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Abstract

Consider a setting where N players, partitioned into K observable types, form a
directed network. Agents’ preferences over the form of the network consist of an ar-
bitrary network benefit function (e.g., agents may have preferences over their network
centrality) and a private component which is additively separable in own links. This
latter component allows for unobserved heterogeneity in the costs of sending and re-
ceiving links across agents (respectively out- and in- degree heterogeneity) as well as
homophily/heterophily across the K types of agents. In contrast, the network benefit
function allows agents’ preferences over links to vary with the presence or absence of
links elsewhere in the network (and hence with the link formation behavior of their
peers). In the null model which excludes the network benefit function, links form in-
dependently across dyads in the manner described by Charbonneau (2017). Under the
alternative there is interdependence across linking decisions (i.e., strategic interaction).
We show how to test the null with power optimized in specific directions. These al-
ternative directions include many common models of strategic network formation (e.g.,
“connections” models, “structural hole” models etc.). Our random utility specification
induces an exponential family structure under the null which we exploit to construct a
similar test which exactly controls size (despite the the null being a composite one with
many nuisance parameters). We further show how to construct locally best tests for
specific alternatives without making any assumptions about equilibrium selection. To
make our tests feasible we introduce a new MCMC algorithm for simulating the null
distributions of our test statistics.

JEL Codes: C31, C57
Keywords: Network formation, Locally Best Tests, Similar Tests, Exponential Fam-

ily, Incomplete Models, Degree Heterogeneity, Homophily, Binary Matrix Simulation, Edge
Switching Algorithms
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In an economic model of (directed) network formation agents purposefully direct links

to one another in order to maximize utility. Specifically, a payoff function maps all possible

network configurations into agent utilities. Agents use this payoff function to weigh the

benefits of directing any particular link against the costs of doing so. A Nash Equilibrium

(NE) network arises when all agents link choices are individually optimal given the choices

made by other agents (e.g. Bala and Goyal, 2000).

Important examples of such processes include firms choosing their suppliers (e.g., Atalay

et al., 2011), adolescents choosing friends (e.g., Christakis et al., 2020), banks engaging in

interbank lending to meet statutory reserve requirements (e.g., Boss et al., 2004), and village

households choosing partners for risk-sharing (e.g., De Weerdt, 2004). Jackson et al. (2017)

present many other examples of networks in economics. Such data abound in the other social

sciences as well (e.g., Apicella et al., 2012).

The utility an agent receives when she directs a link to another agent can be usefully

divided into two components.1 The first component is “private”, or, more precisely, invariant

to the presence or absence of other links in the network.2 The second component is “social”,

or varying with the presence or absence of other links in the network.

An example of the first component is the payoff associated with a homophilous link

(McPherson et al., 2001). This payoff component only depends on the attributes of the

sending (ego) and receiving (alter) agents. Another example is associated with “degree

heterogeneity”: agents may vary systematically in their propensity to direct links, or in their

attractiveness as link targets for others. Finally we might posit that the payoff from any

particular link varies for idiosyncratic reasons, as in other random utility models (RUMs) of

discrete choice (McFadden, 1974). Empirical models of network formation with these features

were introduced by Charbonneau (2017), Graham (2017), Dzemski (2018), Jochmans (2018)

and Yan et al. (2018). These models are fundamentally dyadic: agents’ network payoffs are

a simple sum of link-specific payoffs and, crucially, invariant to the linking behavior of other

agents.

In some settings, however, agents may also value indirect links. For example, an arc from

j to k may incidentally reduce the shortest path length from i to k, allowing agent i better

access to k’s information (e.g., Jackson and Wolinsky, 1996; Bala and Goyal, 2000). While

arc jk is valued by i, this value is not incorporated into j’s decision to direct the arc or not.

Preferences of this type mean agents’ decisions impose externalities on others. The detection

of such externalities is the subject of this paper.

1In digraphs, or directed networks, it is customary to refer to edges as “arcs”. Here we use the terms link,
edge, arc, friendship, relationship etc. interchangeably.

2Note “other links” include those possibility directed by the sending agent to targets other than the one
at hand. An alternative to the “private” nomenclature would be “dyadic” or “direct”.
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Payoff functions with externalities feature prominently in formal theoretical models of

network formation (cf., Jackson, 2008; Goyal, 2022). Equilibrium in network formation mod-

els with externalities may be analyzed using the tools of game theory. Indeed such models are

typically called strategic network formation models. In what follows we say a network for-

mation model is strategic if agents value indirect links or, equivalently, their optimal linking

strategy varies with the linking behavior of others.

When links made by one agent alter the incentives for link formation faced by others,

equilibrium network configurations may diverge from socially optimal ones (Goyal, 2022).

This, in turn, suggests that well-designed interventions might make agents better off. In con-

trast, without a wedge between the private and social benefits of link formation, equilibrium

and socially optimal networks will coincide. This paper introduces a test for whether agents’

own incentives to form links vary with the choices of others. A rejection of our test, under the

maintained model, indicates the presence of externalities, with their attendant implications

for optimal policy design.

An overview of the test and its uses

Strategic network formation games are complicated. In a directed network with N agents,

there are 2N(N−1) possible action profiles or network configurations; many of which may be

Nash Equilibria (NE). In the seminal model of directed network formation introduced by Bala

and Goyal (2000), for example, with N = 5 agents there are 1, 069 NE networks. Because

of this combinatoric complexity, methods pioneered for the econometric analysis of discrete

games with just a few players are not directly applicable – at least in practice – to network

formation games.

In recent work, Christakis et al. (2020), Mele (2017), Miyauchi (2016), de Paula et al.

(2018) and Sheng (2020) each proposed empirical models of strategic network formation.3

Each of these models impose particular restrictions on the form of the network payoff function,

the nature of any unobserved heterogeneity, and/or make assumptions about equilibrium se-

lection. Even with these restrictions, estimating the identified set for the parameters indexing

the network payoff function in these models is challenging, as is conducting inference.4

In this paper we introduce an econometric model of strategic network formation which,

we believe for the first time, simultaneously allows (i) for agents to value both direct and

indirect links, (ii) for the systematic returns to link formation to vary with observed dyad

3de Paula (2020) surveys work in this area and provides additional references.
4We wish to emphasize that these “critiques” reflect the inherent difficulty of the problem, not any

deficiencies in the above cited papers. Indeed these researchers have shown considerable ingenuity in proposing
ways to make methods designed for games with just a few players scale to the considerably more complicated
many-player network setting.
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attributes, and (iii) for unobserved agent-specific correlated degree heterogeneity. Our setup

maps neatly into the “costs versus benefits” payoff structures emphasized in theoretical mod-

els of strategic network formation (see, for example, Jackson (2008, Chapters 6 & 11) and

Goyal (2022, Chapter 3)). Examples of models – suitably enriched to include covariates, un-

observed heterogeneity, and random link utility – encompassed by our framework include the

“connections” model (e.g., Jackson and Wolinsky, 1996; Bala and Goyal, 2000), “structural

hole” or “bridging” models (e.g., Goyal and Vega-Redondo, 2007; Kleinberg et al., 2008) and

the favor exchange or “supported links” model of Jackson et al. (2012). We can also accom-

modate tastes for reciprocity, transitivity, network centrality and other forms of indirect link

valuation.

We begin with the baseline dyadic logistic regression model for directed networks intro-

duced by Charbonneau (2017).5 This model is useful for modelling homophily and degree

heterogeneity. We then augment this model with a network payoff term which additionally

allows agents to value indirect links. The resulting model is quite complicated. Formally it

is a very large complete information simultaneous move game. While we assume that the

observed network is a NE, we make no auxiliary equilibrium selection assumptions.6

Let K be the number of support points in the distribution of observed agent attributes and

N the number of agents in the network. Our model includes (i) K2 “homophily” parameters,

Λ
def
≡ [λkl] for k, l = 1 . . . K, capturing how link returns vary systematically with ego and

alter attributes, (ii) two N × 1 parameter vectors A
def
≡ [Ai] and B

def
≡ [Bi] for i = 1 . . . N ,

capturing, respectively, agent-specific out- and in-degree heterogeneity, and (iii) a scalar

parameter, γ, measuring the extent to which agents value indirect links. Our model also

includes (iv) an “equilibrium selection” function. Since we are agnostic about which NE is

selected in the presence of multiple equilibria, this function is not specified by the analyst,

but enters our analysis abstractly (see Theorem 1.1 below).

We treat δ = (Λ′,A′,B′)′ as a (high dimensional) nuisance parameter and the equilibrium

selection mechanism as a nuisance function.7 This focuses our attention solely on γ. While,

in principle, an analysis of the identified set for γ might be possible, we instead focus on the

one-sided hypothesis of H0 : γ = 0 versus H1 : γ > 0. Or, put differently, we identify the

sign of γ.8

5Although the dissertation from which Charbonneau (2017) was drawn appears to be the first formal
analysis of the dyadic logit model (especially in terms of exploring the implications of its exponential family
structure for estimation), its use in empirical work arose earlier. For example, in the empirical network
analysis of De Weerdt (2004); see also Holland and Leinhardt (1981).

6More precisely the observed network is either a pure strategy NE or in the support of a mixed strategy
NE (in fact our results hold under an even weaker notion of equilibrium, as explained below).

7This function assigns probabilities to all NE equilibria for every possible realization of the random utility
shocks.

8Our focus on one-sided hypotheses results in a particularly clean exposition and analysis, allows for the
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Our test involves comparing a statistic of the observed network (e.g., its transitivity index)

with a critical value derived from a reference distribution. Natural questions are: (i) which

reference distribution? (ii) how do I compute the critical value? (iii) which network statistic

should I use? We provide answers to all three of these questions.

There is a long tradition in empirical work of using the Ërdos-Rényi model to generate

the reference distribution. This invariably results in “straw man” tests since few real world

networks are well described by the Ërdos-Rényi model. To avoid spurious rejection of the

null of no strategic interaction (H0 : γ = 0) it is therefore important to have a rich null

model; one that might actually describe real world networks. Charbonneau (2017) provides

an easy to interpret, random utility based, and “credible” null model.9,10

Because δ may range freely across its parameter space when γ = 0 our null hypothesis is a

composite one. Test size equals the supremum of the rejection rate across all data generating

processes (DGPs) with γ = 0. Because δ is high dimensional, the null space is large and

constructing a test with good size and power properties is non-trivial (cf., Moreira, 2009).

An additional non-standard feature of our testing problem is that the nuisance equilibrium

selection function is only present under the alternative (cf., Andrews and Ploberger, 1994).

Under a logistic assumption on the random component of link utility, using a classic

exponential family conditioning argument, we introduce a family of similar tests. We provide

an exact characterization of the null distributions of the test statistics in this family and,

crucially, a feasible Markov Chain Monte Carlo (MCMC) algorithm for simulating from

them. Simulating the null distribution requires drawing a binary adjacency matrix uniformly

at random from the set of all adjacency matrices satisfying certain constraints. Constrained

binary matrix simulation has numerous applications in biology, psychology, ecology and other

fields (cf., Sinclair, 1993; Blitzstein and Diaconis, 2011). Unfortunately, extant simulation

algorithms cannot be used to simulate the null distribution needed here; our algorithm is

therefore novel and of independent interest.

We also derive the form of the locally best test under the alternative H1 : γ > 0. Remark-

ably we are able to do this while remaining agnostic about equilibrium selection. Finally,

because our test is exact, we also side-step difficult issues that arise when undertaking asymp-

totic analysis in the single network context (see Graham (2020) for references and discussion).

statement of some optimality results, and covers our main examples of interest. However, as will be apparent,
our basic set-up extends naturally to two-sided hypotheses.

9The Charbonneau (2017) model can match any observed in- and out-degree sequence as well as rich
patterns of homophilous linking. This is important since heavy-tailed degree distributions characterize many
real world networks, as does homophily (e.g., Barabási, 2016; McPherson et al., 2001).

10An analogy: consider the challenge of determining whether persistence in panel data is due to state-
dependence or unobserved heterogeneity (or both). Any credible test for state dependence needs to include
as part of its null a correct specification of unobserved agent-specific heterogeneity (e.g., Chamberlain, 1985).
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Possible use cases for the methods introduced in this paper include:

1. Assessing model adequacy or goodness-of-fit: The researcher believes the null

model of Charbonneau (2017) is adequate for the setting at hand, but wishes to report

an omnibus goodness-of-fit test (similar to the practice of reporting the Sargan-Hansen

J-Statistic in the context of GMM estimation). While a rejection in this setting is

interpreted as evidence against the baseline null model, it not interpreted as evidence

in favor of any particular alternative.11 Our use of “classic” sufficiency arguments sepa-

rates the the information in the data relevant for estimation of δ – the model parameter

under the null – from that relevant for assessing model adequacy (cf., Barndorff-Nielsen

and Cox, 1994, p. 29). As is well-known, it is not possible to construct a test with

good power in all directions of mis-specification (Lehmann and Romano, 2005, Theorem

14.6.2). The researcher’s choice of test statistic should therefore, at least heuristically,

reflect those directions of mis-specification of most concern.

2. Detecting strategic interaction of a specific form: The researcher’s primary

interest is in the specified model and she wishes to sign identify γ. In this example

the analysts undertakes empirical work under the maintained assumption that the true

model is either in the null model space or in the specified alternative model space. The

data are used to determine which case prevails. This knowledge is actionable. For

example, knowledge that γ > 0 may be sufficient to justify policies which subsidize link

formation.

3. Cataloging “unusual” network features: The researcher wishes to assess whether

certain features of the network in hand are “unusual”. In contrast to the first use

case, here the researcher suspects that the network in hand is not well-described by the

Charbonneau (2017) null, but, in contrast to the second use case, she remains somewhat

agnostic about the form of the true model. The null model defines a set of reference

networks with certain properties identical to those in the network of interest (e.g., the

in- and out- degree sequences, numbers of links between agents with different covariate

configurations). The researcher can compare features of interest in their network (e.g.,

diameter, reciprocity, support) with their distributions across the null reference set to

assess whether their network is, indeed, “unusual”. There is a long history, as noted

earlier, of comparing network statistics to their expected value under an Ërdos and

Rényi null. Here we provide a more realistic reference null distribution. See Holland

11Dyadic regression analysis has a long history in economics going back, at least, to the work of Tinbergen
(1962). See Graham (2020) for a survey and references. We note that this use case has the potential to
introduce pre-testing bias if researchers only report their results conditional on accepting the null.
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and Leinhardt (1976) for a discussion of this type of analysis in sociology, Section 5 of

Jackson et al. (2012) for an example from economics; Milo et al. (2002) for an example

from computational biology, and Gotelli (2000) for a discussion of applications to species

co-occurrence analysis in ecology. Researchers undertaking this last type of analysis

might be best described as doing structured data exploration.

While our focus is on strategic network formation, it seems likely that the ideas developed

below could be adapted to design tests appropriate for other incomplete econometric models.

In recent work Chen et al. (2018) and Kaido and Zhang (2019) introduced likelihood ratio

type tests applicable to incomplete models. Our test, in contrast, is a conditional score test.

Conditioning, while requiring exponential family structure, is helpful in settings with a high

dimensional nuisance parameter (cf., Moreira, 2009). Our score-based approach may also

have computational advantages in settings where likelihood evaluation under the alternative

is difficult (e.g., when enumeration of all NE is impossible).

Outline of the paper

Section 1 presents our model of strategic network formation. We begin by defining agent

preferences and characterizing equilibrium networks. With this foundation we are able to

write down a likelihood function for the network. Since there may exist multiple equilibrium

networks, this likelihood depends on an unknown (and unmodelled) equilibrium selection

mechanism. Although well-defined (see Theorem 1.1 below), our likelihood function cannot

be numerically evaluated in practice.

Section 2 outlines our approach to testing. We first characterize the exact distribution of

any statistic of the adjacency matrix under the null. By conditioning on a sufficient statistic

for the parameter of the null model we guarantee similarity of our text. Our test exactly

controls size across all null model parameter values. Next we derive the form of the locally

best test statistic for specific alternatives.

Although we characterize the exact null distribution of our test statistics, for reasons

of practically, we approximate this distribution by simulation. Section 3 outlines our new

Markov Chain Monte Carlo (MCMC) algorithm for generating random draws from the re-

quired null distribution.

Section 4 illustrates our methods in the context of the Nyakatoke risk-sharing network

studied by De Weerdt (2004) and others. We construct a test with power for an alternative

where agents value their ability to broker transactions among otherwise disconnected agents

(as in Burt’s 1995 theory of “structural holes”). We formalize this idea using the model of

Kleinberg et al. (2008). This example is interesting because the form of a good test statistic
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is ex ante non-obvious, but flows naturally from the Kleinberg et al. (2008) model and our

results. The example also illustrates how test statistics need not be simple functions of the

adjacency matrix or even exist in closed form. An extensively narrated Python Jupyter Note-

book replicating this empirical illustration is available as part of the Supplemental Materials.

Section 5 finishes with a short discussion of limitations of our methods as well as a few

thoughts on possible areas for additional research.

Proofs as well as some Monte Carlo simulation results are collected in a Supplemental

Web Appendix. This appendix also includes a discussion of some additional applications of

our MCMC simulation algorithm.

Readers interested primarily in applications can read Section 1, the first part of Section 2,

and the empirical illustration of Section 4. The balance of the paper can be read later (perhaps

after viewing the Python Jupyter Notebook available in the supplemental materials).

1 An family of empirical models of strategic network

formation

1.1 Notation and setup

A directed graph G(V ,A) consists of a set of vertices (agents) V = {1, . . . , N} and a set of

ordered pairs of nodes, respectively called egos and alters, A = {(i, j), (k, l), . . .} for i 6= j,

k 6= l, and i, j, k, l ∈ N . The elements of A correspond to those arcs, or directed links,

present in G(V ,A).

In what follows we typically work with the adjacency matrix D = [Dij] where

Dij =

{
1 if ij ∈ A
0 otherwise

. (1)

Since we rule out self-links, the diagonal of D consists of structural zeros.

Let G− ij denote the network obtained by deleting link ij from G (if present), and G+ ij

the network one gets after adding this link (if absent). Let D ± ij denote the adjacency

matrix associated with the network obtained by adding/deleting link ij from G.

The set of all 2N(N−1) possible adjacency matrices is denoted by DN . Hence d ∈ DN is

a feasible network wiring or, equivalently, a pure strategy profile. Let di be the ith row of

d, or the pure strategy selection of agent i (i.e., a binary vector indicating which edges she

chooses to direct). The pure strategy profile for all players other than i is denoted by d−i.

We will sometimes refer to “players other than i” as i’s peers.
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For each agent there are M
def
≡ 2N−1 possible actions, corresponding to all possible

configurations of links she may direct towards her peers. A mixed strategy for agent

i, σi = (π1i, π2i, . . . , πMi)
′, is probability distribution on these M pure strategies; σ =

(σ1, σ2, . . . , σN)′ is a mixed strategy profile for all N agents, while σ−i is the strategy profile

of agent i’s peers.

1.2 Preferences

The utility or payoff agent i gets from network d is

νi (di,d−i; θ,Ui) = γ0gi (d)︸ ︷︷ ︸
Network Benefit

−
∑
j

dijcij (Xi, Xj; δ, Uij)︸ ︷︷ ︸
Link Costs

(2)

with gi (d) a known, but not necessarily closed-form, function of the network adjacency

matrix, normalized such that gi (0) = 0, θ = (γ, δ′)′, and the link “costs” function taking the

form

cij (Xi, Xj; δ, Uij) = − [Ai +Bj +X ′iΛ0Xj − Uij] (3)

where Xi is a K × 1 vector of mutually exclusive group membership indicators that is ob-

served by the econometrician and Ui = (Ui1, . . . , Uii−1, Uii+1, . . . , UiN)′ is agent i’s vector

of idiosyncratic logistic preference shocks over the N − 1 possible links she can direct (and

U = (U′1, . . . ,U
′
N)′).12 All agents observe their own, as well as their peers’, preference shock

vectors. As is standard in game theory, we use, in a small abuse of notation, νi (σi, σ−i; θ,Ui)

to denote agent i’s expected utility under the mixed strategy profile σ = (σi, σ−i).

The first term in (2) captures how agent i’s utility varies with the entire structure of the

network; this may include benefits from direct, as well as indirect connections. The second

term in (2) captures the net costs agent i pays in order to maintain those links she chooses

to direct.

In theoretical work gi (d) is often called the network benefit function, while

cij (Xi, Xj; δ, Uij) would be associated with the cost of forming edge ij (e.g., Jackson, 2008;

Goyal, 2022). These costs are generally assumed constant in theory research, while – as is

appropriate given the empirical context – they are heterogeneous across agents and links

here.13

While the benefit-cost typology is useful for developing intuitions about the form of NE

12More generally Xi enumerates the support points of a collection of (observed) discrete agent-specific
regressors (or a partition of this support into K regions).

13Johnson and Gilles (2000) study the implications of cost heterogeneity on equilibrium network structure
in the “connections” model.
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in this setting, what is essential here is that the first term may vary arbitrarily with d, and

hence with peer actions, while the second term is invariant to peers’ actions and, furthermore,

additively separable in own actions. In some setting the second term in (2) may be positive,

as occurs when links generate intrinsic surplus. It what follows we call the (negative of the)

jth summand in the second part of (2) the baseline utility that i gets from directing edge ij.

Of course the appropriate nomenclature is context-specific.

Baseline utility

Considering baseline utility first, we see it is increasing in the heterogeneity terms, assumed

unobserved by the econometrician, Ai and Bj. Agents with high values of out-degree het-

erogeneity Ai get a large amount of baseline utility from any link they send. In a social

network context high Ai agents are “extroverts”. Agents with high in-degree heterogeneity

Bj, in contrast, are especially attractive targets, or alters, for links sent by others. In a social

network high Bj agents are “prestigious” or “popular”.14

The X ′iΛ0Xj

def
≡ W ′

ijλ0 term allows baseline utility to depend on whether agents assorta-

tively match on their attributes.15 The elements of the K×K matrix Λ = [λkl] parameterize

the systematic utility generated by links, say, from group k to group l. For example, in

a social network girls might, all things equal, prefer other girls as friends. The Λ0 matrix

parameterizes homophily (or heterophily) of this type.

We leave the joint distribution of (Ai, Bi, X
′
i)
′ unrestricted.16 This implies that the un-

observed degree heterogeneity (Ai, Bi)
′ may be correlated with the observed covariates Xi,

as in fixed effects panel data analyses.

The final component of baseline utility is idiosyncratic; we assume that the {Uij}i 6=j are

independent and identically distributed (iid) logistic random variables. The logistic assump-

tion generates exponential family structure which we exploit when forming our test.

Equation (2) with γ = 0 gives agent preferences under our baseline or null model (essen-

tially the dyadic link formation model introduced by Charbonneau (2017). This model, when

fitted by maximum likelihood, can successfully match many features of real world networks.

Specifically arbitary in- and out-degree sequences and assortative linking patterns on discrete

agent attributes (cf., Graham, 2020). Of course, we are especially interested in settings where

the Charbonneau (2017) model does not provide a good description of the network in hand.

14Alternatively we can think of high Ai agents as being able to direct links at low cost, and high Bj agents
as being low cost alters.

15We define Wij = (Xi ⊗Xj) and λ = vec (Λ′).
16This distribution does have implications for test power, as will become apparent below. We also comment

that {(Ai, Bi, X
′
i)
′}Ni=1 need not be i.i.d. There is no requirement, for example, that the agents in the network

are a random sample from some population.
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Figure 1: Network benefit function examples

Source: Authors’ calculations.
Notes: Panel [a]: agent i is a bridge from k to j and agent l is a bridge from j to k. Panel
[b]: edge ij is supported by agent k. Panel [c]: adding edge ij generates a transitive triad.

Network benefit function

When γ > 0, the first term in (2) – the network benefit function gi(d) – enriches the baseline

model to allow agent preferences over links to vary with the presence or absence of links

elsewhere in the network. The researcher is free to specify the network benefit function as

desired. A few selected examples, drawn from recent theoretical work on strategic network

formation, gives a sense of the range of possibilities.

Example 1.1. (Connections) In a seminal paper, Jackson and Wolinsky (1996), intro-

duced the connections model. In a directed variant, Bala and Goyal (2000) set gi (d) =∑
i 6=j φ

(
`ij

(
d̃
))

where d̃ is the undirected network obtained from d (i.e., d̃ =
[
d̃ij

]
with d̃ij = 1 − (1− dij) (1− dji)), φ : {1, 2, . . . , N − 1} → R is a known function with

φ (k) > φ (k + 1) > 0 for any k = 1, 2, . . . , N − 1, and `ij

(
d̃
)

the shortest path length be-

tween agents i and j in d̃. Agents prefer to be close to other agents in the network in order to

easily access their information, but also wish to maintain as few links as possible, since links

are costly to direct. Strong externalities arise in this model: edge ij may incidentally reduce

the shortest path length between agents k and l, but such benefits are not internalized by

agent i. Also, since information flows bidirectionally, both agents i and j benefit from edge

ij, while the cost is shouldered by i alone.

Example 1.2. (Structural Hole / Bridging) Kleinberg et al. (2008) introduce a model

of network formation inspired by Burt’s (1995) theory of “structural holes”. Burt (1995)

argued that individuals that connect disparate groups within a network gain “bridging”,
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“middle-person” or intermediation benefits. Such benefits arise from lying on a (shortest)

path connecting two agents not directly connected themselves. Citing empirical evidence,

Kleinberg et al. (2008) emphasize the special benefits of lying on length two paths between

disconnected agents.17 If dkidij (1− dkj) = 1, then i serves as a “bridge” between k and j

(see Panel [a] of Figure 1.2). The summation
∑

l dkldlj (1− dkj) yields a count of the total

number of bridging agents between k and j. While agents benefit from serving as a bridge

between two agents, these benefits decline in the number of other agents also serving as

bridges for the same (directed) dyad. This yields a network payoff function of the form

gi (d) =
∑

j

∑
k 6=j φ (dkidij (1− dkj) ,

∑
l dkldlj (1− dkj)) with φ (0, k) ≡ 0 and φ (1, k) >

φ (1, k + 1) > 0 for k = 1, . . . , N − 2. See Goyal and Vega-Redondo (2007) for a related

model.18

Example 1.3. (Supported Links, Transitivity, Reciprocity) Jackson et al. (2017)

introduce a model where agents value supported links. Edge ij is supported by agent k if

dijdkidkj = 1 (see Panel [b] of Figure 1.2). This configuration allows agent k to monitor, or

referee, relationship ij, making it more valuable. This suggests a network benefits function

of gi (d) =
∑

j dij (
∑

k dkidkj). If, instead, agents value reciprocity we would set gi (d) =∑
j dijdji; while if they value transitivity in links we would set gi (d) =

∑
j dij (

∑
k dikdkj).

Marginal utility

Let, in an abuse of notation, νi (d) ≡ νi (di,d−i; θ,Ui); the marginal utility of arc ij for agent

i equals

MUij (d) =

{
νi (d)− νi (d− ij) if dij = 1

νi (d + ij)− νi (d) if dij = 0
(4)

Marginal utility measures the utility gain (loss) to agent i from adding (subtracting) link ij

holding the structure of all other links in the network constant (including any other links

agent i directs). The component of marginal utility associated with the network benefit

function gi (d) plays an important role in our analysis. Define the marginal network payoff

associated with agent i directing a link to j as

sij (d) =

{
gi (d)− gi (d− ij) if dij = 1

gi (d + ij)− gi (d) if dij = 0
(5)

17“[T]here appears to be much less measurable benefit to u if it is the internal node on a path between two
nodes at graph distance greater than two” (Kleinberg et al., 2008, p. 285).

18We could, inspired by Freeman (1977), also consider the model where
agents directly value their network betweeness centrality such that gi (d) =

1
(N−1)(N−2)

∑
j,k∈N\{i}

# of shortest paths from agents j to k which pass through i
# of shortest paths from agents j to k .
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Using (2) and definition (5) yields a marginal utility for arc ij of

MUij (d) = Ai +Bj +W ′
ijλ0 + γ0sij (d)− Uij. (6)

As it features in the computation of the optimal test statistic introduced below, it is helpful

to derive the form of sij (d) for the example network benefit functions introduced earlier.

Example 1.1. (Connections) In the connections model, when i directs a link to j she

weakly reduces her shortest path length to all other agents in the network. In this model

sij (d) ≥ 0 for all d ∈ DN . While there is no closed form expression for sij (d) in the

connections model, it is straightforward to compute shortest path lengths between agents

numerically (many network manipulation software libraries include routines to do this). If

removing (adding) arc ij increases (decreases) i’s distance to many other agents in the net-

work, then sij (d) will be large.

Example 1.2. (Structural Hole / Bridging) For the bridging network benefit function

sij (d) equals

sij (d) =
∑
k 6=j

φ

(
dki (1− dkj) , 1 +

∑
l 6=i

dkldlj (1− dkj)

)
.

The marginal utility of edge ij is therefore increasing in the number of agents k which direct

edges to i, but not to j. It is decreasing in the number of agents l and k in which edges kl

and lj are present (but edge kj is not).

Example 1.3. (Supported Links, Transitivity, Reciprocity) In the support model

sij (d) =
∑

k dkidkj, which is simply a count of how many agents would support edge ij if it

were formed. When agents have a taste for transitivity we have instead

sij (d) =
∑
k

dikdkj +
∑
k 6=j

dikdjk

which is a count of how many transitive triads (involving agent i) would be created if edge ij

is added. Finally if agents have a taste for reciprocity we have sij (d) = dji; indicating that

the marginal utility of edge ij varies with the presence or absence of the reciprocal edge ji.

1.3 Equilibrium networks

We assume that the observed network D coincides with the equilibrium outcome of an N -

player complete information game. Each agent (i) observes {(Ai, Bi, X
′
i)}

N
i=1 and {Uij}i 6=j
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and then (ii) decides which, out of the N − 1 other agents, to send links to. Agents may play

mixed strategies.

A mixed strategy profile σ∗ is a NE when θ = θ0 and U = u, if for all i = 1, . . . , N ,

νi
(
σ∗i , σ

∗
−i; θ0,ui

)
≥ νi

(
di, σ

∗
−i; θ0,ui

)
(7)

for all possible pure strategy selections di. We assume that the observed network D is either

a pure strategy NE or in the support of a mixed strategy NE.19

Assumption 1.1. (Data generating process) Let U be an N(N − 1) vector of iid

logistic link preference shocks observed by all agents and θ0 ∈ Θ be the parameter indexing

the payoff function (2). The observed network D is either a pure strategy NE or contained in

the support of a mixed strategy NE of the strategic form game
(
V ,DN , {νi (·, ·; θ0,Ui)}i∈V

)
.

1.4 Likelihood

In the presence of multiple NE, Assumption 1.1 imposes no restrictions on which one is actu-

ally realized in the observed network. Our strategic network formation model is incomplete.

Although we remain agnostic about equilibrium selection, it is nevertheless useful to develop

a notation for, and establish some properties of, the unknown equilibrium selection rule. This

allows us to write down a (well-defined) likelihood for the network, albeit abstractly.

Let N (d,u; θ) be a function which assigns, for U = u, a probability weight to network

d:

N (d,u; θ) : DN × Rn → [0, 1] (8)

In order for N (d, ·; θ) to be a valid NE selection function it must satisfy the conditions of

Definition 1.1.

Definition 1.1. (Equilibrium Selection Function) For U = u the realized vector of

logistic link preference shocks and θ0 the payoff function parameter, let d∗ (u; θ0) be a pure

19Observe that agent i must consider 2N−1 different pure strategy deviations in order to verify that their
chosen strategy is optimal. This may be unrealistic when N is large. A weaker equilibrium requirement, akin
to the notion of pairwise stability introduced by Jackson and Wolinsky (1996) for undirected networks, is to
require agents to only consider the effects of adding or deleting a single link at time on their utility.

Under this weaker stability notion, which we call single deviation stable (SDS), we only require that the
marginal utility of any link present in the network is non-negative, while that of any link not present is
negative. This implies that the observed network D satisfies the N (N − 1) non-linear equations

Dij = 1
(
Ai +Bj +W ′ijλ0 + γ0sij (D) ≥ Uij

)
for i, j = 1, . . . , N and j 6= i.While we maintain the NE assumption in what follows, it turns out that our test
is also valid if, instead, the observed network is only SDS. Although single deviation stability is a natural
directed analog of pairwise stability, we are not aware of this equilibrium concept being considered before.
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strategy NE or a network contained in the support of a mixed strategy NE and D∗N (u; θ0) be

the set of all such networks. Function (8) is such that (i)N (d,u; θ0) ≥ 0 for all d ∈ D∗N (u; θ0)

(ii)
∑

d∈D∗N (u;θ0)N (d,u; θ0) = 1 and (iii) N (d,u; θ0) = 0 for all d ∈ DN\D∗N (u; θ0).

If N (d, ·; θ) satisfies the conditions of Definition 1.1, then the likelihood of observing

network D = d is

P (d; θ,N ) =

∫
u∈Rn

N (d,u; θ)fu(u)du, (9)

where fu(u) =
∏

i 6=j fU(uij) with fU(u) = eu/[1 + eu]2. Of course, for the likelihood (9) to be

well-defined we require that N (d, ·; θ) is measureable.

Theorem 1.1. (Likelihood) For any network d ∈ DN there exists a measurable func-

tion N (d, ·; θ) : Rn → [0, 1], which assigns to u ∈ Rn a NE weight on the pure strategy

combination corresponding to d.

The proof of Theorem 1.1 can be found in Appendix A.1.

2 Testing for strategic interaction

The development in this section parallels the first and second use cases outlined in the intro-

duction. We first discuss how to assess the adequacy of the baseline model as a description

of the network in hand. Utilizing a conditioning argument we construct an exact test (up

to simulation error) of the null of “correct specification”. An alternative model is not ex-

plicitly formulated in this case, although researcher intuitions about plausible directions of

mis-specification typically guides the choice of test statistic. As shown by Lehmann and

Romano (2005), it is impossible to construct a test with power in all possible directions of

mis-specification.

Next we consider applications where the analyst carefully specifies the alternative model

(through an explicit choice of the network benefit function, gi (d)). Here the researcher be-

lieves the true network formation model lies in either the null or the (specified) alternative

model space; the purpose of testing is to determine which situation prevails. In this sec-

ond application we seek to construct a test which rejects with high probability when the

alternative is true, while continuing to control size under the null.

Throughout, and crucially, we wish to remain agnostic about the distribution of any

degree heterogeneity across agents as well as the form of any homophily and/or heterophily.

Let ∆ denote a subset of the K2 +2N dimensional Euclidean space in which δ0 = (λ0,A0,B0)

is, a priori, known to lie, and

Θ0 = {(γ, δ′) : γ = 0, δ ∈ ∆} . (10)
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Our null hypothesis is the composite one:

H0 : θ ∈ Θ0 (11)

since δ may range freely over ∆ ⊂ RK2+2N under the null.

Under the null the likelihood is P0(d; δ)
def
≡ P (d; (0, δ′)′,N0) with

N0(d,u; θ) =
∏
i

∏
j

1
(
Ai +Bj +W ′

ijλ ≥ uij
)dij

× 1
(
Ai +Bj +W ′

ijλ < uij
)1−dij .

Under the null the unique “equilibrium” network is the one where all links with positive

marginal utility are present and those with negative marginal utility are not. These marginal

utilities are invariant to the presence or absence of links elsewhere in the network; N0(d,u; θ)

places a probability of 1 on this network. Evaluating the integral (9) under the null yields

P0(d; δ) =
N∏
i=1

∏
j 6=i

[
exp

(
W ′
ijλ+R′iA +R′jB

)
1 + exp

(
W ′
ijλ+R′iA +R′jB

)]dij

×

[
1

1 + exp
(
W ′
ijλ+R′iA +R′jB

)]1−dij

where Ri is the N × 1 vector with a 1 in its ith element and zeros elsewhere.20

2.1 Use case 1: exact goodness-of-fit testing

Under the null our likelihood, P0(d; δ), is a member of the exponential family. To see this it

is helpful to establish some additional notation. The out- and in-degree sequences equal:

S =

(
Sout

Sint

)′
=

(
D1+, . . . , DN+

D+1, . . . , D+N

)
. (12)

Here D+i =
∑

j Dji and Di+ =
∑

j Dij equal the in- and out-degree of agents i = 1, . . . , N .

The K ×K cross-link matrix equals

M =
∑
i

∑
j

DijXiX
′
j. (13)

20Variants of this likelihood are analyzed by Chatterjee et al. (2011), Charbonneau (2017), Graham (2017),
Jochmans (2018), Dzemski (2018) and Yan et al. (2018).
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This matrix summarizes the inter-group link structure in the network (homophily). The

klth element of M records the number of links sent by type k agents (e.g., semiconductor

manufacturers) to type l agents (e.g., computer manufacturers).

Let S,M be a degree sequence and cross-link matrix. We say S,M is graphical if there

exists at least one arc set A such that G (V ,A) is a simple directed graph with degree

sequence S and cross link matrix M. We call any such network a realization of S,M. The

set of all possible realizations of S,M is denoted by GS,M (DS,M denotes the associated set

of adjacency matrices).

With this notation it is easy to verify that the null model belongs to the exponential

family (see Graham (2017)):

P0(d; δ) = c(δ) exp (t′δ) , : δ ∈ ∆ (14)

with a (minimally) sufficient statistic for δ of t =
(
vec (m′)′ , s′out, s

′
in

)′
. In words, the K2 +

N +N sufficient statistics are (i) the cross link matrix, (ii) the out-degree sequence and (iii)

the in-degree sequence.

Under H0 the conditional likelihood of the event D = d is

P0 (d|T = t) =
P0 (d; δ)∑

v∈Ds,m
P0 (v; δ)

=
1

|Ds,m|
(15)

if d ∈ Ds,m and zero otherwise. Under the null of no strategic interaction all networks with

the same in- and out-degree sequences and cross link structure are equally likely. Importantly

this conditional likelihood is invariant to the actual value of the nuisance parameter δ.

By conditioning on T, which is sufficient for δ, we isolate the information in the data that

is relevant for assessing model adequacy (Barndorff-Nielsen and Cox, 1994). This follows

because conditional on T, the null model completely specifies the distribution of D. Con-

sequently, the distribution of any statistic of the adjacency matrix, say R (D), is also fully

specified. Specifically the null distribution R (D) is the one induced by a discrete uniform

distribution on DS,M:

Pr (R (D) ≤ r|T; θ ∈ Θ0) =
1

|DS,M|
∑

d∈DS,M

1 (R (d) ≤ r) . (16)

To test model goodness-of-fit, we simply check whether the value of R (D) in the network in

hand is at an extreme quantile of this distribution. If it is, we take this as evidence against

the baseline (null) model.
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Similarity and conditioning

A test with critical function φ (D) will have size α if its null rejection probability (NRP) is

less than or equal to α for all values of the nuisance parameter:

sup
θ∈Θ0

Eθ [φ (D)] = sup
γ=γ0,δ∈4

Eθ [φ (D)] = α. (17)

Since the nuisance parameter δ is very high dimensional, size control is a priori non-trivial.

For some intuition as to why consider, as an example, the case where sij(d) =
∑

k dkidkj,

such that agents’ have a taste for supported links when γ0 > 0. A natural test statistic in

this case would be some function of D that is increasing in the number of supported links in

the network.21 The researcher would then reject the null of γ0 = 0 when this statistic is large

enough. Unfortunately, the expected number of supported links varies dramatically under

the null depending on the value of δ. Certain configurations of A, B and/or λ may result

in a network with substantial link clustering (and hence support) even when agents’ have no

taste for support per se. If we choose a single critical value for rejection then, depending on

the values of A, B and/or λ, size may be very poor.

To avoid any size distortion induced by variation in δ over ∆ ⊂ RK2+2N we exploit the ex-

ponential family structure of our model (under the null). Let T = {(s,m) : s,m is graphical}
be the set of possible sufficient statistics T. Instead of choosing a single critical value, which

may result in under- or over-rejection, depending on the value of δ, we proceed conditionally

on T ∈ T, varying our critical value with T. In this way we ensure good size control.

Formally, for each t ∈ T we form a test with the property that, for all θ ∈ Θ0,

Eθ [φ (D)|T = t] = α. (18)

Such an approach ensures similarity of our test since, by iterated expectations,

Eθ [φ (D)] = Eθ [Eθ [φ (D)|T]] = α (19)

for any θ ∈ Θ0 (Ferguson, 1967). By proceeding conditionally we ensure that the NRP is

unaffected by the value of δ.

For any t ∈ T we can construct an exact test, as is required by (18), because our model

completely specifies the distribution of networks conditional on T = t under the null. Condi-

tion (19) follows immediately. Using some well-known results from the theory of exponential

families, we can make the stronger claim that similarity is only possible by conditioning.

21Jackson et al. (2012) suggest the fraction of links in the network which are supported.
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Lemma 2.1. (Similarity) Any similar test of H0 : θ ∈ Θ0 conditions on the realized value

of T.

Proof. By Ferguson (1967, Lemma 1, Section 3.6) T is a boundedly complete sufficient statis-

tic for θ under the null. The claim then follows from Ferguson (1967, Theorem 2, Section

5.4).

Implementation

To operationalize, let R(D) be some statistic of the adjacency matrix. For example R(D)

might be the network reciprocity index (Newman, 2010):

R(D) =
2P̂11

2P̂11 + P̂01

, (20)

where

P̂01 =
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

[Dij (1−Dji) + (1−Dij)Dji] (21)

equals the fraction of dyads which take an unreciprocated or “asymmetric” configuration and

P̂11 =
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

DijDji (22)

the fraction which take a reciprocated or “mutual” configuration.

A conditional test based upon R(D) will have a critical function of

φ (d) =


1 R (d) > cα (t)

gα (t) R (d) = cα (t)

0 R (d) < cα (t)

(23)

where the values of cα (t) and gα (t) ∈ [0, 1] are chosen to satisfy the requirement that

Eθ [φ (D)|T = t] = α.

Under the null all adjacency matrices with the S = s and M = m are equally probable. By

enumerating all adjacency matrices in Ds,m we could exactly compute the null distribution of

R (D) and hence the critical values cα (t) and gα (t). In general such a brute force approach

will be infeasible.22 Therefore a method of approximating the exact null distribution is

required. The simulation algorithm introduced below provides such a method.

22In fact very little is known about the set Ds,m; for example we are aware of no method for checking whether
a given s,m pair is graphic. From related settings we believe that the cardinality of Ds,m will typically be
intractably huge even for modestly-sized networks. See Blitzstein and Diaconis (2011) for discussion of this
point and examples from a related setting.
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The intuition behind this test is straightforward. If the network in hand has an “unusu-

ally” large value of R(D) relative to the set of all networks with same in- and out-degree

sequences and cross-link matrices, then we reject the null that the baseline model is correctly

specified. A rejection is not interpreted as evidence in favor of a particular alternative model.

Relatedly, a feature of goodness-of-fit tests, including this one, is that we have may have low,

or even, power equal to size in certain directions (Lehmann and Romano, 2005).

2.2 Optimal testing with an explicit alternative

In this section we discuss how to test when the alternative model space is explicitly specified.

That is, when the researcher explicitly specifies the network benefit function in (2) and

proceeds under the premise that the true network generating process lies either in the null

or the (explicitly specified) alternative model space. In such settings a rejection provides

evidence that γ0 > 0 (in the context of a specific network benefit function). Naturally the

researcher would like to maximize her power to reject, while continuing to maintain similarity.

To accomplish this requires choosing the right test statistic.

Because equilibrium selection is not specified under the alternative, likelihood ratio (LR)

testing is not feasible (cf., Chen et al., 2018). As an alternative to a LR test, we instead choose,

for each t ∈ T, the critical function, φ (D) to maximize the derivative of the (conditional)

power function β (γ, t) = E [φ (D)|T = t] evaluated at γ = 0 subject to the (conditional)

size constraint Eθ [φ (D)|T = t] = α. Such a φ (D) is locally best (Ferguson, 1967, Lemma 1,

Section 5.5). Remarkably we show that the locally best test does not depend upon the form

of the equilibrium selection mechanism N (d,u; θ).

Differentiating the power function we get

∂β (γ, t)

∂γ

∣∣∣∣
γ=0

= E [φ (D)Sγ (D|T; θ)|T = t] (24)

with Sγ (d| t; θ) denoting the conditional score function

Sγ (d| t; θ) =
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

−
∑

v∈Ds,m

∂P (v; θ)

∂γ

∣∣∣∣
γ=0

=
1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

+ k (t)

and k (t) only depending on the data through T = t (Here, and in the balance of this section,

it is understood that δ is evaluated at is population value δ0). By the Neyman-Pearson lemma,

the test with the critical function given by equation (23) above, where the test statistic, R (d),
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is set equal to the log-likelihood gradient, 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

, will be locally best within the

class of similar tests.

The idea behind the locally best test is as follows. If the likelihood increases sharply as

we move away from the null in the direction of the alternative of interest, then we take this

as evidence against the null. Intuitively if the likelihood gradient in the neighborhood of the

null is large, then the likelihood ratio will also be large for simple alternatives close to the

null (i.e., when γ ∈ (0, ε]).

Constructing the locally best critical function requires calculating 1
P0(d;δ)

∂P (d;θ)
∂γ

∣∣∣
γ=0

. This

is not straightforward since it depends on properties of the likelihood under the alternative

(and consequently the equilibrium selection function). Nevertheless, we are able to derive

the form of this derivative.

Theorem 2.2. (Locally Best Test) (i) P (d; θ,N ) is twice differentiable with respect to

γ at γ = 0. Its first derivative at γ = 0 is

∂P (d; θ,N )

∂γ

∣∣∣∣
γ=0

= P0 (d; δ)

×

[∑
i 6=j

sij (d)

{
dij

fU (µij)∫ vij
−∞ fU (u) du

− (1− dij)
fU (µij)∫∞

vij
fU (u) du

}]
, (25)

recalling that µij = Ai + Bj + X ′jΛ0Xi equals the systematic, non-strategic, component of

utility generated by arc ij and that fU is the logistic density; (ii) the test statistic R (d) =
1

P0(d;δ)
∂P (d;θ)
∂γ

∣∣∣
γ=0

yields the locally best test in the direction of the specified alternative within

the class of similar tests.

The proof of Theorem 2.2, along with some additional commentary, can be found in

Section A.2 of the Supplemental Web Appendix. A key implication of Theorem 2.2 is that

the form of the locally best test statistics does not depend upon N , the equilibrium selection

mechanism. This is essential, since optimal testing would not be feasible otherwise (at least

without additional assumptions). One intuition for this finding is that equilibrium is unique

with high probability when γ is close to zero. This means we can effectively ignore draws of

U which lead to multiple equilibria when differentiating the likelihood.

Indeed, when γ is close to zero most players will have a strictly dominant strategy (that is

the optimal set of links for them to send will be invariant to the play of their peers). Of course

we need more information to recover the gradient with respect to γ, since this parameter

measures the responsiveness of agents to their peers’ actions. It turns out that a key scenario

used in the derivative calculation involves considering draws of U where all players except
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one have strictly dominant strategies. The one player without a strictly dominant strategy

provides the needed gradient information.

Locally best vs. heuristic test statistics

With a little manipulation we can simplify (25) to:

1

P0 (d; δ)

∂P (d; θ)

∂γ

∣∣∣∣
γ=0

=
∑
i 6=j

[dij − FU (µij)] sij (d) (26)

where FU (u) = eu/ [1 + eu] is the logistic CDF. This form of the statistic provides insight

into how our test accumulates evidence against the null in practice. Consider the case where

sij (d) = dji, as would be true in agents’ have a taste for reciprocated links. Observe that

FU (µij) corresponds to the probability of the edge ij under the null. Therefore the optimal

test statistic is large if we observe that many ij links with low probability under the null are

reciprocated. It is not many reciprocated links that drives rejection per se, but the presence

of many “unexpected” reciprocated links.

Consider a network of boys and girls with agents exhibiting a strong taste for gender-

based homophily. The optimal test statistic in this case is the conditional sample covariance

of Dij and Dji given (Ai, Bi, Xi) and (Aj, Bj, Xj). The test based upon the reciprocity index

is – essentially – based upon the unconditional covariance. The effect of conditioning is to,

for example, given more weight to heterophilous reciprocated links than to homophilous ones.

Similarly we give more weight to reciprocated links across low degree agents, than to those

across high degree agents.

Implementation

Two practical issues remain. The first, how to simulate the null distribution of the optimal

test statistic, is covered in the next section. Second, although the locally best test statistic

does not depend on the details of equilibrium selection, it does depend on δ0. Although the

test will remain admissible when δ0 is replaced by some other, perhaps arbitrary, δ, it will

not be locally best.

A practical solution to this problem is to replace δ0 with its maximum likelihood estimate

(MLE) computed under the null. This particular MLE is studied by Yan et al. (2018). In our

Monte Carlo experiments, some of which are reported in the Supplemental Web Appendix,

we have found that replacing δ0 with its MLE, results in a test which is nearly as powerful

as the infeasibe oracle test based on δ0, and far more powerful that tests based on ad hoc

statistics.
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3 Simulation

Because a complete enumeration of Ds,m is not feasible unless N is very small, making our

test practical requires a method of constructing uniform random draws from this set. Such

draws can be used to simulate the null distribution of any test statistic of interest.

The problem of simulating networks with fixed degree sequences is well-studied; with

many domain specific applications (e.g., Sinclair, 1993). We add to this problem the addi-

tional requirement that the simulated network satisfies the cross-link matrix constraint.

Prior work on network simulation adopts one of two basic approaches. The first approach

begins with an empty graph and randomly adds links. Links need to be added such that the

end graph satisfies the degree sequence constraint. Blitzstein and Diaconis (2011) develop an

algorithm along these lines. They cleverly use checks for graphicality of a degree sequence,

available in the discrete math literature, to add links in a way which constrains the end graph

to be in the target set.23

The second approach, to which our new method belongs, uses Markov Chain Monte Carlo

(MCMC). Specifically an initial graph, satisfying the target constraints, is randomly rewired

many times to create a new graph from the target set. Key to this approach is ensuring that

each rewiring is compatible with the target constraints (e.g., maintains the network’s degree

sequence). The algorithm also needs to be constructed carefully to ensure that the end graph

is a uniform random draw from the target set. Sinclair (1993), Rao et al. (1996), McDonald

et al. (2007), Berger and Müller-Hannemann (2009) and Tao (2016) all developed MCMC

methods for simulating graphs (or digraphs) with given degree sequences.

We are aware of no method of generating adjacency matrix draws from Ds,m. The novelty

of this problem, relative to the work described above, is the presence of the additional cross

link matrix constraint, M. In the discrete math literature the cross link matrix constraint

corresponds to what is called a partition adjacency matrix (PAM) constraint. Czabarka

et al. (2021) conjecture that determining whether a given s,m pair is graphical, the PAM

realization problem, is NP-complete. If their conjecture is correct (and NP 6= P), using a

Blitzstein and Diaconis (2011) type algorithm to draw from Ds,m is not feasible.

This leaves MCMC methods. Erdős et al. (2017) showed that naively incorporating a

PAM constraint into existing MCMC algorithms destroys their correctness. In this section

we introduce a new MCMC algorithm that does generate uniform random draws from Ds,m.

This algorithm is of independent interest. Before describing the algorithm we introduce some

additional definitions and notation.

23See also Del Genio et al. (2010) and Kim et al. (2012). Graham and Pelican (2020) provide a textbook
discussion of the Blitzstein and Diaconis (2011) algorithm.
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3.1 Notation and definitions

We start by defining an alternating walk.

Definition 3.1. (Alternating Walk) An alternating walk H is sequence of (ordered)

dyads of the form

H := (i1, i2) , (i3, i2) , (i3, i4) , . . . , (il, il−1) (27)

or

H := (i2, i1) , (i2, i3) , (i4, i3) , . . . , (il−1, il) (28)

with ik ∈ V (G), ik 6= ik+1, ik 6= ik−1and

(i) if (ik, ik−1) ∈ A (G), then (ik, ik+1) /∈ A (G)

(ii) if (ik, ik−1) /∈ A (G), then (ik, ik+1) ∈ A (G)

(ii) if (ik−1, ik) ∈ A (G), then (ik+1, ik) /∈ A (G)

(iv) if (ik−1, ik) 6∈ A (G), then (ik+1, ik) ∈ A (G)

for all k = 2, . . . , l − 1.

For brevity we will often refer to a walk simply by its node sequence, writing H :=

i1i2, . . . , il. To unpack Definition 3.1 it is easiest to consider an example. In Figure 3, Panel

B, three altering walks are shown (the links not present are depicted as dotted arrows).

Observe that for H := i1i2, . . . , il, the adjacency matrix entries Di1i2 , Di3i2 , . . . , Dilil−1

alternate between ones and zeros (or zeros and ones). This observation suggests a method of

constructing an alternating walk via a sequence of “hops” across the adjacency matrix: pick

row i1 of the adjacency matrix and move horizontally to column i2, where i2 corresponds to

one of the agents to which i1 directs a link, next move vertically to row i3, where i3 is an agent

which does not direct a link to i2, and so on.24 We call the horizontal moves active steps and

vertical moves passive steps. Figure 2 provides an example construction. The different cases

in Definition 3.1 correspond to walks beginning/ending with passive/active steps.

The length of an alternating walk equals the number of ordered dyads used to define it.

An important type of alternating walk, which following Tao (2016), we call an alternating

cycle, is central to our algorithm.

Definition 3.2. (Alternating Cycle) The alternating walk C is an alternating cycle if

i1 = il and C has even length.

The length of an alternating cycle is at least four. Let Di1i2 , Di3i1 , . . . , Dilil−1
be the

sequence of adjacency matrix entries associated with alternating cycle C in D. These entries

necessarily form a sequence of zeros and ones (or ones and zeros).

24This description is essentially due to (Tao, 2016, p. 124).
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Figure 2: Constructing an alternating walk

Source: Authors’ calculations.
Notes: Panel A depicts an alternating walk j, g, a, b, c, d, e, c, a constructed using the adjacency
matrix. The same altering walk is colored blue in Figure 2. Agent labels are given in the first
column and row of the table. To construct such a walk randomly we begin by choosing an
agent at random. Here agent j is chosen, with an ex ante probability of 1

10
since there are ten

agents in the network. Next we take an active step where one of agent j’s outlinks is chosen
at random. Here we choose the outlink to agent g, an event with an ex ante probability of
1
2

since agent j has just two outlinks. Following the active step comes a passive step. In a
passive step we move vertically to the row of an agent which does not direct a link to the
current agent. Here we choose a from the set {a, b, c, d, e, f, i} uniformly at random (i.e.,
with an ex ante probability of 1

7
). We continue with active and passive steps until we choose

to stop or can proceed no further. Panel B reports the indegree and outdegree of each agent
in the network. Observe that in active steps the probability of any feasible choice equals the
inverse of the outdegree of the current agent. In passive steps the probability of any feasible
choice equals the inverse of the number of nodes minus the indegree of the node chosen in the
prior step minus 1 (since ik 6= ik+1). We can also construct alternating walks by the above
procedure, but instead starting with a passive step. The shaded cells in the table shows
which edges (ones) and non-edges (zeros) are in the walk.
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Consider constructing an alternative digraph, say D′, by replacing all the “ones” in the

alternating cycle C with “zeros” and all “zeros” with “ones”. Rewiring D in this way is

degree preserving: D′ has the same in- and out-degree sequence as D. We refer to such

operations as switching the cycle (since we switch the zeros and ones).

We use random alternating walks on the network in order to find alternating cycles. We

then use these alternating cycles to rewire the network. This motivates the definition of what

we call a schlaufe. A schlaufe is either an alternating walk which contains an alternating cycle

(as the last part of the walk) or it is an alternating walk which cannot be continued. More

precisely

Definition 3.3. (Schlaufe) An alternating walk H := i1i2 . . . il is a schlaufe if either

(i) There is a node ik ∈ {i1i2 . . . il} with k 6= l such that ik = il and (k − l) mod 2 = 0.

Furthermore for any two nodes ij and ih in {i1i2 . . . il−1} with ij = ih and j 6= h it holds that

(j − h) mod 2 = 1.

(ii) At node il there is no other node il+1 such that the alternating walk could be extended

with the unmarked link (il, il+1).

In German schlaufe corresponds to “loop”, “bow” or “ribbon” (its plural is schlaufen); the

latter translation is evocative of our meaning here. In the first case the schlaufe will coincide

with an alternating walk which includes exactly one alternating cycle.25 Visually schlaufen

of the first type, with the nodes appropriately placed, will look like loops and ribbons. In

the second case the schlaufe does not include an alternating cycle.

Associated with a schlaufe, R, is a K × K violation matrix which records the number

of extra links from group k to group l generated by switching the alternating cycle in R

(if there is one). Consider an alternating rectangle consisting of two boys and two girls. If

initially one boy directs a link to the other and one girl directs a link to the other, then after

switching the cycle the violation matrix will equal:

Ego \Alter Boy Girl
Boy -1 1
Girl 1 -1

After switching the cycle there are too few same gender links and too many mixed gender

ones.

25The requirement that ik = il and (k − l) mod 2 = 0 ensures that C = ikik+1 . . . il is an alternating cycle
(imposing even length). The “furthermore...” requirement ensures that if another node is visited multiple
times it does not form an alternative cycle (imposing non-even length). See Figure 3 for an example.
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We call a sequence of schlaufen R = (R1, . . . , Rk) feasible if (i) the cycles of the schlaufen

are link disjoint and (ii) the sum of their violation matrices is zero (and for i < k the sum of

their violation matrices is not zero).

Conventional MCMC adjacency matrix re-wiring algorithms work by switching short cy-

cles (e.g., alternating rectangles and compact alternating hexagons as in Rao et al. (1996)).

Switches of this type, while preserving the in- and out-degree sequence of the network will

typically generate networks with the wrong inter-group link structure (i.e., non-zero link vi-

olation matrices). Our approach to solving this problem involves switching many alternating

cycles simultaneously such that their individual link violation matrices sum to zero.

3.2 The MCMC algorithm

Let S = s and M = m be the degree sequence and cross link matrix of the network in hand.

In order to a draw, say D′, from Ds,m we (i) start with a realization of (s,m), say D, (ii)

randomly construct (link disjoint) schlaufen, and (iii) switch any alternating cycles in them.

While switching cycles will preserve the degree sequence, it may – as discussed earlier – result

in a graph without the appropriate cross link matrix. In order to ensure that D′ has the

appropriate cross link matrix, we construct schlaufen until either the sum of their violation

matrices equals zero or we stop randomly. If the sum of the schlaufen violation matrices is

zero we move to D′ from D by switching the cycles, otherwise we set D′ = D. Proceeding

in this way ensures that D′ is, in fact, a random draw from Ds,m. After sufficiently many

iterations of this process we show that a graph constructed in this way corresponds to uniform

random draw from Ds,m. A formal statement of the procedure is provided by Algorithm 1.

Algorithm 1 uses a subroutine to find schlaufen. This subroutine, described in Algorithm

2, finds and marks a schlaufe in the graph.

To illustrate our method in more detail consider the network depicted in Panel A of Figure

3. This network consists of two types of agents: gold (light) and blue (dark). The cross link

matrix for the graph is given in Panel D. In Panels B and C a sequence of three schlaufen

is shown. The first schlaufen is R1 = jgabcdeca. It is constructed through a sequence of

active and passive steps as described earlier (see also the notes to Figure 2 above). We begin

by choosing agent j randomly with a probability of 1
10

(since there are ten agents in the

network). We then take an active step, randomly choosing one of the two agents to which

j directs a link (i.e., either agent g or i). Here we choose agent g. Next we take a passive

step. Specifically we choose an agent at random from the set of agents that do not direct a

link to g (the agent chosen in the previous active step). The probability associated with our

choice in this passive step is 1
7
; this corresponds to the reciprocal number of agents in the

network (i.e., 10) minus the indegree the current agent (i.e., 2) minus one (since self-loops
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Algorithm 1 Markov Draw Algorithm

Inputs: An adjacency matrix d ∈ Ds,m; a mixing time τ
Procedure:

1. Set t = 0.

2. With probability 1− q go to step 3, with probability q go to step 4.

3. find and mark a schlaufe (see Algorithm 2):

(a) if the sum of the schlaufen violation matrices is zero, then

i. switch the cycles in the schlaufen (changing the adjacency matrix d),

ii. unmark all links,

iii. go to step 4.

(b) else

i. with probability 1
2
, go to step 3 or

ii. with probability 1
2
, unmark all links and go to step 4.

4. Set t = t+ 1

(a) if t = τ then return d

(b) else go to step 2

Output: A uniform random draw d from Ds,m
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Algorithm 2 Schlaufen Detection Algorithm

Inputs: An adjacency matrix d ∈ Ds,m (this network may have marked links in it)
Procedure:

1. Choose an agent/node, say i, at random.

2. Mark agent i as active and

(a) if feasible, randomly choose one of i′s (unmarked) outlinks, say to j, and go to
step 3;

(b) else (i.e., no unmarked outlinks available) go to step 6.

3. Mark edge ij, chosen in step 2 and

(a) if agent j is already marked passive, then go to step 6;

(b) else go to step 4.

4. Mark agent j, chosen in step 3, as passive and

(a) if feasible, randomly choose an agent, say k, from among those who do not direct
links to j, and go to step 5,

(b) else go to step 6.

5. Mark edge kj, with k the agent chosen in step 4, as passive and

(a) if agent k is already marked active, then go to step 6;

(b) else go to step 2.

6. return the (marked) adjacency matrix, the constructed schlaufe and its violation matrix.

Output: A schlaufe, its violation matrix and a marked adjacency matrix.
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are not allowed). We continue taking active and passive steps in this way until we visit a for

the second time. At this point we stop since our schlaufe now includes the alternating cycle

C1 = abcdeca. Note that c is also visited twice, but also that cdec is not an alternating cycle

since it is not of even length (see Definition 3.2).

As seen in the example we can calculate the probability of a schlaufe R as we go through

the algorithm (see Panel E). In Step 1 of Algorithm 2 an agent is chosen with probability
1
N

. Next let raD(i) be the cardinality of the set of feasible out links in an active step. This

set consists of all the out links of node i, which are not already marked in D. Similarly, let

rpD(i) be the cardinality of the set of feasible outlinks in an passive step. That set consists of

all the links ij for which ji is not in D and which are not already marked. The probability

of R = (i1, .., il) can now be written as

pD(R) =
1

N

l−1∏
k=1

(
1

raD(ik)
[k mod 2] +

1

rpD(ik)
[(k − 1) mod 2]

)
(29)

In step 2 of Algorithm 1 we attempt to find a sequence of schlaufen with probability

1 − q and do not change the adjacency matrix otherwise. In step 3, a schlaufen sequence

R = (R1, .., Rh) is constructed/found. After each detected schlaufe in this sequence, say

Rk, any cycle in it is marked. Let Dk be the graph with the cycles of R1, .., Rk−1 marked.

After each schlaufe added the construction is stopped with probability 1
2

. The probability

of finding a cycle Rk is pDk
(Rk) as given in equation (29) above. The total probability of a

feasible schlaufen sequence R is therefore

pD(R) = (1− q) 1

2(h−1)

h∏
i=1

pDk
(Rk). (30)

3.3 Correctness

To show that our algorithm does indeed generate a uniform random draw from the set Ds,m

we use standard Markov chain theory (e.g., Chapters 7 and 10 of Mitzenmacher and Upfal

(2005)).

The random rewiring of the network implemented by Algorithm 1 can be described as

a Markov chain. To show that, for τ large enough, it returns a uniform random draw from

Ds,m we prove that the stationary distribution of the Markov chain generated by Algorithm

1 is uniform on Ds,m. To show this it is helpful to develop a graphical representation of the

Markov chain.

We denote the state graph of the Markov chain by Φ = (Vφ,Aφ). Its underlying vertex

set Vφ is the set of all elements in Ds,m. That is each node in our state graph is a network
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Figure 3: A feasible schlaufen sequence

Source: Authors’ calculations.
Notes: See the discussion in the main text. The figure depicts three link disjoint schlaufen
with violation matrices which sum to zero. Panel E reports the (ex ante) probability that a
given node was selected as the schlaufe was constructed. See equation (29).
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with degree sequence S = s and cross link matrix M = m. For network D in Ds,m, we denote

by vD the corresponding vertex in Vφ. The arc set Aφ is defined as follows.

1. For all vertices we add the self loop (vD, vD) with (probability) weight q (see Step 2 of

Algorithm 1).

2. Let D and D′ be two different networks in Ds,m. Let D∆D′ equal the union of the set

of edges in D, but not in D′ and the set of edges in D′, but not in D. For each feasible

schlaufen-sequence R, with cycle edge set equal to D∆D′ we add the edge (vD, vD′)

and assign to it probability weight pD(R).

3. Finally we add a directed loop (vD, vD) if the probability of all arrows leaving vD,

introduced in points 1 and 2 immediately above, do not sum to 1. The probability of

this loop is 1 minus the sum of the probability of all other outward arrows.

The probability of any arc a ∈ Aφ is denoted by p(a). Note, by definition, the state graph

can have parallel arcs and loops.

With these definitions in place we can prove correctness of the algorithm. First we

show that the probability of the algorithm moving from graph D to D′ coincides with the

probability of moving in the reverse direction.

Lemma 3.1. For any two vertexes vD, vD′ the transition probability attached to (vD, vD′)

equals that attached to (vD′ , vD).

Proof. See appendix A.3.

Next we show the state graph is strongly connected. This means our Algorithm moves

from any D ∈ Ds,m to any other D′ ∈ Ds,m with positive probability.

Lemma 3.2. The state graph Φ is strongly connected.

Proof. See appendix A.3.

With these two lemmata it is easy to show that the stationary distribution is uniform on

Ds,m. This gives us the main result of the section.

Theorem 3.3. Algorithm 1 is a random walk on the state graph Φ which samples uniformly

a network from Ds,m for τ →∞.

Proof. See appendix A.3.
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Figure 4: Nyakatoke Village Risk-Sharing Network

Source: De Weerdt (2004) and authors’ calculations.
Notes: Each household is colored according to their land and livestock wealth (measured in Tanzanian Shillings) and religion.
The arrow head on the edges points to the “alter” household with the link being sent by the tail “ego” household.
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4 Application: risk-sharing links when agents value

bridging capital

De Weerdt (2004) studied the formation of risk-sharing links across 119 households in the

rural village of Nyakatoke (located in Tanzania). He asked all adult individuals in the village

who they could rely upon for help and, from their responses, constructed a network of directed

links across households.26. The resulting set of risk-sharing links is shown in Figure 4.

Here we assess whether households value “bridging capital”, as suggested by Burt (1995)

and formalized in game-theoretic terms by Kleinberg et al. (2008) and others. If k directs

a link to i but not to j, then i, by directing a link to j, may position herself to serve as a

“bridge” or “broker” between k and j. See Figure 1.2 above.

In the formal model of Kleinberg et al. (2008) agents gain utility from positioning them-

selves on length two paths connecting agents not directly connected themselves; however such

utility gains are decreasing in the number of “rival” length two paths (i.e., those with other

agents in the center). This suggest, for example, a network benefit function of

gi (d) =
∑
j 6=i,k,j

∑
k 6=i,j

DkiDij (1−Dkj)

max
(

1,
∑

l 6=j,kDklDlj (1−Dkj)
) . (31)

In this formulation any “bridging” capital is shared equally across all agents l on length two

paths from j to k (with arc jk absent). For example, if there are two bridging agents situated

between j and k, they each get half the benefit and so on. The marginal network benefit of

edge ij is thus

sij (d) =
∑
k 6=i,j

DkiDij (1−Dkj)

max
(

1,
∑

l 6=j,kDklDlj (1−Dkj)
) , (32)

from which the form of the locally best test follows.

From De Weerdt (2004) we also know that household land and livestock wealth, as well as

religion (Catholic, Lutheran or Muslim), are important drivers of link formation in Nyakatoke.

We divide households into three wealth bins, which in conjunction with religion, partitions

households into nine groups; Xi consists of the nine resulting group membership dummies

with the 81 elements of Λ parametrizing any homophily/heterophily across these groups. The

remaining null model parameters are the 238 = 119×2 household-specific in- and out-degree

26The prompt used by De Weerdt (2004) is suggestive of both mutuality and directionality, leading to
some ambiguity in whether to interpret the collected edges as undirected or directed. Comola and Fafchamps
(2014) present evidence suggesting that the links given by households are directed. Specifically that they
indicate to which other households they would turn to in the event of need. It is this interpretation that we
give the links here.
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heterogeneity parameters. This gives dim(δ) = 2× 119 + 9× 9 = 319 null model “nuisance”

parameters. It is hard to imagine a testing approach with good properties in this setting

which would not involve “conditioning away” the null model parameter.

While the form of the locally best test statistic follows naturally from the form of the

Kleinberg et al. (2008) network benefit function, it is less clear how to form a heuristic test

with power to detect the alternative “agents like to bridge disconnected groups”. After some

experimentation we settled on the difference between the 90th and 50th percentiles of the

empirical distribution of betweenness-centrality across agents in the network as a suitable ad

hoc test statistic (other measures of dispersion give similar results). The intuition is that

acquiring bridging capital is inherently rivalrous; the addition of links by other agents may

reduce one’s own network benefit. Competition to accumulate bridging capital should lead

to more dispersion in betweenness-centrality across agents (than in a reference set of null

model graphs). Winners of this competition (the 90th percentile) will have more bridging

capital than the typical agent (the 50th percentile) in the network. We wish to emphasize

that the “ad hoc” descriptor of this statistic is apt. Indeed, an advantage of the formalism of

an explicit network benefit function is that gives precision to the alternative of interest (in

turn suggesting a suitable, in fact, optimal test statistic).

The left panel of Figure 5 plots simulation estimates of the distribution of the 90 − 50

betweenness-centrality gap across three reference sets of networks: (i) Ërdos-Rényi graphs

with the same number of links as observed in Nyakatoke, (ii) the set of all graphs with the

same in- and out-degree sequences as observed in Nyakatoke, and (iii) the set of all graphs

which additionally constrain the number of cross-group links to be the same as observed in

Nyakatoke. The vertical line in the figure marks the value of the actual 90− 50 betweenness-

centrality gap in Nyakatoke.

The three reference distributions in Panel A allow us to undertake three model adequacy

tests: is Nyakatoke well-described by (i) the Ërdos-Rényi model, (ii) a directed β-model

which places equal probability on all networks with the same in- and out-degree sequence as

in Nyakatoke, or (iii) by the Charbonneau (2017) model described above? In all three cases

we reject, but notice that as we enrich the null model the simulated reference distributions

shift to the right.27 Put differently a portion of the dispersion in betweenness-centrality

across households observed in Nyakatoke is likely a by-product of degree heterogeneity and

homophily. The rightward shifts in the reference distributions as we enrich the null model

is indicative of how using a realistic null model may be important for avoiding spurious

rejections in practice. That said, our decisive rejection of even the 319 parameter Charbon-

neau (2017) model indicates that degree heterogeneity and wealth/religion homophily cannot

27The incremental effect of additionally controlling for homophily is modest.
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Figure 5: Testing for bridging/brokerage preferences

Source: De Weerdt (2004) and authors’ calculations.
Notes: Panel A presents MCMC estimates of the distribution of the 90 − 50 betweenness-
centrality gap across agents for three reference sets of networks (as listed in the legend).
Panel B shows the null distribution of the locally best test described in the main test. In
this panel the reference set is all networks with the same in- and out-degree sequences and
cross-link matrix as observed in Nyakatoke.

explain all of the inequality in betweenness-centrality we observe across agents in Nyakatoke.

The right panel of Figure 5 plots the null distribution of the locally best test statistic

for the alternative that households gain utility by bridging disconnected pairs of agents (as

formalized by Kleinberg et al. (2008)). If we are willing to maintain that the true data

generating process is either in the null or specified alternative model space, we can interpret

a rejection as evidence for γ0 being positive. To implement this test we replace δ0 with its

maximum likelihood estimate (MLE) computed under the null.28 As is clear from Panel B

of Figure 5, we decisively reject the null.

Panel B is also suggestive of the power gains associated with the locally best test. If we

were to standardize each of our test statistics using their respective reference distribution’s

mean and standard deviation, it is obvious that the locally best test statistic is more extremely

positioned in the right tail of its null distribution (the Monte Carlo experiments reported in

the Supplemental Web Appendix confirm the power advantages of the locally best test).

Using Algorithm 1 requires a choice of the mixing time parameter τ . Although the mixing

28The computation of this MLE is described in detail by Dzemski (2018) and Yan et al. (2018) and
implemented in our Python package ugd for “uniform graph draw”.
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properties of our MCMC procedure are largely unexplored, we have found - by Monte Carlo

experimentation – that choosing τ such that each edge in the input graph is, on average,

swapped at least once before the resulting output is considered a uniform random draw from

the target set to yield acceptable results in practice. We use this approach here (also see

the Python Juypter Notebook in the Supplemental Materials). The required value for τ is

increasing in the dimension of the nuisance parameter δ and especially in the dimension of

Λ. Hence the speed of the simulation algorithm declines in both N and K.

5 Limitations and future research

The analysis in this paper, like much of the wider econometrics literature on games, is

likelihood based. Our null model is fully parametric (albeit flexibly-so), while the alternative,

due to the unmodeled NE selection function, is semiparametric. Under correct specification

– use case (ii) – our test reveals whether γ0 = 0 or γ0 > 0 (with a researcher-specified exact

Type I error rate, and a locally best Type II error rate). That is, we present a method

for detecting whether agents form links “strategically” in the presence of any pattern of

homophily and degree heterogeneity allowed by the null.

It would be interesting to know whether detecting strategic interaction in the presence

of arbitrary homophily on observables and degree heterogeneity is possible. We know from

the panel data literature that detecting state-dependence in the presence of heterogeneity is

non-trivial and that modeling details matter (e.g., Chamberlain, 1985). Analogous questions

arise here.

Our set-up assumes that researcher is able to a priori partition the support of agents’

covariates into K regions along which all homophilous sorting occurs. In practice this is an

approximation. Developing data-based discretization rules (e.g., using clustering algorithms)

and formalizing the nature of the approximations involved would be useful. It is possible that

recent results on randomization inference by Canay et al. (2017) could be useful for such an

analysis.

Key to our set-up is the exponential family structure (under the null) induced by the

assumption of logistic random link-specific utility. While this is a strong assumption, it

comes with considerable pay-off: we are (i) able to exactly control size in (ii) the presence

of a high dimensional nuisance parameter while (iii) also making no assumptions about

equilibrium selection. Exponential family structures has proved highly fruitful in other areas

of econometrics; applications in panel data being most closely connected to the present

setting. Our similarity and local optimality results build on classic results in the theory of

testing in exponential families (e.g., Ferguson (1967) and Lehmann and Romano (2005)).
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While obvious, and generic to most testing problems, it is important to understand that

our test may have low power in some directions (in extreme cases even power equal to

size). As an example imagine agents gain utility from linking with popular agents (as in

preferential attachment models), such that gi (d) =
∑

j 6=i dij

[∑
k 6=i dkj

]
. This model yields

sij (d) =
∑

k 6=i dkj, which is almost equal to the indegree of agent j. Hence the distribution

of sij (D) across Ds,m will be nearly degenerate. Examples of this type are not unique to our

setting. See Lehmann and Romano (2005) for general impossibility results.

Finally, while we are able to prove that our simulation algorithm works for τ “large

enough”, we don’t currently have a formal handle on the mixing properties of our procedure.

This is not just a limitation of our work, but of much of the related work in the discrete

math and computer science literature (e.g., Cooper et al. (2007) and Erdos et al. (2018)).

Our limited simulation experiments suggest relatively fast mixing. 29

These limitations notwithstanding, we nevertheless see potential for the widespread use of

the methods presented in this paper in empirical social and economic network research (and,

with modification, in other settings where strategic interaction is important). We hope that

the ability to easily embed formal game-theoretic models of network formation of the type

surveyed by, for example, Jackson (2008) and Goyal (2022), into heterogeneity-rich dyadic

linking models will be attractive to empirical researchers. While not emphasized here, we also

expect our simulation algorithm to find use in other settings where binary matrix simulation

is an important part of researchers’ toolkits (e.g., Gotelli, 2000). Finally our focus on score

type tests may represent a fruitful direction for further research on testing in incomplete

models (e.g., Chen and Kaido, 2021).

The Supplemental Web Appendix shows how to adapt our results to bi-partite networks.

There we show how ideas in this paper might be used to, for example, study airline entry

into different routes as in Ciliberto and Tamer (2009). The set-up allows for complex airline

preferences over their own route map as well as how they vary with the route maps chosen

by their competitors. We also shows how our simulation algorithm can be used for more

traditional conditional likelihood estimation and inference problems. A carefully annotated

Python Jupyter, Notebook illustrating how the methods in this paper work in practice, is

available in the Supplemental Materials.
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A Supplemental Web Appendix

The appendix includes proofs of the theorems stated in the main text as well as statements

and proofs of supplemental lemmata. All notation is as established in the main text unless

stated otherwise. Equation numbering continues in sequence with that established in the

main text.

In addition to proofs, Section A.4 of the Appendix summarizes the results of a small set

of Monte Carlo experiments and Section A.5 discusses additional applications of our MCMC

algorithm.

A.1 Measurability of the likelihood

For the equation (9) to be well defined we must show that N (d, ·; θ) is measurable. For

any network d we can define a function N (d, ·; θ), which assigns to the realization U = u a

probability weight for the pure strategy which corresponds to d. We now show that there is

a measurable function N (d, ·; θ) satisfying these conditions.

Observe that every realization u ∈ Rn of the taste shock U corresponds to a game

in normal/strategic form (n = N × (N − 1) equals the number of random utility shocks

in the network formation game). Every game in normal form has a set of Nash equilibria.

We define the set valued function X : Rn → {σ|σ ⊂ Σ}, which assigns to each taste shock

u ∈ Rn the set of Nash equilibria in the game defined by (corresponding to) u. We next use

results from the theory of random sets, as outlined in Molchanov (2017), to show that there

is a measurable equilibrium selection function.

The theory of random sets analyzes set valued random variables. We want to apply

this theory to X, the set of NE associated with our game when U = u. In order to do so we

have to show measurability of X.

Note the NE are the solutions to a system of N × 2N−1 inequalities, 2N−1 inequali-

ties for each of the N players.

We consider one inequality, say, i, and claim that the set of mixes strategies which

fulfils this inequality, say, Xi, is a random set. On either side of the inequality is a convex

combination of the payoff entries of the normal form table. The weights of the convex

combination are determined by the mixed strategies, each weight is the product of the

corresponding mixed strategy weight of each player. The entries of the normal form table
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depend on the utility function. Importantly, the payoff entries are continuous in the random

utility taste shocks. Now consider an arbitrary mixed strategy σ; the distance function

ρ(σ,Xi) = inf{‖σ − x‖ | x ∈ Xi}

is continuous in the taste shock, because the payoff entries of the convex combination

are continuous in the taste shock. By statement (iv) of Molchanov’s (2017) Fundamental

Measurability Theorem for Multifunctions (Theorem 1.3.3 on p. 59) Xi is measurable.

Next observe that the set of NE coincides with the intersection of the solution sets

for each inequality

X = ∩iXi.

By part (iv) of Molchanov’s (2017) theorem on the Measurability of Set-Theoretic Operations

(Theorem 1.3.25 on p. 69) X is measurable and therefore a random set.

We know from Nash’s existence theorem that for each game there exists a NE. Therefore

X is nonempty. The set of NE is a closed set. We therefore can apply Molchanov’s (2017)

Fundamental Selection Theorem (Theorem 1.4.1 on p. 77) and find a measurable selection

ξ : Rn → Σ which assigns to each taste shock u, a NE.

Let hd : Σ→ [0, 1] be the function which assigns to every mixed strategy the probability of

d by multiplying the mixed strategies weights corresponding to d. Since multiplication is a

measurable operation hd is measurable and N (d, ·; θ) := hd◦ξ satisfies the desired properties.

A.2 Derivation of locally best test statistic

We begin with a high level overview of our argument; with a formal proof immediately

following.

One feature of sij(d), which will prove central to our analysis, is that is has finite range.

To see this observe that since the set of all networks DN is finite, sij (d) also takes only a

finite number of values. Let S = {s, s1, . . . , sM , s} be the set of possible values for sij (d),

ordered from smallest to largest.

An example illustrates. If sij(d) = dji, as occurs when agents prefer reciprocated links,

we have S = {0, 1}. If sij(d) =
∑

k dkidkj, as when agents prefer supported links, we have

S = {0, 1, . . . , N − 2}. Finiteness of the cardinality of S (for a given N) plays an important
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role in our analysis, as will become apparent below.

To understand the likelihood (9) it is helpful to consider a (relatively) simple example.

This example will also help in understanding our derivation of the optimal test statistic

below. Assume that sij(d) = dji such that agents prefer reciprocated links when γ > 0. In

this example sij(d) equals either zero (j does not reciprocate) or one (j does reciprocate).

We can use the two elements of S to partition the real line into what we will call buckets :

R = (−∞, µij] ∪ (µij, µij + γ] ∪ (µij + γ,∞) . (33)

Here µij = Ai +Bj +X ′jΛ0Xi equals the systematic component of baseline utility generated

by arc ij. Next consider the realization of Uij, the idiosyncratic utility agent i gets when she

directs a link to j. If Uij falls into the first bucket in (33), then agent i will always direct a

link to j; irrespective of whether j chooses to direct a link to i or not. If Uij falls into the

middle or inner bucket, however, then i will direct a link to j only if j reciprocates. Finally,

if Uij falls into the last bucket, then i will never direct a link to j regardless of whether j

directs a link to i or not. We will call the first and last buckets in (33) outer buckets.

If both Uij and Uji fall in their respective inner buckets, then the {i, j} dyad can either

take the empty (Dij = Dji = 0) or reciprocated (Dij = Dji = 1) configuration in equilibrium.

In contrast, if either Uij or Uji falls into an outer bucket, then the {i, j} dyad’s wiring is

uniquely determined. For example if Uij is in the first outer bucket and Uji is in the inner

bucket, then the {i, j} dyad will take the reciprocated form with probability one. It is a

strictly dominant strategy for i to direct an link to j in this case and a best response for j

to reciprocate.

For U = u and θ = θ0, let J(u; θ0) ≤
(
N
2

)
equal the number of dyads {i, j}, where both uij

and uji fall into their inner bucket. For each of these dyads both the empty and reciprocated

configuration is an equilibrium outcome. There are therefore 2J(u;θ0) equilibrium networks

in this case; the N (d,u; θ0) function would assign some probability between zero and one to

each of these 2J(u;θ0) networks (summing to one in total).

Recall that S = {s, s1, . . . , sM , s} equals the possible values of sij(d), arranged from

smallest to largest. We can use these support points to partition R into a set of intervals B:

R = (−∞, µij + γs] ∪ (µij + γs, µij + γs1]∪

· · · ∪ (µij + γsM , µij + γs] ∪ (µij + γs,∞) . (34)

The elements of B, called buckets, correspond to the intervals listed in (34). In principle we

should write Bij instead of B, reflecting the dependence of the bucket definitions on the value
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of µij, the systematic non-strategic utility associated with an i-to-j link. However, since this

dependence is not essential to any of the arguments that follow we leave it implicit. Note

that the cardinality of B does not depend on µij, but instead equals |S|+ 1.

Agent i’s linking behavior vis-a-vis j depends on which bucket Uij falls into. For B ∈ B, if

Uij ∈ B, then we say Uij is in, or falls into, bucket B. The first and last buckets, respectively

(−∞, µij + γs] and (µij + γs,∞), play an important role in our argument. We call these two

buckets outer buckets. The rest of the buckets we call inner buckets.

If Uij falls into one of these outer buckets then player i has a pure strategy for dij which

is strictly dominating. Specifically if Uij falls into the lowest bucket, then i will direct an link

to j regardless of what actions are taken by the other agents in the network. The marginal

utility generated by link ij is so large that it remains positive across all possible configurations

of the rest of the network; hence i always chooses to direct an link to j.

If, instead, Uij falls into the highest bucket, then i will never direct an link to j. In this

case the marginal utility associated with link ij is so low that it remains negative across all

possible configurations of the rest of the network; hence i never chooses to direct a link to j.

Finally, if Uij falls into an inner bucket, say (µij + γsm, µij + γsm+1], then agent i’s op-

timal choice for dij is contingent upon the linking behavior of other agents. If other agents’

link actions are such that sij(d) ≥ sm, then it is a best response for i to link with j, but not

otherwise.

The vector of idiosyncratic taste shocks, U contains n = N(N −1) elements; one for each

possible arc. Let the boldface subscripts i = 1,2, . . . index these potential arcs in arbitrary

order (e.g., i maps to some ij and vice-versa). Let b ∈ Bn
def
≡ B × · · · × B and U =

(U1, . . . , Un)′; we have that U ∈ b for b ∈ Bn so that each element of u falls into a bucket.

With the above notation established we can rewrite the likelihood (9) as:

P (d; θ,N ) =
∑
b∈Bn

∫
u∈b
N (d,u; θ) fU (u) du (35)

Expression (35) suggests a derivation by cases approach to finding ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

. Fortunately

a brute force exhaustive approach is not required because it is possible to show that most of

the summands in (35) do not influence the derivative at γ = 0.

Let B̃n be the set of bucket configurations with at least two inner buckets. If at least two

elements of U fall in inner buckets, then we have that U ∈ b with b ∈ B̃n. If, instead, at

most one element of U falls in an inner bucket, then we have that U ∈ b with b ∈ Bn \ B̃n.

This set-up gives the likelihood decomposition:

P (d; θ,N ) = P̃ (d; θ,N ) +Q (d; θ,N ) , (36)
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with

P̃ (d; θ,N ) =
∑

b∈Bn\B̃n

∫
u∈b
N (d,u; θ) fU (u) du (37)

Q (d; θ,N ) =
∑
b∈B̃n

∫
u∈b
N (d,u; θ) fU (u) du. (38)

To proove Theorem 2.2 we show that for γ → 0

P (d; θ,N ) = P̃ (d; θ,N ) +O
(
γ2
)
. (39)

Intuitively, this follows from the fact that the chance that two or more elements of U fall in

inner buckets is negligible when γ is close to zero (because most of the probability mass for

Uij is contained in the two outer buckets when strategic interactions are small). Hence when

calculating the optimal test statistic we are free to focus on the cases where either all, or all

but one, of the elements of U fall in outer buckets. We can then show that

∂P (d; θ,N )

∂γ

∣∣∣∣
γ=0

=
∂P̃ (d; θ,N )

∂γ

∣∣∣∣∣
γ=0

. (40)

Hence to derive the form of ∂P (d;θ,N )
∂γ

∣∣∣
γ=0

we need only calculate ∂P̃ (d;θ,N )
∂γ

∣∣∣
γ=0

. This calcula-

tion is non-trivial, but doable. Details of this calculation are provided in the proof.

Preliminary results

Lemma A.1. Any differentiable function f ∈ O (γ2) with f (0) = 0 has a derivative of zero

at point zero.

Proof. For f ∈ O (γ2) we have, for some C > 0 and ε > 0, that

|f (γ)| < Cγ2 (41)

for all γ ∈ [−ε, ε]. The derivative of f at γ = 0 equals

f ′ (0) = lim
γ→0

f (γ)− f (0)

γ
= lim

γ→0

f (γ)

γ
, (42)

with the second equality because f (0) = 0. As γ → 0, we will have γ < ε so that

f ′ (0) = lim
γ→0

f (γ)

γ
≤ lim

γ→0

Cγ2

γ
= lim

γ→0
Cγ (43)
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which goes to zero as γ → 0 as claimed.

Proof of Theorem 2.2

We begin with the likelihood decomposition (35) given above. The number of summands in

(35) depends on the partition that sij(d) induces on R. For a positive γ, the number neither

depends on the exact value of γ, nor on the other covariates and parameters. Intuitively,

as long as γ is positive, there is a positive probability that U falls in any combination of

buckets. The number of summands in (35) is typically large. The buckets b of Bn and the

function N depend on γ.

We have that

∂P (d; θ,N )

∂γ
=

∂

∂γ

{∑
b∈Bn

∫
u∈b
N (d,u; θ) fU (u) du

}

=
∑
b∈Bn

∂

∂γ

∫
u∈b
N (d,u; θ) fU (u) du,

The switching of summation and derivative operator is possible because the number of sum-

mands does not depend on γ. We could try to take the derivative of each summands integral

boundaries and of N (d, .; θ). But there is no need to boil the ocean, because regardless of

N (d, .; θ) most of the summands are 0. To show this we consider three sets of summands.

Case 1: more than two buckets in B are inner buckets

Recall that the boldface subscripts i = 1,2, . . . index the n = N (N − 1) directed dyads in

arbitrary order. Consider a set of buckets b where two or more of them are inner buckets.

Without loss of generality assume that the L ≥ 2 inner buckets correspond to b1, . . . , bL

of b = (b1, . . . , bn). The shape of the lth bucket is (γsl, γs̄l] with sl < s̄l coinciding with

the bucket borders induced by the precise form of strategic interaction specified under the

alternative. We normalize the dyad-specific systematic utility component µij = 0 without

loss of generality.

Recall that B̃n is the set of bucket configurations with two or more inner buckets. For

any b ∈ B̃n we can derive the upper bound:
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∫
u∈b
N (d,u; θ) fU (u) du =

∫
u∈b
N (d,u; θ)

[∏
i

fU (ui)

]
du

≤
∫ γs1

γs1

fU (u1)× · · · ×
∫ γsL

γsL

fU (uL)

∫
u−L∈b−L

fU−L
(u−L) du

<

∫ γs1

γs1

fU (u1)× · · · ×
∫ γsL

γsL

fU (uL) du1 · · · duL

<

∫ γs1

γs1

1× · · · ×
∫ γsL

γsL

1du1 · · · duL

= γL (s1 − s1)× · · · × (sL − sL)

where u−L denotes the vector u after removal of its first L components and similarly for

b−L. The first equality follows from independence of the components of u, the second (weak)

inequality from the fact that N (d,u; θ) ≤ 1 for all u ∈ U. The third (strict) inequality

follows because fU−L
(u−L) is a density and the integration is not over all of Rn−L. The

fourth (strict) inequality arises because when fU (u) is the logistic density we have that

fU (u) = FU (u) [1− FU (u)] < 1 for all u on a compact interval of the real line. We conclude

that any summand where b has two or more inner buckets is O (γ2) for γ → 0.

We have, directly from this argument, that Q (d; θ,N ) ∈ O (γ2) and furthermore that

Q
(
d; (0, δ′)′ ,N

)
= 0 (since inner buckets have zero probability when γ = 0). Hence, by

Lemma A.1, we have that
∂Q (d; θ,N )

∂γ

∣∣∣∣
γ=0

= 0.

This is enough to show equation (40) above. This simplification is essential to the overall re-

sult, as it allows us to proceed without knowing any details about the form of the equilibrium

selection rule N when U takes values which admit multiple NE networks.

Case 2: No bucket in b is an inner bucket (i.e., all buckets are outer buckets)

If all components of u fall in either their first or last buckets, then the network is uniquely

defined. This occurs because agent-level preferences for forming (or not forming) a link are

so strong that they do not depend on the presence or absence of other links in the network.

Each agent i either prefers to send a link to j, regardless of the actions taken by others, or

does not wish to send a link. Put differently, each agent has a pure link formation strategy

which is strictly dominating in such games; therefore N (d,u; θ) is either zero or one.

For a particular network d, N (d,u; θ) = 1 if, for all (directed) dyads ij such that dij = 1,

7



we have that uij falls in the first bucket and for all dyads ij such that dij = 0 we have that

uij falls in the last bucket. These considerations give the equality

∫
u∈b
N (d,u; θ) fU (u) du =

∏
i 6=j

[∫ µij+γs

−∞
fU (uij) duij

]dij [∫ ∞
µij+γs̄

fU (uij) duij

]1−dij

(44)

=
∏
i 6=j

[FU (µij + γs)]dij [1− FU (µij + γs̄)]1−dij (45)

Taking logarithms of the expression above, differentiating with respect to γ, evaluating at

γ = 0, and multiplying by P0 (d; δ) yields a derivative for summands where all buckets in b

are outer buckets of

P0 (d; δ)
∑
i 6=j

[
dijs

fU (µij)

FU (µij)
− (1− dij) s̄

fU (µij)

1− FU (µij)

]
. (46)

Case 3: Exactly one bucket in b is an inner bucket

If all but one component of u falls into its first or last bucket, then the resulting network is

uniquely defined except for the presence or absence of one arc, say, ij. For any such draw of

u, since all other links are formed according to a strictly dominating strategy, player i will

either benefit from forming the ij arc or not. Hence N (d,u; θ) is also either zero or one in

this case.

For a particular network d, N (d,u; θ) will equal one if two conditions hold. First, for

all directed dyads kl 6= ij such that dkl = 1 we have that ukl falls in the first bucket and for

all dyads kl 6= ij such that dkl = 0 we have that ukl falls in the last bucket. Second, for the

dyad ij with uij falling in an inner bucket, we require that if uij ∈ [µij + γs, µkl + γsij (d))

that dij = 1, while if uij = [µkl + γsij (d) , µij + γs̄) we require that dij = 0. The overall

likelihood contribution for this case therefore equals:∫
u∈b
N (d,u; θ) fU (u) du =

∏
kl 6=ij

[∫ µkl+γs

−∞
fU (ukl) dukl

]dkl [∫ ∞
µkl+γs̄

fU (ukl) dukl

]1−dkl

×

[∫ µij+γsij(d)

µij+γs

fU (uij) duij

]dij [∫ µij+γs̄

µij+γsij(d)

fU (uij) duij

]1−dij

=
∏
kl 6=ij

[FU (µkl + γs)]dkl [1− FU (µkl + γs̄)]1−dkl

× [FU (µij + γsij (d))− FU (µij + γs)]dij

× [FU (µij + γs̄)− FU (µij + γsij (d))]1−dij .
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Recall that sij (d) is the “strategic” part of the marginal utility agent i gets if he forms

ij. Because the last two terms in [·] in the expression above are zero at γ = 0 we only

need to consider their derivative (by the product rule the other term equals zero at γ = 0).

Differentiating the last two terms with respect to γ (and multiplying by the balance of

preceding terms) yields∏
kl 6=ij

[FU (µkl + γs)]dkl [1− FU (µkl + γs̄)]1−dkl

× [sij (d) fU (µij + γsij (d))− sfU (µij + γs)]dij

× [s̄fU (µij + γs̄)− sij (d + ij) fU (µij + γsij (d + ij))]1−dij

=
∏
i 6=j

[FU (µij + γs)]dij [1− FU (µij + γs̄)]1−dij

×
[
sij (d)

fU (µij + γsij (d))

FU (µij + γs)
− s fU (µij + γs)

FU (µij + γs)

]dij
×
[
s̄
fU (µij + γs̄)

FU (µij + γs̄)
− sij (d)

fU (µij + γsij (d))

FU (µij + γs̄)

]1−dij
.

Summing this expression over all potential arcs (and evaluating at γ = 0) gives a total

contribution of “one inner bucket in b” summands to the derivative of:

P0 (d; δ)
∑
i 6=j

dij

[
sij (d)

fU (µij)

FU (µij)
− s fU (µij)

FU (µij)

]
+ (1− dij)

[
s̄
fU (µij)

FU (µij)
− sij (d)

fU (µij)

FU (µij)

]
. (47)

Summing (44) and (47) then gives the expression in the statement of Theorem 2.2. Using

similar methods we can show that P (d; θ) can be differentiated with respect to γ twice as

claimed.

A.3 MCMC Proofs

Proof of Lemma 3.1

Let AD,D′ be the set of arcs form the node vD to the node vD′ . We construct a bijection

ϕ : AD,D′ → AD′,D. Then we show that the probability of an arc p(a) is equal to p(ϕ(a)). If
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that is proven, the probability of a transition form vD to vD′ is∑
a∈AD′,D

p(a) =
∑

a∈AD′,D

p(ϕ(a))

=
∑

ϕ−1(a′)∈AD′,D

p(a′)

=
∑

a′∈ϕ(AD′,D)

p(a′)

=
∑

a′∈AD,D′

p(a′)

which is the probability for a transition from vD′ to vD.

For the construction of the bijection consider that every arc AD,D′ corresponds uniquely to

a schlaufen-sequence R = (R1, .., Rh). Let Rk = (i1, .., im, .., il) with im the start of the

cycle (if there is no cycle in R, we set R = R̄). We define R̄k = (i1, .., im, il−1, ..im+1, il) and

R̄ = (R̄1, .., R̄h).

Note that the R1, .., Rh are link disjoint and as soon as the cycle of Rk is switched R̄k is

a schlaufe. The violation matrix of R̄k is the negative violation matrix of Rk. This implies

that if R is a feasible schlaufen sequence for G which defined an arc in AD,D′ then R̄ is a

feasible schlaufen-sequence for D′ and defines an arc AD′,D.

We define now ϕ as the function which maps the arc in AD,D′ with schlaufen sequence

R to the arc in AD′,D with schlaufen sequence R̄. By construction ϕ is injective, which

implies |AD,D′ | ≤ |AD′,D|. By symmetry we conclude |AD′,D| ≥ |AD,D′ |, which implies

|AD′,D| = |AD,D′ | and that ϕ is bijective.

It remains to show that the probability of an arc p(a) is equal to p(ϕ(a)). For any node

there are equally many feasible active / passive outlinks in D as in D′. If for a node one

outlink is marked due to an link in Rk then for the same node one outlink is marked in R̄k.

Therefore rG′k(i) is equal to rGk
(i) for an active as well as a passive step. Looking at equation

(29) the pGk
(Rk) is only different from pG′k(R̄k) in the numbering of the factors. But in a

cycle of a schlaufe the start node im and the end node il are such that m − l mod 2 = 0.

The reordering leaves even indexes even and odd indexes odd. Therefore pG(Rk) = p′G(R̄k).

From equation (30) it follows directly that pG(R) = pG′(R̄) which completes the proof.

Proof of Lemma 3.2

The symmetric difference of two realizations of Ds,m, which we denote by D and D′ is a

set of alternating cycles. Cycles are in particular schlaufen. We order them arbitrarily as

(R1, .., Rh). The sum of the violation matrices is 0. Therefore (R1, .., Rh) is either a feasible
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schlaufen-sequence or a concatenation of feasible schlaufen-sequences. In the first case there

is an arc from vD to vD′ . In the second case, all the feasible schlaufen-sequence define an arc

to a new node, resulting in a directed path starting at vD and ending in vD′ . Thus between

any two vertexes in Φ there is a directed path.

Proof of Theorem 3.3

Every time the Algorithm 1 arrives at step 2 a new arc of the state graph is crossed. At

step 2 the algorithm follows a loop arc of type 1 with probability q. Otherwise it proceeds

to step 3. In step 3 a schlaufen-sequence R is constructed. If the violation matrices of this

schlaufen-sequence sum up to 0, the its cycles are switched and an arc of type 2 is followed

with probability pG(R). If the violation matrices do not sum up to 0, then an arc of type 3

is followed. All the cases in which the violation matrices don’t sum up to 0 correspond to

the residual probability. Therefore Algorithm 1 is a a random walk on the state graph Φ.

According to Lemma 3.1 Φ is (weighted) symmetric and according to Lemma 3.2 it is

strongly connected. Due to the self-loops, Φ is not bipartite. Therefore the limit distribution

is uniform.

A.4 Monte Carlo experiments

In this appendix we summarize the results of a small number of Monte Carlo experiments.

These experiments illustrate the excellent size control and good power properties of our tests.

For the Monte Carlo experiments we work with the general utility function introduced in the

main paper. We assume that Ai ∈ A
def
≡ {αL, αH}, Bi ∈ B

def
≡ {βL, βH} and Xi ∈ X

def
≡ {0, 1}.

We assume that each support point in A × B × X occurs with equal probability (i.e., with

probability equal to 1
8
).

Observe that their are four types of sending agents: (Ai = αL, Xi = 0), (Ai = αH , Xi = 0),

(Ai = αL, Xi = 1) and (Ai = αH , Xi = 1). Similarly there are four types of receiving

agents. The null model is therefore fully described by 16 = 4× 4 linking probabilities. These

probabilities are, in turn, a function of the 8 model parameters. We set these parameters as

follows: −αL = αH = 0.7, −βL = βH = 0.5, λ00 = λ11 = −2 and λ10 = λ01 = −4. This yields

a null model expected graph density of about 0.10.

Our parameter choices generate meaningful degree heterogeneity and homophily under

the null. Across 1, 000 Monte Carlo simulations with N = 100, average network density was

0.1, average reciprocity was 0.1, and the average standard deviation of in- and out-degree,

was 7.5.

We set the network benefit function to gi (d) =
∑

j dij (
∑

k dikdkj) as is appropriate when
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agents prefer transitive ties. To simulate a network under the alternative we draw U and

then, starting with an empty adjacency matrix, iterate until all links with positive marginal

utility are present, and all those with negative marginal utility are absent. By Tarski’s

Theorem this finds us the least dense pure strategy Nash Equilibrium.

We compare the performance of three tests: (i) the infeasible locally best test that is

based upon the true value of δ = δ0; (ii) the feasible version of this test which replaces δ

with its maximum likelihood estimate computed under the null; finally, (iii) we construct an

ad hoc test based upon the transitivity index. This last test is the one most often used in

practice (where it is compared to a reference value derived from a simple random graph null).

Figure 6 summarizes our findings. The horizontal axis of the figure correspond to different

values of the strategic interaction parameter, γ0; the vertical axis to the rejection frequency.

With 1000 Monte Carlo replications the standard error of our simulation estimate of size is√
(0.05 (1− 0.05) /1000) ≈ 0.007.

As expected, the actual size of our test is indistinguishable (i.e., equal up to simulation

error) from its nominal size. For the designs considered here the power gains associated with

using the locally best test statistic derived in Section 2 are considerable. Furthermore the

feasible locally best test, which replaces δ0 with its MLE (computed under the null), performs

almost as well as the infeasible locally best test based on the actual value of δ0.

The Monte Carlo experiments highlight that the locally best test, which upweights

episodes of “unexpected” transitivity, is more powerful than the ad hoc test based on compar-

ing the transitivity index with its null distribution. Note both tests are valid and correctly-

sized.

Next we consider the behavior of our test under mis-specification. Specifically we consider

a data generating process where the link-specific random utility shocks are Gaussian instead

of logistic. We set the variance of the Gaussian distribution to π2/3 so that their scale is the

same as in the logistic case. All other model parameters remain as defined above. We simulate

1, 000 networks with Gaussian errors, but then proceed “as if” our logistic assumption were

true. Note our sufficiency, conditioning, and similarity arguments are no longer valid.

The results of these experiments are summarized in Figure 7. Our tests are conservative in

these experiments, with actual sizes below their nominal 0.05 level. The power properties of

our tests remain good. Note the “oracle” test is based on an evaluation of a logit probability

function at the true utility function coefficients (from the the Gaussian model). The feasible

test is based upon quasi maximum likelihood estimates of the pseudo-true utility function

coefficients (under the null). There is no a priori reason to expect one test to perform better

than the other in these designs (indeed one might expect the feasible test to do better under

misspecification). In this example the two power curves cross.
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Figure 6: Power Analysis

Source: Authors’ calculations.
Notes: The figures plot the frequency with which H0 : γ0 = 0 is rejected across 1, 000 Monte
Carlo replications for networks with N = 100 agents. The y-axis reports the estimated
rejection frequency, the x-axis gives the value of the strategic interaction parameter, γ. The
minimal pure strategy NE is use to simulate each network. For each simulation a total of
100 MCMC draws from Ds,m were used to compute critical values. The mixing time was
chosen such that (approximately) every edge is twice randomly modified before the network
is considered a uniform draw. The marginal utility function equals Ai + Bj + X ′iΛ0Xj +
γ0sij(d) − Uij with sij (d) =

∑
k dikdkj +

∑
k 6=j dikdjk. The distribution of (Ai, Bi, Xi) and

the model parameters are as described in the main text.
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This is just one experiment, but it provides some suggestive evidence that our test may

still be useful in settings with modest departures from the logistic assumption.

Figure 7: Test Behavior Under a Gaussian Random Utility Distribution

Source: Authors’ calculations.
Notes: All features of these experiments are as reported in the notes to Figure 6 above, with
the exception that the link-specific random utility shocks are Gaussian (with a variance of
π2/3). Estimation proceeds “as if” the logistic assumption nevertheless holds.

A.5 Additional applications

Bi-partite networks

Let i = 1, . . . , N1 index a set of firms deciding which of j = 1, . . . , N2 markets to enter or

not. To be concrete consider the problem of airlines deciding which routes they will operate

in. The K1 × 1 binary vector Xf
i indicates what type firm i is (e.g., a legacy carrier or a

low cost airline); the binary vector Xm
j indicates what type market j is (e.g., small, medium

or large). Let E = [Eij]i=1,...,N1,j=1,...,N2
be the N1 ×N2 matrix which records which markets
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each firm chooses to enter (“E” for market entry matrix).

The payoff firm i = 1, . . . , N1 gets from a given industry-wide pattern of market entry

E = e equals

νi (ei, e−i; θ,Ui) = γ0gi (e) +

N2∑
j=1

eij

(
Ai +Bj +Xf ′

i ∆Xm
j − Uij

)
. (48)

Here Ai captures unobserved heterogeneity across firms; for example some firms may be able

to operate at systematically lower cost and hence profitably enter more markets (correspond-

ing to high values of Ai). Likewise Bj captures heterogeneity across markets; some markets

may be intrinsically more profitable than others and hence many firms operate in them (cor-

responding to high values of Bj). The term Xf ′
i ∆Xm

j allows certain types of markets to

be systematically more attractive to certain types of firms. Finally Uij is a firm-by-market

specific logistic profit shock.

In a simple entry game, we might set gi (e) = −
∑N2

j=1 eij

[∑N1

k=1 ekj

]
, such that entry

into market j is less attractive to firm i when many other firms k also enter market j (e.g.,

Ciliberto and Tamer, 2009). This payoff function implies independence of entry decisions

across markets.

An advantage of thinking about entry decisions as resulting in a bi-partite network, with

arcs from firms to markets, is that it makes it easy to consider more complex preference

structures. These preference structures can allow for interdependence in entry decisions

across markets.

For example, in the model of Jia (2008) entry into market j is more attractive if the firm

also enters other nearby markets. In this case we might set

gi (e) = −
N2∑
j=1

eij

[
N1∑
k=1

ekj

]
+ λ (ei) (49)

where λ (ei) varies inversely with some measure of the spatial spread of those markets i

enters (calibrated to measure how the operating costs of the firm vary with the geographic

dispersion of the markets entered). In the airline example it may be more costly, or less

profitable, to operate across markets that are disconnected. That is an airline may prefer

route maps which allow a customer to travel to all other airports in their network without

having to fly with competitor. In this example λ (ei) might equal a decreasing function of

the number of connected components in i’s route network. Alternatively it could vary with

the number of location pairs which can be reached on either a direct flight or by making just

one connection.
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We can also allow for more complex forms of spatial competition. If j indexes airline

routes, then we might set

gi (e) = −
N2∑
j=1

eijφj (e−i) (50)

with φj (e−i) returning how many competitor airlines operate in routes with origin and des-

tination airports both within a one hour drive of the corresponding route j airports (e.g.,

entry into the SFO-LAX market may depend on how many competitors operate on the

OAK-BUR, SFO-BUR, and OAK-LAX routes as well as the number which operate on the

SFO-LAX route). One apparent advantage of this “network” perspective is that it allows for

the incorporation of complex cross-market complementarities as well as rich forms of spatial

competition.

To connect this entry model to the directed network problem defined in the main text we

define the N ×N matrix:

D =

[
0 E

0 0

]
(51)

and then proceed as described in the paper.

The network D is bipartite. There are no firm-to-firm or market-to-market links. Fur-

thermore, only firms may direct links (with arcs denoting market entry decisions). These

features of the problem induce the special structure of D above. The cross link matrix will

also have a structure analogous to that of the adjacency matrix.

In this example the null reference distribution will assign a zero to many “links” with

probability one; this is not a problem for our MCMC simulation algorithm. The imple-

mentation available in the Python ugd package can handle degree sequences and cross link

matrices with zero elements.

The null set of networks corresponds to all networks where the same number of firms

enter each market as observed in the network in hand and the observed patterns of entry are

the same as in the network in hand. For example, the number of low cost airlines entering

small, medium and large markets is held fixed and so on.

A natural test statistic would be

R (D) =

N1∑
i=1

N2∑
j=1

(
Eij − pij

(
δ̂
))

sij (Eij) (52)

with pij

(
δ̂
)

an estimate of the probability that firm i enters market j under the null that

γ0 = 0 and sij (E) the marginal network benefit of entering market j for firm i holding all

other own and competitor route choices fixed.
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As the above example makes clear, the application of the methods proposed in the main

text to bipartite networks is conceptionally straightforward. This, in turn, expands the class

of many player games to which our methods apply. Note that questions of test power are

game specific.

Conditional inference in dyadic models

Following a suggestion in Graham (2017), our MCMC algorithm can also be used for con-

ditional maximum likelihood estimation (CMLE) of non-strategic dyadic logit models. Let

Dij = 1 if country i attacks country j within some researcher-defined time period. Let Xi be

a K× 1 vector of country types (e.g., a partition of countries into broad geographic regions),

finally let Zij = 1 if both i and j are democracies and zero otherwise. We posit the following

model for the initiation of conflict by i against j

Dij = 1
(
Ai +Bj +X ′iΛ0Xj + Z ′ijβ0 − Uij ≥ 0

)
, (53)

for i 6= j, i, j = 1, . . . , N and Uij logistic.

According to democratic peace theory, democracies are less likely to engage in conflict

with other democracies such that β0 < 0 (e.g. Oneal and Russett, 1999). Note that any level

(or monadic) effect of democracy on the propensity to initiate conflict generally is absorbed

into the ego effects {Ai}Ni=1 (out-degree effects), while any level effect on the propensity to

be militarily targeted by others is absorbed into the alter effects {Bj}Nj=1 (in-degree effects).

Systematic cross-regional patterns in the costs and benefits of conflict are controlled for by

the “homophily” term X ′iΛ0Xj = W ′
ijλ0.

The conditional likelihood of the network in hand, D, here the observed pattern of conflict

among nations, is

L (D; δ0, β0) =
∏
i 6=j

[
exp

(
W ′
ijλ0 +R′iA +R′jB + Z ′ijβ0

)
1 + exp

(
W ′
ijλ0 +R′iA +R′jB + Z ′ijβ0

)]Dij

×

[
1

1 + exp
(
W ′
ijλ0 +R′iA +R′jB + Z ′ijβ0

)]1−Dij

=c (X,Z; δ0, β0)
∏
i 6=j

exp (T′δ0) exp

([∑
i 6=j

DijZij

]′
β0

)

with Ri, as earlier, a N × 1 vector with a 1 in its ith element and zeros elsewhere and

c (X,Z; δ0, β0) not varying with D. Here T includes the vectorized cross-link matrix as well

as the out- and in-degree sequences as discussed in the main text.
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Let τ (v) be the sufficient statistics for δ in network v. Conditioning on T = t yields

Pr (D = d|X = x,Z = z,T = t; δ0, β0) =

∏
i 6=j exp (t′δ0) exp

([∑
i 6=j dijzij

]′
β0

)
∑

v∈Ds,m

∏
i 6=j exp

(
τ (v)′ δ0

)
exp

([∑
i 6=j vijzij

]′
β0

)

=

exp

([∑
i 6=j dijzij

]′
β0

)
∑

v∈Ds,m
exp

([∑
i 6=j vijzij

]′
β0

)
= Pr (D = d|Z = z,T = t, β0) ,

where the second equality follows from the fact that τ (v) = t for all v in Ds,m.

Taking logs yields, after some manipulation,

ln Pr (D = d|Z = z,T = t, β0) =

[∑
i 6=j

dijzij

]′
β0

− ln

(
E

[
exp

([∑
i 6=j

Dijzij

]′
β0

)])
− ln |Ds,m| , (54)

where the expectation in the second term to the right of the equality is taken with respect to

the discrete uniform distribution on Ds,m. This expectation can be estimated using our simu-

lation algorithm. The third term is invariant to β0 and can consequently be ignored. Basing

estimation and inference upon (54) allows a researcher to learn about β0 in the presence of

out- and in-degree heterogeneity as well as potentially complex patterns of homophily.

In our democratic peace theory example, Zij is binary. In this case
∑

i 6=j DijZij is simply a

count of how many wars are initiated by democracies against other democracies. To compute

the expectation in (54) we need an estimate of the distribution of this count induced by the

discrete uniform distribution on Ds,m.
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