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Abstract

We study a dynamic ordered logit model for panel data with fixed effects. We establish

the validity of a set of moment conditions that are free of the fixed effects and that

can be computed using four or more periods of data. We establish sufficient conditions

for these moment conditions to identify the regression coefficients, the autoregressive

parameters, and the threshold parameters. The parameters can be estimated using the

generalized method of moments. We document the performance of this estimator using

Monte Carlo simulations and an empirical illustration to self-reported health status

using the British Household Panel Survey.
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1 Introduction

Panel surveys routinely collect data on an ordinal scale. For example, many nationally

representative surveys ask respondents to rate their health or life satisfaction on an ordinal

scale.1 Other examples include test results in longitudinal data sets gathered for studying

education.

We are interested in regression models for ordinal outcomes that allow for lagged depen-

dent variables as well as fixed effects. In the model that we propose, the ordered outcome

depends on a fixed effect, a lagged dependent variable, regressors, and a logistic error term.

We study identification and estimation of the finite-dimensional parameters in this model

when only a small number (≥ 4) of time periods are available.

For other types of outcomes variables (continuous outcomes in linear models, binary and

multinomial outcomes), results for regression models with fixed effects and lagged dependent

variables are already available. Such results are of great importance for applied practice, as

they allow researchers to distinguish unobserved heterogeneity from state dependence, and

to control for both when estimating the effect of regressors. The demand for such methods

is evidenced by the popularity of existing approaches for the linear model, such as those

proposed by Arellano and Bond (1991) and Blundell and Bond (1998). In contrast, for

ordinal outcomes, almost no results are available.

From the analysis of other nonlinear models with fixed effects, we know that it is chal-

lenging to accommodate unobserved heterogeneity in nonlinear models, especially when also

allowing for lagged dependent variables. For example, early work on the dynamic binary

choice model with fixed effects assumed no regressors, or restricted their joint distribution

(cf. Chamberlain 1985 and Honoré and Kyriazidou 2000). Recent developments by Honoré

and Weidner (2020) and Kitazawa (2021) relax this requirement.

This challenge is even greater for the dynamic ordered logit model. The ordered logit

1One example is the British Household Panel Survey in our empirical application. Others include the U.S.
Health and Retirement Study and Medical Expenditure Panel Survey, the Canadian Longitudinal Study on
Ageing and the National Longitudinal Survey of Children and Youth, the Australian Longitudinal Study on
Women’s health, the European Union Statistics on Income and Living Conditions, the Survey on Health,
Ageing, and Retirement in Europe, among many others.
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model is not in the exponential class (Hahn 1997), so even for the static version we cannot

directly appeal to a sufficient statistic approach. However, the static ordered logit model

can be reduced to a set of binary choice models (cf. Das and van Soest 1999, Johnson

2004, Baetschmann, Staub, and Winkelmann 2015, Muris 2017, and Botosaru, Muris, and

Pendakur 2021). Unfortunately, the dynamic ordered logit model cannot be similarly reduced

to a dynamic binary choice model (see Muris, Raposo, and Vandoros 2020). Therefore, a

new approach is needed.

We follow the functional differencing approach in Bonhomme (2012) to obtain moment

conditions for the finite-dimensional parameters in this model, namely the autoregressive

parameters (one for each level of the lagged dependent variable), the threshold parameters

in the underlying latent variable formulation, and the regression coefficients. Our approach

is closely related to Honoré and Weidner (2020), and can be seen as the extension of their

method to the case of an ordered response variable.

This paper contributes to the literature on dynamic ordered logit models. We are aware

of only one paper that studies a fixed-T version of this model while allowing for fixed ef-

fects. The approach in Muris, Raposo, and Vandoros (2020) builds on methods for dynamic

binary choice models in Honoré and Kyriazidou (2000) by restricting how past values of the

dependent variable enter the model. In particular, in Muris, Raposo, and Vandoros (2020),

the lagged dependent variable Yi,t−1 enters the model only via 1{Yi,t−1 ≥ k} for some known

k. We do not impose such a restriction, and allow the effect of Yi,t−1 to vary freely with its

level.

Other existing work on dynamic panel models for ordered outcomes uses a random effects

approach (Contoyannis, Jones, and Rice 2004, Albarran, Carrasco, and Carro 2019) or re-

quires a large number of time periods for consistency (Carro and Traferri 2014, Fernández-Val,

Savchenko, and Vella 2017). An earlier version of Aristodemou 2021 contained partial iden-

tification results for a dynamic ordered choice model without logistic errors. Our approach

requires no restrictions on the dependence between fixed effects and regressors, requires four

periods of data for consistency, and delivers point identification and estimates.

More broadly, this paper contributes to the literature on fixed-T identification and es-
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timation in nonlinear panel models with fixed effects (see Honoré 2002, Arellano 2003, and

Arellano and Bonhomme 2011 for overviews). The literature contains results for several mod-

els adjacent to ours. For example, the static panel ordered logit model with fixed effects was

studied by Das and van Soest (1999), Johnson (2004), Baetschmann, Staub, and Winkel-

mann (2015), and Muris (2017); results for static and dynamic binomial and multinomial

choice models are in Chamberlain (1980), Honoré and Kyriazidou (2000), Magnac (2000),

Shi, Shum, and Song (2018), Aguirregabiria, Gu, and Luo (2021), Aguirregabiria and Carro

(2021), Pakes, Porter, Shepard, and Calder-Wang (2021) and Khan, Ouyang, and Tamer

(2021).

Our main contribution is to obtain novel moment conditions for the common parameters

in the dynamic ordered logit model with fixed effects. Additionally, we obtain conditions

under which these moment conditions identify those parameters. Finally, we discuss the

implied generalized method of moments (GMM) estimator and demonstrate its performance

in a Monte Carlo study and in an empirical application to self-reported health status in the

British Household Panel Study.

2 Model and moment conditions

In this section we first describe the panel ordered logit model that is used throughout the

paper, and then present moment conditions for the model that can be used to estimate the

common parameter of the model without imposing any knowledge of the individual specific

effects.

2.1 Model and notation

We consider panel data with cross-sectional units i = 1, . . . , n and time periods t = 0, . . . , T .

For each pair (i, t) we observe the discrete outcome Yit ∈ {1, 2, . . . , Q}, which can take

Q ∈ {2, 3, 4, . . .} different values, and the strictly exogenous regressors Xit ∈ RK . We discuss

unbalanced panels in Section 2.4, but for now we assume a balanced panel where outcomes

are observed for all t ≥ 0 and regressors for all t ≥ 1. Thus the total number of time periods
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for which outcomes are observed is T + 1. For t ≥ 1 the observed discrete outcomes depend

on an unobserved latent variable Y ∗it ∈ R as follows:

Yit =



1 if Y ∗it ∈ (−∞ , λ1],

2 if Y ∗it ∈ (λ1 , λ2],
...

Q if Y ∗it ∈ (λQ−1 ,∞),

(1)

where the λ = (λ1, . . . , λQ−1) ∈ RQ−1 are unknown parameters with λ1 < λ2 < . . . < λQ−1.

The latent variable is generated by the model

Y ∗it = X ′it β +

Q∑
q=1

γq 1 {Yi,t−1 = q}+ Ai + εit, (2)

with unknown parameters β ∈ RK and γ = (γ1, . . . , γQ) ∈ RQ. Here, Ai ∈ R ∪ {±∞} is

an unobserved individual specific effect whose distribution is not specified, and Ai is allowed

to be arbitrarily correlated with the regressors Xit and the initial conditions Yi0. Let Xi :=

(Xi1, . . . , XiT ). Conditional on Yi0, Xi, and Ai, the idiosyncratic error term εit is assumed

to be independent and identically distributed over t with cumulative distribution function

Λ(ε) := [1 + exp(−ε)]−1. Thus, εit is a logistic error term. For the cross-sectional sampling,

we assume that (Yi0, Xi1, . . . , XiT , Ai, εi1, . . . , εiT ) are independent and identically distributed

across i.

The model described by (1) and (2) is a dynamic ordered panel logit model, where an

arbitrary function γYi,t−1
of the lagged depend variable Yi,t−1 is allowed enter additively into

the latent variable Y ∗it . This model strikes a balance between a general functional form and

a parsimonious parameter structure. We discuss possible generalizations of the model for Y ∗it

in Section 2.5, but otherwise impose (2) throughout the paper.

Our ultimate goal is to estimate the unknown parameters θ = (β, γ, λ) ∈ Θ := RK+2Q−1

without imposing any assumptions on the individual-specific effect Ai. This requires two

normalizations, because common additive shifts of all the parameters γq or of all the param-

eters λq can be absorbed into Ai. For example, we could impose the normalizations γ1 = 0
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and λ1 = 0, but in this section there is no need to specify such normalizations.

It is convenient to define λ0 := −∞, and λQ :=∞, and

z(Yi,t−1, Xit, θ) := X ′it β +

Q∑
q=1

γq 1 {Yi,t−1 = q} . (3)

With this notation, the model assumptions imposed so far imply that the distribution of Yit

conditional on the regressors Xi, past outcomes Y t−1
i = (Yi,t−1, Yi,t−2, . . .), and fixed effects

Ai, is given by

Pr
(
Yit = q

∣∣∣Y t−1
i , Xi, Ai, θ

)
= Λ

[
z(Yi,t−1, Xit, θ) +Ai− λq−1

]
−Λ

[
z(Yi,t−1, Xit, θ) +Ai− λq

]
(4)

for all i ∈ {1, . . . , n}, t ∈ {1, 2, . . . , T}, and q ∈ {1, 2, . . . , Q}. Let Yi = (Yi1, . . . , YiT ),

and let the true model parameters be denoted by θ0 = (β0, γ0, λ0). In the following, all

probabilistic statements are for the model distribution generated under θ0. For example, we

have Pr
(
Yi = yi

∣∣Yi0 = yi0, Xi = xi, Ai = αi
)

= pyi0(yi, xi, θ
0, αi), where

pyi0(yi, xi, θ, αi) :=
T∏
t=1

{
Λ
[
z(yi,t−1, xit, θ) + αi − λyit−1

]
− Λ

[
z(yi,t−1, xit, θ) + αi − λyit

]}
.

(5)

From now on we drop the index i until we discuss estimation; instead of Yi0, Yi, Xi, Ai, we

just write Y0, Y , X, A for those random variables and random vectors.

2.2 Moment condition approach

For the model just introduced, we want to find moment functionsm : {1, . . . , Q}×{1, . . . , Q}T×

RT×K ×Θ→ R such that

E
[
mY0(Y,X, θ

0)
∣∣∣Y0 = y0, X = x, A = α

]
= 0 (6)

for all y0 ∈ {1, . . . , Q}, x ∈ RT×K , and α ∈ R∪{±∞}. Here, we write the first argument y0 of

the moment function as an index, but that is purely for notational convenience. Conditional
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on Y0 = y0, X = x, and A = α, only the outcome Y = (Y1, . . . , YT ) ∈ {1, . . . , Q}T remains

random, and according to the ordered logit model its distribution is given by (5). The

model assumptions in the last subsection are therefore completely sufficient to evaluate the

conditional expectation in (6).

Once we have established the conditional moment conditions, by the law of iterated

expectations we also have the unconditional moment conditions

E
[
h(Y0, X, θ

0)mY0(Y,X, θ
0)
]

= 0 (7)

for any function h : {1, . . . , Q} × RT×K × Θ → R such that the expectation is well-defined.

Those unconditional moment conditions can then be used to estimate the model parameters

θ0 by the generalized method of moments (GMM).

This estimation approach solves the incidental parameter problem (Neyman and Scott

1948), because the moment condition (7) does not feature the individual-specific effect A at

all. No assumptions are imposed on the distribution of those nuisance parameters, and they

need not be estimated. On the flip-side, this implies that we do not learn anything about the

distribution of A, which is why in this paper we focus exclusively on inference for θ. Notice,

however, that even if one is interested in (functions of) the individual specific effects, like

average partial effects, then the estimation of the common parameters θ will always be a key

first step in any inference procedure.

The moment condition approach just described eliminates the individual-specific effect A

from the estimation, because (6) is assumed to hold for all α ∈ R ∪ {±∞}, but the moment

function mY0(Y,X, θ
0) does not depend on A at all. The existence of moment functions

with that property is quite miraculous: for any given values of Y0 = y0, X = x, and θ0,

the moment function my0(·, x, θ0) : {1, . . . , Q}T → R can be viewed as a finite-dimensional

vector (QT real numbers), but (6) imposes an infinite number of linear constraints – one for

each α ∈ R ∪ {±∞}. The logistic assumption on εit is crucial for finding solutions of this

infinite dimensional linear system in a finite number of variables. For other distributional

assumptions on εit we do not expect such solutions to exist.

In the following, we present moment functions mY0(Y,X, θ
0) that satisfy (6). We have
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derived those moment functions for the dynamic panel ordered logit model analogously to

the results for the dynamic panel binary choice logit model in Honoré and Weidner (2020).

Indeed, for the binary choice case (Q = 2) our moment functions below exactly coincide

with those in Honoré and Weidner (2020), and we refer to that paper for more details on

the derivation, which is closely related to the functional differencing method in Bonhomme

(2012).

Once we have obtained the expressions presented below for the moment functions, then

we can completely forget about their derivation and focus on showing that they are valid

moment functions – i.e. that (6) holds – and on their implications for identification and

estimation of θ. This is the focus of this paper.

2.3 Moment conditions for T = 3

We first introduce our moment functions for T = 3. In our convention this means that out-

comes Yt are observed for the four time periods t = 0, 1, 2, 3 (including the initial conditions

Y0). We have verified numerically that no moment functions satisfying (6) for general pa-

rameter and regressor values exist for T < 3, and for the binary choice case (Q = 2) a proof

of this non-existence is given in Honoré and Weidner (2020). Thus, T = 3 is the smallest

number of time periods that we can consider.

We use lower case letters for generic arguments (as opposed to random variables) of

the moment function my0(y, x, θ), where y0 ∈ {1, . . . , Q}, y ∈ {1, . . . , Q}T , x ∈ RT×K and

θ = (β, γ, λ) ∈ Θ. The t’th row of x is denoted by x′t ∈ RK , and we define xts := xt − xs,

γqr := γq − γr and λqr := λq − λr.

The approach in Honoré and Weidner (2020) results in multiple moment functionsmy0,q1,q2,q3

(y, x, θ) which are distinguished by the additional indices q1, q2, q3. For q1, q3 ∈ {1, . . . , Q−1}
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and q2 ∈ {2, . . . , Q− 1} we define

my0,q1,q2,q3(y, x, θ)

:=



exp
(
x′13 β + γy0,q2 + λq3,q1

) exp(x′32 β + γq2,y1
+ λq2,q3)− 1

exp (λq2,q2−1)− 1
if y1 ≤ q1, y2 = q2, y3 ≤ q3,

exp
(
x′13 β + γy0,q2 + λq3,q1

) 1− exp(x′23 β + γy1,q2 + λq3,q2)

1− exp (λq2−1,q2)
if y1 ≤ q1, y2 = q2, y3 > q3,

exp
(
x′13 β + γy0,q2 + λq3,q1

)
if y1 ≤ q1, y2 > q2,

−1 if y1 > q1, y2 < q2,

−
1− exp(x′32 β + γq2,y1

+ λq2−1,q3)

1− exp (λq2−1,q2)
if y1 > q1, y2 = q2, y3 ≤ q3,

−
exp(x′23 β + γy1,q2 + λq3,q2−1)− 1

exp (λq2,q2−1)− 1
if y1 > q1, y2 = q2, y3 > q3,

0 otherwise.

(8)

Any valid moment function satisfying (6) can be multiplied by an arbitrary constant and

remain a valid moment function. In (8) we used that rescaling freedom to normalize the

entry for the case (y1 > q1, y2 < q2) to be equal to −1. If, alternatively, we normalize the

entry for (y1 ≤ q1, y2 > q2) to be equal to −1, then we obtain the equally valid moment

function

m̃y0,q1,q2,q3(y, x, θ) = − my0,q1,q2,q3(y, x, θ)

exp
(
x′13 β + γy0,q2 + λq3,q1

) .
This rescaling is interesting, because if we reverse the order of the outcome labels (i.e. Yt 7→

Q + 1 − Yt), the model remains unchanged except for the parameter transformations β 7→

−β, γq 7→ −γQ+1−q, and λq 7→ −λQ−q. Under this transformation, the moment function

my0,q1,q2,q3(y, x, θ) becomes m̃ỹ0,q̃1,q̃2,q̃3(y, x, θ) with ỹ0 = Q + 1 − y0 and (q̃1, q̃2, q̃3) = (Q −

q1, Q + 1 − q2, Q − q3). This transformation therefore does not deliver any new moment

functions, which are not already (up to rescaling) given by (8).

Equation (8) does not define my0,q1,q2,q3(y, x, θ) for q2 = 1 and q2 = Q. If we plug those

values of q2 into (8), then various undefined terms appear since λ0 = −∞ and λQ = ∞.
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However, if for q2 = 1 we properly evaluate the limit of m̃y0,q1,q2,q3(y, x, θ) as λ0 → −∞, then

we obtain

my0,q1,1,q3(y, x, θ) :=



exp
(
x′23 β + γy1,1 + λq3,1

)
− 1 if y1 ≤ q1, y2 = 1, y3 > q3,

−1 if y1 ≤ q1, y2 > 1,

exp
(
x′31 β + γ1,y0 + λq1,q3

)
if y1 > q1, y2 = 1, y3 ≤ q3,

exp
(
x′21 β + γy1,y0 + λq1,1

)
if y1 > q1, y2 = 1, y3 > q3,

0 otherwise.

(9)

Similarly, if for q2 = Q we properly evaluate the limit of my0,q1,q2,q3(y, x, θ) as λQ →∞, then

we obtain

my0,q1,Q,q3(y, x, θ) :=



exp
(
x′12 β + γy0,y1 + λQ−1,q1

)
if y1 ≤ q1, y2 = Q, y3 ≤ q3,

exp
(
x′13 β + γy0,Q + λq3,q1

)
if y1 ≤ q1, y2 = Q, y3 > q3,

−1 if y1 > q1, y2 < Q,

exp
(
x′32 β + γQ,y1 + λQ−1,q3

)
− 1 if y1 > q1, y2 = Q, y3 ≤ q3,

0 otherwise.

(10)

Together, the formulas (8), (9), and (10) provide one moment function for every value of

(y0, q1, q2, q3) ∈ {1, . . . , Q}×{1, . . . , Q−1}×{1, . . . , Q}×{1, . . . , Q−1}, and these constitute

all our moment functions for the dynamic ordered logit model with T = 3. 2 The following

theorem states that these are indeed valid moment functions for the dynamic panel ordered

logit model, independent of the value of the fixed effect A.

Theorem 1 If the outcomes Y = (Y1, Y2, Y3) are generated from model (4) with Q ≥ 2,

T = 3 and true parameters θ0 = (β0, γ0, λ0), then we have for all y0 ∈ {1, . . . , Q}, q1, q3 ∈

{1, . . . , Q− 1}, q2 ∈ {1, . . . , Q}, x ∈ RK×3, and α ∈ R ∪ {±∞} that

E
[
my0,q1,q2,q3(Y,X, θ

0)
∣∣Y0 = y0, X = x, A = α

]
= 0.

2By the limiting arguments (λ0 → −∞ and λQ →∞) described above, all of those moment functions are
already implicitly defined via (8) alone.
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The proof of the theorem is given in the appendix. For any fixed value of Q one could, in

principle, show by direct calculation that

∑
y∈{1,2,...,Q}3

py0(y, x, θ
0, α) my0,q1,q2,q3(y, x, θ

0) = 0

for the model probabilities py0(y, x, θ
0, α) given by (5), but our proof in the appendix does

not rely on such a brute force calculation and is valid for any Q ≥ 2.

For each initial condition y0 we thus have ` = Q(Q − 1)2 available moment conditions.

For example, for Q = 2, 3, 4, 5 there are respectively ` = 2, 12, 36, 80 available moment

conditions for each initial condition. For those values of Q we have verified numerically that

our ` moment conditions are linearly independent, and that they constitute all the valid

moment conditions that are available for the dynamic panel ordered logit model with T = 3,

for generic values of γ.3 We believe that this is true for all Q ≥ 2, but a proof of this

completeness result is beyond the scope of this paper. For the special case of dynamic binary

choice (Q = 2), the moment conditions here are identical to those in Honoré and Weidner

(2020) and Kitazawa (2021), and completeness of those binary choice moment conditions is

discussed in Kruiniger (2020) and Dobronyi, Gu, and Kim (2021).

2.4 Moment conditions for T > 3

We now consider the case where the econometrician has data for more that three time pe-

riods (in addition to the period that gives the initial condition). Obviously, all the moment

conditions above for T = 3 are still valid when applied to three consecutive periods, but

additional moment conditions become available for T > 3. We consider first moment condi-

tions that are based on the outcome on three periods, where the last two are consecutive. Let

zt := z(yt−1, xt, θ), with z(·, ·, ·) defined in (3), and define zts := zt − zs. For y0 ∈ {1, . . . , Q},
3If some of the parameters γq are equal to each other, then additional moment conditions become available.
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q1, q3 ∈ {1, . . . , Q− 1}, q2 ∈ {2, . . . , Q− 1}, and t, s ∈ {1, 2, . . . , T − 1} with t < s we define

m(t,s,s+1)
y0,q1,q2,q3

(y, x, θ) :=



exp (zt,s+1 + λq3,q1)
exp(zs+1,s + λq2,q3)− 1

exp (λq2,q2−1)− 1
if yt ≤ q1, ys = q2, ys+1 ≤ q3,

exp (zt,s+1 + λq3,q1)
1− exp(zs,s+1 + λq3,q2)

1− exp (λq2−1,q2)
if yt ≤ q1, ys = q2, ys+1 > q3,

exp
(
zt,s+1 + γys,q2 + λq3,q1

)
if yt ≤ q1, ys > q2,

−1 if yt > q1, ys < q2,

− 1− exp(zs+1,s + λq2−1,q3)
1− exp (λq2−1,q2)

if yt > q1, ys = q2, ys+1 ≤ q3,

− exp(zs,s+1 + λq3,q2−1)− 1
exp (λq2,q2−1)− 1

if yt > q1, ys = q2, ys+1 > q3,

0 otherwise.

(11)

For T = 3, t = 1, and s = 2, it is straightforward to verify that m
(t,s,s+1)
y0,q1,q2,q3(y, x, θ) in equation

(11) equals the moment function in equation (8). For larger values for T , the moment

function in (11) can be implemented as long as outcomes are observed for the time periods

{t− 1, t, s− 1, s, s+ 1} and covariates are observed for time periods {t, s, s+ 1}.

Since λ0 = −∞ and λQ =∞, equation (11) can not be used to define a moment function

when q2 equals 1 or Q. We next define moment functions for these cases. For y0 ∈ {1, . . . , Q},
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q1, q3 ∈ {1, . . . , Q− 1}, t, s, r ∈ {1, 2, . . . , T}, and t < s < r, we define

m
(t,s,r)
y0,q1,1,q3

(y, x, θ) :=



exp (zsr + λq3,1)− 1 if yt ≤ q1, ys = 1, yr > q3,

−1 if yt ≤ q1, ys > 1,

exp (zrt + λq1,q3) if yt > q1, ys = 1, yr ≤ q3,

exp (zst + λq1,q2) if yt > q1, ys = 1, yr > q3,

0 otherwise,

m
(t,s,r)
y0,q1,Q,q3

(y, x, θ) :=



exp (zts + λQ−1,q1) if yt ≤ q1, ys = Q, yr ≤ q3,

exp (ztr + λq3,q1) if yt ≤ q1, ys = Q, yr > q3,

−1 if yt > q1, ys < Q,

exp (zrs + λQ−1,q3)− 1 if yt > q1, ys = Q, yr ≤ q3,

0 otherwise.

(12)

When T equals 3 and (t, s, r) = (1, 2, 3), these moment functions agree with the ones in

equations (9) and (10), where all the arguments were made explicit. For r = s+1, analogous

to (9) and (10) for T = 3, the two moment conditions in (12) for T ≥ 3 can be obtained

from (11) by setting q2 = 1 and carefully evaluating the limit λ0 → −∞ (after normalizing

the value for yt ≤ q1, ys > 1 to be −1), or setting q2 = Q and taking the limit λQ → ∞.

It is therefore appropriate to think of (11) as our master equation which summarizes all the

moment conditions provided in this paper. In (12) we can choose more general r ≥ s + 1,

but otherwise the structure of (12) can be derived from (11).

It turns out that the moment functions with r > s + 1 are not actually needed to span

all possible valid moment functions of the dynamic ordered choice logit model (see our dis-

cussion of independence and completeness below). However, since implementation of these

moment functions requires only that we observe three pairs (yt−1, yt), (ys−1, ys), (yr−1, yr) of

consecutive outcomes, they may be empirically relevant for the case where observations for

some time periods are (exogenously) missing. We also include r > s + 1 in our discussion

here to ensure that our results in this paper contain those for the dynamic binary choice

logit model studied in Honoré and Weidner (2020) as a special case — notice that for Q = 2
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we always have q2 = 1 or q2 = Q, that is, for the binary choice case all available moment

functions are stated in (12).

The following theorem establishes that the moment function in (11) and (12) do indeed

deliver valid moment conditions.

Theorem 2 If the outcomes Y = (Y1, . . . , YT ) are generated from model (4) with Q ≥ 2,

T ≥ 3 and true parameters θ0 = (β0, γ0, λ0), then we have for all t, s, r ∈ {1, 2, . . . , T}

with t < s < r, y0 ∈ {1, . . . , Q}, q1, q3 ∈ {1, . . . , Q − 1}, x ∈ RK×T , α ∈ R ∪ {±∞}, and

w : {1, . . . , Q}t−1 → R that

E
[
w(Y1, . . . , Yt−1)m

(t,s,s+1)
y0,q1,q2,q3

(Y,X, θ0)
∣∣Y0 = y0, X = x, A = α

]
= 0, for q2 ∈ {2, . . . , Q− 1},

E
[
w(Y1, . . . , Yt−1)m

(t,s,r)
y0,q1,q2,q3

(Y, x, θ)
∣∣Y0 = y0, X = x, A = α

]
= 0, for q2 ∈ {1, Q}.

The proof is provided in the appendix. Notice that for q2 ∈ {1, Q} we can choose the time

indices t < s < r freely. By contrast, for q2 ∈ {2, . . . , Q− 1} we can only choose t < s freely,

but the third time index that appears in the definition of the moment function needs to be

equal to s+ 1, otherwise we do not obtain a valid moment function for those values of q2.

This distinction between q2 ∈ {1, Q} and q2 ∈ {2, . . . , Q−1} is also reflected in the proof of

Theorem 2. The moment functions in (12) for q2 ∈ {1, Q} only depend on Y1, Y2, Y3 through

the binarized variables Ỹ1 = 1 {Y1 > q1}, Ỹ2 = 1 {Y2 = q2}, Ỹ3 = 1 {Y3 > q3}, and the proof

relies on Lemma 2 in the appendix, which provides a general set of valid moment functions for

such binary variables, very closely related to the dynamic binary choice results in Honoré and

Weidner (2020). By contrast, the moment functions in (11) for q2 ∈ {2, . . . , Q − 1} cannot

be expressed through binarized variables only, because there the dependence on Y2 requires

distinguishing three cases (Ys < q2, Ys = q2, Ys > q2), and the proof relies on Lemma 1 in

the appendix which is completely novel to the current paper. However, that proof strategy

for q2 ∈ {2, . . . , Q − 1} does not work for s > r + 1, and we have also numerically verified

that our moment conditions for q2 ∈ {2, . . . , Q− 1} indeed do not generalize to s > r + 1.
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Conjecture on the completeness of the moment conditions

Theorem 2 states that the moment functions in (11) and (12) are valid, but it is natural to

ask whether they are also linearly independent, and whether they constitute all possible valid

moment functions of the dynamic panel ordered logit model. We do not aim to formally prove

such a linear independence and completeness result in this paper, and the following statement

should accordingly be understood as a conjecture, which we have numerically confirmed for

various combinations of Q and T and for many different numerical values of the regressors

and model parameters:

Let the outcomes Y = (Y1, . . . , YT ) be generated from model (4) with Q ≥ 2, T ≥ 3,

and true parameters θ0 = (β0, γ0, λ0) such that γ0q1 6= γ0q2 for all q1 6= q2. For given

y0 ∈ {1, . . . , Q} and x ∈ RK×T , let my0(y, x, θ
0) ∈ R be a moment function that satis-

fies (6) for all α ∈ R ∪ {±∞}. Our calculations suggest that there exist unique weights

wy0(q1, q2, q3, s, y1, . . . , yt−1, x, θ
0) ∈ R such that for all y ∈ {1, . . . , Q}T we have

my0(y, x, θ
0) =

Q−1∑
q1=1

Q∑
q2=1

Q−1∑
q3=1

T−2∑
t=1

T−1∑
s=t+1

wy0(q1, q2, q3, t, s, y1, . . . , yt−1, x, θ
0) m(t,s,s+1)

y0,q1,q2,q3
(y, x, θ0),

(13)

where m
(t,s,s+1)
y0,q1,q2,q3(y, x, θ

0) are the moment functions defined in (11) and (12). In other words,

every valid moment condition in this model is a unique linear combination of the moment

conditions in Theorem 2 with r = s + 1. Notice that the uniqueness of the linear combi-

nation implies that the moment functions involved in this linear combination are linearly

independent.

The right hand side of (13) is not quite a standard basis expansion, because we have not

chosen a basis for the (y1, . . . , yt−1) dependence of wy0(q1, q2, q3, s, y1, . . . , yt−1, x, θ
0). This

(y1, . . . , yt−1) dependence implies that for any given (q1, q2, q3, t, s), the functionm
(t,s,s+1)
y0,q1,q2,q3(y, x, θ

0)

gives rise to Qt−1 linearly independent moment functions. Thus, we conjecture that the to-

tal number of available moment conditions for each value of the covariates x and initial
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conditions y0 is equal to

` =

Q−1∑
q1=1

Q∑
q2=1

Q−1∑
q3=1

T−2∑
t=1

T−1∑
s=t+1

Qt−1 = (Q− 1)Q (Q− 1)
T−2∑
t=1

(T − t− 1)Qt−1

= QT − (T − 1)Q2 − (T − 2)Q.

As explained in Section 2.2, the function my0(·, x, θ0) : {1, . . . , Q}T → R is a vector in a QT

dimensional space. The condition (6), for all α, then imposes QT −` = (T −1)Q2 +(T −2)Q

linear restrictions on this vector, leaving an `-dimensional linear subspace of valid moment

functions, a basis representation of which is given by (13).

The condition γ0q1 6= γ0q2 for all q1 6= q2 is important for this result. For example, if all the

γ0q are the same, then the parameter γ0 can be absorbed into the fixed effects, and we are

left with a static ordered logit model as in Muris (2017), for which one finds an additional

(T − 1)(Q − 1)2 moment conditions to be available, bringing the total number of linearly

independent valid moment conditions (for each value of covariates and parameters) in the

static model to ` = QT − T (Q− 1)− 1.

We reiterate that the discussion of linear independence and completeness of the moment

functions presented above are conjectures which we do not aim to prove in this paper. A

proof for the special case Q = 2 (dynamic binary choice logit models) is provided in Kru-

iniger (2020) and Dobronyi, Gu, and Kim (2021). We also note that counting of moment

conditions as above does not consider whether the resulting moment conditions actually con-

tain information about (all) the parameters θ. Some of the valid moment functions may not

depend on (all of) those model parameters. Identification of the model parameters through

the moment conditions is discussed in Section 3.

2.5 More general regressors

The model probabilities in (5) and the moment functions in (11) and (12) only depend on

the regressors and the parameters β and γ through the single index zt = z(yt−1, xt, θ).
4 So

4As written, the moment condition in (11) depends explicitly on the model parameter γ for the case that
yt ≤ q1 and ys > q2. However, that is a notational artifact, because in that line of the moment condition we
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far, we have only explicitly discussed the linear specification in (3) for this single index, but

Theorem 2 is valid completely independently of the functional form of z(yt−1, xt, θ).
5 In other

words, if we replace the latent variable specification in (2) by

Y ∗it = z (Yi,t−1, Xit, θ) + Ai + εit

for an arbitrary function z(·, ·, ·), then the moment functions (8), (9), (10), and Theorem 2

remain fully valid.

We believe that the linear specification in (2) is the most relevant in practice, but one

could certainly consider other specifications as well. In particular, it is possible to include

regressors that are interactions between the observed regressors and the lagged dependent

variable:

z(Yi,t−1, Xit, θ) := X ′it β +

Q∑
q=1

γq [1 {Yi,t−1 = q}+ 1 {Yi,t−1 = q}X ′it δq] , (14)

where the δq ∈ RK are additional unknown parameters to be included in θ. This specification

allows the effect of the regressors Xit on the outcome Yit to be arbitrarily dependent on the

current state Yi,t−1. While a GMM estimator based on moment functions developed in this

paper could be employed in applications with the more general state dependence as in (14),

we not consider these more general models further.

could have written exp [z(yt−1, xt, θ)− z(q2, xs+1, θ) + λq3,q1 ] instead of exp
(
zt,s+1 + γys,q2 + λq3,q1

)
; that

is, the explicit dependence on γ can be fully absorbed into the single index, but one needs to evaluate
zs+1 = z(ys, xs+1, θ) at q2 instead of ys.

5The parameters λ can also be absorbed into the single index. One just needs to define z̃q(yt−1, xt, θ) :=
z(yt−1, xt, θ)− λq and rewrite (5) as

py0(y, x, θ, α) =

T∏
t=1

{
Λ
[
z̃yt−1(yt−1, xt, θ) + α

]
− Λ

[
z̃yt(yt−1, xt, θ) + α

]}
.

The moment functions in (11) and (12) then remain valid for arbitrary functional forms of z̃q(yt−1, xt, θ). We
just need to replace zt−λq1 , zs−λq2 , and zr−λq3 (with r = s+ 1 in (11)) by z̃q1(yt−1, xt, θ), z̃q2(ys−1, xs, θ),
and z̃q3(yr−1, xr, θ), respectively. The proof of Theorem 2 remains valid under that replacement.
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3 Identification

This section presents identification results for the parameters θ = (β, γ, λ) based on the

moment conditions for T = 3 in Theorem 1. All results in this section impose the following

model assumption.

Assumption ID The outcomes Y = (Y1, Y2, Y3) are generated from model (4) with z(·, ·, ·)

defined in (3), Q ≥ 2, T = 3, and true parameters θ0 = (β0, γ0, λ0). Furthermore, for all

y0 ∈ {1, . . . , Q} there exists a non-empty set X reg
y0
⊂ RK×3 such that for all x ∈ X reg

y0
the

conditional probability Pr(A ∈ {±∞} | Y0 = y0, X = x) is well-defined and smaller than one.

We impose the assumption Pr(A ∈ {±∞} | Y0 = y0, X = x) < 1 for some x to make

sure that the model probabilities in (5) are strictly positive for all possible outcomes. If

Pr(A ∈ {±∞} | Y0 = y0, X = x) = 1, for all x, then only the outcomes Yt = 1 and Yt = Q

are generated by the model. A violation of this assumption on the fixed effects A would

therefore be readily observable from the data. All the propositions below also impose that

X ∈ X reg
y0

occurs with non-zero probability.

The aim is to identify the parameter vector θ0 from the distribution of Y conditional on Y0

and X under Assumption ID. The model for that conditional distribution is semi-parametric:

The distribution of Y conditional on Y0, X, and A is specified parametrically, but only weak

regularity conditions are imposed on the unknown distribution of A conditional on Y0 and

X. The main challenge in the identification problem is how to deal with the unspecified

conditional distribution of A, which is an infinite-dimensional component of the parameter

space of the model. Fortunately, the moment conditions in Theorem 1 already partly solve

this challenge, because they give us implications of the model that do not depend on A. The

remaining question is whether θ0 is point-identified from those moment conditions.

Identification of γ

In order to identify the parameters γ = (γ1, . . . , γQ), up to normalization, we condition on

the event X1 = X2 = X3. For x = (x1, x1, x1) and q1 = q2 = q3 = 1, the moment function in
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(9) reads

my0(y, γ) := exp(γy0)my0,1,1,1(y, x, θ) =



− exp(γy0) if y1 = 1, y2 > 1,

exp (γ1) if y1 > 1, y2 = 1, y3 = 1,

exp
(
γy1
)

if y1 > 1, y2 = 1, y3 > 1,

0 otherwise.

(15)

Theorem 1 implies that E
[
my0(Y, γ

0)
∣∣Y0 = y0, X = (x1, x1, x1)

]
= 0. The following lemma

states that these moment conditions are sufficient to uniquely identify γ up to a normalization.

Proposition 1 Let Assumption ID hold, and let x1 ∈ R be such that

Pr
(
Y0 = y0 & X ∈ X reg

y0
& ‖X − (x1, x1, x1)‖ ≤ ε

)
> 0 for all y0 ∈ {1, . . . , Q} and ε > 0.

Then, if γ ∈ RQ satisfies

E
[
my0(Y, γ)

∣∣Y0 = y0, X = (x1, x1, x1)
]

= 0 for all y0 ∈ {1, . . . , Q}, (16)

for my0(y, γ) as defined in (15), we have γ = γ0 + c for some c ∈ R. Thus, if we normalize

γ01 = 0, then γ0 is uniquely identified from the data.

The proof is given in the appendix. This identification result requires observed data for

every initial condition y0 ∈ {1, . . . , Q}. If this is not available, but we observe T = 4 time

periods of data after the initial condition, then we can instead apply Proposition 1 to the

data shifted by one time period.

In addition to Assumption ID, the proposition demands that covariate values X ∈ X reg
y0

in any ε-ball around (x1, x1, x1) occur with positive probability. This condition, in particular,

guarantees that the conditional expectation in (16) is well-defined, and that conditional on

X = (x1, x1, x1) the event A ∈ {±∞} occurs with probability less than one for every value

of the initial condition Y0.
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Identification of β

Taking the identification result for γ as given, we now turn to the problem of identifying β.

We again consider the moment function in (9) with q1 = q2 = q3 = 1, but now for general

regressor values

my0,1,1,1(y, x, β, γ) := my0,1,1,1(y, x, θ) =



exp (x′23 β)− 1 if y1 = 1, y2 = 1, y3 > 1,

−1 if y1 = 1, y2 > 1,

exp
(
x′31 β + γ1 − γy0

)
if y1 > 1, y2 = 1, y3 = 1,

exp
(
x′21 β + γy1 − γy0

)
if y1 > 1, y2 = 1, y3 > 1,

0 otherwise.

(17)

For k ∈ {1, . . . , K} we define

Xk,+ := {x ∈ X reg
y0

: xk,1 ≤ xk,3 < xk,2 or xk,1 < xk,3 ≤ xk,2},

Xk,− := {x ∈ X reg
y0

: xk,1 ≥ xk,3 > xk,2 or xk,1 > xk,3 ≥ xk,2}.

Here, the set Xk,+ is the set of possible regressor values x ∈ RK×3 such that xk,1 ≤ xk,3 ≤ xk,2

with at least one of the inequalities being strict. For the set Xk,− those inequalities are

reversed. Therefore, if β ∈ Xk,+, then my0,1,1,1(y, x, β, γ) is strictly increasing in βk, and if

β ∈ Xk,−, then my0,1,1,1(y, x, β, γ) is strictly decreasing in βk.

For any vector s ∈ {−,+}K we furthermore define the set Xs =
⋂
k∈{1,...,K}Xk,sk . If β ∈

Xs, then for all k ∈ {1, . . . , K} we have that βk is strictly increasing (or strictly decreasing) in

my0,1,1,1(y, x, β, γ) if sk = + (or sk = −). Those monotonicity properties allow us to uniquely

identify β from the moment conditions E
[
my0,1,1,1(y, x, β

0, γ0)
∣∣∣Y0 = y0, X ∈ Xs

]
= 0, which

are valid moment conditions according to Theorem 1. The following proposition formalizes

this.

Proposition 2 Let Assumption ID hold and let y0 ∈ {1, . . . , Q} be such that

Pr (Y0 = y0 & X ∈ Xs) > 0 for all s ∈ {−,+}K with sK = +.
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Then, if β ∈ RK satisfies

E
[
my0,1,1,1(y, x, β, γ

0)
∣∣∣Y0 = y0, X ∈ Xs

]
= 0 for all s ∈ {−,+}K with sK = +, (18)

we have β = β0. Thus, since γ0 is already identified from Proposition 1, we find that β0 is

also uniquely identified from the data.

The proof is given in the appendix. Again, in addition to Assumption ID the additional

condition in Proposition 2 simply guarantees that the conditional expectation in (18) is

well-defined.

Identification of λ

Having identified γ and β already, we now turn to the problem of identifying λ, up to a

normalization. The moment function in (9) with q2 = q3 = 1 and q1 ∈ {2, . . . , Q− 1} can be

written as

my0,q1,1,1(y, x, β, γ, λ) =



exp
(
x′23 β + γy1,1

)
− 1 if y1 ≤ q1, y2 = 1, y3 > 1,

−1 if y1 ≤ q1, y2 > 1,

exp
(
x′31 β + γ1,y0 + λq1 − λ1

)
if y1 > q1, y2 = 1, y3 = 1,

exp
(
x′21 β + γy1,y0 + λq1 − λ1

)
if y1 > q1, y2 = 1, y3 > 1,

0 otherwise.

(19)

The expected value of this moment function only depends on λ through λq1 − λ1, and is

strictly increasing in λq1 − λ1. This implies that this moment function identifies λq1 − λ1

uniquely. By applying this argument for all q1 ∈ {2, . . . , Q − 1} we can therefore identify λ

up to an additive constant. This is summarized in the following proposition.

Proposition 3 Let Assumption ID hold. Let y0 ∈ {1, . . . , Q} be such that Pr
(
Y0 = y0 & X ∈

X reg
y0

)
> 0. Then, if λ satisfies

E
[
my0,q1,1,1(Y,X, β

0, γ0, λ)
∣∣∣Y0 = y0

]
= 0 for all q1 ∈ {2, . . . , Q− 1},
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we have λ = λ0 + c for some c ∈ R. Thus, if we normalize λ01 = 0, and since γ0 and β0 are

already identified from Proposition 1 and 2, we find that λ0 is also uniquely identified from

the data.

The proof is given in the appendix.

Combining Proposition 1, 2, and 3, we find that θ0 is uniquely identified from the data.

Under the regularity conditions of those propositions we can recover θ0 = (β0, γ0, λ0) uniquely

from the distribution of Y conditional on Y0 and X.

Our identification arguments in this section are constructive. However, they condition

on special values of the regressors. In particular, Proposition 1 conditions on the event

X1 = X2 = X3, which is a zero-probability event if X is continuously distributed (and may

happen rarely even for discrete X). An estimator based on the identification strategy in

this section would therefore in general be quite inefficient. In our Monte Carlo simulations

and empirical application we therefore construct more general GMM estimators based on our

moment conditions.

4 Implication for estimation and specification testing

The moment conditions in Section 2 are conditional on the initial condition Yi0 and the

strictly exogenous explanatory variables Xi. A set of unconditional moment functions can

be formed by constructing

M(Yi0, Yi, Xi, β, γ, λ) = g (Yi0, Xi)⊗mYi0 (Yi, Xi, β, γ, λ)

where the vector-valued function, mYi0 , is composed of linear combinations of the moment

functions in (8), (9), and (10), and g is a vector valued function of the initial conditions and

the strictly exogenous Xi. Let θ = (β′, γ′, λ′)
′
. A generalized method of moments (GMM)
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estimator can then be defined by6

θ̂ =


β̂

γ̂

λ̂

 = argmin
β∈RK , γ∈RQ−1, λ∈RQ−2

(
n∑
i=1

M(Yi0, Yi, Xi, β, γ, λ)

)′

Ŵn

(
n∑
i=1

M(Yi0, Yi, Xi, β, γ, λ)

)
,

where the weighting matrix Ŵn converges to a positive definite matrix, W0. Assuming that

E [M(Yi0, Yi, Xi, θ)] = 0 is uniquely satisfied at θ = θ0, and that mild regularity conditions

(see Hansen 1982) are satisfied, θ̂ will be consistent and asymptotically normally distributed.

Specifically, with a random sample, {Yi0, Yi, Xi}ni=1,

√
n
(
θ̂ − θ0

)
d−→ N

(
0, (Γ′W0Γ)

−1
Γ′W0SW0Γ (Γ′W0Γ)

−1
)

with Γ = E
[
∂M(Yi0,Yi,Xi,θ0)

∂θ

]
, W0 = plim Ŵn and S = V [M(Yi0, Yi, Xi, θ0)].

The main limitation of the GMM approach is that it is often difficult to know whether

E [M(Yi0, Yi, Xi, θ)] = 0 is uniquely satisfied at the true parameter value. When the strictly

exogenous explanatory variables are discrete, sufficient conditions for this can be obtained

from the identification results in Section 3 be defining g (Yi0, Xi) to be a vector of indicator

functions for values in the support of (Yi0, Xi). If Xi is not discrete, it may be possible to

define a root-n consistent estimator by combining nonparametrically estimated conditional

moment conditions with the unconditional moment conditions. See, for example, Honoré and

Hu (2004) for such an approach. Whether or not E [M(Yi0, Yi, Xi, θ)] = 0 is uniquely satisfied

at the true parameter value, one can estimate confidence sets for θ0 by inverting tests for the

hypothesis that E [M(Yi0, Yi, Xi, θ)] = 0.

The moment conditions derived in this paper can also be used for specification testing.

Suppose that a researcher has estimated the parameters of interest, θ0 = (β0, γ0, λ0), by an

estimator that solves a moment condition of the type 1
n

∑n
i=1 ψ

(
Yi, Xi, θ̂

)
= 0. For example,

6As mentioned in Section 2, it is necessary to normalize one of the Q elements of γ and one of the Q− 1
elements of λ.
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she might have estimated a model without individual-specific heterogeneity or a model in

which the heterogeneity is captured parametrically by a random effects approach, and she

might be interested in testing her parametric assumptions against the less parametric fixed

effects model. Let M̂ = 1
n

∑n
i=1M

(
Yi, Xi, θ̂

)
where M is defined as above. M̂ is then

a standard two-step estimator, and it is straightforward to test whether M̂ is statistically

different from 0.

5 Practical Performance of GMM Estimator

In the next subsection, we present the results from a small Monte Carlo experiment designed

to assess the performance of a GMM estimator based on the discussion in Section 4. Following

that, we illustrate its use in an empirical example. Section A.3 provides details about the

implementation of the GMM estimator.

5.1 Monte Carlo Results

We illustrate the performance of the GMM estimator described above through a small Monte

Carlo study. We consider sample sizes of N = 1000, 3000, and 9000 with four time periods

for each individual. This includes the initial observations, so T = 3 using the notation above.

There are k = 3 explanatory variables and the dependent variable can take 4 values.

The explanatory variables are drawn as follows. Let Zi and Zijt (j = 1, ..., k, t = 0, ..., 3)

be independent standard normal random variables. The second through k’th explanatory

variables are given by Xijt =
√

3 (Zijt + Zi1t) /
√

2, while the first explanatory variable is

Xi1t =
√

3 (Zi + Zi1t) /
√

2. This implies that in each time period, the explanatory variables

will all have variance equal to 3 and their pairwise correlations are all 0.5. The correlation in

the first explanatory variable in any two time periods is 0.5, while the remaining covariates

are independent over time. We consider one specification without heterogeneity, in which

case Ai = 0, and one with heterogeneity in which case Ai =
√

3Zi. The first element of β

is 1, and the remaining elements are 0. This makes the variance of X ′itβ close to that of

the logistic distribution as well as close to that of the fixed effect in the specification with
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heterogeneity. We use γ = (−1, 0, 0, 1)′ and λ = (−2, 0, 2)′ and normalize γ2 = λ2 = 0. The

dependent variables are generated from the model with the lagged dependent variables in

period 0 set to 0.

We perform 400 Monte Carlo replications. The results are presented in Tables 1 and 2.

Table 1: Without Heterogeneity

N = 1000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.030 0.002 0.013 -0.460 0.000 -0.186 0.498 -2.331 0.000 2.266
MAE 0.118 0.065 0.061 0.547 0.000 0.229 0.509 0.332 0.000 0.268
IQR 0.231 0.128 0.125 0.432 0.000 0.374 0.406 0.298 0.000 0.235

N = 3000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.011 0.002 -0.002 -0.658 0.000 -0.180 0.683 -2.151 0.000 2.119
MAE 0.067 0.036 0.036 0.345 0.000 0.203 0.323 0.157 0.000 0.123
IQR 0.132 0.071 0.074 0.329 0.000 0.269 0.321 0.151 0.000 0.128

N = 9000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.006 -0.002 -0.002 -0.871 0.000 -0.086 0.858 -2.043 0.000 2.046
MAE 0.036 0.021 0.022 0.153 0.000 0.107 0.153 0.059 0.000 0.051
IQR 0.072 0.043 0.044 0.193 0.000 0.174 0.234 0.088 0.000 0.069

The results in Tables 1 and 2 suggest that our implementation of the GMM estimator

underestimates the degree of state dependence, although it does improve with sample size.

The estimator of the coefficient on the strictly exogenous explanatory variables are close to

median unbiased whether or not the data generating process includes fixed effects.

5.2 Empirical Illustration

In the section, we illustrate the value of the moment conditions derived in the paper in an

empirical example inspired by Contoyannis, Jones, and Rice (2004). The dependent variable

is self-reported health status, and we use data from the first four waves of the British

Household Panel Survey. This yields a data set with 7233 individuals observed in 4 time

periods including the initial observation (so T = 3). In the original data set, the dependent
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Table 2: With Heterogeneity

N = 1000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.049 0.016 0.019 -0.369 0.000 -0.131 0.360 -2.421 0.000 2.385
MAE 0.153 0.081 0.077 0.634 0.000 0.244 0.656 0.426 0.000 0.391
IQR 0.287 0.160 0.159 0.487 0.000 0.471 0.579 0.366 0.000 0.343

N = 3000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.032 0.009 0.004 -0.549 0.000 -0.194 0.448 -2.263 0.000 2.240
MAE 0.095 0.049 0.052 0.459 0.000 0.237 0.552 0.265 0.000 0.242
IQR 0.186 0.098 0.101 0.404 0.000 0.375 0.388 0.241 0.000 0.220

N = 9000, k = 3
β1 β2 β3 γ1 γ2 γ3 γ4 λ1 λ2 λ3

True 1.000 0.000 0.000 -1.000 0.000 0.000 1.000 -2.000 0.000 2.000
Median 1.019 0.003 -0.000 -0.711 0.000 -0.148 0.635 -2.134 0.000 2.139
MAE 0.059 0.033 0.033 0.302 0.000 0.176 0.369 0.144 0.000 0.147
IQR 0.117 0.066 0.064 0.299 0.000 0.247 0.315 0.168 0.000 0.187

variable can take five values. We aggregate these into “Poor or Very Poor” (8.0% of the

observations), “Fair” (19.1%), “Good” (47.2%), and “Excellent” (25.7%). We also consider

specifications where the first two are merged into one outcome.

We use two sets of explanatory variables. In the first, we use age and age-squared (mea-

sured as Age/10 and (Age − 45)2/1000, respectively, where Age is measured in years). In

the second, we also include log-income. The results are presented in Table 3. We have nor-

malized the δ-coefficient associated with “Good Health” to be 0 and the threshold (λ) just

below “Good Health” to be 0. The most consistent result presented in Table 3 is a concave

relationship between age and self-reported age. For all of the specifications, this relationship

is decreasing after the age of 30.

The point estimates for the effect of income on self-reported health are positive in columns

two and four, but neither is statistically significant.
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Table 3: Empirical Results

Four Outcomes Three Outcomes
Age/10 -1.214 -1.829 -0.980 -1.261

(0.306) (0.309) (0.488) (0.475)

(Age− 45)2/1000 -0.200 -0.261 -0.304 -0.236
(0.074) (0.080) (0.108) (1.411)

log-income 0.063 0.196
(0.070) (0.117)

δ1 -0.310 -0.339
(0.166) (0.146)

δ2 -0.313 -0.338 -0.535 -0.489
(0.130) (0.129) (0.338) (0.239)

δ3 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

δ4 -0.180 -0.263 0.127 0.021
(0.128) (0.113) (0.146) (0.115)

λ1 -2.756 -3.050
(0.086) (0.101)

λ2 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

λ3 3.693 4.137 3.395 3.440
(0.126) (0.128) (0.155) (0.120)

6 Conclusions

This paper has extended the analysis in Honoré and Weidner (2020) to provide conditional

moment conditions for panel data fixed effects versions of the dynamic ordered logit models

like the one considered in Muris, Raposo, and Vandoros (2020). The moment conditions are

interesting in their own right, and the paper also illustrates the potential for systematically

deriving moment conditions for nonlinear panel models. The moment conditions presented

here can be used for estimation as well as for testing more parametric specifications of the

individual-specific effects in dynamic ordered logits. For point-identification, it is important

to investigate whether the moment conditions are uniquely satisfied at the true parameter

values. The paper presents conditions under which this is the case. The paper also proposes

a practical strategy for turning the derived conditional moment conditions into unconditional

moment conditions that can be used to GMM estimation, and it illustrates the use of the

resulting estimator in a small Monte Carlo study as well as in an empirical application.

More broadly, this paper contributes to the literature that is concerned with panel data
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estimation of nonlinear models with fixed effects. In this context, the main contribution is to

illustrate the potential for applying the functional differencing insights of Bonhomme (2012)

to logit-type models.
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A Appendix

A.1 Proof of Theorem 1 and 2

We first want to establish Lemma 1 below, which is key to proving the main text theorems.

In order to state the lemma, we require some additional notation. Recall that Q ∈ {2, 3, . . .}

is the number of values that the observed outcomes Yit can take. Let Ỹ1, Ỹ3 ∈ {0, 1}, Ỹ2 ∈

{1, 2, 3}, and W ∈ {1, 2, . . . , Q} be random variables, and let Ỹ = (Ỹ1, Ỹ2, Ỹ3). For the joint

distribution of Ỹ and W we write

p(ỹ, w) := Pr
(
Ỹ = ỹ & W = w

)
and we assume that

p(ỹ, w) = p3(ỹ3 | ỹ2, w) p2(ỹ2 |w) f(w | ỹ1) p1(ỹ1), (20)

where ỹ = (ỹ1, ỹ2, ỹ3), and

p1(ỹ1) := Pr
(
Ỹ1 = ỹ1

)
,

f(w | ỹ1) := Pr
(
W = w

∣∣∣ Ỹ1 = ỹ1

)
,

p2(ỹ2 |w) := Pr
(
Ỹ2 = ỹ2

∣∣∣W = w
)
,

p3(ỹ3 | ỹ2, w) := Pr
(
Ỹ3 = ỹ3

∣∣∣ Ỹ2 = ỹ2, W = w
)
.

We do not impose any assumptions on the transition probabilities f(w | ỹ1), p3(ỹ3 | 1, w), and

p3(ỹ3 | 3, w). All the other transition probabilities are assumed to follow an (ordered) logit

model:

p1(ỹ1) =

 1− Λ(π1) if ỹ1 = 0,

Λ(π1) if ỹ1 = 1,
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p2(ỹ2 |w) =


1− Λ[π2,1(w)] if ỹ2 = 1,

Λ[π2,1(w)]− Λ[π2,2(w)] if ỹ2 = 2,

Λ[π2,2(w)] if ỹ2 = 3,

p3(ỹ3 | 2, w) =

 1− Λ(π3) if ỹ3 = 0,

Λ(π3) if ỹ3 = 1,
(21)

where Λ(ξ) := [1 + exp(−ξ)]−1 is the cumulative distribution function of the logistic distri-

bution, π1, π3 ∈ R are constants, and π2,1, π2,2 : {1, 2, . . . , Q} → R are functions such that

π2,1(w) ≥ π2,2(w) for all w ∈ {1, 2, . . . , Q}. Notice that p3(ỹ3 | 2, w) does not depend on w.

Finally, we define m : {0, 1} × {1, 2, 3} × {0, 1} × {1, 2, . . . , Q} → R by

m(ỹ, w) :=



exp (π1 − π3)
exp[π3 − π2,2(w)]− 1

exp [π2,1(w)− π2,2(w)]− 1
if ỹ1 = 0, ỹ2 = 2, ỹ3 = 0,

exp (π1 − π3)
1− exp[π2,2(w)− π3]

1− exp [π2,2(w)− π2,1(w)]
if ỹ1 = 0, ỹ2 = 2, ỹ3 = 1,

exp (π1 − π3) if ỹ1 = 0, ỹ2 = 3,

−1 if ỹ1 = 1, ỹ2 = 1,

− 1− exp[π3 − π2,1(w)]
1− exp [π2,2(w)− π2,1(w)]

if ỹ1 = 1, ỹ2 = 2, ỹ3 = 0,

− exp[π2,1(w)− π3]− 1
exp [π2,1(w)− π2,2(w)]− 1

if ỹ1 = 1, ỹ2 = 2, ỹ3 = 1,

0 otherwise.

(22)

Lemma 1 Let π1, π3 ∈ R, and π2,1, π2,2 : {1, 2, . . . , Q} → R be such that π2,1(w) ≥ π2,2(w),

for all w ∈ {1, 2, . . . , Q}. Let the random variables Ỹ ∈ {0, 1} × {1, 2, 3} × {0, 1} and

W ∈ {1, 2, . . . , Q} be such that their distributions satisfy (20) and (21), and let m : {0, 1} ×

{1, 2, 3} × {0, 1} × {1, 2, . . . , Q} → R be defined by (22). Then we have

E
[
m(Ỹ ,W )

]
= 0.
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Proof. Define

g(ỹ1, w) := E
[
m(Ỹ ,W )

∣∣∣ Ỹ1 = ỹ1, W = w
]

=
∑

ỹ2∈{1,2,3}

∑
ỹ3∈{0,1}

m(ỹ, w) p3(ỹ3 | ỹ2, w) p2(ỹ2 |w),

where ỹ = (ỹ1, ỹ2, ỹ3). Using the expressions for p2(ỹ2 |w), p3(ỹ3 | ỹ2, w), and m(ỹ, w) in (21)

and (22) one finds that for ỹ1 = 1 we have

g(1, w) = −{1− Λ[π2,1(w)]} − {Λ[π2,1(w)]− Λ[π2,2(w)]}×

×
(

[1− Λ(π3)] {1− exp[π3 − π2,1(w)]}
1− exp [π2,2(w)− π2,1(w)]

+
Λ(π3) {exp[π2,1(w)− π3]− 1}

exp [π2,1(w)− π2,2(w)]− 1

)
︸ ︷︷ ︸

=
Λ[π2,1(w)]− Λ(π3)

Λ[π2,1(w)]− Λ[π2,2(w)]

= − [1− Λ(π3)] , (23)

and analogously one calculates for ỹ1 = 0 that

g(0, w) = exp (π1 − π3) Λ(π3). (24)

Notice that g(ỹ1, w) therefore does not depend on w, so we can simply write g(ỹ1) := g(ỹ1, w)

in the following. Using (23) (24), and the expression for p1(ỹ1) in (21) we obtain that

∑
ỹ1∈{0,1}

g(ỹ1) p1(ỹ1) = 0.

Together with
∑

w∈{1,...,Q} f(w | ỹ1) = 1, this gives

E
[
m(Ỹ ,W )

]
=

∑
ỹ1∈{0,1}

∑
w∈{1,...,Q}

∑
ỹ2∈{1,2,3}

∑
ỹ3∈{0,1}

m(ỹ, w) p(ỹ, w)

=
∑

ỹ1∈{0,1}

∑
w∈{1,...,Q}

g(ỹ1) f(w | ỹ1) p1(ỹ1)
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=
∑

ỹ1∈{0,1}

g(ỹ1)

 ∑
w∈{1,...,Q}

f(w | ỹ1)


︸ ︷︷ ︸

=1

p1(ỹ1)

=
∑

ỹ1∈{0,1}

g(ỹ1) p1(ỹ1) = 0,

which is what we wanted to show.

The following lemma is similar to Lemma 1 above, but the random variables Ỹ1, Ỹ2, Ỹ3

and their distributional assumptions are now different, and the lemma should be understood

independently from any notation established above.

Lemma 2 Let Ỹ1, Ỹ2, Ỹ3 ∈ {0, 1} and W,V ∈ {1, . . . , Q} be random variables such that the

joint distribution of Ỹ = (Ỹ1, Ỹ2, Ỹ3), W , and V satisfies

Pr
(
Ỹ = ỹ & W = w & V = v

)
= p3(ỹ3 | v) g(v | ỹ2, w) p2(ỹ2 |w) f(w | ỹ1) p1(ỹ1),

where ỹ = (ỹ1, ỹ2, ỹ3), and the functions p3, g, p2, and f are appropriate conditional proba-

bilities, while p1(ỹ1) is the marginal distribution of Ỹ1. For p1(ỹ1), p2(ỹ2 |w), and p3(ỹ3 | v)

we assume logistic binary choice models:

p1(ỹ1) = Λ [(2 ỹ1 − 1) π1] , p2(ỹ2 |w) = Λ [(2 ỹ2 − 1) π2(w)] , p3(ỹ3 | v) = Λ [(2 ỹ3 − 1) π3(v)] ,

where π1 ∈ R is a constant, and π2, π3 : {1, . . . , Q} → R are functions. The only as-

sumption that we impose on f(w | ỹ1) and g(v | ỹ2, w) is that g(v | 1, w) = g(v | 1); that

is, conditional on Ỹ2 = 1 the distribution of V is independent of W . Furthermore, let

m : {0, 1}3 × {1, . . . , Q}2 → R be given by

m(ỹ, w, v) :=



exp [π1 − π2(w)] if ỹ = (0, 1, 0),

exp [π1 − π3(v)] if ỹ = (0, 1, 1),

−1 if (ỹ1, ỹ2) = (1, 0),

exp [π3(v)− π2(w)]− 1 if ỹ = (1, 1, 0),

0 otherwise.
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We then have

E
[
m(Ỹ ,W, V )

]
= 0.

Proof. This lemma is a restatement of Lemma 6 in the 2021 arXiv version of Honoré and

Weidner (2020), and the proof can be found there.

Using Lemma 1 and 2, we are now ready to prove the two main text theorems.

Proof of Theorem 1. We consider the three cases q2 ∈ {2, . . . , Q−1}, q2 = Q, and q2 = 1

separately.

Case q2 ∈ {2, . . . , Q− 1}: In this case, we define

W := Y1, Ỹ1 := 1 {Y1 > q1} , Ỹ3 := 1 {Y3 > q3} , Ỹ2 :=


1 if Y2 < q2,

2 if Y2 = q2,

3 if Y2 > q2.

Our ordered logit model in (4) then implies that the joint distribution of Ỹ = (Ỹ1, Ỹ2, Ỹ3)

and W conditional on A = α, Y0 = y0, X = (x1, x2, x3), and θ = θ0 satisfies (20) and (21),

as long as we choose

f(y1 | 1) = Pr
(
Y1 = y1

∣∣Y1 > q1, Y0 = y0, X = x, A = α
)
,

f(y1 | 0) = Pr
(
Y1 = y1

∣∣Y1 ≤ q1, Y0 = y0, X = x, A = α
)
,

p3(ỹ3 | 1, y1) =

 Pr
(
Y3 ≤ q3

∣∣Y2 < q2, Y1 = y1, Y0 = y0, X = x, A = α
)

if ỹ3 = 0,

Pr
(
Y3 > q3

∣∣Y2 < q2, Y1 = y1, Y0 = y0, X = x, A = α
)

if ỹ3 = 1,

p3(ỹ3 | 3, y1) =

 Pr
(
Y3 ≤ q3

∣∣Y2 > q2, Y1 = y1, Y0 = y0, X = x, A = α
)

if ỹ3 = 0,

Pr
(
Y3 > q3

∣∣Y2 > q2, Y1 = y1, Y0 = y0, X = x, A = α
)

if ỹ3 = 1,

and

π1 = α + z(y0, x1, θ
0)− λq1 = α + x′1 β

0 + γ0y0 − λq1 ,
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π2,1(y1) = α + z(y1, x2, θ
0)− λq2−1 = α + x′2 β

0 + γ0y1 − λq2−1,

π2,2(y1) = α + z(y1, x2, θ
0)− λq2 = α + x′2 β

0 + γ0y1 − λq2 ,

π3 = α + z(q2, x3, θ
0)− λq3 = α + x′3 β

0 + γ0q2 − λq3 ,

where w = y1, and z(yt−1, xt, θ) is defined in (3). Plugging those expressions for π1, π2,1(w),

π2,2(w) and π3 into the moment function m(ỹ, w) in (22), we find that this moment function

exactly coincides with my0,q1,q2,q3(y, x, θ
0) in equation (8) of the main text. Thus, by applying

Lemma 1 to the distribution of Y conditional on A = α, Y0 = y0, and X = x (the lemma

does not feature those conditioning variables, which is why we are applying the lemma to

the conditional distribution), we obtain

E
[
my0,q1,q2,q3(Y,X, θ

0)
∣∣Y0 = y0, X = x, A = α

]
= 0,

which concludes the proof for the case q2 ∈ {2, . . . , Q− 1}.

Case q2 = Q: In this case, we choose

W := Y1, V := Y2, Ỹ1 := 1 {Y1 > q1} , Ỹ2 := 1 {Y2 = Q} , Ỹ3 := 1 {Y3 > q3} .

Our ordered logit model in (4) then implies that the joint distribution of Ỹ = (Ỹ1, Ỹ2, Ỹ3), W ,

and V conditional on A = α, Y0 = y0, X = (x1, x2, x3), and θ = θ0 satisfies the assumptions

of Lemma 2, as long as we choose

f(y1 | 1) = Pr
(
Y1 = y1

∣∣Y1 > q1, Y0 = y0, X = x, A = α
)
,

f(y1 | 0) = Pr
(
Y1 = y1

∣∣Y1 ≤ q1, Y0 = y0, X = x, A = α
)
,

g(y2 | 1) = 1 {y2 = Q} ,

g(y2 | 0, y1) = Pr
(
Y2 = y2

∣∣Y2 < Q, Y1 = y1, X = x, A = α
)
,

and

π1 = α + z(y0, x1, θ
0)− λq1 = α + x′1 β

0 + γ0y0 − λq1 ,
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π2(y1) = α + z(y1, x2, θ
0)− λQ−1 = α + x′2 β

0 + γ0y1 − λQ−1,

π3(y2) = α + z(y2, x3, θ
0)− λq3 = α + x′3 β

0 + γ0y2 − λq3 ,

where w = y1 and v = y2, and z(yt−1, xt, θ) is defined in (3). Plugging those expressions

for π1, π2(y1), and π3(y2) into the moment function m(ỹ, w, v) in Lemma 2, we find that

this moment function exactly coincides with my0,q1,Q,q3(y, x, θ
0) in equation (10) of the main

text. Thus, by applying Lemma 2 to the distribution of Y conditional on A = α, Y0 = y0,

and X = x (the lemma does not feature those conditioning variables, which is why we are

applying the lemma to the conditional distribution), we obtain

E
[
my0,q1,Q,q3(Y,X, θ

0)
∣∣Y0 = y0, X = x, A = α

]
= 0,

which concludes the proof for the case q2 = Q.

Case q2 = 1: The result for this case follows from the result for q2 = Q by applying the

transformation Yt 7→ Q + 1 − Yt, λq 7→ −λQ−q, β 7→ −β, γq 7→ −γQ+1−Yt , Ai 7→ −Ai. This

transformation leaves the model probabilities in (5) unchanged but transforms the moment

function in (10) into the one in (9), implying that this is also a valid moment function.

Proof of Theorem 2. As was the the case in the proof of Theorem 1, we consider the

three cases q2 ∈ {2, . . . , Q− 1}, q2 = Q, and q2 = 1 separately.

Case q2 ∈ {2, . . . , Q− 1}: In this case, we define

W := Ys−1, Ỹ1 := 1 {Yt > q1} , Ỹ3 := 1 {Ys+1 > q3} , Ỹ2 :=


1 if Ys < q2,

2 if Ys = q2,

3 if Ys > q2.

Let Y t−1 = (Yt−1, Yt−2, . . . , Y0). Our ordered logit model in (4) then implies that the joint

distribution of Ỹ = (Ỹ1, Ỹ2, Ỹ3) and W conditional on A = α, Y t−1 = yt−1, X = (x1, x2, x3),

and θ = θ0 satisfies (20) and (21), as long as we choose

f(y1 | 1) = Pr
(
Yt = y1

∣∣Yt > q1, Y
t−1 = yt−1, X = x, A = α

)
,
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f(y1 | 0) = Pr
(
Yt = y1

∣∣Yt ≤ q1, Y
t−1 = yt−1, X = x, A = α

)
,

p3(ỹ3 | 1, ys−1) =

 Pr
(
Ys+1 ≤ q3

∣∣Ys < q2, Ys−1 = ys−1, Y
t−1 = yt−1, X = x, A = α

)
if ỹ3 = 0,

Pr
(
Ys+1 > q3

∣∣Ys < q2, Ys−1 = ys−1, Y
t−1 = yt−1, X = x, A = α

)
if ỹ3 = 1,

p3(ỹ3 | 3, ys−1) =

 Pr
(
Ys+1 ≤ q3

∣∣Ys > q2, Ys−1 = ys−1, Y
t−1 = yt−1, X = x, A = α

)
if ỹ3 = 0,

Pr
(
Ys+1 > q3

∣∣Ys > q2, Ys−1 = ys−1, Y
t−1 = yt−1, X = x, A = α

)
if ỹ3 = 1,

and

π1 = α + z(yt−1, xt, θ
0)− λq1 = α + x′t β

0 + γ0yt−1
− λq1 ,

π2,1(y1) = α + z(ys−1, xs, θ
0)− λq2−1 = α + x′s β

0 + γ0ys−1
− λq2−1,

π2,2(y1) = α + z(ys−1, xs, θ
0)− λq2 = α + x′s β

0 + γ0ys−1
− λq2 ,

π3 = α + z(qs, xs+1, θ
0)− λq3 = α + x′s+1 β

0 + γ0q2 − λq3 ,

where w = ys−1, and z(yt−1, xt, θ) is defined in (3). Plugging those expressions for π1, π2,1(w),

π2,2(w) and π3 into the moment function m(ỹ, w) in (22) we find that this moment function

exactly coincides with m
(t,s,s+1)
y0,q1,q2,q3(y, x, θ

0) in equation (11) of the main text. Thus, by applying

Lemma 1 to the distribution of Y conditional on A = α, Y t−1 = yt−1, and X = x (the lemma

does not feature those conditioning variables, which is why we are applying the lemma to

the conditional distribution), we obtain

E
[
m(t,s,s+1)
y0,q1,q2,q3

(Y,X, θ0)
∣∣Y t−1 = yt−1, X = x, A = α

]
= 0.

Applying the law of iterated expectations, we thus also find that

E
[
w(Y1, . . . , Yt−1)m

(t,s,s+1)
y0,q1,q2,q3

(Y,X, θ0)
∣∣∣Y0 = y0, X = x, A = α

]
= 0,

which concludes the proof for the case q2 ∈ {2, . . . , Q− 1}.

Case q2 = Q: In this case, we choose

W := Ys−1, V := Yr−1, Ỹt := 1 {Y1 > q1} , Ỹs := 1 {Y2 = Q} , Ỹr := 1 {Y3 > q3} .
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Our ordered logit model in (4) then implies that the joint distribution of Ỹ = (Ỹ1, Ỹ2, Ỹ3),

W , and V conditional on A = α, Y t−1 = yt−1, X = (x1, x2, x3), and θ = θ0 satisfies the

assumptions of Lemma 2, as long as we choose

f(ys−1 | 1) = Pr
(
Ys−1 = ys−1

∣∣Yt > q1, Y
t−1 = yt−1, X = x, A = α

)
,

f(ys−1 | 0) = Pr
(
Ys−1 = ys−1

∣∣Yt ≤ q1, Y
t−1 = yt−1, X = x, A = α

)
,

g(yr−1 | 1) = 1 {yr−1 = Q} ,

g(yr−1 | 0, ys−1) = Pr
(
Yr−1 = yr−1

∣∣Ys < Q, Ys−1 = ys−1, X = x, A = α
)
,

and

π1 = α + z(yt−1, xt, θ
0)− λq1 = α + x′t β

0 + γ0yt−1
− λq1 ,

π2(ys−1) = α + z(ys−1, xs, θ
0)− λQ−1 = α + x′s β

0 + γ0ys−1
− λQ−1,

π3(yr−1) = α + z(yr−1, xr, θ
0)− λq3 = α + x′r β

0 + γ0yr−1
− λq3 ,

where w = ys−1 and v = yr−1, and z(yt−1, xt, θ) is defined in (3). Plugging those expressions

for π1, π2(ys−1), and π3(yr−1) into the moment function m(ỹ, w, v) in Lemma 2 we find that

this moment function exactly coincides with my0,q1,Q,q3(y, x, θ
0) in equation (12) of the main

text. Thus, by applying Lemma 2 to the distribution of Y conditional on A = α, Y t−1 = yt−1,

and X = x (the lemma does not feature those conditioning variables, which is why we are

applying the lemma to the conditional distribution) we obtain

E
[
m

(t,s,r)
y0,q1,Q,q3

(Y,X, θ0)
∣∣∣Y t−1 = yt−1, X = x, A = α

]
= 0.

Applying the law of iterated expectations, we thus also find that

E
[
w(Y1, . . . , Yt−1)m

(t,s,r)
y0,q1,Q,q3

(Y,X, θ0)
∣∣∣Y0 = y0, X = x, A = α

]
= 0,

which concludes the proof for the case q2 = Q.

Case q2 = 1: The result for this case again follows from the result for q2 = Q by applying
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the transformation Yt 7→ Q+ 1− Yt, λq 7→ −λQ−q, β 7→ −β, γq 7→ −γQ+1−Yt , Ai 7→ −Ai.

A.2 Proof of Proposition 1, 2, and 3

The following lemma is useful for the proof of Proposition 1.

Lemma 3 Let Q ≥ 2. Let B be a Q × Q matrix for which all non-diagonal elements are

positive (i.e. Bq,r > 0 for q 6= r). Let g0, g ∈ (0,∞)Q be two vectors with only positive entries.

Assume that Bg0 = 0 and Bg = 0. Then there exists κ > 0 such that g = κ g0.

Proof. This is a proof by contradiction. Let all assumptions of the lemma be satisfied, and

assume that there does not exist a κ > 0 such that g = κ g0. Define the vector h ∈ [0,∞)Q

and the two sets Q+,Q0 ⊂ {1, . . . , Q} by

h := g0 −
(

min
q∈{1,...,Q}

g0q
gq

)
g, Q+ := {q : hq > 0} , Q0 := {q : hq = 0} .

All elements of h are non-negative by construction, and we have h 6= 0, because otherwise

we would have g = κ g0 for some κ > 0. Therefore, neither Q+ nor Q0 are empty sets.

Furthermore, since h is a linear combination of g0 and g, and we have Bg0 = Bg = 0, we

also have Bh = 0. This can equivalently be written as

∑
r∈Q+

Bq,r hr = 0, for all q ∈ {1, . . . , Q},

where we dropped the indices r from the sum for which we have hr = 0.

Now, let q ∈ Q0. We then have q /∈ Q+, and therefore Bq,r > 0 for all r ∈ Q+, according

to our assumption on B. We have argued that Q+ is non-empty, and by construction we

have hq > 0 for q ∈ Q+. We therefore have

∑
r∈Q+

Bq,r hr > 0.

The last two displays are the contradiction that we wanted to derive here.
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Proof of Proposition 1. Let x(1) = (x1, x1, x1). For y0, q ∈ {1, . . . , Q} we define

By0,q :=



Pr
(
y1 > 1 & y2 = 1 & y3 = 1 | Y0 = y0, X = x(1)

)
if y0 6= q and q = 1,

Pr
(
y1 = q & y2 = 1 & y3 > 1 | Y0 = y0, X = x(1)

)
if y0 6= q and q > 1.

Pr
(
y1 > 1 & y2 = 1 & y3 = 1 | Y0 = y0, X = x(1)

)
−Pr

(
y1 = 1 & y2 > 1 | Y0 = y0, X = x(1)

)
if y0 = q and q = 1,

Pr
(
y1 = q & y2 = 1 & y3 > 1 | Y0 = y0, X = x(1)

)
−Pr

(
y1 = 1 & y2 > 1 | Y0 = y0, X = x(1)

)
if y0 = q and q > 1.

Let B be the Q × Q matrix with entries By0,q. Our assumptions guarantee that all the

conditional the probabilities that enter into the definition of By0,q are non-negative, and we

therefore have

By0,q > 0, for all y0 6= q. (25)

Applying Theorem 1 we find that the moment function in (15) satisfies

E
[
my0(y, γ

0) | Y0 = y0, X = (x1, x1, x1)
]

= 0, for all y0 ∈ {1, . . . , Q}, (26)

where γ0 is the true parameter that generates the data. In the proposition we assume that

γ ∈ RQ is an alternative parameter that satisfies the same moment conditions. Let g0 and g

be the Q-vectors with entries g0q := exp
(
γ0q
)
> 0 and gq := exp

(
γq
)
. Using the definition of

the matrix B we can rewrite the two systems of Q equations in (26) and (16) as

B g0 = 0, B g = 0. (27)

Since we have (25) and (27) we can apply Lemma 3 to find that there exists κ > 0 such that

g = κ g0. Taking logarithms we thus have γ = γ0 + c, where c = log(κ). This is what we

wanted to show.

The following lemma is useful for the proof of Proposition 2.
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Lemma 4 Let K ∈ N. For every s = (s1, . . . , sK−1,+) ∈ {−,+}K let gs : RK → R be a

continuous function such that for all β ∈ RK we have

(i) gs(β) is strictly increasing in βK.

(ii) For all m ∈ {1, . . . , K − 1}: If sm = +, then gs(β) is strictly increasing in βm.

(iii) For all m ∈ {1, . . . , K − 1}: If sk = −, then gs(β) is strictly decreasing in βm.

Then, the system of 2K−1 equations in K variables

gs(β) = 0 for all s ∈ {−,+}K with sK = +,

has at most one solution.

Proof. This is the same as Lemma 2 in Honoré and Weidner (2020), only presented using

slightly different notation here.

Proof of Proposition 2. For s = (s1, . . . , sK−1,+) ∈ {−,+}K we define

gs(β) = E
[
my0,1,1,1(y, x, β, γ0)

∣∣∣Y0 = y0, X ∈ Xs
]
, (28)

where my0,1,1,1(y, x, β, γ) is the moment function in (17). Our assumptions guarantee that

the conditioning sets in (28) have positive probability, which together with the definition

of my0,1,1,1(y, x, β, γ0) and Xs guarantee that the functions gs(β) satisfy the monotonicity

requirements (i), (ii) and (iii) of Lemma 4. Theorem 1 guarantees that

gs(β
0) = 0, for all s ∈ {−,+}K with sK = +,

where β0 is the true parameter value that generates the data. Equation (18) in the proposition

can equivalently be written as

gs(β) = 0, for all s ∈ {−,+}K with sK = +.
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According to Lemma 4 the system of equations in the last two displays can have at most one

solution, and we therefore must have β = β0.

Proof of Proposition 3. The definition of my0,q1,1,1(y, x, β, γ, λ) in (19) together with the

assumptions of the proposition guarantee that g(λ) := E
[
my0,q1,1,1(Y,X, β

0, γ0, λ)
∣∣∣Y0 = y0

]
is strictly increasing in λq1 − λ1 for all q1 ∈ {2, . . . , Q − 1}. Theorem 1 guarantees that

g(λ0) = 0 for the true parameter λ0 that generates the data. For any λ ∈ RQ−1 that satisfies

g(λ) = 0 we therefore must have λq1−λ1 = λ0q1−λ
0
1, which implies λ = λ0 +c for c = λ1−λ01.

A.3 Computational details

From an estimation point of view, it is natural to estimate (β, γ, λ) by applying generalized

methods of moments to a finite dimensional vector of unconditional moment conditions de-

rived from (8), (9), and (10). There are at least two problems with this. The first is that,

as discussed in Section 3 above, one needs to worry about whether the moment conditions

actually identify the parameters of interest. The second problem is that even if one ignores

the issue of identification, there are many ways to form a finite set of unconditional moment

conditions from the expressions in (8), (9), and (10). Of course, it is in principle known

how to most efficiently turn a set of conditional moment conditions into a set of moment

condition of the same dimensionality as the parameter to be estimated. See, for example, the

discussion in Newey and McFadden (1994). Specifically, with a conditional moment condi-

tion E [m (Y,X, θ)|X] = 0 when θ takes it true value, θ0, the optimal unconditional moment

function is A (X)m (Y,X, θ), where A (X) = E [∇θm (Y,X, θ0)|X]′ V [m (Y,X, θ0)|X]. Un-

fortunately, the construction of estimators of these efficient moments depends heavily on the

distribution of Y given X. In the fixed effects context, this will depend on the distribution of

the fixed effects conditional on all the explanatory variables. This prevents a simple two-step

procedure for efficiently estimating (β, γ, λ) from the conditional moment conditions. To

turn the conditional moment conditions in Theorem 1 into an estimator, we therefore use a

slightly different approach.
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We first estimate (β, γ, λ) by GMM using a fairly arbitrary set of moment conditions.

In practice, we consider the moments constructed by interacting each of the conditional

moments in Theorem 1 with each element of (1, Xi1 −Xi2, Xi1 −Xi3, Xi2 −Xi3). We then

first calculate the GMM estimator based on the following simple diagonal weight matrix. We

set β and γ to vectors of 0’s and estimate λ by maximum likelihood estimation under the

assumption that there is no individual specific heterogeneity. We then calculate the empirical

variance of each moment and use the inverse of those as the diagonal elements of the weight

matrix (except when the sample variance is 0, in which case the weight is set to 0). This

yields an initial GMM estimator of (β, γ, λ). We use this to calculate the empirical variance

of each moment. The inverse of those are then used as diagonal elements of a diagonal

weight matrix, which is in turn used to form a second GMM estimator. Finally, we use

this estimator of (β, γ, λ) to calculate the sample covariance matrix of the moments. The

inverse of this is used as the weight matrix for a final GMM estimator, except that we inflate

the diagonal elements of the covariance matrix by 10% before inverting it. This is done to

overcome numerical problems associated with collinear moments.

We next estimate a flexible reduced form model for the distribution of Y given X. One

may think of this as a nonparametric sieve estimator in which case our approach will be an

attempt to construct the efficient estimator. Alternatively, one can acknowledge that the

model for Y given X is most likely incorrect, in which case the approach can be interpreted

as an attempt to construct unconditional moments that are close to the efficient ones. In

practice, we estimate the reduced form model for the distribution of Y given X by a period-

by-period ordered logit model where the explanatory variables are all observed lagged Y , the

contemporaneous X, and the average X over all time periods.

We then construct an estimate of A (X) and use that to calculate the method moments

estimator.
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