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Abstract

We develop a practical way of addressing the Errors-In-Variables (EIV) prob-
lem in the Generalized Method of Moments (GMM) framework. We focus on the
settings in which the variance of the measurement errors is a fraction of that of
the mismeasured variables, which is typical for empirical applications. For any
initial set of moment conditions our approach provides a “corrected” set of mo-
ment conditions that do not suffer from the EIV bias. The EIV-robust estimator
is then computed as a standard GMM estimator with these corrected moment con-
ditions. We show that our estimator is \/n-consistent, and that the standard tests
and confidence intervals provide valid inference. This is true even when the EIV
are so large that the naive estimator (that ignores the EIV problem) may have a
large bias with confidence intervals having 0% coverage. Our approach requires no
nonparametric estimation, which can be particularly useful when the measurement

errors are multivariate, serially correlated, or non-classical.
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1 Introduction

Measurement errors are a common problem for empirical studies. While the standard
instrumental variables approach can be used to remove the errors in variables (EIV)
bias in linear models, as pointed out by Amemiya (1985), nonlinear models require
more elaborate strategies. The problems of identification, estimation, and inference in
nonlinear models with EIV have received a lot of attention in the econometrics literature.!

The goal of this paper is to develop a simple and practical approach to estimation of

general nonlinear moment condition models
Elg(X7, 5i,0)] = 0 iff 6 = 6, (1)

where g () is an m x 1 vector of functions, # is a p x 1 parameter vector and ¢, denotes
its true value. The researcher has a random sample of {X;, S;}"" |, where scalar or vector

X; is a mismeasured version of unobserved X; with measurement error ¢;:
*

The measurement error can be classical or non-classical. The researcher is interested in
estimating parameters 6. A naive GMM estimator (which ignores EIV and uses X; in
place of X7) is biased because E[g(X;, S;,00)] # 0.

To provide a practical estimation approach, we focus on the empirical settings in
which the researcher believes the variability of the measurement error to be at most
a fraction of the variability of the mismeasured variable, i.e., the noise-to-signal ratio
T = o./ox~ to be moderate, e.g., 7 < 0.5. The absolute magnitude of the measurement
error 0. does not need to be small. Focusing on these settings allows us to develop
a simple estimator, which does not require any nonparametric estimation or simulation.
Such simple estimation becomes possible because in these settings we can obtain a simple
approximation of the EIV bias of the moment conditions as a function of 6.

We propose to bias correct the original moment conditions g (-), which would in turn
remove the bias of the corresponding estimator of #y. The bias correction depends on
some moments of the distribution of the measurement errors that are unknown. Another
difficulty is that the estimators of some components of the bias correction themselves

may need to be bias corrected. To address these issues, we develop the corrected moment

!See Hausman, Ichimura, Newey, and Powell (1991); Hausman, Newey, and Powell (1995); Newey
(2001); Schennach (2007); Li (2002); Schennach (2004); Chen, Hong, and Tamer (2005); Schennach
(2007); Hu and Schennach (2008); Schennach (2014), among others.



conditions, which depend on # and additional parameters v that govern the bias correc-
tion. The true parameter value v, is associated with (possibly conditional) low-order
moments of €;. Despite some theoretical subtleties with the construction of the corrected
moment conditions, their practical implementation is straightforward and they can be
computed fully automatically for any original moment function ¢ (-).

We introduce the Measurement Error Robust Moments (MERM) estimator, which
is a GMM estimator that uses the corrected moment conditions to jointly estimate pa-
rameters 0y and v,. The estimator can be computed using any standard software for
GMM estimation. Joint estimation of parameters 6, and 7, using the corrected mo-
ment conditions effectively robustifies moment conditions g (-) against the impact of the
measurement errors.

To make these ideas precise and to study the properties of the proposed estimators, we
use a nonstandard asymptotic approximation that models 7 as slowly shrinking with the
sample size. Standard asymptotics considers 7 constant, which implies that as n — oo
the bias of a naive estimator dwarfs its sampling variability: the bias is constant while
the standard errors shrink proportionally to 1/y/n. This implication does not fit many
empirical applications, in which the researcher does not expect the potential EIV bias to
be several magnitudes larger than the standard errors. Thinking of bias being /n times
larger than the standard errors appears to be too pessimistic in a sufficiently wide range
of applications to warrant our interest in the alternative settings with measurement errors
of a moderate magnitude.? By considering 7 as drifting towards zero with the sample
size, our approach provides a better approximation of the finite sample properties of
estimators when 7 is small or moderate.?

Using this approximation, we show that the proposed estimation approach indeed
addresses the EIV problem. The MERM estimator is shown to be y/n-consistent and
asymptotically normal and unbiased. The standard confidence intervals and tests for
GMM estimators are also shown to be valid for the MERM estimator.

A large sample theory is only useful if it is able to approximate finite sample proper-

2Such empirical settings appear to be widespread. Although the concerns about measurement errors
are often raised, the majority of applied work does not explicitly correct the EIV bias (especially in
nonlinear models), and instead implicitly or explicitly argues or conjectures that the EIV bias is likely
not to be too large. See also the review of Bound, Brown, and Mathiowetz (2001).

3Such nonstandard asymptotic approximations are often used to obtain better approximations of the
finite sample behavior of estimators and tests. For example, in the instrumental variable regression
settings, to consider the settings with relatively small first stage coefficients, Staiger and Stock (1997)
model them as shrinking with the sample size. It is important to keep in mind that such nonstandard
asymptotic approximations are merely mathematical tools. One should not take them literally and think
of parameters somehow changing if more data is collected.



ties of the estimators and inference procedures. Thus, we study the MERM estimators
in a variety of simulation experiments. The results confirm that the nonstandard asymp-
totic theory indeed provides a good approximation of the finite sample properties of the
estimators in the settings even with relatively large EIV. In some of the simulation ex-
periments, the EIV are so large that for the naive estimators standard 95% confidence
intervals have actual coverages of 0% in finite samples, due to the magnitude of the EIV
bias. At the same time, the MERM estimators perform well, removing the EIV bias and
providing confidence intervals with correct coverage. In particular, the simulation results
show that despite the simplicity of implementation, the MERM estimators can compete
with and outperform semi-nonparametric estimators. We also illustrate the performance
of the MERM estimators in settings where no alternative estimators exist.

General moment condition model (1) encompasses a wide variety of semiparametric
models. In general nonlinear models, measurement errors in any of the variables (in-
cluding outcomes) may bias naive estimators. Mismeasured variables X; do not need
to be covariates. For example, in estimation of Euler equations using individual-level
data, X may represent consumption, which enters the moments nonlinearly and is often
mismeasured. However, most of the existing methods for dealing with EIV focus on the

nonlinear regression (NLR) model.

Example 1.1 (NLR). LetY; denote the scalar outcome, and let X} and W; be the vectors

of mismeasured and correctly measured covariates, respectively. Suppose
E [Y;|Xz*> VVZ] =p (Xz*’ Wi, ‘90)

for some known function p. For example, in the logit model of binary choice, Y; is binary
and p (z,w,0) = A (Fyx + Oyw), where 0 = (0, 0y,) and A is the logistic CDF.

To estimate the NLR model, consider the moment function

g(ywraw;Z;e) = (y—p(x,w,e))h(z,w,q),

where h () is a vector valued function, which generally is also allowed to depend on
0. To address the EIV problem in NLR, researchers typically rely on the orthogonality
conditions that involve some additional variables q. Most often, variables ¢ are some
instrumental variables. In the absence of genuine excluded variables, the literature has
also advocated relying on nonlinear functions of x (e.g., higher powers) as ¢. Including

powers of x may help identification of the model with EIV, and generally improves the



efficiency of the estimator even in the absence of measurement errors. To provide an
example of function A (-), for simplicity of notation, suppose z and an instrumental
variable z are scalars. One may take h (z,w, 2) = ((1,z,...,2™X)® (1, 2,...,2™%),w'),
where mx and my are some positive integers. Since moment condition (1) is stated in
terms of the correctly measured X, determining what functions g (-) (or h(:) in the
NLR model) satisfy this moment condition does not involve any consideration of the
measurement, errors and is straightforward.

The specific source of identification of parameters 6y and v, depends on the partic-
ular model described by the moment conditions g (-). One important advantage of our
approach is that it accommodates a variety of sources of identification within a single
unified estimation framework. Since MERM estimator is a standard GMM estimator,
the analysis of identification can be conducted in familiar terms, and is not obscured
by the technical complications such as Fourier transforms, completeness conditions, or
ill-posed inverse problems. The bias correction approach and the corresponding structure
of the corrected moment conditions dictate what features of moments g (-) are used to
identify the nuisance parameters v,. Identification of 6, is then based on the information
remaining in the moment conditions that are orthogonal to the ones used to identify .
Essentially, our approach first characterizes in what directions the measurement errors
can bias the moment conditions E [g (X;, S;,0)], and then uses the moments orthogonal
to those directions for estimation of §,. Thanks to the MERM estimator being a GMM
estimator, the standard arsenal of assessment tools in the GMM framework can be ap-
plied to the MERM estimator, allowing one to test model identification, conduct valid
inference, and perform model specification diagnostics.

The power of the general MERM approach can be illustrated in the NLR model.
The approach can make use of instrumental variables, repeated measurements, and non-
linearity /non-normality for model identification. For example, when a candidate instru-
mental variable is available, the conditions that an instrument needs to satisfy are much
weaker than what is required by many existing approaches. Availability of a discrete
instrument is sufficient for identification; and the instrument is allowed to have hetero-

geneous impact on covariates X;.* The instrument itself can also be mismeasured, and

4The importance of the heterogeneity of the impacts of instruments in empirical applications has
been widely recognized, e.g., see Imbens and Angrist (1994); Heckman and Vytlacil (1998); Imbens
and Newey (2009). Note that such heterogeneity is ruled out by the EIV-robust methods that rely on
the additive control variable assumption for identification, i.e., assume that X* = m (Z;) + V; with the
control variable V; independent from Z;. In contrast, in Section 4 we illustrate identification in a random
coefficient first stage model.



a variable that is caused by X/ can also be used as an instrument in the MERM ap-
proach. In Section 4, we study identification of the NLR model in the MERM framework,
and show that this model is globally nonparametrically identified using such a discrete
instrument.

The simplicity and practicality of the MERM approach do come at cost: there is
a limit on the magnitude of the measurement errors it can handle. For example, one
generally should not expect the MERM approach to work well when 7 > 1, i.e., when
the noise dominates the signal; in this case the researcher should seek an alternative
estimation method. We view the MERM approach as providing a bridge between the
settings in which the measurement errors are guaranteed to be absent or negligible, and
the settings where the measurement errors are so large that one has to use the relatively

more complicated estimators from the earlier literature (if they exist at all).

Related Literature Chen, Hong, and Nekipelov (2011), Schennach (2016), and Schen-
nach (2020) provide excellent overviews of the measurement error literature.

The existing semiparametric approaches to estimation and inference in models with
EIV involve nonparametric estimation of infinite-dimensional nuisance parameters (e.g,
Chesher, 2000; Li, 2002; Schennach, 2004, 2007; Hu and Schennach, 2008; Schennach
and Hu, 2013), simulation (e.g., Schennach, 2014), or both (e.g., Newey, 2001; Wang
and Hsiao, 2011). The exceptions include models with linear and polynomial regression
functions (see Hausman et al., 1991, 1995), and models where the distributions of un-
observables have Gaussian distribution such as Probit and Tobit models with Gaussian
covariates and measurement errors (see Smith and Blundell, 1986; Rivers and Vuong,
1988).

To the best of our knowledge, this paper is the first to provide an approach for /n-
consistent and asymptotically normal and unbiased estimation of general GMM models
with EIV, which in addition requires neither nonparametric estimation nor simulation or
numerical integration.

We are able to provide such an estimator because we focus on models with moderate
measurement errors. Modeling variance of the measurement error as shrinking to zero
with the sample size is a popular approach in Statistics. The method has been proposed
by Wolter and Fuller (1982), who use it to construct an approximate MLE estimator
of nonlinear regression with Gaussian errors. Following their approach, the Statistics
literature has mainly focused on the settings where the moments needed to bias correct

the estimators are either known or can be readily estimated from the available repeated



measurements. In Economics, such data is relatively rare. The use of approximations
with shrinking variance of measurement errors in Econometrics literature has been pio-
neered by Kadane (1971), Amemiya (1985), and Chesher (1991). These approximations
allow one to derive approximate bias formulas of (naive) estimators. These formulas
depend on the moments of the measurement errors that are usually not known. One
way the Econometrics literature proposed to use such bias calculations is to use them to
check the sensitivity of the estimates to EIV by considering how the estimates vary as
the unknown moments of the measurement variables take values in some set of plausible
values, e.g., see Chesher and Schluter (2002), Chesher, Dumangane, and Smith (2002),
Battistin and Chesher (2014), Chesher (2017), and Hong and Tamer (2003).

This paper differs from the earlier literature in several ways. First, it presents a
way to estimate the unknown nuisance parameters (moments of the measurement errors)
jointly with the parameters of interest. As a result, the approach can, for example, use
instrumental variables as a source of parameter identification.  Second, the method
applies to a very general class of semiparametric models specified by moment conditions.
Third, MERM approach allows the measurement errors to have larger magnitudes than
most of the papers in the earlier literature; this is achieved by the MERM approach
recursively bias correcting the bias correction terms. Fourth, our approach allows non-
classical measurement errors.

The most widespread approach to identification of the EIV models in economic ap-
plications is to use instrumental variables, e.g., see Hausman et al. (1991); Newey (2001);
Schennach (2007); Wang and Hsiao (2011). In a recent paper, Hahn, Hausman, and Kim
(2021) reconsider the regression model in Amemiya (1990) using a bias correction similar
to ours. When proper excluded variables are not available, researchers have considered
using higher moments of X; as instruments, e.g., see Reiersgl (1950); Lewbel (1997); Er-
ickson and Whited (2002); Schennach and Hu (2013); Ben-Moshe, D’Haultfeeuille, and
Lewbel (2017). MERM estimator accommodates these identification approaches within
a unified estimation framework.

Kitamura, Otsu, and Evdokimov (2013); Andrews, Gentzkow, and Shapiro (2017);
Armstrong and Kolesar (2021); Bonhomme and Weidner (2021), among others, develop
tools for estimation and inference in the GMM settings that are robust to general pertur-
bation or misspecification of the true data generating process. They focus on the settings
in which these perturbations are sufficiently small, so that the naive estimators remain
v/n-consistent, and their biases are of the same order of magnitude as their standard

errors. In contrast, we focus on the more specific forms of data contamination due to



the EIV. This allows the MERM approach to remain valid even in the settings with
larger measurement errors, in which naive estimators may have slower than /n rates of
convergence.

The MERM approach also provides a useful foundation for dealing with EIV in the
more complicated settings. Evdokimov and Zeleneev (2018) utilize the MERM framework
to address an issue of nonstandard inference that turns out to arise generally in the
measurement error settings. Evdokimov and Zeleneev (2019) extend the analysis of this

paper to long panel and network settings.

Organization of the paper The rest of the paper is organized as follows. Section 2
introduces the Moderate Measurement Error framework and the proposed MERM esti-
mator. Section 3 presents several Monte Carlo experiments that illustrate finite sample
properties of the MERM estimators. Section 4 studies nonparametric identification in
our settings. Section 5 considers several extensions of the framework.

Several appendices include more technical details. Appendix A provides the reg-
ularity conditions used to establish the asymptotic theory for the MERM estimator.
Appendices C and F include some details on implementation of the estimator and on the
empirical illustration. Appendices D and E provide proofs of the results in Sections 2

and 4, respectively.

2 Moderate Measurement Errors Framework

To present the main ideas we first consider the case of univariate X and classical mea-
surement error £;. Later we consider multivariate X, and non-classical measurement

eITors &;.

2.1 Moment Conditions and Estimator

To develop a practical estimation approach for general moment condition models we fo-
cus on the settings in which 7 = 0. /o x+ is small or moderate. We consider an asymptotic
approximation with 7,, = 7 — 0 as n — co. Note that economically meaningful param-
eters are usually invariant to rescaling of X*. Likewise, the extent of the EIV problem

does not change with such rescaling.



The magnitude of the EIV bias of such parameters is also invariant to such scaling;
changing the units of measurement of X; does not meaningfully change the EIV problem.
For simplicity of exposition, it is convenient to assume that X is scaled so that ox« is
of order one and, correspondingly, moments E [|5,|k] oc 7% decrease with k when 7, < 1.
For example, this could be ensured by normalizing observed X; to have ox = 1. Let
us stress that this normalization is used only to simplify the exposition; as we show
in Appendix B, the proposed MERM estimator does not require any normalizations in

practice. Following the rest of the literature, we assume that E [¢;] = 0.°

Special Case: Quadratic Expansion For clarity, we first consider a simple special
case of the general approach. Let us denote g;gk) (1,5,0) = 0%g(z,s,0) /0z*. Since

E [|51]k} x 78 — 0 as n — oo, under some regularity conditions, we can write the

quadratic Taylor expansion of function ¢(X;,S;,0) = g(X; + €;,5;,0) around ¢; = 0 as

1 )
E[Q(Xu Si, 9)] =K [Q(Xi*» Si, 9) + gg(ﬁl)(Xf7 Si, 0)&‘ + 59:(32)()(:, Si, 9)5? + O(EH&P])

— Elg(X7.50.0)] + B (X, 5,60)] + O, 3)

where the second equality holds because because ¢; and (X}, S;) are independent, and
E[e)] = 0.

This expansion implies that E[g(X;, S;,00)] = O (62) = O(72). As a result, a naive
estimator that ignores the EIV and uses X; in place of X; has EIV bias of order 72.5 Bias
of the naive estimator should be compared with its standard error, which is of order n=/2.
Bias of the naive estimator is not negligible, unless the measurement error is rather small
(theoretically, unless 72 = o (n‘l/ 2)) In particular, tests and confidence intervals based
on the naive estimator are invalid and can provide highly misleading results. Moreover, if
72 shrinks at a rate slower than O (n'/2), the rate of convergence of the naive estimator
is slower than /n.

Suppose 7, = 0 (n"/%). Then, O(72) = o (n"'/?) and we can rearrange equation (3)
as

E[g(X], Si,0)] = E[g(X;, Si,0)] —

@E [987(X}, 85, 0)] + o(n™"/2). (4)

The left-hand side of this equation is exactly the moment condition (1) that we would like

® A location normalization such as E [¢;] = 0 is usually necessary because it is not possible to separately
identify the means E [X/] and E [g;].
SFor example, consider a linear regression with a scalar mismeasured regressor. The bias of the naive

2
OLS estimator of the slope parameter g is —001% =072 + O (724).

9



to use for estimation of 6. The first term on the right-hand side involves only observed
variables, and can be estimated by the sample average g(6) =n~'>"" | g(X;, S;,0). The
second term on the right-hand side can be thought of as a bias correction that removes
the EIV-bias from the expected moment function E[g(X;, S;,0)].

The idea of the MERM estimator we propose is to make use of expansions such as (4)
to bias correct the moment condition E[g(X;, S;, #)], which in turn removes the bias of
the estimator of the parameters of interest 6,. To perform the bias correction we need
to estimate two quantities: E[¢?] and E [ggf) (X7, S, 9)]

First, we show that in equation (4) we can substitute E [g;(f) (X[, S:,0)| with
E [gg(CZ)(Xi, S;, 9)}, which in turn can be estimated by g2 (0) = n 2", ¢!?(X;, Sy, 0).

By the Taylor expansion around ¢; = 0 similar to equation (3), we can show that
E [gf)(xg, Si, 9)] —F [gf) (X, S;, 9)} +0O(72) and hence

%E[e?] (E [¢(X},S:,0)] —E [¢P(X;,5:,0)]) =E[]]0O (72) = O (12) . (5)

2

Here O (7)) = o (n~'/?) because we assume that 7, = o (n"/%). The idea behind this
substitution is that the bias of order O(72) in E [gg(f)(Xi, Si, 9)} can be ignored because
it is multiplied by E [¢?] = O (72).” With the substitution, we can rearrange equation (4)

and write it as

Elg(X;,5:,0)] = E |9(X;, Si,6) - %@2]9;”(&, Si. 0)] +o(n™'?). (6)

Second, we propose estimating the unknown E[e?] together with the parameter of
interest 6. Specifically, let v,, = E[¢?]/2 denote the true value of parameter 7,, and

consider the following corrected moment function:
V(X 85,0,7) = 9(Xi, 85, 0) — 72987 (Xs, i, 6). (7)
Function 1 is a moment function parameterized by 6 and ~, and
B[ (Xi, S, 00, v02)] = Elg(X, 5, 00)] + 0 (n712) = 0 (n777), (8)

where the first equality follows from equation (6) and the definition of v,,, and the second

equality follows from equation (1). Hence, the corrected moment conditions ¢ can be

"Such substitutions of X* with X have been used in other contexts, e.g., Chesher and Schluter (2002).

10



used to jointly estimate the true parameters 6y and vy, by a GMM estimator.®

Remark 1. If E[e}] = 0 (e.g., if the distribution of €; is symmetric), the remainder in
equation (3) is of a smaller order O(7%). Hence, the corrected moments (8) remain valid
for larger values of T, requiring only the weaker condition T, = o(n~%). The bias of

the naive estimators in this case can be as large as o(n=/%).

General Case: Expansion of order K The quadratic expansion of equation (3)
can be extended to general order K > 2. Considering larger K theoretically allows 7,
converging to zero at a slower rate. In finite samples this corresponds to the asymptotics
providing good approximations for larger values of 7,, i.e., large measurement errors.

Expanding g(X; + ¢;, 5;,0) around ¢; = 0 we have,

Elg(X:, Si,0)] = E | (X7, S, 6) ik—k (X2, 5., 6) +O(E [|€i|K+1D. 9)

The above special case of quadratic expansion corresponds to K = 2.

The approximation we consider is formalized by the following assumption.

Assumption MME. (Moderate Measurement Errors) (i) 7, = o(n~Y5+2)) for some

integer K > 2; and (ii) E[|g;|*] < Col for some L > K 4+ 1 and C > 0.

Assumption MME (i) limits the magnitude of the measurement errors and implies that
K+ = 0 (n='/?). Assumption MME (ii) implies that E [|€i| } = O (o), and requires the
tails of ¢; /0. to be sufficiently thin. Together, parts (i) and (ii) imply that E [[ai|K+1} =
O (TnK “) =0 (nil/ 2), and hence ensure that the remainder in equation (9) is negligible.
Using E [g;| X7, S;] = 0 to further simplify this expansion and rearranging the terms we

obtain

E[g(X;, 5,.0)] = Elg(X..5,0)] - 3 BV [00(X7.5,,0)] + (0. (10)

This equation is the general expansion analog of equation (4). The summation on the
right hand side is the bias correction term, which we use to construct the MERM esti-

mator.

8In the moment condition settings, having o (n‘l/ 2) is equivalent to having 0 on the right-hand side
of equation (8).

11



It turns out that for K > 4, estimation of E |g (X * S 9)} is more intricate than
in the case of K = 2, and the substitution we made in equation (6) no longer works.
Larger values of K allow for larger values of 7,, and hence larger EIV biases of naive
estimators n= 1ty " gtk (X S;,0). The expansion of order K includes terms up to the

order 71, with the asymptotically negligible remainder of order O (Tff“). For K > 4,

terms of order 72 are not negligible. This implies that we cannot ignore the EIV bias that
would arise from substituting E [gm (X7, S; 9)} with E [g(Q) (Xi, S;, 9)] in equation (10),
because this bias is of order O (71) according to equation (5). To address this problem, we

instead replace E [gw (X}, S; 0)] with the bias corrected expression E [gw (Xi, S;, 0)}
(Ele?]/2) E [ (4)(X S; «9)] Thus, for K > 4, one needs to bias correct the estimator

of the bias correction term. Moreover, for larger K one needs to bias correct the bias
correction of the bias correction term and so on.

Fortunately, we show that these bias corrections can be constructed as linear combi-
nations of the expectations of the higher order derivatives of gék) (Xi, S;,0). Let us define

the following corrected moment function:

Y(Xi, 85,0,7) = g(Xi, S5, 0) — Zm (X, 5:,0), (11)
where 7 = (7,,...,7k) is a K — 1 dimensional vector of parameters. Let v, =
(Voas - - - » Vo) denote the vector of true parameters v, defined as

E (<] E [<}] Elef] SXE [
Yo =5 Yos = g , and g, = ]E;!}_Kﬁﬁ%zforkzll.

We formalize this discussion below.
Assumption CME. ¢; is independent from (X}, S;) and Elg;] = 0.

Assumption CME is the classical measurement error assumption. We relax this as-
sumption later in Section 5.2. The following lemma establishes validity of the corrected
moment conditions under Assumptions MME, CME, and some mild regularity conditions

provided in Appendix A.

Lemma 1. Under Assumptions MME, CME and A.1 in Appendiz A,

E[ (X5, Si,00,7)] = E[g(X/],S;,00)] + 0 (n—1/2) — ) (n—1/2) ‘
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Lemma 1 implies that the corrected moment conditions 1 can be used to jointly
estimate parameters 6y and v,. The total number of parameters to be estimated is now
dim () + K — 1. Thus, joint estimation of 0y and =y, requires that dim (¢) = dim (g) >
dim (0) + K — 1, i.e., that the original moment conditions ¢ include sufficiently many

overidentifying restrictions.

Measurement Error Robust Moments (MERM) estimator The MERM esti-
mator jointly estimates the parameters 6y and 7, using moment conditions . It is

convenient to define the joint vector of parameters
~ AR
6 = (9/7’7/)/7 /BO = (6677£]>/7 6 = (9 77/>/7

and the parameter space B = 0O x I', where © and I' are the parameter spaces for § and
7. Then, MERM estimator is the GMM estimator (Hansen, 1982):

~ ~

B=argminQ(B),  Q(B) =v(B)=Y(B), (12)

BeB

where ¥(8) = =t 320 ,(8), ¥:(8) = ¥ (X4, S, B), = is a weighting matrix, and Q()
is the standard GMM objective function.

Under some regularity conditions, estimator B behaves as a standard GMM-type
estimator: it is y/n-consistent and asymptotically normal and unbiased. This result is

formalized by the following theorem.

Theorem 2 (Asymptotic Normality). Suppose that {(X}, S}, i)}, are i.i.d.. Then,
under Assumptions MME, CME, and A.1-A.4 in Appendiz A,

n?S V(B = ) 5 N(0, Lysx—1), where (13)

Y= (VEY) 'WEQ,Z0(VED) (14)

Theorem 2 shows that the MERM approach addresses the EIV bias problem, and
in particular provides a y/n-consistent asymptotically normal and unbiased estima-
tor 9, which can be used to conduct inference about the true parameters 6,. The

asymptotic variance ¥ takes the standard sandwich form, with ¥ = E[Vgy,(5,)],
Dy = E[1; (B0) ¥ (By)], and E = Z.
Remark 2. Notice that the bias of naive estimators (such as a GMM estimator based on

the original moment conditions) is O(72), so their rate of convergence is O,(72 +n~42).
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The bias dominates sampling variability and naive estimators are not \/n-consistent un-
less T, = O(n~Y4), i.e., unless the magnitude of the measurement error is rather small.
At the same time, the MERM estimator remains \/n-consistent for much larger values

of T, up to 7, = O(n~YCE+2)) whereas the rate of convergence of naive estimators is

only O, (n=YE+1)) in this case.

Once the corrected moment condition v is constructed, estimation of and inference
about parameters (3, can be performed using any standard software package for GMM
estimation. In other words, the proposed estimator can be simply treated as a standard
GMM estimator based on the corrected moment conditions v, and the conventional
standard errors, tests, and confidence intervals are valid.

The validity of the MERM estimator and equation (13) require that parameters 3,
are identified and the Jacobian matrix ¥ has full rank. One advantage of the approach
is that the estimation method remains the same regardless of the specific source of iden-
tification is used. The identifying information is incorporated in the moment functions.
In particular, Section 4 we study identification of the nonlinear regression model, and
show that it is nonparametrically identified using a (possibly discrete) instrument. In
Section 5.1 we consider multivariate measurement errors, with repeated measurements as
a special case. Importantly, identification can be tested by testing that ¥ has full rank,

see also Remark 10 below.

Remark 3. Researchers may be interested in average effects of the form p, =
Eh(X},S:,00)]. In the NLR, one may be interested in the average partial effect
(i.e., py = E[Vaup (X[, S;,00)]) or another covariate. The naive average partial effect
estimator [Lyqive = %E?:l h (XZ-,SZ-,@) suffers from the EIV bias, unless function h is
linear in X;. Instead, one can use estimates v to construct the bias-corrected estimator

Pverm = %2?21 {h (Xiv Si; é) - ZkK:Q &khgfk) (Xi, Si, é)}

Remark 4. It is useful to get a sense of the magnitudes of the coefficients E [5?} Jk! in
equation (10). Suppose g; ~ N (0,02), 0. = 0.5, and ox+ = 1, so 7 = 0. = 0.5. Then
the coefficients in front of ¢t2, ¢, and ¢¥ are E[€2] /2! = 0.125, E[e}] /4! ~ 0.008,
and E[£9] /6! ~ 0.0003.

Remark 5. It is important to note that vy, # E [ef] JE! for k > 4, contrary to what equa-
tion (10) might suggest. For example, o, = (E [€}] — 602) /24 is negative for many dis-
tributions, including normal. For instance, in the example of Remark 4, vy, = —0.0026.

The reason that generally vy, # E [55] Jk! is that the estimators of the correction terms
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themselves need a correction, which is accounted for by the form of vy.. Since there is
a one-to-one relationship between vy, and the moments E [éﬂ , parameter space I' for 7y,
can incorporate restrictions that the moments must satisfy (e.g., 0> > 0 and E[e}] > o).

Such restrictions can increase the efficiency of the estimator and the power of tests.

Remark 6. No parametric assumptions are imposed on the distribution of €;, i.e. the
distribution of €; is treated nonparametrically. The reqularity conditions restrict only the
magnitude of the moments of ;. The approach imposes no restrictions on the smoothness
of the distributions of X} and €;, which are not even required to be continuous. Examples
in which this can be useful include individual wages (whose distribution tends to have
point masses at round numbers), and allowing the measurement error ; to have a point

mass at zero (a fraction of the population may have zero measurement or recall error).

Remark 7. Considering larger K allows T,, converging to zero at a slower rate, which in
finite samples corresponds to the asymptotics providing better approximations for larger
magnitudes of measurement errors. On the other hand, taking a larger K increases the

dimension of the nuisance parameter vy, and thus typically increases the variance of 0.

Remark 8. The usual J-test remains valid in the MERM settings, and can be used to
check model specification. Rejection of the J-test may be caused by (i) K being too small,
and hence failing to entirely correct the EIV bias; (ii) assumptions on the EIV being
invalid; or (iil) misspecification of the moment conditions g, i.e., equation (1) failing
to hold. Issue (i) can be addressed by taking a larger K. In Section 5 we extend the
framework to obtain corrected moments that are valid under weaker assumptions on the

EIV, which can help addressing issue (ii).

Remark 9. The formulas of derivatives gg(ck)(-) are typically easy to compute analytically

or using symbolic algebra software. Alternatively, derivatives gg(ck) can be computed using
numerical differentiation. In either way, the corrected set of moments can be automati-

cally produced for a generic moment function g(-) provided by the user.

Remark 10. The framework encompasses many possible sources of identification, includ-
ing instrumental variables, repeated measurements, and nonlinearities of the functional
form. Importantly, one can test the strength of identification of the model parameters
or even conduct identification-robust inference (e.g., Stock and Wright (2000); Kleiber-
gen (2005); Guggenberger and Smith (2005); Guggenberger, Ramalho, and Smith (2012);
Andrews and Mikusheva (2016); Andrews (2016); Andrews and Guggenberger (2019)).
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3 Numerical Evidence

3.1 Comparison with a Semi-Nonparametric Estimation Ap-

proach

We compare MERM estimator with the state-of-the-art semiparametric estimator of
Schennach (2007, henceforth S07) for nonlinear regression models. The Monte Carlo
designs are taken from S07, and include a polynomial, rational fraction, and Probit
nonlinear regression models. Identification of the model is ensured by the availability of

an instrument.
Yi=p(X,00) +U;, X[ =Z;+V, Xi=X+¢g, (15)

(Zi, Viyei) ~ N ((0,0,0),Diag(1,1/4,1/4)) and n = 1000. The conditional expectation
function p, the true value of the parameter of interest 6y, and the conditional distribution
of the regression error U; are design-specific and reported in Tables 1-3 below. In all
designs, 7 = 0. /0% =~ 0.45, so the measurement error is “fairly large” (Schennach, 2007).

We report simulation results for the MERM estimator considering correction schemes

with K = 2 and K = 4. The original moment function is

g($, Yy, 2,0) = (y - p(x, 6))h(x7 2)7

where we use h(z,z) = (l,z,2z,2%2%2%2%) for K = 2 and h(z,z) =

(1,2, 2, 2%, w2, 2%, 2%, 2% 2, 122, 2%) for K = 4.

The finite sample properties of the MERM estimators (evaluated based on 5,000
replications) are reported in Tables 1-3 below. For comparison, we also provide the same
statistics for naive estimators (OLS/NLLS) and for the benchmark estimator of S07 (as
reported in the original paper). For the polynomial model (Table 1), both K = 2 and
K =4 MERM estimators effectively remove the EIV bias. Component-wise, the MERM
estimators perform similarly (for 0 and 6,) or better (for #; and 63) compared to the
benchmark estimator of SO7. For the rational fraction model (Table 2), both the MERM
estimators are vastly superior to the benchmark estimator both in terms of the bias and
the standard deviation. For the probit model (Table 3), the MERM estimator with K = 2
removes a large fraction of the EIV bias compared to the NLLS estimator. However, the
EIV bias remains non-negligible when this simplest correction scheme is used. Employing

a higher order correction scheme with K = 4 completely eliminates the remaining EIV
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bias, while at the same time having smaller standard deviations (than the benchmark
estimator of SO7) . Overall, in the considered designs, the MERM estimator with K =4
consistently outperforms the benchmark estimator. It also proves to be more effective
in removing the EIV bias compared to the K = 2 estimator, especially in the highly

nonlinear settings of the considered probit design.

Table 1: Simulation results for the polynomial model of SO7

Bias Std. Dev. RMSE
04 09 05 04 01 02 03 04 01 0o 03 04 All

OLS -0.00 -0.43 0.00 0.21 0.07r 0.13 0.06 0.04 0.07r 045 0.06 0.22 0.51
S07 -0.06 -0.07 -0.02 0.05 0.17 0.19 0.24 0.05 0.17 020 0.24 0.07 0.36
K=2 -000 010 0.00 0.00 010 0.23 0.10 0.08 0.10 0.25 0.10 0.08 0.29
K=4 -000 0.00 000 0.02 009 021 0.10 0.08 0.09 0.21 0.10 0.08 0.27

The DGP is as in (15) with p(x,0) = 01 + 02 + 0322 + 0423, 09 = (1,1,0,—0.5)", and U; ~ N(0,1/4).
The results are based on 5,000 replications.

Table 2: Simulation results for the rational fraction model of SO07

Bias Std. Dev. RMSE
01 0 03 01 02 03 01 02 03 All
OLS 0.339 -0.167 -0.644 0.040 0.020 0.076 0.341 0.168 0.648 0.752
S07 0.107 0.117 -0.150 0.146 0.139 0.328 0.181 0.182 0.361 0.443

K=2 -0.004 -0.018 0.014 0.062 0.026 0.139 0.062 0.032 0.139 0.156
K=4 0014 -0.002 -0.024 0.062 0.031 0.154 0.063 0.031 0.156 0.171

The DGP is as in (15) with  p(z,0) = 01 + Oz + (1-5%’ 6o = (1,1,2)', and U; ~ N(0,1/4). The
results are based on 5,000 replications.

3.2 Estimation and Inference in a Multinomial Choice Model

Consider the standard multinomial logit model, in which an agent chooses between 3
available options. For an agent i with characteristics (X, W), the utility of option j is

given by
Uij = 001 X + 00joWij + 0053 + € for j € {1,2},

and Ujp = € for the outside option j = 0, where ¢;; are i.i.d. (across i and j) draws from

a standard type-1 extreme value distribution. Let Y;; be the observed binary outcome
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Table 3: Simulation results for the Probit model of SO7

Bias Std. Dev. RMSE
01 02 01 0o 01 05 All
NLLS 0.38 -0.97 0.06 0.08 0.39 0.98 1.05
S07 0.05 -0.06 0.39 0.53 0.39 0.53 0.69
K=2 0.11 -0.31 0.18 0.34 0.21 0.46 0.51
K=14 -0.01 -0.01 0.23 0.42 0.23 0.42 0.48

The DGP is as in (15) with p(z,0) = 1(1 + erf(6; + 62)), g = (—1,2), and U; = 1 — p(X},6o) with
probability p(X/,6) and —p(X},00) otherwise. The results are based on 5,000 replications.

variable indicating whether agent 7 chooses option j, i.e. Y;; = 1 if and only if j =

argmax;co 1y Uiy- In addition,
X;=4q(Z,V), Xi=X[+e, Wy=pXi/ox+1- vy,

and (Z;, &, vi, via) ~ N ((0,0,0,0), Diag(c%,0%,02,0%)) L V;. The researcher observes
{(X:, Wi, Y1, Y50, Yio) Y. Note that the form of function ¢(z,v) is not known to the
researcher. We consider two specifications for function ¢(z,v) and the distribution of V;.

In the first case, v is scalar and ¢(z,v) is additive,
Case A:  q(Z;,V))=Z; +V;, Vi~ N(0,0%). (16)
In the second case, q(z,v) is a random coefficient model and v is bivariate:

Case RC:  q(Z;,Vi) =VuZ; + Vg, Vi= (Vio, V1) ~ N ((O,l)’,Diag(a%/O,af/l)),
(17)
In all of the designs, we fix (0o11,0012, 0013, 0021, 0022, O023, p, 0%, 02) =
(1,0,0,0,0,0,0.7,1,1) and n = 2000. We also fix 02, = 1 in Case A and
(06%20,0%,) = (1/2,1/2) in Case RC; in both cases o%. = 2. We consider
T=o0./ox- €{1/4,1/2,3/4}.
Similarly to Section 3.1, we report results for the MERM estimators applying the same

correction scheme with K = 2 and K = 4 to the following original moment function

!/

g(wivya 270) = ((yl _pl(x>w79)) hl(x’ vaY: (y2 —pQ(ZL‘,'LU,Q)) hZ(xVZ’w),) )
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where

pi(z,w,0) =P(Y;; = 1|X] =z, W, = w;0)
_ exp(é’jlx + 9j2wj + 0j3)
1+ exp(ﬁnx + 912w1 + ‘913) + exp((%lx —+ 9227112 + 923) ’

and hj(r,z,w) = (1,x,z,x2,22,x3,z3,w]~)/ for K = 2 and hj(z,z,w) =

2 2 .3
(1,z,z,2° 2, 2% x

L2z, 122, 28 w;) for K = 4.

We report the results on estimation and inference on the partial derivatives of the
conditional choice probabilities p;(x, wy, ws) with respect to z, wy, and w,, evaluated at
the population means.

Tables 4 and 5 report the finite sample biases, standard deviations, and RMSE of the
MERM estimators, as well as the sizes of the corresponding t-tests with nominal size of
5%. To illustrate the importance of dealing with EIV, we also report the same statistics
for the standard (naive) MLE estimator that ignores the presence of the measurement
erTors.

In all designs, the MLE estimator is biased, and the corresponding t-tests over-reject.
Note that failing to account for the EIV in the mismeasured variable X generally bi-
ases estimators of all of the parameter, including those corresponding to the correctly
measured variables W;; and W;,. In particular, the t-tests may falsely reject true null
hypotheses dp; /0w, = 0 up to nearly 100% of the time.

As for the MERM estimators, the K = 2 estimator removes a large fraction of the
EIV bias in all of the designs. While this proves to be enough to achieve accurate size
control when the magnitude of the measurement error is moderate (7 = 1/4), the remain-
ing EIV bias may still result in size distortions of the t-tests with larger measurement
errors, especially 7 = 3/4. Using the higher order correction scheme with K = 4 effec-
tively removes the EIV bias in all of the simulation designs for all of the parameters.
Remarkably, the corresponding finite sample null rejection probabilities remain close to
the nominal 5% rate even when the standard deviation of the measurement error is as

large as 75% of the standard deviation of the mismeasured X*.
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Table 4: Simulation results for the multinomial logit model, Case A

MLE K=2 K=4

bias, 1072 std, 107 rmse, 1072 size | bias, 1072 std, 1072 rmse, 1072  size | bias, 1072 std, 107 rmse, 1072  size

T=1/4
Opy1 /0x -2.93 1.33 3.22 60.98 0.48 2.50 2.55 4.38 0.77 2.67 2.78 6.16
Op1 /Own 2.30 1.65 2.83 29.38 -0.04 2.35 2.35 5.00 -0.18 2.41 2.42 5.54
Op1 /Ows 0.50 0.76 0.91 10.00 -0.00 0.87 0.87 5.16 -0.04 0.89 0.89 5.86
Opa/0x 1.80 1.18 2.15 35.04 -0.27 1.85 1.87 5.24 -0.44 1.95 2.00 6.40
Opa /0w, -1.15 0.83 1.42 29.28 0.02 1.18 1.18 4.92 0.09 1.21 1.21 5.48
Opa/ 0w, -0.99 1.50 1.80 10.06 0.01 1.75 1.75 5.20 0.08 1.79 1.79 5.88
apo/ax 1.13 1.00 1.51 21.82 -0.21 1.35 1.37 4.88 -0.33 1.41 1.44 5.94
8p0/8w1 -1.15 0.82 1.42 29.30 0.02 1.18 1.18 4.98 0.09 1.21 1.21 5.50
Opo/Ows 0.49 0.75 0.89 10.04 -0.01 0.88 0.88 5.08 -0.04 0.90 0.90 5.84

T=1/2
Op1/0x -8.43 1.09 8.50 100.00 -1.48 2.49 2.90 11.14 0.57 2.81 2.87 5.28
6p1/8w1 6.66 1.55 6.84 99.32 1.28 2.43 2.74 11.06 -0.05 2.51 2.51 5.46
Op1 /Ows 1.33 0.72 1.51 44.26 0.27 0.90 0.94 6.96 -0.01 0.94 0.94 5.52
Opa/0x 4.96 0.98 5.06 99.88 0.91 1.87 2.08 10.90 -0.33 2.10 2.12 6.42
Opa /0w, -3.32 0.78 3.41 99.32 -0.64 1.22 1.37 11.04 0.02 1.26 1.26 5.38
Opa/0ws -2.61 1.41 2.96 44.58 -0.54 1.79 1.87 7.02 0.03 1.88 1.88 5.60
Opo/Ox 3.46 0.87 3.57 97.42 0.58 1.40 1.51 8.16 -0.24 1.53 1.55 5.60
apo/awl -3.34 0.78 3.43 99.32 -0.64 1.22 1.37 10.98 0.02 1.26 1.26 5.40
Opo/Ows 1.28 0.69 1.45 44.68 0.27 0.89 0.93 7.02 -0.02 0.94 0.94 5.62

T=3/4
Op1/0x -12.85 0.87 12.88 100.00 -5.64 2.56 6.19 71.12 0.37 3.09 3.12 5.06
Op1 /Own 10.20 1.47 10.31 100.00 4.33 2.60 5.05 54.56 0.17 2.70 2.70 5.82
Op1 /0w, 1.90 0.69 2.02 78.98 0.88 0.90 1.26 21.40 0.04 1.00 1.01 5.90
Opa/0x 7.26 0.80 7.31 100.00 3.35 1.86 3.83 56.54 -0.20 2.32 2.33 6.34
Opa /0w, -5.08 0.75 5.13 100.00 -2.17 1.30 2.53 54.46 -0.08 1.35 1.35 5.76
Opa /0w, -3.68 1.32 3.91 79.26 -1.74 1.78 2.49 22.06 -0.06 2.01 2.01 6.02
Opo/Ox 5.59 0.74 5.63 100.00 2.29 1.43 2.70 45.98 -0.17 1.71 1.72 5.50
Opo/Own -5.12 0.75 5.18 100.00 -2.17 1.30 2.53 54.50 -0.08 1.35 1.35 5.74
Opo/Ows 1.78 0.64 1.89 79.40 0.86 0.88 1.23 22.22 0.03 1.01 1.01 5.88

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the MERM estimators and the corresponding
t-tests for the partial derivatives Op;(z,w,0y)/0x, Op;(z,w,00)/Ow1, Op;(x,w,8y)/Ows for j € {1,2,0} evaluated at the population mean. The true
values of the marginal effects are (Op;/0x, Ops/0x, Opg/0x) = (0.222,—0.111, —0.111) and zeros for the rest. The results are based on 5,000 replications.
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Table 5: Simulation results for the multinomial logit model, Case RC

MLE K=2 K=4

bias, 1072 std, 107 rmse, 1072 size | bias, 1072 std, 1072 rmse, 1072  size | bias, 1072 std, 107 rmse, 1072  size

T=1/4
Opy1 /0x -3.24 1.36 3.51 66.98 0.74 2.63 2.74 4.30 1.13 2.73 2.95 7.86
8p1/6w1 2.32 1.64 2.84 30.74 -0.11 2.30 2.30 4.82 -0.31 2.29 2.31 6.54
Op1 /Ows 0.48 0.75 0.90 9.40 -0.04 0.87 0.87 4.82 -0.08 0.87 0.87 5.36
Opa/0x 1.96 1.17 2.28 39.44 -0.40 1.88 1.92 4.72 -0.63 1.93 2.03 6.74
Opa /0w, -1.16 0.82 1.42 30.66 0.06 1.15 1.15 4.84 0.15 1.15 1.16 6.48
Opa/ 0w, -0.96 1.50 1.78 9.48 0.09 1.74 1.74 4.98 0.17 1.74 1.75 5.44
apo/ax 1.28 1.01 1.63 25.28 -0.34 1.43 1.47 5.08 -0.50 1.48 1.56 7.36
8p0/8w1 -1.16 0.82 1.42 30.60 0.06 1.15 1.15 4.82 0.15 1.15 1.16 6.46
Opo/Ows 0.48 0.74 0.88 9.46 -0.05 0.87 0.87 4.90 -0.09 0.87 0.88 5.32

T=1/2
Op1/0x -8.97 1.09 9.04 100.00 -1.69 2.60 3.10 9.84 0.97 2.89 3.05 6.04
6p1/8w1 6.44 1.53 6.62 98.96 1.39 2.44 2.81 12.14 -0.21 2.41 2.42 5.54
Op1 /Ows 1.28 0.72 1.47 42.54 0.29 0.90 0.94 7.00 -0.06 0.92 0.92 5.00
Opa/0x 5.22 0.97 5.31 99.98 1.05 1.89 2.16 10.16 -0.53 2.08 2.15 6.14
Opa /0w, -3.21 0.77 3.30 98.96 -0.69 1.22 1.40 12.10 0.10 1.21 1.21 5.52
Opa/0ws -2.52 1.41 2.88 42.82 -0.56 1.79 1.87 7.20 0.13 1.84 1.84 4.98
Opo/Ox 3.75 0.86 3.85 98.78 0.64 1.45 1.59 8.18 -0.44 1.59 1.65 6.50
apo/awl -3.23 0.78 3.32 98.96 -0.70 1.22 1.41 12.06 0.10 1.21 1.21 5.48
Opo/Ows 1.23 0.69 1.41 42.90 0.28 0.89 0.93 7.20 -0.07 0.92 0.92 4.94

T=3/4
Op1/0x -13.35 0.86 13.38 100.00 -6.83 2.64 7.32 80.32 0.71 3.22 3.29 4.74
Op1 /Own 9.69 1.45 9.80 100.00 4.95 2.65 5.61 65.52 0.01 2.62 2.62 5.34
Op1 /0w, 1.81 0.69 1.94 75.30 1.01 0.89 1.35 26.08 -0.01 0.98 0.98 5.24
Opa/0x 7.48 0.79 7.52 100.00 4.06 1.83 4.45 68.82 -0.37 2.32 2.35 5.74
Opa /0w, -4.83 0.73 4.88 100.00 -2.47 1.32 2.81 65.46 -0.01 1.31 1.31 5.28
Opa /0w, -3.51 1.33 3.76 75.60 -1.99 1.76 2.66 26.38 0.03 1.97 1.97 5.32
Opo/Ox 5.87 0.73 5.92 100.00 2.77 1.47 3.14 56.28 -0.34 1.77 1.80 5.82
8p0/6w1 -4.87 0.75 4.93 100.00 -2.48 1.33 2.81 65.40 -0.01 1.31 1.31 5.32
Opo/Ows 1.70 0.64 1.82 75.76 0.98 0.87 1.31 26.50 -0.02 0.99 0.99 5.30

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the MERM estimators and the corresponding
t-tests for the partial derivatives Op;(z,w,0y)/0x, Op;(z,w,00)/Ow1, Op;(x,w,8y)/Ows for j € {1,2,0} evaluated at the population mean. The true
values of the marginal effects are (Op;/0x, Ops/0x, Opg/0x) = (0.222,—0.111, —0.111) and zeros for the rest. The results are based on 5,000 replications.



3.3 Empirical Illustration: Choice of Transportation Mode

In this section, we illustrate the finite sample properties of the MERM estimator in the
context of a classical multinomial choice application: choice of transportation mode (e.g.,
McFadden, 1974).

To calibrate the numerical experiment, we use the ModeCanada dataset, a survey of
business travelers for the Montreal-Toronto corridor. We focus on the subset of travelers
choosing between train, air, and car (n = 2769), and estimate the following specification

of the conditional logit model with traveler ¢’s utilities given in the table below.

Mode Utility

Air Uin = 0p1 Income; + 0o Urban; + 0oz + 07 Prices + os InTime;; + €,
Car UZ‘Q = 604 ]TLCO’I’)‘L@: + 905 UTbCLTLZ‘ + 906 + 007 PT‘Z'CGZ‘Q + 008 ]nTimeig + €0

Train UiO = 807 Priceio + 008 InTimez-o + €0

To generate the simulated samples, we randomly draw covariates from their joint em-
pirical distribution. To generate the simulated outcomes, we draw ¢;; from the standard
type-I extreme value distribution. The true value of 6 is set to be the MLE estimate
based on the original dataset. More details about this numerical experiment are given in
Appendix F.

To evaluate the performance of the MERM estimator in these settings, we generate
mismeasured Income; = Income! + ;. We focus on the individual income because it is
often mismeasured.We report the results for 7 = 0. /0 1come+ € {1/4,1/2,3/4}.

Table 6 reports the simulation results for the (naive) MLE estimator and for the
MERM estimators with K = 2 and K = 4. We focus on estimation of and inference
on the income elasticities (evaluated at the population mean of the covariates). The
MLE estimator is considerably biased for 7 € {1/2,3/4}, which results in substantial
size distortions of the MLE based t-tests. The MERM estimator with K = 4 effectively
eliminates the EIV bias and the corresponding t-tests provide accurate size control in all
of the considered designs. The estimator with K = 2 is more precise, while successfully
removing the EIV bias for 7 < 1/2.

Overall, the MERM estimators perform well in the considered empirical context,

providing a basis for estimation and inference even for quite large values of 7.
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Table 6: Simulation results for the empirically calibrated conditional logit model

MLE K=2 K=41

bias  std rmse size | bias std rmse size | bias std rmse size
T=1/4
81np1/8 Inf -0.07 0.12 0.14 9.00 0.01 0.14 0.14 5.68 0.02 0.19 0.19 7.02

dlnpy/O0Inl 0.03 0.07 0.08 584 |-0.00 0.08 0.08 568 |-0.01 0.10 0.10 6.40
dlnpy/O0InI 0.05 0.13 0.13 6.10 | 0.00 0.14 0.14 542 |-0.00 0.17 0.17 7.66

T=1/2

Olnp;/0lnl -0.24 0.11 027 61.84|-0.05 0.14 0.15 6.96 | 0.02 0.21 021 6.16
dlnpy/O0Inl 0.09 0.07 0.11 24.76 | 0.02 0.09 0.09 596 |-0.01 0.10 0.10 6.16
dlnpy/O0Inl 0.16 0.12 0.20 25.36 | 0.04 0.15 0.15 6.06 |-0.00 0.18 0.18 6.86

T=3/4

Olnp;/0lnl -043 0.09 044 99.50 | -0.19 0.14 024 2746 | 0.02 0.22 022 584
Olnpy/0Inl 0.16 0.06 0.17 71.88 | 0.07r 0.08 0.11 13.78 | -0.01 0.11 0.11 6.32
dlnpy/O0Inl 029 0.11 031 7320 | 0.12 0.15 0.19 13.40 | 0.00 0.19 0.19 6.32

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and
the MERM estimators and the corresponding t-tests for the income elasticities d1Inp;(I,w,6y)/0InI,
j € {1,2,0}, evaluated at the population mean. The true values of the income elasticities are
(Olnp;/0InI,0lnps/O0InI,0lnpy/O0Inl) = (1.11,—0.39, —0.82). The results are based on 5,000 repli-
cations.

4 Identification of the Nonlinear Regression Model

It is important to understand under what conditions the parameters of interest are iden-
tified in our settings. This section considers identification and estimation of the nonlinear
regression function p (x) = F [Y;| X} = z]. To address the problem of EIV, the researcher
has an instrument Z;, which can be discrete or continuous. In this section, we do not
impose any functional form assumptions on the true regression function p (-), i.e., the
analysis is nonparametric.

Consider the model

)

The joint distribution of observables (Y;, X;, Z;) satisfies the following assumptions.
Assumption 4.1. E[Y;| X}, Z;| = E[Y;|X]].

Assumption 4.2. Functions p (-) and fx-|z (-|z) have at least p > 3 bounded continuous

derivatives, and E [|5i|4} < Co* for some constant C.

Assumption 4.1 is a standard exclusion restriction on the instrument Z;. Assump-
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tion 4.2 collects some weak regularity conditions. We will study the properties of this
model using the approximation 7 = o (1). The identification analysis views the unknown
function p and the joint distribution of (Y;, X/, Z;) as fixed. Thus, the joint distribution
of the observables (Y}, X;, Z;) is implicitly indexed by 7, but varies with 7 only due to
the changes in the distribution of ¢;.

The naive population regression ¢ (z) = E [Y;|X; = z| suffers from the EIV bias
EYi|X;=x]=p(z)+0 (%), (19)

Similar to the semiparametric case of Section 2, identifying 0% or 72 allows dealing with
this bias.”
Let us define

fX\Z( x|2) fé{*|z (z|z)
r,2)=RE|\Y| X, =2, 2, = 2|, s rl|z) = ———, sxxz(z]|2) = .
7(z:2) i | xiz (2l2) fxz (z|2)’ xiz (le) fx+z (z]2)
20)
Let Sx- (z) = {x: fx+z (z]z) > 0}, so that sx-|z (z|2) is well-defined for all z € Sx- (z).

The followmg functions can be identified directly from the joint distribution of the
observed (Y;, X, Z;):

5200 = q(x,z1) — q(x, 22)
@) = ¢ () [sx)z (z|21) = sx12 (2]22)] 21)
P, 2,0) = q(x,2) —v [ () sxiz (x]2) + 34" (z)] . (22)

Theorem 3. Suppose Assumptions CME, 4.1, 4.2 hold and either (i) p = 3 or (ii)
E[e}] = 0 and p = 4. Suppose also that 7 = o(1), and there exist 21, zo, and a point
x € Sx« (21) N Sx= (22), such that p' () [sx+z (x]|21) — sx+7 (¥]22)] # 0. Then

7 (z) =+ 0(rP). (23)
Moreover, for any &> = 02+ O (7) (including & = &° (z)), any z, and any = € Sx- (2),
p(2,2,5°) =p(x)+O(F) forallx € Sx (2). (24)

Equation (23) shows that we can identify 0% up to an error of smaller order O (o?) =

O (7P). As a consequence, p () is identified up to the same order O (77). Below we will

9Note that o2 can be approximated by 0. However, to be meaningful, identification of o2 needs to
characterize it up to an error of an order smaller than o? itself.
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consider the implications of this theorem for estimation.
Theorem 3 requires the rank condition p' () [sx+|z (#]21) — sx+z (z|22)] # 0 to hold
for some x. The key here is the instrument relevance condition that requires sy« 7 (x]2)

to vary with z. The proof of the theorem shows that
q(z,2) =p(x)+0%p (x) sx+z (x]2) + 36°p" (x) + O (7). (25)

This equation is used to identify o? by varying z, since only the second term on the
right-hand side depends on z. Note that for ¢ (z, z) to vary with z we need the additional
rank condition p’ (z) # 0. Requiring that there exists a point z with p’ (z) # 0 is a weak
condition, since p' () = 0 for all x means that p (z) is constant, so EIV do not bias the
regression estimator and ¢ (z) = p (z).'%!

The rank condition p’ (z) [sx«z (¥|21) — sx+z (z|22)] # 0 in Theorem 3 can be re-
placed with the condition that ¢ (z) [SX|Z (z|21) — sx12 (x|22)} is bounded away from
zero, which is stated in terms of observables. Likewise, set Sx« (2) above can be replaced

with Sy (z) = {z : fx+z (z]z) > C}} for any positive constant Cy.

The relevance condition imposed on the instrumental variable is weak. The equal-
ity sx«z (z|21) = sx+z (x|22) can only hold for all z, 2, and 2z when X* and Z are

independent. Moreover, consider the following example:

Example 4.1. Suppose X} follows a Gaussian random coefficient model:

ITy; 2 0
X =11y + 1y Z;, where ! ~ N m , Uml ,
Hgi ) 0 U72rQ

and Z; € {0,1} is a binary instrument. In many applications the instruments are likely
to have heterogeneous effects on the covariate, e.g., Angrist, Graddy, and Imbens (2000)
and Heckman and Vytlacil (1998), which corresponds to v2, > 0. Then, X}|Z; = z ~
N (u(2),v%(2)) with p(2) = 71 + 7oz and v? (2) = V2, + v3,z. Thus, the instrument
is relevant unless w9 = vyo = 0. Notably, the instrument is relevant even if mo = 0 (so

corr (X[, Z;) =0), as long as Z; has a heterogeneous effect on X} .

10See Evdokimov and Zeleneev (2018) for more details on the role of p’ (z) in the literature on mea-
surement errors.

HEquation (25) extends the calculation of the conditional expectation in equation (4.6) in Chesher
(1991) by introducing instrumental variables and obtaining more precise bounds on the approximation
€rror.
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Remark 11. Note that 02 is overidentified, which can be used to test the model assump-

tions.

To clarify the implications of Theorem 3 it is useful to consider nonparametric esti-
mation of the regression function p (x). The approach of Theorem 3 is constructive, and
using equations (20)-(22) we can construct a nonparametric measurement error robust

~MER

PMER (1), We compare such 3™ (z) with the naive nonparametric

analog estimator p
regression estimator p*" () of E [Y|X; = x|, which ignores the presence of EIV in the
data. Both estimators can be implemented using standard nonparametric estimation
methods (e.g., kernel or series estimators). In the following discussion assume that the
tuning parameters are chosen optimally for each of the estimators. For brevity we focus

only on the case (ii) in Theorem 3.

Proposition 4. Suppose the conditions of Theorem 3 hold, E [e}] = 0, functions p(-)
and fX*|Z(-|z) have m > 4 continuous derivatives, and Z; is discrete. Suppose T, =
@) <n7%#>, then

P @)= p@) = O, (n7),

/p\Naive (SL‘) —p (SL‘) — Op (n_%znﬁrl) .

The proposition provides a nonparametric analog of the semiparametric results in
Section 2. In particular, o™ generally has a faster rate of convergence than . For
example, if m = 4 the rates of convergence of p"" (z) and p~*"* () are O, (n=%°) and
O, (n=%9), respectively. Note that the rate of convergence of PMER () in Proposition 4
is optimal and cannot be improved: even if had data on (Y;, X;) without EIV, under the
smoothness assumptions of the proposition, function p (x) cannot be estimated nonpara-
metrically at a rate faster than O, (71_%)7 see Stone (1980). Note also that for models

with large m, the rates of convergence in the Proposition approach those in Remark 1.

5 Extensions

5.1 Multiple Mismeasured Variables

It is easy to use the MERM framework to deal with multiple mismeasured variables.
This is useful in many applications, including not only settings with multiple mismea-

sured covariates, but also settings with serially correlated measurement errors, settings
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where repeated measurements are available, and panel data models. Using the MERM
approach is particularly advantageous in such applications, since it avoids nonparametric
estimation of multivariate unobserved distributions.

Suppose X/, €;, and X; are dx 1 vectors. Let 7,, = max;<q Ogj/O'X;, where o, and ox:
denote the standard deviations of the j-th components of ¢; and X}, so E [|5ij |k} = O(7F)
for ke {1,...,K}.

For a d x 1 vector of non-negative integers k = (k1, ..., kq) € Z%, let

olvl d
0, where |k| = E Ki.
" 8.1'1“1 ce al’d”d? ’ | — J

Also, for a positive integer k, let K = {k € Z% : |k| = k}. Then, we consider the

following corrected moment function

where, with some abuse of notation, v is a collection of all v, with x € K and k €
{2,...,K}.

Under mild smoothness conditions
E [(Xi, S, 00,70)] = E [9(X], Si, 00)] + O(TE ) = o(n™1/?),

where the second equality holds provided that O(75*!) = o(n~1/2). Similarly to the
scalar case, components of v, are determined by the moments of ;. Specifically, let
w, =E e ... eif], then

Yor = %, for k € {Kq, K3}, (26)

where k! = k1!... k4!, For |k| > 4, the coefficients can be computed by the following
formulas. For example, for k € ICy, let Ky,, = {k € Ko : k — & € K3}. Then,

Z al ’f'fyo,i, for k € Ky.
—R)

HE’Cz P

More generally, for k € Kj, with k > 4, let K, = {k € K¢,k — k € Kj—¢} for £ < |r| —
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Then,

Example (Bivariate X, K =4).
Suppose X is bivariate (i.e., d =2) and K = 4. For k € Ky = {(2,0),(1,1),(0,2)} and
ke s =1{(3,0),(2,1),(1,2),(0,3)}, 7o, s given by (26). For k € K4, 7, 1S given by

K Yox
(4,0) ]E[e?ﬂ—QiE[afl]Q
(3,1) E[e3 e2]— GIE[a Eleiiein)
(2}2) Ele? e2,]—2E[e ZI]IE[EZQ} 4R [g41€i2)%
(1;3) E[ailsm]—GIE(S[aiz} leireiz]
(0.4) ]E[E?ﬂ;iE[E%ZP
If in addition measurement errors €;; and €;5 are independent, 7v,, = 0 for k €

{(1,1),(2,1),(1,2),(3,1),(1,3)}. In this case, the total number of the nuisance parame-

ters to be estimated is 6.

5.2 Non-Classical Measurement Errors

In some applications, Assumption CME of classical measurement errors may be restric-
tive. For example, the variance of the measurement error E [¢7| X/, S;] (and other mo-
ments) could depend on X and S;, i.e., the measurement error can be non-classical. In
this section, we demonstrate how MERM framework can be used to address this issue.
Suppose that E [‘81‘ | X7, ] = O(7%). Conditional on X; and S;, the moment

function can be expanded as

K
E [eF| X*. S,
Elg(X;. 5i,0)1 X7 5] = g(X{,50,0) + % (X7.55,6) + O(ri ).
k=2 ’

Suppose E [ | X/, } ve(X7, Si,wo), k € {2,..., K} where wy € RY™®) are unknown
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c o 12
parameters, 1.e.,

K
(X7
Blg(X,,5.0)|; 5] = o7 5.0) + 3 SIS o 5 ) 1 o),
k=2

which implies

K

E [g<Xi*7 Szae)] =E g(Xia Sive) - Z

k=2

Vg, Xf,Siaw
( o)g

L2000 (x7, 5,0 + O, (2)

Equation (27) is an analog of equation (10), which motivates correcting the moment con-
ditions by estimating and subtracting the terms M g,(tk) (X}, 5;,60). The corrected

moment function takes the form
K
Y(X, S, 0,w) = g(X;,5:,0) = > ful X5, i, 0,w), (28)
k=2

where

bo5.0.) :Mg% 5.0).

2
fol,,0,0) =222 D0 )
_ 2
Fi(5.0,0) :v4(x,s,w) 25@(%&00) gé‘l)(m,s,@)
UQ(.’IZ',S,W)

- <2U§2(aj, s,w)gP(z,s,0) + véa);(x s,w)g?(z, s,@)) :

Expressions for fi(z,s,0,w) for k > 4 are provided below.

Notice that for K < 3 the corrected moment functions are similar to the classical
EIV case except for vy(z, s,w) and vs(z, s,w) taking the places of E [¢?] and E [¢}] respec-
tively. For K > 4, we need to bias correct the bias correction terms such as fo(z, s,0,w)
accounting for ve(X;, S;, 0, w) being evaluated at X; instead of X7.

Under the regularity conditions
E [(Xi, Si, 00, wo)] = E[g(X}, S, 00)] + O(TE) = o(n™1/?),

provided that O(75+1) = o(n=1/2).

12The expansion makes the typical assumption E [¢;] X}, S;] = 0 that ¢; is exogenous. In principle, it
is straightforward to introduce v1 (X}, S;,wp).
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Thus, the model can be estimated using GMM estimator with the corrected moment

function (28), where parameters 6, and wq are estimated together, i.e., the estimator in
equation (12) with g = (¢, w').

Consider the following example.

Example 5.1 (Exponential Specification, K = 4).

Suppose €; = exp(wn X;)(;, where (; is mean zero and independent of X} and S;. In this
case,

E [}|X}, 5] = E [(F] exp(2wor X;),
E [53|X*7 S} =K [gﬂ exp(3w01Xi*),
E [¢]1X], 5] = E [(}] exp(dwo X7).

Hence, we can take

va(z, s, w) = wy exp(2w )
v3(z, s,w) = w3 exp(3wix)

vy(z, 8, w) = wgexp(dwix),

and wy = (wo1, E [gﬂ JE [Cf’] JE [Cﬂ)’ Functions fi in equation (28) are

wa exp(2w1T) ()

fg(l’,S,e,W) = #gz (x7576)7
fula,s,0,0) = LOPIAD oy, g

wy — 6w

fa(z, 5,0, w) = exp(dw;x) ( o Dz, 5,0) — wiw2gP(z,5,0) — wWwig?(x, 3,9)) )

T

General formula for f; in equation (28). For k > 4, fi(z,s,0,w) takes the form

k—2
vg(, s, w) vh_e(z,8,w) O
T (x,s,0) — k 0 8xk_€fg(x,s,«9,w).

(=2

fr(z,s,0,w) =

For k = 4, this coincides with the formula provided earlier. Also, if the conditional
moments of ¢; do not depend on X/, the corrected moment function becomes similar to

the classical EIV case except for vg(s,w) taking the place of E [55}
Finally, we illustrate the finite sample properties of the MERM estimator with non-
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classical measurement error. Specifically, we consider the following logit model

Y = 1{001 X + 002 Wi + o3 — m; = 0},

X' =Z;+V,, Xi=X+e, e =expwnX])(; Wi=pX'/ox-++/1-p;
where 1, ~ Logistic and (Z;, Vi, (;,v:)" ~ N ((0,0,0,0), Diag(o%, 0%,,02,02)) are inde-
pendent from each other.

We fix (6o1, 0oz, 003, wor, p, 0%, 0%, 02) = (1,0,2,0.3,0.7,1,1,1) and n = 2000. By
adjusting ag accordingly, we consider 7 = 0. /o x« € {1/4,1/2,3/4}, where, as before, o,
denotes the (unconditional) standard deviation of ;.

We report results for the MERM estimator based on the corrected moment function
(28) with K =2 and K = 4. As in Section 3.1, the original moment function is

g(x,w,y,z,0) = (y — AO1x + Ow + 03)) h(zx, z, w),

where we use h(z,z,w) = (1,z,2 22 22, 2% 28 w) for K = 2 and h(z,z,w) =
(1,x,z,x2,mz,z2,x3,x22,x22,z3,w)/ for K = 4. The corrected moment function is as
in Example 5.1. For simplicity we set w3 = 0 (using E [¢}] = 0).

Table 7 reports the simulation results. Both of the correction schemes effectively
remove the EIV bias for 7 € {1/4,1/2}. However, employing the higher order correction
scheme with K = 4 is needed to achieve accurate size control for larger values of 7

(1 =3/4).
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Table 7: Simulation results for the logit model with non-classical measurement error

MLE K =2 K=4
bias std  rmse  size | bias std  rmse size | bias std  rmse size
T=1/4

6, -0.062 0.073 0.096 14.20 | 0.041 0.113 0.120 3.50 | 0.065 0.120 0.137 5.82
0, 0.063 0.090 0.110 10.86 | -0.014 0.119 0.120 2.70 | -0.027 0.125 0.128 3.96
0, -0.006 0.007 0.010 16.10 | 0.001 0.010 0.010 2.92 | 0.002 0.010 0.011 4.08
0w 0.007 0.009 0.012 10.74 | -0.001 0.012 0.012 3.06 | -0.003 0.012 0.013 4.36

T=1/2

0, -0.224 0.068 0.234 89.84 | 0.019 0.134 0.136 3.50 | 0.043 0.141 0.147 5.78
0, 0.219 0.083 0.235 75.32 | 0.019 0.138 0.139 3.82 | -0.003 0.141 0.141 4.10
0, -0.022 0.006 0.023 91.66 | -0.003 0.012 0.012 4.14 | -0.001 0.012 0.012 4.52
Ow 0.024 0.009 0.025 74.86 | 0.002 0.014 0.014 3.82 | -0.000 0.014 0.014 4.52

T=3/4

0, -0.419 0.058 0.423 100.00 | -0.116 0.129 0.173 12.18 | 0.031 0.154 0.157 5.96
02 0.396 0.076 0.403 99.98 | 0.172 0.131 0.217 31.82 | 0.033 0.142 0.146 5.86
0, -0.040 0.006 0.041 100.00 | -0.017 0.011 0.020 40.72 | -0.005 0.012 0.013 7.64
Ow 0.044 0.009 0.045 99.96 | 0.017 0.013 0.022 28.20 | 0.003 0.014 0.014 5.74

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and
the MERM estimators and the corresponding t-tests for 6y; and g2, and the marginal effects associated
with X* and W evaluated at the population mean. The true values of the considered parameters are
(001, 002, Ox, Ow) = (1,0,0.105,0). The results are based on 5,000 replications.
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A Regularity Conditions

Notation. Let X C R be some closed convex set containing the union of the supports

of X} and X;, and S = supp (5;).

Assumption A.1. (Moment function) Suppose that the moment restrictions (1) are

satisfied and the following conditions hold:

(i) For all s € S and 0 € O, gt (x,s,0) exists and is continuous on X. Moreover,
there exist functions by, by : X X & x © — R and integer M > K + 1 such that for
alx,®’ € X,s€S, and 0 € O,

Hgg(cK)(‘rlv S, 0) - ga(cK)(xv S, 0)” < bl('x’ S, 0)|‘7‘:/ - .T’ + b2(x7 S, 6)‘371 - x‘M7K7 (A1>

(11) Assumption MME holds with L > M

(1i1) E [gék)(Xf,Si,Qo)}, ke{l,...,K}, and E[bj(X/, S;,00)], j € {1,2}, exist and are
bounded.

Assumption A.1 allows us to bound the remainder of the Taylor expansion of
9(X;, S;,0) around X} by a polynomial in |X; — X/| = |¢;|. Combined with Assump-
tion MME (which bounds the moments of &;), it ensures that this remainder is o(n /%),
which is crucial for establishing validity of the corrected moment function ¢ (Lemma 1).

Notice that if X' is compact, condition (A.1) is satisfied if g;gKH)(x, s,0) is continuous
on X (forall s € S and 6 € ©). If X is unbounded, condition (A.1) is satisfied if for some
J, such that K < J < M, sup,c» Hg;ﬁ‘]) (x, s, 9)” < B(s, 0) for some function B(s, ). Also
notice that condition (A.1) is stronger than the standard Lipschitz continuity because in
o (z,5,0)

many applications behaves like a polynomial in x for large x.

Assumption A.2. (Parameter space)
(i) © CRP and I' C RE~L are compact, 0y € int(©) and v, € T;
(11) Og_y1 € int(L).

Assumption A.3. (Regularity and smoothness conditions)

(i) Foralls e S, G (x,s,0) exists and is continuous on X x ©; moreover, there exist
functions bg1,bgz : X X S X O — R, and § > 0 and for all z,2' € X, s € S, and
0 e Bg(‘go)

HG;K)(I/, s,0) — GSEK)(ZE, s, G)H < bai(,8,0)|2" — x| + bga(z, 5,0) |2 — x|~ F
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2
(@@)E{ g (X7, S, 00) } ]E[Sup(,e@ dF (X7, S, 0) } for k € {0,....K}, and
E [bj(Xi*,Si,Go)Q], E [supyee b; (X}, Si,0)], for j € {1,2}, are bounded;

(iii) for some 6 > 0, E [SUPgeBé(go)

‘G(mk)(X;“,Si,é’) ] for k € {0,....K}, and
E {SUPeeBg(eo) bei (X}, S:,0)], for j € {1,2}, are bounded;

(iv) =L 2 where Z s a symmetric positive definite matrix;
(v) Assumption MME holds with L > 2M.

Assumption A.4. (Global and local identification)
(1) E[(XF, S:,0,7)] =0 iff 0 =0y and v = 0;

(i1) WY=U* is invertible, where

U =E[U(X],5;00,0)] = E[G(X], S, 00), —92 (X}, Si00), - .., —gV (X}, Si, 60)] -

Assumption A.2-A.4 is a collection of basic regularity conditions, which help to en-
sure y/n-consistency and asymptotic normality of the suggested estimator 0. Specifically,
Assumption A.3 (i) is a counterpart of Assumption A.1 (i) applied to the Jacobian func-
tion. It ensures that the effect of the measurement error on the Jacobian is localized and
allows us to establish G — G*, so ¥ — U*. As a result, the asymptotic properties of 0
are controlled by G* (and W*), the Jacobian associated with the correctly measured vari-
ables. Assumptions A.4 (i) and (ii) are the standard GMM global and local identification
conditions applied to the “limiting” moment function (X}, S;,0,7).

Remark A.1. Assumption CME requires €; to be independent from X and S;. This
requirement is stronger than needed and can be weakened to E [ | X}, S ] =E [Eﬂ for
ke{l,...,K}, ie., the first K conditional moments of €; need to be independent of X}
and S;. The higher moments of €; could depend on X} and S; but Assumption MME
(ii) needs to be adjusted as E [[61| | X, ] < Col for some L > K+ 1 and C > 0
a.s. In this case, the statements of Lemma 1 and Theorem 2 remain correct, and all
the proofs provided in Appendixz D remain nearly identical. For example, the argument
provided in the proof of Lemma 1 combined with conditioning on X; and S; implies
E [(X5, Si, 00, v0)| X5, Si) = E[9(X[, Si, 00)| X, Si] + r(X}, S;), where the expected value
of the remainder can be explicitly bounded as E[||r(XF,Sy)|] = O(FEHY) = o(n=1/?).
Then, the statement of Lemma 1 follows from an application of the law of iterated expec-

tations.
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Remark A.2. Assumption A.2 (ii) ensures that v, (which approaches 0 as n increases
under the considered asymptotics) is sufficiently far from the boundary of the parameter
space I'. Without imposing this requirement, 0 still remains V/n-consistent but is not
necessarily asymptotically normal.

At the same time, since 7y, is determined by the moments of €;, it might be desirable
to incorporate that relationship into construction of the parameter space I'. For example,
since vge = E[€2] /2, it is natural to restrict vy, > 0. Incorporation of such additional
constraints could improve efficiency of the estimators and informativeness of inference

(see Evdokimov and Zeleneev (2018) for a more detailed discussion).

B MERM derivation when o, is not small

Note that 7 can be small without o. being small in absolute magnitude. For example,
suppose 0. = 10 and ox+ = 100. Then 7 = 0.1, so the measurement error is quite small
relative to o x«, and relying on the approximation 7 — 0 is reasonable. At the same time,
approximation o. — 0 may not be suitable for this example.

In this Appendix we show that the corrected moment conditions and the MERM esti-
mator are valid without assuming that o. is small in absolute magnitude. In Section 2.1
we used Taylor expansions in ¢; around ¢; = 0, with the remainder of order E [|5i|KH} )
When o, > 1, term O (E [|5,~|K+1]) in equation (9) cannot be viewed as a negligible
remainder, because E []51-|K+1] > 1 and, moreover, terms E [|5Z|k} increase rather than
decrease with k.

In Section 2.1, for to simplify the exposition, we have assumed that X* is scaled so
that oy« is of order one. This in particular ensures that E “52’1@} decrease with k. We
will now show that this assumption about the scale of X* is not necessary, and that the
procedure remains valid without any such scaling.

We will show that by rescaling the Taylor expansions in Section 2.1 can be written
in terms of powers of 7%, which necessarily decrease with & when 7 < 1.

Remember the model of Section 2.1:
Elg(X;,Si,600)] =0, X,=X+¢;, Eg|=0. (B.1)

Let &; denote a random variable with E[¢;] =0 and E [¢]] = 1, E [[fi\LH] is bounded,
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and ¢; = 0.£,. Also, let us denote
r=o0.)ox, Xi=Xifoxe, X:=XJoxe, §(F,5,0)=g(ox7,s,0).
Then, we can rewrite equation (B.1) as
E[?()?z*7 Si, 00)] =0, X = )?z* +7&, E[§]=0.

Expand §(X;, S;,6) = 'j()zz* +7¢,,5;,0) around 7 = 0 to obtain
E[(X;. S:.0)) = E[§(X; $:.0)] Z e g%, 5.0) + 01,

which is similar to equation (9), except E [¥] is replaced by 7E [gﬂ ,and X, )Afl* , g are
replaced by X;, X7, g. Then, the corrected moment condition has the form

K

z/}(XHSl?e?fy) _g Xl7S’L79 Z X’LJSUe) (B2)
k=

where true parameter values 7y, are Yo, = T2E [£7] /2 = 72/2, Fyp3 = T°E [¢}] /6, and

~ TRE §f k—2 Th—tE 5?74 ~
Yok = # T 2= #’706 for k > 4.

We will now show that

Yor = O for all k > 2.

First, 70, = E[e}] /2 = E [(Uefi)z] /2 = 0%-Ao2: Vo3 = E[e]] /6 = 0%.Fps by definition.
Then, for k£ > 4, by induction we have

Yok =

Finally, let us now show that moment condition ;L in equation (B.2) is numerically

identical to 1 in equation (11) with v, = o%.5,. Note that for T = z/0x~ we have
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907, 5,0) = Vig(ox-T,5,0) = k.0 (0, 5,0)|ecoy.5 = 0. 0% (2, 5,0), and hence

K
V(Xi,8:,0,7) = glox-X;,S;,0) — Z (%U];() Q;k)(UX*XmSi,Q)

k=2

(§k0§(*) gg(ck) (Xi7 Si7 6)

M)~

= g<Xi75i76) -

>
Il

2

= 'l/}(XZ? Si7 97 7)

C Some Implementation Details

Numerical Optimization. Since v (,) is a linear function of v it can be profiled out
of the quadratic form Q(@, 7). Thus, the criterion function only needs to be minimized

numerically over 6.

Choice of the weighting matrix =. As for the standard GMM estimator, the optimal

weighting matrix can be estimated by

where 6 and 5 are some preliminary estimators of 6, and Yo, and §2¢¢(0, v) =
n~ S ,(0,7)1;(0,7). One example of such a preliminary estimator would be the
1-step (GMM-)MERM estimator using S = Q@(@Naive,()) as the first-step GMM
weighting matrix, where On.ive 1S @ naive estimator of 6y that ignores EIV. Note that
de)(éNaiVev 0) = Qgg <9Naive)7 where 999(9) =n"'30 0i(0)g:(0)

One may also consider the regularized version of the efficient weighting matrix esti-
mator éeH,R = Q;}p(é, 0). Since 7, — 0, using the regularized version éefLR does not lead
to a loss of efficiency. Moreover, our simulation studies suggest that using the regu-
larized weighting matrix éeﬁ‘yR results in better finite sample performance of the MERM
estimator and, hence, is recommended in practice.

Although not indicated by the notation in equation (12), the weighting matrix ==
é(@ ,7) is allowed to be a function of # and ~. For example, Continuously Updating GMM
Estimator (CUE) corresponds to taking Scur 0,v) = Qﬁ(@, 7). Similarly to éeff7R, one
may also consider éCUER 0,7) = Q;i(@, 0) without introducing any loss of efficiency. In

contrast to the criterion function of the CUE estimator, criterion function of QCUE,R(H, v)
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is quadratic in . This implies that « can be profiled out analytically. This simplifies the
numerical optimization problem reducing it to minimizing Qcug.r (6,7 (6)) over 8 € ©.
Then, the dimension of the optimization parameter 6 for the corrected moment condition
problem remains the same as for the original (naive) estimation problem without the EIV
correction.

Estimation of the asymptotic variance Y. Theorem 2 shows that the MERM estima-
tor 3 = (él, 4") behaves like a standard GMM estimator based on the corrected moment
function (6, ). The researchers can rely on the standard GMM inference procedures.

The asymptotic variance of B can be consistently estimated by

1>

where, Z is the chosen weighting matrix, and ¥ = ¥(4,4) = n~' 3.1, ¥;(8,4) and
Quy = Quy(6,4) are estimators of U and Qy,,.

D Proofs of Results in Appendix A

Notation. To stress that in our asymptotic approximation the variance and the higher
moments of ¢; depend on n, we will use 62 = E[£7], 7o, = Yo, and By, = By = (04, Vo) -

All vectors are columns. For some generic parameter vector o and a vector (or
matrix) valued function a(z,s, @) and , let ;(8) = a(X;, i, ), a(a) =n™' S0 aia),
a(a) = Ela;(«)]. Similarly, we let af(a) = a(X7, S, a), @ (@) =n 'Y 0" af(a), a*(a) =
Efa;(a)].

1

For the true value of the parameter ag, we often write a; = a(ap), @ = a(w), a

al(ap), af = alay), @ = a*(ap), a* = a*(ayp).

D.1 Proof of Lemma 1

Proof of Lemma 1. Making use of Assumption A.1 (i) , we expand ¢(X;, S;,6y) around
X as

K
1
9(X 51,00) =9(X7. 51, 00) + g (Xi, 5, B0)ei + 3 ol (X7, 5, Oo)et
k=2
1 -

K!
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where X; lies between X and X; (and hereafter X; is allowed to be component specific).
Similarly, for &' € {2,..., K}, we have

K
k) (x. g. —aB)(x* g * 1
P (X“Sl?go) =0z (Xi752700)+ Z (g k)'gx (X S 90)81»
t=k+1
1 ~
= (s Q. _ ) (yx < K—k
R (49 (K. 51.00) — 9(X7.5.00)) K (D)

where Xj; lies between X and X;. Hence, combining these expressions and rearranging

the terms, we obtain

K
U(Xi, S, 00,7) =9(Xi, Si,00) — > g% (X, Si, 00)

k=2
=9(X;, 5, 00) + gL (X7, i, O)e; +ng) (X, S:,60) lgk_i !

19 My x [ ? k' () — (k—g)'
1 *

o (099(Re, 81, 00) = 987,55, 60) ) F
~_ 1

NS e (0%, S h) — . Kk
; (K — ]{j)' (g.'b (sza Sz,e()> gm (X 52760)) €Z . (DS)

We want to show that for a properly chosen v = 7,,, E [¥(X;, Si, 00,70,)] = o(n~"/?).

Note that the first two terms in (D.3) are mean zero, i.e. we have

E[g(X},S;,600)] =0, (D.4)
E [¢"(Xi, Si, 00)e:] = 0, (D.5)

where the latter is guaranteed by Assumptions CME.

Second, we argue that for a properly chosen 7, we have

k
1 k 1 k—¢ _

for all k € {2,..., K}. Let us reparameterize v = (7, ...,7x) using v, = o%a;. Then,

(D.6) can be rewritten as

k

1 ez/an Z

(=2

E

s,/an) fw] =0, (D.7)
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which can also be represented as

Bha = ¢, (D.8)
where a = (ag,...,ax)’, and
(1 0 0 0] [ E[(ei/0n)?/2! ]
Ele;/on) 1 . 0 0 [(gz/an)?’]/?)'
El(e;/on K-3 E K-4 _
EK (;(732)}!{721 EK ;/< 3) L. 1 0 El(;/0n) /(K — 1)!
(ofl— M ;) A E[(ei)on)] 1] | E[(i/00)"]/K!

Since B, is invertible, (D.8) has a unique solution a,, = B, '¢,. Moreover, a,, is bounded
since both B, ! and ¢, are bounded (Assumption MME). Hence, we conclude that (D.6)
has a unique solution v, = (O'i(lgn, ...,okq Kn)/. Since (D.6) is satisfied, using Assump-
tion CME, we also conclude that

K k
Z g:(vk) (X7, Si, 00) (EQ - Z E%m)] =0. (D.9)
k=2 =2

To complete the proof of E [t)(X;, Si, 00,70,)] = on(n/?), it is sufficient to show that

E

E [( )(X,,85,00) — g5 (X5, S 90)) gﬂ — o(n~V/?), (D.10)

’YOknE [(g;K)(Xk’w Si7 00) - gm (X* Sla 90)) K ki| = O(n_l/Q) for k € {2’ s 7K}
(D.11)

We start with (D.10). Using Assumption A.1 (i), we obtain

< b (X7, S5, 00) |<€i|KJrl + bo (X, S5, 00) |€z‘|M
(D.12)

| (598, 51.00) = 29067 580 e

Hence, using Assumption CME, and the fact ‘X} — X7 < g, we get

E [( N(Xi, S, 00) — g9 (X5, S, 90)) sf]
< oK by (X7, S, 00)| E [|5i/an|K+l} 4 o ME [by(XF, Si, 00)] E [lei/an|M].
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Since (i) the expectations above are bounded (Assumptions MME, A.1 (ii), and A.1
(iii)) and (i) o5+ = o(n=/2) and oM = o(n"'/?) (Assumption MME), this implies that
(D.10) holds. To inspect (D.11), recall that v, = 0 a,. As a result, using Assumptions
A.1 (i) and CME, and ’sz - X/

7| < &, again, we also have

ounE (59 (.., 00) = X7, 5,.00)) 4]

< aun (o B (X7, 51 G0l [fsfonl ]+ 0B (X7 S B0 E [/l ] )

Since ayy, is bounded, we conclude that (D.11) holds analogously to (D.10).

Combining (D.3) with (D.4), (D.5), and (D.9)-(D.11), we conclude that
E [w(Xw S’i) QOa 7071)] = 0(7’L71/2).

Finally, we want to verify the recursive expressions for the components of v,,,. Note

that (D.6) can be represented as

BQLIVOn = C,ryu (D].S)
where Yon = (702n7 ce 770Kn),? and
1 0o ... 0 0] [ E[2/20
B) = : : ’ : , o= :
E[ef%] E[FY _
(R3] KAl 10 Ele; /(K —1)!
E[eX—2 Ele;” ™~
s Tt - Elel) 1 | EEF)/KT

Notice that gy, = E[¢?] /2 and 75, = E [¢7] /6 (since E [g;] = 0). To recursively compute
Yokn fOr k = 4, suppose that v, are known for ¢ € {2,... k — 1}. Then 7, can be
recursively computed from the k£ — 1-th equation in (D.13), which takes the form of

SB[ B[R]

(k— o)) om = gl

(=2

Plugging E [¢;] = 0 and rearranging the terms gives

Yokn = Lk (k’ — 6)' Yotn
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which completes the proof. Q.E.D.

D.2 Proof of Theorem 2

D.2.1 Auxiliary lemmas

Lemma D.1. Suppose that {(X}, S}, ;) }, are i.i.d.. Then, under Assumptions MME,

7 729~

CME, A.1, A.2 (i), and A.3 (i)-(iil), we have
()

sup (|75 (0) — 9 (0)]| = 0,(1)
0co

and g;gk)*(Q) is continuous on © for k € {0,..., K};

(ii) for some § >0,

sup
6€Bs(6o)

xT

GP(0) - G0 0)]| = o,(1),

and G;k)*(Q) is continuous on Bs(0y) for k € {0,..., K}.

Proof of Lemma D.1. First, we show

sup [[g(0) — g*(0)[| = op(1).
0cO

By the triangle inequality,

sup [[g(0) — g"(0)|| < sup [[g(6) —g"(0)[| + sup [[g"(0) — g™ (O)] -
0cO 0cO 0cO

Then, it is sufficient to show that both terms on the right hand side of the inequality
above are 0,(1). Expanding ¢(X;, S;,0p) around X asin (D.1) and invoking Assumption
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11 , )
;—ﬁzgx (X7, 5, 0)e K, Zg(K (X7, S;,0)e

J/

Ll
X5 850 el +—= = bi(X], S, 0)|es] T
;325ng ( )| leal* + ZSUP 1(X7, S5, 0) el

J/

-

o;(rl) op(1)

1 1«
— = by (X7, S;,0)|eM,
L0 2R X S D)

J/

op(1)
where Xz» lies in between of X and X;. Now observe that all the terms following the
inequality sign are o,(1). Indeed, this is guaranteed by Markov’s inequality paired with
Assumptions MME, CME, and A.3 (ii). Hence, supyce |[g(€) — 7" (0)|| = 0,(1), and we
are left to show supyeg [|7°(6) — g*(0)|| = 0,(1). This, in turn, follows from the standard
ULLN (e.g., Lemma 2.4 in Newey and McFadden, 1994), which also ensures continuity
of g*(0) on ©. Hence, we conclude that the assertion of the lemma holds for g.

Applying nearly identical arguments, one can also establish the desired results for gg(;k)

for k € {1,..., K} and for G for k € {0,..., K} (for the latter, Assumptions A.3 (i)
and (iii) take the places of Assumptions A.1 (i) and A.3 (ii), respectively). Q.E.D.

Lemma D.2. Suppose that the hypotheses of Lemma D.1 are satisfied. Then, gg(ck) — gék)*

and G — G for k € {0,...,K}. Suppose also 0 L 0. Then, §§f)(§) LN gék)* and

G0 2 6" fork e {0,... K}
Proof of Lemma D.2. First, we prove the assertions of the lemma for gék). Note that, by

the standard expansion of g{” (Xi, S, 6p) around X} (see Eq. (D.2) above), we have

<E [||g(X:, Si, 00) — g (X7, S, 0)]]

i

|9 — g¢

28 o0 5000

= 1

[H( N(Xi, 8, 00) — g (X}, S 90))H |5z'|K_k] :

By Assumptions MME, CME, and A.3 (i), E [

Qa(ce)(X;aSu@o)H |€i|€} — 0 for all ¢ €
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{1,..., K}. Next, using Assumptions A.1 (i) and CME,

o [ (915 .00 5. 5.00) ]
<E[bi(X7, 5, 60) E [| |K+1—’f]+E[b2(xgk,si,eo)]1@“gin—ﬂ -0,

where the convergence follows from Assumptions MME, A.1 (ii) and A.3 (ii). Hence, we

(k) (k)*

conclude g ' — gz

Next, we show g(k) (6) & ¢{¥*. By the triangle inequality,

where the inequality holds with probability approaching one since 6 e Bs(6p) with proba-
74(0) = o (0)| = au(1)
’“)*(9) g:(ck)* o) H = 0,(1), where the second result follows from consistency of
6 and cont1nu1ty of gz) (6). Hence, gi¥)(0) 5 gg(ck)*, which completes the proof of the
results for ¢\ for all k € {0,..., K}.

A nearly identical argument, can be invoked to establish the same results for G for
k€ {0,..., K}, with Assumptions A.3 (i) and (iii) taking the places of Assumptions A.1

(i) and A.3 (ii), respectively. Q.E.D.

g (f) — g g"*(0))|

< sup [l 9" (0) = g (00|

0€Bs(0o)

bility approaching one. Note that, By Lemma D.1, supye g, g,

Lemma D.3. Suppose that the hypotheses of Lemma D.1 are satisfied. Then, under
additional Assumptions A.3 (iv) and A.J (i), we have 0500, 5%20andy > Yon-

Proof of Lemma D.3. First, we argue that supgcs !W(B) — w*(ﬁ)” = 0,(1). Notice that,
by the triangle inequality,

sup [[0(8) — ¥*(B)]| < sup [[g(0) = " (O)]] + > bl Sup [727(0) = g ()| = 0p(1),

BeB
(D.14)

where the equality follows from Lemma D.1 (i) and boundedness of 7 (Assumption A.2
(i)). Moreover, Lemma D.1 (i) also ensures that ¢*(3) is continuous on compact B and,
consequently, is bounded.

Let Q(8) = ¥(B)=(8) and Q*(8) = ¢*(8)'Z¢*(B). Notice that (D.14), boundedness
of 9*(8), and Assumption A.3 (iv) together guarantee that supgcs ’Q(ﬁ) — Q*(ﬂ)’ =
0p(1). Next, recall that 7, — Ox_1 (Lemma 1). Since I' is compact and 7,, € I'
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(Assumption A.2 (1)), 0x_; € T'. Consequently, Assumptions A.4 (i) and A.3 (iv) together
guarantee that Q*(ﬁ) is uniquely minimized at § = 6y and v = 0x_;. Consequently,
applying the standard consistency argument (e.g., Theorem 2.1 of Newey and McFadden,
1994), we conclude that  — 6y and 4 — Ox_1. Finally, since vy, — 0 (Lemma 1), we
also have 4 & 7,,,. Q.E.D.

Lemma D.4. Suppose that {(X}, S}, ;) }, are i.i.d.. Then, under Assumptions MME,

1)

CME, A.1, and A.3 (ii) and (v), we have
n! () 5 N(0,9;,).

where ng =E [g(XZ, Si7 Qo)g(X“ Si, 90)/] .

Proof of Lemma D.j. Using expansion (D.3), we obtain

1/2w _n 1/229 XZ*’S 90 _|_n 1/229(1) X“Sl,eo
1 G|
’ =2 )
1 n - .
+ Fe 12 Z <9§:K) (X;, i, 00) — ¢8(X7, S, 90)> ek
=1
K n
_ Tokn —1/2 (K) _ * K—k
Z (K _ k)]n Z ( (kaSza 00) gw (X S 80)) g; .

k=2 i=1

(D.15)

First, note that, by the standard CLT, n=Y2 3" g(X7, S;,6,) % N(0, Qz,). The rest of
the proof is to show that the remaining terms are o,(1). By Assumptions MME, CME,
A.3 (ii), Chebyshev’s inequality guarantees

n2Y " gW(XT, S5, Bon)ei = 0p(1)

Next, (D.9) ensures that we can similarly apply Chebyshev’s inequality (combined with
Assumptions MME, CME, A.3 (ii) and (v)) to ensure that for k € {2,..., K}

k

WZQ (X7, Sis60) (E - 7) = 0,(1).

(=2
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Next, using (D.12),

n

2N (9K, S 00) — 9 (XT, S, 00) ) 2

i=1

S 800 S50

=1

< n1/20-£(+1 (n_l Z bl(Xl*, Si, 90) |€Z’/O'n|K+1> + n1/20'7]\L/[ <n_1 Z b2(Xz*7 Sia ‘90) |5z/0-n’M>
; N =1

————
—0 N = ~— —0 ~ _
Op(1) Op(1)
= Op(l) )

where both n'/2¢5+1 and n'/?2¢ converge to zero by Assumption MME, and the terms
in the brackets are O,(1) by Markov s inequality (ensured by Assumptions MME, CME,
A.1 (ii) and A.3 (ii)). Recall that in the proof of Lemma 1, we have demonstrated that

Yokn = O ag,, where ag, are bounded, for k € {2,..., K}. Hence, similarly, we have

n

’YOk:anl/2 Z (ga(:K)<Xiu Siy 00) — gg(cK) (X7, S, 90)) F

i=1

< ot [ 1/2Zb (X7, Si, 00) leaf 51 + ‘”221? 7, Si.00) e M ’“]

=1

i=1

< g | 020K (n‘lzbl(X;‘,Si,Qo) |€i/0n|KkH> +n1/2071y< Zbg (X7, S, 00) |ei/on™™ k)
N——— ——

—0 —0

Op(1) Op(1)

= 0,(1).

Hence, we have demonstrated that all the remaining terms in (D.15) are o0,(1), i.e. we

have

M%) (By,) =n" 12 Zg (X7, Si,00) + op(1)

which completes the proof. Q.E.D.
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D.2.2 Proof of Theorem 2

Equipped with Lemmas D.1-D.4, we are ready to prove Theorem 2.

Proof of Theorem 2. Since (i) 6 and 4 are consistent for 6y and ,,, respectively (Lemma
D.3) and (ii) both 6, and 7,,, — 0 (Assumption MME) are bounded away from the bound-
aries of © and I respectively (Assumption A.2), the standard GMM FOC is satisfied with
probability approaching one, i.e., we have (with probability approaching one)

T(BY=0(B) = o.
Expanding ¢(3) around ¥(8,,) gives
T(BYZ (V(Bo,) + T(B)(B - By)) =0, (D.16)

where B lies between 3, and B (and, consequently, 6 % 0, and o 2 0). Next, we argue
that (5) = U* + 0,(1). Observe

A

K
T(p) = |GO) - > 3G 0),-g20),....~g0)
k=2

Since § 5 6, (Lemma D.3), we can invoke the result of Lemma D.2 to argue that
7®(6) 5 ¢t and Eff) 0) 5 GP* for all k € {0,..., K}. This, combined with 4 — 0
(Lemma D.3), ensures that W(3) = U*+0,(1) and, analogously, ¥(3) = ¥*+0,(1). Cou-
pling these result with Assumption A.3 (iv), we conclude that @(B)’é_(ﬁ) B =g,
which is invertible by Assumption A.4 (ii). Hence, (D.16) can be rearranged as (with
probability approaching one)

o A A~ N —
n2 (B = Bu,) = — (VAYETB))  W(B)En"0(By,)
= = (U20) WUy, + 0y 1),

where, by Lemma D.4, n¥/2%(8,,) - N(0, Q;,). Hence, we conclude

n2(B — Boy) = N(0,5%),
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where
* sl T\ — 1 1 = )% = sf= Tk — 1
¥ = (UVEY) T U ’:Qgg\If E(UEU) .

To complete the proof, we need to show that > — »*. First, note that, by Lemma D.2
and 7,,, — 0 (Assumption MME)

U = — [G*, —9(2)*,...,—%(6}()*] = U~

T

K
G — Z ’YOknGg:k)a _g§:2)7 sy _g;K)
k=2

Next, we want to argue that 2y, — 2} . Observe that

K K !
k k
Quy =E <9i - Z”Yozmgiz‘)> (gi - Z”Yozmgii)) = E[g:g;] + o(1),
k=2 k=2

where the equality follows since (i) o, — 0 for all k € {2,..., K} (Assumption MME)
Y
and (ii) E [g(k) (ggf )> } is bounded for all k, k" € {0,..., K}. In particular, (ii) can be

xi

inspected by expanding g3 (X, Si,0p) and g;(ck/)(Xi,Si,Ho) around X/ as in (D.2) and
bounding the expectations as in the proof of Lemma D.2 (using Assumptions MME,
CME, A.1 (i), A.3 (ii), and A.3 (v)). Similarly, by expanding ¢g(X;,S;,09) around X/
and bounding the residual terms as in the proof of Lemma D.2 (again, using Assumptions
MME, CME, A.1 (i), A.3 (ii), and A.3 (v)), we verify that E [gig;] — E [g7g;"] = €,
Hence, €y, — (27 and, consequently, we verified that 3 — 3*. Finally, we conclude

n1/22—1/2(3 — Bon) = N(0, Iy k1),

which completes the proof. Q.E.D.

E Proofs of Results in Section 4

E.1 Proof of Theorem 3:

1. First, in parts 1-4 below, we prove the theorem in the case p = 3. Then, in part 5 of
this proof, we consider the case p = 4. The proof in the latter case is identical, except
some of the remainder terms are of smaller orders. In parts 1-4 of the proof, it will be

convenient to state the resulting bounds that depend on p in the general form using p,
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but to avoid confusion, until reaching part 5 of the proof the reader should only consider
the case p = 3.
Let us obtain some preliminary results about fxz (z|2) and f;xz (¢|x,2). Using

Assumption CME, we obtain

f5X|Z (5737’2) = [ (5) fX*\Z (x - 5|Z) )
fexiz (e, 2]2) _ fo (&) fxvjz (& —€]2)
fx|z (z|2) fX\Z(:B’Z) 7

fxiz (zlz) = /f:—:(€)fx*|z($—€]z)d5.

f5|XZ (5|$, Z)

Since fx«|z (x|z) has 3 bounded continuous derivatives in =, fx|z (z|z) also has 3 bounded

continuous derivatives in . Moreover,
fxz(vaZ)Z/[fX*z(JJIZ)—Sf&*z(xI ) + €23 f% 2 (x]2)] [ (€) de+ Ryyz (]2), (E.1)

where Ryz = — (1/6) B [ Yoz (@ =€) |2 = z}, € (g;) is a point between 0 and &;,

and
’Rﬂz (x|z)‘ <FE “5i|3 !f’”*‘z (x —E(ai))H Z; = z] =0 (E [\52|3]) =0 (03) )
Since F [g;] = 0 and E [¢?] = 02, we have

fX\Z(x’Z) = fX*|Z(x
= fxrz(z

) = Eleil fiez (w]2) + E 7] 55012 (w]2) + O (0”)
)+ (02/2) [y (x]2) + O (07). (E.2)

|z
|z

Since fx«z (x|z ) > (' for some C' > 0, and fY. , (z|2) is bounded, fxz (z|z) > C/2 for

small enough o2. Thus,

fs ( )fX*\Z (l’ - €|Z)

stXZ( ’[B Z) fX*|Z (x‘ ) (0,2/2> X*|Z( |Z) ) (Up)' (EB)

Similarly,
far@le) = [£@feple-clde = frp @l +0(),  (©1)
f%\z (z]z) = /fs [y |Z T —¢lz)de = §*|Z (z[2) + O (Up_2) . (E.5)
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2. Consider any function a (z) that has 3 bounded continuous derivatives. Since X =

Xi — &,

Ela(X])|Xi=x,7Z; = 2]
= Fla(x—¢g)|X, =27, = 7]
= a (x) —d (gj) E [&’Xz =z, Z; = Z] + 1@”( ) [512‘)(1 =, Z; = Z] —+ Ra\XZ(yE6)

where Ry xz = — (1/6) E[e}a” (v —E (&) | Xs = 2, Z; = z].
We now consider E [ef|X; =z, Z; = z] for £ € {1,2}:

ElalXi=2,2i =2 = /5fa|XZ( |z, 2 dg—/ e fszz(ir)_g‘ )ds
J e {1z @l2) = fiez (@) + 24 Pz (@ = E @) 12) | £ () de
fx+1z (x]2) + O (0?)

+ 0 (0?) = —0*sx+7 (z]2) + O (o7)

f;mz (z|2)

= 0 ) + 007

S {fxniz (@l2) = iy (2 =B () 12)} i (e) de
Fxiz 1) + 0 (0%)

E [€?|Xz =X, Zl = Z} =

= o>+ 0(o").

J1e°| fxo1z (w —E () |2) fe () de
fx+z (x]2) + O (0?)

and hence |Ryxz| < E[|e}]|a" (z — ()| | Xi = 2, Z; = 2] = O (7).

Ellefl|Xi=2,2Zi = 2] = =0(@")  (ET7)

Combining these with equation (E.6), we obtain

Ela(X])|X; =2, Z; = 2] = a(z) + 0°d (z) sx+z (z]2) + (6°/2) " (z) + O (6”) . (E.8)

3. Next, consider V! FE [a (X})|X; = z] for £ € {1,2}. We have

1
Bla(X)Xi=1) = o [ale=2) fi (=) £ () e
fx (x)
Let ¢ (x) and n(x) be any functions, possibly changing with o, with 3 bounded
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continuous derivatives Suppose n(x) > C for some C > 0 for all small enough o, and

let ¢ (z) = x) [ (x (¢) de. Then,

(z) = L/ (2 —e) £, (e)de — L&) /go(x—e)fa(s)dg

n(v)  (n(2))?
@00 @00 ¢ e
@) (0(2))? 7@ @y )

Taking ¢ (t) = a (t) fx- (t) and 1 (z) = fx (x), and using equations (E.2) and (E.4), we
obtain
V.E[a(X])|X; =2]=d (z)+ O (c?).

Similarly,

nipy = @) o @' (@) [ (@) 20 ()" 2) 4 O (672
¢" (x) 2 2 ((U(@)Q (n(x))s )90( ) + ( )7

and using identical substitutions, and equations (E.2), (E.4), and (E.5), we obtain

VZE[a(X])|Xi=12]=a"(z)+ O (7).

4. Consider
q(z,2) = Elp(X7) + Uil X =2, Z; = 2] = E[p(X]) | X; = 3, Z; = 2].
Part 2 of the proof shows that
q(x,2) = p(2) + 0% () 5x+17 (2]2) + 307" () + O (7). (E.9)
Therefore,
q(z,21) —q(x,2) = o’y (2) [SX*|Z (]21) — Sx+|z ($|Z2)} +0 (o). (E.10)

Part 1 implies that sy«z (z|z) = sxz (z]z) + O (0?). Let ¢(z) = E[Yi|X; =x].

Applying part 3 with a (z) = ¢ (z) we obtain ¢’ (z) = p' (x) + O (¢%). Substituting these

into equation (E.10), we obtain
q(z,21) — q(z,22) = 0°¢ (2) [sx1z (z|21) — sx17 (x]22)] + O (07), (E.11)
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and hence, for any z with ¢ (z) [sx7 (#]21) — sx)z (#]22)] # 0,

q(r,21) — q (v, 2)
¢ () [sx)z (x]21) — sx1z (x]22)]

72 (z) =0+ 0 (o?), where &° (z) =

which identifies o2 up to O (a?).
Next, from part 3 we also have ¢” (z) = p” (z) + O (¢~?). Thus, equation (E.9)
implies that

q(z,2) = p () + 0% (2) sx12 (,2) + 307¢" (z) + O (o),

and hence we obtain

pl,21) =p(2)+0 (o),  where p(z,2) = q(w,2)=0" (x) [¢ () sx1z (x]2) + 34" ()] ,
which identifies p (x) up to O (o?). This completes the proof for the case p = 3.

Note  that  p(x,21) — pl(x,22) = q(x,z1) — qlz,22) —

7 () [¢' (2) (sxiz (x]21) = sx12 (2]22))] = 0, e, B (2, 21) = P (2, 2).

5. When p = 4 and E [€}] = 0, the above Taylor expansions can be extended to the next
order, providing the corresponding improvements in the remainder terms.

For example, in part 1 of the proof, expansion (E.1) becomes
fxiz (x]z) = / [fxo1z (w]2) = efieiz (2]2) + €25 fxe 7 (2]2) — 5% 2 (2]2)] fo (€) det+Ryiz (]2)

where Ry z(z|z) = (1/24) E [Ef ez (T —€ (1)) |2 = z], so |Ryz (z|z)| = O (o*). Com-
bining the expansion above with E [¢?] = 0, we verify that (E.2) also holds with p = 4.

In addition to the calculations in part 2 of the proof, we also use

S { oz @) = efiy @ =E @) 12) ) £ () de
frciz (@]2) + 0 (0?)
= E[]+0(c") =0(c").

E [5?])(1- =x,Z; = z} =

In parts 2 and 3 of the proof, we also require functions a(x), ¢(x), and n(z) to have 4
continuous derivatives.

Then, the previous steps of the proof and the conclusions of the theorem hold with
p=4. 1
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E.2 Proof of Proposition 4

The proof of Theorem 3 shows that ¢ (x,2) and fx|z (z|z) have m bounded continuous
derivatives. Construct 3" " (z) using equations (21)-(22) nonparametrically estimating
q(z,2), q¢(x), fxz (z|z), and their derivatives, e.g., using standard kernel or sieve esti-
mators. If the tuning parameters are chosen optimally, under the usual regularity condi-

tions, the rates of convergence of these estimators are ¢ (z,2) — ¢ (z,2) = O, (n_ T

Y

m—2

1(2)=4(2) = 0, (757 ), 7 ()= (1) = O, (n7H7), 7" (1) =" () = O, (55
and Sxz (z|z) — sxiz(z]z) = O, (n—{ii%l) for x € Sx-(z), where 5x|z (x]2)

J?;qz (x|z)/ fX|Z (z]z). Note also that by equation (E.9), ¢ (z,21) — ¢ (z, 29) = O (72).

n

’

N——

Then, since for the analog estimator 6~ () of &> (z) we have

~2 m—1

5% (z) =5 (z) + O, <n_# + Tin_m) =5%(x) + O, (7{%)

:O'2+Op <Ti+n_ﬁ) :O'2+Op (n_#ﬂ), (E12)

where the first equality follows from equation (21), using Zi/?)\— a/b= (a—a) /3+ a(l//b\—
1/b), equation (E.11), and the rates of convergence listed above, the second equality holds
because 577 < %277’1”“ + 2’7’}1’_11 for m > 2, and the third equality holds by equation (23)
in Theorem 3.

Next, consider the analog estimator p™ () of p (x) based on equation (22),

P (@) = (2, 2) = 7* (2) [@ (2) 5 (2, 2) + 37" ()]
z)+ O, (n*#H + 72 (n*% + nfyTi))

)
z)+ O, (nfﬁﬂ + Tirf% + Ti)
)

where the first equality is the definition of the analog estimator, the second equality
follows from the rates of convergence listed above and equation (E.12), the third equality
holds by equation (24) in Theorem 3, and the fourth equality holds because 57t +
m—2 m
m=3 > am1 fOr M > 3.

The naive estimator is

N (1) = G(z) = p () + O, (7721 + n‘%) =p(z)+0, <n_%#> ;
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where the second equality follows from equation (E.9). B

F Implementation Details of the Empirical Illustra-
tion

In this section, we provide additional details on the implementation of the numerical

experiment in Section 3.3.

Data. The original dataset is the ModeCanada dataset supplied with the R package
mlogit. This dataset has been extensively used in transportation research. For a de-
tailed description of the dataset see, for example, Koppelman and Wen (2000), Wen and
Koppelman (2001), and Hansen (2022). As in Koppelman and Wen (2000), we use only
the subset of travelers who chose train, air, or car (and had all of those alternatives

available for them), which leaves n = 2769 observations.

Monte-Carlo design. We choose 6y to be the MLE estimates using the considered

dataset, which are reported in the table bellow.

\ 0, 0, 05 0, 05 O 0. fs

Estimates | 0.0355 0.2976 -2.0891 0.0079 -0.9900 1.8794 -0.0223 -0.0149
Std. Err. | 0.0036 0.0844 0.4674 0.0036 0.0876 0.2037 0.0038 0.0008

To generate the simulated samples, we randomly draw the covariates (with replace-
ment) from their joint empirical distribution. To ensure identification of the model, we

also generate an instrumental variable Z; as
*
Z; = Kk Income; |0 rneomes + V1 — K2(,,

where 0 ncomex =~ 17.5 is the standard deviation of Imcome*, k = 0.5, and (; are i.i.d.
draws from N(0,1) (which are also independent from all the over variables). Note that
the instrument Z; is “caused by X;}”. For example, Z; can be some (noisy) measure of

individual consumption.

Moments. To simplify the notation, let X’ = Income}, X; = Income;, R; = Urban,,
R;; = (Price;j, InTime;;)" for j € {0,1,2}, and W; = (R;, R}y, Ry, R},)’. Also let Y;; =
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1{j = ArGMAXrc (0 1 2} Ui} for j € {0,1,2},Y; = (Yi, Yie, Yao), and p;(z, w,0) = P(Y;; =

1‘X;‘ — ijVi = w70) with w = (T, Tll,Té,T(/)), 50

6915E+92T+93+(97,98)T1

b (ZL’, w, ‘9) - ef12+02r+03+(07,08)r1 | p0ax+057+06+(07,08)r2 1 o(07,08)70

694Z+95T+96+(97,98)T2

b2 (L w, 0) = 691x+02r+93+(07,98)r1 + 604z+05r+96+(97,98)7‘2 + 6(97’98)”) ’

and po(z,w,0) =1 — p1(x,w,0) — po(x,w,P). Then, the original moment function takes

the form of

g(x7w7y7279) = ((yl —pl(SL’,’w,Q)) hl('razaw)/? (y2 —p2<l’,w,(9)) h2<l’,2,w>/)/.

and h;(z,z,w) = (1,z,z,a% 2% 2% 2° 1, (Tj—TO)/)/ for K = 2 and hj(z,z,w) =

/
(1,2, 2,22 2z, 2% 23, 22,222 23,1, (r; — 1p)') for K = 4.
Income Elasticities. In Section 3.3, we focus on estimation of and inference on the
income elasticities

Olnp; B T Op;(z,w,0)
Olnzx (2, w,0) =

pj(z,w,0) ox

We report the results are for the income elasticities evaluated at the sample mean of X*

and W in the original sample.

Estimation of and Inference on the 6,. In Table 8 below, we also report the estima-
tion and inference results for the vector of parameters 6, underlying the reported results

about elasticities.
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Table 8: Simulation results for the empirically calibrated conditional logit model

MLE K=2 K=4
bias std rmse size ‘ bias std rmse size ‘ bias std rmse size
T=1/4

6, -0.0021 0.0035 0.0041 870 | 0.0001 0.0042 0.0042 5.48 | 0.0005 0.0057 0.0058 7.38
62 0.0047 0.0932 0.0933 5.10 | 0.0028 0.0957 0.0957 5.36 | 0.0022 0.0960 0.0960 5.40
0; 0.1152 0.4452 0.4599 6.00 | -0.0048 0.4821 0.4821 5.94 | -0.0251 0.5336 0.5342 6.68
6, -0.0004 0.0031 0.0031 4.52 | -0.0001 0.0034 0.0034 5.32 | -0.0001 0.0036 0.0036 6.86
05 -0.0023 0.0894 0.0895 5.18 | -0.0088 0.0918 0.0922 5.54 | -0.0113 0.0922 0.0929 5.96
0 0.0232 0.1821 0.1836 4.64 | 0.0250 0.1982 0.1998 5.72 | 0.0329 0.2089 0.2115 6.74
67 -0.0001 0.0035 0.0035 5.58 | -0.0002 0.0036 0.0036 6.24 | -0.0003 0.0036 0.0037 6.04
fs -0.0001 0.0007 0.0007 4.82 | -0.0001 0.0007 0.0007 5.48 | -0.0002 0.0007 0.0007 5.58

T=1/2

6; -0.0073 0.0032 0.0080 60.08 | -0.0016 0.0043 0.0046 6.86 | 0.0005 0.0061 0.0061 6.60
02 0.0109 0.0930 0.0936 5.18 | 0.0050 0.0959 0.0960 5.54 | 0.0026 0.0964 0.0965 5.36
63 0.4080 0.4452 0.6039 17.12 | 0.0936 0.4874 0.4963 6.58 | -0.0263 0.5475 0.5481 6.38
0, -0.0012 0.0029 0.0031 6.46 | -0.0003 0.0035 0.0035 5.22 | -0.0002 0.0038 0.0038 6.52
05 -0.0006 0.0894 0.0894 5.16 | -0.0083 0.0919 0.0923 5.52 | -0.0110 0.0924 0.0930 5.92
0 0.0655 0.1752 0.1870 6.22 | 0.0348 0.2035 0.2064 5.86 | 0.0326 0.2158 0.2183 6.42
07 -0.0003 0.0035 0.0036 5.64 | -0.0003 0.0036 0.0037 6.34 | -0.0003 0.0037 0.0037 6.06
6s -0.0001 0.0007 0.0007 5.06 | -0.0001 0.0007 0.0007 5.54 | -0.0002 0.0007 0.0007 5.48

T=23/4

6, -0.0132 0.0029 0.0135 99.34 | -0.0056 0.0043 0.0071 25.12 | 0.0003 0.0065 0.0065 6.06
02 0.0180 0.0923 0.0940 5.36 | 0.0102 0.0961 0.0966 5.76 | 0.0033 0.0973 0.0973 5.44
05 0.7336 0.4496 0.8604 41.66 | 0.3203 0.4859 0.5820 12.00 | -0.0130 0.5666 0.5667 6.20
64 -0.0024 0.0026 0.0035 14.00 | -0.0009 0.0035 0.0036 5.94 | -0.0002 0.0041 0.0041 5.76
05 0.0021 0.0890 0.0891 5.08 | -0.0071 0.0921 0.0924 5.68 | -0.0109 0.0926 0.0932 5.82
0 0.1204 0.1654 0.2046 9.76 | 0.0648 0.2048 0.2148 6.56 | 0.0334 0.2294 0.2318 5.98
67 -0.0004 0.0036 0.0036 6.00 | -0.0004 0.0036 0.0037 6.34 | -0.0003 0.0037 0.0037 6.06
0s -0.0001 0.0007 0.0007 5.54 | -0.0002 0.0007 0.0008 6.00 | -0.0002 0.0007 0.0008 5.42

This table reports the simulated finite sample bias, standard deviation, RMSE, and size of the MLE and the
MERM estimators and the corresponding t-tests for the components of 6. The true value of the parameters of
interest are 6y = (0.0355,0.2976, —2.0891,0.0079, —0.9900, 1.8794, —0.0223, —0.0149)’. The results are based on
5,000 replications.
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