Finally, we observe that the factors
(

m
m+x

2

)

,

m+x
2

m
, and 1

( m−1
m+x

2
−1
)
simplify to one because

( m
m+x

2
)

( m−1
m+x

2
−1
)
= m

m+x
2

such that we get

∑

x=−m+2,−m+4,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

∑

y=1,3,...,ȳ−1

ν(x, y|dj) ≥ 0

(B.17)

We have shown that inequality B.17, which coincides with condition 2(i) of
Prop. B.1, holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2} even.

(ii) Suppose now that ȳ is odd. (Still, we keep the assumption that some
expert j ∈ M with dj > 0 has received signal A and considers a deviation σ′

j

that reduces the outcome by ȳ). Then the deviation σ′
j turns all outcomes in

which A wins and 0 < y ≤ ȳ into a win of alternative B for y = 1, 3, ..., ȳ − 2
and into a tie for y = ȳ. Therefore,

EU
sj=A∗

|0<y≤ȳ
(σ̂−j, σ

′
j) =

∑
x=−m+2,−m+4,...,m(PA(x|B)(

∑
y=1,3,...,ȳ−2

PA(x,y)+ 1

2
P̂A(x,ȳ))+ 1

2
PA(x|A)P̂A(x,ȳ))

∑
x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))

∑
y=1,3,...,ȳ P̂A(x,y)

.

The denominator is the probability that an outcome under σ̂ is reached such
that the deviation has some effect. The numerator consists of the probability
that B is true for the cases where the deviation leads to a win of alternative
B and of half the probabilities that A or B are true when the deviation leads
to a tie.

The expected utility of the sincere strategy profile amounts to

EU
sj=A∗

|0<y≤ȳ
(σ̂−j, σ̂j) =

∑
x=−m+2,−m+4,...,m PA(x|A)(

∑
y=1,3,...,ȳ−2

P̂A(x,y)+P̂A(x,ȳ))
∑

x=−m+2,−m+4,...,m(PA(x|A)+PA(x|B))
∑

y=1,3,...,ȳ P̂A(x,y)
.

The numerator is the probability that A is true under the cases where the
deviation has some effect. Since the denominator is the same as above, we can
rewrite inequality B.14 as
∑

x=−m+2,−m+4,...,m

(

PA(x|A)
(

∑

y=1,3,...,ȳ−2 P̂A(x, y) + P̂A(x, ȳ)
)

− PA(x|B)

·
(

∑

y=1,3,...,ȳ−2 P̂A(x, y) +
1
2
P̂A(x, ȳ)

)

− 1
2
PA(x|A)P̂A(x, ȳ)

)

≥ 0 and further
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simplify it to

∑

x=−m+2,−m+4,...,m

(PA(x|A)− PA(x|B))

·

(

∑

y=1,3,...,ȳ−2

P̂ (x, y|dj) +
1

2
P̂A(x, ȳ)

)

≥ 0.

(B.18)

Now, we plug in PA(x|A) =
(

m
m+x

2

)

p
m+x

2 (1−p)
m−x

2

m+x
2

m
and PA(x|B) =

(

m
m−x

2

)

p
m−x

2 (1−

p)
m+x

2

m+x
2

m
; as well as P̂A(x, y) =

ν(x,y|dj)

( m−1
m+x

2
−1
)
. This yields:

∑

x=−m+2,−m+4,...,m

(

m
m+x
2

) m+x
2

m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

·

(

∑

y=1,3,...,ȳ−2

ν(x, y|dj)
(

m−1
m+x

2
−1

) +
1

2

ν(x, ȳ|dj)
(

m−1
m+x

2
−1

)

)

≥ 0.

(B.19)

Again, the factors
(

m
m+x

2

)

,
m+x

2

m
, and 1

( m−1
m+x

2
−1
)
cancel out since their product is

1. Hence, inequality B.19 becomes

∑

x=−m+2,−m+4,...,m

(

p
m+x

2 (1− p)
m−x

2 − (1− p)
m+x

2 p
m−x

2

)

·

(

∑

y=1,3,...,ȳ−2

ν(x, y|dj) +
1

2
ν(x, ȳ|dj)

)

≥ 0.

(B.20)

inequality B.20 holds for any ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}
odd and coincides with condition 2(ii) of Prop. B.1.

We have derived the implications for an arbitrary expert with degree dj > 0
and for some arbitrary ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj + 2}. The
derived conditions 2(i) and 2(ii) must hence hold for any dj ∈ {d1, ..., dm}
such that dj > 0. For the case of the empty network, in which no single expert
has an audience, the strategy profile σ̂ is not interesting to study because
communication is impossible, but formally still Prop. B.1 applies. In this
special case condition 2 is trivially satisfied. Thus, we have shown that if σ̂ is
an equilibrium, then the second condition of Prop. B.1 is also satisfied.

Part II. “IF” Suppose that the two conditions of Prop. B.1 are satisfied. We
show that σ̂ is an equilibrium by deriving the implications of these two conditions
for every kind of player.

• Non-experts without a link: Consider any non-expert i ∈ N with di = 0. The
set of strategies is {A,B, φ} and σ̂i = φ. Suppose condition 1 of Prop. B.1
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holds, which is inequality B.13. In part I of the proof we used a sequence of
transformations to rewrite inequality B.8 as inequality B.13. Since these were
all equivalence transformations, the assumption that inequality B.13 holds
implies that inequality B.8 holds. Thus, condition 1 of Prop. B.1 implies that
for a non-expert without a link deviating from σ̂ does not increase expected
utility, given that the outcome is y = +1, i.e. given that the deviation has any
effect on the outcome.

• Experts with an audience: Consider any expert j ∈ M with dj > 0. This
expert has (3× 3)2 = 81 strategies because she chooses one of three messages
and one of three voting actions after receiving one of two signals. To evaluate
different strategies we can assume w.l.o.g. that the expert has received signal
A because neither the utility function nor the strategy profile depends on
the label of the alternatives. This reduces the number of strategies to nine.
Consider any deviation σ′

j. This deviation reduces the voting outcome y that
is attained under σ̂ by a number ȳ ∈ {1, 2, dj, dj + 1, dj + 2, 2dj, 2dj + 1, 2dj +
2}. For each of these numbers conditions 2(i) and 2(ii) of Prop. B.1 are
equivalent to inequality B.14 since the conditions 2(i) and 2(ii) were derived
by equivalence transformations of inequality B.14. Thus, for any deviation of
an expert with an audience, the expected utility is weakly smaller than under
σ̂, when restricting attention to the cases where the deviation has some effect
on the outcome and hence in general as well.

• Experts without an audience: Consider any expert j ∈ M with dj = 0.
W.l.o.g. assume that j has received signal A. Under σ̂ expert i would vote A.
Alternatively, she can vote B respectively abstain, which reduces the outcome
y by two respectively by one vote. (These deviations have already been con-
sidered for experts with an audience when letting ȳ = 2, respectively, ȳ = 1.)
These deviations are not increasing expected utility since condition 2(i) of
Prop. B.1 holds in particular for ȳ = 2 and condition 2(ii) of Prop. B.1 holds
in particular for ȳ = 1 such that inequality B.14 is satisfied.

• Non-experts with a link: Consider any non-expert i ∈ N with di = 1. W.l.o.g.
assume that i has received message A. Under σ̂ non-expert i votes A. Al-
ternatively, he can vote B respectively abstain, which reduces the outcome y

by two respectively by one vote. (The effect of these two deviations is as if
an expert with signal A would vote for B respectively abstain.) Again, since
condition 2(i) of Prop. B.1 holds in particular for ȳ = 2 and condition 2(ii) of
Prop. B.1 holds in particular for ȳ = 1, inequality B.14 is satisfied such that
these deviations do not increase expected utility.

We have shown in part II of the proof that the conditions 1 and 2 provided in
Prop. B.1 imply that no player can beneficially deviate from σ̂.

Proof of Proposition 3
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We show existence of inefficient strategy profiles with the network introduced
in Example 3. This network violates strong balancedness such that by Prop. 2 the
sincere strategy profile σ̂ is inefficient. To show that σ̂ is an equilibrium we show
that there is no profitable deviation for any player. We distinguish between the
non-experts, the experts with degree zero, and the experts with degree 2.

Non-experts Under σ̂, non-expert i ∈ N is pivotal if and only if the votes of all
others would lead to a tie (4:4) because vote differences of others are even numbers.
Moreover, in this example a tie of all others is only reached under σ̂ if signals of
the “other” experts (the ones not linked to i) form a tie as well (2:2). In particular,
it must be the case that the expert with an audience has received the same signal
as exactly one expert without an audience. Since the “own” expert (the one linked
to i) reports truthfully under σ̂, the message received by i is the majority signal
(3:2). Thus, the posterior belief that the received message indicates the correct
alternative is above 0.5, even when conditioning on pivotality. Therefore, voting
for this alternative leads to higher expected utility than abstaining (which would
lead to an expected utility of 0.5) and to a higher expected utility than voting the
opposite. Thus, a non-expert cannot improve upon σ̂i, which prescribes to vote the
message.

Experts without an audience Under σ̂, expert j ∈ M with degree dj = 0
is pivotal if and only if the votes of all others would lead to a tie (4:4) because
vote differences of others are even numbers. In this example, a tie of all others is
only reached under σ̂ if signals of the “other” experts form a tie as well (2:2). (In
particular, it must be the case that each signal has been received exactly by one
out of two experts with an audience and by one out of two other experts without
an audience.) Thus, the own signal is the majority signal (3:2). Now, for the same
reason as for non-experts above, voting for this alternative leads to highest expected
utility. Hence, there is no profitable deviation from σ̂j for an expert without an
audience.

Experts with an audience Consider an expert j ∈ M of degree dj = 2. There
are 80 ways in which this expert can deviate from the sincere strategy profile σ̂ since
experts with an audience can choose both voting actions and messages as a function
of their signal (see proof of Prop. B.1 for why we have 81 strategies). A deviation
only affects the outcome if the signal that j has received wins under σ̂, but not when
j deviates. W.l.o.g. assume that expert j has received signal A. Then the outcomes
(#A : #B) that expert j can overturn are 7:2, 6:3, and 5:4 (i.e. y = 5, 3, 1). We
proceed by showing for each of these outcomes that the probability that A is correct
is above 0.5 such that there is no incentive to deviate from σ̂. The outcome 7:2
with j receiving A is reached under σ̂ only if signals were 3:2 in favor of A. The
same holds true for the outcome 5:4. Thus, overruling these outcomes is decreasing
expected utility. Finally, the outcome 6:3 can be based on two situations. Either
signals are 4:1 and the other expert with an audience has received signal B (while
all experts without an audience have also received signal A); or signals are 2:3 and
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both experts with an audience have received signal A (while all others have received
signal B).

Using the probabilities of these two events, we observe that A is more likely to
be true than B, given that j has received signal A and the outcome is 6:3, if and
only if the following inequality holds:

5p4(1− p)
4

5
∗
1

4
+ 10p2(1− p)3

2

5
∗
1

4
≥ 5p(1− p)4

4

5
∗
1

4
+ 10p3(1− p)2

2

5
∗
1

4
.

The inequality compares the probability that A is true (when signals are 4:1 and
2:3) on the LHS with the probability that B is true (when signals are 4:1 and 2:3)
on the right-hand side, given that j has received signal A and the outcome is 6:3.
The inequality simplifies to

p4(1− p)− p3(1− p)2 ≥ p(1− p)4 − p2(1− p)3,

which is true (since the LHS is positive and the RHS is negative for p > 0.5). Hence,
any outcome that an expert with an audience can overturn in this example is more
likely to match the true state than the alternative.
Therefore, there cannot be any profitable deviation from σ̂.

C Partisans

C.1 Model with Partisans

We have so far assumed that all agents have the same preferences, namely they
want the policy to match the state of the world. Now, we introduce agents who
try to induce a specific policy regardless of the state of the world, e.g., due to
the expectation of personal perquisites. We call them A-partisans or B-partisans
according to their preferred policy. Throughout we assume that the number of A-
partisans equals the number of B-partisans. We introduce partisans as members of
the set M who can potentially communicate with non-experts in N . Non-experts
cannot directly observe whether “their” sender is an expert or a partisan, but the
number of experts mE and the number of partisans mA = mB are known.

Formally, we assume that the network g is given and that nature draws an
allocation of the given experts and partisans to the nodes in M . Assuming that
each allocation has the same probability, the probability that a given sender is an
expert is simply mE

m
. We consider the position of each expert or partisan as her

private information. Since partisans have no incentive to utilize signals about the
true state of the world, we assume that they do not receive a signal.

We extend the definition of the two focal strategy profiles σ∗ (“let the experts
decide”) and σ̂ (sincere) to the model with partisans by assuming that the latter
communicate and vote their preferred alternative.17 For each partisan j voting and

17By allocating experts to positions in M , the strategy space of an expert increases since they
can potentially condition their strategy on the position. In the focal strategy profiles σ∗ and σ̂ the
experts’ strategies do not rely on their position.
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communicating the preferred alternative is a best response to σ∗
−j, respectively to

σ̂−j. For the “let the experts decide” strategy profile σ∗ we assume in addition that
all non-experts abstain independent of their received message such that they follow
neither an expert’s nor a partisan’s message.

The notion of informational efficiency of Definition 1 still applies to this extension
of the model. Note, however, that an informationally efficient strategy profile only
maximizes the expected utility of all experts and non-experts, but generally not of
any partisan.

The extension of the baseline model that incorporates partisans does not alter
the results we have established so far. In particular, given that the number of A-
partisans equals the number of B-partisans, Propositions 1, 2, and 3 carry over.
This is formally shown as Propositions C.1, C.2, and C.3 in the next subsection.

C.2 Propositions with Partisans

Proposition C.1. In the extended model with an equal number of partisans (mA =
mB), there exist efficient equilibria for any network structure. For instance, the “let
the experts decide” strategy profile σ∗ is efficient and an equilibrium for any network
structure.

Proof. Since the votes of the partisans balance each other out, the “let the ex-
perts decide” strategy profile σ∗ always implements the majority signal and is hence
efficient. Therefore, it maximizes the expected utility for any expert and any non-
expert.18 Thus, we only have to check potential deviations of partisans. Deviations
in the communication strategy are ineffective because all members of the audience
abstain unconditionally under σ∗. Changing the voting action cannot increase ex-
pected utility because an A-partisan cannot increase the likelihood that A is chosen
when deviating from voting for A; and analogously for B-partisans.

Proposition C.2. Consider the extended model with an equal number of partisans
(mA = mB). Let m = |M | be odd and greater than or equal to 5. Let the number of
links l :=

∑m

i=1 di be even and order the degree distribution in M in decreasing order
(d1, d2, ..., dm) such that dj ≥ dj+1. The sincere strategy profile σ̂ is an equilibrium

if (a) d1 +
∑

m−1

2

j=2 dj ≤
l
2
, and only if either (b) d1 +

∑m

k=m+5

2

dk ≤ l
2
or there is an

agent who is never pivotal. The sincere strategy profile σ̂ is efficient if and only if
condition (a) is satisfied.

Proof. First, we observe that Lemma B.1 carries over to the model extension with
partisans. In particular, representativeness (of g under σ̂) is unaffected and it is
equivalent to both condition (a), i.e. strong balancedness, and to informational effi-
ciency (under σ̂), given that mA = mB.

Now, suppose condition (a), i.e. strong balancedness, is satisfied. Then σ̂ is
efficient and, hence, experts and non-experts cannot improve by deviating. When

18With the presence of partisans efficient strategy profiles are not automatically equilibria any-
more, but efficient strategy profiles with partisans who cannot improve are.
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an A-partisan effectively deviates from σ̂ either he or his audience stops voting for A.
This does not increase the likelihood that A is implemented. This holds analogously
for B-partisans. Thus, there is no profitable deviation for any player.

It remains to show that condition (b) is a necessary condition for σ̂ to be an equi-
librium; or there must be an agent that is never pivotal under σ̂. Suppose that all
agents can be pivotal under σ̂. Let i be a non-expert listening to a sender with max-
imal degree d1 and let w.l.o.g. A be the message received. Following the arguments
of the proof of Prop. 2, we get the following: If condition (b) (i.e. inequality B.7)
is violated, then pivotality of non-expert i implies that a majority of the members
of M (experts and partisans) have voted message B. Since mA = mB, B is then
the majority signal and thus, the probability that A is true is below 0.5. Hence,
non-expert i can improve by not voting the message.

Proposition C.3. In the extended model with an equal number of partisans (mA =
mB), there are networks in which the sincere strategy profile σ̂ is both an equilibrium
and exhibits informational inefficiency.

Proof. We show the proposition by an example. Let m = 7, mA = mB = 2, and
n = 4. Let the network structure be as in the weakly balanced network of the experi-
mental treatments (i.e. the third panel in Figure 3) such that the degree distribution
of the experts and partisans is (d1, d2, d3, d4, d5, d6, d7) = (1, 1, 1, 1, 0, 0, 0). We first
show that σ̂ exhibits informational inefficiency and then that σ̂ is an equilibrium.

Inefficiency To see that σ̂ is inefficient, consider the relation between the signal
distribution and the voting outcome. Suppose that two experts have received signal
A and one expert has received signal B. Assume that the four non-experts happen
to be linked to the two B-partisans, to the expert who received the signal B, and
to one of the experts who received signal A. In this case, σ̂ implies that B wins by
one vote. Since this is an instance in which the majority signal is not chosen by the
group, σ̂ is not efficient in the current network.

Equilibrium We show that none of the agents has an incentive to deviate from σ̂.
Consider first any non-expert i ∈ N . He is pivotal if without his vote the outcome
of the election is a tie (5:5). This occurs either if there are two messages of each
kind and i has received the majority signal as the message; or if there are 3 messages
of the minority signal and 1 message of the majority signal and i has received the
minority signal as the message. Non-expert i’s belief that his message, say A, is
true, conditional on his pivotality, amounts to

pi(A|A, piv) =
3p2(1− p) 4

7
∗ 9

20
+ 3p(1− p)2 3

7
∗ 4

20

3p2(1− p) 4
7
∗ 9

20
+ 3p(1− p)2 3

7
∗ 4

20
+ 3p(1− p)2 4

7
∗ 9

20
+ 3p2(1− p) 3

7
∗ 4

20

and simplifies to

pi(A|A, piv) =
p2(1− p)3 + p(1− p)2

[p2(1− p) + p(1− p)2] (3 + 1)
>

1

2
.
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Hence, non-expert i’s expected utility from following the message as prescribed by
σ̂ is larger than his utility from abstention or voting the opposite.

Now, consider an expert j with dj = 0. Assume w.l.o.g. that j has received
signal A. By deviating from σ̂j this expert only changes the outcome if A would win
by one vote (it is not possible that A wins with two votes). The draws of nature
that lead to this outcome are all such that A is the majority signal. If A were the
minority signal and expert j with dj = 0 had received A, alternative B would get
at least 6 votes (because there are two B-partisans and two experts with signal “B”
and at least two of them have a non-expert who listens to them) and always win
under σ̂. Thus, j can only affect the outcome if A is the majority signal. Since the
probability that A is correct is then above 0.5, a deviation from σ̂j cannot increase
expert j’s expected utility.

Now, consider an expert j with dj = 1. A deviation only affects the outcome
if the signal that j has received wins under σ̂, but not when j deviates. W.l.o.g.
assume that expert j has received signal A. Since j can reduce the number of votes
for A by at most two and increase the number of votes for B by at most two (when
he communicates and votes the opposite), the outcomes #A : #B that expert j

can overturn are 7:4 and 6:5. We proceed by showing for each of these outcomes
that the probability that A is correct is above 0.5 such that there is no incentive to
deviate from σ̂, which implements A. The outcome 7:4 with j receiving A is reached
under σ̂ only if signals were 3:0 or 2:1 in favor of A. Since in these two cases the
probability that A is true is above 0.5, overruling outcome 7:4 decreases expected
utility. The outcome 6:5 can be based on two situations (as in the discussion of
non-experts above). First, it is possible that A is the majority signal and there were
two messages A and two messages B. Second, it is possible that A is the minority
signal and two A-partisans plus one expert (the one holding the minority signal)
have sent message A. Using the probabilities of these two events, we observe that A
is more likely to be true than B, given that j has received signal A and the outcome
is 5:4, if and only if the following inequality holds:

3p2(1− p)
2

3
∗

9

20
+ 3p(1− p)2

1

3
∗

4

20
≥ 3p(1− p)2

2

3
∗

9

20
+ 3p2(1− p)

1

3
∗

4

20
.

The equation compares the probability that A is true when signals are 2:1 and 1:2
on the left-hand side with the probability that B is true when signals are 2:1 and
1:2 on the right-hand side, given that j has received signal A and the outcome is
5:4. The inequality simplifies to

(

3p2(1− p)− 3p(1− p)2
)

[

2

3
∗

9

20
−

1

3
∗

4

20
,

]

≥ 0

which is true (since p > 1
2
). Hence, any outcome that an expert with an audi-

ence can overturn in this example is more likely to match the true state than the
alternative.

Finally, partisans cannot improve by a deviation because, given the others’ strate-
gies under σ̂, they can only reduce the likelihood of their preferred outcome by a
deviation. Hence, σ̂ is an equilibrium despite its informational inefficiency.
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D Instructions

The original instructions are written in German and can be found in an online
appendix or requested from the authors. On the next pages we provide an English
version which is a sentence-by-sentence translation of the original instructions.
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SVCnet 

1 
 

Welcome to today’s experiment! 

Please note that no communication is allowed from now on and during the whole experiment. If you 
have a question please raise your hand from the cabin, one of the experimenters will then come to 
you. The use of cell phones, smart phones, tablets, or similar devices is prohibited during the entire 
experiment. Please note that a violation of this rule leads to exclusion from the experiment and from 
any payments. 

All decisions are taken anonymously, i.e. none of the other participants comes to know the identity 
of the others. The payoff is also conducted anonymously at the end of the experiment. 

 

Instructions 

 
In this experiment you will choose along with your group one out of two alternatives whereupon just 
one  alternative  is  correct  and  the other  is wrong. Only  the  correct  alternative  leads  to  a positive 
payoff  for each member of  the group. Some members of  the group will receive  information about 
the  correct alternative. This  information  is accurate  in 80 out of 100  cases. The group decides by 
voting  which  alternative  will  be  implemented.  The  group  is  furthermore  arranged  in  a 
communication network. Certain members of the group can – depending on the network structure – 
transmit a message to other members before the group ballots for the alternatives.  

The sequence of each individual round consists of the following 4 parts. 

 

1. Information 

You will receive the role of an Informed or an Uninformed at random (and you will keep it during the 
entire experiment). There are two alternatives: alternative “circle” and alternative “triangle”. At the 
beginning  of  each  round  one  of  the  two  alternatives will  be  assigned  at  random  and with  equal 
likelihood  as  the  correct  alternative.  The  “Informed”  receive  information  about  the  correct 
alternative which is accurate in 80 out of 100 cases. (The Informed will not necessarily all receive the 
same  information).  The  “Uninformed”  will  not  receive  any  information  about  what  the  correct 
alternative is. 
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2. Communication 

You will randomly be divided into groups of 11 members out of whom 7 are real participants and the 
remaining  4  being  represented  by  the  computer.  A  group  is  composed  of  3  Informed  and  4 
Uninformed  (a  total of 7  real participants of  the  experiment)  as well  as 2 Circle‐advocates  and 2 
Triangle‐advocates  (group  members  represented  by  the  computer).  The  Circle‐advocates 
categorically vote for “circle;” and the Triangle‐advocates categorically vote for “triangle.” All group 
members are arranged in a communication network. At the beginning of a round you get to know the 
network structure and your position  in the network. You can see the possible networks pictured  in 
the figure below. 

 

3  Informed and 4 Advocates receive  in randomized arrangement  the positions Above 1  to 7  in  the 
network.  4  Uninformed  receive  in  randomized  arrangement  the  positions  Below  1  to  4  in  the 
network. Everyone knows therefore that someone with an upper position is either an Informed or an 
Advocate and that someone with a  lower position  is an Uninformed. The network structure reveals 
who can communicate with whom. The Uninformed can be recipients but not senders of a message. 
Sender of the message  is – depending on the network position – an  Informed or an Advocate. The 
Circle‐advocates send the message “circle” to their recipient(s) and the Triangle‐advocates send the 
message “triangle.” The Informed send either the message “circle” or the message “triangle” or they 
don’t send any message to their recipient(s). Each sender can send exactly one message to all of its 
(his/her)  recipients. Not every  Informed or Advocate  is necessarily a  sender. This depends on  the 
network  structure  and  the  network  position.  The  connecting  lines  between  upper  and  lower 
positions in the network display who can send a message to whom. 
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3. Voting 

You  can decide  to vote  for “circle,”  to abstain  from voting, or  to vote  for “triangle.” The 2 Circle‐
advocates  always  vote  for  “circle”  and  the  2  Triangle‐advocates  always  for  “triangle.”  The  voting 
result  in  the  group  is  the  alternative  (circle or  triangle) with  the most  votes.  In  case of  a  tie  the 
computer will pick one of the two alternatives at random and with the same probability. 

 

 

4. Outcome 

At the end of the round you will get to know the voting outcome as well as the right alternative. If 
they match, e.g. the voting outcome  is triangle and the right alternative  is triangle, you will receive 
100 points. Otherwise you will not receive any points. At the end of 40 rounds 3 rounds will be drawn 
randomly, which are then relevant for the payoffs. The rate of exchange between points and Euro is 
the  following:  20  points  correspond  to  1  Euro.  You  will  receive  5  Euro  additionally  for  your 
participation in the experiment.   



SVCnet 

4 
 

 

 

Procedure of the experiment 

40 rounds will be played  in total. The composition of the group changes from round to round. The 
network structure changes every 5 rounds. There will be a short questionnaire subsequent to the 40 
rounds of  the experiment. Prior  to  the 40  rounds of  the experiment 4  sample  rounds are played. 
These are not payoff‐relevant. (In each sample round a different network is introduced.) 

Summary of the procedure of the experiment:  

1. Reading of the instructions 
2. Questions of comprehension concerning the instructions 
3. 4 sample rounds 
4. 40 EXPERIMENTAL ROUNDS 
5. Questionnaire 
6. Payoffs 

If you have a question, please raise your hand from the cabin, we will then come to you. 
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