
Hillier, Grant H.; O'Brien, Raymond J.

Working Paper

A simple four-moment approximation to the
distribution of a positive definite quadratic form, with
applications to testing

cemmap working paper, No. CWP02/22

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Hillier, Grant H.; O'Brien, Raymond J. (2022) : A simple four-moment
approximation to the distribution of a positive definite quadratic form, with applications to testing,
cemmap working paper, No. CWP02/22, Centre for Microdata Methods and Practice (cemmap),
London,
https://doi.org/10.47004/wp.cem.2022.0222

This Version is available at:
https://hdl.handle.net/10419/260383

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.47004/wp.cem.2022.0222%0A
https://hdl.handle.net/10419/260383
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


A simple four-moment approximation to 
the distribution of a positive definite 
quadratic form, with applications to testing

Grant Hillier
Raymond O'Brien

The Institute for Fiscal Studies 

Department of Economics, UCL 

cemmap working paper CWP02/22



A simple four-moment approximation to the
distribution of a positive definite quadratic

form, with applications to testing.∗

Grant Hillier and Raymond O’Brien
University of Southampton

Earliest version: October 2017
This version: December 2021

Abstract
The exact distribution of a quadratic form in n standard normal

variables, Q, say, (or, equivalently, a linear combination of indepen-
dent chi-squared variates) is, except in special cases, quite compli-
cated. This has led to many proposals for approximating the distribu-
tion by a more tractable form. These approximations typically exploit
the fact that the cumulants of the distribution are quite simple, and
include both saddlepoint methods, and methods that replace the ac-
tual statistic with a statistic with the same low-order cumulants (or
moments). In this paper we propose an approximation of this type
that matches the first four moments of the distribution. Its advantage
over other methods is that it is extremely easy to implement, and, as
we shall show, it is almost as accurate as the best of the other proposed
methods (which matches the first eight cumulants). Using the same
approach, we also suggest an approximation to the distribution of the
analogue of a regression t− statistic in cases where the numerator is
standard normal, but the denominator is

√
Q, with Q an independent

quadratic form (but not chisquared). This is also shown to work ex-
tremely well. The approach has applications in many disciplines, from
statistics and econometrics through to theoretical physics.

∗Address correspondence to Grant Hillier; email grant.hllr@gmail.com
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1 Introduction

We are concerned with statistics of the form

Q =
m∑
i=1

aiχ
2(ni) = y′Dy, y ∼ N(0, In) (1)

where n =
∑m

i=1 ni and

D = diag{aiIni}, i = 1, ..,m, (2)

with ai > 0 for i = 1, ..,m. The χ2(ni) denote independent chi-square random
variables, the i− th having degrees of freedom ni. Examples occur frequently
in statistics, in many different contexts, and there is an extensive literature
on their properties.1

The cumulants of Q are quite simple, and are well-known to be

κr = 2r−1(r − 1)!pr, (3)

where pr =
∑m

i=1 nia
r
i = tr[Dr] is the r−th power-sum symmetric function of

the the elements of D. However, the exact density and distribution function
are quite complicated, and this has motivated an extensive literature on
approximations. For a recent survey and many references see Bodenham and
Adams (2016) (B&A hereafter).
Before proceeding we note that if ni = 1 for all i the distribution of Q

is invariant under permutations of the ai. This property will be useful in
limiting the size of the domain used for some of the evaluation procedures
discussed later.
Our first purpose in this paper will be to suggest a simple, accurate,

approximation to the distribution of Q that is new. We then provide some
evidence on the performance of the suggested approximation, showing that it
works extremely well. Next, we discuss an application of the approximation
to the related problem of approximating the distribution of certain Student-
t-like test statistics, these having the form

T =
Z√
Q
,

1In case the problem demands - as it often does - that some of the ai are positive, some
negative, then Q will be the difference between two statistics of the type we deal with here.
Thus, the results are applicable to more general situations than it might at first appear.
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with Z ∼ N(0, 1) and Q independent of Z and defined as in equation (1).
This application was suggested by the unpublished work reported in Hansen
(2017). Following some correspondence between us, a revised version of
Hansen (2017), Hansen (2021), suggests applying our approach to the prob-
lem of approximating the distribution of the White t-ratio. Like ourselves,
Hansen (2021) finds that this works extremely well. Finally, we extend the
Student-t approach to analogues of F−statistics of the form F = Q1/Q2,
with both numerator and denominator having the form (1).
We will make extensive use of hypergeometric functions, of both scalar

and matrix argument. The reader is referred to Muirhead (1982) for the
matrix-argument case. In the case of scalar argument these are defined by
the formula

pFq(b1, ..., bp; c1, ..., cq;x) =
∞∑
i=0

[
Πp
j=1(bj)i

Πq
k=1(ck)i

]
xi

i!
, (4)

where (c)i = c(c+ 1)...(c+ i− 1) is the usual Pochammer symbol. The series
convereges for all x if p ≤ q, for |x| < 1 if p = q+ 1, and for no x if p > q+ 1.
For the most part p = q = 1 in our applications.

2 Exact and approximate densities

We first consider the exact density of Q. The derivation given is essentially
due to James (1964). In the density of y transform to x = D

1
2y, so that

Q = x′x and x ∼ N(0, D),

pdf(x) = (2π)−
n
2 |D|− 1

2 exp

{
−1

2
x′D−1x

}
. (5)

Transform to (q = x′x, v = x(x′x)−
1
2 ). The Jacobian is

(dx) =
1

2
q
n
2
−1dq(v′dv),

where the last term denotes the (un-normalized) invariant measure on the
surface Sn = {v ∈ Rn : v′v = 1}, the unit sphere in Rn. To obtain the
density of q we integrate out v, but first introduce a tuning parameter α > 0,
and write the exponent as

−1

2
qv′D−1v = −1

2
qα +

1

2
qαv′[In − (αD)−1]v

3



Integrating out v gives the expression

pdfQ(q) =
|D|− 1

2

2
n
2 Γ(n

2
)
q
n
2
−1 exp{−1

2
αq}

×1F1
(

1

2
,
n

2
;
1

2
αq[In − (αD)−1]

)
. (6)

The constant α can be chosen to accelerate convergence of the series expan-
sion of the hypergeometric function.2

In this case the hypergeometric function is a matrix-argument hypergeo-
metric function (Muirhead (1982), Ch. 7), with a series expansion in terms
of zonal polynomials, but in this special case the series involves only the
top-order zonal polynomials Cj(·). If α is chosen so that αD > I (element-
wise), the density and cdf have representations as infinite discrete mixtures
of chi-square densities and cdfs, respectively.3 That is,

pdfQ(q) =
∞∑
j=0

bjgn+2j(αq)αdq, (7)

Pr{Q < z} =
∞∑
j=0

bjGn+2j(αz), (8)

2There are several steps to this result, albeit familiar ones in the multivariate literature.
The first is to interpret integration over Sn as over the orthogonal group O(n), with v
the first column of H ∈ O(n). This permits invoking the fundamental identity for zonal
polynomials Cκ(·), where κ is a partition of k,∫

O(n)

Cκ(AH
′BH)(dH) = Cκ(A)Cκ(B)/Cκ(In),

see James (1960). Then one applies a special case of the identity

Cκ(Im)

Cκ(In)
=
(m2 )κ

(n2 )κ
,

which follows from equation (38) in Constantine (1964). In our case κ is the top partition
(k), and m = 1, producing equation (6).

3Non-negativity of the coeffi cients need not be imposed, as long as the resulting prob-
abilities are non-negative. In the present case it is evident from the derivation given that
this holds for all α.
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where gv(·) and Gv(·) denote the density and cumulative distribution func-
tions, respectively, of a χ2(v) variate, and the coeffi cients

bj = |αD|− 1
2

(1
2
)j

j!
Cj
(
In − (αD)−1

)
(9)

are non-negative and sum to unity. The bj therefore can be interpreted as
probabilities associated with a discrete random variable J (i.e., bj = Pr{J =
j}). The distribution of Q thus belongs to the same family as the non-central
chi-square distribution, which also has this type of mixture representation,
in that case with Poisson weights bj = e−

1
2
λ(λ/2)j/j!.

It is the presence of the top-order zonal polynomials Cj(·) in the distri-
bution that makes it diffi cult to work with, and interpret, although there
are simple recursions for generating these polynomials (see below). However,
there is clearly an incentive to approximate, and many approximations for the
distribution are available in the literature. The simplest is probably that due
to Fisher: treat Q as a multiple of a chi-squared variate, Q = τχ2(v), choos-
ing τ and v so that the first two cumulants of the exact and approximating
distributions agree (also sometimes attributed to Satterthwaite (1946) and
Welch (1947)). A generalization of this matching three moments was sug-
gested by Solomon and Stephens (1977). Another simple approximation that
matches the first three cumulants is due to Imhof (1961), and Buckley and
Eagleson’s (1988) application of Hall (1984). Closer to the approach that we
suggest is that of Lindsay, Pilla, and Basak (2000), who suggest approxima-
tions based on linear combinations of Gamma variates, but these are quite
complicated to implement. Finally, one can apply saddlepoint techniques
to obtain approximations to the distribution of Q, see Wood, Booth, and
Butler (1993) and Butler (2007). Here we suggest an approximation based
on a linear combination of two chi-square variates, with parameters chosen
to match the first four cumulants of Q. It turns out that this is extremely
easy to implement, and our evaluations suggest that it is, for the most part,
extremely accurate.

2.1 Note on the top-order zonal polynomials

For an n × n symmetric matrix A, define the normalized top-order zonal
polynomials

dj(A) =
(1
2
)j

j!
Cj(A). (10)
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The function

D(t) = |In − tA|−
1
2 =

∞∑
j=0

tjdj(A) (11)

is a generating function for the dj, and may easily be used to obtain the
recursive relation (omitting the argument matrix)

dj =
1

2j

j∑
r=0

prdj−r, d0 = 1. (12)

(see Hillier, Kan, and Wang (2009)). The pr are again the power-sums pr =
tr[Ar]. This recursion has in effect been known since von Neumann (1941),
Pitman and Robbins (1949), and Ruben (1962). See also James (1964). It is
the basis of the algorithm by Sheil and O’Muircheartaigh, (1977) (hereafter
S&O’M). Thus, the coeffi cients in the mixture representation of the cdf of
Q can be generated recursively, and fairly simply, from the power sums pr,
and the eigenvalues of D are not needed. Note, though, that the recursion
requires a computation time of O(j2) for each j, so is not ideal as one moves
further into the series (8). A much more effi cient recursion based on the
elementary symmetric functions is given in Hillier, Kan, and Wang (2009).
This is computationally significantly less demanding, because it has length
at most n rather than j. In the "exact" calculations used later to assess the
accuracy of the appproximations we always use this effi cient recursion, rather
than that based on power sums.

Remark 1 It is clear that the density and all properties of Q depend on the
2m underlying parameters of the problem, (a1, ..., am) and (n1, ..., nm) only
through the power-sums pr =

∑m
i=1 nia

r
i , r ≥ 1. In view of the results in

Hillier, Kan, and Wang (2009), or, equivalently, the Newton-Girard identi-
ties, the coeffi cients in (8) can be generated recursively from the elementary
symmetric functions, er say, which vanish for r > n. In studying the behav-
iour of any approximation to the exact density, therefore, one obviously needs
to explore a parameter space consisting of different configurations of the er,
r = 1, .., n (not the infinite sequence of power sums).
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2.2 Exact density when m = 2

In the case m = 2, i.e., Q = a1χ
2
n1

+ a2χ
2
n2
, the exact density is tractable by

elementary methods, and is given by (see Appendix A):

pdfQ(q) =
q
n
2
−1 exp

{
−1
2
qa−11

}
2
n
2 Γ(n

2
)a

n1
2
1 a

n2
2
2

1F1

(
n2
2
,
n

2
;
1

2
q
(
a−11 − a−12

))
, (13)

where n = n1 +n2. Note that if a1 = a2 = a, Q = aχ2n. Putting φ = a−11 , ψ =
a1/a2, the density becomes

pdfQ(q) =
φ
n
2ψ

n2
2 exp

{
−1
2
φq
}
q
n
2
−1

2
n
2 Γ(n

2
)

1F1

(
n2
2
,
n

2
;
1

2
qφ (1− ψ)

)
. (14)

Note that, in this notation, Q =
(
ψχ2n1 + χ2n2

)
/φψ. This is evidently a special

case of the exact result above. Here, though, the hypergeometric function
has scalar argument, and the degrees of freedom parameters differ. The
corresponding cdf is

Pr{Q < z} = ψ
n2
2

∞∑
j=0

(n2
2

)j

j!
(1− ψ)jGn+2j(φz), (15)

again an infinite discrete mixture of chi-square cdfs when 0 < ψ < 1, the
weights now being given by

bj =
(n2
2

)j

j!
ψ

n2
2 (1− ψ)j (16)

(and φ replacing α−1). It is this distribution that we will suggest using as an
approximation to the distribution of Q.

2.2.1 Truncation error control when m = 2

The suggested approximations to the pdf and cdf of Q are evidently infinite
series, rather than elementary functions, and the series must be truncated at
some point for numerical work. However, by a straightforward adaptation
of a result of Rider (1962) it can be shown that the error committed when
the series is truncated after l terms is bounded above by Pr{B

(
n2
2
, l
)
>

ψ}Gn+2l(φz), where B(n2
2
, l) is a variate with a Beta(n2

2
, l) distribution. It is
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therefore possible to control the truncation error very easily. We now briefly
explain this argument.
Setting ψ = (1 + t)−1, and a = n2/2, we are interested in the partial sum

of the first l terms,

Sl(a, t) =
l−1∑
j=0

(a)j
j!

tj(1 + t)−(a+j), (17)

since this provides a bound on the error incurred by terminating the series ex-
pansion for Pr{Q < z}. The error is bounded above by (1−Sl(a, t))Gn+2l(φz).
Now, for n2 = 2r even we have a = n2/2 = r, so

bj(r, t) =
(r + j − 1)!

j!(r − 1)!
tj(1 + t)−(r+j), (18)

the negative Binomial distribution. In this case, Rider (1962) showed that
the partial sum Sl is related to the incomplete Beta function:

Sl(r, t) =
l−1∑
j=0

(r)j
j!
tj(1 + t)−(r+j) = Pr{B(r, l) < 1/(1 + t)}.

This continues to hold for any real r > 0, integer or not. So we have, for
a > 0,

Sl(a, t) = ψa
l−1∑
j=0

(a)j
j!

(1− ψ)j = Pr{B (a, l) < ψ}. (19)

Thus, the truncation error after l terms is bounded above by Pr{B (a, l) >
ψ}Gn+2l(φz).
To see this more clearly, let ψ = (1 + t)−1, and for a > 0,

1− Sl(a, t) =
∞∑
j=l

(a)j
j!

tj(1 + t)−(a+j). (20)

Differentiating,

−S ′l(a, t) =
∞∑
j=l

(a)j
j!

[
jtj−1(1 + t)−(a+j) − (a+ j)tj(1 + t)−(a+j+1)

]
=

(a)l
(l − 1)!

tl−1(1 + t)−(a+l) +

∞∑
j=l

[(a)j+1 − (a+ j)(a)j]

j!
tj(1 + t)−(a+j+1)

(21)
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But the terms [(a)j+1 − (a+ j)(a)j] vanish for all j, and this does not depend
on a being an integer. Hence, as in Rider, for any a > 0,

−S ′l(a, t) =
(a)l

(l − 1)!
tl−1(1 + t)−(a+l). (22)

The remaining steps follow those in Rider exactly (just substitute ψ = (1 +
t)−1 at the end).

3 Suggested Approximation

The suggestion is to use the variate Q̃ = a1χ
2
n1

+ a2χ
2
n2

= (ψχ2n1 + χ2n2)/φψ
as an approximation to Q, choosing the four free parameters (n1, n2, φ, ψ) so
that the first four cumulants of Q̃ agree with those of Q. The approximation
to the cdf will then have the form (15), with (n1, n2, φ, ψ) replaced by the
cumulant-matching values. Without loss of generality we can assume that
a1 < a2, so that 0 < ψ < 1, and φ > 0. Although the approximation to
the cdf is, like the exact expression, an infinite series, the evaluation of that
series is much simpler than for the exact expression, and only the first four
power sums pr are needed. Surprisingly, the parameter values that achieve
equality of the first four cumulants are easily obtained.

3.1 Matching Cumulants

To simplify notation, put n1 = k, n2 = l, and φψ = c. In this notation the
cumulants of Q̃ = (ψχ2k + χ2l )/c are given by

κ̂r = 2r−1(r − 1)! (ψrk + l) /cr. (23)

We want to choose the parameters (l, k, ψ, c) so that the first four cumulants
of Q̃ agree with those of Q itself, i.e., κ̂r = κr for r = 1, 2, 3, 4. This produces
the four equations:

kψ + l = cp1, kψ
2 + l = c2p2 (24)

kψ3 + l = c3p3, kψ
4 + l = c4p4, (25)

to be solved for (ψ, k, l) and c. We assume that the weights ai are not all
equal (see Remark 3 below).
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Eliminating l from the first two equations gives

kψ(ψ − 1) = c(cp2 − p1), (26)

and from the second and third gives

kψ2(ψ − 1) = c2(cp3 − p2).

Thus, taking the ratio,

ψ =
c(cp3 − p2)
(cp2 − p1)

. (27)

Repeating this sequence, but beginning at the second equation, gives the pair

kψ2(ψ − 1) = c2(cp3 − p2),
kψ3(ψ − 1) = c3(cp4 − p3),

from which

ψ =
c(cp4 − p3)
(cp3 − p2)

.

Equating the two expressions for ψ gives a quadratic equation in c alone:

g(c) = (cp2 − p1)(cp4 − p3)− (cp3 − p2)2 = 0, (28)

or
g(c) = c2 − cτ + δ = 0, (29)

with

τ =
p1p4 − p2p3
p2p4 − p23

, δ =
p1p3 − p22
p2p4 − p23

. (30)

We show in Appendix B that the smaller root of g(c) = 0, c1 say, is the
appropriate choice for c, i.e.,

c1 =
1

2

[
τ −
√
τ 2 − 4δ

]
. (31)

This value determines ψ, equation (26) then provides k, and l = cp1 − kψ.
The complete solution is thus, in terms of c1:

ψ =
c1(c1p3 − p2)
c1p2 − p1

;φ =
(c1p2 − p1)
(c1p3 − p2)

, (32)

k =
c1(p1 − c1p2)
ψ(1− ψ)

; l = c1p1 − kψ. (33)
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Defining v = k + l = c1p1 + k(1− ψ), the approximating cdf has the form

Pr{Q < z} ' ψ
l
2

∞∑
j=0

( l
2
)j

j!
(1− ψ)jGv+2j(φz), (34)

with (k, l, ψ, φ) as given above.

Remark 2 Of course, in the case m = 2 the approximation should be exact,
and it is straightforward, if tedious, to confirm that that is the case.

Remark 3 It is immediate from the argument in Appendix B that ψ, φ, and
k are positive when the ai are not equal. The positivity of l can also be
established with a little extra algebra; see Appendix B. Hence, the cumulants
κ̂r implied by these values are all positive, as they should be.

Remark 4 Note that this solution process fails if the weights ai are all equal
to a, say, since then pr = nar. However, in that case the system is satisfied
by k = n, l = 0, and ψ = ca, so that Q̃ = aχ2n = Q, and no approximation
is involved. It may also be unstable if the ai are close to being equal, and in
this case an alternative approximation should be sought.

Remark 5 The values for (k, l) and hence v = k + l obtained here will not
be integers, so strictly speaking the distributions appearing in the mixture
representation (34) are those of Gamma variates, rather than Chi-square,
but we ignore this distinction since it is irrelevant.

Remark 6 Note also that, in the approximation (34) it is not merely a mat-
ter of replacing the (complicated) coeffi cients bj in the exact expression by
simpler terms. Both the parameter v of the chi-square cdfs involved, and its
argument φz, are derived from the cumulant-matching equations.

3.2 Evaluation Summary: Quadratic form

Comparisons of numerical accuracy and resource requirements of various ex-
act procedures (Imhof (1961), Sheil and O’Muircheartaigh (1977)), and sev-
eral moment-matching approximations for this problem, have been reviewed
recently in B&A. Bodenham and Adams conclude that the four-term ap-
proximation suggested by Lindsay et al. (2000) (hereafter LPB), which we
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call G4, is generally superior to other methods, although the diffi culty cal-
culating the components needed to implement it is significant. Rather than
comparing our method with several of the others in this category, we shall
therefore evaluate our method against G4 and the "exact" methods avail-
able.4We also include in the comparison three saddlepoint-based methods
discussed by Wood (1993). These have a normal base, and two implementa-
tions of a chi-square base.
The LPB method we call G4 uses a mixture of 4 gamma variates with

the same shape parameter, different scale parameters, and, with appropri-
ate mixture probabilities, matches the first 8 moments of Q. B&A provide
a greatly simplified exposition of G4, clarifying the calculation of the scale
parameters µj. In their evaluations LPB reported, among other things, re-
sults for 4 configurations of the ai from Solomon & Stevens (1977), and 14
(different) configurations from Wood (1989).5 In these configurations the ni
are all treated as unity, but when one counts only distinct ai, of the 14 Wood
cases, 6 have 2 distinct ai, for which Q̃ is exact, 6 have 3 distinct, and 2 have
4 different ai.
Our first evaluation exercise uses, for n = 4, the same 18 configurations

of the ai, and also the same 10 quantiles, as those used by LPB, i.e., those
corresponding to the probabilities

P = {0.01, 0.025, 0.50, 0.10, 0.25, 0.75, 0.90, 0.95, 0.975, 0.990}

There are thus 180 points of comparison. Note that this means we are eval-
uating the ability of the various methods to approximate the entire distribu-
tion, not just the tails. We give analogous results focussing on the upper tail
of the distribution seperately. The exact quantiles were computed using the
S&O’M exact method, but rather than using the Ruben recursions for the
weights in the cdf, this is implemented by using the HKW effi cient recursion.
The results of this exercise are given in the following Table:

Table 1a: Comparison of the three methods over the entire distribution

4The methods which can in principle be iterated to converge to an arbitrary precision
are Davies’(1980) implementation of Imhof’s exact procedure, and Ruben’s (1962) series
implemented by Sheil and O’Muircheartaigh (1977), or in a faster but perhaps slightly
riskier version by Farebrother (1984a).

5B&A object to the partiality of such investigations of the parameter space. They
instead used a uniform random search over the ai.
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MAE AAE 4F% 3F% 2F% 1% 2.5%
Q̃ 0.0022 0.00035 48 72 100 100 100
G4 0.0212 0.00066 52 86 97.2 97.8 100
S∗ 0.014 0.0017 15 49 89.4 96.7 100

In Table 1a, MAE = maximum absolute error, AAE = average absolute
error, rF% = percentage of cases accurate to r significant digits. The last
two columns give the percentage of cases in which the absolute error was less
than 1%, or less than 2.5%. The results given for saddlepoint methods, S∗,
are those of the best of the three saddlepoint methods (usually one of the
methods with a chi-square base). Evidently all methods are quite accurate,
but our simple approach (Q̃) dominates the other methods on almost all
criteria. It must be said, however, that these results favour Q̃, since 6 of the
18 points used have m = 2, when Q̃ is exact.
Focussing next on the upper tail, the analogous results are given based on

the quantiles corresponding to probabilities 0.90(0.005)0.995, and the same
set of coeffi cients. The next table gives the results of this exercise (omitting
the last two columns).

Table 1t: Performance of the approximations in the upper tail

MAE AAE 4F% 3F% 2F%
Q̃ 0.0005 0.00009 54 99.6 100
G4 0.0009 0.00009 67 97.1 100
S∗ 0.0045 0.00112 12 49.0 100

The values labelled S∗ are for the best of the three saddlepoint methods,
but these are clearly dominated by the other two methods. Again, the four-
moment approach using Q̃ is very nearly as good as G4, and dominates it on
some criteria.
Next, we conducted a similar exercise in which the weights ai are varied,

with n = m = 3, 4, and for each method we search for the configuration with
the worst-case error. In this case the quantiles used were those of the 15
probabilities

P = {0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.975, 0.99},
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where a(b)c means "from a by increments of b to c". The ai were, without
loss of generality, normalised so that Σn

i=1ai = n, and we searched over the
grid 0.02(0.02)n/2 for each ai. The results were as given in the following
Table (omitting the case n = 2 where Q̃ is exact):6

Table 2a: Comparison of methods; worst cases over a grid of coeffi cients,
n = 3, 4.

MAE AAE 4F% 3F% 2F% 1% 2.5%
Q̃, n = 3 0.0075 0.00080 37 68 96.7 100 100
G4, n = 3 0.0241 0.00043 56 81 98.7 99.7 100
Q̃, n = 4 0.0116 0.00099 22 56 96.9 99.8 100
G4, n = 4 0.0288 0.00038 48 81 99.2 99.9 100
S∗ 0.0111 0.00193 25 51 84.4 97.3 100

Overall, bearing in mind that the results in the table refer to the worst
cases, both Q̃ and G4 perform well, both having errors of 1% or below in
over 99% of cases. In terms of MAE Q̃ is superior, but in terms of AAE G4
is better, but the differences are small in both cases. The analogue of Table
2a, but now focussing on the upper tail of the distribution (and omitting the
last two columns again), yields the results given in the following table:

Table 2t: Comparison of methods; worst cases over a grid of coeffi cients,
n = 3, 4; upper tail of distribution

MAE AAE 4F% 3F% 2F%
Q̃, n = 3 0.00058 0.000061 69 99.6 100
G4, n = 3 0.00019 0.000014 93 100 100
Q̃, n = 4 0.00079 0.000093 53 98.3 100
G4, n = 4 0.00034 0.000021 89 100 100
S∗∗ 0.00405 0.00792 17 52.4 100

6Because of the symmetry of Q as a function of the coeffi cients, there were 84,000
points of comparison for n = 4. For n = 5 this would be 24 times as large.
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Here, S∗∗ is the analogue of S∗ in Table 1t. Again, Q̃ and G4 dominate
the saddlepoint methods, and both are accurate to at least three figures in at
least 98% of cases. This is certainly more precision than is typically needed
for testing purposes.
Both evaluation exercises so far have been cases with all ni = 1.We next

seek to explore the influence of the ni on the approximations when ni > 1
for some i. To do so we examined four cases with m = 3 corresponding to
the ai−configurations that produced the worst positive and negative errors
for Q̃ and G4 when all ni = 1. The implicated configurations are given in
the second column of Table 3 below.7

For these chosen configurations we then search over a grid of values for
the ni, ni ∈ {1, 2, 3, 4, 5, 10, 20, 30, 50} (i.e., 93 = 729 triplets), and for 10 P -
values, 5 in the lower tail {0.01, 0.025, 0.05, 0.1, 0.25}, and the corresponding
5 in the upper tail. The results are summarized in Table 3 below. The last
2 columns give the percentage of instances in which each method has better
than 3-digit accuracy.

Table 3: Comparisons over a grid of ni values; m = 3, worst-case weights.

Case weights Q̃ max G4 max Q̃ mean G4 mean Q̃% G4%
1 0.105, 0.990, 1.905 0.013022 0.023986 0.000281 0.000786 88.09 76.5
2 0.145, 0.985, 1.870 0.010048 0.018989 0.000237 0.000761 88.5 74.98
3 0.225, 0.040, 2.735 0.008631 0.074395 0.000143 0.003871 95 50
4 0.140, 0.145, 2.715 0.000005 0.047503 0.000000 0.004430 100 48

Again we find that Q̃ dominates G4 on all criteria, in this case by a fairly
wide margin: the former is correct to 3 digits in all but 12% of cases, but G4
strays in some 23%.

Remark 7 The grid search just described effectively entails searching over a
large array of values for the elementary symmmetric functions er upon which
the distribution depends. Thus, whilst the search uses m = 3, it is in fact
quite a comprehensive evaluation of the methods in terms of the quantities
that really matter. See Remark 1 above.

7It should be noted that the elementary symmetric functions er for these four base cases
are (3,2.256,.267), (3,2.1899,0.198), (3,0.7338,0.0246), and (3,0.7941,0.055) respectively.
Thus, the er for cases 1 and 2 are very different from those for cases 3 and 4.
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The results of this exercise can also be summarized by viewing the trajec-
tories of the largest error as the ni vary. We took the four cases used above
(the worst positive and negative errors for each of Q̃ and G4), and did a
grid search over the 9 ni values given above, and the same 10 quantiles. We
then graphed, for each i, and each value of ni, the largest error found in a
search over the values of the other two nj, and over the ten quantiles. Figure
1 illustrates the results of this exercise for Case 1. The solid lines relate to
Q̃, the dashed lines to G4. For example, in Fig. 1, starting from Q̃′s worst
case when n1 = n2 = n3 = 1 (with weights {0.105, 0.990, 1.905}), the solid
blue line shows the maximum error of Q̃ over the grid as n2 varies from zero
to 50. The purple and red lines show the same behaviour for increasing n1
and n3, respectively. Thus, the three solid lines reveal that increasing n2,
the multiplicity of the smallest weight, is least effective at reducing the error.
The dashed lines are the analogous trajectories for G4, and similar patterns
are revealed.

0 10 20 30 40 50
0.000

0.005

0.010

0.015

0.020

n1, n2, n3

|error|

Case 1, Q̃ solid, G4 dashes. At ni = 10 the curves are in the order
n3 < n1 < n2.

Figure 1 shows that, when evaluated by these "worst case" metrics, Q̃ is again
convincingly superior to G4. The analogous plots for Cases 2 - 4 are available
from the authors.8 The equivalent analysis form = 4 is problematic, because

8The trajectories are L-shaped or unimodal, but the mode may be at some distance
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Case 1 (worst positive error for Q̃, all ni = 1) has two equal weights, and
thus can be included in the set of m = 3 cases. The same applies to Case 3
(worst positive error for G4). Unsurprisingly, though, all trajectories exhibit
the same pattern: large ni helps, but much more rapidly when attached to
the larger weights.
In summary, the several types of evidence described in this section clearly

indicate that the approximation based on Q̃ outperforms that based on G4,
and it also outperforms various saddlepoint methods that have been pro-
posed. Since Q̃ is also significantly simpler to implement than the other
methods considered, its use can be confidently recommended.

4 Application: Student-t-like Tests

In recent work on the finite sample properties of a number of tests that are
routinely used in applied work, Hansen (2021) points out that, in a variety
of contexts, the test statistics in question have the form9

T =
Z√
Q
, (35)

where Z ∼ N(0, 1), and Z andQ independent, as with a standard t−statistic,
but instead of having Q ∼ χ2(v), we have

Q =
m∑
i=1

aiχ
2(ni), (36)

a positive linear combination of independent χ2 variates. He presents sim-
ulation evidence which shows that assuming a Student-t distribution for T
- the usual approach - can produce tests that are badly over-sized (with
corresponding distortions of the coverage levels of confidence sets).
Using essentially the infinite-mixture representation for pdfQ(q) in equa-

tion (7), Hansen shows that the distribution of T is a mixture of Student-t

from the origin. The most delayed decline is Case 3, weights {0.225, 0.040, 2.735}, n2
trajectory, for G4. The peak is at n2 = 30, but the subsequent decline is slow. This
illustrates that increasing the frequency for the smallest weight is not quickly effective on
its own.

9In practice the distribution assumptions made here may be asymptotic, rather than
finite-sample. Nevertheless, the densities involved, and the need for approximations to
them, remain the same.
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distributions of the same form. We prove this more simply below. However,
there are a number of computational issues associated with the implementa-
tion of this exact result, so there is an incentive to replace the distribution
of Q by an approximation. Using simulation studies, Hansen (2021) explores
the accuracy of several different approximations, including ours, and con-
cludes that our approach is superior. In the next section we examine the
accuracy of this approximation using exact computations, as we have done
earlier for Q̃. These too support our approach.

4.1 Exact and approximate distribution function

Since Z ∼ N(0, 1) and is independent of Q, the conditional distribution of
T given Q = q is N(0, q−1). The unconditional distribution can be derived
from this in the obvious way (see Appendix B), but there is an easier way,
as follows. The conditional distribution is evidently symmetric about the
origin, and, conditionally,

Pr{T 2 < z|Q = q} = Pr{χ2(1) < qz} = G1(qz), (37)

so that, unconditionally, from the mixture representation of pdfQ(q) in equa-
tion (7),

Pr{T 2 < z} = EQ [G1(qz)] =
∞∑
j=0

bjEx∼χ2(n+2j) [G1(xz/δ)] . (38)

The cdf of the χ2v distribution is denoted here and elsewhere by Gv(z) =
Pr{χ2v ≤ z}. But, directly from the definition of an Fv1,v2 variate, a straight-
forward conditioning argument yields:

Pr{Fv1,v2 < z} = Ex∼χ2(v2)

[
Gv1

(
xv1z

v2

)]
. (39)

Thus, we immediately obtain an expression for the (exact) cdf of T 2 :

Pr{T 2 < z} = EQ [G1(qz)] =

∞∑
j=0

bj Pr {F1,n+2j < (n+ 2j)z/α} . (40)

This mixture representation of the cdf can be used with the actual bj
in equation (9), but of course is subject to the same computational issues.
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Instead, we suggest using the approximation for the distribution of Q, with
parameters chosen as described earlier. That is, with

bj = (
l

2
)jψ

l
2 (1− ψ)j/j!, (41)

and the terms Pr {F1,n+2j < (n+ 2j)z/α} replaced by Pr {F1,v+2j < (v + 2j)zφ} .
That is, we suggest using the approximation

Pr{T 2 < z} ' ψ
l
2

∞∑
j=0

( l
2
)j

j!
(1− ψ)j Pr {F1,v+2j < (v + 2j)zφ} , (42)

with the values (k, l, ψ, φ) those given earlier for approximating the cdf of Q.
We denote a variate with this cdf by T̃ 2.

Remark 8 Again, the value of v = k+ l produced by equating cumulants will
not be an integer, so the random variables F1,v+2j are not strictly F−distributed,
but again this distinction is immaterial.

Remark 9 Theorem 2 in Hansen (2021) is essentially this result, but Hansen’s
proof is somewhat different.

4.2 Evaluation Summary: T-test

The cdf of T̃ 2, the approximation to T 2, and of T 2 itself, are evaluated
using the HKW approach, and Imhof’s exact method, adapted to the case
where the "conditional" distributions in the mixture representation are F -
distributions rather than Chi-squared. These are accurate to 10−6 or better.
Since there is no competing approximation in this case, the performance of
T̃ 2 can only be evaluated relative to the exact distribution.10

To begin with we use the same 18 configurations of the weights ai as
above, choosing, as before, the ai at which the maximum error of Q̃ occurs
when all ni = 1. We then explore the same grid of the ni, and obtain the
results summarized in the following table:

10Hansen (2021) also considers the three-moment approximation suggested by Buckley
and Eagleson’s (1988) application of Hall (1984). However, our approach is found to
dominate this method as well.
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Table 4: Summary of performance of T̃ 2; m = 3, 4.

MAE ni AAE 3F%
m = 3 0.004838 {1, 2, 1} < 0.000025 > 99%
m = 4 0.006208 {1, 1, 3, 1} < 0.000027 > 99%

In the case m = 3 all trajectories decline monotonically, the largest error at
ni = 50 being 0.000147 for, predictably, the small weight 0.04. For m = 4
all trajectories decline monotonically beyond ni = 3, the largest error at
ni = 50 being 0.000360 for the weight of 0.08. The largest error at ni = 10
is 0.000114.
One can instead use the weights giving the worst errors for T̃ 2 (rather

than those worst for Q̃) when all ni = 1, then explore the grid of ni val-
ues. It happens that the errors for T̃ 2 all have the same sign. The implied
configurations and maximum errors are as given in the following table:

Table 5: Cases giving the worst errors for T̃ 2 when all ni = 1.

m error a1 a2 a3 a4 Prob.
3 0.003902 1.01 0.08 1.91 0.975
4 0.005544 1.26 0.08 0.08 2.58 0.975
4∗ 0.005521 1.26 0.07 0.09 2.58 0.975

Note that for m = 4 the worst case has a2 = a3 (so actually m = 3). In
the last row of the Table we separate these, with very little impact on the
maximum error, so we report the trajectories for ni with the weights in the
last row of the table. The maximum error rises as the ni = 1 "constraint"
is relaxed, but for m = 3 only to 0.005565 at {n1, n2, n3} = {1, 3, 1} and
P = 0.975, and for m = 4 to 0.006519 at {1, 3, 1, 1} and the same P . Errors
decline monotonically with increasing ni beyond these points. The largest
error for ni = 50 is 0.000483 (at {2, 50, 1, 1}, P = 0.975).
In short, T̃ 2 provides an excellent approximation to the distribution of T 2

- even more accurate than Q̃ provides for Q. This conclusion is strongly re-
inforced by the simulation results given in Hansen (2021). It is worth noting
that Hansen (2021) also explores the computation cost of several approxima-
tion methods, and these results too are favourable to our approach.11

11The consequences of using a suitably rescaled F (1, n) variate to approximate the actual
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5 Generalization: F-Type Test statistics

A related problem of the same type is to consider the density of a ratio of two
independent quadratic forms, i.e., the generalized version of an F−statistic:

F =
y′1D1y1
y′2D2y2

=
Q1
Q2
, yi ∼ N(0, Ini), i = 1, 2; y1 ⊥ y2. (43)

Using the results given earlier, the exact density of F = Q1/Q2 is readily
obtained, and is:

pdfF (f) =
∞∑

j,k=0

b1jb2k(φ1/φ2)
n1
2

{
Γ(j + k + n1+n2

2
)

Γ(j + n1
2

)Γ(k + n2
2

)
f
n1
2
+j−1 (1 + φ1f/φ2)

−(n
2
+j+k)

}
,

(44)
with

bij = |φiDi|−
1
2

(1
2
)j

j!
Cj(Ini − (φiDi)

−1), i = 1, 2. (45)

The cdf is thus the doubly-infinite mixture of F−distribution functions:

Pr{F < z} =
∞∑

j,k=0

b1jb2k Pr

{
Fn1+2j,n2+2k <

φ1(n2 + 2k)

φ2(n1 + 2j)

}
. (46)

One approach to approximating this would be to use the methods dis-
cussed earlier for each component separately to obtain an approximate joint
density. This would entail replacing the b1j, b2k by

b̃ij = ψ
n2i
2
i

(n2i
2

)j

j!
(1− ψi)j, (47)

and using values ψi, φi, n1i and n2i determined as discussed earlier. Pre-
liminary evaluations of this method are encouraging, but we defer a full
evaluation to later work.

distribution of T 2 can be explored by similar methods. We find that doing so results in
rejection rates that are too large: for nominal sizes of {10, 5, 2.5, 1}% the actual sizes can
be as large as {21, 14.5, 10, 6}% when m = 3, and as large as {19.3, 12.8, 8.3, 4.6}% when
m = 4. Moral: don’t use the F (1, n) distribution to approximate the distribution of T 2!
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6 Concluding Remarks

We have proposed a new, four-moment, approximation to the distribution
of a positive definite quadratic form in standard normal variates, or, equiv-
alently, to a linear combination of independent chi-squared variates. The
method is simple to implement, and provides an extremely accurate approx-
imation - on most criteria matching the performance of the "best of the
rest", the eight-moment approximation suggested by Lindsay et. al. (2000),
which is considerably more complicated to implement. We then suggested
that the approximation can also be used to approximate the distribution of
a student− t− like variate, when the denominator is not a chi-squared vari-
ate but a more general quadratic form. This form arises in many applied
contexts, and we again find that the proposed approach prides an excellent
approximation - certainly more than adequate for practical testing appica-
tions.
Finally, we note that results of the type we discuss have wide applicability.

For instance, Hansen (2021) shows that they can be used to analyse the prop-
erties of the heteroscedasticity-robust t-ratio introduceded by White (1980),
and studied by many since. At another extreme, Bausch (2013) shows that
the distribution, and approximations to it, have applications to the physics
of string vacua.

7 Appendix A: Exact density for the casem =

2

Starting from xi ∼ χ2(ni), i = 1, 2, we want the density of q = a1x1 + a2x2.
Assume, without loss of generality, that a2 > a1 > 0, and transform to
qi = aixi, i = 1, 2, to give q = q1 + q2, and

pdf(q1, q2) =
q
n1
2
−1

1 q
n2
2
−1

2

2
n1+n2

2 Γ(n1
2

)Γ(n2
2

)a
n1
2
1 a

n2
2
2

exp

{
−1

2

(
a−11 q1 + a−12 q2

)}
. (48)

Now transform to q = q1 + q2 and b = q1/q, leaving

pdf(b, q) =
b
n1
2
−1(1− b)

n2
2
−1q

n1+n2
2
−1

2
n1+n2

2 Γ(n1
2

)Γ(n2
2

)a
n1
2
1 a

n2
2
2

exp

{
−1

2
q
(
a−11 b+ a−12 (1− b)

)}
.

(49)
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Integrating out b gives

pdfQ(q) =
q
n1+n2

2
−1 exp

{
−1
2
qa−12

}
2
n1+n2

2 Γ(n1+n2
2

)a
n1
2
1 a

n2
2
2

1F1

(
n1
2
,
n1 + n2

2
;−1

2
q
(
a−11 − a−12

))
(50)

=
q
n1+n2

2
−1 exp

{
−1
2
qa−11

}
2
n1+n2

2 Γ(n1+n2
2

)a
n1
2
1 a

n2
2
2

1F1

(
n2
2
,
n1 + n2

2
;
1

2
q
(
a−11 − a−12

))
.(51)

Putting φ = a−11 , ψ = a1/a2, 0 < ψ < 1, n = n1 + n2, this becomes

pdfQ(q) =
φ
n
2ψ

n2
2 q

n
2
−1 exp

{
−1
2
qφ
}

2
n
2 Γ(n

2
)

1F1

(
n2
2
,
n

2
;
1

2
qφ (1− ψ)

)
, (52)

as reported in the text.

8 Appendix B: the appropriate root of the
quadratic

To determine which root of the quadratic g(c) should be used, we seek solu-
tions satisfying k > 0 and 0 < ψ < 1.We make use of a well-known inequality
for the power sums pr, which says that for all j, k, r, a, b, c s.t. aj + bk = cr.

pajp
b
k ≥ pcr.

(see Reznick, (1983), for instance). With j = 1, k = 3, a = b = 1, r = c = 2,
we get p1p3 ≥ p22, and with j = 2, k = 4, a = b = 1, r = 3, c = 2, we have
p2p4 ≥ p23. The inequalities are strict unless all non-zero elements of D are
equal.
Now, for g(·) as in equation (28), we have g(0) = δ > 0, g(p1/p2) =

−(p1p3 − p22)2/p22 < 0, and g(p2/p3) = (p22 − p1p3)(p2p4 − p23)/p23 < 0, so both
roots are real and positive, and the values p1/p2 and p2/p3 are between the
roots c1 and c2. For the larger root c2, c2p3−p2 and c2p2−p1 are both positive,
and

c2(c2p3 − p2)− (c2p2 − p1) > [p1(c2p3 − p2)− p2(c2p2 − p1)] /p2
= c2(p1p3 − p22)/p2
> 0.
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Thus, at c = c2, ψ > 1. On the other hand, at c1 we have c1p2 − p1 and
c1p3 − p2 both negative, and

c1(p2 − c1p3)− (p1 − c1p2) < [p1(p2 − c1p3)− p2(p1 − c1p2)] /p2
= −c1(p1p3 − p22)/p2
< 0,

so that, at c = c1, 0 < ψ < 1, as required. This is the root that should be
used.
To see that l > 0 when the ai are not equal we have

l = c1p1 − kψ =
c1

1− ψ [c1p2 − p1ψ] .

The second term is

c1p2 − p1ψ =
c1

c1p2 − p1
[p2 (c1p2 − p1)− p1(c1p3 − p2)]

=
c21

c1p2 − p1
[
p22 − p1p3

]
> 0,

since numerator and denominator are both negative.

9 Appendix C: Distribution of T

Since the conditional distribution of T given Q = q is N(0, q−1) the condi-
tional density is:

pdfT (u|Q = q) =

√
q√

2π
exp

{
−1

2
u2q

}
. (53)

The unconditional density is therefore the expectation12

pdfT (u) = (2π)−
1
2

∫
q>0

exp

{
−1

2
u2q

}
√
qpdfQ(q)dq. (54)

12Of course, if Q ∼ χ2n, this variance-mixture of the N(0, q
−1) density produces the

usual t-distribution.
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Using the exact density of Q in equation (6) and evaluating the integral gives

pdfT (u) =
|D|− 1

2

2
n
2 Γ(n

2
)
(2π)−

1
2

∫
q>0

exp

{
−1

2
q(α + u2)

}
q
n+1
2
−1

×1F1
(

1

2
,
n

2
;
1

2
αq[In − (αD)−1]

)
dq

=
|D|− 1

2Γ(n+1
2

)

Γ(1
2
)Γ(n

2
)

(α + u2)−
n+1
2 2F1

(
1

2
,
n+ 1

2
;
n

2
;
α[In − (αD)−1]

(α + u2)

)
.(55)

That is,

pdfT (u) = α−
1
2 |αD|− 1

2

∞∑
j=0

(1
2
)j

j!
Cj(In−(αD)−1)

{
Γ(n+1+2j

2
)

√
πΓ(n+2j

2
)

(
1 +

u2

α

)−n+2j+1
2

}
,

(56)
so that the corresponding distribution function is again the mixture

Pr{T < u} =
∞∑
j=0

bjFn+2j

(
u
√

(n+ 2j)/α
)
, (57)

where Fv(z) is the cdf of the Student-t distribution, and the bj are exactly
those appearing in the density of Q (see equation (9)). This is the equation
given in Theorem 3 of Hansen (2017) (in slightly different notation).
When Q has only two components (m = 2) the density pdfQ(q) is replaced

by the simpler form

pdfQ(q) =
φ
n
2ψ

n2
2 exp

{
−1
2
qφ
}

2
n
2 Γ(n

2
)

q
n
2
−1
1F1

(
n2
2
,
n

2
;
1

2
qφ (1− ψ)

)
, (58)

producing the unconditional cdf in the case m = 2 :

Pr{T < u} = ψ
n2
2

∞∑
j=0

(n2
2

)j

j!
(1− ψ)jFn+2j

(
u
√

(n+ 2j)φ
)
. (59)
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