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Abstract

The Common Correlated Effects (CCE) methodology is now well established for the analysis

of factor-augmented panel models. Yet, it is often neglected that the pooled variant is biased

unless the cross-section dimension (N) of the dataset dominates the time series length (T).

This is problematic for inference with typical macroeconomic datasets where T often equal

or larger than N. Given that an analytical correction is also generally infeasible, the issue

remains without a solution. In response, we provide in this paper the theoretical foundation

for the ‘cross-section’ or ‘pairs’ bootstrap in large N and T panels with T/N < ∞. We show

that the scheme replicates the distribution of the CCE estimators, under both constant and

heterogeneous slopes, such that bias can be eliminated and asymptotically correct inference

can ensue even when N does not dominate. Monte Carlo experiments illustrate that the

asymptotic properties also translate well to finite samples.

Keywords: bootstrap, pairs bootstrap, factor-augmented panel data models, interactive effects,

factors, common correlated effects, bias-correction
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1 Introduction

There is an abundance of empirical evidence suggesting that cross-section units in economic pan-

els tend to be contemporaneously correlated and potentially driven by common components.

Such cross-section dependence needs to be accounted for in the estimation of the economet-

ric model if estimates and inferences are to be trusted (for details, consult e.g. Andrews, 2005;

Sarafidis and Robertson, 2009; Sarafidis and Wansbeek, 2012). One of the leading approaches

to model cross-section dependence is by assuming a multi-factor error structure, which was re-

cently also branded an ’interactive effects’ structure. The central idea is that cross-section units

are simultaneously affected by a finite number of time-varying unobserved common variables,

dubbed factors, to which they can respond with unit-specific intensities, which are called load-

ings. The factors may represent global pandemics, crises, business cycle fluctuations, techno-

logical progress, or other global trends and shocks (see in particular Sarafidis and Wansbeek,

2012, for more examples and an overview of cross-section dependence in panel data). Failure to

account for these unobserved components results in inconsistent estimates and inferences when

they are correlated with the regressors.

One of the leading techniques for estimating panel models with unobserved factors is the Com-

mon Correlated Effects (CCE) approach by Pesaran (2006). The method boils down to augment-

ing the model of interest with the cross-sectional averages (CA) of the observed variables such

that asymptotically—as the cross-section dimension N → ∞—the common factor space is elim-

inated. Both a mean group (CCEMG) and a pooled (CCEP) version are suggested, depending

on whether the model slopes are assumed to be heterogeneous (variable) or homogeneous (con-

stant) over cross-sectional units. Thanks to their computational simplicity and robustness (see

e.g. Pesaran and Tosetti, 2011; Kapetanios et al., 2011; Westerlund et al., 2019, among others)

both CCEMG and CCEP enjoy considerable popularity in practice, as evidenced by numerous

applications. Yet, it is often neglected that the pooled CCE variant is biased in large (N, T) sam-

ples unless T/N → 0 (see Westerlund and Urbain, 2015; Karabiyik et al., 2017). This result is

highly relevant in practice as it implies that inference with standard asymptotic tests will be dis-

torted unless the cross-section dimension of the dataset dominates the time series length. Such

dimensions are often encountered in microeconomic applications, but N rarely dominates T in

macro panels. In macro settings T is often similar or even larger than N. A few examples of such

applications are Özatay et al. (2009); Berger and Heylen (2011); Albanese and Modica (2012);

Bertoli and Fernández-Huertas Moraga (2013); Mazzanti and Musolesi (2013); Özmen and Özge

Doğanay Yaşar (2016); Stevens and Childs (2017); Eberhardt and Teal (2020). Simulation results
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in Westerlund and Urbain (2015) confirm that size distortions can be severe for such combina-

tions of N and T. While the obvious solution would be bias correction, this is impeded by the

fact that the asymptotic bias depends on whether or not the number of CA exceeds the number

of factors, which is unknown, as well as various unobserved matrices without consistent plug-

in estimators. Westerlund and Urbain (2013b, 2015) and Karabiyik et al. (2019) have proposed

plug-in corrections, but it can only be applied when the unknown number of factors is exactly

equal to the number of CA. As this is both highly unlikely in practice and difficult to check, the

applicability of the approach is very limited, and the problem remains without a solution.

The bootstrap is an attractive alternative to analytical correction when bias expressions are ines-

timable. In its essence, if the bootstrap is able to replicate the distribution of an estimator, its bias

can be eliminated without explicit knowledge of the functional form.1 In this paper, we pursue

this strategy and establish the theoretical validity of the ‘cross-section’ (CS) or ‘pairs’ bootstrap

for bias-adjustment and inference with the CCE estimators in large N and T panels. The key ad-

vantage of the algorithm is that the number of latent factors or time series properties of the data

do not need to be known by the researcher. This is in contrast to many residual-based bootstrap

schemes, for example when applied to time series models augmented with factors estimated

with the principal components (PC) approach (see e.g. Gonçalves and Perron, 2014; Djogbenou

et al., 2015), and it is therefore a considerable advantage in practice. We first derive the general-

ized asymptotic distribution of the CCE estimators, allowing for both general serial dependence

and the possibility that the number of CA exceeds the number of factors, and show that the re-

sampling algorithm replicates the distribution, with all its bias components, under both common

and heterogeneous slopes. This generally requires in the common slope setting that the CA of

the dependent variable is excluded from the estimation. This restriction is very mild and shown

to be without loss of asymptotic efficiency. The heterogeneous slope setting requires no addi-

tional restrictions. The key implication is that the cross-section bootstrap enables elimination of

the bias of the CCEP estimator and leads to asymptotically correct inferences even when N does

not dominate. This is a novel result since the CS-bootstrap was shown for instance by Galvao

and Kato (2014); Gonçalves and Kaffo (2015) to not allow correction of the Nickell-type (Nickell,

1981) incidental parameters bias of the fixed effects estimator. The resampling scheme itself was

introduced into the panel data literature by Kapetanios (2008) and first studied in a CCEP con-

text by Westerlund et al. (2019) as N → ∞ for fixed T, in which case the analysis is simplified by

1See for example Everaert and Pozzi (2007) who use the bootstrap to correct for the Nickell (1981) bias in more
general data generating processes than considered by analytical adjustments in e.g. Kiviet (1995); Bun and Carree
(2005).
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the fact that the CCEP estimator is also unbiased (since T/N → 0).2 This paper is therefore, to

the best of our knowledge, the first to consider the bootstrap for CCE estimators in large N and

T panel models with potential heterogeneous slopes, and the first to establish the validity of the

cross-section resampling scheme for CCE under joint asymptotics. As such, this article provides

the theoretical foundation for the standard errors and bootstrap-t intervals constructed with CS-

resampling in e.g. Millo (2019); Juodis et al. (2021). In addition, bootstrap as a bias-correction

tool for CCE estimators has not yet been considered. Gonçalves and Perron (2014); Djogbenou

et al. (2015) study bootstrap corrections for factor-augmented models, but consider in stead the

principal components (PC) estimator of Bai (2009) in a predictive time series model.

The remainder of this paper is structured as follows: the next section introduces the working

model and assumptions. Section 3.1 considers the CCEP estimator in the common slope setting

and presents its generalized asymptotic distribution as (N, T) → ∞ such that T/N → τ < ∞.

Section 3.1.1 outlines the bootstrap methodology and establishes conditions for its consistency.

Section 3.2 presents results under heterogeneous slopes. Section 4 assesses the finite sample

validity of our theory with a Monte Carlo experiment, and Section 5 concludes. All proofs are

referred to Supplement A, and additional Monte Carlo evidence is provided in Supplement B.

Some notation: we will use A† to denote the Moore-Penrose pseudo-inverse of the matrix A,

rk(A) for its rank, |A| for the determinant and let ∥A∥ = [tr (AA′)]1/2 be the Euclidean (Frobe-

nius) matrix norm. Let furthermore ιa be an a-rowed vector of ones and the vec(.), ⊗ and ◦
operators denote respectively the vectorization operation and the Kronecker- and Hadamard

(element-wise) products. Barred variables A denote the cross-section average (CA) over the

cross-section specific matrices Ai as in A = 1
N ∑N

i=1 Ai. A starred object A∗
i stands for an ob-

served variable (matrix or scalar) that has been generated in the bootstrap world according to

the particular scheme. On the other hand, Aw,i is the weighted unobserved primitive of the model.

We formalize the bootstrap probability laws similarly to Galvao and Kato (2014). In particular,

for any matrix bootstrap sequence A∗
n, which depends on a generic index n, and a determin-

istic sequence an ∈ R++, we have ∥A∗
n∥ = op∗(an) if for every ϵ > 0 and δ > 0, we have

P(P∗(a−1
n ∥A∗

n∥ > ϵ) > δ) → 0 as n → ∞, where P∗(.) is a bootstrap-induced measure. Sim-

ilarly, ∥A∗
n∥ = Op∗(an) if for every δ > 0 and η > 0, there exists a constant C > 0, such that

2Note that the theory in Kapetanios (2008) does not consider the CCE estimators. This can be seen from model
(2.1) and Assumptions 3.2 and 3.4 in that paper, the combination of which is incompatible with the CCE frame-
work. Assumption 3.1 also rules out that the regressors have a factor structure as in Pesaran (2006). In its essence,
extrapolations of the provided theory to a CCE context would neglect the impact of factor estimation error with the
CA.
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P(P∗(a−1
n ∥A∗

n∥ > C) > δ) < η for all n ≥ 1. Additionally, E∗(·), Var∗(·) and Cov∗(·, ·) rep-

resent, respectively, the expectation, variance and covariance taken with respect to the induced

measure P∗, and A∗
n = A∗ + op∗(1) means ∥A∗

n − A∗∥ = op∗(1) for the limiting bootstrap matrix

A∗. Lastly, →p∗ (→p) and d∗−→ (
d−→) represent convergence in probability and distribution with

respect to the induced (generic) probability measure.

2 Model and assumptions

Consider the setup in Pesaran (2006) where yit is the scalar dependent variable observed for

cross-section i = 1, . . . , N at time t = 1, . . . , T, and xi,t is the corresponding k × 1 vector of

explanatory variables. The observed T × 1 vector yi = [yi,1, . . . , yi,T]
′ and T × k matrix Xi =

[xi,1, . . . , xi,T]
′ are generated according to:

yi = Xiβi + Fγi + εi, (2.1)

Xi = FΓi + Vi, (2.2)

where βi is a k × 1 vector of unknown coefficients which could be heterogeneous or common

over individuals, F is a T × m matrix stacking m unobserved factors ft over time, with m fixed

and finite, and γi and Γi are the associated m × 1 vector and m × k matrix of factor loadings.

The T × 1 vector εi and the T × k matrix Vi stack the idiosyncratic errors εit and vit over time,

respectively.

By combining (2.1)-(2.2), the data generating process (DGP) for the T × (1+ k) matrix of observ-

ables can be written as an approximate static factor model

Zi = [yi, Xi] = (FC̃i + Ũi)Bi = FCi + Ui, (2.3)

where C̃i = [γi, Γi], Ũi = [εi, Vi] = [ũi,1, . . . , ũi,T]
′ and ũi,t = [εi,t, v′

i,t]
′, Bi = B + B̃i, with B =

[[1, β′]′, [0k×1, Ik]
′] and B̃i = [[0, υ′

i]
′, 0k+1×k]. The T × (1 + k) matrix Ui = ŨiBi = [ui1, . . . , ui,T]

′,

with uit = [εi,t + v′
i,tβi, v′

i,t]
′ thus combines the idiosyncratic errors and the m × (1 + k) loading

matrix Ci = C̃iBi stipulates the influence of the factors on each column of Zi.

We make the following assumptions:

Assumption 1 (Idiosyncratic errors) εit and vit are stationary variables, independent across i with

E(εi,t) = 0, E(vi,t) = 0k×1, σ2
i = E(ε2

i,t), Σi = E(vi,tv′
i,t), Ωi = E(εiε

′
i), with Ωi, Σi positive

definite and E(ε6
i,t) < ∞, E(∥vi,t∥6) < ∞ for all i and t. Additionally, 1

T ∑T
t=1 ∑T

s=1|E(εi,tεi,s)| = O(1)
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and 1
T3 ∑T

t=1 ∑T
q=1 ∑T

r=1 ∑T
s=1|E(εi,tεi,qεi,rεi,s)| = O(1) as T → ∞, 1

N ∑N
i=1 σ2

i → σ2 < ∞ and
1
N ∑N

i=1 Σi → Σ < ∞ as N → ∞, and we define Σu,i = E(ui,tu′
i,t) = B′Σũ,iB and 1

N ∑N
i=1 Σu,i →

Σu = B′ΣũB, where Σũ,i = [[σ2
i , 01×k]

′, [0k×1, Σi]
′] and Σũ = [[σ2, 01×k]

′, [0k×1, Σ]′].

Assumption 2 (Common factors) ft is covariance stationary with E(∥ft∥4) < ∞, absolute summable

autocovariances and T−1F′F → ΣF as T → ∞, with ΣF positive definite.

Assumption 3 (Factor loadings) The Ci are generated according to

Ci = C̃iBi = (C̃ + η̃i)Bi = C + ηi, vec(η̃i) ∼ I ID(0m(1+k), Ωη̃), (2.4)

where C̃ = E(C̃i) = [γ, Γ], Ωη̃ = E(vec(η̃)vec(η̃)′) and Ση = E(η̃i ⊗ η̃i) have finite elements.

Assumption 4 (Rank condition) rk(C) = m for all N.

Assumption 5 (Independence) ft, εis, vjl, η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The slopes βi follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k × k matrix and the υi are independent of ft, εis, vjl, η̃n for all

i, j, n, t, s, l.

The setting defined by (2.1)-(2.2) and Assumptions 1-6 is similar to that in Pesaran (2006), where

the CCE methodology was first proposed, but deviates in the following respects. First, we

present the model without fixed effects or other observed factors. This is for ease of exposi-

tion only and the main results below follow through in the presence of such elements (see also

Remark 1). Second, we require in Ass.1 that sixth moments of the innovations are finite and im-

pose summability conditions of the moments that are similar in spirit to (implied by) a mixing

condition. This is stronger than both Pesaran (2006) and Karabiyik et al. (2017), but a conse-

quence of our T/N → τ < ∞ asymptotics (not considered in Pesaran, 2006) in combination

with the presence of serial dependence (which is excluded in Karabiyik et al., 2017). Following

Westerlund and Urbain (2013a); Karabiyik et al. (2019), Assumption 3 also generalizes Pesaran

(2006) by allowing the factor loadings in the process of the dependent variable γi and those in

the explanatory variables Γi to be correlated for each cross-section unit i. This can be seen from

the fact that Ωη̃ is not restricted to be a (block) diagonal matrix. We further note that Ass.2-5 are

identical to Assumptions 1(iii)-(v) in Karabiyik et al. (2017).
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3 CCE estimation in large N and T panels

The central idea behind the CCE methodology is to estimate the unobserved factors in eq.(2.1)

with the cross-section averages of the observed data. This idea follows straightforwardly from

eq.(2.3), which shows that the CA of the observed data Z = 1
N ∑N

i=1 Zi is

Z = FC + U (3.1)

which, given the rank condition in Ass.4, can be solved for F as

F = (Z − U)C† (3.2)

The key insight from (3.2) is that since
∥∥U
∥∥ = Op(N−1/2) for a fixed T, the CA of the residuals

U is negligible and the observed Z therefore asymptotically (as N → ∞) mimics the behavior of

the factors (up to a rotation). Factors can thus be estimated as F̂ = Z, and these estimates can in

turn be used as additional regressors to control for the unobserved factor space in model (2.1).

That is, substituting (3.2) into (2.1) gives the so called factor-augmented model

yi = Xiβi + Zπi + (εi − Uπi) (3.3)

where the required linear combination πi = C†
γi is estimable by least squares (LS). The Com-

mon Correlated Effects estimators are the LS estimators of the parameters in this augmented

model and differ depending on whether the slopes βi are assumed to be common or variable

over cross-sections. The Common Correlated Effects Pooled (CCEP) estimator is the LS solution

in model (3.3) when slopes are homogeneous, βi = β,

β̂ =

(
N

∑
i=1

X′
iMF̂Xi

)−1 N

∑
i=1

X′
iMF̂yi (3.4)

where MF̂ = IT − Z(Z′Z)†Z′ orthogonalizes the data on the estimated factors. Pesaran (2006)

suggests the following non-parametric estimator for its sample variance

Θ̂ = N−1Q−1
Ψ̂Q−1, Ψ̂ =

1
N − 1

N

∑
i=1

Q̂i(β̂i − β̂mg)(β̂i − β̂mg)
′Q̂i (3.5)

where Q̂i = T−1X′
iMF̂Xi and Q = 1

N ∑N
i=1 Q̂i. Although (3.4) is also consistent for E(βi) = β

when slopes vary over individuals βi ̸= β, the Mean Group CCE (CCEMG) approach is then

a more natural estimator. It is calculated as the average of the individual-specific LS slope esti-

mates β̂i in (3.3)

β̂mg =
1
N

N

∑
i=1

β̂i, β̂i =
(
X′

iMF̂Xi
)−1 X′

iMF̂yi (3.6)
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and has the following sample variance estimator

Ω̂υ =
1

N(N − 1)

N

∑
i=1

(β̂i − β̂mg)(β̂i − β̂mg)
′ (3.7)

Note the importance of Ass.4 to obtain (3.3). This rank condition states that the set of CA must

span the space of the factors, or in other words that there must be at least as many CA holding

linearly independent information about the unobserved factors, as there are factors (m). One

implication is that the number of factors m therefore cannot exceed the number of CA. Pesaran

(2006) has shown that this rank condition in Ass.4 ensures the validity of the substitution in (3.3)

such that the CA consistently estimate the factor space. By consequence, both presented CCE

variants are consistent as N → ∞.

Estimating factors with CA is an elegant solution to the unobserved factor problem but not with-

out consequences for the asymptotic properties of the CCE estimators. In practice, the number

of factors, m, is typically small and likely to be exceeded by the number of CA (the k + 1 columns

of Z). Equation (3.1) implies that k + 1 − m columns of Z are then asymptotically degenerate so

that the pseudo-inverse (T−1Z′Z)† that features in MF̂ is unbounded as (N, T) → ∞ (see Kara-

biyik et al., 2017). While this has no consequences for consistency, the asymptotic distribution

and how it should be analyzed are significantly affected. Many standard arguments no longer

apply. This was first addressed by Karabiyik et al. (2017) for the CCEP estimator under sim-

plified error assumptions with common slopes, but it has to the best of our knowledge not yet

been considered in asymptotic analyses of the CCEMG and CCEP estimators when slopes are

heterogeneous.3 Hence, we begin our analysis by deriving generalized asymptotic distributions

for the CCE estimators and subsequently motivate and prove consistency of the bootstrap based

on those results. Naturally, asymptotic degeneracy (m < k + 1) in the original sample will, and

should, affect the bootstrap distribution as well. We analyze first the common slope setting in

the next section, and consider heterogeneous slopes in section 3.2.

3.1 Homogeneous slopes: βi = β

The CCEP estimator in eq.(3.4) is the natural estimator in model (3.3) when the slopes are com-

mon over individuals βi = β. In the next theorem, we establish its asymptotic distribution as

(N, T) → ∞ such that T/N → τ < ∞ under potential asymptotic degeneracy (due to more CA

3Karabiyik et al. (2019) provide some results for their augmented variant of the CCE estimator under assump-
tions that are close to ours, but crucially impose that the set of averages is successfully pre-selected such that
cols(Z) = m and rk(Z) = m, where cols(Z) is the number of columns of Z. This avoids the m < cols(Z) problem,
but need not hold true in applications. Our analysis does not require this assumption, as it holds for m ≤ cols(Z).
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than factors, m ≤ 1 + k), allowing for both cross-section heteroscedasticity and serial correlation

in the residuals.

Theorem 1 Let Ass.1-5 hold. Then, as (N, T) → ∞ such that T/N → τ < ∞
√

NT(β̂ − β)
d−→ N (0k×1, Σ−1ΨΣ−1) +

√
τΣ−1(b − d)

where Ψ = plim(N,T)→∞
1
N ∑N

i=1(T
−1V′

iΩiVi), b = b1 − b2,

b1 = q′
xyΣ′

ηvec((C†)′ΣuC†)

b2 = Γ′(C†)′[σ2, 01×k]
′

and d = 0k×1 if m = 1 + k, whereas if m < 1 + k then d = d1 + d2 with

d1 = q′
xyΣ′

ηvec
(
(C†)′ΣuD−mΣuC†

)
d2 = lim

N→∞

1
N

N

∑
i=1

(Σi[β, Ik]− Γ′(C†)′Σu)D−m[σ
2
i , 01×k]

′

with qxy = (qy ⊗ qx), qy = [1, 0′k×1]
′, qx = [0k×1, Ik]

′, D−m = TH−m(H′
−mT′ΣuTH−m)†H′

−mT′.

T is the (1 + k)× (1 + k) partitioning matrix such that CT = [Cm, C−m] with Cm an m × m full rank

matrix and C−m is m × (k + 1 − m), and H−m = [−(C−1
m C−m)′, Ik+1−m]

′.

Theorem 1 generalizes the results in Karabiyik et al. (2017) by allowing both serial correlation

and heteroscedasticity in the innovations, and confirms that the asymptotic distribution of the

CCEP estimator also features bias terms in this setting unless the cross-section dimension of the

dataset dominates the time series length. This is at its root an incidental parameters bias (see e.g.

Neyman and Scott, 1948) induced by estimating the factors with the CA at every t = 1, . . . , T in

the dataset, as this accumulates T approximation errors that vanish only with N. If T and N then

grow at a similar rate, error accumulates as quickly as it vanishes and a bias will remain in the

limit. The larger T is relative to N, the larger this over-accumulation of error, and hence bias, will

be, and only when N grows faster than T does error die out sufficiently fast for the distribution

to be correctly centered. This is represented by the T/N → τ < ∞ in Theorem 1, so that τ = 0 is

the case where N dominates T, and the τ < ∞ restriction ensures that the accumulation of error

is not explosive.

It is not difficult to see that the asymptotic bias can be highly disruptive for inference. This is

apparent from the distribution of the t-statistic under the null for the l-th coordinate in β as

(N, T) → ∞ such that T/N → τ < ∞

t =
q′

l(β̂ − β)√
q′

lΘ̂ql

=
q′

l

√
NT(β̂ − β)√
q′

l NTΘ̂ql

d−→ N (0, 1) +
√

τ
q′

lΣ
−1(b − d)√

q′
lΘql

(3.8)
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where ql a k × 1 vector of zeros with a one as its l-th element. This result follows from The-

orem 1 and NTΘ̂ →p Θ = Σ−1ΨΣ−1 by Theorem 8 of Supplement A. Clearly, unless τ = 0,

the bias shifts the center of the distribution away from zero and thereby causes over-rejection of

the correct null hypothesis. The t-test will thus tend to be over-sized. The actual severity of the

problem depends on the drivers of the asymptotic bias, i.e. the overall noise level in the form

of the error and loading variance-covariance matrices σ2, Ση, Σu, Σ, but also on the asymptotic

information content in the CA. The latter follows from the presence of C† = C′(CC′)−1 in the

bias expression. That is, recall from (3.2) that the approximation error when estimating F with

Z is UC†. As alluded to above, the residuals U are the source of the bias in Theorem 1 and they

are themselves scaled by C†. Noting that C →p C and C† →p C† as N → ∞, we have that when

the columns of C are highly informative about the factors4, then the determinant |CC′| is large

so that (CC′)−1 and hence
∥∥C†

∥∥ are small. The impact of the estimation error U on the bias,

in the form of σ2, Ση, Σu, Σ in the expressions above, will then be pushed down. Naturally, the

converse is also true. As |CC′| → 0 the asymptotic information content of the CA decreases so

that (CC′)−1 explodes and C† aggravates the impact of the other bias components.5 The main

takeaway is thus highly intuitive: when τ > 0 estimation error from the CA causes bias, and

the less informative the set of CA is, the larger the (absolute) asymptotic bias and size distor-

tions will be. If on the other hand N dominates T (τ = 0), error vanishes more quickly than it

accumulates and asymptotic information content is not an issue (provided that the rank condi-

tion is satisfied). In this case (3.8) is correctly centered and tests based on it are correctly sized.

In practice, it is of course unknown whether a set of CA is informative so bias remains a concern.

The obvious solution to the problem would be bias-correction. Yet, the key practical implication

of Theorem 1 is that analytical adjustments appear to be infeasible for applications. The specific

form of the bias expression depends first of all on whether the number of CA equals (m = 1 + k)

or surpasses (m < 1 + k) the number of factors, with b featuring in the distribution on both

occasions, whereas d is only present in the latter case.6 The d term represents the additional bias

caused by the asymptotic singularity of Z′Z/T when m < 1 + k. The difficulty for correction is

that firstly m is unknown so that the researcher is unaware of whether d is present or not. Even

if m were known (or estimated), the dependence of d on the unknown rotations T and H−m still

4For example when m = 2 and X loads only on the first factor, while y loads only on the second.
5Logically, in the limit, |CC′| = 0, the CA are not informative for the full common factor space. The C† matrix is

then undefined and the CCE estimators are generally inconsistent. This is excluded under Ass.4.
6Note that the distribution in Theorem 1 features one less bias term than Theorem 3 in Karabiyik et al. (2017).

Our proof of Theorem 1 in the supplement shows that the random loading assumption (Ass.3 here or Assumption
1.(iv) in Karabiyik et al. (2017)) implies that in their expressions b1 = 0k×1.
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hinders an actual correction. In addition, while σ2, Σ and Σu have consistent estimators (see e.g.

Westerlund and Urbain, 2013b), this is not the case for the loading population mean C. By con-

sequence, Γ and the prominent scaling matrix C† remain unknown to the researcher.7

Given these difficulties with implementing the bias expression in Theorem 1 for correction we

consider in the next section the bootstrap as an alternative. As we will see, this allows us to

side-step estimation of any bias components and allows the researcher to also remain agnostic

about the number of factors m.

3.1.1 Pairs bootstrap for CCE estimators

The bootstrap is an attractive alternative to analytical bias-correction and inference when bias

expressions are inestimable. In its essence, if the bootstrap is able to replicate the distribution of

an estimator, its bias can be eliminated without explicit knowledge of the functional form and

consistent inferences can be made even when classical asymptotic tests fail.

The objective is thus to replicate with the bootstrap the asymptotic distribution in Theorem 1.

To do so, it is paramount that the resampling scheme preserves the correlation and variance

structure of the original sample. Cross-section/pairs resampling is an ideal candidate given

eq.(2.3) and Ass.1-5. The scheme was first introduced into a panel data context by Kapetanios

(2008) and boils down to generating the bootstrap dataset Z∗ = [Z∗′
1 , . . . , Z∗′

N]
′ according to

Z∗
i = Zi∗ for i = 1, . . . , N (3.9)

with i∗ drawn with replacement from (1, . . . , N). Put simply, the data for cross-section unit i in

the bootstrap sample is generated by taking the data for a random unit i∗ of the original sample.8

This implies given (2.3) that the bootstrap data is

Z∗
i = Zi∗ = FCi∗ + Ui∗

The loading and innovation matrices of the original sample are thus randomly (and implicitly)

redistributed over cross-sections while the factors and the time series dimensions remain un-

touched. This is advantageous in practice as the factors, time series properties, loading means,

7Westerlund and Urbain (2013b, 2015) propose the least squares estimator Ĉi = (Z′Z)−1Z′Zi of the individual-
specific loading matrix. It can be shown, however, that the mean of this estimator Ĉ = 1

N ∑N
i=1 Ĉi is inconsistent for

C.
8Note that the presentation of the algorithm is kept simple here for ease of exposition. The interested reader is

referred to section 3.1 of the supplement for a formal exposition of its properties. There, the bootstrap dataset is
generated as Z∗ = WTZ, with WT = (w ⊗ IT), w = [w′

1, . . . , w′
N ]

′ and wi is a 1× N Boolean selection vector drawn
for a multinomial distribution with one trial and k = N events, each with probability N−1.
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and the within unit variance-covariances of the loadings and errors (Ση, σ2
i , Σi, Σu,i, Ωi) are repli-

cated while the researcher remains agnostic about these components and even the number of fac-

tors m that are at play. Note that the aforementioned are all key components of the asymptotic

distribution in Theorem 1. The ability to keep m unknown in the resampling process is partic-

ularly attractive because it can be difficult to estimate, and miss-specification in model-based

resampling schemes would significantly distort the bootstrap distribution. Gonçalves and Per-

ron (2014, 2020) for instance employ a residual bootstrap scheme in a PC context and therefore

implicitly assume that the number of factors is known or correctly selected for their asymptotic

theory to follow through. With residual-based schemes one also needs to be careful with how

residuals are resampled, as the Wild Bootstrap scheme in Gonçalves and Perron (2014) for in-

stance does not reproduce error serial correlation (Djogbenou et al., 2015). In stead, none of

these considerations are required with (3.9), which makes the algorithm both easy and broadly

applicable. The key assumptions are in stead that N → ∞ and that loadings Ci and innova-

tions Ui are cross-sectionally independent as in Ass.1 and 3. It is important to note that this

does not imply that the observed data (yi, Xi) is cross-sectionally independent, but rather that

the cross-section dependence stems from F only, and that the data is therefore cross-sectionally

independent conditional on the sigma algebra F = σ{F} (see also Andrews, 2005). Violation of

this assumption would require the use of blocked resampling variants (see e.g. Lahiri, 2003), but

this is beyond the scope of this paper. As a final note, observe that it is crucial for our purposes

to regenerate also X∗
i in the bootstrap sample, as the bias in Theorem 1 is induced by error from

estimating factors with the CA, of which X is an integral part. Conditioning on (fixing) the re-

gressors as in classical residual bootstrap methods would therefore not replicate bias. Gonçalves

and Perron (2014) make a similar observation in the PC context. Similarly, fixing the CA over

bootstrap iterations as in Westerlund et al. (2019) (who consider a fixed T setting) will not repli-

cate bias when (N, T) → ∞.

We have thus far argued that the resampling algorithm retains the key features of the original

dataset under Ass.1-5. This however does not guarantee that the asymptotic distribution of the

CCE estimators will also be replicated. Conditions for this are investigated next.

REMARK 1 Note that while our assumptions and DGP exclude cross-section fixed effects, this is for ease

of exposition only. It can be shown that the distribution of the CCE estimators is invariant to these effects

so long as a T × 1 row of constants ιT = [1, . . . , 1]′ is added to the matrix of CA, that is, H = [ιT, Z], such

that MF̂ = IT − H(H′H)†H′ (see for instance Lemma 1 in De Vos and Everaert, 2021, in a dynamic

setting). This implies that the CS-resampling scheme and the conditions for its consistency presented
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below apply directly to the fixed effects setting, provided a vector of ones is added to the CA, regardless of

whether those fixed effects are cross-sectionally dependent or not.

3.1.2 Asymptotic analysis

Recall that Z∗
i = [y∗

i , X∗
i ], let Z∗

= 1
N ∑N

i=1 Z∗
i be the CA of the observables generated from (3.9)

in the bootstrap sample and let MF̂∗ = IT − Z∗
((Z∗

)′Z∗
)†(Z∗

)′ be the corresponding orthogo-

nalization matrix. The CCEP estimator in the bootstrap dataset is then

β̂
∗
=

(
N

∑
i=1

X∗′
i MF̂∗X∗

i

)−1 N

∑
i=1

X∗′
i MF̂∗y∗

i =

(
N

∑
i=1

siX′
iMF̂∗Xi

)−1 N

∑
i=1

siX′
iMF̂∗yi (3.10)

where si denotes the frequency with which cross-section i was resampled. Theorem 2 establishes

the asymptotic distribution of (3.10) in the bootstrap world as (N, T) → ∞ such that T/N →
τ < ∞.

Theorem 2 Let Ass.1-5 hold. Then, as (N, T) → ∞ such that T/N → τ < ∞

√
NT(β̂

∗ − β̂)
d∗−→ N (0k×1, Σ−1ΨΣ−1) +

√
τΣ−1(b − d − d+)

where d+ = (1/2) limN→∞
1
N ∑N

i=1 Σi[β, Ik]D−m[σ2
i , 01×k]

′ and b, d, Ψ and D−m are defined in Theo-

rem 1, with d = d+ = 0k×1 if m = 1 + k. If either τ = 0 or m = 1 + k, then

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗ − β̂) ≤ x]− P[

√
NT(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where inequalities should be interpreted coordinate-wise.

This result reveals that the bootstrap replicates the distribution of the CCEP estimator in Theo-

rem 1, but that it also generates an additional bias d+ when and m < 1 + k. The new term is

effectively the exacerbation of d in the bootstrap distribution, and it implies that the bootstrap

is only consistent when either τ = 0 (no bias), or when the number of CA equals the number of

factors m = 1 + k (as d is then absent and cannot be magnified). This is the last statement of the

theorem.

As is, the conclusions from Theorem 2 are relatively disappointing. Bootstrap bias-corrections,

confidence intervals and tests, to be discussed in further detail below, are only applicable to β̂

when either τ = 0 or m = 1 + k. The obvious practical issue, as with analytical corrections, is

that the researcher is typically unaware of whether m < 1 + k or m = 1 + k so that it is unclear

whether bias will remain and conclusions can be trusted. Yet, close inspection reveals that d+
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is a consequence of the dependence generated by estimating the factors with y∗ (in combination

with m < 1 + k). Hence, the solution is to exclude (y, y∗) from the employed set of CA in both

the original and the bootstrap world and use X (X∗) in stead of Z (Z∗) to estimate the unknown

factors. The implied reduction of information requires that Ass.4 is sharpened to Ass.7 below to

ensure that X still consistently estimates the factor space.

Assumption 7 (Rank condition) rk(Γ) = m for all N.

Consider then the CCEP estimator that excludes y from the estimation in the original sample

β̂x =

(
N

∑
i=1

X′
iMF̂x

Xi

)−1 N

∑
i=1

X′
iMF̂x

yi, with MF̂x
= IT − X(X′X)†X′ (3.11)

Corollary 1 presents its asymptotic distribution. An important observation is that the asymptotic

variance of β̂x is identical to that of β̂, which means that no asymptotic efficiency is lost by

the exclusion of y under Ass.7. In addition, while the bias remains inestimable for analytical

correction purposes, it is significantly less involved than that in Theorem 1.

Corollary 1 Let Assumptions 1-3, 5 and 7 hold. Then, as (N, T) → ∞ such that T/N → τ < ∞

√
NT(β̂x − β)

d−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1g

where

g = q′
xyΣ′

ηvec((Γ†)′Σ(Ik − Dx,−mΣ)Γ†)

and Dx,−m = TxHx,−m(H′
x,−mT′

xΣTxHx,−m)†H′
x,−mT′

x, with Tx the k × k partitioning matrix such

that ΓTx = [Γm, Γ−m] with Γm an m × m full rank matrix and Γ−m is m × (k − m), and Hx,−m =

[−(Γ−1
m Γ−m)′, Ik−m]

′.

The reduced number of terms compared to Theorem 1 does not, however, guarantee that the

asymptotic bias of β̂x is also smaller than that of β̂. The relative size depends on how much

information about the factors is lost by excluding y, as reflected by the presence of Γ† rather

than C† of Theorem 1. That is, if the population means Γ are sufficiently less informative than

C = [γ + Γβ, Γ], asymptotic bias may yet be aggravated due to
∥∥∥Γ†

∥∥∥ >
∥∥C†

∥∥. Our Monte Carlo

experiments of Section 4 confirm that the bias of β̂x tends to be larger than that of β̂.

Hence, β̂x may be more biased than β̂, but we nevertheless posit that β̂x is better suited for

correction because the bootstrap distribution of

β̂
∗
x =

(
N

∑
i=1

X∗′
i MF̂∗

x
X∗

i

)−1 N

∑
i=1

X∗′
i MF̂∗

x
y∗

i with MF̂∗
x
= IT − X∗

((X∗
)′X∗

)†(X∗
)′ (3.12)
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should not magnify bias when m < k (note that X has k in stead of k + 1 columns). This is

confirmed by Corollary 2.

Corollary 2 Under Ass.1-3, 5 and 7, as (N, T) → ∞ such that T/N → τ < ∞,
√

NT(β̂
∗
x − β̂x)

d∗−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1g

with g defined in Corollary 1, and

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
x − β̂x) ≤ x]− P[

√
NT(β̂x − β) ≤ x]

∣∣∣ −→p 0,

where the inequalities are interpreted coordinate-wise.

REMARK 2 Note that Assumption 7 and Corollary 1 and 2 are perfectly compatible with the usual

DGPs considered in the CCE literature. That is, the same F enters equations for Xi and yi. Provided this,

we only need to increase informativeness of Γi to compensate for dependence reduction to make the popular

pairs bootstrap consistent in the CCE context when more CAs than needed are used as proxies for the

factor space. This is the main intuition behind Assumption 7. Interestingly, slightly more general DGPs

resembling those of quasi-maximum likelihood (QMLE) literature can be compatible with this sharpened

requirement. Following, Juodis et al. (2021), we can have a T × my matrix Fy which represents the

factors that enter equation of yi. Let Xi load on T × mx matrix FX. If Fy ⊆ FX, then m = mx, and

under Assumption 7 the results presented above still go through, because Xi is sufficiently informative

about the factor space. On the other hand, if FX ⊂ Fy, the proposed solution could result in a loss of

information that cannot be compensated without further restrictions on DGP. One possible restriction is

to let the loadings of the factors entering yi only, say γi,−X ∈ R(my−mx)×1, be uncorrelated with the other

loadings. Similar loading properties are considered in, for example, Pesaran (2006), Chudik et al. (2011)

and Kapetanios et al. (2011).

The above corollaries establish the consistency of the bootstrap for the distribution of β̂x for

general m ≤ k, and hence validates the construction of bootstrap confidence intervals for this

estimator in a general setting. The next theorem confirms that the obtained bootstrap mean can

also be used for explicit bias-correction of β̂x (and leads to over-correction for β̂).

Theorem 3 Under Ass.1-5 strengthened with E(∥vi,t∥8) < ∞ we have as (N, T) → ∞ such that

T/N → τ < ∞ that A∗ −→p∗ √
τA, where A∗ = E∗(

√
NT(β̂

∗ − β̂)) and A = Σ−1(b − d − d+).

If also Ass.7 holds, then A∗
x −→p∗ √τAx, with A∗

x = E∗(
√

NT(β̂
∗
x − β̂x)) and Ax = Σ−1g.

Consider then the following bootstrap estimator for the bias of β̂x

b̂∗
x = β

∗
x − β̂x (3.13)
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where β
∗
x = 1

B ∑B
b=1 β̂

∗
x,b and β̂

∗
x,b is the CCEP estimator in (3.12) applied to bootstrap sample

b = 1, . . . , B. Theorem 3 establishes that b̂∗
x is consistent for the bias of β̂x derived in Corollary 1,

and by consequence, that the bootstrap adjusted estimator

β̂x,c = β̂x − b̂∗
x

is asymptotically unbiased as (N, T, B) → ∞ such that τ < ∞ in the general m ≤ k setting. It

is important to reiterate the relative ease with which this bias correction is achieved: it does not

require an analytical formula or knowledge of m, only the nonparametric resampling scheme in

(3.9) and calculation of the CCEP estimates.

Corollary 2 justifies inferences on β with the ’basic’ 100(1 − α)% confidence interval

CI(α, β̂
∗
x) = [2β̂x − θ∗(1−α/2)(β̂

∗
x), 2β̂x − θ∗α/2(β̂

∗
x)] (3.14)

with θ∗α(·) the empirical α-quantile of the obtained bootstrap distribution for the statistic inside

the brackets. The implicit bias adjustment means that the interval attains the coordinate-wise

nominal coverage P[β ∈ CI(α, β̂
∗
x)] = 1 − α as (N, T, B) → ∞ provided m ≤ k and τ < ∞.9 To

establish also the asymptotic validity of bootstrap−t intervals, define Θ = Σ−1ΨΣ−1 and let Θ̂
∗

be the bootstrap world equivalent of the variance estimator in (3.5)

Θ̂
∗
= N−1Q∗−1

Ψ̂
∗
Q∗−1, Ψ̂

∗
=

1
N − 1

N

∑
i=1

Q̂∗
i (β̂

∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′Q̂∗
i (3.15)

where Q∗
= 1

N ∑N
i=1 Q̂∗

i and

Q̂∗
i = T−1X∗′

i MF̂∗
x
X∗

i , β̂
∗
i = Q̂∗−1

i T−1X∗′
i MF̂∗

x
y∗

i , β̂
∗
mg =

1
N

N

∑
i=1

β̂
∗
i

with the obvious substitution of the projection matrices with MF̂∗ when (y, y∗) are included in

the matrix of CA. Theorem 8 in the supplement shows that NTΘ̂ →p Θ and NTΘ̂
∗ →p∗ Θ

as (N, T) → ∞, irrespective of whether the number of employed CA exceeds or equals m or

if (y, y∗) are also employed to estimate factors. It then follows from Corollary 1, for the l−th

coordinate of β in the original sample

t =
q′

l(β̂x − β)√
q′

lΘ̂ql

d−→ N (0, 1) +
√

τ
q′

lΣ
−1g√

q′
lΘql

(3.16)

9Note that the absence of an implicit bias-adjustment implies that the classical percentile interval CIp(α, β̂
∗
x) =

[θ∗α/2(β̂
∗
x), θ∗(1−α/2)(β̂

∗
x)] will require in stead τ = 0 to attain nominal asymptotic coverage. See e.g. DiCiccio and

Efron (1996) for several more advanced percentile bootstrap methods.
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and for the studentized bootstrap statistic, by Corollary 2,

t∗ =
q′

l(β̂
∗
x − β̂x)√

q′
lΘ̂

∗
ql

d∗−→ N (0, 1) +
√

τ
q′

lΣ
−1g√

q′
lΘql

(3.17)

as (N, T) → ∞ such that τ < ∞. It is apparent from (3.16) that the asymptotic bias also shifts

the center of the distribution of the t-statistic based on β̂x and causes size distortions for the

classical t-test unless τ = 0. Yet, given that t ∼ t∗ by (3.16)-(3.17) under the null, asymptotically

correct size is achieved with the bootstrap as (N, T, B) → ∞ such that τ < ∞ by rejecting the null

hypothesis when t > θ∗(1−α/2)(t
∗) or t < θ∗(α/2)(t

∗). This is equivalent to rejecting when β0 of the

null hypothesis falls outside the ’bootstrap-t’ interval constructed with the roots (t, t∗) (see also

van Giersbergen and Kiviet, 2002):

CIt(α, β̂
∗
x) = [β̂x − diag(Θ̂

1/2
) ◦ θ∗(1−α/2)(t

∗), β̂x − diag(Θ̂
1/2

) ◦ θ∗(α/2)(t
∗)] (3.18)

Bootstrap-t intervals date back to Efron (1979, 1981) and are widely advocated in econometrics

because the studentized roots in (3.16)-(3.17) lead to improved finite sample behavior, compared

to say (3.14), if they are also (asymptotically) pivotal (see e.g. Diciccio and Romano, 1988; Beran,

1987; Hall, 1988; Hall et al., 1996). The bias terms in (3.16)-(3.17) imply, however, that the roots

(t, t∗) are not pivotal in our setting unless τ = 0, but we can re-pivot them with the bias estimate

in (3.13). Let (tc, t∗c ) be these corrected roots. We then have by Corollaries 1,2 and Theorems 3,8

tc =
q′

l(β̂x − b̂∗
x − β)√

q′
lΘ̂ql

d−→ N (0, 1), t∗c =
q′

l(β̂
∗
x − b̂∗

x − β̂x)√
q′

lΘ̂
∗
ql

d∗−→ N (0, 1)

as (N, T, B) → ∞ such that τ < ∞. That is, the corrected roots (tc, t∗c ) are asymptotically pivotal

and lead to the adjusted bootstrap-tc confidence interval

CIt,c(α, β̂
∗
x) = [β̂x − b̂∗

x − diag(Θ̂
1/2

) ◦ θ∗(1−α/2)(t
∗
c ), β̂x − b̂∗

x − diag(Θ̂
1/2

) ◦ θ∗(α/2)(t
∗
c )]

(3.19)

Hypothesis tests based on (3.19) are equivalent to rejecting the null hypothesis when tc <

θ∗(α/2)(t
∗
c ) or tc > θ∗(1−α/2)(t

∗
c ). Since the confidence interval and hypothesis tests are now based

on asymptotically pivotal roots, classical theory (e.g. Hall, 1988; Diciccio and Romano, 1988)

suggests that they will have better finite sample properties than (3.18). This is confirmed by the

Monte Carlo experiments of Section 4.

To sum up, we have shown with the analysis above that the cross-section bootstrap allows elim-

ination of the asymptotic bias of the CCEP estimator and enables asymptotically unbiased infer-

ences in panels where 0 ≤ τ < ∞. This is a considerable generalization compared to standard

17



normal theory intervals and tests, which were shown to require the highly stringent τ = 0 re-

striction. We have argued that the procedures are most generally effective when applied to β̂x

compared to β̂, as bootstrap consistency for the former does not depend on whether the number

of CA exceeds or equals the number of factors, which is unknown. Bias adjustment and inter-

val construction can in other words proceed for β̂x without this knowledge, while β̂ requires in

stead verification that m = 1 + k.10 The only cost associated with β̂x compared to β̂ is that the

maximum number of factors that can be allowed is reduced from k+ 1 to k, but there is otherwise

no asymptotic efficiency loss.

3.2 Heterogeneous slopes: βi ̸= β

Consider next the case where the slope coefficients (β1, . . . , βN) in the model are heterogeneous

over individuals and characterized by Ass.6. We take that the researcher is interested in the

population mean E(βi) = β in

yi = Xiβi + Fγi + εi, (3.20)

The CCEP estimator has the following asymptotic distribution in this model:

Theorem 4 Under Ass.1-6, with E(∥vi,t∥8) < ∞ and E(∥υi∥6) < ∞, as (N, T) → ∞
√

N(β̂ − β)
d−→ N (0k×1, Σ−1ΨhΣ−1)

where Ψh = limN→∞
1
N ∑N

i=1 ΣiΩυΣi.

This is, to the best of our knowledge, the first derivation of the asymptotic distribution of the

CCEP estimator under heterogeneous slopes which also allows m < 1 + k settings. This re-

sult is thus a generalization of that in Pesaran (2006), and reveals that with the potential for

m < 1 + k comes the additional requirement that 6th and 8th moments of υi and vit, respec-

tively, are bounded. Restrictions on the relative expansion rate of T and N are then not required,

but these moment bounds can also be dispensed with by imposing in stead that
√

N/T → 0. The

main conclusion remains that the estimator is now asymptotically unbiased because the conver-

gence rate is reduced to
√

N compared to the
√

NT rate in the homogeneous slope setting. This

is because the heterogeneity in βi is now the slowest decaying error component. The distribution

of β̂x is identical to that in Theorem 4 under Ass.7.

The cross-section resampling scheme of section 3.1.1 can also be applied to the CCE estimators

when slopes are heterogeneous. The only new requirement is that the βi are independent over

10Note that should m = 1 + k or τ = 0 hold true, then (3.14), (3.18) and (3.19) can be applied to β̂.
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cross-sections as in Ass.6. In this case, the absence of asymptotic bias in Theorem 4 implies that

bootstrap consistency no longer hinges on the exclusion of (y, y∗) when m < 1 + k. This is

formalized in the next theorem.

Theorem 5 Under the conditions of Theorem 4

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗ − β̂) ≤ x]− P[

√
N(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.

The result is identical for (β̂
∗
x, β̂x) under Ass.7. Theorem 5 establishes the validity of percentile

and basic bootstrap intervals as (N, T, B) → ∞ without further restrictions on N and T. In

addition, by the consistency of both NΘ̂ and NΘ̂
∗

in (3.15) for the asymptotic variance Θh =

Σ−1ΨhΣ−1 of Theorem 4 (which is established in Theorem 8 of the supplement) the bootstrap-t

intervals presented in (3.18) and (3.19) also give asymptotically correct coverage when slopes

are heterogeneous. This applies irrespective of whether (y, y∗) are employed in the estimation,

provided a rank condition holds (Ass.4 or 7). In other words, also

CIt(α, β̂
∗
) = [β̂ − diag(Θ̂

1/2
) ◦ θ∗(1−α/2)(t

∗), β̂ − diag(Θ̂
1/2

) ◦ θ∗(α/2)(t
∗)] (3.21)

has the desired coverage in this setting, where it should be clear that t∗ = q′
l(β̂

∗ − β̂)/
√

q′
lΘ̂

∗
ql.

Note that the absence of bias now means that the roots (t, t∗) are asymptotically pivotal so that

the interval can be motivated by the usual arguments. Bias-adjustment as in

CIt,c(α, β̂
∗
) = [β̂ − b̂∗ − diag(Θ̂

1/2
) ◦ θ∗(1−α/2)(t

∗
c ), β̂ − b̂∗ − diag(Θ̂

1/2
) ◦ θ∗(α/2)(t

∗
c )] (3.22)

with t∗c = q′
l(β̂

∗ − b̂∗ − β̂)/q′
l(Θ̂

∗
)1/2ql is thus not strictly necessary, but it is asymptotically

innocuous due to b̂∗ →p∗ 0k×1 as (N, T, B) → ∞, and may yet improve finite sample behavior

as the CCEP estimator is ’only’ asymptotically unbiased (and not in small samples).

The main conclusion from the analysis so far is that the resampling scheme in (3.9) and the result-

ing bias adjustments and bootstrap confidence intervals of section 3.1 also lead to asymptotically

unbiased inferences on E(βi) = β when slopes are heterogeneous. The researcher can in other

words safely apply the exact same bootstrap procedures indiscriminately and remain agnostic

about whether slopes vary over individuals in practice. Notwithstanding, efficiency gains could

be achieved by applying in stead of CCEP the Mean Group CCE (CCEMG) estimator defined

in (3.6). Given that slope heterogeneity is also here the slowest decaying source of error, the

CCEMG estimator converges at the slower
√

N rate as well and is asymptotically unbiased in

the general m ≤ 1 + k setting.

19



Theorem 6 Under Ass.1-6 as (N, T) → ∞

√
N(β̂mg − β)

d−→ N (0k×1, Ωυ)

This is the first result for the CCEMG estimator that accounts for the potential m < 1 + k prob-

lem. Nevertheless, the asymptotic distribution is identical to that in Pesaran (2006).

The bootstrap can also in this setting lead to refinements by for instance reducing finite sample

bias (also β̂mg is only asymptotically unbiased). In addition, if the distribution of the slopes is

non-normal and skewed, bootstrap percentiles and critical values can be substantially more ac-

curate than the normal approximation in finite samples. The next theorem establishes bootstrap

consistency. Results are identical when (y, y∗) is excluded.

Theorem 7 Under the conditions of Theorem 6, as (N, T) → ∞

√
N(β̂

∗
mg − β̂mg)

d∗−→ N (0k×1, Ωυ),

and in addition

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗
mg − β̂mg) ≤ x]− P[

√
N(β̂mg − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.

Theorem 8 in the supplement establishes that the bootstrap world equivalent of (3.7)

Ω̂
∗
υ =

1
N(N − 1)

N

∑
i=1

(β̂
∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′

also consistently estimates the variance in Theorem 6, NΩ̂
∗
υ →p∗ Ωυ as (N, T) → ∞. It thus

follows in combination with Theorem 7 that the percentile, basic and (corrected) bootstrap-t in-

tervals apply equally to the CCEMG estimator. That is, CI(α, β̂
∗
mg), CIt(α, β̂

∗
mg) and CIt,c(α, β̂

∗
mg),

with obvious adaptations to the CCEMG estimator, have asymptotically correct coverage.

4 Monte Carlo Simulation

In this section we assess the finite properties for the algorithms presented above.
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4.1 Design

Data for yi and Xi are generated according to eqs.(2.1)-(2.2), assuming m = 2 unobserved factors

and k = 3 regressors. This corresponds to the likely practical setting where there are multiple

factors but their number is exceeded by the number of regressors. Slope coefficients are

βi = βιk×1 + υi, with υi,l ∼ (χ2
1 − 1)

√
σ2

υ/2 for l = 1, . . . , k

where υi,l denotes the l-th row of υi, so that σ2
υ ∈ (0, 5) considers respectively the common and

variable slopes setting. We vary the slope population mean as β ∈ (1, 5) to also determine its

impact on bias. Time varying unobservables in (2.1)-(2.2) follow

ft = θft−1 +
√

1 − θ2ν
f
t , ν

f
t ∼ N (0m×1, Im/m)

εi,t = ρεi,t−1 +
√

1 − ρ2νε
i,t, νε

i,t ∼ N (0, σ2
i )

vi,t = ρxvi,t−1 +
√

1 − ρ2
xνx

i,t, νx
i,t ∼ N (0k×1, σ2

x,iIk)

where each variable is initiated at 0 and the first 50 periods are discarded as a burn-in to neu-

tralize the initial conditions. In accordance with the high serial correlation that is typically en-

countered in practice we set ρ = ρx = θ = 0.8 for all experiments. To further illustrate the

robustness to heteroscedasticity, variances in the processes are drawn from σ2
i = σ2 + (ω1,i − 1)

and σ2
x,i = σ2

x + (ω2,i − 1) respectively, where ω1,i ∼ χ2
1 and ω2,i ∼ χ2

1. We set σ2
x = 2 for all

experiments to ensure, given k = 3, a minimal signal to noise level.

As discussed below Theorem 1, an important driver of the asymptotic bias of the CCEP estimator

is the extent to which the chosen set of cross-section averages are (asymptotically) informative

about the unobserved factors. We measure this with the determinant d = |C̃C̃′| in our experi-

ments and control it by choosing an upper bound du and generating the entries in C̃ indepen-

dently from U [0, 2] such that du − 0.1 ≤ d ≤ du. The obtained population mean C̃ that adheres to

this restriction is then fixed over Monte Carlo replications and sample sizes. We take d = 10 as

our baseline scenario with good information content, and study the impact of a less informative

setting by lowering d to 5.11 To avoid that the majority of the information stems only from y we

impose that dx = |ΓΓ′| adheres to the same bounds as d.12 Given C̃, the cross-section-specific

loadings are generated as C̃i = C̃ + η̃iι
′
1+k, with η̃i ∼ N (0m×1, σ2

ηIm). This implies that loadings

11These numbers are based on the (simulated) distribution of the determinant of 2 × 4 matrices with elements
drawn from U [0, 2], which ranges roughly from 0 to 40 (with a long right tail) with E(d) ≈ 9.2.

12Note that this does not in any way inhibit the information content in y because we restrict C̃ = [γ, Γ] rather
than C = [γ + Γβ, Γ], so that given that in all our experiments β ̸= 0 the information content in X also feeds into y
and C will tend to be more informative than Γ, as is likely the case in practice.
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in Zi are perfectly correlated within individuals, and the covariance (Ση in Theorem 1) scales up

one-to-one with σ2
η = (1, 5).

Our experiments can be summarized as follows. We take (du, β, σ2, σ2
η , σ2

υ) = (10, 1, 1, 1, 0) as our

baseline scenario. It considers the homogeneous slope setting with more CA than factors and

bias components at a standard level: CA are reasonably informative and none of the variances

and covariances are excessive (relative to the others). We use this to assess the properties of

CCEP and the bootstrap in a ’regular’ or relatively forgiving setting, and subsequently perform

stress tests by boosting one of the other DGP components to its more extreme 5 setting (while

the other components stay on their standard setting). In each case we generate datasets where

N and T take the values (25, 50, 100, 200, 500, 1000), such that we cover both micro (where N is

larger than T) and macro (T similar or larger than N) panels. We generate 2000 datasets for each

combination of N and T and report bias, root mean squared error (rmse) and empirical size for

tests performed at the α = 0.05 level. In each Monte Carlo iteration the bootstrap-adjusted CCE

estimate and confidence intervals are calculated from B = 2000 bootstrap samples generated

with the cross-section resampling algorithm. We report results both with and without exclusion

of y from the matrix of CA, with the former denoted as CCEP and CCEMG and the latter by

a x subscript as in CCEPx and CCEMGx. Their respective pairs bootstrap corrections are de-

noted ’pairs’ and ’pairsx’. The CCE estimators with an x subscript therefore employ k = 3 > m

cross-section averages, while the CCE estimators without this subscript employ 1 + k = 4 > m.

Note that we could in principle equalize the number of CA for the CCE and CCEx approaches

(i.e. estimate both versions with 3 CA) but choose in stead the current setting to correspond to

empirical practice where one typically employs all the available CA in the estimation, and ex-

cluding y as we propose therefore entails a loss of information, and one less CA than one would

typically use. The Monte Carlo results represent this fact and are therefore more relevant for

practice.

The next section discusses results with homogeneous slopes in the baseline setting, and all the

corresponding stress tests are discussed in section 4.2.1. Section 4.3 presents results for hetero-

geneous slopes.

4.2 Results: Homogeneous slopes

Consider first the baseline scenario where the CA have reasonable asymptotic information con-

tent and none of the respective bias components are excessive. Table 1 focuses on the estimation
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results and presents (100×) the bias and root mean squared error (rmse) of the CCEP and CCEPx

estimators as well as their respective bootstrap corrections ‘pairs’ and ‘pairsx’. Note that in this

and subsequent tables we have τ = 1 along the diagonal, whereas respectively τ > 1 above the

diagonal and τ < 1 below the diagonal. Clearly, the results confirm the theory of section 3.1

as the CCEP estimators are generally biased when T is large compared to N. This holds true

for both CCEP and its variant CCEPx which excludes the CA of the dependent variable. As al-

luded to below Corollary 1, the information loss incurred by excluding y leads to larger biases

for CCEPx compared to CCEP, but the rmse at the N = T = 1000 intersection confirms that this

exclusion does not lead to efficiency losses in large samples.

Table 1: Estimation results: Baseline setting, fixed slopes

bias × 100 rmse × 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 3.05 2.67 2.74 2.81 2.70 2.75 6.35 5.09 4.15 3.60 3.09 2.99
50 1.56 1.50 1.42 1.39 1.37 1.41 4.49 3.28 2.60 2.09 1.69 1.58

100 0.87 0.72 0.77 0.75 0.75 0.78 2.93 2.19 1.76 1.30 1.05 0.92
200 0.52 0.38 0.36 0.37 0.38 0.37 2.06 1.52 1.14 0.84 0.61 0.51
500 0.14 0.11 0.18 0.15 0.15 0.16 1.25 0.94 0.69 0.50 0.34 0.26

1000 0.05 0.06 0.05 0.07 0.07 0.07 0.88 0.66 0.48 0.34 0.23 0.17
CCEPx 25 3.17 2.73 2.80 2.88 2.80 2.85 6.61 5.27 4.22 3.69 3.21 3.09

50 1.56 1.53 1.44 1.43 1.41 1.44 4.58 3.36 2.63 2.13 1.73 1.61
100 0.85 0.72 0.78 0.76 0.76 0.79 2.99 2.17 1.76 1.32 1.05 0.93
200 0.52 0.39 0.37 0.37 0.38 0.38 2.09 1.50 1.15 0.84 0.61 0.51
500 0.12 0.12 0.17 0.15 0.16 0.16 1.25 0.94 0.69 0.50 0.34 0.26

1000 0.07 0.07 0.05 0.07 0.07 0.07 0.88 0.66 0.48 0.34 0.23 0.17
pairs 25 1.22 0.85 0.87 0.95 0.76 0.84 7.06 5.17 3.67 2.66 1.75 1.42

50 0.33 0.32 0.21 0.17 0.15 0.19 5.11 3.33 2.41 1.68 1.05 0.75
100 0.24 0.04 0.08 0.07 0.07 0.10 3.33 2.36 1.72 1.13 0.75 0.51
200 0.20 0.01 -0.01 0.00 0.02 0.01 2.36 1.64 1.15 0.79 0.49 0.36
500 -0.01 -0.05 0.04 -0.01 0.00 0.01 1.44 1.04 0.71 0.50 0.31 0.21

1000 -0.04 -0.02 -0.02 -0.01 0.00 -0.01 1.02 0.72 0.51 0.35 0.22 0.15
pairsx 25 1.08 0.64 0.65 0.74 0.59 0.64 6.58 4.89 3.38 2.45 1.63 1.24

50 0.28 0.27 0.15 0.15 0.10 0.14 4.80 3.19 2.28 1.61 1.01 0.72
100 0.19 0.03 0.08 0.06 0.06 0.09 3.14 2.18 1.63 1.10 0.73 0.50
200 0.20 0.02 0.01 0.01 0.01 0.01 2.24 1.53 1.12 0.77 0.49 0.35
500 -0.03 -0.04 0.03 -0.01 0.01 0.01 1.35 0.98 0.69 0.49 0.30 0.21

1000 -0.01 0.00 -0.02 -0.01 0.00 0.00 0.95 0.69 0.49 0.34 0.22 0.15
Notes: The baseline DGP is (du, β, σ2, σ2

η , σ2
υ) = (10, 1, 1, 1, 0), with m = 2 factors and k = 3 regressors. CCEP

and CCEPx denote respectively the CCEP estimator with and without y included in the matrix of CA. ’Pairs’
and ’pairsx’ correspond to their respective bootstrap-corrected estimates obtained from 2000 bootstrap repli-
cations with the pairs (cross-section) resampling algorithm.

The table also reveals that the respective bootstrap corrected estimators ‘pairs’ and ‘pairsx’ lead

to substantial bias reductions. The corrections are clearly effective even in the smallest samples

but appear to gain particular traction when N > 50 and T > 25, in which case the remaining

distortions can be more than 10 times smaller than those for the uncorrected CCEP estimators.

Both corrected estimators are essentially unbiased for the mentioned combinations of T and N.

The bootstrap corrections do lead to increased variance in smaller samples, but the asymptotic
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variance is unaffected and it is clear that this increase is generally compensated for by the bias

reductions in a mean square error sense. Theorem 2 and Corollary 2 also predicted that the

bootstrap correction for CCEPx in this m < 1 + k setting would be more effective than that

of CCEP, as the bootstrap distribution of the latter generates an additional distortion. Indeed,

even in this relatively low bias setting it is clear from Table 1 that although the bias for CCEPx

is larger than that of CCEP, the pairsx correction is more effective for removing bias than the

pairs correction, for which more bias remains across the board. This experiment also illustrates

that the additional bias d+ generated by the bootstrap when applied to CCEP, which we recall

makes it technically inconsistent in m < 1 + k settings, is generally quite small and potentially

even negligible at least in the baseline setting.
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Table 2: Empirical size: Baseline setting, fixed slopes

CCEP
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.13 0.18 0.30 0.47 0.69 0.07 0.07 0.05 0.05 0.03 0.01
50 0.08 0.10 0.11 0.17 0.33 0.50 0.09 0.07 0.05 0.04 0.03 0.01

100 0.07 0.07 0.10 0.11 0.24 0.37 0.06 0.06 0.07 0.05 0.05 0.03
200 0.07 0.05 0.07 0.09 0.14 0.19 0.07 0.06 0.06 0.06 0.05 0.05
500 0.06 0.06 0.05 0.07 0.08 0.10 0.07 0.07 0.05 0.06 0.06 0.04

1000 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.06 0.06 0.05 0.05 0.05

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.11 0.09 0.08 0.08 0.09 0.12 0.11 0.10 0.08 0.08 0.07 0.06
50 0.12 0.09 0.08 0.07 0.08 0.07 0.12 0.09 0.07 0.07 0.07 0.04

100 0.10 0.07 0.09 0.06 0.07 0.06 0.10 0.07 0.09 0.07 0.07 0.05
200 0.09 0.08 0.07 0.07 0.06 0.07 0.09 0.08 0.07 0.07 0.06 0.07
500 0.08 0.08 0.06 0.06 0.06 0.05 0.08 0.08 0.06 0.06 0.06 0.05

1000 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06
CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.12 0.17 0.28 0.47 0.68 0.04 0.05 0.03 0.03 0.01 0.00
50 0.08 0.09 0.10 0.17 0.32 0.51 0.07 0.04 0.03 0.03 0.01 0.01

100 0.07 0.06 0.10 0.12 0.23 0.37 0.05 0.05 0.05 0.04 0.04 0.03
200 0.07 0.05 0.08 0.08 0.13 0.19 0.06 0.05 0.05 0.05 0.05 0.04
500 0.05 0.06 0.05 0.06 0.08 0.10 0.05 0.06 0.05 0.05 0.05 0.04

1000 0.05 0.05 0.05 0.06 0.07 0.08 0.06 0.05 0.05 0.05 0.06 0.06

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.08 0.07 0.07 0.07 0.09 0.09 0.08 0.07 0.07 0.06 0.03
50 0.12 0.08 0.06 0.07 0.06 0.06 0.12 0.08 0.06 0.06 0.05 0.03

100 0.09 0.06 0.08 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.05
200 0.08 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.06 0.07 0.06 0.06
500 0.06 0.07 0.06 0.06 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.04

1000 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06
Notes: The baseline DGP is (du, β, σ2, σ2

η , σ2
υ) = (10, 1, 1, 1, 0), with m = 2 factors and k = 3

regressors. CCEP and CCEPx denote respectively the CCEP estimator with and without y in-
cluded in the matrix of CA. ’t-test’ resports the empirical size for a t-test at the α = 0.05 sig-
nificance level. ’basic’ reports empirical size for tests based on the basic (’empirical percentile’)
bootstrap interval, and bootstrap−t and bootstrap−tc are respectively empirical size for the
plain and corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications
with the pairs (cross-section) resampling algorithm.

The biases in Table 1 are not terribly large but nevertheless warrant serious concern for hypothe-

sis testing. This is because the deviations β̂− β are scaled up by a factor
√

NT in the numerator of

the t-statistic under the null (recall e.g.(3.8)), so that even the modest numbers in the table above

can still lead to large location shifts away from zero in the distribution of the t-statistic, and

hence lead to size distortions. The actual impact on testing can be discerned from Table 2, where

we report the empirical size of the conventional (asymptotic) t-test and the ’basic’, bootstrap−t

and corrected bootstrap−tc confidence intervals, each based on 2000 bootstrap replications. As
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predicted by theory, the asymptotic t-test performs poorly as it only attains the nomimal 5% size

when N dominates the time series length, or in other words in the lower left quadrants of the

tables. This is true for both the CCEP and CCEPx estimator. Otherwise, size distortions become

quite severe the larger is T relative to N. The objective of the bootstrap was to alleviate the

T/N → 0 restriction needed for inference with the t-test, which the table confirms to be quite

successful. The basic percentile interval for instance achieves large improvements and has an

empirical size that is very close to the nominal level for nearly all combinations of N and T.

Only when T is excessive compared to N, for instance when N = 25, T = 1000, we find that the

test is undersized. This is in line with Corollary 2 and the overall requirement that τ < ∞, or in

other words that T should not dominate, as this leads to an over-accumulation of error. The test

is correctly sized for any other combination of N and T, which makes it is clear that the boot-

strap has significantly relaxed the T/N → 0 restriction to allow unbiased inferences even when

T/N ̸→ 0. The corrected bootstrap-tc interval too achieves tremendous improvements over the

classical t-test and shows that re-pivoting of the roots has made the test more robust than the

basic percentile interval to large T settings, as witnessed by the relatively small size distortions

even in the upper-right quadrant where T dominates. The main cost is that the bootstrap−tc is

somewhat more sensitive than the basic interval in very small samples, i.e. N ≤ 50, T ≤ 50, in

which case there are some remaining size distortions.

Figure 1: Power functions: T/N = 2, baseline setting
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Notes: The DGP is (du, β, σ2, σ2
η , σ2

υ ) = (10, 1, 1, 5, 0) with m = 2 and k = 3. The vertical axis presents rejection rates of the
respective tests for the hypothesized value of β on the horizontal axis. Both the left and right panel are based on the CCEPx
estimator (with y excluded).

To assess power, consider the rejection functions for combinations of N and T such that T/N =

2 plotted in Fig.1. The plot displays rejection rates for the t-test and bootstrap−tc based on
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the CCEPx estimator for the hypothesized values of β on the horizontal axis. The correct null

hypothesis is β = 1. It is clear that the rejection curves for the t−test (left panel) are generally

not correctly centered around the true β, but are in stead shifted to the right of it as a result of the

bias. Only in the largest sample size considered (the purple line) is the curve is correctly centered

at β = 1, but nominal size α = 0.05 (dotted red line) is then still not attained. The bootstrap−tc

interval is shown in the right panel and can be seen to have resolved these rightward shifts

and size distortions for most of the considered combinations of N and T, without incurring

significant reductions in power. That is, the main effect appears to have been a re-centering of

rejection curves around the true parameter, as required.

4.2.1 Stress-tests

The results so far have shown large improvements of the bootstrap over the asymptotic t-test

in our baseline setting. Next, we explore a number of more extreme scenarios to gauge their

impact on the CCEP estimator and to stress-test the inference procedures. We find that the most

challenging scenario is when the variance of the loadings is relatively large, i.e. when σ2
η is

boosted to 5. This scales up the Ση matrix in Theorem 1 and Corollary 1 with a factor of 5 and it

can be seen from the estimation results in Table 3 that the boosted noise level leads to an increase

in bias by a factor of at least 3 compared to Table 1.
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Table 3: Estimation results: Boosted loading variance (σ2
η = 5), fixed slopes

bias × 100 rmse × 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 10.04 9.66 9.89 10.06 10.00 10.07 12.04 11.03 10.68 10.58 10.32 10.34
50 5.97 6.02 6.03 6.01 6.04 6.06 7.67 6.94 6.61 6.36 6.24 6.21

100 3.44 3.35 3.39 3.41 3.39 3.43 4.72 4.13 3.85 3.63 3.52 3.51
200 1.93 1.79 1.78 1.78 1.80 1.79 2.89 2.40 2.13 1.97 1.88 1.84
500 0.72 0.70 0.78 0.74 0.75 0.75 1.47 1.20 1.04 0.89 0.81 0.78

1000 0.35 0.36 0.36 0.37 0.37 0.37 0.96 0.76 0.61 0.50 0.43 0.40
CCEPx 25 11.42 11.13 11.32 11.48 11.50 11.57 13.62 12.73 12.33 12.25 12.12 12.12

50 6.48 6.59 6.53 6.55 6.60 6.60 8.19 7.57 7.19 6.96 6.86 6.81
100 3.54 3.46 3.53 3.54 3.53 3.58 4.84 4.23 3.99 3.78 3.67 3.66
200 1.96 1.82 1.83 1.83 1.83 1.82 2.95 2.41 2.19 2.01 1.92 1.87
500 0.71 0.72 0.78 0.74 0.76 0.76 1.47 1.21 1.04 0.90 0.82 0.79

1000 0.37 0.37 0.36 0.37 0.37 0.37 0.97 0.77 0.61 0.50 0.43 0.40
pairs 25 6.24 5.82 5.99 6.19 5.98 6.07 10.79 8.91 7.78 7.36 6.72 6.67

50 2.39 2.48 2.44 2.39 2.38 2.41 6.61 4.83 4.00 3.33 2.90 2.75
100 0.96 0.80 0.80 0.83 0.78 0.83 4.08 2.95 2.17 1.57 1.21 1.06
200 0.44 0.24 0.21 0.21 0.23 0.21 2.61 1.83 1.29 0.90 0.59 0.46
500 0.03 -0.02 0.08 0.03 0.04 0.04 1.51 1.09 0.74 0.52 0.32 0.22

1000 -0.02 -0.01 -0.01 0.00 0.00 0.00 1.05 0.73 0.52 0.35 0.22 0.16
pairsx 25 6.24 6.01 6.12 6.30 6.14 6.19 11.09 9.49 8.40 8.07 7.55 7.48

50 1.93 2.06 1.94 1.93 1.89 1.91 6.20 4.66 3.70 2.97 2.49 2.32
100 0.68 0.53 0.55 0.58 0.52 0.58 3.80 2.69 2.01 1.43 1.02 0.84
200 0.37 0.16 0.17 0.15 0.15 0.14 2.50 1.69 1.25 0.86 0.56 0.42
500 -0.01 -0.01 0.06 0.02 0.03 0.03 1.41 1.04 0.72 0.51 0.32 0.22

1000 0.00 0.00 -0.01 0.00 0.00 0.00 0.98 0.71 0.50 0.34 0.22 0.16
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ) = (10, 1, 1, 5, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx denote

respectively the CCEP estimator with and without y included in the matrix of CA. ’Pairs’ and ’pairsx’ correspond to
their respective bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section)
resampling algorithm.

Interestingly, many conclusions from the baseline scenario extend to this more extreme setting,

save that they are now more explicit because there is more bias to correct for. That is, while

biases are again larger for CCEPx than for CCEP, less bias remains for the bootstrap correction

of the former (pairsx) than for the latter (pairs). This is exactly as predicted by our theory. Fortu-

nately, the remaining bias is for both corrections but a fraction of that for the original estimator,

in particular when N > 25. The increased noise levels in other words made the situation more

challenging for the bootstrap, but the algorithms remain highly effective given sufficient N. This

also leads to substantial improvements for nearly all combinations of N and T in a mean square

error sense.
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Table 4: Empirical size: Boosted loading variance (σ2
η = 5), fixed slopes

CCEP
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.44 0.56 0.78 0.94 0.99 1.00 0.19 0.20 0.24 0.36 0.43 0.50
50 0.34 0.52 0.72 0.89 0.99 1.00 0.09 0.09 0.09 0.11 0.11 0.12

100 0.26 0.35 0.58 0.82 0.98 1.00 0.06 0.05 0.05 0.03 0.02 0.02
200 0.19 0.23 0.39 0.64 0.94 0.99 0.05 0.04 0.03 0.02 0.01 0.01
500 0.10 0.14 0.23 0.34 0.69 0.93 0.06 0.05 0.04 0.04 0.03 0.02

1000 0.07 0.08 0.12 0.20 0.41 0.69 0.05 0.04 0.05 0.04 0.05 0.04

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.23 0.24 0.29 0.43 0.57 0.67 0.22 0.24 0.29 0.43 0.55 0.64
50 0.13 0.13 0.17 0.25 0.42 0.60 0.13 0.12 0.15 0.20 0.27 0.33

100 0.09 0.07 0.09 0.10 0.22 0.46 0.09 0.07 0.09 0.06 0.09 0.11
200 0.07 0.06 0.05 0.05 0.08 0.16 0.07 0.06 0.05 0.04 0.04 0.04
500 0.07 0.06 0.05 0.05 0.04 0.04 0.08 0.06 0.05 0.05 0.04 0.03

1000 0.06 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.06 0.04 0.05 0.04
CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.46 0.61 0.82 0.94 0.99 1.00 0.15 0.16 0.19 0.22 0.19 0.20
50 0.37 0.55 0.74 0.91 0.99 1.00 0.06 0.05 0.03 0.02 0.01 0.00

100 0.26 0.38 0.60 0.84 0.98 1.00 0.04 0.03 0.02 0.01 0.00 0.00
200 0.19 0.24 0.41 0.66 0.94 0.99 0.04 0.03 0.03 0.02 0.01 0.01
500 0.09 0.14 0.21 0.35 0.69 0.93 0.03 0.05 0.04 0.04 0.03 0.02

1000 0.07 0.09 0.12 0.19 0.41 0.69 0.05 0.04 0.04 0.04 0.04 0.04

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.23 0.24 0.30 0.38 0.42 0.48 0.22 0.23 0.27 0.33 0.35 0.37
50 0.10 0.09 0.09 0.12 0.20 0.30 0.10 0.08 0.06 0.07 0.06 0.06

100 0.07 0.04 0.06 0.05 0.11 0.24 0.07 0.05 0.05 0.03 0.03 0.02
200 0.06 0.04 0.06 0.03 0.06 0.10 0.06 0.05 0.05 0.03 0.02 0.02
500 0.04 0.06 0.04 0.05 0.04 0.03 0.04 0.06 0.05 0.05 0.04 0.02

1000 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ) = (10, 1, 1, 5, 0), with m = 2 factors and k = 3 regres-

sors. CCEP and CCEPx denote respectively the CCEP estimator with and without y included
in the matrix of CA. ’t-test’ resports the empirical size for a t-test at the α = 0.05 significance
level. ’basic’ reports empirical size for tests based on the basic (’empirical percentile’) bootstrap
interval, and bootstrap−t and bootstrap−tc are respectively empirical size for the plain and
corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

While bias itself is now also a more direct concern for the point estimates, the main worry re-

mains its impact on hypothesis testing due to the implied scaling up by
√

NT. Indeed, Table

4 discloses very large size distortions for the asymptotic t-test on all combinations of N and T,

much more so than in Table 2. Even the setting where the cross-section dimension dominates

the time series length N = 1000, T = 25, does not seem to suffice to obtain a correctly sized

t-test, and it suggests that N should preferably be even larger in this experiment. The benefits
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of the bootstrap tests are now even more apparent and they even appear to be quintessential

for correct inferences in this high noise situation. The basic and bootstrap-t tests perform or-

ders of magnitude better than the t-test on all sample sizes, again displaying the relaxation of

the T/N → 0 restriction, but the most robust approach is clearly the corrected bootstrap-tc in-

terval when applied to the CCEPx estimator (lower panel). The fact that the bootstrap is then

generally first order consistent and that the confidence interval (and test) is here based on an

asymptotically pivotal statistic results in close to nominal test sizes on all N > 25 settings. This

is a tremendous improvement over not only the classical t-test, but also compared to the inter-

vals based on non-pivotal roots (basic and bootstrap−t). As expected, re-pivoting appears to

have translated to faster convergence and increased robustness to settings where T is relatively

large compared to N. This makes the bootstrap-tc attractive on all settings, but its comparative

advantages are biggest when T is not small. Note that while the theoretical inconsistency of the

bootstrap when applied to CCEP (upper panel) does not seem to have too much of a negative

impact on the large sample behavior of the bootstrap tests, the CCEPx variants (lower panel)

perform markedly better in small samples thanks to their consistency. This confirms our theory

and strengthens our preference for the CCEPx estimator in practice.

While it is good to see as in Table 4 that the test size is even in this challenging scenario well

controlled at the nominal α = 0.05 level by the bootstrap−tc, this is ideally not at the expense

of power. This is visualized in Figure 2, which plots the power functions of both the t-test and

bootstrap−tc test based on the CCEPx estimator, now for combinations of N and T such that

T/N = 1. Note that this is more forgiving for the t−test than T/N = 2.
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Figure 2: Power functions: T/N = 1, boosted loading variance (σ2
η = 5)
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Notes: The DGP is (du, β, σ2, σ2
η , σ2

υ ) = (10, 1, 1, 5, 0) with m = 2 and k = 3. The vertical axis presents rejection rates of the
respective tests for the hypothesized value of β on the horizontal axis. Both the left and right panel are based on the CCEPx
estimator (with y excluded).

It is again very apparent that the power function of the t-test is highly distorted for all T/N = 1

combinations, with the ’dip’ for most of the curves now located much farther to the right of

the true β = 1 null hypothesis. The obvious conclusion is that the t-test cannot be trusted for

inferences on β. In contrast, the power function for the bootstrap-tc test in the right panel has a

more regular form with the majority of the curves still enveloping the true β = 1 value, where

the nominal α = 0.05 size is also attained. Yet, the situation is clearly not perfect. The plot shows

that with the increased noise level also comes a requirement for larger N to adequately correct

the distortions. The smallest N = 25 setting (dark blue), for instance, is clearly not sufficient

to deal with the boosted loading variance. This is not unexpected given the relatively extreme

scenario and the fact that cross-section resampling algorithm requires at its core that N → ∞.

Fortunately, increasing the number of cross-sections to N = 50 appears to resolve the remaining

rightward shift and the N > 25 curves indeed quickly tighten around β = 1, as required. As

the T/N = 2 setting is also fairly common in macroeconomics we display it in Figure 3. Clearly,

the distortions are now even larger for the t−test compared to the T/N = 1 setting in Fig.2

whereas the power curves for the bootstrap in the right panel are much less affected by the

increase of T/N, which solidifies that T/N → 0 is no longer required for inference. This is a

major advantage in practice.
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Figure 3: Power functions: T/N = 2, boosted loading variance (σ2
η = 5)
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respective tests for the hypothesized value of β on the horizontal axis. Both the left and right panel are based on the CCEPx
estimator (with y excluded).

In contrast to the loading variance, boosting σ2 or β has a relatively small effect on performance.

Conclusions are largely the same as in the baseline setting discussed above so we will not report

the results here and in stead provide the tables in Supplement B. A more interesting scenario is

when we reduce the asymptotic information content of the cross-section averages (i.e. we reduce

the bounds of the determinant of the loading matrix du from 10 to 5). The impact on the estima-

tion results is shown in Table 5 and it is largely as predicted below Theorem 1: even though the

noise levels (loading and error variances) are identical to those in the baseline scenario, the bias

in this scenario is larger because the error components are scaled up as a result of the less in-

formative cross-section averages. The benefit of the bootstrap correction is that this information

content does not need to be known or estimated, and the bootstrap corrections clearly remain

highly effective at removing bias. Naturally, the increased bias compared to the baseline setting

also leads to larger size distortions for the t-test in Table 6 compared to Table 2. Fortunately, it

can also be seen that with the exception of the very small N = 25 setting, the performance of the

bootstrap procedures is largely unaffected by the information drop, with the CCEPx bootstrap-tc

test once again displaying the most robustness to even dominant T. Again, performance for the

bootstrap applied to CCEPx (lower panel) is better than when applied to CCEP (upper panel).
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Figure 4: Power functions: T/N = 2, reduced information (du = 5)
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respective tests for the hypothesized value of β on the horizontal axis. Both the left and right panel are based on the CCEPx
estimator (with y excluded).

The power function for T/N = 2 in Figure 4 also allows comparison to earlier situations. This

scenario is clearly somewhat less disruptive for the t−test compared to the boosted loading vari-

ance scenario, but a correct size is still not attained, not even in large samples, and the majority of

the curves are still considerably shifted to the right of the true parameter. The bootstrap curves

in the right panel are much better behaved, with the relatively minor distortions limited to the

smallest N = 25 case.

In conclusion, we have confirmed with our fixed slope experiments that the properties of the

t−test are indeed highly sensitive to the T/N → 0 restriction. The higher the noise in the

dataset (or CA), the larger N needs to be compared to T. In contrast, the results confirm that

the bootstrap does not require T/N → 0, as evidenced by the near nominal size and adequate

power on nearly all combinations of N and T. The bootstrap is in addition substantially more

robust to the challenging settings we have considered. This is particularly true for the bootstrap-

tc procedure applied to CCEPx, provided that N is not too small.
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Table 5: Estimation results: reduced asymptotic information content (du = 5), fixed slopes

bias × 100 rmse × 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 4.35 3.81 3.95 4.05 4.01 4.04 7.26 5.92 5.15 4.70 4.34 4.26
50 2.29 2.26 2.17 2.17 2.17 2.20 4.92 3.73 3.11 2.70 2.41 2.34

100 1.35 1.17 1.21 1.18 1.20 1.22 3.15 2.36 2.02 1.60 1.41 1.32
200 0.72 0.61 0.60 0.60 0.62 0.61 2.14 1.62 1.24 0.97 0.79 0.70
500 0.24 0.22 0.27 0.25 0.25 0.26 1.28 0.97 0.72 0.54 0.39 0.33

1000 0.10 0.11 0.10 0.12 0.12 0.12 0.88 0.67 0.49 0.35 0.25 0.19
CCEPx 25 4.62 4.03 4.17 4.26 4.26 4.28 7.64 6.23 5.33 4.91 4.60 4.50

50 2.36 2.34 2.24 2.27 2.27 2.29 5.02 3.83 3.19 2.80 2.51 2.42
100 1.34 1.18 1.24 1.21 1.22 1.25 3.24 2.36 2.04 1.63 1.43 1.35
200 0.73 0.63 0.62 0.61 0.63 0.62 2.14 1.61 1.25 0.98 0.79 0.71
500 0.22 0.23 0.27 0.25 0.26 0.26 1.27 0.97 0.72 0.54 0.40 0.33

1000 0.12 0.12 0.10 0.12 0.12 0.12 0.89 0.68 0.48 0.35 0.25 0.20
pairs 25 2.32 1.68 1.78 1.87 1.70 1.76 7.73 5.68 4.22 3.24 2.43 2.19

50 0.67 0.67 0.53 0.53 0.49 0.54 5.38 3.46 2.53 1.80 1.20 0.94
100 0.43 0.17 0.20 0.17 0.17 0.20 3.41 2.32 1.77 1.16 0.78 0.55
200 0.18 0.05 0.03 0.03 0.05 0.04 2.39 1.68 1.17 0.80 0.50 0.36
500 0.00 -0.03 0.03 0.00 0.01 0.01 1.48 1.06 0.71 0.50 0.31 0.21

1000 -0.03 -0.02 -0.03 0.00 -0.01 0.00 1.02 0.73 0.50 0.34 0.22 0.15
pairsx 25 2.18 1.47 1.55 1.61 1.47 1.51 7.33 5.44 3.87 2.97 2.21 1.94

50 0.62 0.57 0.43 0.46 0.41 0.44 5.03 3.31 2.39 1.72 1.13 0.86
100 0.35 0.13 0.17 0.15 0.14 0.17 3.28 2.18 1.70 1.13 0.76 0.53
200 0.17 0.05 0.05 0.04 0.04 0.03 2.21 1.58 1.12 0.78 0.50 0.36
500 -0.04 -0.02 0.02 0.00 0.01 0.01 1.37 0.99 0.68 0.49 0.30 0.21

1000 0.00 0.00 -0.03 -0.01 0.00 0.00 0.96 0.70 0.49 0.34 0.22 0.15
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ) = (5, 1, 1, 1, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx

denote respectively the CCEP estimator with and without y included in the matrix of CA. ’Pairs’ and ’pairsx’
correspond to their respective bootstrap-corrected estimates obtained from 2000 bootstrap replications with
the pairs (cross-section) resampling algorithm.
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Table 6: Empirical size: reduced information content (du = 5), fixed slopes

CCEP
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.15 0.19 0.28 0.45 0.70 0.87 0.11 0.09 0.07 0.07 0.04 0.02
50 0.12 0.13 0.20 0.30 0.58 0.81 0.10 0.05 0.05 0.04 0.02 0.01

100 0.09 0.09 0.15 0.21 0.42 0.71 0.06 0.05 0.07 0.04 0.04 0.02
200 0.08 0.08 0.11 0.13 0.27 0.45 0.07 0.06 0.05 0.05 0.05 0.04
500 0.06 0.07 0.06 0.09 0.12 0.23 0.07 0.07 0.06 0.05 0.05 0.04

1000 0.04 0.05 0.06 0.07 0.09 0.13 0.06 0.06 0.06 0.05 0.06 0.05
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.13 0.12 0.11 0.15 0.16 0.26 0.13 0.12 0.11 0.14 0.11 0.16
50 0.12 0.08 0.08 0.09 0.10 0.15 0.12 0.08 0.08 0.07 0.07 0.07

100 0.08 0.06 0.09 0.06 0.08 0.08 0.08 0.06 0.08 0.06 0.07 0.05
200 0.09 0.07 0.07 0.06 0.07 0.07 0.09 0.07 0.06 0.06 0.07 0.06
500 0.08 0.08 0.06 0.06 0.05 0.05 0.08 0.08 0.06 0.06 0.06 0.05

1000 0.07 0.07 0.06 0.05 0.06 0.06 0.07 0.07 0.06 0.05 0.06 0.06
CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.14 0.18 0.29 0.45 0.71 0.88 0.07 0.07 0.05 0.05 0.02 0.01
50 0.11 0.14 0.20 0.31 0.58 0.80 0.07 0.04 0.03 0.03 0.02 0.00

100 0.08 0.09 0.16 0.21 0.43 0.71 0.06 0.03 0.06 0.03 0.04 0.01
200 0.07 0.07 0.10 0.14 0.27 0.46 0.06 0.04 0.05 0.04 0.04 0.04
500 0.05 0.07 0.06 0.08 0.13 0.24 0.05 0.06 0.05 0.05 0.04 0.04

1000 0.04 0.06 0.06 0.07 0.09 0.14 0.05 0.05 0.05 0.05 0.05 0.05

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.12 0.12 0.11 0.13 0.15 0.24 0.12 0.11 0.10 0.11 0.08 0.09
50 0.09 0.07 0.07 0.08 0.10 0.15 0.09 0.07 0.06 0.06 0.05 0.04

100 0.08 0.05 0.07 0.06 0.07 0.08 0.09 0.05 0.07 0.05 0.07 0.05
200 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.05 0.06 0.06 0.06 0.06
500 0.06 0.07 0.06 0.05 0.05 0.04 0.06 0.07 0.06 0.05 0.05 0.04

1000 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ) = (5, 1, 1, 1, 0), with m = 2 factors and k = 3 regres-

sors. CCEP and CCEPx denote respectively the CCEP estimator with and without y included
in the matrix of CA. ’t-test’ resports the empirical size for a t-test at the α = 0.05 significance
level. ’basic’ reports empirical size for tests based on the basic (’empirical percentile’) bootstrap
interval, and bootstrap−t and bootstrap−tc are respectively empirical size for the plain and
corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

4.3 Results: Heterogeneous slopes

In this section we set σ2
υ = 5 and present results for when the slope coefficients in the model are

heterogeneous. We find that the pairs bootstrap also in this setting leads to finite sample bias

reductions for both the CCEP and CCEMG estimator. These results are reported in Table A-3 of

Supplement B. Regarding inference, we find that the results are qualitatively the same with or

without the exclusion of y. Hence, to save space we only report results for the latter, given also
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our preference for it in the (fixed slope) theory section. The full results are presented in Tables

B-3 and B-4 of Supplement B. Table 7 summarizes empirical size with the CCEPx estimator in

the top panel and the bottom panel contains results for the CCEMGx estimator.

Table 7: Empirical size: Heterogeneous slopes (σ2
υ = 5)

CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.10 0.08 0.09 0.11 0.11 0.11 0.19 0.18 0.16 0.18 0.19 0.19
50 0.08 0.09 0.08 0.08 0.09 0.09 0.13 0.14 0.12 0.13 0.13 0.14

100 0.07 0.06 0.08 0.09 0.08 0.08 0.10 0.10 0.12 0.11 0.12 0.12
200 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.10 0.10 0.09 0.07 0.08
500 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07

1000 0.05 0.05 0.04 0.04 0.06 0.06 0.06 0.06 0.04 0.05 0.06 0.06
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.18 0.13 0.11 0.11 0.10 0.09 0.16 0.12 0.10 0.11 0.09 0.09
50 0.12 0.12 0.10 0.09 0.09 0.08 0.12 0.11 0.09 0.09 0.08 0.07

100 0.10 0.08 0.09 0.08 0.07 0.07 0.10 0.08 0.09 0.08 0.07 0.06
200 0.09 0.08 0.09 0.07 0.07 0.06 0.09 0.08 0.09 0.07 0.07 0.06
500 0.07 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.06

1000 0.07 0.06 0.04 0.05 0.07 0.06 0.07 0.06 0.04 0.05 0.07 0.06
CCEMGx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.09 0.10 0.09 0.09 0.11 0.12 0.12 0.13 0.13 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.09 0.09 0.09

100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.07 0.09 0.07 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.06 0.06
500 0.05 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05

1000 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.05

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.06 0.05 0.06 0.07 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05

100 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.04
500 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04

1000 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ) = (10, 1, 1, 1, 5), with m = 2 factors and k = 3 regressors.

CCEPx and CCEMGx denote respectively the CCEP and CCEMG estimators with y excluded
from the matrix of CA. ’t-test’ resports the empirical size for a t-test at the α = 0.05 significance
level. ’basic’ reports empirical size for tests based on the basic (’empirical percentile’) bootstrap
interval, and bootstrap−t and bootstrap−tc are respectively empirical size for the plain and
corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

As predicted by Theorems 4 and 7, the t-test performs relatively well in the heterogeneous slope

setting. This is because both the CCEPx and CCEMGx estimators are asymptotically unbiased.

The bootstrap is therefore not as quintessential as in the fixed slope setting. For the CCEPx

estimator (top panel), the basic percentile interval performs noticeably worse in small N sam-
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ples. The bootstrap-tc interval, on the other hand, offers performance gains over the t-test when

T is relatively large but otherwise largely mimics its behavior, with the t-test even performing

slightly better in very T small samples. Hence, for the CCEPx estimator with heterogeneous

slopes, the relative strength of the bootstrap-tc is more pronounced in larger samples, and gains

are generally not as large as when slopes are fixed. The main advantage is in stead that the

bootstrap−tc applies directly to both the fixed and heterogeneous slope setting, while the re-

sults of the previous section clearly indicate that the t-test should not be attempted when slopes

may be homogeneous. There is in other words, in contrast to the t−test, little risk associated

with the bootstrap−tc on either setting so that one does not need to know whether slopes are

heterogeneous to decide whether inferences can be trusted.

While the bootstrap−tc is more valuable in larger samples when applied to CCEPx, the converse

seems to be true for the CCEMGx estimator in the bottom panel. The basic bootstrap again does

not offer performance gains, but the bootstrap-t and bootstrap-tc tests do improve significantly

over the t-test when N is very small, over the entire range of T. We find that the latter are cor-

rectly sized for all combinations of N and T, whereas the t-test is oversized when N ≤ 100. This

reflects an improved finite sample approximation of the null distribution by the bootstrap. That

is, given that slope heterogeneity is drawn from the χ2
1 distribution, the null distribution of the t-

statistic is likely to be asymmetric and heavy tailed for small N so that the normal approximation

employed by the t-test is not very accurate. The bootstrap intervals do not impose a distribution,

or symmetry, and therefore achieve a more accurate test size. Indeed, we find that (unreported)

symmetric versions of the (corrected) bootstrap-t test perform markedly worse than the unre-

stricted ones for this reason. The power functions for the CCEMGx estimator when T/N = 2 in

Fig.5 are also informative for the situation.

37



Figure 5: Power functions: T/N = 2, Heterogeneous slopes, CCEMGx
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Notes: The DGP is (du, β, σ2, σ2
η , σ2

υ ) = (10, 1, 1, 1, 5) with m = 2 and k = 3. The vertical axis presents rejection rates of
the respective tests for the hypothesized value of β on the horizontal axis. Both the left and right panel are based on the
CCEMGx estimator (with y excluded).

Fig.5 shows that the small N rejection curves have been shifted to the left of β = 1 for the t-test

but that the bootstrap has ensured that their minimum once again coincides with the correct

β = 1 hypothesis at the α = 0.05 intersection. Note that while this correction appears to have

somewhat flattened the right hand side of the small N curves (blue and red) compared to those

of the t−test, which implies a loss of power against β > 1 alternatives, this is compensated to

some extent by the increase in power against β < 1 hypotheses caused by the re-centering.

We have also run experiments where the slope heterogeneity is drawn from the normal distri-

bution. In this case there are no noticeable performance gains of the bootstrap as in Table 7. This

is because the leading term in the distribution of the CCEMG estimator then has an exact normal

distribution, i.e. for all sample sizes, in which case numerical approximations like the bootstrap

will not lead to improvements. Assuming normality of the slopes is of course a strong assump-

tion in practice and the experiment shows that the bootstrap offers robustness and performance

gains in case the slope distribution is less well behaved.

5 Conclusion

We propose in this paper the cross-section or pairs bootstrap to improve inference with the CCE

estimators in large N and T panels where the cross-section dimension need not dominate the

time series length. In datasets of these dimensions standard asymptotic inference with the CCEP

estimator is distorted by bias terms for which analytical corrections are not generally feasible.
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We show in this paper that the cross-section bootstrap enables the elimination of this bias, and

asymptotically correct inference, even when N does not dominate, so long as 0 ≤ T/N < ∞.

This result holds true most generally when the cross-section average of the dependent variable

is excluded from the estimation, but otherwise requires the number of factors to equal the num-

ber of cross-section averages. In the former setting, the number of factors or the general time

series properties of the original dataset do not need to be known, which makes the algorithm

both extremely simple and generally applicable. We show in addition that the bootstrap is also

consistent for the distribution of the CCE estimators when slopes are heterogeneous, and leads

to improved inference in this setting as well. In other words, the exact same bootstrap algorithm

and inference procedures achieve asymptotically correct inferences on the population mean of

the slopes, irrespective of whether those slopes are heterogeneous or not. This is a considerable

advantage in practice. Monte Carlo simulations illustrate that these asymptotic properties also

translate well to finite samples.

6 Acknowledgments

The authors thank Joakim Westerlund, Simon Reese, Arturas Juodis, and the participants of the

Lund University, Department of Economics econometrics seminar for helpful comments. The

computational resources (Stevin Supercomputer Infrastructure) and services used in this work

were provided by the Flemish Supercomputer Center, funded by Ghent University; the Hercules

Foundation; and the Economy, Science, and Innovation Department of the Flemish Government.

References

Albanese, G. and Modica, S. (2012). Government size, the role of commitments*. Oxford Bulletin

of Economics and Statistics, 74(4):532–546.

Andrews, D. W. K. (2005). Cross-section regression with common shocks. Econometrica,

73(5):1551–1585.

Bai, J. (2009). Panel Data Models with Interactive Fixed Effects. Econometrica, 77(4):1229–1279.

Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 74(3):457–468.

Berger, T. and Heylen, F. (2011). Differences in hours worked in the oecd: Institutions or fiscal

policies? Journal of Money, Credit and Banking, 43(7):1333–1369.

39



Bertoli, S. and Fernández-Huertas Moraga, J. (2013). Multilateral resistance to migration. Journal

of Development Economics, 102:79 – 100. Migration and Development.

Bun, M. and Carree, M. (2005). Bias-corrected estimation in dynamic panel data models. Journal

of Business and Economic Statistics, 23(2):200–210.

Chudik, A., Pesaran, M., and Tosetti, E. (2011). Weak and strong cross-section dependence and

estimation of large panels. The Econometrics Journal, 14(1):C45–C90.

De Vos, I. and Everaert, G. (2021). Bias-corrected common correlated effects pooled estimation

in dynamic panels. Journal of Business & Economic Statistics, 39(1):294–306.

DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11(3):189–

212.

Diciccio, T. J. and Romano, J. P. (1988). A review of bootstrap confidence intervals. Journal of the

Royal Statistical Society: Series B (Methodological), 50(3):338–354.
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SUPPLEMENT A: MATHEMATICAL PROOFS

FOR

“BOOTSTRAP IMPROVED INFERENCE FOR FACTOR-AUGMENTED

REGRESSIONS WITH CCE”

Ignace De Vos1,2 and Ovidijus Stauskas1

1Lund University, Department of Economics
2Ghent University, Department of Economics

This supplement can be divided into three parts. The first section introduces the stacked notation and re-

states the working assumptions. Section 2 gathers proofs in the original sample, with preliminary results

given in 2.1, and main results are derived in 2.2 for homogeneous slopes and in section 2.3 for hetero-

geneous slopes. Section 3 contains proofs in the bootstrap world, with basic properties for the bootstrap

resampling operator presented in 3.1 and preliminary results derived in section 3.2. The main analysis

under homogeneous slopes is presented in section 3.3 and slope heterogeneity is considered in 3.4.

1 Notation and assumptions

Let the stacked matrices of the main variables in model (1)-(3) of the main text be

y
(TN×1)

= [y′
1, y′

2, . . . , y′
N ]

′, X
(TN×k)

= [X′
1, X′

2, . . . , X′
N ]

′, Z
(TN×1+k)

= [Z′
1, . . . , Z′

N ]
′ = [y, X]

ε
(TN×1)

= [ε′1, ε′2, . . . , ε′N ]
′, V

(TN×k)
= [V′

1, V′
2, . . . , V′

N ]
′, U

(TN×1+k)
= [U′

1, . . . , U′
N ]

′ = [ε, V]B

so that we have the following data generating processes (DGP) for the stacked observed matrices

y = Xβ + F γ + ε (1.1)

X = F Γ + V (1.2)

Z = F C + U (1.3)
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where the remaining unobservables are defined as

F
(TN×mN)

= (IN ⊗ F)

Γ
(Nm×k)

= [Γ′
1, Γ′

2, . . . , Γ′
N ]

′

γ
(Nm×1)

= [γ′
1, γ′

2, . . . , γ′
N ]

′

η
(Nm×1+k)

= [η′1, η′2, . . . , η′N ]
′

C
(Nm×1+k)

= [γ, Γ]B = (ιN ⊗ C) + η

The cross-section average operation for general ’stacks’ of N cross-section specific l−rowed matrices is

Al = N−1(ι′N ⊗ Il), (1.4)

where we note that for matrices repeated over individuals, such as F, this averaging operator is commu-

tative

ATF = N−1(ι′N ⊗ IT)(IN ⊗ F) = N−1(ι′NIN ⊗ F) = FN−1(ι′N ⊗ Im) = FAm (1.5)

We work under (a subset of) the following assumptions:

Assumption 1 (Idiosyncratic errors) ε i,t and vi,t are stationary and independent across i with absolute summable

autocovariances, E(ε i,t) = 0, E(vi,t) = 0k×1, σ2
i = E(ε2

i,t), Σi = E(vi,tv′
i,t), Ωi = E(εiε

′
i), with Ωi, Σi positive

definite and E(ε6
i,t) < ∞, E(∥vi,t∥6) < ∞ for all i and t. Additionally, 1

N ∑N
i=1 σ2

i → σ2 < ∞ and 1
N ∑N

i=1 Σi →

Σ < ∞ as N → ∞, and we define Σu,i = E(ui,tu′
i,t) = B′E(ũi,tũ′

i,t)B = B′Σũ,iB and 1
N ∑N

i=1 Σu,i → B′ΣũB =

Σu, where Σũ,i = [[σ2
i , 01×k]

′, [0k×1, Σi]
′] and Σũ = [[σ2, 01×k]

′, [0k×1, Σ]′].

Assumption 2 (Common factors) ft is covariance stationary with E(∥ft∥4) < ∞, absolute summable autocovari-

ances and T−1F′F → ΣF as T → ∞, with ΣF positive definite.

Assumption 3 (Factor loadings) The Ci are generated according to

Ci = C̃iBi = (C̃ + η̃i)Bi = C + ηi, vec(η̃i) ∼ I ID(0m(1+k), Ωη̃), (1.6)

where C̃ = E(C̃i) = [γ, Γ], Ωη̃ = E(vec(η̃)vec(η̃)′) and
∥∥∥C̃
∥∥∥ ,
∥∥Ωη̃

∥∥ < ∞. We also define Ση = E(η̃i ⊗ η̃i),

which is a restructuring of Ωη̃

Assumption 4 (Rank condition) rk(C) = m for all N.

Assumption 5 (Independence) ft, ε is, vjl , η̃n are mutually independent for all i, j, n, t, s, l.
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Assumption 6 (Slope heterogeneity) The heterogeneous slope coefficients follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k × k matrix and the υi are independent of ft, ε is, vjl , η̃n for all i, j, n, t, s, l.

Assumption 7 (Rank condition) rk(Γ) = m for all N.

Some additional notation: In this supplement we use A† to denote the Moore-Penrose pseudo-inverse of

the matrix A, rk(A) for its rank, |A| for the determinant and let ∥A∥ = [tr (AA′)]1/2 be the Euclidean

(Frobenius) matrix norm. Let furthermore ιa be an a-rowed vector of ones and the vec(.), ⊗ and ◦ oper-

ators denote respectively the vectorization operation and the Kronecker- and Hadamard (element-wise)

products. Barred variables A denote the cross-section average (CA) over the cross-section specific ma-

trices Ai as in A = 1
N ∑N

i=1 Ai. A starred object A∗
i stands for an observed variable (matrix or scalar) that

has been generated in the bootstrap world according to the particular scheme. On the other hand, Aw,i

is the weighted unobserved primitive of the model. We formalize the bootstrap probability laws similarly

to Galvao and Kato (2014). In particular, for any matrix bootstrap sequence A∗
n, which depends on a

generic index n, and a deterministic sequence an ∈ R++, we have ∥A∗
n∥ = op∗(an) if for every ϵ > 0

and δ > 0, we have P(P∗(a−1
n ∥A∗

n∥ > ϵ) > δ) → 0 as n → ∞, where P∗(.) is a bootstrap-induced

measure. Similarly, ∥A∗
n∥ = Op∗(an) if for every δ > 0 and η > 0, there exists a constant C > 0, such

that P(P∗(a−1
n ∥A∗

n∥ > C) > δ) < η for all n ≥ 1. Additionally, E∗(·), Var∗(·) and Cov∗(·, ·) represent,

respectively, the expectation, variance and covariance taken with respect to the induced measure P∗, and

A∗
n = A∗ + op∗(1) means ∥A∗

n − A∗∥ = op∗(1) for the limiting bootstrap matrix A∗. Lastly, →p∗ (→p) and
d∗−→ (

d−→) represent convergence in probability and distribution with respect to the induced (generic)

probability measure.
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2 Original Data

Note that

Z =
1
N

N

∑
i=1

Zi = ATZ = ATF C + ATU = FAmC + ATU = FC + U

such that also

F = (Z − U)C
†

(2.1)

As Karabiyik et al. (2017) point out, the pseudo inverse (T−1Z′Z)† when used in the projection matrix

PF̂ = Z(Z′Z)†Z′ is unbounded asymptotically since the T × 1 + k matrix Z converges to a reduced rank

matrix as (N, T) → ∞ when m < 1 + k. This requires the use of the R = THDN rotation matrix in

the analysis. Here, let T be the (1 + k) × (1 + k) matrix that partitions/reshuffles C in an m × m full

rank matrix Cm and an m × (k + 1 − m) matrix C−m as CT = [Cm, C−m] and yields the corresponding

partitioning of the error terms UT = [Um, U−m]. The remaining terms are

H = [Hm, H−m] =

[
C
−1
m −C

−1
m C−m

0(k+1−m)×m Ik+1−m

]
, DN =

[
Im 0m×(k+1−m)

0(k+1−m)×m
√

NIk+1−m

]
(2.2)

where since it is easily seen under Ass.3 that C = C + Op(N−1/2) and rk(Cm) = m under Ass.4, we have∥∥H − H
∥∥ = Op(N−1/2) with H = [Hm, H−m] =

[
C−1

m −C−1
m C−m

0(k+1−m)×m Ik+1−m

]
and Cm and C−m denoting the

partitioning following from CT = [Cm, C−m].

This gives in turn

F̂0 = ZR = Z0
= F̂R = [FC + U]R = F0 + U0 (2.3)

with F0 = FR = [F, 0T×(k+1−m)] and U0
= UR = [U0

m, U0
−m], where U0

m = UmC
−1
m and U0

−m =
√

NUTH−m =
√

N(Um − UmC
−1
m C−m). Here we note that since R is full rank, PF̂0 = ZR(R′Z′ZR)†R′Z′

= Z(Z′Z)†Z′
=

PF̂ and analyzing PF̂0 is equivalent to analyzing PF̂.

Substituting in F = (Z − U)C
†

from (2.1) into the DGP of yi and Xi yields

yi = Xiβi + Fγi + εi = Xiβi + ZC
†
γi + εi − UC

†
γi (2.4)

Xi = FΓi + Vi = ZC
†
+ Vi − UC

†
Γi (2.5)

2.1 Preliminary results

Let Σ̂F̂0 = T−1(F̂0)′F̂0 and

Σ̂Fu =

[
Σ̂F 0m×(1+k−m)

0(1+k−m)×m Σ̂u0
−m

]
(2.6)
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where Σ̂F = T−1F′F and Σ̂u0
−m

= T−1(U0
−m)

′U0
−m and

MF0 − MF̂0 = T−1U0
Σ̂

†
F̂0(U

0
)′ + T−1U0

Σ̂
†
F̂0(F0)′ + T−1F0Σ̂

†
F̂0(U

0
)′ + T−1F0

[
Σ̂

†
F̂0 − [T−1(F0)′F0]†

]
(F0)′.

(2.7)

By using the definition of U0, the two first terms on the right-hand side of the expansion above can be

written as

T−1U0
Σ̂

†
F̂0(U

0
)′ = T−1[U0

m, U0
−m]

[
T−1F′F 0m×(k+1−m)

0(k+1−m)×m T−1(U0
−m)

′U0
−m

]† [
U0′

m

U0′
−m

]
+ U0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(U0

)′

= T−1U0
mΣ̂

†
FU0′

m + T−1U0
−m(T

−1(U0
−m)

′U0
−m)

†U0′
−m + T−1U0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(U0

)′,

(2.8)

and

T−1U0
Σ̂

†
F̂0(F0)′

= T−1[U0
m, U0

−m]

[
T−1F′F 0m×(k+1−m)

0(k+1−m)×m T−1(U0
−m)

′U0
−m

]† [
F′

0(k+1−m)×T

]
+ T−1U0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(F0)′

= T−1U0
mΣ̂

†
FF′ + T−1U0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(F0)′ (2.9)

The third term is just a transpose of the second. The fourth can be rewritten using

Σ̂
†
Fu

= (T−1(F0)′F0)† +

[
0m×m 0m×(k+1−m)

0(k+1−m)×m (T−1(U0
−m)

′U0
−m)

†

]
.

Hence, because the last k + 1 − m rows of F0 are zero,

T−1F0[Σ̂
†
F̂0 − (T−1(F0)′F0)†](F0)′

= T−1F0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(F0)′ + T−1F0

[
0m×m 0m×(k+1−m)

0(k+1−m)×m (T−1(U0
−m)

′U0
−m)

†

]
(F0)′

= T−1F0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(F0)′ (2.10)

By substituting (2.8)–(2.10) into (2.7), and using the definition of F̂0, we obtain

MF0 − MF̂0 = T−1U0
−m(T

−1(U0
−m)

′U0
−m)

†(U0
−m)

′ + T−1U0
mΣ̂

†
F(U

0
m)

′ + T−1U0
mΣ̂

†
FF′ + T−1FΣ̂

†
F(U

0
m)

′

+ T−1F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
F̂0′

= T−1U0
−mΣ̂

†
u0
−m
(U0

−m)
′ + T−1U0

mΣ̂
†
F(U

0
m)

′ + T−1FΣ̂
†
F(U

0
m)

′ + T−1U0
mΣ̂

†
FF′

+ T−1F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
(F̂0)′, (2.11)

This expression will play an important role in the analysis that follows.

Next we establish the following auxiliary lemmas.
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Lemma B-1 Under Ass.1-3, 5 and 6, it follows as (N, T) → ∞ that

T−1U′U = Op(N−1) T−1F′U = Op((NT)−1/2)

T−1F′Ui = Op(T−1/2) T−1U′Ui = Op(N−1) + Op((NT)−1/2)

Proof of Lemma B-1. Under Ass.1-3, 5 and 6 the proof of this lemma is identical to Lemmas 1 and 2 in

Pesaran (2006). Details are therefore omitted.

Lemma B-2 Under Ass.1-6 it follows as (N, T) → ∞ that

T−1(U0
m)

′U0
m = Op(N−1) T−1(U0

m)
′U0

−m = Op(N−1/2)

T−1F′U0
m = Op((NT)−1/2) T−1F′U0

−m = Op(T−1/2)

T−1U′U0
m = Op(N−1) T−1U′U0

−m = Op(N−1/2)

T−1(U0
m)

′Ui = Op(N−1) + Op((NT)−1/2)

T−1(U0
−m)

′Ui = Op(N−1/2) + Op(T−1/2)

T−1F̂0′U = Op(N−1/2) T−1F̂0′Ui = Op(N−1/2) + Op(T−1/2)

moreover, with Σ̂u0
−m

= T−1(U0
−m)

′U0
−m and Σ̂Fu defined in (2.6)

NT−1U′U = Σu,h + Op(T−1/2) (2.12)

Σ̂u0
−m

= Σu0
−m

+ Op(N−1/2) + Op(T−1/2) (2.13)

Σ̂
†
u0
−m

= Σ†
u0
−m

+ Op(N−1/2) + Op(T−1/2) (2.14)∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−1/2) + Op(T−1/2) (2.15)

where Σu0
−m

= H′
−mT′Σu,hTH−m, Σu,h = Σu +

(
Ωυ,⊗vec(Σ) 01×k

0k×1 0k×k

)
and where Ωυ,⊗ = E(υ′

i ⊗ υ′
i). If

υi = 0k×1∀i (homogeneous slopes), then Σu,h = Σu.

Proof of Lemma B-2.

From Lemma B-1 we have
∥∥∥T−1U′U

∥∥∥ = Op(N−1) and
∥∥T−1F′U

∥∥ = Op((NT)−1/2), such that substi-

tuting in the respective definitions and noting that ∥T∥ = Op(1),
∥∥H
∥∥ = Op(1) (and therefore also its

partitioning) gives∥∥∥T−1(U0
m)

′U0
m

∥∥∥ =
∥∥∥H′

mT′T−1U′UTHm

∥∥∥ ≤
∥∥Hm

∥∥2 ∥T∥2
∥∥∥T−1U′U

∥∥∥ = Op(N−1)∥∥∥T−1(U0
m)

′U0
−m

∥∥∥ =
√

N
∥∥∥H′

mT′T−1U′UTH−m

∥∥∥ ≤
√

N
∥∥Hm

∥∥ ∥∥H−m
∥∥ ∥T∥2

∥∥∥T−1U′U
∥∥∥ = Op(N−1/2)∥∥∥T−1F′U0

m

∥∥∥ =
∥∥∥T−1F′UTHm

∥∥∥ ≤
∥∥∥T−1F′U

∥∥∥ ∥T∥
∥∥Hm

∥∥ = Op((NT)−1/2)∥∥∥T−1F′U0
−m

∥∥∥ =
√

N
∥∥∥T−1F′UTH−m

∥∥∥ ≤
√

N
∥∥∥T−1F′U

∥∥∥ ∥T∥
∥∥H−m

∥∥ = Op(T−1/2)∥∥∥T−1U′U0
m

∥∥∥ =
∥∥∥T−1U′UTHm

∥∥∥ ≤
∥∥Hm

∥∥ ∥T∥
∥∥∥T−1U′U

∥∥∥ = Op(N−1)∥∥∥T−1U′U0
−m

∥∥∥ =
√

N
∥∥∥T−1U′UTH−m

∥∥∥ ≤
√

N
∥∥H−m

∥∥ ∥T∥
∥∥∥T−1U′U

∥∥∥ = Op(N−1/2)
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Similarly making use of
∥∥∥T−1U′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) from lemma B-1∥∥∥T−1(U0
m)

′Ui

∥∥∥ ≤
∥∥THm

∥∥ ∥∥∥T−1U′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2)∥∥∥T−1(U0
−m)

′Ui

∥∥∥ ≤
√

N
∥∥TH−m

∥∥ ∥∥∥T−1U′Ui

∥∥∥ = Op(N−1/2) + Op(T−1/2)

Next, noting that F0 = [F, 0T×1+k−m] and now inserting
∥∥T−1F′Ui

∥∥ making use of the orders in Lemma

B-1 gives∥∥∥T−1F̂0′U
∥∥∥ ≤

∥∥∥T−1(F0)′U
∥∥∥+√

N
∥∥TH

∥∥ ∥∥∥T−1U′U
∥∥∥ = Op(N−1/2)∥∥∥T−1F̂0′Ui

∥∥∥ ≤
∥∥∥T−1(F0)′Ui

∥∥∥+√
N
∥∥TH

∥∥ ∥∥∥T−1U′Ui

∥∥∥ = Op(N−1/2) + Op(T−1/2)

This establishes the first set of results in the lemma.

Next, for eq.(2.12) we get

NU′U
T

=
1
N

N

∑
i=1

N

∑
j=1

U′
iUj

T
=

1
N

N

∑
i=1

U′
iUi

T
+

1
N

N

∑
i=1

N

∑
j ̸=i

U′
iUj

T

=
1
N

N

∑
i=1

U′
iUi

T
+ Op(T−1/2) (2.16)

−→p Σu,h

with Σu,h = Σu +

(
Ωυ,⊗vec(Σ) 01×k

0k×1 0k×k

)
and where Ωυ,⊗ = E(υ′

i ⊗ υ′
i). The remainder in T in the second

line follows from∥∥∥∥∥ 1
N

N

∑
i=1

N

∑
j ̸=i

U′
iUj

T

∥∥∥∥∥ = Op(T−1/2), (2.17)

because

E

(
1
N

N

∑
i=1

N

∑
j ̸=i

U′
iUj

T

)
= 0(1+k)×(1+k) (2.18)

and

E

[(
1
N

N

∑
i=1

N

∑
j ̸=i

U′
iUj

T

)(
1
N

N

∑
k=1

N

∑
l ̸=k

U′
kUl

T

)′]
=

1
N2

N

∑
i=1

N

∑
j ̸=i

N

∑
k=1

N

∑
l ̸=k

1
T2

T

∑
t=1

T

∑
s=1

E
(

ui,tu′
j,tul,su′

k,s

)
=

1
N2

N

∑
i=1

N

∑
j ̸=i

1
T2

T

∑
t=1

T

∑
s=1

E
(

ui,tu′
j,tuj,su′

i,s

)
+

1
N2

N

∑
i=1

N

∑
j ̸=i

1
T2

T

∑
t=1

T

∑
s=1

E
(

ui,tu′
j,tui,su′

j,s

)
=

1
(NT)2 Op(N2T) = Op(T−1), (2.19)

since due to cross-sectional independence of εi, Vi, υi stipulated in Ass.1 and 6, the expectation is non-zero

only if i = k, j = l or i = l, j = k and the final step comes from the following argument. Recalling that
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i ̸= j:

1
T

T

∑
t=1

T

∑
s=1

E
(

ui,tu′
j,tui,su′

j,s

)
=

1
T

T

∑
t=1

E
(

ui,tu′
j,tui,tu′

j,t

)
+

1
T

T

∑
t=1

T

∑
s ̸=t

E
(

ui,tu′
j,tui,su′

j,s

)
= O(1) + O(1)

(2.20)

because finite second moments of ui,t and absolute summable autocovariances of ui,t ensure that

T

∑
s ̸=t

E
(

ui,tu′
j,tui,su′

j,s

)
= O(1). (2.21)

We will use this argument to deduce the orders of the similar terms. For the leading term in (2.16), making

use of Bi = B + B̃i gives

1
N

N

∑
i=1

U′
iUi

T
=

1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B +

1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B̃i +

1
N

N

∑
i=1

B̃′
i

(
Ũ′

iŨi

T

)
B +

1
N

N

∑
i=1

B̃′
i

(
Ũ′

iŨi

T

)
B̃i

=
1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B +

1
N

N

∑
i=1

B̃′
i

(
Ũ′

iŨi

T

)
B̃i + Op

(
1√
N

)
−→p Σu +

(
Ωυ,⊗vec(Σ) 01×k

0k×1 0k×k

)
= Σu,h

as (N, T) → ∞. On the second line, since by Ass.6 we have E(υi) = 0k×1 so that E(B̃i) = 0(1+k)×(1+k) and

since also υi is independent of the other variables and over i,

E

[
1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B̃i

]
= 0(1+k)×(1+k)

and also

E

[
1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B̃i

] [
1
N

N

∑
j=1

B′
(

Ũ′
jŨj

T

)
B̃j

]′
= E

[
1

(NT)2

N

∑
i=1

N

∑
j=1

B′Ũ′
iŨiB̃iB̃′

jŨ
′
jŨjB

]

=
1

(NT)2

N

∑
i=1

N

∑
j=1

B′E
[
Ũ′

iŨiE(B̃iB̃′
j|Ũi, Ũj)Ũ′

jŨj

]
B

=
1

(NT)2

N

∑
i=1

B′E
[
Ũ′

iŨiE(B̃iB̃′
i)Ũ

′
iŨi

]
B = O

(
1
N

)
results in∥∥∥∥∥ 1

N

N

∑
i=1

B̃′
i

(
Ũ′

iŨi

T

)
B

∥∥∥∥∥ = Op

(
1√
N

)
,

The final line follows from

1
N

N

∑
i=1

B′
(

Ũ′
iŨi

T

)
B =

1
N

N

∑
i=1

Σu,i + Op(T−1/2)

−→p Σu
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as (N, T) → ∞ by Ass.1 and because ŨiB̃i = [Viυi, 0T×k] leads to

1
N

N

∑
i=1

B̃′
i

(
Ũ′

iŨi

T

)
B̃i =

( 1
NT ∑N

i=1 υ′
iV

′
iViυi 01×k

0k×1 0k×k

)
=

( 1
N ∑N

i=1 υ′
iΣiυi 01×k

0k×1 0k×k

)
+ Op(T−1/2)

−→p
(

Ωυ,⊗vec(Σ) 01×k
0k×1 0k×k

)
as (N, T) → ∞, with Ωυ,⊗ = E(υ′

i ⊗ υ′
i) and T−1V′

iVi = Σi + Op(T−1/2) from Ass.1 and 6. Note that the

term is zero when υi = 0k×1. This establishes (2.12).

Next, again making use of U0
−m =

√
NUTH−m and substituting in (2.12) gives, as (N, T) → ∞

Σ̂u0
−m

= T−1(U0
−m)

′U0
−m = H′

−mT′ NU′U
T

TH−m = H′
−mT′Σu,hTH−m + Op(T−1/2)

= H′
−mT′Σu,hTH−m + Op(N−1/2) + Op(T−1/2)

= Σu0
−m

+ Op(N−1/2) + Op(T−1/2)

because
∥∥H−m − H−m

∥∥ = Op(N−1/2) and note that Σu0
−m

= H′
−mT′Σu,hTH−m is a (1 + k − m)× (1 + k −

m) positive definite matrix. It is positive definite, because Σu,h is positive definite and hence by Exercise

8.26 in Abadir and Magnus (2005), rk(T′Σu,hT) = rk(T). Therefore, by part (b) of the same exercise,

rk(B′AB) = rk(B) = q for B ∈ Rp×q and positive definite A ∈ Rp×p implies that the whole matrix

quadratic form is positive definite. The result follows by applying the same argument again, now taking

H−m as B and T′Σu,hT as A. This establishes (2.13), and since rk(Σ̂u0
−m
)− rk(Σu0

−m
)

a.s.→ 0, it follows from

Theorem 1 in Karabiyik et al. (2017)

Σ̂
†
u0
−m

= Σ†
u0
−m

+ Op(N−1/2) + Op(T−1/2)

This is (2.14) of the lemma.

Next, consider

Σ̂F̂0 − Σ̂Fu =
1
T

[
F′U0

m + (U0
m)

′F F′U0
−m

(U0
−m)

′F 0(1+k−m)×(1+k−m)

]
+

1
T

[
(U0

m)
′U0

m (U0
m)

′U0
−m

(U0
−m)

′U0
m 0(1+k−m)×(1+k−m)

]
where substituting in the results established in the first part of the lemma results in∥∥∥Σ̂F̂0 − Σ̂Fu

∥∥∥ = Op(N−1/2) + Op(T−1/2)

Noting then that rk(Σ̂F̂0) = 1 + k, and since Σ̂Fu is a block diagonal matrix also rk(Σ̂Fu) = rk(Σ̂F) +

rk(Σ̂u0
−m
) = 1 + k even as (N, T) → ∞ from Ass.1 and 2. Since then rk(Σ̂F̂0)− rk(Σ̂Fu)

a.s.→ 0, we have by

Theorem 1 in Karabiyik et al. (2017)∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−1/2) + Op(T−1/2)

which establishes the last statement of the lemma in (2.15).
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2.2 Homogeneous Slopes

In the homogeneous slope setting, we impose a common slope by setting υi = 0k×1 so that βi = β and

Bi = B for all i = 1, . . . , N. In this setting, given that MF̂Z = 0T×(1+k), the scaled deviation of the CCEP

estimator is

√
NT(β̂ − β) = −

√
NTβ + ((NT)−1X′MF̂X)−1(NT)−1/2X′MF̂y

= −
√

NTβ +

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂yi

=

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂[εi − UC

†
γi]

=

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂[εi − UC

†
(γ + η̃iqy)]

=

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂[εi − UC

†
η̃iqy]

= Q̂−1q̂, (2.22)

where use was made of γi = CiB−1qy = (C+ ηi)B
−1qy = γ+ η̃iqy and ∑N

i=1 X′
iMF̂UC

†
γ = NX

′
MF̂UC

†
γ =

0k×1, because X ⊂ Z. Making use of MF̂ = MF̂0 and MF̂0 = MF0 − [MF0 − MF̂0 ], the denominator in the

final expression is

Q̂ =
1

NT

N

∑
i=1

X′
iMF̂Xi =

1
NT

N

∑
i=1

[Vi − UC
†
Γi]

′MF̂[Vi − UC
†
Γi]

=
1

NT

N

∑
i=1

[Vi − UC
†
Γi]

′MF0 [Vi − UC
†
Γi]−

1
NT

N

∑
i=1

[Vi − UC
†
Γi]

′[MF0 − MF̂0 ][Vi − UC
†
Γi]

= Q̂MF0 − Q̂[MF0−MF̂0 ]. (2.23)

For a stated subscript A, we define the further decomposition

Q̂A = Q̂A,VV − Q̂A,VΓ − (Q̂A,VΓ)
′ + Q̂A,ΓΓ

Q̂A,VV =
1

NT

N

∑
i=1

V′
iAVi

Q̂A,VΓ =
1

NT

N

∑
i=1

V′
iAUC

†
Γi

Q̂A,ΓΓ =
1

NT

N

∑
i=1

Γ′
i(C

†
)′U′AUC

†
Γi

Next, similar arguments yield for the numerator

q̂ =
1√
NT

N

∑
i=1

[Vi − UC
†
Γi]

′MF̂[εi − UC
†
η̃iqy] = q̂I − q̂PF0 − q̂[MF0−MF̂0 ] (2.24)
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where for a given subscript A the respective terms are decomposed as

q̂A = q̂A,Vε − q̂A,Vη − q̂A,Γε + q̂A,Γη

q̂A,Vε =
1√
NT

N

∑
i=1

V′
iAεi

q̂A,Vη =
1√
NT

N

∑
i=1

V′
iAUC

†
η̃iqy

q̂A,Γε =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′Aεi

q̂A,Γη =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′AUC

†
η̃iqy

2.2.1 Lemmas

Lemma B-3 Under Ass.1-5 we have as (N, T) → ∞ such that T/N = τN,T → τ < ∞ that

q̂[MF0−MF̂0 ] =
√

τ(d1 + d2) + Op(N−1/2) + Op(T−1/2) (2.25)

where d1 = d2 = 0k×1 provided m = 1 + k, whereas in case m < 1 + k

d1 = q′
xyΣ′

ηvec
(
(C†)′ΣuD−mΣuC†

)
(2.26)

d2 = lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′ − Γ′(C†)′ΣuD−m[σ
2, 01×k]

′ (2.27)

and with qxy = (qy ⊗ qx), qy = [1, 0′k×1]
′, qx = [0k×1, Ik]

′ and D−m = TH−mΣ†
u0
−m

H′
−mT′.

Proof of Lemma B-3

Recall that q̂[MF0−MF̂0 ] = q̂[MF0−MF̂0 ],Vε − q̂[MF0−MF̂0 ],Vη − q̂[MF0−MF̂0 ],Γε + q̂[MF0−MF̂0 ],Γη . We first consider

q̂[MF0−MF̂0 ],Γη =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′

[MF0 − MF̂0 ]UC
†
η̃iqy

=

√
T
N

1
N

N

∑
i=1

Γ′
i(C

†
)′NT−1U′

[MF0 − MF̂0 ]UC
†
η̃iqy

Inserting (2.11) in U′
[MF0 − MF̂0 ]U gives

NT−1U′
[MF0 − MF̂0 ]U = NT−1U′U0

−mΣ̂
†
u0
−m

T−1(U0
−m)

′U + NT−1U′U0
mΣ̂

†
FT−1(U0

m)
′U

+ NT−1U′FΣ̂
†
FT−1(U0

m)
′U + T−1U′U0

mΣ̂
†
FT−1F′U

+ NT−1U′F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′U

= NT−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′U + Op(N−1/2) + Op(T−1/2)

= ΣuTH−mΣ†
u0
−m

H′
−mT′Σu + Op(N−1/2) + Op(T−1/2) (2.28)

11



because by Ass.1 and H−m = H−m + Op(N−1/2) we have

√
NT−1U′U0

−m =

(
1
N

N

∑
i=1

N

∑
j=1

U′
iUj

T

)
TH−m =

(
1
N

N

∑
i=1

Σu,i

)
TH−m + Op(T−1/2)

= ΣuTH−m + Op(N−1/2) + Op(T−1/2) (2.29)

which implies together with (2.14) that the first term is

NT−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′U =
√

NT−1U′U0
−mΣ̂

†
u0
−m

√
NT−1(U0

−m)
′U

= ΣuTH−mΣ†
u0
−m

H′
−mT′Σu + Op(N−1/2) + Op(T−1/2)

whereas for the other terms, making use of Σ̂
†
F = Op(1) and the orders established in Lemmas B-1 and

B-2 gives∥∥∥T−1U′U0
mΣ̂

†
FT−1(U0

m)
′U
∥∥∥ ≤

∥∥∥T−1U′U0
m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op(N−2)∥∥∥T−1U′FΣ̂
†
FT−1(U0

m)
′U
∥∥∥ ≤

∥∥∥T−1U′F
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
m)

′U
∥∥∥ = Op(T−1/2N−3/2)∥∥∥T−1U′F̂0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′U

∥∥∥ ≤
∥∥∥T−1U′F̂0

∥∥∥2 ∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−3/2) + Op(N−1T−1/2)

Hence, substituting in (2.28), using τN,T = T/N = O(1) and vec (ABC) = (C′ ⊗ A)vec (B) (Abadir and

Magnus, 2005, Exercise 10.18) yield

q̂[MF0−MF̂0 ],Γη

=

√
T
N

1
N

N

∑
i=1

Γ′
i(C

†
)′NT−1U′

[MF0 − MF̂0 ]UC
†
η̃iqy

=
√

τN,T
1
N

N

∑
i=1

Γ′
i(C

†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′ΣuC

†
η̃iqy + Op(N−1/2) + Op(T−1/2)

=
√

τN,T

(
1
N

N

∑
i=1

(q′
yη̃′i ⊗ Γ′

i)

)
vec
(
(C

†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′ΣuC

†
)
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

(
1
N

N

∑
i=1

(η̃iqy ⊗ Γi)
′
)

vec
(
(C

†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′ΣuC

†
)
+ Op(N−1/2) + Op(T−1/2)

=
√

τq′
xyΣ′

ηvec
(
(C†)′ΣuD−mΣuC†

)
+ Op(N−1/2) + Op(T−1/2) (2.30)

with D−m = TH−mΣ†
u0
−m

H′
−mT′, Ση = E(η̃i ⊗ η̃i) and qxy = (qy ⊗ qx), and where we also made use of the

following facts: τN,T → τ < ∞, and from Ass.3 that C
†
= C† +Op(N−1/2), 1

N ∑N
i=1 η̃′iΓ = η̃

′
Γ = Op(N−1/2)

and 1
N ∑N

i=1(η̃i ⊗ η̃i) = Ση + Op(N−1/2), which lead to

1
N

N

∑
i=1

(η̃iqy ⊗ Γi) =
1
N

N

∑
i=1

(η̃iqy ⊗ Γ + η̃iqx) =
1
N

N

∑
i=1

(η̃iqy ⊗ η̃iqx) + Op(N−1/2)

=
1
N

N

∑
i=1

(η̃i ⊗ η̃i)(qy ⊗ qx) + Op(N−1/2)

= Σηqxy + Op(N−1/2) (2.31)
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Next up is q̂[MF0−MF̂0 ],Γε =
1√
NT ∑N

i=1 Γ′
i(C

†
)′U′

[MF0 −MF̂0 ]εi. Making use of εi = UiB−1qy and with (2.11)

follows the decomposition

T−1U′
[MF0 − MF̂0 ]εi

= T−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′UiB−1qy + T−1U′U0
mΣ̂

†
FT−1(U0

m)
′UiB−1qy

+ T−1U′FΣ̂
†
FT−1(U0

m)
′UiB−1qy + T−1U′U0

mΣ̂
†
FT−1F′UiB−1qy

+ T−1U′F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′UiB−1qy

= T−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′UiB−1qy + Op(N−3/2) + Op(N−1T−1/2) + Op(T−3/2) (2.32)

because substituting in results from Lemma B-1 and B-2 gives∥∥∥T−1U′U0
mΣ̂

†
FT−1(U0

m)
′UiB−1qy

∥∥∥ ≤
∥∥∥T−1U′U0

m

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1(U0
m)

′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥
= Op(N−2) + Op(N−3/2T−1/2)∥∥∥T−1U′FΣ̂

†
FT−1(U0

m)
′UiB−1qy

∥∥∥ ≤
∥∥∥T−1U′F

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1(U0
m)

′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥
= Op(N−3/2T−1/2) + Op((NT)−1)∥∥∥T−1U′U0

mΣ̂
†
FT−1F′UiB−1qy

∥∥∥ ≤
∥∥∥T−1U′U0

m

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1F′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op(N−1T−1/2)∥∥∥T−1U′F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′UiB−1qy

∥∥∥ ≤
∥∥∥T−1U′F̂0

∥∥∥ ∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ ∥∥∥T−1(F̂0)′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥
= Op(N−3/2) + Op(N−1T−1/2) + Op(T−3/2)

and we note that∥∥∥T−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) (2.33)

Making use of (2.32) and T/N = O(1), scaling it by
√

NT gives
√

NT−1/2U′
[MF0 − MF̂0 ]εi = T−1

√
NU′U0

−mΣ̂
†
u0
−m

T−1/2(U0
−m)

′UiB−1qy + Op(N−1/2) + Op(T−1/2)

= ΣuTH−mΣ†
u0
−m

T−1/2(U0
−m)

′UiB−1qy + Op(N−1/2) + Op(T−1/2)

= ΣuTH−mΣ†
u0
−m

H′
−mT′√NT−1/2U′UiB−1qy + Op(N−1/2) + Op(T−1/2)

where in the second line we have substituted in (2.14) and (2.29) and in the final line U0
−m =

√
NUTH−m.

Then

q̂[MF0−MF̂0 ],Γε =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′

[MF0 − MF̂0 ]εi

=
1
N

N

∑
i=1

Γ′
i(C

†
)′
√

NT−1/2U′
[MF0 − MF̂0 ]εi

=
1
N

N

∑
i=1

Γ′
i(C

†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′√NT−1/2U′UiB−1qy + Op(N−1/2) + Op(T−1/2)

=
1
N

N

∑
i=1

Γ′
iD

√
NT−1/2U′UiB−1qy + Op(N−1/2) + Op(T−1/2)
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where we have defined D = (C
†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′. Noting that U = N−1Ui +

1
N ∑N

j ̸=i Uj, the remain-

ing term can be written as

1√
NT

N

∑
i=1

Γ′
iDU′UiB−1qy =

√
T
N

1
NT

N

∑
i=1

Γ′
iDU′

iUiB−1qy +

√
T
N

1
NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDU′

jUiB−1qy

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
iD(T−1U′

iUi)B−1qy +
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDU′

jUiB−1qy

]

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
iD[σ2

i , 01×k]
′
]
+ Op(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

(
[σ2

i , 01×k]⊗ Γ′
i
)]

vec(D) + Op(T−1/2)

=
√

τ
(
[σ2, 01×k]⊗ Γ′) vec((C†)′ΣuTH−mΣ†

u0
−m

H′
−mT′) + Op(N−1/2) + Op(T−1/2)

because T−1U′
iUi = Σu,i + Op(T−1/2) from Ass.1, Σu,iB−1qy = [σ2

i , 01×k]
′ and 1

N ∑N
i=1
(
[σ2

i , 01×k]⊗ Γ′
i
)
→p(

[σ2, 01×k]⊗ Γ′) by Ass.1 and 3. We also have that∥∥∥∥∥ 1
NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDU′

jUiB−1qy

∥∥∥∥∥ = Op

(
1√
T

)
(2.34)

due to

E

[
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDU′

jUiB−1qy

]
= 0k×1

and

E

[
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDU′

jUiB−1qy

] [
1

NT

N

∑
k=1

N

∑
l ̸=k

Γ′
kDU′

lUkB−1qy

]′

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

N

∑
k=1

N

∑
l ̸=k

E

[
Γ′

iD

(
T

∑
t=1

T

∑
s=1

E[uj,tu′
i,tB

−1qyq′
y(B

−1)′uk,su′
l,s]

)
D′Γk

]

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

E

[
Γ′

iD

(
T

∑
t=1

T

∑
s=1

E[uj,tu′
i,tB

−1qyq′
y(B

−1)′ui,su′
j,s]

)
D′Γi

]

+
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

E

[
Γ′

iD

(
T

∑
t=1

T

∑
s=1

E[uj,tu′
i,tB

−1qyq′
y(B

−1)′uj,su′
i,s]

)
D′Γj

]

=
1

(NT)2 O
(

N2T
)
= O

(
1
T

)
where the second equality follows from noting that under Ass.1 (independence over cross-sections) the

inner expectation of errors is only non-zero when (k = i, l = j) or (k = j, l = i) (because i ̸= j and l ̸= k).

The final order result follows from (2.20). Therefore, combining the results lead to the conclusion

q̂[MF0−MF̂0 ],Γε =
√

τN,T
(
[σ2, 01×k]⊗ Γ′) vec((C†)′ΣuTH−mΣ†

u0
−m

H′
−mT′) + Op(N−1/2) + Op(T−1/2)

=
√

τN,TΓ′(C†)′ΣuTH−mΣ†
u0
−m

H′
−mT′[σ2, 01×k]

′ + Op(N−1/2) + Op(T−1/2)

=
√

τΓ′(C†)′ΣuD−m[σ
2, 01×k]

′ + Op(N−1/2) + Op(T−1/2) (2.35)
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where D−m = TH−mΣ†
u0
−m

H′
−mT′.

The analysis of q̂[MF0−MF̂0 ],Vη is near identical to that of q̂[MF0−MF̂0 ],Γε. Noting that Vi = Uiqx, we obtain

√
NT−1/2V′

i[MF0 − MF̂0 ]U = T−1/2q′
xU′

iU
0
−mΣ̂

†
u0
−m

T−1
√

N(U0
−m)

′U + Op(N−1/2) + Op(T−1/2)

= T−1/2
√

Nq′
xU′

iUTH−mΣ†
u0
−m

H′
−mT′Σu + Op(N−1/2) + Op(T−1/2)

because from Vi = Uiqx the terms in this decomposition contain the exact same variables that drive the

orders as for T−1U′
[MF0 − MF̂0 ]εi = T−1U′

[MF0 − MF̂0 ]UiB−1qy in (2.32) and we again substituted in

(2.14) and (2.29) and U0
−m =

√
NUTH−m on the final line. Then

q̂[MF0−MF̂0 ],Vη =
1√
NT

N

∑
i=1

V′
i[MF0 − MF̂0 ]UC

†
η̃iqy

=
1
N

N

∑
i=1

√
NT−1/2V′

i[MF0 − MF̂0 ]UC
†
η̃iqy

=
1√
NT

N

∑
i=1

q′
xU′

iUD′η̃iqy + Op(N−1/2) + Op(T−1/2)

where we again made use of D = (C
†
)′ΣuTH−mΣ†

u0
−m

H′
−mT′ and obtain using analogous arguments as

above

1√
NT

N

∑
i=1

q′
xU′

iUD′η̃iqy =
√

τN,T

[
1

NT

N

∑
i=1

q′
x(T

−1U′
iUi)D′η̃iqy +

1
NT

N

∑
i=1

N

∑
j ̸=i

q′
xU′

iUjD′η̃iqy

]

=
√

τN,T

[
1
N

N

∑
i=1

q′
xΣu,iD′η̃iqy

]
+ Op(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

q′
yη̃′i ⊗ q′

xΣu,i

]
vec(D′) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2)

because by Ass.3[
1
N

N

∑
i=1

q′
yη̃′i ⊗ q′

xΣu,i

]
= (q′

y ⊗ q′
x)

1
N

N

∑
i=1

[
η̃′i ⊗ Σu,i

]
= Op(N−1/2)

and where∥∥∥∥∥ 1
NT

N

∑
i=1

N

∑
j ̸=i

q′
xU′

iUjD′η̃iqy

∥∥∥∥∥ = Op

(
1√
T

)
(2.36)

15



from its zero expectation and

E

[
1

NT

N

∑
i=1

N

∑
j ̸=i

q′
xU′

iUjD′η̃iqy

] [
1

NT

N

∑
k=1

N

∑
l ̸=k

q′
xU′

kUlD′η̃iqy

]′

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

N

∑
k=1

N

∑
l ̸=k

q′
x

T

∑
t=1

T

∑
s=1

E
[
ui,tu′

j,tD
′E(η̃iqyq′

yη̃′k)Dul,su′
k,s

]
qx

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

N

∑
l ̸=i

q′
x

T

∑
t=1

T

∑
s=1

E
[
ui,tu′

j,tD
′E(η̃iqyq′

yη̃′i)Dul,su′
i,s

]
qx

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

N

∑
l ̸=i

q′
x

T

∑
t=1

T

∑
s=1

E
[
ui,tE

[
u′

j,tD
′E(η̃iqyq′

yη̃′i)Dul,s|Ui

]
u′

i,s

]
qx

=
1

(NT)2

N

∑
i=1

N

∑
j ̸=i

q′
x

T

∑
t=1

T

∑
s=1

E
[
ui,tu′

j,tD
′E(η̃iqyq′

yη̃′i)Duj,su′
i,s

]
qx

=
1

(NT)2 O
(

N2T
)
= O

(
1
T

)
since E(η̃iqyq′

yη̃′k) = 0 when k ̸= i and one sum in the fourth line is eliminated by noticing zero expecta-

tion when l ̸= j. Otherwise, we use arguments identical to (2.20). We thus conclude that∥∥∥q̂[MF0−MF̂0 ],Vη

∥∥∥ = Op(N−1/2) + Op(T−1/2) (2.37)

Last up is

q̂[MF0−MF̂0 ],Vε =
1√
NT

N

∑
i=1

V′
i[MF0 − MF̂0 ]εi =

1√
NT

N

∑
i=1

q′
xU′

i[MF0 − MF̂0 ]UiB−1qy

Making use of results in Lemma B-2 yields∥∥∥T−1U′
iU

0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′Ui

∥∥∥ ≤
∥∥∥T−1U′

iU
0
−m

∥∥∥2 ∥∥∥Σ̂
†
u0
−m

∥∥∥ = Op(N−1) + Op(T−1) + Op((NT)−1/2)∥∥∥T−1U′
iU

0
mΣ̂

†
FT−1(U0

m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

iU
0
m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op(N−2) + Op(N−3/2T−1/2) + Op((NT)−1)∥∥∥T−1U′
iFΣ̂

†
FT−1(U0

m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

iF
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
m)

′Ui

∥∥∥ = Op(N−1T−1/2) + Op(N−1/2T−1)∥∥∥T−1U′
iF̂

0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′Ui

∥∥∥ ≤
∥∥∥T−1U′

iF̂
0
∥∥∥2 ∥∥∥Σ̂

†
F̂0 − Σ̂

†
Fu

∥∥∥
= Op(N−3/2) + Op(N−1/2T−1) + Op(N−1T−1/2) + Op(T−3/2)

so that we obtain for the familiar decomposition

T−1U′
i[MF0 − MF̂0 ]Ui

= T−1U′
iU

0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′Ui + T−1U′
iU

0
mΣ̂

†
FT−1(U0

m)
′Ui

+ T−1U′
iFΣ̂

†
FT−1(U0

m)
′Ui + T−1U′

iU
0
mΣ̂

†
FT−1F′Ui + T−1U′

iF̂
0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′Ui

= T−1U′
iU

0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′Ui + Op(N−3/2) + Op(N−1/2T−1) + Op(N−1T−1/2) + Op(T−3/2)

= NT−2U′
iUTH−mΣ̂

†
u0
−m

H′
−mT′U′Ui + Op(N−3/2) + Op(N−1/2T−1) + Op(N−1T−1/2) + Op(T−3/2)

(2.38)
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Substituting in (2.38) and making use of T/N = O(1) gives

q̂[MF0−MF̂0 ],Vε =
1√
NT

N

∑
i=1

q′
xU′

i[MF0 − MF̂0 ]UiB−1qy =

√
T
N

[
1
N

N

∑
i=1

q′
x NT−1U′

i[MF0 − MF̂0 ]UiB−1qy

]

=
√

τN,T

[
N
T2

N

∑
i=1

q′
xU′

iUTH−mΣ̂
†
u0
−m

H′
−mT′U′UiB−1qy

]
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
N
T2

N

∑
i=1

q′
xU′

iUD−mU′UiB−1qy

]
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
N
T2

N

∑
i=1

q′
xU′

i

(
1
N

N

∑
j=1

Uj

)
D−m

(
1
N

N

∑
l=1

Ul

)′

UiB−1qy

]
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iUjD−mU′

lεi

]
+ Op(N−1/2) + Op(T−1/2)

where to go to the third line we have made use of (2.14), H−m = H−m + Op(N−1/2) and have defined

D−m = TH−mΣ†
u0
−m

H′
−mT′.

Next, to study the remainder, let dv,g denote the element on row v and column g of D−m and let qa be a

k × 1 vector of zeros with a 1 on its a − th row. Then U(a)
i = Uiqa (V

(a)
i = Viqa) is the a − th column of Ui

(Vi) and v(a)
i,t = v′

i,tqa denotes the a − th row of vit. Note that if g = 1 then by definition U(1)
j = εj + Vjβ

whereas for g > 1 we have U(g)
j = V(g−1)

j . Then we can unpack the remaining expression between

brackets as follows

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iUjD−mU′

lεi

=
1

NT2

1+k

∑
v=1

1+k

∑
g=1

dv,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iU

(v)
j U(g)′

l εi

=
1

NT2

1+k

∑
v=1

dv,1

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iU

(v)
j [εl + Vl β]

′εi +
1

NT2

1+k

∑
v=1

1+k

∑
g=2

dv,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iU

(v)
j V(g−1)′

l εi
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and now also unpacking the first U(v) with

=
1

NT2 d1,1

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
i[εj + Vjβ][εl + Vl β]

′εi +
1

NT2

1+k

∑
v=2

dv,1

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(v−1)
j [εl + Vl β]

′εi

+
1

NT2

1+k

∑
g=2

d1,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
i[εj + Vjβ]V

(g−1)′
l εi +

1
NT2

1+k

∑
v=2

1+k

∑
g=2

dv,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(v−1)
j V(g−1)′

l εi

=
1

NT2 d1,1

N

∑
i=1

N

∑
j=1

N

∑
l=1

[
V′

iεjε
′
lεi + V′

iεjβ
′V′

lεi + V′
iVjβε′lεi + V′

iVjββ′V′
lεi
]

+
1

NT2

1+k

∑
v=2

dv,1

N

∑
i=1

N

∑
j=1

N

∑
l=1

[
V′

iV
(v−1)
j ε′lεi + V′

iV
(v−1)
j β′V′

lεi

]
+

1
NT2

1+k

∑
g=2

d1,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

[
V′

iεjV
(g−1)′
l εi + V′

iVjβV(g−1)′
l εi

]
+

1
NT2

1+k

∑
v=2

1+k

∑
g=2

dv,g

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(v−1)
j V(g−1)′

l εi

Next, also unpacking over time and bundling related terms yields

=d1,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

[
vi,tε j,tε l,sε i,s + vi,tv′

l,sβε j,tε i,s + vi,tv′
j,tβε l,sε i,s + vi,tv′

j,tββ′vl,sε i,s

]}

+
1+k

∑
v=2

dv,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

[
vi,tv

(v−1)
j,t ε l,sε i,s + vi,tv

(v−1)
j,t v′

l,sβε i,s

]}

+
1+k

∑
g=2

d1,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

[
vi,tv

(g−1)
l,s ε i,sε j,t + vi,tv′

j,tβv(g−1)
l,s ε i,s

]}

+
1+k

∑
v=2

1+k

∑
g=2

dv,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(v−1)
j,t v(g−1)

l,s ε i,s

}
(2.39)

Consider then that we can write the second term in the first set of brackets as

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
l,sβε j,tε i,s

=
1

NT2

N

∑
i=1

T

∑
t=1

T

∑
s=1

Σi,t,sβσi,t,s +
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

(vi,tv′
l,s − 1(l=i)Σi,t,s)β(ε j,tε i,s − 1(j=i)σi,t,s)

=
1

NT2

N

∑
i=1

T

∑
t=1

T

∑
s=1

Σi,t,sβσi,t,s +
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt,s
i,l βet,s

i,j

where Σi,t,s = E(vi,tv′
i,s), σi,t,s = E(εi,tεi,s), Vt,s

i,l = vi,tv′
l,s − 1(l=i)Σi,t,s and et,s

i,j = ε j,tε i,s − 1(j=i)σi,t,s. The

second term has expectation zero and we can write given independence of Vt,s
i,l and et,s

i,j

E

(
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt,s
i,l βet,s

i,j

)(
1

NT2

N

∑
m=1

N

∑
n=1

N

∑
o=1

T

∑
r=1

T

∑
q=1

Vr,q
m,oβer,q

m,n

)′

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

N

∑
o=1

E
(

Vt,s
i,l ββ′Vr,q′

m,o

)
E
(

et,s
i,j er,q

m,n

)
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As the analysis is highly tedious but features a repeating pattern, we shall sketch out the rationale. First,

consider that either of these expectations is zero when one of the indices differs from all others. Then, the

rightmost expectation is only non-zero if (n = m = j = i), (n = i, m = j, j ̸= i) or (n = j, m = i, j ̸= i).

(Note that (n = m, j = i, i ̸= m) equals zero since by definition E
(

et,s
i,i er,q

m,m

)
= 0 when i ̸= m). The

(n = m = j = i) case yields

1
N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l=1

N

∑
o=1

E
(

Vt,s
i,l ββ′Vr,q′

m,o

)
E
(

et,s
i,j er,q

m,n

)
for which the left expectation is zero unless also (o = l = i) or (o = l, i ̸= l) . These two cases give

(o = l, i ̸= l)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l=1

E
(

Vt,s
i,l ββ′Vr,q′

i,l

)
E
(

et,s
i,i er,q

i,i

)
=

1
N2T4 O

(
N2T2) = O

(
1

T2

)

(o = l = i)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

E
(

Vt,s
i,i ββ′Vr,q′

i,i

)
E
(

et,s
i,i er,q

i,i

)
=

1
N2T4 O

(
NT4

)
= O

(
1
N

)
since ε i,t has finite fourth moments and because i ̸= l and stationarity (absolute summable autocovari-

ances) of vi,t results in

vec

(
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

E
(

Vt,s
i,l ββ′Vr,q′

i,l

))
=

(
T

∑
t=1

T

∑
r=1

E [vi,r ⊗ vi,t]

)(
T

∑
s=1

T

∑
q=1

E
[
vl,q ⊗ vl,s

])
vec(ββ′) = O(T2)

Consider then (n = i, m = j, i ̸= m), which gives

1
N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
o=1

E
(

Vt,s
i,l ββ′Vr,q′

j,o

)
E
(

et,s
i,j er,q

j,i

)
where the left expectation is again zero unless one of 2 additional restrictions are imposed, either (o =

i, j = l, l ̸= i) or (l = j = o = i). The latter was already covered above and the first yields

1
N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l=1

E
(

Vt,s
i,l ββ′Vr,q′

l,i

)
E
(

et,s
i,l er,q

l,i

)
=

1
N2T4 O

(
N2T2) = O

(
1

T2

)
since i ̸= l and et,s

i,l er,q
l,i = ε i,tε i,qε l,sε l,r gives by ε i,t having absolute summable autocovariances that

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

E(et,s
i,l er,q

l,i ) =
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

E(ε i,tε i,q)E(ε l,sε l,r) =

(
T

∑
t=1

T

∑
q=1

E(ε i,tε i,q)

)(
T

∑
s=1

T

∑
r=1

E(ε l,sε l,r)

)

=

(
T

∑
t=1

T

∑
q=1

σi,t,q

)(
T

∑
s=1

T

∑
r=1

σl,s,r

)
= O(T2)

Finally, if (n = j, m = i, j ̸= i), then we require either (o = i, l = i) or (o = l), which gives respectively

(o = i, l = i)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

E
(

Vt,s
i,i ββ′Vr,q′

i,i

)
E
(

et,s
i,j er,q

i,j

)
=

1
N2T4 O

(
N2T2) = O

(
1

T2

)

(o = l)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

E
(

Vt,s
i,l ββ′Vr,q′

i,l

)
E
(

et,s
i,j er,q

i,j

)
=

1
N2T4 O

(
N3T2) = O

(
N
T2

)
= O

(
1
T

)
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by similar arguments as above, and T/N = O(1). Hence, combining results yields∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt,s
i,l βet,s

i,j

∥∥∥∥∥ = Op

(
1√
N

)
+ Op

(
1√
T

)
(2.40)

and therefore

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
l,sβε j,tε i,s =

1
NT2

N

∑
i=1

T

∑
t=1

T

∑
s=1

Σi,t,sβσi,t,s + Op

(
1√
N

)
+ Op

(
1√
T

)
= Op

(
1√
N

)
+ Op

(
1√
T

)
since by Ass.1 (summable autocovariances) also

∥∥∥T−1 ∑T
t=1 ∑T

s=1 Σi,t,sβσi,t,s

∥∥∥ = O(1). The exact same ar-

guments also yield∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(g−1)
l,s ε i,sε j,t

∥∥∥∥∥ = Op

(
1√
N

)
+ Op

(
1√
T

)

Next, for combinations such as vi,tv′
j,tβε l,sε i,s we can write with Vt

i,j = vi,tv′
j,t − 1(j=i)Σi and es

i,l = ε i,sε l,s −

1(l=i)σ
2
i

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
j,tβε l,sε i,s =

1
N

N

∑
i=1

Σiβσ2
i +

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt
i,jβes

i,l

Note then that

E

[
N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt
i,jβes

i,l

]
= 0k×1

Here, the variance is

E

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt
i,jβes

i,l

] [
1

NT2

N

∑
m=1

N

∑
n=1

N

∑
o=1

T

∑
r=1

T

∑
q=1

Vr
m,nβeq

m,o

]′

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

N

∑
o=1

E
(

Vt
i,jββ′Vr′

m,n

)
E
(
es

i,le
q
m,o
)

We see that the left expectation is zero unless (m = j = n = i), or either (n = m, j = i, i ̸= m), (n =

j, m = i, i ̸= j) or (n = i, m = j, i ̸= j). Depending on this choice, the free indices o and l in the second

expectation must be chosen such that the whole product is non zero. In what follows we proceed with

the systematic elimination using absolute summability and the arguments similar to the ones used above.

We indicate the appropriate index choice for the first expectation in the first parentheses and the relevant
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o, l adjustment for the second expectation in the second ones.

(i = j = m = n), (o = l)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l=1

E
(
Vt

i,iββ′Vr′
i,i
)

E
(

es
i,le

q
i,l

)
= O(N2T3)

(i = j = m = n), (o = l = i)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

E
(
Vt

i,iββ′Vr′
i,i
)

E
(

es
i,ie

q
i,i

)
= O(NT4)

(n = j, m = i, i ̸= j), (o = l)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

E
(

Vt
i,jββ′Vr′

i,j

)
E
(

es
i,le

q
i,l

)
= O(N3T2)

(n = j, m = i, i ̸= j), (o = l = i)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

E
(

Vt
i,jββ′Vr′

i,j

)
E
(

es
i,ie

q
i,i

)
= O(N2T3)

(m = j, n = i, i ̸= j), (l = j, o = i)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

E
(

Vt
i,jββ′Vr′

j,i

)
E
(

es
i,je

q
j,i

)
= O(N2T2)

(m = j, n = i, i ̸= j), (l = i, o = j)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

E
(

Vt
i,jββ′Vr′

j,i

)
E
(

es
i,ie

q
j,j

)
= O(N2T2)

(m = n, j = i, i ̸= m), (o = i, l = m)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

E
(
Vt

i,iββ′Vr′
m,m
)

E
(

es
i,meq

m,i

)
= O(N2T3)

(m = n, j = i, i ̸= m), (o = m, l = i)
T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
m=1

E
(
Vt

i,iββ′Vr′
m,m
)

E
(
es

i,ie
q
m,m
)
= O(N2T3)

which by making use of T/N = O(1), leads to the conclusion that∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

Vt
i,jβes

i,l

∥∥∥∥∥ = Op

(
1√
N

)
+ Op

(
1√
T

)
(2.41)

such that

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
j,tβε l,sε i,s =

1
N

N

∑
i=1

Σiβσ2
i + Op

(
1√
N

)
+ Op

(
1√
T

)
and also by near identical arguments

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(v−1)
j,t ε l,sε i,s =

1
N

N

∑
i=1

Σiq(v−1)σ
2
i + Op

(
1√
N

)
+ Op

(
1√
T

)
It remains to analyze the terms with triples of the same variable, and a single occurrence of an indepen-

dent variable, such as the very first term vi,tε j,tε l,sε i,s. For such terms we obtain that∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tε j,tε l,sε i,s

∥∥∥∥∥ = Op

(
1√
T

)
(2.42)

since, by independence of all vi,t and ε j,t,

E

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tε j,tε l,sε i,s

]
= 0k×1
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and also

E

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tε j,tε l,sε i,s

] [
1

NT2

N

∑
m=1

N

∑
n=1

N

∑
o=1

T

∑
r=1

T

∑
q=1

vm,rεn,rεo,qεm,q

]′

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

N

∑
o=1

E(vi,tv′
m,r)E(ε j,tε l,sε i,sεn,rεo,qεm,q)

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
n=1

N

∑
o=1

E(vi,tv′
i,r)E(ε j,tε l,sε i,sεn,rεo,qε i,q)

because E(vi,tv′
m,r) = 0k×k for all m ̸= i. The further analysis of the remaining term is too extensive

and cumbersome to fully write down here, but careful elimination making use of the independence over

cross-sections in Ass.1 shows that four typical terms remain in the expression above, of which the orders

are given next

1
N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

E(vi,tv′
i,r)E(ε i,tε i,rε2

i,sε
2
i,q) =

1
N2T4 O(NT3) = O

(
1

NT

)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j ̸=i

N

∑
l ̸=j,i

E(vi,tv′
i,r)E(ε j,tε j,r)E(ε i,sε i,q)E(ε l,qε l,s) =

1
N2T4 O(N3T2) = O

(
1
T

)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l ̸=i

E(vi,tv′
i,r)E(ε i,sε i,rε i,q)E(ε l,tε l,sε l,q) =

1
N2T4 O(N2T3) = O

(
1
T

)
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l ̸=i

E(vi,tv′
i,r)E(ε i,tε i,sε i,rε i,q)E(ε l,qε l,s) =

1
N2T4 O(N2T3) = O

(
1

T1

)
,

because of stationarity of both involved variables, T/N = O(1), and E(ε6
i,t) < ∞ by Ass.1. Here, for

example, the order of the last term can be deduced from∥∥∥∥∥ 1
N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
l ̸=i

E(vi,tv′
i,r)E(ε i,tε i,sε i,rε i,q)E(ε l,qε l,s)

∥∥∥∥∥
= N sup

i,r,t
∥E(vi,tv′

i,r)∥ × sup
l,q,s

|E(ε l,sε l,q)| ×
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

|E(ε i,tε i,sε i,rε i,q)|

=
1

N2T4 O(N2T3) = O(T−1).

This results in the original statement above, and we similarly obtain∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
j,tββ′vl,sε i,s

∥∥∥∥∥ = Op

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(v−1)
j,t v′

l,sβε i,s

∥∥∥∥∥ = Op

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv′
j,tβv(g−1)

l,s ε i,s

∥∥∥∥∥ = Op

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(v−1)
j,t v(g−1)

l,s ε i,s

∥∥∥∥∥ = Op

(
1√
T

)
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Combining then all these results in (2.39) gives

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iUjD−mU′

lεi = d1,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

[
vi,tv′

j,tβε l,sε i,s

]}

+
1+k

∑
v=2

dv,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

[
vi,tv

(v−1)
j,t ε l,sε i,s

]}

+ Op

(
1√
T

)
+ Op

(
1√
N

)
= d1,1

{
1
N

N

∑
i=1

Σiβσ2
i

}
+

1+k

∑
v=2

dv,1

{
1
N

N

∑
i=1

Σiqv−1σ2
i

}

+ Op

(
1√
T

)
+ Op

(
1√
N

)
=

1
N

N

∑
i=1

d1,1Σiβσ2
i +

1
N

N

∑
i=1

k+1

∑
v=2

dv,1Σiqv−1σ2
i

+ Op

(
1√
T

)
+ Op

(
1√
N

)
=

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′ + Op(T−1/2) + Op(N−1/2), (2.43)

such that finally

q̂[MF0−MF̂0 ],Vε =
√

τ lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′ + Op(T−1/2) + Op(N−1/2) (2.44)

Combining then (2.30), (2.35), (2.37) and (2.44) into q̂[MF0−MF̂0 ] = q̂[MF0−MF̂0 ],Vε − q̂[MF0−MF̂0 ],Vη − q̂[MF0−MF̂0 ],Γε +

q̂[MF0−MF̂0 ],Γη gives the final result in (2.25).

It remains to show that d1 = d2 = 0k×1 when m = 1 + k. In this case, given T−1Z′Z = C
′T−1F′FC +

Op(N−1)+Op((NT)−1/2) and rk(T−1Z′Z)− rk((C′T−1F′FC))
a.s.−→ 0 it follows by Theorem 1 in Karabiyik

et al. (2017) that
∥∥∥(T−1Z′Z)† − (C

′T−1F′FC)†
∥∥∥ = Op(N−1) + Op((NT)−1/2) and

∥∥∥(T−1Z′Z)†
∥∥∥ = Op(1).

Hence, whereas m = 1 + k yields by definition R = C
−1

so that MF0 = MF, the fact that by the prop-

erties of the generalized inverse we have MF0 = MF = MFC and also MF̂0 = MF̂, of which crucially all

components are well behaved, lets us simplify and analyze the decomposition in (2.11) (given m = 1 + k)

as

MF0 − MF̂0 = MFC − MF̂ = T−1U(T−1Z′Z)†U′
+ T−1U(T−1Z′Z)†C

′
F′ + T−1FC(T−1Z′Z)†U′

+ T−1FC[(T−1Z′Z)† − (C
′T−1F′FC)†]C

′
F′ (2.45)

Then, substituting in this decomposition yields

∥∥∥q̂[MF0−MF̂0 ],Γη

∥∥∥ ≤ √
τN,T

∥∥∥∥∥ 1
N

N

∑
i=1

(q′
yη̃′i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2

N
∥∥∥T−1U′

[MF0 − MF̂0 ]U
∥∥∥ = Op(N−1) + Op((NT)−1/2)
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because by application of the results in lemma B-1 we now obtain

∥∥∥T−1U′
[MF0 − MF̂0 ]U

∥∥∥ ≤
∥∥∥∥∥U′U

T

∥∥∥∥∥
2
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥+ 2

∥∥∥∥∥U′U
T

∥∥∥∥∥
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥ ∥∥C

∥∥ ∥∥∥∥F′U
T

∥∥∥∥
+
∥∥C
∥∥2
∥∥∥∥F′U

T

∥∥∥∥2
∥∥∥∥∥∥
(

Z′Z
T

)†

−
(

C
′ F′F

T
C
)†
∥∥∥∥∥∥

= Op(N−2) + Op(N−3/2T−1/2)

Next up are q̂[MF0−MF̂0 ],Γε and q̂[MF0−MF̂0 ],Vη . Making use of εi = UiB−1qy, Vi = Uiqx and T/N = O(1)

∥∥∥q̂[MF0−MF̂0 ],Γε

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

∥Γi∥
∥∥∥C

†
∥∥∥N

∥∥∥T−1U′
[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op(N−1) + Op((NT)−1/2)

∥∥∥q̂[MF0−MF̂0 ],Vη

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

∥qx∥ N
∥∥∥T−1U′

[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥C
†
∥∥∥ ∥∥η̃iqy

∥∥ = Op(N−1) + Op((NT)−1/2)

since from (2.45) and lemma B-1 follows∥∥∥T−1U′
[MF0 − MF̂0 ]Ui

∥∥∥
≤
∥∥∥∥∥U′U

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥
∥∥∥∥∥U′Ui

T

∥∥∥∥∥+
∥∥∥∥∥U′U

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥ ∥∥C

∥∥ ∥∥∥∥F′Ui

T

∥∥∥∥+ ∥∥∥∥F′U
T

∥∥∥∥ ∥∥C
∥∥ ∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥
∥∥∥∥∥U′Ui

T

∥∥∥∥∥
+
∥∥C
∥∥2
∥∥∥∥F′U

T

∥∥∥∥
∥∥∥∥∥∥
(

Z′Z
T

)†

−
(

C
′ F′F

T
C
)†
∥∥∥∥∥∥
∥∥∥∥F′Ui

T

∥∥∥∥
= Op(N−2) + Op(N−3/2T−1/2)

Finally, for q̂[MF0−MF̂0 ],Vε we find

∥∥∥q̂[MF0−MF̂0 ],Vε

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

∥qx∥ N
∥∥∥T−1U′

i[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op(N−1) + Op(T−1/2)

from T/N = O(1) and∥∥∥T−1U′
i[MF0 − MF̂0 ]Ui

∥∥∥
≤
∥∥∥∥∥U′Ui

T

∥∥∥∥∥
2
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥+ 2

∥∥∥∥∥U′Ui

T

∥∥∥∥∥
∥∥∥∥∥∥
(

Z′Z
T

)†
∥∥∥∥∥∥ ∥∥C

∥∥ ∥∥∥∥F′Ui

T

∥∥∥∥+ ∥∥C
∥∥2
∥∥∥∥F′Ui

T

∥∥∥∥2
∥∥∥∥∥∥
(

Z′Z
T

)†

−
(

C
′ F′F

T
C
)†
∥∥∥∥∥∥

= Op(N−2) + Op(N−1T−1/2) + Op(N−1/2T−1)

Hence, by combining results we have when m = 1 + k as (N, T) → ∞∥∥∥q̂[MF0−MF̂0 ]

∥∥∥ = Op(N−1) + Op(T−1/2)

which implies that d1 = d2 = 0k×1 in eq.(2.25) of the lemma, as needed to be shown.
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Lemma B-4 Under Ass.1-5 we have∥∥∥q̂PF0

∥∥∥ = Op(T−1/2) (2.46)

as (N, T) → ∞.

Proof of Lemma B-4

Recall that q̂PF0 = q̂PF0 ,Vε − q̂PF0 ,Vη − q̂PF0 ,Γε + q̂PF0 ,Γη . We begin the proof by noting that PF0 = F0Σ̂
†
F0 T−1F0′

and F0 = [F, 0T,1+k−m]. Rewriting the last term gives

q̂PF0 ,Γη =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′PF0 UC

†
η̃iqy

=
√

τN,T

[
1
N

N

∑
i=1

(q′
yη̃′i ⊗ Γ′

i)

] [
C

† ⊗ C
†
]′

vec
(

NT−1U′F0Σ̂
†
F0 T−1F0′U

)
= Op(T−1) (2.47)

because
∥∥∥ 1

N ∑N
i=1(q

′
yη̃′i ⊗ Γ′

i)
∥∥∥ = Op(1) from Ass.3 and

∥∥T−1F0′U
∥∥ = Op((NT)−1/2) from Lemma B-1

yields∥∥∥NT−1U′F0Σ̂
†
F0 T−1F0′U

∥∥∥ ≤ N
∥∥∥T−1U′F0

∥∥∥ ∥∥∥Σ̂
†
F0

∥∥∥ ∥∥∥T−1F0′U
∥∥∥ = Op(T−1)

Next, with
∥∥T−1F0′Ui

∥∥ = Op(T−1/2) from Lemma B-1 and Vi = Uiqx, εi = UiB−1qy follows∥∥∥√NT−1U′F0Σ̂
†
F0 T−1F0′εi

∥∥∥ ≤
√

N
∥∥∥T−1U′F0

∥∥∥ ∥∥∥Σ̂
†
F0

∥∥∥ ∥∥∥T−1F0′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op(T−1)∥∥∥√NT−1U′F0Σ̂
†
F0 T−1F0′Vi

∥∥∥ ≤
√

N
∥∥∥T−1U′F0

∥∥∥ ∥∥∥Σ̂
†
F0

∥∥∥ ∥∥∥T−1F0′Ui

∥∥∥ ∥qx∥ = Op(T−1)

such that

q̂PF0 ,Γε =
√

T
1
N

N

∑
i=1

Γ′
i(C

†
)′
√

NT−1U′F0Σ̂
†
F0 T−1F0′εi = Op(T−1/2) (2.48)

q̂PF0 ,Vη =
√

T
1
N

N

∑
i=1

T−1V′
iF

0Σ̂
†
F0

√
NT−1F0′UC

†
η̃iqy = Op(T−1/2) (2.49)

Next, by independence in Ass.5 and expectation zero error terms in Ass.1

E
(

q̂PF0 ,Vε

)
=

1√
NT

N

∑
i=1

E (Vi)
′
E (PF0)E (εi) = 0k×1
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and also

E
(

q̂PF0 ,Vε

) (
q̂PF0 ,Vε

)′
=

1
NT

N

∑
i=1

N

∑
j=1

E
(

V′
iPF0E(εiε

′
j)PF0 Vj

)
=

1
NT

N

∑
i=1

E
(
V′

iPF0E(εiε
′
i)PF0 Vi

)
=

1
NT

N

∑
i=1

E
(

V′
iF

0Σ̂F0 T−1F0′E(εiε
′
i)F

0Σ̂F0 T−1F0′Vi

)
=

1
NT3

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

E
(

vi,tf0′
t Σ̂

†
F0 f0

s E(ε i,sε i,r)f0′
r Σ̂

†
F0 f0

qv′
i,q

)
=

1
NT3

N

∑
i=1

T

∑
t=1

T

∑
q=1

E

(
vi,tf0′

t Σ̂
†
F0

[
T

∑
s=1

T

∑
r=1

σi,s,rf0
s f0′

r

]
Σ̂

†
F0 f0

qv′
i,q

)

=
1

NT3 O(NT2) = O
(

1
T

)
by the stationarity of ft, ε i,t, vi,t and their mutual independence, implies that∥∥∥q̂PF0 ,Vε

∥∥∥ = Op(T−1/2) (2.50)

Combining all the results above then leads to∥∥∥q̂PF0

∥∥∥ ≤
∥∥∥q̂PF0 ,Vε

∥∥∥+ ∥∥∥q̂PF0 ,Vη

∥∥∥+ ∥∥∥q̂PF0 ,Γε

∥∥∥+ ∥∥∥q̂PF0 ,Γη

∥∥∥ = Op(T−1/2)

which is what needed to be shown.

Lemma B-5 Under Ass.1-5 as (N, T) → ∞ such that τN,T → τ < ∞,

q̂I = q̂I,Vε +
√

τ(b1 − b2) + op(1) (2.51)

q̂I
d−→ N (0k×1, Ψ) +

√
τ(b1 − b2) (2.52)

with q̂I,Vε =
1√
NT ∑N

i=1 V′
iεi and

b1 = q′
xyΣ′

ηvec((C†)′ΣuC†)

b2 = Γ′(C†)′[σ2, 01×k]
′

and where Ψ = plim(N,T)→∞
1
N ∑N

i=1(T
−1V′

iΩiVi).

Proof of Lemma B-5

Recall that

q̂I = q̂I,Vε − q̂I,Vη − q̂I,Γε + q̂I,Γη

For the last term in this decomposition we find using familiar operations

q̂I,Γη =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′UC

†
η̃iqy =

√
τN,T

[
1
N

N

∑
i=1

(η̃iqy ⊗ Γi)

]′
vec
(
(C

†
)′T−1NU′UC

†
)

=
√

τq′
xyΣ′

ηvec
(
(C†)′ΣuC†

)
+ Op(N−1/2) + Op(T−1/2) (2.53)
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where we have substituted in (2.31) and T−1NU′U = Σu + Op(T−1/2). Similarly making use of εi =

UiB−1qy yields

q̂I,Γε =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′

εi =
√

τN,T

N

∑
i=1

Γ′
i(C

†
)′T−1U′

εi

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
i(C

†
)′(T−1U′

iUi)B−1qy

]
+
√

τN,T

[
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
i(C

†
)′U′

jUiB−1qy

]

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
i(C

†
)′[σ2

i , 01×k]
′
]
+ Op(T−1/2)

=
√

τN,TΓ′(C
†
)′

1
N

N

∑
i=1

[σ2
i , 01×k]

′ +
√

τN,T

[
1
N

N

∑
i=1

q′
xη̃′i(C

†
)′[σ2

i , 01×k]
′
]
+ Op(T−1/2) (2.54)

=
√

τΓ′(C†)′[σ2, 01×k]
′ + Op(N−1/2) + Op(T−1/2) (2.55)

where we substituted in (2.34) and made use of T−1U′
iUiB−1qy = Σu,iB−1qy + Op(T−1/2) = [σ2

i , 01×k]
′ +

Op(T−1/2). For the next term, making use of Vi = Uiqx and substituting in the same results as above

leads to

q̂I,Vη =
1√
NT

N

∑
i=1

V′
iUC

†
η̃iqy =

√
τN,T

[
1
N

N

∑
i=1

q′
x(T

−1U′
iUi)C

†
η̃iqy

]
+
√

τN,T

[
1
N

N

∑
i=1

N

∑
j ̸=i

q′
x(T

−1U′
iUj)C

†
η̃iqy

]

=
√

τN,T

[
1
N

N

∑
i=1

q′
xΣu,iC

†
η̃iqy

]
+ Op(T−1/2) =

√
τN,Tq′

xy

[
1
N

N

∑
i=1

(η̃i ⊗ Σu,i)

]′
vec(C†

) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2) (2.56)

because 1
N ∑N

i=1 η̃i = Op(N−1/2) by Ass.3. Finally, as ∥q̂I,Vε∥ = Op(1) and fourth moments are finite it

follows under Ass.1 that

q̂I,Vε =
1√
NT

N

∑
i=1

V′
iεi

d−→ N (0k×1, Ψ) (2.57)

as (N, T) → ∞, with Ψ = plim(N,T)→∞
1
N ∑N

i=1(T
−1V′

iΩiVi) and Ωi = E(εiε
′
i). Hence, combining (2.53)-

(2.57) in the decomposition of q̂I then leads to

q̂I
d−→ N (0k×1, Ψ) +

√
τ(b1 − b2)

with b1 = q′
xyΣ′

ηvec((C†)′ΣuC†) and b2 = Γ′(C†)′[σ2, 01×k]
′, which is what needed to be shown.

Lemma B-6 Under Ass.1-5 we have that

Q̂ −→p Σ (2.58)

Q̂−1 −→p Σ−1 (2.59)

as (N, T) → ∞.
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Proof of Lemma B-6

Recall that

Q̂ =
1

NT

N

∑
i=1

X′
iMF̂Xi =

1
NT

N

∑
i=1

[Vi − UC
†
Γi]

′MF̂[Vi − UC
†
Γi] = Q̂I − Q̂MF0 − Q̂[MF0−MF̂0 ]

which for a given subscript A is in turn decomposed as

Q̂A = Q̂A,VV − Q̂A,VΓ − (Q̂A,VΓ)
′ + Q̂A,ΓΓ

Q̂A,VV =
1

NT

N

∑
i=1

V′
iAVi

Q̂A,VΓ =
1

NT

N

∑
i=1

V′
iAUC

†
Γi

Q̂A,ΓΓ =
1

NT

N

∑
i=1

Γ′
i(C

†
)′U′AUC

†
Γi

Recall that
∥∥∥T−1U′U

∥∥∥ = Op(N−1) and
∥∥∥T−1U′F0

∥∥∥ = Op((NT)−1/2) by Lemma B-1, and note that (2.28)

implies
∥∥∥T−1U′

[MF0 − MF̂0 ]U
∥∥∥ = Op(N−1). Then we have

∥∥∥Q̂I,ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

(Γ′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2 ∥∥∥T−1U′U

∥∥∥ = Op(N−1)

∥∥∥Q̂PF0 ,ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

(Γ′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2 ∥∥∥T−1U′F0

∥∥∥2 ∥∥∥Σ̂F0

∥∥∥ = Op((NT)−1)

∥∥∥Q̂[MF0−MF̂0 ],ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

(Γ′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2 ∥∥∥T−1U′

[MF0 − MF̂0 ]U
∥∥∥ = Op(N−1)

Next, the fact that Vi = Uiqx and using also
∥∥∥T−1U′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) and
∥∥T−1F0′Ui

∥∥ =

Op(T−1/2) of Lemma B-1 reveal that∥∥∥Q̂I,VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

∥qx∥
∥∥∥T−1U′Ui

∥∥∥ ∥∥∥C
†
∥∥∥ ∥Γi∥ = Op(N−1) + Op((NT)−1/2)

∥∥∥Q̂PF0 ,VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

∥qx∥
∥∥∥T−1F0′Ui

∥∥∥ ∥∥∥Σ̂F0

∥∥∥ ∥∥∥T−1U′F0
∥∥∥ ∥∥∥C

†
∥∥∥ ∥Γi∥ = Op(N−1/2T−1)

∥∥∥Q̂PF0 ,VV

∥∥∥ ≤ 1
N

N

∑
i=1

∥qx∥2
∥∥∥T−1F0′Ui

∥∥∥2 ∥∥∥Σ̂F0

∥∥∥ = Op(T−1)

For the next result, given that we made use of εi = UiB−1qy to derive the results in equations (2.32) and

(2.33), they imply directly that∥∥∥T−1U′
[MF0 − MF̂0 ]Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) (2.60)

so that in turn∥∥∥Q̂[MF0−MF̂0 ],VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

∥qx∥
∥∥∥T−1U′

[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥C
†
∥∥∥ ∥Γi∥ = Op(N−1) + Op((NT)−1/2)
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Next, we have obtained in (2.38) that

T−1U′
i[MF0 − MF̂0 ]Ui = T−1U′

iU
0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′Ui

+ Op(N−3/2) + Op(N−1/2T−1) + Op(N−1T−1/2) + Op(T−3/2)

which using
∥∥∥T−1(U0

−m)
′Ui

∥∥∥ = Op(N−1/2) + Op(T−1/2) from Lemma B-2 leads to

∥∥∥T−1U′
i[MF0 − MF̂0 ]Ui

∥∥∥ ≤
∥∥∥T−1(U0

−m)
′Ui

∥∥∥2 ∥∥∥Σ̂
†
u0
−m

∥∥∥
+ Op(N−3/2) + Op(N−1/2T−1) + Op(N−1T−1/2) + Op(T−3/2)

= Op(N−1) + Op(T−1) + Op((NT)−1/2) (2.61)

and substituting in this result yields

∥∥∥Q̂[MF0−MF̂0 ],VV

∥∥∥ ≤ 1
N

N

∑
i=1

∥qx∥2
∥∥∥T−1U′

i[MF0 − MF̂0 ]Ui

∥∥∥ = Op(N−1) + Op(T−1) + Op((NT)−1/2)

For the last remaining term it follows from Ass.1 that

Q̂I,VV =
1
N

N

∑
i=1

V′
iVi

T
=

1
N

N

∑
i=1

Σi + Op(T−1/2)

Finally, by combining then all the previous results

Q̂ =
1
N

N

∑
i=1

Σi + Op(T−1/2) + Op(N−1)

Equation (2.58) of the lemma follows from this and 1
N ∑N

i=1 Σi −→p Σ as N → ∞ by Ass.1, with Σ positive

definite, which in turn, given that rk(Q̂)− rk(Σ) a.s.−→ 0, then leads to (2.59) by Theorem 1 of Karabiyik

et al. (2017).
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2.2.2 Theorems and Corollaries

Theorem 1 Under Ass.1-5 we have as (N, T) → ∞ such that τN,T = T/N → τ < ∞ that

√
NT(β̂ − β)

d−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1(b − d)

where b = b1 − b2, d = d1 + d2 are given in Lemmas B-3 and B-5, with d = 0k×1 when m = 1 + k.

Proof of Theorem 1

Recall that the scaled CCEP estimator is

√
NT(β̂ − β) = Q̂−1q̂

Substituting in lemmas B-3, B-4 and B-5 into q̂ = q̂I − q̂PF0 − q̂[MF0−MF̂0 ] results in

q̂ d−→ N (0k×1, Ψ) +
√

τ(b1 − b2)−
√

τ(d1 + d2)

as (N, T) → ∞ such that τN,T → τ < ∞. This together with Q̂−1 −→p Σ−1 as (N, T) → ∞ from Lemma

B-6 then leads to

√
NT(β̂ − β)

d−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1(b − d)

where b = b1 − b2 and d = d1 + d2, as was to be shown.

Corollary 1 Under Ass.1-3, 5 and 7, we have as (N, T) → ∞ such that τN,T → τ < ∞ that

√
NT(β̂x − β)

d−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1g

where

g = q′
xyΣ′

ηvec((Γ†)′Σ(Ik − Dx,−mΣ)Γ†)

and with Dx,−m = TxHx,−m(H′
x,−mT′

xΣTxHx,−m)†H′
x,−mT′

x.

Proof of Corollary 1

The asymptotic distribution of the CCEP estimator when y is excluded in the estimation of the factors

can be studied by replacing Z, U, C with X, V and Γ, respectively, such that F = (X − V)Γ
† and PF̂ =

X(X
′
X)†X

′
. The appropriate rotation matrix in case m < k is then Rx = TxHxDN,x where Tx is the k × k

partitioning such that ΓTx = [Γm, Γ−m] with Γm an m × m full rank matrix and also VTx = [Vm, V−m].

The remaining matrices are now

Hx = [Hx,m, Hx,−m] =

[
Γ
−1
m −Γ

−1
m Γ−m

0(k−m)×m Ik−m

]
, DN,x =

[
Im 0m×(k−m)

0(k−m)×m
√

NIk−m

]
(2.62)
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with also Hx = [Hx,m, Hx,−m] =

[
Γ−1

m −Γ−1
m Γ−m

0(k−m)×m Ik−m

]
and Γm and Γ−m denoting the partitioning fol-

lowing from ΓTx = [Γm, Γ−m].

Replacing in the analysis of Theorem 1 the R, T, H, H respectively with Rx, Tx, Hx and Hx and allows us

to study the CCEP estimator, with for completeness now

F̂0 = [FΓ + V]Rx = F0 + V0 (2.63)

where F0 = FRx = [F, 0T×(k−m)], V0
= [V0

m, V0
−m], and with V0

m = VmΓ
−1
m and V0

−m =
√

NVTxHx,−m =
√

N(Vm − VmΓ
−1
m Γ−m).

Denote now the scaled deviation of CCEP estimator

√
NT(β̂x − β) = Q̂−1

x q̂x (2.64)

where we will employ the same decompositions as introduced in (2.23) and (2.24) but we denote with

the additional x subscript the fact that in the decomposition Z, U, C are replaced with X, V and Γ and the

rotation has also been redefined as above.

Consider then that since V ⊂ U, X ⊂ Z and Γ ⊂ C, all the derived orders in Lemmas B-1 to B-6 are upper

bounds for the analysis here. Hence, it follows directly from Lemma B-6

Q̂−1
x −→p Σ−1 (2.65)

whereas from Lemma B-4∥∥∥q̂x,PF0

∥∥∥ = Op(T−1/2) (2.66)

and from (2.37) in Lemma B-3∥∥∥q̂x,[MF0−MF̂0 ],Vη

∥∥∥ = Op(N−1/2) + Op(T−1/2) (2.67)

Also, employing the same arguments as for (2.30) but setting U = V, C = Γ and T = Tx, H = Hx reveals

q̂x,[MF0−MF̂0 ],Γη =
√

τq′
xyΣ′

ηvec((Γ†)′ΣDx,−mΣΓ†) + Op(N−1/2) + Op(T−1/2) (2.68)

with Dx,−m = TxHx,−m(H′
x,−mT′

xΣTxHx,−m)†H′
x,−mT′

x. The latter follows since setting U = V yields in

eq.(2.29) that
√

NT−1UU0
−m = ΣTxHx,−m + Op(N−1/2) + Op(T−1/2) as eq.(2.14) of Lemma B-2 becomes

Σ̂
†
u0
−m

= (H′
x,−mT′

xΣTxHx,−m)
† + Op(N−1/2) + Op(T−1/2) (2.69)
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Next, we have for q̂x,[MF0−MF̂0 ],Γε by substituting in the same results as in the proof for q̂[MF0−MF̂0 ],Γε in

(2.70) of Lemma B-3, defining also Dx = (Γ
†
)′ΣDx,−m and using V = N−1(Vi + ∑N

j ̸=i Vj)

q̂x,[MF0−MF̂0 ],Γε =
1√
NT

N

∑
i=1

Γ′
i(Γ

†
)′V′

[MF0 − MF̂0 ]εi

=
1
N

N

∑
i=1

Γ′
i(Γ

†
)′ΣDx,−m

√
NT−1/2V′

εi + Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
iDx(T−1V′

iεi) +
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
iDxV′

jεi

]
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
iDx(T−1V′

iεi)

]
+ Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2) (2.70)

where on the fourth line the upper bound for the rightmost term on line three, as derived in (2.34), was

substituted in, and the fifth line makes use of ∥Γi∥ = Op(1) and
∥∥T−1V′

iεi
∥∥ = Op(T−1/2) from Ass.1.

Next up is q̂x,[MF0−MF̂0 ],Vε. Following the same steps, notation, and making use of the same results as

below (2.38) gives, with dx
v,g denoting row v and column g of Dx,−m,

q̂x,[MF0−MF̂0 ],Vε =
√

τN,T

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iVjDx,−mV′

lεi

]
+ Op(N−1/2) + Op(T−1/2)

=
√

τN,T

[
k

∑
v=1

k

∑
g=1

dx
v,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

vi,tv
(v)
j,t v(g)

l,s ε i,s

}]
+ Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2) (2.71)

Where we used that fact that since the result in (2.42) holds for sums of products of ε i,t and vi,t which

feature three occurrences of one and a single of the other, the order obtained in (2.42) is the same as for the

leading term here, specifically
∥∥∥ 1

NT2 ∑N
i=1 ∑N

j=1 ∑N
l=1 ∑T

t=1 ∑T
s=1 vi,tv

(v)
j,t v(g)

l,s ε i,s

∥∥∥ = Op(T−1/2). Combining

then (2.67), (2.68), (2.70) and (2.71) in q̂x,[MF0−MF̂0 ] = q̂x,MF0−MF̂0 ],Vε − q̂x,[MF0−MF̂0 ],Vη − q̂x,[MF0−MF̂0 ],Γε +

q̂x,[MF0−MF̂0 ],Γη gives

q̂x,[MF0−MF̂0 ] −→
p √

τdx (2.72)

with dx = q′
xyΣ′

ηvec((Γ†)′ΣDx,−mΣΓ†).

Consider next

q̂x,I = q̂x,I,Vε − q̂x,I,Vη − q̂x,I,Γϵ + q̂x,I,Γη

Recalling that V ⊂ U implies that the earlier derived orders in Lemma B-5 are upper bounds for the

analysis here, it follows directly from (2.56) of the proof of Lemma B-5 that∥∥q̂x,I,Vη

∥∥ = Op(N−1/2) + Op(T−1/2) (2.73)
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Then, for the last term in this decomposition,

q̂x,I,Γη =
1√
NT

N

∑
i=1

Γ′
i(Γ

†
)′V′VΓ

†
η̃iqy =

√
τN,T

[
1
N

N

∑
i=1

(η̃iqy ⊗ Γi)

]′
vec
(
(Γ

†
)′NT−1V′VΓ

†
)

=
√

τq′
xyΣ′

ηvec
(
(Γ†)′ΣΓ†

)
+ Op(N−1/2) + Op(T−1/2) (2.74)

where we have substituted in (2.31) and (NT−1V′V) = Σ + Op(T−1/2). Next,

q̂x,I,Γε =
1√
NT

N

∑
i=1

Γ′
i(Γ

†
)′V′

εi =
√

τN,T

N

∑
i=1

Γ′
i(Γ

†
)′T−1V′

εi

=
√

τN,T

[
1
N

N

∑
i=1

Γ′
i(Γ

†
)′(T−1V′

iεi)

]
+
√

τN,T

[
1

NT

N

∑
i=1

N

∑
j ̸=i

Γ′
i(Γ

†
)′V′

jεi

]
= Op(T−1/2) (2.75)

since by the same arguments as for (2.34) the rightmost term on the second line is Op(T−1/2), and for the

left term we have used T−1V′
iεi = Op(T−1/2). Then, since by definition q̂x,I,Vε = q̂I,Vε equation (2.57)

directly applies and

q̂x,I,Vε =
1√
NT

N

∑
i=1

V′
iεi

d−→ N (0k×1, Ψ) (2.76)

combining (2.73), (2.74), (2.75) and (2.76) in the decomposition of q̂x,I gives

q̂x,I
d−→ N (0k×1, Ψ) +

√
τbx (2.77)

with bx = q′
xyΣ′

ηvec((Γ†)′ΣΓ†). In turn combining (2.66), (2.72) and (2.77) into q̂x = q̂x,I − q̂x,PF0 −

q̂x,[MF0−MF̂0 ] results in

q̂x
d−→ N (0k×1, Ψ) +

√
τ(bx − dx) (2.78)

such that with also (2.65) substituted into (2.64) we get

√
NT(β̂x − β)

d−→ N
(

0k×1, Σ−1ΨΣ−1
)
+
√

τΣ−1g

where g = bx − dx = q′
xyΣ′

ηvec((Γ†)′Σ(Ik − Dx,−mΣ)Γ†). This is the stated result.
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2.3 Heterogeneous Slopes

We consider here the heterogeneous slope DGP where βi is characterized by Ass.6 such that βi = β + υi,

and it is understood that also the cross-section averages U, C represent the heterogeneous slope variants.

Note that all the results in Section 2.1 are derived under Ass.6 and hence apply here as well. In this DGP,

we obtain from substituting in (2.4), βi = β + υi and MF̂Z = 0T×(1+k) for the scaled deviation of the Mean

Group CCE estimator

√
N(β̂mg − β) =

1
N

N

∑
i=1

Q̂−1
i [q̂υ,i + q̂i] =

1√
N

N

∑
i=1

υi +
1
N

N

∑
i=1

Q̂−1
i q̂i (2.79)

and in turn, for the scaled deviation of the CCEP estimator, making use of γi = CiB−1
i qy = γ + η̃iqy and

∑N
i=1 X′

iMF̂UC
†
γ = NX

′
MF̂UC

†
γ = 0k×1, because X ⊂ Z,

√
N(β̂ − β) = −

√
Nβ +

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂[Xiβi + εi − UC

†
γi]

=

(
1

NT

N

∑
i=1

X′
iMF̂Xi

)−1
1√
NT

N

∑
i=1

X′
iMF̂[Xiυi + εi − UC

†
η̃iqy]

= Q
−1
[q + qυ], (2.80)

where in (2.79) and (2.80) we have defined

Q =
1
N

N

∑
i=1

Q̂i, Q̂i =
X′

iMF̂Xi

T

q =
1
N

N

∑
i=1

q̂i, q̂i =

√
NX′

iMF̂[εi − UC
†
γi]

T

qυ =
1
N

N

∑
i=1

q̂υ,i q̂υ,i =

√
NXiMF̂Xi

T
υi

Making use of (2.5), MF̂Z = 0T×1+k, MF̂ = MF̂0 and MF̂0 = MF0 − [MF0 − MF̂0 ], let the following be the

familiar decomposition at the individual level

Q̂i = T−1X′
iMF̂Xi

= T−1[Vi − UC
†
Γi]

′MF0 [Vi − UC
†
Γi]− T−1[Vi − UC

†
Γi]

′[MF0 − MF̂0 ][Vi − UC
†
Γi]

= Q̂MF0 ,i − Q̂[MF0−MF̂0 ],i (2.81)

where for a stated subscript A, we define the further decomposition

Q̂A,i = Q̂A,VV,i − Q̂A,VΓ,i − (Q̂A,VΓ,i)
′ + Q̂A,ΓΓ,i

Q̂A,VV,i = T−1V′
iAVi

Q̂A,VΓ,i = T−1V′
iAUC

†
Γi

Q̂A,ΓΓ,i = T−1Γ′
i(C

†
)′U′AUC

†
Γi
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and where barred variants with an omitted i subscript denote averages over i as QA,VV = 1
N ∑N

i=1 Q̂A,VV,i.

Next, for the individual-specific numerators

q̂i =
√

NT−1[Vi − UC
†
Γi]

′MF̂[εi − UC
†
γi] = q̂I,i − q̂PF0 ,i − q̂[MF0−MF̂0 ],i (2.82)

where for a given subscript A the respective terms are decomposed as

q̂A,i = q̂A,Vε,i − q̂A,Vγ,i − q̂A,Γε,i + q̂A,Γγ,i

q̂A,Vε,i =
√

NT−1V′
iAεi

q̂A,Vγ,i =
√

NT−1V′
iAUC

†
γi

q̂A,Γε,i =
√

NT−1Γ′
i(C

†
)′U′Aεi

q̂A,Γγ,i =
√

NT−1Γ′
i(C

†
)′U′AUC

†
γi

where barred terms will similarly be defined as qA,Vε =
1
N ∑N

i=1 q̂A,Vε,i. Finally, q̂υ features only in (2.80)

so we can directly define the averaged term

qυ =
1√
N

N

∑
i=1

XiMF̂Xi

T
υi =

1√
NT

N

∑
i=1

[Vi − UC
†
Γi]

′MF̂[Vi − UC
†
Γi]υi

= qI,υ − qPF0 ,υ − q[MF0−MF̂0 ],υ (2.83)

with, given a matrix A,

qA,υ = qA,VV,υ − qA,VΓ,υ − (qA,VΓ,υ)
′ + qA,ΓΓ,υ

qA,VV,υ =
1√
NT

N

∑
i=1

V′
iAViυi

qA,VΓ,υ =
1√
NT

N

∑
i=1

V′
iAUC

†
Γiυi

qA,ΓΓ,υ =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′AUC

†
Γiυi

We next establish the distributions under heterogeneous slopes

2.3.1 Analysis of CCEP

Theorem 4 Under Ass.1-6, with in addition E(∥vit∥8) < ∞ and E(∥υi∥6) < ∞, we have as (N, T) → ∞ that

√
N(β̂ − β)

d−→ N (0k×1, Σ−1ΨhΣ−1)

with Ψh = limN→∞
1
N ∑N

i=1 ΣiΩυΣi.

Proof of Theorem 4

Recall the scaled CCEP deviation in the heterogeneous slope model defined in (2.80). Note that Q = Q̂ so
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that the decomposition of Q is the same as that for Q̂ employed in Lemma B-6. Given then that Lemmas

B-1 and B-2 apply equally under the slope heterogeneity characterized by Ass.6, the asymptotic orders

derived in Lemma B-6 apply directly to the heterogeneous slope setting and we have from the exact same

arguments as in that proof

Q
−1 −→p Σ−1 (2.84)

Similarly, since heterogeneity does not impact the orders derived in Lemmas B-1 and B-2 (only limit state-

ments are affected) and we have by definition qI = 1√
T

q̂I, qPF0
= 1√

T
q̂PF0 , q[MF0−MF̂0 ]

= 1√
T

q̂[MF0−MF̂0 ]

(so that we have scaled up by
√

N rather than
√

NT), the results from Lemmas B-3, B-5, B-4 that ∥q̂I∥ =

Op(1),
∥∥∥q̂PF0

∥∥∥ = Op(T−1/2),
∥∥∥q̂[MF0−MF̂0 ]

∥∥∥ = Op(1), imply that ∥qI∥ = Op(T−1/2),
∥∥∥qPF0

∥∥∥ = Op(T−1),
∥∥∥q[MF0−MF̂0 ]

∥∥∥ =

Op(T−1/2). Hence, ∥q∥ = Op(T−1/2) and qυ is the leading term in the asymptotic expansion.
√

N(β̂ − β) = Q
−1

qυ + Op(T−1/2)

For qυ we start the analysis with the terms containing the deviations A = [MF0 − MF̂0 ]. For the last term

in the decomposition we have

q[MF0−MF̂0 ],ΓΓ,υ =
1√
NT

N

∑
i=1

Γ′
i(C

†
)′U′

[MF0 − MF̂0 ]UC
†
Γiυi

=

[
1
N

N

∑
i=1

(υ′
iΓ

′
i ⊗ Γ′

i)

]
vec
(
(C

†
)′
√

NT−1U′
[MF0 − MF̂0 ]UC

†
)

−→p 0k×1

because inserting (2.11) in U′
[MF0 − MF̂0 ]U gives

T−1U′
[MF0 − MF̂0 ]U = T−1U′U0

−mΣ̂
†
u0
−m

T−1(U0
−m)

′U + T−1U′U0
mΣ̂

†
FT−1(U0

m)
′U

+ T−1U′FΣ̂
†
FT−1(U0

m)
′U + T−1U′U0

mΣ̂
†
FT−1F′U

+ T−1U′F̂0
[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′U

= Op(N−1) (2.85)

which follows analogously to earlier results by application of Lemmas B-1 and B-2 to get∥∥∥T−1U′U0
−mΣ̂

†
u0
−m

T−1(U0
−m)

′U
∥∥∥ ≤

∥∥∥T−1U′U0
−m

∥∥∥2 ∥∥∥Σ̂
†
u0
−m

∥∥∥ = Op(N−1)∥∥∥T−1U′U0
mΣ̂

†
FT−1(U0

m)
′U
∥∥∥ ≤

∥∥∥T−1U′U0
m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op(N−2)∥∥∥T−1U′FΣ̂
†
FT−1(U0

m)
′U
∥∥∥ ≤

∥∥∥T−1U′F
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
m)

′U
∥∥∥ = Op(T−1/2N−3/2)∥∥∥T−1U′F̂0

[
Σ̂

†
F̂0 − Σ̂

†
Fu

]
T−1(F̂0)′U

∥∥∥ ≤
∥∥∥T−1U′F̂0

∥∥∥2 ∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−3/2) + Op(N−1T−1/2)

and also, since by Ass.3 and 6 the mean zero and independence of υi implies∥∥∥∥∥ 1
N

N

∑
i=1

(υ′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ = Op(N−1/2)
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Next, noting Vi = Uiqx and substituting in (2.60) from the proof of Lemma B-6 gives∥∥∥√NT−1V′
i[MF0 − MF̂0 ]U

∥∥∥ = Op(N−1/2) + Op(T−1/2)

so that∥∥∥q[MF0−MF̂0 ],VΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
NT

N

∑
i=1

V′
i[MF0 − MF̂0 ]UC

†
Γiυi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥√NT−1V′
i[MF0 − MF̂0 ]U

∥∥∥ ∥∥∥C
†
∥∥∥ ∥Γi∥ ∥υi∥

= Op(N−1/2) + Op(T−1/2)

which is not the sharpest possible bound, yet sufficient for our purposes. Then for the final term of this

kind

q[MF0−MF̂0 ],VV,υ =
1√
NT

N

∑
i=1

V′
i[MF0 − MF̂0 ]Viυi =

1
N

N

∑
i=1

√
NT−1V′

i[MF0 − MF̂0 ]Viυi

−→p 0k×1

This can be seen from the following expansion obtained by substituting (2.11) into q[MF0−MF̂0 ],VV,υ, and

making use of the same arguments as for (2.38), but not approximating terms that are Op(
√

NT−1),

1
N

N

∑
i=1

√
NT−1V′

i[MF0 − MF̂0 ]Viυi

=
1
N

N

∑
i=1

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
U0′

−mVi

T

)
υi +

1
N

N

∑
i=1

√
N

(
V′

iF̂
0

T

)
[Σ̂

†
F̂0 − Σ̂

†
Fu
]

(
F̂0′Vi

T

)
υi

+ Op

(
1

N3/2

)
+ Op

(
1
T

)
+ Op

(
1√
NT

)
Recall that U0

−m =
√

NUTH−m, such that with D̂ = TH−mΣ̂
†
u0
−m

H′
−mT′ = Op(1) the first term in this

expansion can be rewritten as

1
N

N

∑
i=1

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
U0′

−mVi

T

)
υi =

1
N

N

∑
i=1

N3/2

(
V′

iU
T

)
D̂

(
U′Vi

T

)
υi

=
1

N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

(
V′

iUj

T

)
D̂
(

U′
kVi

T

)
υi

=
1+k

∑
v=1

1+k

∑
g=1

d̂v,g
1

N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

V′
iU

(v)
j

T

(U(g)′
k Vi

T

)
υi

where d̂v,g denotes the element on row v and column g of D̂, and U(l)
i denotes column l of Ui. Hence,∥∥∥∥∥ 1

N

N

∑
i=1

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
U0′

−mVi

T

)
υi

∥∥∥∥∥ ≤
1+k

∑
v=1

1+k

∑
g=1

|d̂v,g|

∥∥∥∥∥∥ 1
N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

V′
iU

(v)
j

T

(U(g)′
k Vi

T

)
υi

∥∥∥∥∥∥
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where we recall that |d̂v,g| = Op(1) and that k is fixed and finite. Noting that Ui = [εi + Vi(β + υi), Vi],

the term with the highest degree of dependence (and hence the driver of the asymptotic order) occurs

when v = g = 1. In that case, the leading term is (since εi is independent of all other terms)

1
N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

(
V′

iVj

T

)
υjυ

′
k

(
V′

kVi

T

)
υi

Its expectation is zero unless i = j = k, and in the latter case, given finite moments

Ai = E

[
1

N3/2

N

∑
i=1

(
V′

iVi

T

)
υiυ

′
i

(
V′

iVi

T

)
υi

]
= O

(
1√
N

)
Also, by the cross-section independence, and independence of Vi and υj for all i, j

1
N3T4

N

∑
i=1

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

E

([
V′

iVjυjυ
′
kV′

kViυi − 1(i=j=k)Ai

] [
V′

lVmυmυ′
nV′

nVlυl − 1(l=m=n)Al

]′)
= O

(
1

T2

)
+ O

(
1
N

)
which is notably not the sharpest possible order, but sufficient for our purposes. The argument for this

result is as follows: the cross-section independence of Vi and υi implies that the expectation is zero when

one of the indices (k, l, m, n, i, j) differs from the others. This means that the expectation is zero when the

product features more than 3 different CS-indices (6 options means at most 3 different index pairs can

be constructed without having at least one index differ from all the others). The non-zero part of this

expectation can thus be split up into cases with sums over either 3, 2 or 1 distinct CS-indices.

For the case with sums over 3 distinct index pairs, the following situations arise:

• if i = l, the structure takes the following form, with for example j = k and m = n

1
N3T4

N

∑
i=1

N

∑
j ̸=i

N

∑
m ̸=i,j

E
([

V′
iVjυjυ

′
jV

′
jViυi

] [
V′

iVmυmυ′
mV′

mViυi
]′)

The summation is always over one set of 4 V’s with a common index, and two pairs of 2 V’s with a

common CS-index. Let without loss of generality k = 1 for expositional convenience, such that we

can explicitly unpack the sums over time. Using also CS-independence, we have

1
N3T4

N

∑
i=1

N

∑
j ̸=i

N

∑
m ̸=i,j

T

∑
t=1

T

∑
s=1

T

∑
q=1

T

∑
r=1

E
([

vitvjtυ
2
j vjsvisυi

] [
viqvmqυ2

mvmrvirυi
])

=
1

N3

N

∑
i=1

N

∑
j ̸=i

N

∑
m ̸=i,j

E(υ2
i )E(υ2

j )E(υ2
m)

1
T4

T

∑
t=1

T

∑
s=1

T

∑
q=1

T

∑
r=1

E(vitvisviqvir)E(vjtvjs)E(vmqvmr) = O(T−2)

because E(∥vit∥4) < ∞ for all (i, t) and ∑T
t=1 ∑T

s=1 ∑T
q=1 ∑T

r=1 E(vjtvjs)E(vmqvmr) = O(T2) by the

finite summability of autocovariances by Ass.1.
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• If i ̸= l, then the structure takes the form below, with for example i = j, l = k and m = n,

1
N3T4

N

∑
i=1

N

∑
l ̸=i

N

∑
m ̸=i,l

E
([

V′
iViυiυ

′
lV

′
lViυi

] [
V′

lVmυmυ′
mV′

mVlυl
]′)

Summations always contain two sets of 3 V’s with a common index, and one set of 2 V’s with

common index (two 3rd moments and one 2nd moment). Setting again k = 1 for expositional

convenience gives that

1
N3T4

N

∑
i=1

N

∑
l ̸=i

N

∑
m ̸=i,l

T

∑
t=1

T

∑
s=1

T

∑
q=1

T

∑
r=1

E
([

vitvitυ
2
i υlvlsvis

] [
vlqvmqυ2

mvmrvlrυl
])

=
1

N3

N

∑
i=1

N

∑
l ̸=i

N

∑
m ̸=i,l

E(υ2
i )E(υ2

l )E(υ2
m)

1
T4

T

∑
t=1

T

∑
s=1

T

∑
q=1

T

∑
r=1

E(v2
itvis)E(vlsvlqvlr)E(vmqvmr) = O(T−2)

because ∑T
t=1 ∑T

s=1 ∑T
q=1 ∑T

r=1 E(v2
itvis)E(vlsvlqvlr)E(vmqvmr) = O(T2) follows from the stationarity

of vit under Ass.1.

This covers the cases with three distinct indices. For cases with 2 or less distinct CS indices, it is easily

seen given the N−3T−4 scaling, E(∥vit∥8) < ∞ and E(∥υi∥6) < ∞, that the sum of expectations can be

at most of order O(N−1). Consequently,
∥∥∥ 1

N3/2T2 ∑N
i=1 ∑N

j=1 ∑N
k=1 V′

iVjυjυ
′
kV′

kViυi

∥∥∥ = op(1) as (N, T) → ∞,

and given that this is also the leading term in the inequality above (where the other terms can be analyzed

with near similar arguments), we have

1
N

N

∑
i=1

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
U0′

−mVi

T

)
υi −→p 0k×1 (2.86)

Next, making use of F̂0 = F0 + [U0
m, U0

−m], and substituting it into the second term of the expansion, it is

easily seen that from U0
m = UTHm and U0

−m =
√

NUTH−m, the two drivers with the slowest decay are

respectively

1
N

N

∑
i=1

√
N

(
V′

iU
0
−m

T

) [
Σ̂

†
F̂0 − Σ̂

†
Fu

] ( (U0
−m)

′Vi

T

)
υi −→p 0k×1

from the same arguments as (2.86), but noting that the rate is faster since also
∥∥∥Σ̂

†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−1/2)+

Op(T−1/2) from lemma B-2. For the second driver we similarly find

1
N

N

∑
i=1

√
N
(

V′
iF

0

T

) [
Σ̂

†
F̂0 − Σ̂

†
Fu

] (F0′Vi

T

)
υi −→p 0k×1

because∥∥∥∥∥ 1
N

N

∑
i=1

√
N
(

V′
iF

0

T

) [
Σ̂

†
F̂0 − Σ̂

†
Fu

] (F0′Vi

T

)
υi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

NT2

N

∑
i=1

(
υ′

iV
′
iF

0 ⊗ V′
iF

0)∥∥∥∥∥ ∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥
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where
∥∥∥ 1√

NT2 ∑N
i=1
(
υ′

iV
′
iF

0 ⊗ V′
iF

0)∥∥∥ = Op(T−1) due to
∥∥T−1F′Vi

∥∥ = Op(T−1/2) and because υi is in-

dependent of (Vi, F0), with 1
N ∑N

i=1

√
Nυi = Op(1). Rigorously, by using (A ⊗ B)(C ⊗ D) = AC ⊗ BD

(Abadir and Magnus, 2005, Exercise 10.3) in connection to a ⊗ A = aA for a scalar a, we obtain

E

∥∥∥∥∥ 1√
NT2

N

∑
i=1

υ′
iV

′
iF

0 ⊗ V′
iF

0

∥∥∥∥∥
2


= E

(
tr

[(
1√
NT2

N

∑
j=1

υ′
jV

′
jF

0 ⊗ V′
jF

0

)′(
1√
NT2

N

∑
i=1

υ′
iV

′
iF

0 ⊗ V′
iF

0

)])

= E

(
tr

[(
1√
NT2

N

∑
i=1

υ′
iV

′
iF

0 ⊗ V′
iF

0

)(
1√
NT2

N

∑
j=1

υ′
jV

′
jF

0 ⊗ V′
jF

0

)′])

=
1

NT4

N

∑
i=1

N

∑
j=1

tr
(
E
[(

υ′
iV

′
iF

0 ⊗ V′
iF

0) (F0′Vjυj ⊗ F0′Vj
)])

=
1

NT4

N

∑
i=1

tr
(
E
[(

υ′
iV

′
iF

0 ⊗ V′
iF

0) (F0′Viυi ⊗ F0′Vi
)])

=
1

NT4

N

∑
i=1

tr
(
E
[
υ′

iV
′
iF

0F0′Viυi ⊗ V′
iF

0F0′Vi
])

=
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

tr
(

E
[
(f0

t )
′f0

s υ′
ivi,tv′

i,sυi ⊗ vi,pv′
i,r(f

0
p)

′f0
r

])
= tr

(
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E
[
vi,pv′

i,rυ′
ivi,tv′

i,sυi
])

= tr

(
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E
[
vi,pv′

i,rtr(vi,tv′
i,sυiυ

′
i)
])

= O(T−1), (2.87)

because∥∥∥∥∥ 1
NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E
[
vi,pv′

i,rtr(vi,tv′
i,sυiυ

′
i)
]∥∥∥∥∥

≤ sup
t,s,p,r

∣∣∣E [(f0
t )

′f0
s (f

0
p)

′f0
r

]∣∣∣
× 1

N

N

∑
i=1

(
1

T4

T

∑
p=1

T

∑
r=1

T

∑
t=1

T

∑
s=1

∥∥E
[
vi,pv′

i,rtr(vi,tv′
i,sυiυ

′
i)
]∥∥) = O(T−1),

since Æi is independent from the rest of the terms. In conclusion,

q[MF0−MF̂0 ],VV,υ −→p 0k×1

and combining results leads to

q[MF0−MF̂0 ],υ −→p 0k×1.
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In similar fashion as above, we have given
∥∥∥Σ̂

†
F0

∥∥∥ = Op(1) that

qPF0 ,VV,υ =
1√
N

N

∑
i=1

(T−1V′
iF

0)Σ̂
†
F0(T−1F0′Vi)υi = Op(T−1)

also, given
∥∥T−1F′U

∥∥ = Op((NT)−1/2)

∥∥∥qPF0 ,VΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iF

0Σ̂
†
F0 T−1F0′UC

†
Γiυi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥T−1V′
iF

0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥√NT−1F0′U
∥∥∥ ∥∥∥C

†
∥∥∥ ∥Γi∥ ∥υi∥ = Op(T−1)

which could again be sharpened noting that Γi and υi are independent of the other variables and
∥∥∥ 1

N ∑N
i=1 Γiυi

∥∥∥ =

Op(N−1/2). Finally,

∥∥∥qPF0 ,ΓΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

Γ′
i(C

†
)′T−1U′F0Σ̂

†
F0 T−1F0′UC

†
Γiυi

∥∥∥∥∥
≤

√
N

∥∥∥∥∥ 1
N

N

∑
i=1

(υ′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2 ∥∥∥T−1F0′U

∥∥∥2 ∥∥∥Σ̂
†
F0

∥∥∥ = Op((NT)−1)

because
∥∥∥ 1

N ∑N
i=1(υ

′
iΓ

′
i ⊗ Γ′

i)
∥∥∥ = Op(N−1/2) by Ass.3 and 6. Therefore,

qPF0 ,υ −→p 0k×1

This establishes that both q[MF0−MF̂0 ],υ and qPF0 ,υ are asymptotically negligible. What remains is

qI,υ = qA,VV,υ − qI,VΓ,υ − (qA,VΓ,υ)
′ + qA,ΓΓ,υ

For the final two terms, given that
∥∥∥T−1U′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) and
∥∥∥T−1U′U

∥∥∥ = Op(N−1)

∥∥qI,VΓ,υ

∥∥ ≤ 1
N

N

∑
i=1

∥∥∥√NT−1V′
iU
∥∥∥ ∥∥∥C

†
∥∥∥ ∥Γi∥ ∥υi∥ = Op(N−1/2) + Op(T−1/2)

∥∥qI,ΓΓ,υ

∥∥ ≤
√

N

∥∥∥∥∥ 1
N

N

∑
i=1

(υ′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
∥∥∥2 ∥∥∥T−1U′U

∥∥∥ = Op(N−1)

Hence, combining all the results so far yields as (N, T) → ∞

√
N(β̂ − β) = Q

−1
qI,VV,υ + op(1) (2.88)

where for the leading term we find as (N, T) → ∞

qI,VV,υ
d−→ N (0k×1, Ψh) (2.89)
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with Ψh = limN→∞
1
N ∑N

i=1 ΣiΩυΣi because E(qI,VV,υ) = 0k×1 and by cross-section and mutual indepen-

dence of υi and Vi

Var(qI,VV,υ) =
1
N

N

∑
i=1

N

∑
j=1

E

[(
V′

iVi

T

)
E(υiυ

′
j|Vi, Vj)

(
V′

jVj

T

)]

=
1
N

N

∑
i=1

E

[(
V′

iVi

T

)
E(υiυ

′
i)

(
V′

iVi

T

)]
=

1
N

N

∑
i=1

E

[(
V′

iVi

T

)
Ωυ

(
V′

iVi

T

)]
= O(1)

so that the result in (2.89) follows from applying a CLT to the leading term in

qI,VV,υ =
1√
N

N

∑
i=1

(
V′

iVi

T

)
υi =

1√
N

N

∑
i=1

Σiυi + Op(T−1/2)

Combining then (2.84) and (2.89) into (2.88) gives

√
N(β̂ − β)

d−→ N (0k×1, Σ−1ΨhΣ−1) (2.90)

as (N, T) → ∞, which is the result stated in the theorem.

2.3.2 Analysis of CCEMG

Theorem 6 Under Ass.1-6 as (N, T) → ∞

√
N(β̂mg − β)

d−→ N (0k×1, Ωυ)

Proof of Theorem 6

Recall the scaled deviation of the CCEMG estimator defined in (2.79) and the decomposition of its com-

ponents given in (2.81) and (2.82). For the analysis of the denominator, Q̂i = T−1X′
iMF̂Xi = T−1X′

iMF̂0 Xi

can be decomposed into

T−1[Vi − UC
†
Γi]

′MF̂0 [Vi − UC
†
Γi] = Q̂I,i − Q̂MF0 ,i − Q̂[MF0,i−MF̂0 ],i, (2.91)

which is an identical decomposition as in the proof of Lemma B-6, but focused on the summands for

individual i only. Because averaging over i = 1, . . . , N does not alter the order of the remainder, it is

immediate from the same lemma that Q̂i = T−1V′
iVi + Op(N−1) + Op(T−1) + Op((NT)−1/2). Because

T−1V′
iVi = Σi + Op(T−1/2), we thus obtain

Q̂i = Σi + Op(T−1/2) + Op(N−1) (2.92)

and hence, because rk(Q̂i)− rk(Σi)
a.s.→ 0, we come to

Q̂−1
i = Σ−1

i + Op(T−1/2) + Op(N−1). (2.93)
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where we note that Σi is positive definite by Ass.1.

Next, we analyze the numerator and use its decomposition q̂A,i = q̂A,Vε,i − q̂A,Vγ,i − q̂A,Γε,i + q̂A,Γγ,i.

Then, letting A = [MF0 − MF̂0 ], we obtain∥∥∥q̂[MF0−MF̂0 ],Γγ,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
)′U′

[MF0 − MF̂0 ]UC
†
γi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1U′
[MF0 − MF̂0 ]U

∥∥∥ = Op(N−1/2), (2.94)

using the fact that
∥∥∥T−1U′

[MF0 − MF̂0 ]U
∥∥∥ = Op(N−1) from (2.85). Further, with εi = UiB−1

i qy and the

result
∥∥∥T−1U′

[MF0 − MF̂0 ]Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2) from (2.60)∥∥∥q̂[MF0−MF̂0 ],Γε,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
)′U′

[MF0 − MF̂0 ]εi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥T−1U′

[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥B−1
i qy

∥∥∥ = Op(N−1/2) + Op(T−1/2),

(2.95)

Moving on, with Vi = Uiqx, we also immediately obtain∥∥∥q̂[MF0−MF̂0 ],Vγ,i

∥∥∥ =
∥∥∥√NT−1V′

i[MF0 − MF̂0 ]UC
†
γi

∥∥∥
≤

√
N
∥∥∥C

†
γi

∥∥∥ ∥qx∥
∥∥∥T−1U′

i[MF0 − MF̂0 ]U
∥∥∥ = Op(N−1/2) + Op(T−1/2) (2.96)

using the same argument. To proceed, we let A = PF0 . This leads to∥∥∥q̂PF0 ,Γγ,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
)′U′PF0 UC

†
γi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1U′F0Σ̂
†
F0 T−1F0′U

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1U′F0
∥∥∥2 ∥∥∥Σ̂

†
F0

∥∥∥ = Op(N−1/2T−1), (2.97)

which comes from the fact that
∥∥∥T−1U′F0

∥∥∥ = Op((NT)−1/2) from Lemma B-1. Further on,∥∥∥q̂PF0 ,Γε,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
)′U′PF0 εi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥T−1U′F0Σ̂

†
F0 T−1F0′εi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥T−1U′F0

∥∥∥ ∥∥∥Σ̂
†
F0

∥∥∥ ∥∥∥T−1F0′εi

∥∥∥ = Op(T−1), (2.98)

using the facts that
∥∥∥T−1U′F0

∥∥∥ = Op((NT)−1/2) and
∥∥T−1F0′εi

∥∥ = Op(T−1/2) from εi = UiB−1
i qy and∥∥T−1F0′Ui

∥∥ = Op(T−1/2) in Lemma B-1. Using the latter result again with Vi = Uiqx gives
∥∥T−1V′

iF
0
∥∥ =

Op(T−1/2), so that in the same fashion,∥∥∥q̂PF0 ,Vγ,i

∥∥∥ =
∥∥∥√NT−1V′

iPF0 UC
†
γi

∥∥∥ ≤
√

N
∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1V′
iF

0Σ̂
†
F0 T−1F0′U

∥∥∥
≤

√
N
∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1V′
iF

0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥T−1F0′U
∥∥∥ = Op(T−1) (2.99)

Further, we let A = IT. Firstly, this leads to

∥∥q̂I,Γγ,i
∥∥ =

∥∥∥√NT−1Γ′
i(C

†
)′U′UC

†
γi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1U′U
∥∥∥ = Op(N−1/2),
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because
∥∥∥T−1U′U

∥∥∥ = Op(N−1). Also,

∥q̂I,Γε,i∥ =
∥∥∥√NT−1Γ′

i(C
†
)′U′

εi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥T−1U′

εi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
)′
∥∥∥ ∥∥∥B−1

i

∥∥∥ ∥∥qy
∥∥ ∥∥∥T−1U′Ui

∥∥∥ = Op(N−1/2) + Op(T−1/2),

because
∥∥∥T−1U′Ui

∥∥∥ = Op(N−1) + Op((NT)−1/2). Eventually, we obtain

∥∥q̂I,Vγ,i
∥∥ =

∥∥∥√NT−1V′
iUC

†
γi

∥∥∥ ≤
√

N
∥∥∥C

†
γi

∥∥∥ ∥∥∥T−1V′
iU
∥∥∥ ≤

√
N
∥∥∥C

†
γi

∥∥∥ ∥qx∥
∥∥∥T−1U′

iU
∥∥∥

= Op(N−1/2) + Op(T−1/2) (2.100)

using the same argument as for the term above. Summarizing the order results for the 3 different versions

of A, we come to

q̂i = q̂I,Vε,i − q̂PF0 ,Vε,i + q̂[MF0−MF̂0 ],Vε,i + Op(N−1/2) + Op(T−1/2) (2.101)

which in combination with
∥∥∥Q̂−1

i

∥∥∥ = Op(1) by (2.93) yields

1
N

N

∑
i=1

Q̂−1
i q̂i =

1
N

N

∑
i=1

Q̂−1
i

[
q̂I,Vε,i − q̂PF0 ,Vε,i + q̂[MF0−MF̂0 ],Vε,i

]
+ Op(N−1/2) + Op(T−1/2).

Next, consider 1
N ∑N

i=1 Q̂−1
i q̂I,Vε,i = 1

NT ∑N
i=1 Q̂−1

i

√
NV′

iεi. Clearly, given that by (2.93) Q̂−1
i is bounded

with a well behaved fixed limit as (N, T) → ∞, the order of this term is driven by 1
NT ∑N

i=1

√
NV′

iεi. For

the latter,

E

(
1√
N

N

∑
i=1

T−1/2V′
iεi

)
= 0k×1 (2.102)

and

E

[(
1√
N

N

∑
i=1

T−1/2V′
iεi

)(
1√
N

N

∑
j=1

T−1/2V′
jεj

)′]

=
1
N

N

∑
i=1

N

∑
j=1

T−1E(V′
iE(εiε

′
j)Vj)

=
1
N

N

∑
i=1

E(T−1V′
iΩiVi) = O(1), (2.103)

by the independence of Vi and εi implies that
∥∥∥ 1√

N ∑N
i=1 T−1/2V′

iεi

∥∥∥ = Op(1), and therefore, by insertion

into the term above (and noting that the normalisation is N−1/2T−1)∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i q̂I,Vε,i

∥∥∥∥∥ = Op(T−1/2)
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Next up is 1
N ∑N

i=1 Q̂−1
i q̂[MF0−MF̂0 ],Vε,i. Substituting in (2.11) and making use of the same arguments as for

(2.38), but sharpening the approximation (by not expanding Op(NaT−b) terms with a, b > 0) gives

1
N

N

∑
i=1

Q̂−1
i q̂[MF0−MF̂0 ],Vε,i =

1
N

N

∑
i=1

Q̂−1
i

√
NT−1V′

i[MF0 − MF̂0 ]εi

=
1
N

N

∑
i=1

Q̂−1
i

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
(U0

−m)
′εi

T

)
+

1
N

N

∑
i=1

Q̂−1
i

√
N

(
V′

iF̂
0

T

)
[Σ̂

†
F̂0 − Σ̂

†
Fu
]

(
(F̂0)′εi

T

)
+ Op(N−3/2) + Op(T−1) + Op((NT)−1/2)

Consider the first term of this expansion. Making use of U0
−m =

√
NUTH−m and D̂ = TH−mΣ̂

†
u0
−m

H′
−mT′

gives

1
N

N

∑
i=1

Q̂−1
i

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
(U0

−m)
′εi

T

)
=

1
N3/2

N

∑
i=1

Q̂−1
i

N

∑
j=1

N

∑
k=1

(
V′

iUj

T

)
D̂
(

U′
kεi

T

)

Since
∥∥∥D̂
∥∥∥ = Op(1),

∥∥∥Q̂−1
i

∥∥∥ = Op(1) and both matrices have well behaved limits as (N, T) → ∞ (see

e.g. (2.93) and Lemma B-3), the asymptotic order is driven by N−3/2T−2 ∑N
i=1 ∑N

j=1 ∑N
k=1 V′

iUjD̂U′
kεi. As

such, making use of
∥∥∥N−1T−2 ∑N

i=1 ∑N
j=1 ∑N

k=1 V′
iUjD̂U′

kεi

∥∥∥ = Op(1), which is obtained by the exact same

arguments as for (2.43), we have as (N, T) → ∞∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i

√
N

(
V′

iU
0
−m

T

)
Σ̂

†
u0
−m

(
(U0

−m)
′εi

T

)∥∥∥∥∥ = Op

(
1√
N

)
(2.104)

Recall that (2.43) was proven under two restrictions which we do not employ here: βi = β and T/N =

O(1). For completeness, we will briefly argue that the arguments used to obtain the orders for (2.43)

also follow through in the current setting. Firstly, concerning βi = β, note that Lemma B-2 was de-

rived under heterogeneous slopes, which thus enables its use in preliminary steps. In addition, the υi are

cross-sectionally independent mean zero variables that are also independent from the rest of the model

primitives. Hence, given that the υi also appear in a frequency that is always lower than the number of

vi in any of the expressions leading up to (2.43) (with indices also shared with vi), the determinant of

the dependence structure remains (v, ε) as in the previous analysis, and all the employed arguments to

obtain the asymptotic orders therefore follow through in the heterogeneous setting. Second, concerning

T/N = O(1), we note that in the current case the terms are multiplied by an additional N−1/2 scaling

term. Therefore, given that the highest order remainders from the variance calculations leading to (2.43)

took the form 1
N2T4 O(N3T2), which vanishes when T/N = O(1), the additional scaling by N−1/2 here

already brings down the order such that the relative rate restriction is no longer required for the terms to

vanish. In conclusion, the heterogeneity does not alter the order results.

For the second term in the expansion, decomposing it with F̂0 = F0 + [U0
m, U0

−m] reveals that there are

two leading terms. For the first we obtain from the same reasoning as for (2.104), but noting also that
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∥∥∥Σ̂
†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−1/2) + Op(T−1/2),∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i

√
N

(
V′

iU
0
−m

T

)
[Σ̂

†
F̂0 − Σ̂

†
Fu
]

(
(U0

−m)
′εi

T

)∥∥∥∥∥ = Op

(
1
N

)
+ Op

(
1√
NT

)
and for the second∥∥∥∥∥ 1

N

N

∑
i=1

Q̂−1
i

√
N
(

V′
iF

0

T

)
[Σ̂

†
F̂0 − Σ̂

†
Fu
]

(
(F0)′εi

T

)∥∥∥∥∥ = Op

(
1√
NT

)
+ Op

(
1

T3/2

)
(2.105)

because
∥∥∥Q̂−1

i

∥∥∥ = Op(1) and
∥∥∥Σ̂

†
F̂0 − Σ̂

†
Fu

∥∥∥ = Op(N−1/2) + Op(T−1/2) imply that the asymptotic order is

driven by∥∥∥∥∥ 1√
N

N

∑
i=1

(
V′

iF
0

T

)(
(F0)′εi

T

)∥∥∥∥∥ = Op

(
1
T

)
(2.106)

which follows from E[N−1/2T−2 ∑N
i=1 V′

iF
0(F0)′εi] = 0k×1 by Ass.5, and also by making use of the cross-

section independence of εi and Vi

E

[
1√
N

N

∑
i=1

(
V′

iF
0

T

)(
(F0)′εi

T

)] [
1√
N

N

∑
j=1

(
V′

jF
0

T

)(
(F0)′εj

T

)]′

=
1

NT4

N

∑
i=1

N

∑
j=1

E
[
V′

iF
0(F0)′εiε

′
jF

0(F0)′Vj

]
=

1
NT4

N

∑
i=1

E
[
V′

iF
0(F0)′εiε

′
iF

0(F0)′Vi
]

=
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
l=1

T

∑
r=1

E
[
vi,t(f0

t )
′f0

s ε i,sε i,l(f0
l )

′f0
r v′

i,r
]

=
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
l=1

T

∑
r=1

E(ε i,sε i,l)E(vi,tv′
i,r)E

[
(f0

t )
′f0

s (f
0
l )

′f0
r
]
= O

(
1

T2

)
where the final line employs the absolute summability of autocovariances in Ass.1 and the bounded

fourth moments of factors by assumption 2. Hence,∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i q̂[MF0−MF̂0 ],Vε,i

∥∥∥∥∥ = Op(N−1/2) + Op(T−1)

Finally, given the well behaved limit of Σ̂
†
F0 , and the fact that the driving terms are identical to (2.105), we

have by the same arguments

1
N

N

∑
i=1

Q̂−1
i q̂PF0 ,Vε,i =

1
N

N

∑
i=1

Q̂−1
i

√
N
(

V′
iF

0

T

)
Σ̂

†
F0

(
(F0)′εi

T

)
= Op

(
1
T

)
(2.107)

Combining all the results above we come to∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i q̂i

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2) (2.108)

46



Therefore,

√
N(β̂mg − β) =

1√
N

N

∑
i=1

υi + op(1) (2.109)

d−→ N (0k×1, Ωυ)

as (N, T) → ∞.
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3 Pairs bootstrap

3.1 The bootstrap resampling matrix W and its properties

Let wi = [wi,1, wi,2, . . . , wi,N ] be a 1× N Boolean selection vector ([0, 0, 1, . . . , 0]) drawn from a multinomial

distribution with 1 trial and k = N events, with all event probabilities equal to pj = N−1. It can also be

interpreted as Bernoulli random vector, such that it has probability mass function for θ ∈ RN :

pwi =

{
θi,j, wi,j = 1 and xi,k = 0 for j ̸= k,
0, wi is not a unit vector.

Note that this implies that ∥wi∥ = 1 for all i = 1, . . . , N and for the scalar elements wi,j in this vector,

further using θi,j := P∗ (wi,j = 1
)
, we have

E∗(wi,j) = P∗ (wi,j = 1
)
= N−1

P∗ (wi,j = 0
)
= 1 − N−1

Var∗(wi,j) = N−1(1 − N−1)

Cov∗(wi,i, wi,j) = −N−2 for i ̸= j

Next, gather these vectors in the N × N matrix

w
(N×N)

= [w′
1, . . . , w′

N ]
′ (3.1)

Then, it holds that ∥w∥2 = N (deterministically) and we can also define the important 1 × N vector

ι′Nw =
N

∑
i=1

wi = [s1, s2, . . . , sN ] = s (3.2)

and additionally the property that

w′w = diag(s) (3.3)

The scalar elements si of the s vector indicate the frequency with which cross-section i has been resampled

in the bootstrap dataset. The si give the total resampling counts and hence have the known properties that

follow from the multinomial distribution with N trials and N events. That is, following Chatterjee (1998)

or Bose and Chatterjee (2002), the sums are {si ∈ N0|si ≤ N}, such that P∗(si = xi) = N−1 for some non-

random {xi ∈ N0|xi ≤ N}, E∗(si) = 1, for all i. Moreover, Var∗(si) = 1 − N−1 and Cov∗(si, sj) = −N−1

for all i and i ̸= j, respectively. Consequently, E∗(s2
i ) = Var∗(si) + (E∗(si))

2 = 2 − N−1. Ultimately,

we have P∗
(

∑N
i=1 si = N

)
= 1, because this is how the support of the multinomial is defined. The

corresponding matrix which permutes a stack of N different a−rowed matrices according to the cross-

section re-allocation weights given in w is then

Wa
(aN×aN)

= (w ⊗ Ia) (3.4)
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where ∥Wa∥2 = aN since

W′
aWa = (w′ ⊗ Ia)(w ⊗ Ia) = (w′w ⊗ Ia) = diag(s ⊗ ι′a) (3.5)

ι′aNW′
aWaιaN = aN

With (1.4) and (3.2) we can then establish the important relation with the averaging matrix

AaWa = N−1(ι′N ⊗ Ia)(w ⊗ Ia) = N−1(ι′Nw ⊗ Ia) = N−1(s ⊗ Ia),

which illustrates that units making up the CA are weighted according to the CS-counts s, and implies,

when pre-multiplied with an aN × z matrix G that stacks the N cross-section specific, a−rowed matrices

Gi

AaWaG = N−1(s ⊗ Ia)G =
1
N

N

∑
i=1

siGi = Gw. (3.6)

where we will use a w subscript to denote the dependence on the resampling weights.

Finally, we will repeatedly make use of the key property for multiplication between ’whole cross-section’

permutation matrices as in (3.4) when multiplied with matrices repeated over individuals, such as G =

(IN ⊗ G), with G an a × b, matrix that

WaG = GWb. (3.7)

which is easily shown using familiar Kronecker properties

WaG = (w ⊗ Ia) (IN ⊗ G) = (wIN ⊗ IaG) = (INw ⊗ GIb) = (IN ⊗ G) (w ⊗ Ib) = GWb

Note that (3.7) implies commutation for WTMF̂ and for instance WTF = FWm.

Next, we establish the important lemma of the resampling counts

Lemma C-1 (Higher moments of permutation weights)

a) µ2 = E∗(s2
i ) = 2 − N−1

b) µ3 = E∗(s3
i ) = 5 + r

c) µ4 = E∗(s4
i ) = 15 + ρ

d) µ5 and µ6 are both O(1)

e) 0 ≤ E∗(s2
i , s2

j ) < ∞ for i ̸= j

f) Var∗(s2
i ) = 11 + q
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g) E∗(si, sj) = 1 − N−1

where r, ρ, q are remainders of order O(N−1).

Proof. a) This simply follows from

µ2 = Var∗(si) + E∗(si)
2 = 1 − N−1 + 1 = 2 − N−1,

using the known expressions of the variance and the mean.

We derive the higher moments of the multinomial random variable si using the Moment Generating

Function (MGF). The joint MGF of the vector s = (s1, ..., sN) for t ∈ RN in neighbourhood of 0N×1 is given

by

Ms(t) =

(
N

∑
i=1

P∗(si = xi)eti

)N

.

The marginal MGF for an arbitrary si is obtained by setting t = (0, ..., ti, ..., 0), i.e by focusing only on the

i-th coordinate. Using this together with the fact that probability masses are P∗(si = xi) = N−1 ∀i, we

obtain

Msi(ti) =

(
1
N

eti +
1
N

N−1

∑
i=1

1

)N

=

(
1
N

eti +
N − 1

N

)N

.

The third and the fourth (µ3 and µ4) moments are obtained by taking the respective derivatives and eval-

uating at ti = 0.

b) We show that for the third moment, the derivative at ti = 0 is:

µ3 =
d3Msi(ti)

dt3
i

∣∣∣∣∣
ti=0

=

[
(N − 1)(N − 2)

(
1
N

eti +
N − 1

N

)N−3 1
N2 e3ti

+ (N − 1)
(

1
N

eti +
N − 1

N

)N−2 2
N

e2ti + (N − 1)
(

1
N

eti +
N − 1

N

)N−2 1
N

e2ti

+

(
1
N

eti +
N − 1

N

)N−1

eti

]
ti=0

=
(

N2 − 3N + 3
)

N−2 + (N − 1)2N−1 + 2 − N−1

= 5 + r

where r is the remainder independent of i and it is of the order O(N−1). The result is obtained using the

fact that
( 1

N eti + N−1
N

)N
∣∣∣
ti=0

= 1 for all N. Also, observe that

µ2 =
d2Msi(ti)

dt2
i

∣∣∣∣∣
ti=0

=

[
(N − 1)

(
1
N

eti +
N − 1

N

)N−2 1
N

e2ti +

(
1
N

eti +
N − 1

N

)N−1

eti

]
ti=0

= 2 − N−1,
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therefore, the third moment can be alternatively represented, µ3 = a + µ2, where a is a finite constant.

c) We show that for the fourth moment, the derivative at ti = 0 is:

µ4 =
d4Msi(ti)

dt4
i

∣∣∣∣∣
ti=0

=

[
(N − 1)(N − 2)(N − 3)

(
1
N

eti +
N − 1

N

)N−4 1
N3 e4ti

+ (N − 1)(N − 2)
(

1
N

eti +
N − 1

N

)N−3 3
N2 e3ti

+ (N − 1)(N − 2)
(

1
N

eti +
N − 1

N

)N−3 2
N2 e3ti + (N − 1)

(
1
N

eti +
N − 1

N

)N−2 4
N

e2ti

+ (N − 1)(N − 2)
(

1
N

eti +
N − 1

N

)N−3 1
N2 e3ti

+ (N − 1)
(

1
N

eti +
N − 1

N

)N−2 2
N

e2ti + (N − 1)
(

1
N

eti +
N − 1

N

)N−2 1
N

e2ti

+

(
1
N

eti +
N − 1

N

)N−1

eti

]
ti=0

=
(

N3 − 6N2 + 12N − 9
)

N−3 +
(

N2 − 3N + 3
)

3N−2 +
(

N2 − 3N + 3
)

2N−2

+ (N − 1)4N−1 + 5 + r

= 15 + ρ,

where the result follows, since the last 4 terms in the sum represent µ3, which means that the same recur-

sion applies: µ4 = a′ + µ3. Similarly, ρ is is the remainder independent of i and it has the order of O(N−1).

d) Because it is enough to demonstrate finiteness of µ5 and µ6, it is sufficient to use the recursion estab-

lished in b) and c). In particular, µ5 = a′′ + µ4, where a′′ is a finite constant and µ4 is established to be

finite. Thus, also, µ6 = a′′′ + µ5, where a′′′ is another finite constant and µ5 is established to be finite.

e) with result c) and the Cauchy-Schwarz inequality, we obtain the following bounds:

0 ≤ E∗(s2
i s2

j ) ≤
√

E∗(s4
i )
√

E∗(s4
j ) < ∞ (3.8)

for i ̸= j. This implies that Cov∗(s2
i , s2

j ) < ∞, as well.

f) Next up, we derive the variance of s2
i . In particular,

Var∗(s2
i ) = E∗(s4

i )− E∗(s2
i )

2 = 15 − 4 + O(N−1) = 11 + q, (3.9)

where q = O(N−1) and is independent of i. Hence, this variance is bounded for all i and N.

g) Lastly, we deduce E∗(sisj) for i ̸= q. From the covariance formula, we obtain

µsisj = E∗(sisj) = Cov∗(si, sj) + E∗(si)E
∗(sj) = 1 − N−1, (3.10)
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3.2 Preliminary results

Given the bootstrap resampling matrix WT defined in the previous section, the bootstrap observables are

y∗ = WTy = [y∗′
1 , . . . , y∗′

N ]
′ (3.11)

X∗ = WTX = [X∗′
1 , . . . , X∗′

N ]
′ (3.12)

so that the entire bootstrap data matrix Z∗ = [y∗, X∗] can in turn be written as

Z∗ = WT[y, X] = WTZ = [Z∗′
1 , . . . , Z∗′

N ]
′ (3.13)

Making use of (1.5) and (3.6) reveals that the employed CA of the bootstrap observables are

Z∗
= ATZ∗ = ATWTZ = ATWT(F C + U) = F AmWmC + ATWTU = FCw + Uw

with Cw = 1
N ∑N

i=1 siCi and Uw = 1
N ∑N

i=1 siUi, or generally that Z∗
= 1

N ∑N
i=1 siZi, i.e. the bootstrap CA

are a simple reweighting of the original CA. Factors in the bootstrap world can in turn be expressed as

F = (Z∗ − Uw)C
†
w (3.14)

It will be convenient for the analysis that follows to have expressions for the original data orthogonalized

on the bootstrap CA’s (Z∗). That is, substituting (3.14) into the DGPs of yi, Xi,

MF̂∗yi = MF̂∗ [Xiβi + εi − UwC
†
wγi] (3.15)

MF̂∗Xi = MF̂∗ [Vi − UwC
†
wΓi] (3.16)

because MF̂∗Z∗
= 0T×(1+k) where MF̂∗ = IT − PF̂∗ and PF̂∗ = Z∗

(Z∗′Z∗
)†Z∗′. It is then easily seen that

since rk(C) = m,
∥∥Cw − C

∥∥ = Op∗(N−1/2) and
∥∥Uw

∥∥ = Op∗(N−1/2) (for a fixed T) also Z∗ asymptotically

converges to a reduced rank matrix when m < 1 + k and a rotation will need to be employed in the

analysis. To that end, let Rw = THwDN be the rotation matrix in the pairs bootstrap world, with T

and DN defined as in Section 2 such that CwT = [Cw,m, Cw,−m] are the alternatively weighted Cm and

C−m respectively, and similarly for UwT = [Uw,m, Uw,−m]. The bootstrap transformation matrix Hw has a

similar, but not identical, form as in (2.2)

Hw = [Hw,m, Hw,−m] =

[
C
−1
w,m −C

−1
w,mCw,−m

0(k+1−m)×m Ik+1−m

]
(3.17)

such that the rotated quantities in the bootstrap world become

F̂0∗ = Z∗Rw = F̂∗Rw = [FCw + Uw]Rw = F0 + U0
w (3.18)

where F0 is identical to that in Section 2 and U0
w = UwRw = [U0

w,m, U0
w,−m] with U0

w,m = Uw,mC
−1
w,m and

U0
w,−m =

√
N(Uw,m − Uw,mC

−1
w,mCw,−m). Similarly, since Rw is full rank we have analogously to Section 2
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that PF̂0∗ = Z∗Rw(R′
wZ∗′Z∗Rw)†R′

wZ∗′
= Z∗

(Z∗′Z∗
)†Z∗′

= PF̂∗ and analyzing PF̂0∗ is equivalent to analyz-

ing PF̂∗ .

Let now Σ̂F̂0∗ = T−1(F̂0∗)′F̂0∗ and define also

Σ̂Fw,u =

[
Σ̂F 0m×(1+k−m)

0(1+k−m)×m Σ̂u0
w,−m

]
(3.19)

where Σ̂F = T−1F′F and Σ̂u0
w,−m

= T−1(U0
w,−m)

′U0
w,−m. We then have using familiar steps

MF0 − MF̂0∗ = T−1U0
wΣ̂

†
F̂0∗(U

0
w)

′ + T−1U0
wΣ̂

†
F̂0∗(F0)′ + T−1F0Σ̂

†
F̂0∗(U

0
w)

′ + T−1F0
[
Σ̂

†
F̂0∗ − [T−1(F0)′F0]†

]
(F0)′

which given the definitions above corresponds to

MF0 − MF̂0∗ = T−1U0
w,−mΣ̂

†
u0

w,−m
(U0

w,−m)
′ + T−1U0

w,mΣ̂
†
F(U

0
w,m)

′ + T−1FΣ̂
†
F(U

0
w,m)

′ + T−1U0
w,mΣ̂

†
FF′

+ T−1F̂0∗
[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
(F̂0∗)′ (3.20)

Next we establish the following auxiliary lemmas in the bootstrap world.

Lemma C-2 Under Ass.1-3, 5 and 6, it follows as (N, T) → ∞ that

T−1U′
wUw = Op∗(N−1) (3.21)

NT−1U′
wUw = 2Σu,h + Op∗(N−1/2) + Op∗(T−1/2) (3.22)

T−1F′Uw = Op∗((NT)−1/2) (3.23)

T−1U′
wUi = Op∗(N−1) + Op∗((NT)−1/2) (3.24)

where Σu,h = Σu +

(
Ωυ,⊗vec(Σ) 01×k

0k×1 0k×k

)
and Σu,h = Σu in case υi = 0k×1 (homogeneous slopes).

Lemma C-3 Under Ass.1-6 it follows as (N, T) → ∞ that

T−1(U0
w,m)

′U0
w,m = Op∗(N−1) T−1(U0

w,m)
′U0

w,−m = Op∗(N−1/2)

T−1F′U0
w,m = Op∗((NT)−1/2) T−1F′U0

w,−m = Op∗(T−1/2)

T−1U′
wU0

w,m = Op∗(N−1) T−1U′
wU0

w,−m = Op∗(N−1/2)

T−1(U0
w,m)

′Ui = Op∗(N−1) + Op∗((NT)−1/2)

T−1(U0
w,−m)

′Ui = Op∗(N−1/2) + Op∗(T−1/2)

T−1(F̂0∗)′Uw = Op∗(N−1/2) T−1(F̂0∗)′Ui = Op∗(N−1/2) + Op∗(T−1/2)

moreover, with Σ̂u0
w,−m

= T−1(U0
w,−m)

′U0
w,−m

Σ̂u0
w,−m

= 2Σu0
−m

+ Op∗(N−1/2) + Op∗(T−1/2) (3.25)

Σ̂
†
u0

w,−m
= (1/2)Σ†

u0
−m

+ Op∗(N−1/2) + Op∗(T−1/2) (3.26)∥∥∥Σ̂
†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) (3.27)
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where Σ̂Fw,u is defined in (3.19) and Σu0
−m

is stated in Lemma B-2.

Proof of Lemma C-2.

Defining ũi,j,t = ui,tu′
j,t − 1(j=i)Σu,i, with 1(a) the indicator function that returns 1 when condition a inside

the brackets is true, and zero otherwise, and with Σu,h,i = Σu,i +

(
Ωυ,⊗vec(Σi) 01×k

0k×1 0k×k

)
and Ωυ,⊗ = E(υ′

i ⊗

υ′
i), we can write

T−1U′
wUw =

1
N2

N

∑
i=1

N

∑
j=1

sisjU′
iUj

T
=

1
N2

N

∑
i=1

s2
i Σu,h,i +

1
N2T

N

∑
i=1

N

∑
j=1

sisj

[
U′

iUj − 1(i=j)TΣu,h,i

]
=

1
N2

N

∑
i=1

s2
i Σu,h,i +

1
N2T

N

∑
i=1

N

∑
j=1

sisj

T

∑
t=1

ũi,j,t

=
1
N

(
1
N

N

∑
i=1

s2
i Σu,h,i

)
+ Op∗

(
1

N3/2

)
+ Op∗

(
1

N
√

T

)
= N−12Σu,h + Op∗(N−3/2) + Op∗(N−1T−1/2)

= Op∗(N−1)

which made use of 1
N ∑N

i=1 s2
i Σu,h,i → µ2Σu,h = 2Σu,h + o(1) as N → ∞ by Ass.1,6, where Σu,h = Σu +(

Ωυ,⊗vec(Σ) 01×k
0k×1 0k×k

)
and µ2 = 2 − N−1 from Lemma C-1, with ∥Σu,h∥ = O(1) and

∥∥∥∥∥ 1
N2T

N

∑
i=1

N

∑
j=1

sisj

T

∑
t=1

ũi,j,t

∥∥∥∥∥ = Op∗

(
1

N3/2

)
+ Op∗

(
1

N
√

T

)
because the independence of si and ui,t implies independence between si and ũi,j,t, and it follows in turn

from E∗(ũi,j,t) = 0 for all i, j, t under Ass.1,6 that E∗
[
∑N

i=1 ∑N
j=1 sisj ∑T

t=1 ũi,j,t

]
= 0. Also,

E∗
(

1
N2T

N

∑
i=1

N

∑
j=1

sisj

T

∑
t=1

ũi,j,t

)(
1

N2T

N

∑
l=1

N

∑
r=1

slsr

T

∑
s=1

ũl,r,s

)′

=
1

N4T2

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
r=1

E∗(sisjslsr)
T

∑
t=1

T

∑
s=1

E∗ (ũi,j,tũ′
l,r,s
)

=
1

N4T2

N

∑
i=1

N

∑
j=1

E∗(s2
i s2

j )
T

∑
t=1

T

∑
s=1

E∗
(

ũi,j,tũ′
i,j,s

)
+

1
N4T2

N

∑
i=1

N

∑
j=1

E∗(s2
i s2

j )
T

∑
t=1

T

∑
s=1

E∗
(

ũi,j,tũ′
j,i,s

)
+

1
N4T2

N

∑
i=1

E∗(s4
i )

T

∑
t=1

T

∑
s=1

E∗ (ũi,i,tũ′
i,i,s
)

= O
(

1
N3

)
+ O

(
1

N2T

)
because si has finite moments up to the fourth order from Lemma C-1 and the second equality is obtained

by noting that by Ass.1,6 and the cross-section independence of the error terms and slope heterogeneity

E∗(ũi,j,tũ′
l,r,s) = 0 when at least one of the indices (i, j, l, r) differs from the others or when (j = i, r = l, l ̸=

i). This implies then by definition that either (l = i, r = j, i ̸= j), (l = j, r = i, i ̸= j) or (l = r = j = i)
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give non-zero expectation, which are O(N2), O(N2) and O(N) sums respectively. To obtain the last line

we make use of

1
T

T

∑
t=1

T

∑
s=1

E∗
(

ũi,j,tũ′
i,j,s

)
=

1
T

T

∑
t=1

E∗
(

ũi,j,tũ′
i,j,t

)
+

1
T

T

∑
t=1

T

∑
s ̸=t

E∗
(

ũi,j,tũ′
i,j,s

)
= O(1)

for all i ̸= j, because E∗
(

ũi,j,tũ′
i,j,t

)
= E∗(ui,tE

∗(u′
j,tuj,t)u′

i,t) = O(1) since ui,t and uj,t are independent

with finite second moments, and the second term follows from ∑T
s ̸=t E∗(ũi,j,tũ′

i,j,s) = E∗(ui,t ∑T
s ̸=t E∗(u′

j,tuj,s)u′
i,s) =

O(1) by uj,s having absolute summable autocovariances. This with
∥∥∥T−2 ∑T

t=1 ∑T
s=1 E∗(ũi,i,tũ′

i,i,s)
∥∥∥ = O(1)

by E ∥ui,t∥4 < ∞ from Ass.1 implies

1
N4T2

N

∑
i=1

N

∑
j=1

E∗(s2
i s2

j )
T

∑
t=1

T

∑
s=1

E∗
(

ũi,j,tũ′
i,j,s

)
= O

(
1

N2T

)
1

N4T2

N

∑
i=1

N

∑
j=1

E∗(s2
i s2

j )
T

∑
t=1

T

∑
s=1

E∗
(

ũi,j,tũ′
j,i,s

)
= O

(
1

N2T

)
1

N4T2

N

∑
i=1

E∗(s4
i )

T

∑
t=1

T

∑
s=1

E∗ (ũi,i,tũ′
i,i,s
)
= O

(
1

N3

)
The second result follows directly from the first

NT−1U′
wUw = N

[
N−12Σu,h + Op∗(N−3/2) + Op∗(N−1T−1/2)

]
= 2Σu,h + Op∗(N−1/2) + Op∗(T−1/2)

Next consider

T−1F′Uw =
1

NT

N

∑
i=1

si

T

∑
t=1

ftu′
t,i

where given the independence of si and Ass.5 we have E∗((NT)−1 ∑N
i=1 si ∑T

t=1 ftu′
t,i) = 0 and since

E∗(u′
t,iut,j) = 0 (scalar) for i ̸= j

E∗
[

T−2F′UwU′
wF
]
=

1
N2

N

∑
i=1

N

∑
j=1

E∗(sisj)
1

T2

T

∑
t=1

T

∑
s=1

E∗ (ftu′
t,ius,jf′s

)
=

1
N2

N

∑
i=1

E∗(sisj)
1

T2

T

∑
t=1

T

∑
s=1

E∗ (ftu′
t,ius,if′s

)
=

1
N2

N

∑
i=1

E∗(sisj)
1

T2

T

∑
t=1

T

∑
s=1

E∗ [tr (ut,iu′
s,i
)]

E∗ (ftf′s
)

= O
(

1
T

){
1

N2

N

∑
i=1

E∗(sisj)

}

= O
(

1
NT

)
were use was made of ∑T

s=1 E∗
[
tr
(

ut,iu′
s,i

)]
E∗ (ftf′s) = O(1) since ft and ui,t are stationary with fi-

nite summable autocovariances, and second moments are finite for all variables. Hence,
∥∥T−1F′Uw

∥∥ =
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Op∗((NT)−1/2). Similarly, making use of Lemma B-1 and the independence of si from all other variables

T−1U′
wUi =

1
N

N

∑
j=1

sj

(
U′

jUi

T

)
=

1
N

si

(
U′

iUi

T

)
+

1
N

N

∑
j ̸=i

sj

(
U′

jUi

T

)

= N−1si

(
B′

i

[
σ2

i 01×k
0k×1 Σi

]
Bi

)
+ N−1siOp∗

(
1√
T

)
+ Op∗

(
1√
NT

)
= Op∗

(
1
N

)
+ Op∗

(
1

N
√

T

)
+ Op∗

(
1√
NT

)
= Op∗

(
1
N

)
+ Op∗

(
1√
NT

)

because T−1U′
iUi = B′

i

[
σ2

i 01×k
0k×1 Σi

]
Bi + Op(T−1/2) = Op(1) and si = O(1) for all i and N. This estab-

lishes (3.24).

Proof of Lemma C-3.

From Lemma C-2 we have
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1) and
∥∥T−1F′Uw

∥∥ = Op∗((NT)−1/2), such that sub-

stituting in the definitions U0
w,−m =

√
NUwTHw,−m, U0

w,m = UwTHw,m and noting that ∥T∥ = Op∗(1),∥∥Hw
∥∥ = Op∗(1) (and therefore also its partitioning) gives∥∥∥T−1(U0

w,m)
′U0

w,m

∥∥∥ =
∥∥∥H′

w,mT′T−1U′
wUwTHw,m

∥∥∥ ≤
∥∥Hw,m

∥∥2 ∥T∥2
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1)∥∥∥T−1(U0
m)

′U0
w,−m

∥∥∥ ≤
√

N
∥∥Hw,m

∥∥ ∥∥Hw,−m
∥∥ ∥T∥2

∥∥∥T−1U′
wUw

∥∥∥ = Op∗(N−1/2)∥∥∥T−1F′U0
w,m

∥∥∥ =
∥∥∥T−1F′UwTHw,m

∥∥∥ ≤
∥∥∥T−1F′Uw

∥∥∥ ∥T∥
∥∥Hw,m

∥∥ = Op∗((NT)−1/2)∥∥∥T−1F′U0
w,−m

∥∥∥ =
√

N
∥∥∥T−1F′UwTHw,−m

∥∥∥ ≤
√

N
∥∥∥T−1F′Uw

∥∥∥ ∥T∥
∥∥Hw,−m

∥∥ = Op∗(T−1/2)∥∥∥T−1U′
wU0

w,m

∥∥∥ =
∥∥∥T−1U′

wUwTHw,m

∥∥∥ ≤
∥∥Hw,m

∥∥ ∥T∥
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1)∥∥∥T−1U′
wU0

w,−m

∥∥∥ =
√

N
∥∥∥T−1U′

wUwTHw,−m

∥∥∥ ≤
√

N
∥∥Hw,−m

∥∥ ∥T∥
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1/2)

Similarly making use of
∥∥∥T−1U′

wUi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2) from lemma C-2∥∥∥T−1(U0
w,m)

′Ui

∥∥∥ ≤
∥∥THw,m

∥∥ ∥∥∥T−1U′
wUi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2)∥∥∥T−1(U0
w,−m)

′Ui

∥∥∥ ≤
√

N
∥∥THw,−m

∥∥ ∥∥∥T−1U′
wUi

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)

Next, noting that F0 = [F, 0T×1+k−m],
∥∥T−1F′Ui

∥∥ = Op∗(T−1/2) and making use of the orders in Lemma

C-2 ∥∥∥T−1(F̂0∗)′Uw

∥∥∥ ≤
∥∥∥T−1(F0)′Uw

∥∥∥+√
N
∥∥TH

∥∥ ∥∥∥T−1U′
wUw

∥∥∥ = Op∗(N−1/2)∥∥∥T−1(F̂0∗)′Ui

∥∥∥ ≤
∥∥∥T−1(F0)′Ui

∥∥∥+√
N
∥∥TH

∥∥ ∥∥∥T−1U′
wUi

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)
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This establishes the first set of results in the lemma. Next, again making use of U0
w,−m =

√
NUwTHw,−m

and substituting in eq.(3.22) of Lemma C-2 establishes that

Σ̂u0
w,−m

= T−1(U0
w,−m)

′U0
w,−m = H′

w,−mT′NT−1UwUwTHw,−m

= H′
w,−mT′ (2Σu,h)THw,−m + Op∗(N−1/2) + Op∗(T−1/2)

= 2H′
−mT′Σu,hTH−m + Op∗(N−1/2) + Op∗(T−1/2)

= 2Σu0
−m

+ Op∗(N−1/2) + Op∗(T−1/2)

because
∥∥Hw,−m − H−m

∥∥ = Op∗(N−1/2) and where Σu0
−m

is the (1+ k − m)× (1+ k − m) positive definite

matrix defined in Lemma B-2. This establishes (3.25). Given that then rk(Σ̂u0
w,−m

)− rk(Σu0
−m
)

a.s.→ 0 it also

follows that

Σ̂
†
u0

w,−m
= (1/2)Σ†

u0
−m

+ Op∗(N−1/2) + Op∗(T−1/2)

by Theorem 1 in Karabiyik et al. (2017). This is (3.26) of the lemma. Next, consider

Σ̂F̂0∗ − Σ̂Fw,u =
1
T

[
F′U0

w,m + (U0
w,m)

′F F′U0
w,−m

(U0
w,−m)

′F 01+k−m×1+k−m

]
+

1
T

[
(U0

w,m)
′U0

w,m (U0
w,m)

′U0
w,−m

(U0
w,−m)

′U0
w,m 01+k−m×1+k−m

]

where substituting in the results established in the first part of the lemma results in∥∥∥Σ̂F̂0∗ − Σ̂Fw,u

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)

Noting then that as in the original setting rk(Σ̂F̂0∗) = 1 + k, and rk(Σ̂Fw,u) = rk(Σ̂F) + rk(Σ̂u0
w,−m

) = 1 + k

also as (N, T) → ∞ under Ass.1-2, it follows that rk(Σ̂F̂0∗) − rk(Σ̂Fw,u)
a.s.→ 0. This allows us to invoke

Theorem 1 in Karabiyik et al. (2017) and obtain∥∥∥Σ̂
†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)

which establishes the last statement of the lemma in (3.27).
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3.3 Homogeneous Slopes

In the homogeneous slope setting, we impose υi = 0k×1 so that βi = β and Bi = B for all i = 1, . . . , N. In

addition, recall that this implies that Σu,h = Σu in Lemmas C-2 and C-3. The bootstrap CCEP estimator is

β̂
∗
=
(
X∗′MF̂∗X∗)−1 X∗′MF̂∗y∗ (3.28)

with MF̂∗ = (IN ⊗ MF̂∗). Then, making use of y∗ = WTy and X∗ = WTX and substituting (3.11) and (1.1)

into (3.28) gives

β̂
∗
=
(
X∗′MF̂∗X∗)−1 X∗′MF̂∗WTy

=
(
X∗′MF̂∗X∗)−1 X∗′MF̂∗WT

[
Xβ + Fγ + ε

]
= β +

(
X∗′MF̂∗X∗)−1 X∗′MF̂∗WT

[
Fγ + ε

]
such that

√
NT(β̂

∗ − β) = Q̂∗−1q̂∗ (3.29)

where

Q̂∗ = (NT)−1X∗′MF̂∗X∗ (3.30)

q̂∗ = (NT)−1/2X∗′MF̂∗

[
WTFγ + WTε

]
(3.31)

The denominator Q̂∗ in the bootstrap world can, by making use of (3.5) and (3.7), be expressed as

Q̂∗ = (NT)−1X∗′MF̂∗X∗ = (NT)−1X′W′
TMF̂∗WTX = (NT)−1X′W′

TWTMF̂∗X

= (NT)−1X′diag(s ⊗ ι′T)MF̂∗X

=
1

NT

N

∑
i=1

siX′
iMF̂∗Xi

and in turn substituting in (3.16) gives

Q̂∗ =
1

NT

N

∑
i=1

siX′
iMF̂∗Xi =

1
NT

N

∑
i=1

si[Vi − UwC
†
wΓi]

′MF̂∗ [Vi − UwC
†
wΓi]

= Q̂∗
MF0

− Q̂∗
[MF0−MF̂0∗ ]

(3.32)

where for a given subscript A we define the following decomposition

Q̂∗
A = Q̂∗

A,VV − Q̂∗
A,VΓ − (Q̂∗

A,VΓ)
′ + Q̂∗

A,ΓΓ

Q̂∗
A,VV =

1
NT

N

∑
i=1

siV′
iAVi

Q̂∗
A,VΓ =

1
NT

N

∑
i=1

siV′
iAUwC

†
wΓi

Q̂∗
A,ΓΓ =

1
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wAUwC

†
wΓi
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Making use of (3.5), (3.7) and (3.14) yields with similar operations for the bootstrap numerator

q̂∗ = (NT)−1/2X′W′
TMF̂∗WT

[
Fγ + ε

]
= (NT)−1/2X′W′

TWTMF̂∗

[
Fγ + ε

]
=

1√
NT

N

∑
i=1

siX′
iMF̂∗ [Fγi + εi] =

1√
NT

N

∑
i=1

siX′
iMF̂∗

[
F(γ + η̃iqy) + εi

]
=

1√
NT

N

∑
i=1

si[Vi − UwC
†
wΓi]

′MF̂∗ [εi − UwC
†
wη̃iqy]

= q̂∗
I − q̂∗

PF0
− q̂∗

[MF0−MF̂0∗ ]
(3.33)

where we also made use of γi = CiB−1qy = (C+ ηi)B
−1qy = γ+ η̃iqy under Ass.3, and ∑N

i=1 siX′
iMF̂∗Fγ =

NX
∗
MF̂∗Fγ = 0k×1 because X

∗ ⊂ Z∗. For a given subscript A we employ the following decomposition

q̂∗
A = q̂∗

A,Vε − q̂∗
A,Vη − q̂∗

A,Γε + q̂∗
A,Γη

q̂∗
A,Vε =

1√
NT

N

∑
i=1

siV′
iAεi

q̂∗
A,Vη =

1√
NT

N

∑
i=1

siV′
iAUwC

†
wη̃iqy

q̂∗
A,Γε =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wAεi

q̂∗
A,Γη =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wAUwC

†
wη̃iqy

3.3.1 Lemmas

Lemma C-4 Under Ass.1-5 we have as (N, T) → ∞ such that τN,T → τ < ∞ that

q̂∗
[MF0−MF̂0∗ ]

−→p∗ 2
√

τ(d1 + d2) +
√

τd+ (3.34)

where d1 = d2 = d+ = 0k×1 when m = 1 + k, whereas if m < 1 + k

d+ = (1/2) lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′ (3.35)

and d1, d2 are defined in eqs.(2.26)-(2.27) of Lemma B-3, respectively.

Proof of Lemma C-4
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For convenience, we restate here the decomposition of q̂∗
[MF0−MF̂0∗ ]

q̂∗
[MF0−MF̂0∗ ]

= q̂∗
[MF0−MF̂0∗ ],Vε − q̂∗

[MF0−MF̂0∗ ],Vη − q̂∗
[MF0−MF̂0∗ ],Γε + q̂∗

[MF0−MF̂0∗ ],Γη

q̂∗
[MF0−MF̂0∗ ],Vε =

1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]εi

q̂∗
[MF0−MF̂0∗ ],Vη =

1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

q̂∗
[MF0−MF̂0∗ ],Γε =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
w[MF0 − MF̂0∗ ]εi

q̂∗
[MF0−MF̂0∗ ],Γη =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
w[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

First up is

q̂∗
[MF0−MF̂0 ],Γη =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
w[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

=

√
T
N

1
N

N

∑
i=1

siΓ
′
i(C

†
w)

′NT−1U′
w[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

Substituting (3.20) into U′
w[MF0 − MF̂0∗ ]Uw gives

NT−1U′
w[MF0 − MF̂0∗ ]Uw = NT−1U′

wU0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Uw + NT−1U′

wU0
w,mΣ̂

†
FT−1(U0

w,m)
′Uw

+ NT−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Uw + T−1U′

wU0
w,mΣ̂

†
FT−1F′Uw

+ NT−1U′
wF̂0∗

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Uw

= NT−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Uw + Op∗(N−1/2) + Op∗(T−1/2)

= 2ΣuTH−mΣ†
u0
−m

H′
−mT′Σu + Op∗(N−1/2) + Op∗(T−1/2) (3.36)

because for the first term in the decomposition we obtain

NT−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Uw =

√
NT−1U′

wU0
w,−mΣ̂

†
u0

w,−m

√
NT−1(U0

w,−m)
′Uw

= (4/2)ΣuTH−mΣ†
u0
−m

H′
−mT′Σu + Op∗(N−1/2) + Op∗(T−1/2)

= 2ΣuTH−mΣ†
u0
−m

H′
−mT′Σu + Op∗(N−1/2) + Op∗(T−1/2)

where we have substituted in (3.26) of Lemma C-3 together with the result obtained from U0
w,−m =

√
NUwTHw,−m

√
NT−1U′

wU0
w,−m = NT−1U′

wUwTHw,−m = 2ΣuTH−m + Op∗(N−1/2) + Op∗(T−1/2) (3.37)

where use was made NT−1U′
wUw = 2Σu + Op∗(N−1/2) + Op∗(T−1/2) in (3.22) and Hw,−m = H−m +
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Op∗(N−1/2). The results of Lemma C-3 reveal for the other terms∥∥∥T−1U′
wU0

w,mΣ̂
†
FT−1(U0

w,m)
′Uw

∥∥∥ ≤
∥∥∥T−1U′

wU0
w,m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op∗(N−2)∥∥∥T−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Uw

∥∥∥ ≤
∥∥∥T−1U′

wF
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
w,m)

′Uw

∥∥∥ = Op∗(T−1/2N−3/2)∥∥∥T−1U′
wF̂0∗

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Uw

∥∥∥ ≤
∥∥∥T−1U′

wF̂0∗
∥∥∥2 ∥∥∥Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−3/2) + Op∗(N−1T−1/2)

Substituting in the result above, noting C
†
w = C† + Op∗(N−1/2) and τN,T = T/N = O(1) yields

q̂∗
[MF0−MF̂0 ],Γη =

√
T
N

1
N

N

∑
i=1

siΓ
′
i(C

†
w)

′NT−1U′
w[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

=
√

τN,T

(
1
N

N

∑
i=1

si(η̃iqy ⊗ Γi)
′
)

vec
(
(C

†
w)

′NT−1U′
w[MF0 − MF̂0∗ ]UwC

†
w

)
= 2

√
τq′

xyΣ′
ηvec

(
(C†)′ΣuTH−mΣ†

u0
−m

H′
−mT′ΣuC†

)
+ Op∗(N−1/2)

= 2
√

τq′
xyΣ′

ηvec
(
(C†)′ΣuD−mΣuC†

)
+ Op∗(N−1/2) (3.38)

where we recall that D−m = TH−mΣ†
u0
−m

H′
−mT′, Ση = E(η̃i ⊗ η̃i) and qxy = (qy ⊗ qx) and use was made

of

1
N

N

∑
i=1

si(η̃iqy ⊗ Γi) =
1
N

N

∑
i=1

si(η̃iqy ⊗ Γ + η̃iqx) =
1
N

N

∑
i=1

(η̃iqy ⊗ η̃iqx) + Op∗(N−1/2)

=
1
N

N

∑
i=1

si(η̃i ⊗ η̃i)(qy ⊗ qx) + Op∗(N−1/2)

= µ1Σηqxy + Op∗(N−1/2)

because the independence between si and η̃i, as well as the independence of η̃i over i imply that under

Ass.3 1
N ∑N

i=1 siη̃
′
iΓ = Op∗(N−1/2) and 1

N ∑N
i=1 si(η̃i ⊗ η̃i) = µ1Ση + Op∗(N−1/2) with µ1 = E∗(si) = 1 from

Section 3.1.

Next, making use of εi = UiB−1qy gives q̂∗
[MF0−MF̂0∗ ],Γε = 1√

NT ∑N
i=1 siΓ

′
i(C

†
w)

′U′
w[MF0 − MF̂0∗ ]UiB−1qy,

and with (3.20) follows the decomposition

T−1U′
w[MF0 − MF̂0∗ ]Ui

= T−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Ui + T−1U′

wU0
w,mΣ̂

†
FT−1(U0

w,m)
′Ui

+ T−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Ui + T−1U′

wU0
w,mΣ̂

†
FT−1F′Ui

+ T−1U′
wF̂0∗

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Ui

= T−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Ui + Op∗(N−3/2) + Op∗(N−1T−1/2) + Op∗(T−3/2) (3.39)
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because substituting in results from lemmas C-2 and C-3 gives∥∥∥T−1U′
wU0

w,mΣ̂
†
FT−1(U0

w,m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

wU0
w,m

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1(U0
w,m)

′Ui

∥∥∥ = Op∗(N−2) + Op∗(N−3/2T−1/2)∥∥∥T−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

wF
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
w,m)

′Ui

∥∥∥ = Op∗(N−3/2T−1/2) + Op∗((NT)−1)∥∥∥T−1U′
wU0

w,mΣ̂
†
FT−1F′Ui

∥∥∥ ≤
∥∥∥T−1U′

wU0
w,m

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1F′Ui

∥∥∥ = Op∗(N−1T−1/2)∥∥∥T−1U′
wF̂0∗

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Ui

∥∥∥ ≤
∥∥∥T−1U′

wF̂0∗
∥∥∥ ∥∥∥Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ ∥∥∥T−1(F̂0∗)′Ui

∥∥∥
= Op∗(N−3/2) + Op∗(N−1T−1/2) + Op∗(T−3/2)

and we note that∥∥∥T−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Ui

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2) (3.40)

Hence, making use of (3.39), T/N = O(1) and substituting in (3.26) and (3.37)

√
NT−1/2U′

w[MF0 − MF̂0∗ ]Ui = T−1
√

NU′
wU0

w,−mΣ̂
†
u0

w,−m
T−1/2(U0

w.−m)
′Ui + Op∗(N−1/2) + Op∗(T−1/2)

= (2/2)ΣuTH−mΣ†
u0
−m

T−1/2(U0
w,−m)

′Ui + Op∗(N−1/2) + Op∗(T−1/2)

= ΣuTH−mΣ†
u0
−m

H′
−mT′√NT−1/2U′

wUi + Op∗(N−1/2) + Op∗(T−1/2)

= ΣuD−m
√

NT−1/2U′
wUi + Op∗(N−1/2) + Op∗(T−1/2) (3.41)

where as before D−m = TH−mΣ†
u0
−m

H′
−mT′. Then

q̂∗
[MF0−MF̂0∗ ],Γε =

1
N

N

∑
i=1

siΓ
′
i(C

†
w)

′√NT−1/2U′
w[MF0 − MF̂0∗ ]UiB−1qy

=
1
N

N

∑
i=1

siΓ
′
i(C

†
w)

′ΣuD−m
√

NT−1/2U′
wUiB−1qy + Op∗(N−1/2) + Op∗(T−1/2)

Next, with the shorthand D = (C†)′ΣuD−m and Uw = N−1siUi +
1
N ∑N

j ̸=i sjUj, the remaining term is

1√
NT

N

∑
i=1

siΓ
′
iU

′UiB−1qy =
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

iD(T−1U′
iUi)B−1qy +

1
NT

N

∑
i=1

N

∑
j ̸=i

sisjΓ
′
iDU′

jUiB−1qy

]

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

iD[σ2
i , 01×k]

′
]
+ Op∗(T−1/2)

where the order of the rightmost term on the first line follows from τN,T = O(1) and the fact that si are

independent of Ui and have finite fourth moments (Lemma C-1) so that their presence does not alter

the order established before in (2.34). Also, T−1U′
iUi = Σu,i + Op∗(T−1/2) from Ass.1 and by definition

Σu,iB−1qy = [σ2
i , 01×k]

′. Then, substituting in the result leads to

q̂∗
[MF0−MF̂0∗ ],Γε =

√
τN,T

[
1
N

N

∑
i=1

s2
i Γ′

iD[σ2
i , 01×k]

′
]
+ Op∗(N−1/2) + Op∗(T−1/2)
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and noting that 1
N ∑N

i=1 s2
i Γ′

iD[σ2
i , 01×k]

′ using E∗ (s2
i
)
= µ2 = 2 − N−1 follows

1
N

N

∑
i=1

s2
i Γ′

iD[σ2
i , 01×k]

′ −→p∗ 2Γ′D[σ2, 01×k]
′

by a) of lemma C-1 and Ass.1 and 3, we come to conclusion that

q̂∗
[MF0−MF̂0∗ ],Γε −→

p∗ 2
√

τΓ′(C†)′ΣuD−m[σ
2, 01×k]

′ (3.42)

For the next term, q̂∗
[MF0−MF̂0∗ ],Vη , noting that V′

i[MF0 − MF̂0 ]Uw = q′
xU′

i[MF0 − MF̂0 ]Uw we obtain from

substituting in (3.41)

√
NT−1/2V′

i[MF0 − MF̂0 ]U = T−1/2
√

Nq′
xU′

iUwD′
−mΣu + Op∗(N−1/2) + Op∗(T−1/2)

which yields when inserted into q̂∗
[MF0−MF̂0∗ ],Vη that

q̂∗
[MF0−MF̂0∗ ],Vη =

1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]UwC

†
wη̃iqy =

1
N

N

∑
i=1

si
√

NT−1/2V′
i[MF0 − MF̂0∗ ]UwC

†
wη̃iqy

=
1√
NT

N

∑
i=1

siq′
xU′

iUD′η̃iqy + Op∗(N−1/2) + Op∗(T−1/2)

where we again made use of D = (C
†
)′ΣuD−m and obtain using analogous arguments as above

1√
NT

N

∑
i=1

q′
xsiU′

iUD′η̃iqy =
√

τN,Tq′
x

[
1

NT

N

∑
i=1

s2
i (T

−1U′
iUi)D′η̃i +

1
NT

N

∑
i=1

N

∑
j ̸=i

sisjU′
iUjD′η̃i

]
qy

=
√

τN,Tq′
x

[
1
N

N

∑
i=1

s2
i Σu,iD′η̃i

]
qy + Op∗(T−1/2)

= Op∗(N−1/2) + Op∗(T−1/2)

because the presence of the si again does not change the arguments for the order of the second term as

obtained before in (2.36) and by independence and Ass.3 follows

1
N

N

∑
i=1

s2
i Σu,iD′η̃i =

[
1
N

N

∑
i=1

s2
i (η̃i ⊗ Σu,i)

′
]

vec(D′) = Op∗(N−1/2)

Therefore∥∥∥q̂∗
[MF0−MF̂0∗ ],Vη

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) (3.43)

To analyze the final term, note

q̂∗
[MF0−MF̂0∗ ],Vε =

1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]εi =

1√
NT

N

∑
i=1

siq′
xU′

i[MF0 − MF̂0 ]UiB−1qy
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For the middle term, making use of results in Lemma C-3 yields∥∥∥T−1U′
iU

0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

iU
0
w,−m

∥∥∥2 ∥∥∥Σ̂
†
u0

w,−m

∥∥∥ = Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2)∥∥∥T−1U′
iU

0
w,mΣ̂

†
FT−1(U0

w,m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

iU
0
w,m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op∗(N−2) + Op∗((NT)−1) + Op∗(N−3/2T−1/2)∥∥∥T−1U′
iU

0
w,mΣ̂

†
FT−1F′Ui

∥∥∥ ≤
∥∥∥T−1U′

iU
0
w,m

∥∥∥ ∥∥∥Σ̂
†
F

∥∥∥ ∥∥∥T−1F′Ui

∥∥∥ = Op∗(N−1T−1/2) + Op∗(N−1/2T−1)∥∥∥T−1U′
iFΣ̂

†
FT−1(U0

w,m)
′Ui

∥∥∥ ≤
∥∥∥T−1U′

iF
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
w,m)

′Ui

∥∥∥ = Op∗(N−1T−1/2) + Op∗(N−1/2T−1)∥∥∥T−1U′
iF̂

0∗
[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Ui

∥∥∥ ≤
∥∥∥T−1U′F̂0∗

∥∥∥ ∥∥∥Σ̂
†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ ∥∥∥T−1(F̂0∗)′Ui

∥∥∥
= Op∗(N−3/2) + Op∗(N−1/2T−1) + Op∗(N−1T−1/2) + Op∗(T−3/2)

so that we obtain for the decomposition

T−1U′
i[MF0 − MF̂0∗ ]Ui = T−1U′

iU
0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Ui + T−1U′

iU
0
w,mΣ̂

†
FT−1(U0

w,m)
′Ui

+ T−1U′
iFΣ̂

†
FT−1(U0

w,m)
′Ui + T−1U′

iU
0
w,mΣ̂

†
FT−1F′Ui

+ T−1U′
iF̂

0
[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0∗)′Ui

= T−1U′
iU

0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Ui

+ Op∗(N−3/2) + Op∗(N−1/2T−1) + Op∗(N−1T−1/2) + Op∗(T−3/2)

= (1/2)T−1
√

NU′
iUwTH−mΣ†

u0
−m

H′
−mT′T−1

√
NU′

wUi + Op∗(N−1/2) + Op∗(T−1/2)

= (1/2)NT−1U′
iUwD−mT−1U′

wUi + Op∗(N−1/2) + Op∗(T−1/2) (3.44)

where the before last line substitutes in (3.26). This also gives, with U0
w,−m =

√
NUwTH−m, (NT−1U′

iUw) =

Op∗(1) by Lemma C-2, substituting in (3.26) and using T/N = O(1)

NT−1U′
i[MF0 − MF̂0∗ ]Ui

= NT−1U′
iU

0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Ui + Op∗(N−1/2) + Op∗(N1/2T−1) + Op∗(T−1/2) + Op∗(NT−3/2)

=
√

NT−1U′
iU

0
w,−mΣ̂

†
u0

w,−m

√
NT−1(U0

w,−m)
′Ui + Op∗(N−1/2) + Op∗(T−1/2)

= (NT−1U′
iUw)TH−mΣ̂

†
u0

w,−m
H′

−mT′(NT−1U′
wUi) + Op∗(N−1/2) + Op∗(T−1/2)

= (1/2)(NT−1U′
iUw)D−m(NT−1U′

wUi) + Op∗(N−1/2) + Op∗(T−1/2)

= (1/2)N2T−1U′
iUwD−mT−1U′

wUi + Op∗(N−1/2) + Op∗(T−1/2) (3.45)
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which is Op∗(1), and substituting in the result gives

q̂∗
[MF0−MF̂0∗ ],Vε =

1√
NT

N

∑
i=1

q′
xsiU′

i[MF0 − MF̂0∗ ]UiB−1qy

=
√

τN,Tq′
x

[
1
N

N

∑
i=1

siNT−1U′
i[MF0 − MF̂0∗ ]Ui

]
B−1qy

=
1
2
√

τN,Tq′
x

[
1
N

N

∑
i=1

siN2T−1U′
iUwD−mT−1(Uw)

′Ui

]
B−1qy + Op∗(N−1/2) + Op∗(T−1/2)

=
1
2
√

τN,T

[
N
T2

N

∑
i=1

siV′
iUwD−mU′

wεi

]
+ Op∗(N−1/2) + Op∗(T−1/2)

=
1
2
√

τN,T

[
N
T2

N

∑
i=1

siV′
i

(
1
N

N

∑
j=1

sjUj

)
D−m

(
1
N

N

∑
l=1

slUl

)′

εi

]
+ Op∗(N−1/2) + Op∗(T−1/2)

=
1
2
√

τN,T

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjslV′
iUjD−mU′

lεi

]
+ Op∗(N−1/2) + Op∗(T−1/2) (3.46)

The leading term in the brackets can be rewritten in similar form using the notation introduced in the

proof of lemma B-3

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjslV′
iUjD−mU′

lεi (3.47)

= d1,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl

[
vi,tε j,tε l,sε i,s + vi,tv′

l,sβε j,tε i,s + vi,tv′
j,tβε l,sε i,s + vi,tv′

j,tββ′vl,sε i,s

]}

+
1+k

∑
v=2

dv,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl

[
vi,tv

(v−1)
j,t ε l,sε i,s + vi,tv

(v−1)
j,t v′

l,sβε i,s

]}

+
1+k

∑
g=2

d1,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl

[
vi,tv

(g−1)
l,s ε i,sε j,t + vi,tv′

j,tβv(g−1)
l,s ε i,s

]}

+
1+k

∑
v=2

1+k

∑
g=2

dv,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv
(v−1)
j,t v(g−1)

l,s ε i,s

}
(3.48)

Consider then that we can write the second term in the first set of brackets as

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
l,sβε j,tε i,s

=
1

NT2

N

∑
i=1

T

∑
t=1

T

∑
s=1

s3
i Σi,t,sβσi,t,s +

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl(vi,tv′
l,s − 1(l=i)Σi,t,s)β(ε j,tε i,s − 1(j=i)σi,t,s)

=
1

NT2

N

∑
i=1

T

∑
t=1

T

∑
s=1

s3
i Σi,t,sβσi,t,s +

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslV
t,s
i,l βet,s

i,j

where Σi,t,s = E(vi,tv′
i,s), σi,t,s = E(εi,tεi,s), Vt,s

i,l = vi,tv′
l,s − 1(l=i)Σi,t,s and et,s

i,j = ε j,tε i,s − 1(j=i)σi,t,s. Given

that sisjsl , Vt,s
i,l and et,s

i,j are mutually independent for all i, j, l, t, s

E

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslV
t,s
i,l βet,s

i,j

]
=

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

E(sisjsl)E(Vt,s
i,l )βE(et,s

i,j ) = 0k×1
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and similarly, the independence of sisjslsmsnso and these weights having finite sixth moments by d) of

Lemma C-1 implies

E

(
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslV
t,s
i,l βet,s

i,j

)(
1

NT2

N

∑
m=1

N

∑
n=1

N

∑
o=1

T

∑
r=1

T

∑
q=1

smsnsoVr,q
m,oβer,q

m,n

)′

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

N

∑
o=1

E
(
sisjslsmsnso

)
E
(

Vt,s
i,l ββ′Vr,q′

m,o

)
E
(

et,s
i,j er,q

m,n

)
= O

(
1
N

)
+ O

(
1
T

)
by the exact same arguments as those for (2.40) in the proof of Lemma B-3. This leads to∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslV
t,s
i,l βet,s

i,j

∥∥∥∥∥ = Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
and therefore

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
l,sβε j,tε i,s =

1
N

N

∑
i=1

s3
i

1
T2

T

∑
t=1

T

∑
s=1

Σi,t,sβσi,t,s + Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
= Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
since

∥∥∥T−1 ∑T
t=1 ∑T

s=1 Σi,t,sβσi,t,s

∥∥∥ = O(1) for all i due to ε i,t, vi,t having absolute summable autocovari-

ances. The same arguments yield also∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv
(g−1)
l,s ε i,sε j,t

∥∥∥∥∥ = Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
Next, for combinations such as vi,tv′

j,tβε l,sε i,s we can write as before with Vt
i,j = vi,tv′

j,t − 1(j=i)Σi and

es
i,l = ε i,sε l,s − 1(l=i)σ

2
i

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
j,tβε l,sε i,s =

1
N

N

∑
i=1

s3
i Σiβσ2

i +
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslVt
i,jβes

i,l

where again by independence of sisjsl , Vt
i,j and es

i,l

E

[
N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslVt
i,jβes

i,l

]
= 0k×1

and the independence of the si’s together with them having finite sixth moments implies that by the exact

same arguments as for (2.41) in the proof of Lemma B-3,

E

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslVt
i,jβes

i,l

] [
1

NT2

N

∑
m=1

N

∑
n=1

N

∑
o=1

T

∑
r=1

T

∑
q=1

smsnsoVr
m,nβeq

m,o

]′

=
1

N2T4

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

N

∑
o=1

E
(
sisjslsmsnso

)
E
(

Vt
i,jββ′Vr′

m,n

)
E
(
es

i,le
q
m,o
)

= O
(

1
T

)
+ O

(
1
N

)
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Hence,∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslVt
i,jβes

i,l

∥∥∥∥∥ = Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
which substituted in leads to

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
j,tβε l,sε i,s =

1
N

N

∑
i=1

s3
i Σiβσ2

i + Op∗(N−1/2) + Op∗(T−1/2)

Then, from 1
N ∑N

i=1 s3
i Σiβσ2

i →p∗ µ3 limN→∞
1
N ∑N

i=1 Σiβσ2
i as N → ∞, where µ3 = E∗(s3

i ) = 5 + O(N−1)

by b) in Lemma C-1, follows the conclusion

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
j,tβε l,sε i,s −→p∗ 5 lim

N→∞

1
N

N

∑
i=1

Σiβσ2
i

and by the same reasoning also

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv
(v−1)
j,t ε l,sε i,s −→p∗ 5 lim

N→∞

1
N

N

∑
i=1

Σiq(v−1)σ
2
i

Finally, the independence of the si, sj, sl from the other variables, with E(s6
i ) < ∞, allows us to use the

same arguments as for (2.42) in the proof of Lemma B-3 and get∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tε j,tε l,sε i,s

∥∥∥∥∥ = Op∗

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
j,tββ′vl,sε i,s

∥∥∥∥∥ = Op∗

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv
(v−1)
j,t v′

l,sβε i,s

∥∥∥∥∥ = Op∗

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv′
j,tβv(g−1)

l,s ε i,s

∥∥∥∥∥ = Op∗

(
1√
T

)
∥∥∥∥∥ 1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjslvi,tv
(v−1)
j,t v(g−1)

l,s ε i,s

∥∥∥∥∥ = Op∗

(
1√
T

)
(3.49)

Combining then all these results in (3.47) gives

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjslV′
iUjD−mU′

lεi = d1,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl

[
vi,tv′

j,tβε l,sε i,s

]}

+
1+k

∑
v=2

dv,1

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

T

∑
t=1

T

∑
s=1

sisjsl

[
vi,tv

(v−1)
j,t ε l,sε i,s

]}

+ Op∗

(
1√
T

)
+ Op∗

(
1√
N

)
(3.50)
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and subsequently

1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjslV′
iUjD−mU′

lεi −→p∗ 5d1,1 lim
N→∞

1
N

N

∑
i=1

Σiβσ2
i + 5

1+k

∑
v=2

dv,1 lim
N→∞

1
N

N

∑
i=1

Σiqv−1σ2
i

= 5 lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′

so that from insertion into (3.46) follows

q̂∗
[MF0−MF̂0∗ ],Vε −→

p∗ 5
2
√

τ lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′

= 2
√

τ lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′

+ (1/2)
√

τ lim
N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′, (3.51)

where we will use the second term to formulate the bias as in that of Lemma C-4. Combining then (3.38),

(3.42), (3.43) and (3.51) into q̂∗
[MF0−MF̂0∗ ]

= q̂∗
[MF0−MF̂0∗ ],Vε − q̂∗

[MF0−MF̂0∗ ],Vη − q̂∗
[MF0−MF̂0∗ ],Γε + q̂∗

[MF0−MF̂0∗ ],Γη ,

and recalling from their definitions in (2.26)-(2.27) of Lemma B-3 that

d1 = q′
xyΣ′

ηvec
(
(C†)′ΣuD−mΣuC†

)
d2 = lim

N→∞

1
N

N

∑
i=1

Σi[β, Ik]D−m[σ
2
i , 01×k]

′ − Γ′(C†)′ΣuD−m[σ
2, 01×k]

′

we come to the conclusion that

q̂∗
[MF0−MF̂0∗ ]

−→p∗ 2
√

τ(d1 + d2) +
√

τd+

with d+ = (1/2) limN→∞
1
N ∑N

i=1 Σi[β, Ik]D−m[σ2
i , 01×k]

′, as needed to be shown.

It remains to show that d1 = d2 = d+ = 0 when m = 1 + k. To see this, note first that by Lemma C-2

T−1(Z∗
)′Z∗

= C
′
wT−1F′FCw + C

′
wT−1F′Uw + T−1U′

wFCw + T−1U′
wUw

= C
′
wT−1F′FCw + Op∗(N−1) + Op∗((NT)−1/2)

and also rk(T−1(Z∗
)′Z∗

) − rk(C′
wT−1F′FCw)

a.s.−→ 0 implies that Theorem 1 in Karabiyik et al. (2017)

can directly be applied to yield
∥∥∥(T−1(Z∗

)′Z∗
)† − (C

′
wT−1F′FCw)†

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2) and∥∥∥(T−1(Z∗
)′Z∗

)†
∥∥∥ = Op∗(1), thereby foregoing the need for a rotation. Hence, since if m = 1+ k we get us-

ing the earlier definition that Rw = C
−1
w such that MF0 = MF and MF̂0∗ = IT − Z∗Rw(R′

wZ∗′Z∗Rw)†R′
wZ∗′,

but that by the properties of the generalized inverse MF = IT −F(F′F)†F′ = IT −FCw(C
′
wT−1F′FCw)†C

′
wF′ =

MFCw
and MF̂0∗ = MF̂∗ , the components of which are all well behaved, equation (3.20) can be simplified
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and analyzed as

MF0 − MF̂0∗ = T−1Uw(T−1(Z∗
)′Z∗

)†U′
w + T−1Uw(T−1(Z∗

)′Z∗
)†C

′
wF′ + T−1FCw(T−1(Z∗

)′Z∗
)†U′

w

+ T−1FCw[(T−1(Z∗
)′Z∗

)† − (C
′
wT−1F′FCw)

†]C
′
wF′ (3.52)

Then, substituting in this decomposition yields

∥∥∥q̂∗
[MF0−MF̂0∗ ],Γη

∥∥∥ ≤ √
τN,T

∥∥∥∥∥ 1
N

N

∑
i=1

si(q′
yη̃′i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2
N
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Uw

∥∥∥
= Op∗(N−1) + Op∗((NT)−1/2)

because by application of the results in lemma C-2 we now obtain

∥∥∥T−1U′
w[MF0 − MF̂0∗ ]Uw

∥∥∥ ≤
∥∥∥∥∥U′

wUw

T

∥∥∥∥∥
2
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥+ 2

∥∥∥∥∥U′
wUw

T

∥∥∥∥∥
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥ ∥∥Cw

∥∥ ∥∥∥∥F′Uw

T

∥∥∥∥
+
∥∥Cw

∥∥2
∥∥∥∥F′Uw

T

∥∥∥∥2
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†

−
(

C
′
w

F′F
T

Cw

)†
∥∥∥∥∥∥

= Op∗(N−2) + Op∗(N−3/2T−1/2)

Next up are q̂∗
[MF0−MF̂0∗ ],Γε and q̂∗

[MF0−MF̂0∗ ],Vη . Making use of εi = UiB−1qy, Vi = Uiqx and T/N = O(1)

∥∥∥q̂∗
[MF0−MF̂0∗ ],Γε

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

si ∥Γi∥
∥∥∥C

†
w

∥∥∥N
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥
= Op∗(N−1) + Op∗((NT)−1/2)∥∥∥q̂∗

[MF0−MF̂0∗ ],Vη

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

si ∥qx∥ N
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Ui

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥∥η̃iqy
∥∥

= Op∗(N−1) + Op∗((NT)−1/2)

since from (3.52) and lemma C-2 follows∥∥∥T−1U′
w[MF0 − MF̂0∗ ]Ui

∥∥∥
≤
∥∥∥∥∥U′

wUw

T

∥∥∥∥∥
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥
∥∥∥∥∥U′

wUi

T

∥∥∥∥∥+
∥∥∥∥∥U′

wUw

T

∥∥∥∥∥
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥ ∥∥Cw

∥∥ ∥∥∥∥F′Ui

T

∥∥∥∥
+

∥∥∥∥F′Uw

T

∥∥∥∥ ∥∥Cw
∥∥ ∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥
∥∥∥∥∥U′

wUi

T

∥∥∥∥∥+ ∥∥Cw
∥∥2
∥∥∥∥F′Uw

T

∥∥∥∥
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†

−
(

C
′
w

F′F
T

Cw

)†
∥∥∥∥∥∥
∥∥∥∥F′Ui

T

∥∥∥∥
= Op∗(N−2) + Op∗(N−3/2T−1/2)

Finally, for q̂∗
[MF0−MF̂0∗ ],Vε we find

∥∥∥q̂∗
[MF0−MF̂0∗ ],Vε

∥∥∥ ≤ √
τN,T

1
N

N

∑
i=1

si ∥qx∥ N
∥∥∥T−1U′

i[MF0 − MF̂0∗ ]Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op∗(N−1) + Op∗(T−1/2)
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from T/N = O(1) and∥∥∥T−1U′
i[MF0 − MF̂0∗ ]Ui

∥∥∥
≤
∥∥∥∥∥U′

wUi

T

∥∥∥∥∥
2
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥+ 2

∥∥∥∥∥U′
wUi

T

∥∥∥∥∥
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†
∥∥∥∥∥∥ ∥∥Cw

∥∥ ∥∥∥∥F′Ui

T

∥∥∥∥
+
∥∥Cw

∥∥2
∥∥∥∥F′Ui

T

∥∥∥∥2
∥∥∥∥∥∥
(
(Z∗

)′Z∗

T

)†

−
(

C
′
w

F′F
T

Cw

)†
∥∥∥∥∥∥

= Op∗(N−2) + Op∗(N−1T−1/2) + Op∗(N−1/2T−1)

Hence, by combining results we have when m = 1 + k as (N, T) → ∞

q̂∗
[MF0−MF̂0∗ ]

−→p∗ 0k×1

which translates to d1 = d2 = d+ = 0k×1 in eq.(3.34) of the lemma, as needed to be shown.
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Lemma C-5 Under Ass.1-5 we have∥∥∥q̂∗
PF0

∥∥∥ = Op∗(T−1/2) (3.53)

as (N, T) → ∞.

Proof of Lemma C-5

The proof of this lemma is nearly identical to that of lemma B-4. That is, since q̂∗
PF0

= q̂∗
PF0 ,Vε − q̂∗

PF0 ,Vη −

q̂∗
PF0 ,Γε + q̂∗

PF0 ,Γη , and noting that PF0 = F0Σ̂
†
F0 T−1F0′ and F0 = [F, 0T,1+k−m], rewriting the last term gives

q̂∗
PF0 ,Γη =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wPF0 UwC

†
wη̃iqy

=
√

τN,T

[
1
N

N

∑
i=1

si(q′
yη̃′i ⊗ Γ′

i)

] [
C

†
w ⊗ C

†
w

]′
vec
(

NT−1U′
wF0Σ̂

†
F0 T−1F0′Uw

)
= Op∗(T−1)

(3.54)

because the independence of si from the other variables and E∗(si) = O(1) implies
∥∥∥ 1

N ∑N
i=1 si(q′

yη̃′i ⊗ Γ′
i)
∥∥∥ =

Op∗(1) from Ass.3 and
∥∥T−1F0′Uw

∥∥ = Op∗((NT)−1/2) from Lemma C-2 yields∥∥∥NT−1U′
wF0Σ̂

†
F0 T−1F0′Uw

∥∥∥ ≤ N
∥∥∥T−1F0′Uw

∥∥∥2 ∥∥∥Σ̂
†
F0

∥∥∥ = Op∗(T−1)

For the next two terms, using also
∥∥T−1F0′Ui

∥∥ = Op∗(T−1/2) from Lemma B-1 and Vi = Uiqx, εi =

UiB−1qy follows∥∥∥√NT−1U′
wF0Σ̂

†
F0 T−1F0′εi

∥∥∥ ≤
√

N
∥∥∥T−1U′

wF0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥T−1F0′Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op∗(T−1)∥∥∥√NT−1U′
wF0Σ̂

†
F0 T−1F0′Vi

∥∥∥ ≤
√

N
∥∥∥T−1U′

wF0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥T−1F0′Ui

∥∥∥ ∥qx∥ = Op∗(T−1)

such that∥∥∥q̂∗
PF0 ,Γε

∥∥∥ ≤
√

T
1
N

N

∑
i=1

∥si∥ ∥Γi∥
∥∥∥C

†
w

∥∥∥ ∥∥∥√NT−1U′
wF0Σ̂

†
F0 T−1F0′εi

∥∥∥ = Op∗(T−1/2) (3.55)

∥∥∥q̂∗
PF0 ,Vη

∥∥∥ =
√

T
1
N

N

∑
i=1

∥si∥
∥∥∥T−1V′

iF
0Σ̂

†
F0

√
NT−1F0′Uw

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥η̃i∥
∥∥qy

∥∥ = Op∗(T−1/2) (3.56)

Next, by the independence of si and mutual independence in Ass.5 with expectation zero error terms in

Ass.1

E∗
(

q̂∗
PF0 ,Vε

)
=

1√
NT

N

∑
i=1

E∗(si)E
∗(Vi)

′E∗(PF0)E∗(εi) = 0k×1
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and also, since Vi and εi are independent over i with E∗(s2
i ) < ∞

E∗(q̂∗
PF0 ,Vε)(q̂

∗
PF0 ,Vε)

′ =
1

NT

N

∑
i=1

N

∑
j=1

E∗(sisj)E
∗
(

V′
iPF0E∗(εiε

′
j)PF0 Vj

)
=

1
NT

N

∑
i=1

E∗(s2
i )E

∗ (V′
iPF0E∗(εiε

′
i)PF0 Vi

)
=

1
NT

N

∑
i=1

E∗(s2
i )E

∗
(

V′
iF

0Σ̂F0 T−1F0′E∗(εiε
′
i)F

0Σ̂F0 T−1F0′Vi

)
=

1
NT3

N

∑
i=1

E∗(s2
i )

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
q=1

E∗
(

vi,tf0′
t Σ̂

†
F0 f0

s E∗(ε i,sε i,r)f0′
r Σ̂

†
F0 f0

qv′
i,q

)
=

1
NT3

N

∑
i=1

E∗(s2
i )

T

∑
t=1

T

∑
q=1

E∗
(

vi,tf0′
t Σ̂

†
F0

[
T

∑
s=1

T

∑
r=1

σi,s,rf0
s f0′

r

]
Σ̂

†
F0 f0

qv′
i,q

)

=
1

NT3 O(NT2) = O
(

1
T

)
by the stationarity of ft, ε i,t, vi,t and their mutual independence. This implies that∥∥∥q̂PF0 ,Vε

∥∥∥ = Op∗(T−1/2) (3.57)

Combining (3.54), (3.55), (3.56) and (3.57) then leads to the conclusion∥∥∥q̂PF0

∥∥∥ ≤
∥∥∥q̂PF0 ,Vε

∥∥∥+ ∥∥∥q̂PF0 ,Vη

∥∥∥+ ∥∥∥q̂PF0 ,Γε

∥∥∥+ ∥∥∥q̂PF0 ,Γη

∥∥∥ = Op∗(T−1/2)

which is what needed to be shown.
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Lemma C-6 Under Ass.1-5 as (N, T) → ∞ such that τN,T → τ < ∞,

q̂∗
I = q̂∗

I,Vε + 2
√

τ(b1 − b2) + op(1) (3.58)

q̂∗
I

d∗−→ N (0k×1, 2Ψ) + 2
√

τ(b1 − b2) (3.59)

with q̂∗
I,Vε =

1√
NT ∑N

i=1 siV′
iεi and b1, b2 and Ψ defined in lemma B-5.

Proof of Lemma C-6

Recall that

q̂∗
I = q̂∗

I,Vε − q̂∗
I,Vη − q̂∗

I,Γϵ + q̂∗
I,Γη

For the last term in this decomposition we find from

1
N

N

∑
i=1

si(η̃iqy ⊗ Γi) =
1
N

N

∑
i=1

si(η̃iqy ⊗ (C + η̃i)qx) = E∗(si)E
∗(η̃i ⊗ η̃i)(qy ⊗ qx) + Op∗(N−1/2)

= Σηqxy + Op∗(N−1/2)

by the independence of si from the other variables, E∗(si) = 1 and Ass.3, together with substituting in

(3.22) from Lemma C-2 and C
†
w = C† + Op∗(N−1/2) that

q̂∗
I,Γη =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wUwC

†
wη̃iqy =

√
τN,T

[
1
N

N

∑
i=1

si(η̃iqy ⊗ Γi)

]′
vec
(
(C

†
w)

′NT−1U′
wUwC

†
w

)
= 2

√
τq′

xyΣ′
ηvec

(
(C†)′ΣuC†

)
+ Op∗(N−1/2) + Op∗(T−1/2) (3.60)

Next, making use of εi = UiB−1qy and Uw = N−1(siUi + ∑N
j ̸=i sjUj),

q̂∗
I,Γε =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wεi =

√
τN,T

N

∑
i=1

siΓ
′
i(C

†
w)

′T−1U′
wεi

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

i(C
†
w)

′(T−1U′
iUi)B−1qy

]
+
√

τN,T

[
1

NT

N

∑
i=1

N

∑
j ̸=i

sisjΓ
′
i(C

†
w)

′U′
jUiB−1qy

]

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

i(C
†
w)

′[σ2
i , 01×k]

′
]
+ Op∗(T−1/2)

where the order of the rightmost term on the second line equals that of (2.34) due to the independence

of si, sj from the other variables, and we used T−1U′
iUiB−1qy = [σ2

i , 01×k]
′ + Op∗(T−1/2). It thus follows

under Ass.1,3 and given that E∗(s2
i ) = 2 + O(N−1) that

q̂∗
I,Γε −→p∗ 2

√
τΓ′(C†)′[σ2, 01×k]

′ (3.61)
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For q̂∗
I,Vη , making use of Vi = Uiqx and substituting in the same results as above leads to

q̂∗
I,Vη =

1√
NT

N

∑
i=1

siV′
iUwC

†
η̃iqy

=
√

τN,Tq′
x

[
1
N

N

∑
i=1

si(T−1U′
iUi)C

†
wη̃i

]
qy +

√
τN,Tq′

x

[
1
N

N

∑
i=1

N

∑
j ̸=i

sisj(T−1U′
iUj)C

†
wη̃i

]
qy

=
√

τN,Tq′
x

[
1
N

N

∑
i=1

siΣu,iC
†
wη̃i

]
qy + Op∗(T−1/2)

=
√

τN,Tq′
xy

[
1
N

N

∑
i=1

si(η̃i ⊗ Σu,i)

]′
vec(C†

w) + Op∗(T−1/2)

= Op∗(N−1/2) + Op∗(T−1/2) (3.62)

because 1
N ∑N

i=1 η̃i = Op∗(N−1/2) by Ass.3 and the independence from the si (with the latter having finite

variance) implies that their presence will not change this order.

Finally, recalling that

q̂∗
I,Vε =

1√
NT

N

∑
i=1

siV′
iεi

we have
∥∥q̂∗

I,Vε

∥∥ = Op∗(1), and it follows under Ass.1 and the independence of the si with respect to Vi

and εi that E∗(q̂∗
I,Vε) = 0k×1. The cross-section independence of Vi and εi with E∗(s2

i ) = 2 + O(N−1) in

lemma C-1 leads to

Var∗
(
q̂∗

I,Vε

)
= E∗

[
1

NT

N

∑
i=1

N

∑
j=1

sisjV′
iεiε

′
jVj

]
=

1
NT

N

∑
i=1

N

∑
j=1

E∗(sisj)E
∗(V′

iE
∗(εiε

′
j)Vj)

=
1

NT

N

∑
i=1

E∗(s2
i )E

∗(V′
iE

∗(εiε
′
i)Vi)

=
1

NT

N

∑
i=1

2E∗(V′
iΩiVi) + O(N−1)

with Ωi = E(εiε
′
i). Hence, given that all 4th order moments are finite and {sivi,tεi,t} are stationary and

cross-section independent we have by a CLT for independent heterogeneous variables as (N, T) → ∞

q̂∗
I,Vε =

1√
NT

N

∑
i=1

siV′
iεi

d∗−→ N (0k×1, 2Ψ) (3.63)

with Ψ as defined in Lemma B-5. Combining (3.60)-(3.63) in the decomposition of q̂∗
I then gives

q̂∗
I

d∗−→ N (0k×1, 2Ψ) + 2
√

τ(b1 − b2)

with b1 and b2 as defined in Lemma B-5. This is what needed to be shown.
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Lemma C-7 Under Ass.1-5 we have that

Q̂∗ −→p∗ Σ (3.64)

(Q̂∗)−1 −→p∗ Σ−1 (3.65)

as (N, T) → ∞.

Proof of Lemma C-7

Recall that

Q̂∗ =
1

NT

N

∑
i=1

siX′
iMF̂∗Xi = Q̂∗

I − Q̂∗
PF0

− Q̂∗
[MF0−MF̂0∗ ]

which for a given matrix A was decomposed as Q̂∗
A = Q̂∗

A,VV − Q̂∗
A,VΓ − (Q̂∗

A,VΓ)
′ + Q̂∗

A,ΓΓ with

Q̂∗
A,VV =

1
NT

N

∑
i=1

siV′
iAVi

Q̂∗
A,VΓ =

1
NT

N

∑
i=1

siV′
iAUwC

†
wΓi

Q̂∗
A,ΓΓ =

1
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wAUwC

†
wΓi

For the analysis, recall from Lemma C-2 that
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1) and
∥∥T−1F0′Uw

∥∥ = Op∗((NT)−1/2)

and note that (3.36) implies
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1). Given also that
∥∥∥ 1

N ∑N
i=1 si(Γ

′
i ⊗ Γ′

i)
∥∥∥ =

Op∗(1) by Ass.3 and the independence of si and Γi, we have

∥∥∥Q̂∗
I,ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

si(Γ
′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2 ∥∥∥T−1U′
wUw

∥∥∥ = Op∗(N−1)

∥∥∥Q̂∗
PF0 ,ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

si(Γ
′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2 ∥∥∥T−1U′
wF0

∥∥∥2 ∥∥∥Σ̂F0

∥∥∥ = Op∗((NT)−1)

∥∥∥Q̂∗
[MF0−MF̂0∗ ],ΓΓ

∥∥∥ ≤
∥∥∥∥∥ 1

N

N

∑
i=1

si(Γ
′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2 ∥∥∥T−1U′
w[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1)

Next, the fact that Vi = Uiqx and using also
∥∥∥T−1U′

wUi

∥∥∥ = Op∗(N−1) +Op∗((NT)−1/2) from Lemma C-2

and
∥∥T−1F0′Ui

∥∥ = Op∗(T−1/2) of Lemma B-1 reveal that∥∥∥Q̂∗
I,VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

si ∥qx∥
∥∥∥T−1U′

wUi

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ = Op∗(N−1) + Op∗((NT)−1/2)

∥∥∥Q̂∗
PF0 ,VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

si ∥qx∥
∥∥∥T−1F0′Ui

∥∥∥ ∥∥∥Σ̂F0

∥∥∥ ∥∥∥T−1U′
wF0

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ = Op∗(N−1/2T−1)

∥∥∥Q̂∗
PF0 ,VV

∥∥∥ ≤ 1
N

N

∑
i=1

si ∥qx∥2
∥∥∥T−1F0′Ui

∥∥∥2 ∥∥∥Σ̂F0

∥∥∥ = Op∗(T−1)
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For the next result, equations (3.39) and (3.40) imply∥∥∥T−1U′
w[MF0 − MF̂0∗ ]Ui

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2)

so that in turn∥∥∥Q̂∗
[MF0−MF̂0∗ ],VΓ

∥∥∥ ≤ 1
N

N

∑
i=1

si ∥qx∥
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Ui

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ = Op∗(N−1) + Op∗((NT)−1/2)

Next, from two lines above eq.(3.44)

T−1U′
i[MF0 − MF̂0∗ ]Ui = T−1U′

iU
0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Ui

+ Op∗(N−3/2) + Op∗(N−1/2T−1) + Op∗(N−1T−1/2) + Op∗(T−3/2)

which using
∥∥∥T−1(U0

w,−m)
′Ui

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) from Lemma C-3 leads to∥∥∥T−1U′
i[MF0 − MF̂0∗ ]Ui

∥∥∥ ≤
∥∥∥T−1(U0

w,−m)
′Ui

∥∥∥2 ∥∥∥Σ̂
†
u0

w,−m

∥∥∥
+ Op∗(N−3/2) + Op∗(N−1/2T−1) + Op∗(N−1T−1/2) + Op∗(T−3/2)

= Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2) (3.66)

Substituting this result into Q̂∗
[MF0−MF̂0∗ ],VV gives

∥∥∥Q̂∗
[MF0−MF̂0∗ ],VV

∥∥∥ ≤ 1
N

N

∑
i=1

si ∥qx∥2
∥∥∥T−1U′

i[MF0 − MF̂0∗ ]Ui

∥∥∥ = Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2)

For the last remaining term it follows from Ass.1 and the independence between si and Vi that

Q̂∗
I,VV =

1
N

N

∑
i=1

si

(
V′

iVi

T

)
=

1
N

N

∑
i=1

siΣi + Op∗(T−1/2)

Combining then all the previous results into Q̂∗ = Q̂∗
I − Q̂∗

MF0
− Q̂∗

[MF0−MF̂0∗ ]
makes

Q̂∗ =
1
N

N

∑
i=1

siΣi + Op∗(T−1/2) + Op∗(N−1)

Then, given that from E∗(si) = 1 and Ass.1

1
N

N

∑
i=1

siΣi −→p∗ E∗(si)E
∗(Σi) = Σ

it follows that

Q̂∗ −→p∗ Σ

as in eq.(3.64) of the lemma. As Σ is positive definite by Ass.1, the previous result implies that rk(Q̂∗)−

rk(Σ) a.s.→ 0, which by application of Theorem 1 in Karabiyik et al. (2017) then leads to eq.(3.65) of the

lemma. This finishes the proof.
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3.3.2 Theorems and Corollaries

Theorem 2 Under Ass.1-5 we have as (N, T) → ∞ such that T/N = τN,T → τ < ∞ that

√
NT(β̂

∗ − β̂)
d∗−→ N (0k×1, Σ−1ΨΣ−1) +

√
τΣ−1(b − d − d+)

where b = b1 − b2 and d = d1 + d2 are given in Lemmas C-4 and C-6 and d+ is defined in Lemma C-4. If in

addition either τ = 0 or m = 1 + k then

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗ − β̂) ≤ x]− P[

√
NT(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate wise.

Proof of Theorem 2 Consider that from (2.22) and (3.29) we have

√
NT(β̂

∗ − β) = (Q̂∗)−1q̂∗

√
NT(β̂

∗ − β)−
√

NT(β̂ − β) = (Q̂∗)−1q̂∗ − Q̂−1q̂
√

NT(β̂
∗ − β̂) = (Q̂∗)−1[q̂∗ − q̂] + [(Q̂∗)−1 − (Q̂)−1]q̂ (3.67)

and using further the definitions in (2.24) and (3.33) we can write, specifically with q̂I = q̂I,Vε − q̂I,Vη −

q̂I,Γε + q̂I,Γη and q̂∗
I = q̂∗

I,Vε − q̂∗
I,Vη − q̂∗

I,Γε + q̂∗
I,Γη that

√
NT(β̂

∗ − β̂) = (Q̂∗)−1q̃I,Vε + [k̂∗ − k̂] + [(Q̂∗)−1 − (Q̂)−1]q̂ (3.68)

with q̃I,Vε = q∗
I,Vε − qI,Vε and we have defined k̂ = (Q̂∗)−1[q̂I,Γη − q̂I,Vη − q̂I,Γε − q̂PF0 − q̂[MF0−MF̂0 ]],

and similarly for the starred bootstrap world equivalent k̂∗ = (Q̂∗)−1[q̂∗
I,Γη − q̂∗

I,Vη − q̂∗
I,Γε − q̂∗

PF0
−

q̂∗
[MF0−MF̂0∗ ]

].

Recall then that by definition qI,Vε = 1√
NT ∑N

i=1 V′
iεi and q∗

I,Vε = 1√
NT ∑N

i=1 siV′
iεi and therefore we can

write

q̃I,Vε = q∗
I,Vε − qI,Vε =

1√
NT

N

∑
i=1

(si − 1)V′
iεi

Here, Ass.1 and the mutual independence of si, Vi and εi implies E[q̃I,Vε] = 0k×1. We have also by the

cross-section independence of Vi and εi under Ass.1 that

Var∗(q̃I,Vε) = E∗ [q̃I,Vεq̃′
I,Vε

]
=

1
NT

N

∑
i=1

N

∑
j=1

E∗[(si − 1)(sj − 1)]E∗
[
V′

iE
∗(εiε

′
j)Vj

]
=

1
NT

N

∑
i=1

E∗[(si − 1)2]E∗ [V′
iE

∗(εiε
′
i)Vi

]
=

1
NT

N

∑
i=1

E∗ [V′
iΩiVi

]
+ O(N−1)
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where the final line uses E∗(si) = 1 and E∗(s2
i ) = 2 − N−1 from Lemma C-1 such that E∗[(si − 1)2] =

E∗(s2
i )− 2E∗(si) + 1 = 1− N−1. Hence, by a CLT for independent but heterogeneous stationary variables

as (N, T) → ∞

q̃I,Vε
d∗−→ N (0k×1, Ψ) (3.69)

with Ψ defined in Theorem 1. Therefore, since by Lemma C-7 we have (Q̂∗)−1 −→p∗ Σ−1, the leading

term in (3.68) is the one that drives the asymptotic distribution

(Q̂∗)−1q̃I,Vε
d∗−→ N (0k×1, Σ−1ΨΣ−1) (3.70)

Next up, since Lemma B-6 shows that also Q̂−1 −→p Σ−1 we have [(Q̂∗)−1 − Q̂−1] −→p∗ 0k×k. As

Lemmas B-3, B-4 and B-5 imply ∥q̂∥ = Op(1), it follows for the last term in (3.68) as (N, T) → ∞ that

[(Q̂∗)−1 − Q̂−1]q̂ −→p∗ 0k×1 (3.71)

Consider next [k̂∗ − k̂]. Lemmas B-3, B-4, B-6 and results (2.53), (2.54), (2.56) in the proof of Lemma B-5

give

k̂ −→p √
τΣ−1(b − d)

whereas from lemmas C-4, C-5, C-7 and (3.60), (3.61), (3.62) in the proof of Lemma B-5 we get

k̂∗ −→p∗ 2
√

τΣ−1(b − d)−
√

τΣ−1d+

Hence, it follows that

[k̂∗ − k̂] −→p∗ √τΣ−1(b − d − d+) (3.72)

such that combining (3.70), (3.71) and (3.72) into (3.68) returns

√
NT(β̂

∗ − β̂)
d∗−→ N (0k×1, Σ−1ΨΣ−1) +

√
τΣ−1(b − d − d+) (3.73)

which is the reported distribution in the theorem.

For the final statement of the theorem we make use of the fact that provided m = 1+ k we have by lemma

B-3 that d = d1 + d2 = 0k×1 in the original sample, and similarly d = 0k×1, d+ = 0k×1 in the bootstrap

world by lemma C-4. Therefore, it follows under the additional condition that m = 1 + k from the same

arguments as above

√
NT(β̂

∗ − β̂)
d∗−→ N (0k×1, Σ−1ΨΣ−1) +

√
τΣ−1b (3.74)
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From this result and Theorem 1 (when m = 1 + k) directly follows that if m = 1 + k

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗ − β̂) ≤ x]− P[

√
NT(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where the inequalities are to be interpreted coordinate wise. The statement holds similarly when T/N →

τ = 0, without the requirement that m = 1 + k, since the distributions in (3.73) and Theorem 1 are then

unbiased.
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Corollary 2 Let Ass.1-3, 5 and 7 hold. Letting β̂
∗
x be the CCEP estimator in the bootstrap world with PF̂∗ =

X
∗
(X

∗′
X
∗
)X

∗′, we have as (N, T) → ∞ such that T/N → τ < ∞ that
√

NT(β̂
∗
x − β̂)

d∗−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1g

with g defined in Corollary 1. By consequence,

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
x − β̂x) ≤ x]− P[

√
NT(β̂x − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate wise.

Proof of Corollary 2 As in the proof of Corollary 1, we can study the CCEP estimator with y∗ ex-

cluded for the estimation of the factors by replacing in all expressions Z∗, Uw, Cw with respectively X
∗
, Vw

and Γw. Hence, F = (X
∗ − Vw)Γ

†
w and PF̂∗ = X

∗
(X

∗′
X
∗
)†X

∗′
. The associated rotation matrix is then

Rx,w = TxHx,wDN,x with Tx and DN,x as defined in Corollary 1 with ΓwTx = [Γw,m, Γw,−m] and VwTx =

[Vw,m, Vw,−m], and

Hx,w = [Hx,w,m, Hx,w,−m] =

[
Γ
−1
w,m −Γ

−1
w,mΓw,−m

0(k−m)×m Ik−m

]
(3.75)

with also
∥∥Hx,w − Hx

∥∥ = Op∗(N−1/2) and Hx was defined in Corollary 1.

Replacing then in addition also everywhere in the analysis of Theorem 2 Rw, T, Hw, H with Rx,w, Tx, Hx,w, Hx

allows us to analyze the CCEP estimator β̂x in the pairs bootstrap world, with for completeness now

F̂0∗ = [FΓw + Vw]Rx,w = F0 + V0
w (3.76)

where F0 = [F, 0T×(k−m)] and V0
w = [V0

w,m, V0
w,−m], with V0

w,m = Vw,mΓ
−1
w,m and V0

w,−m =
√

NVwTxHx,w,−m =
√

N(Vw,m − Vw,mΓ
−1
w,mΓw,−m).

Denote now the scaled deviation of the CCEP estimator in the pairs bootstrap
√

NT(β̂
∗
x − β) = (Q̂∗

x)
−1q̂∗

x (3.77)

where the breakdown of Q̂∗
x and q̂∗

x is identical to that outlined in (3.32) and (3.33), but we will use an

additional x subscript to make explicit that in this breakdown Z∗, Uw, Cw are replaced with X
∗
, Vw, Γw

and the rotated matrices have also been redefined as above. For the analysis, since X
∗ ⊂ Z∗, Vw ⊂ Uw

and Γw ⊂ Cw, the asymptotic orders derived in Lemmas C-2, C-3, C-4, C-5, C-6, C-7 for Z∗, Uw, Cw are

upper bounds for the analysis with X
∗
, Vw, Γw here (i.e. the terms here converge at a rate at least as fast or

faster). Hence, it follows directly from Lemmas C-5 and C-7

(Q̂∗
x)

−1 −→p∗ Σ−1 (3.78)∥∥∥q̂∗
x,PF0

∥∥∥ = Op∗(T−1/2) (3.79)
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For the analysis of q̂∗
x,[MF0−MF̂0∗ ]

= q̂∗
x,[MF0−MF̂0∗ ],Vε − q̂∗

x,[MF0−MF̂0∗ ],Vη − q̂∗
x,[MF0−MF̂0∗ ],Γε + q̂∗

x,[MF0−MF̂0∗ ],Γη ,

we have directly from (3.43) in Lemma C-4∥∥∥q̂∗
x,[MF0−MF̂0∗ ],Vη

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) (3.80)

Also, employing the same arguments as for (3.38) but replacing Uw, Cw, T, Hw with respectively Vw, Γw, Tx

and Hx,w reveals

q̂∗
x,[MF0−MF̂0∗ ],Γη = 2

√
τq′

xyΣ′
ηvec((Γ†)′ΣDx,−mΣΓ†) + Op∗(N−1/2) + Op∗(T−1/2) (3.81)

with Dx,−m = TxHx,−m(H′
x,−mT′

xΣTxHx,−m)†H′
x,−mT′

x. The latter follows since replacing Uw with Vw

yields in eq.(3.37) that
√

NT−1VwV0
w,−m = 2ΣTxHx,−m +Op∗(N−1/2)+Op∗(T−1/2) because also replacing

U0
w,−m with V0

w,−m =
√

NVwTxHx,−m in the proof eq.(3.26) of Lemma C-3 results in

Σ̂
†
u0

w,−m
= (1/2)(H′

x,−mT′
xΣTxHx,−m)

† + Op∗(N−1/2) + Op∗(T−1/2) (3.82)

Next, we have for q̂∗
x,[MF0−MF̂0∗ ],Γε by substituting in the same results as in the proof for q̂∗

[MF0−MF̂0∗ ],Γε in

(3.42) of Lemma C-4, defining also Dx = (Γ
†
)′ΣDx,−m and noting Vw = N−1(siVi + ∑N

j ̸=i sjVj) that

q̂∗
x,[MF0−MF̂0∗ ],Γε =

1√
NT

N

∑
i=1

siΓ
′
i(Γ

†
w)

′V′
w[MF0 − MF̂0∗ ]εi

=
1
N

N

∑
i=1

siΓ
′
i(Γ

†
w)

′ΣDx,−m
√

NT−1/2V′
wεi + Op∗(N−1/2) + Op∗(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

iDx(T−1V′
iεi) +

1
NT

N

∑
i=1

N

∑
j ̸=i

sisjΓ
′
iDxV′

jεi

]
+ Op∗(N−1/2) + Op∗(T−1/2)

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

iDx(T−1V′
iεi)

]
+ Op∗(N−1/2) + Op∗(T−1/2)

= Op∗(N−1/2) + Op∗(T−1/2) (3.83)

where on the fourth line we made use of Vj = Ujqx, εi = UiB−1qy and the independence of si, sj from

the other variables (with their 4th moments being finite) to substitute in the order derived in (2.34) for

the rightmost term on line three, and the fifth line makes use of T−1V′
iεi = Op∗(T−1/2). Next up is

q̂∗
x,[MF0−MF̂0∗ ],Vε. Given the relation between Ui and Vi, we obtain the same result as (3.46) but where Uj

and Ul are replaced with Vj, Vl and D−m = Dx,−m, so that with dx
v,g denoting row v and column g of

Dx,−m

q̂∗
x,[MF0−MF̂0∗ ],Vε

=
√

τN,T

[
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjslV′
iVjDx,−mV′

lεi

]
+ Op∗(N−1/2) + Op∗(T−1/2)

=
√

τN,T

[
k

∑
v=1

k

∑
g=1

dx
v,g

{
1

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

sisjsl

T

∑
t=1

T

∑
s=1

vi,tv
(v)
j,t v(g)

l,s ε i,s

}]
+ Op∗(N−1/2) + Op∗(T−1/2)

= Op∗(N−1/2) + Op∗(T−1/2) (3.84)
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where on the last line (3.49) of the proof of Lemma C-4 was substituted in. Combining then (3.80), (3.81),

(3.83) and (3.84) in the definition of q̂∗
x,[MF0−MF̂0∗ ]

gives

q̂∗
x,[MF0−MF̂0∗ ]

−→p∗ 2
√

τdx (3.85)

where we recall from Corollary 1 that dx = q′
xyΣ′

ηvec((Γ†)′ΣDx,−mΣΓ†).

Consider next

q̂∗
x,I = q̂∗

x,I,Vε − q̂∗
x,I,Vη − q̂∗

x,I,Γϵ + q̂∗
x,I,Γη

As before, the fact that X
∗ ⊂ Z∗, Γw ⊂ Cw, Vw ⊂ Uw implies that the orders derived in Lemma C-6 are

upper bounds for the analysis with Z∗ replaced by X
∗
, so that it follows directly from (3.62) of the proof

of Lemma C-6∥∥∥q̂∗
x,I,Vη

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) (3.86)

Then, for the last term in this decomposition

q̂∗
x,I,Γη =

1√
NT

N

∑
i=1

siΓ
′
i(Γ

†
w)

′V′
wVwΓ

†
wη̃iqy =

√
τN,T

[
1
N

N

∑
i=1

si(η̃iqy ⊗ Γi)

]′
vec
(
(Γ

†
w)

′NT−1V′
wVwΓ

†
w

)
= 2

√
τq′

xyΣ′
ηvec

(
(Γ†)′ΣΓ†

)
+ Op∗(N−1/2) + Op∗(T−1/2) (3.87)

where we have substituted (3.22) of Lemma C-2 into NT−1V′
wVw = q′

x(NT−1U′
wUw)qx = 2q′

xΣuqx +

Op∗(N−1/2) + Op∗(T−1/2) = 2Σ + Op∗(N−1/2) + Op∗(T−1/2). Next,

q̂∗
x,I,Γε =

1√
NT

N

∑
i=1

siΓ
′
i(Γ

†
w)

′V′
wεi =

√
τN,T

N

∑
i=1

siΓ
′
i(Γ

†
w)

′T−1V′
wεi

=
√

τN,T

[
1
N

N

∑
i=1

s2
i Γ′

i(Γ
†
w)

′(T−1V′
iεi)

]
+
√

τN,T

[
1

NT

N

∑
i=1

N

∑
j ̸=i

sisjΓ
′
i(Γ

†
w)

′V′
jεi

]
= Op∗(T−1/2) (3.88)

since given the independence of si, sj from the other variables and Vj = Ujqx, εi = UiB−1qy the rightmost

term on the second line is Op∗(T−1/2) by the same arguments as for (2.34) in the proof of Lemma B-3, and

for the left term we have used T−1V′
iεi = Op∗(T−1/2). Then, since q̂∗

x,I,Vε = q̂∗
I,Vε, the result in eq.(3.63) of

the proof for Lemma C-6 directly applies and we can combine it together with (3.86), (3.87) and (3.88) in

the decomposition of q̂∗
x,I to conclude that as (N, T) → ∞

q̂∗
x,I = q̂∗

I,Vε + 2
√

τbx + op∗(1) (3.89)

which implies in turn

q̂∗
x,I

d∗−→ N (0k×1, 2Ψ) + 2
√

τbx (3.90)

82



with bx = q′
xyΣ′

ηvec((Γ†)′ΣΓ†).

Consider then the following expansion of β̂
∗
x around β̂x

√
NT(β̂

∗
x − β) = (Q̂∗

x)
−1q̂∗

x
√

NT(β̂
∗
x − β)−

√
NT(β̂x − β) = (Q̂∗

x)
−1q̂∗

x − Q̂−1
x q̂x

√
NT(β̂

∗
x − β̂x) = (Q̂∗

x)
−1[q̂∗

x − q̂x] + [(Q̂∗
x)

−1 − Q̂−1
x ]q̂x

= (Q̂∗
x)

−1[q̂∗
x,I,Vε − q̂x,I,Vε] + [k̂∗

x − k̂x] + [(Q̂∗
x)

−1 − Q̂−1
x ]q̂x

= (Q̂∗
x)

−1q̃∗
x,I,Vε + [k̂∗

x − k̂x] + [(Q̂∗
x)

−1 − Q̂−1
x ]q̂x (3.91)

where q̃∗
x,I,Vε = [q̂∗

x,I,Vε − q̂x,I,Vε] and

k̂x = (Q̂∗
x)

−1[q̂x,I,Γη − q̂x,I,Vη − q̂x,I,Γε − q̂x,PF0 − q̂x,[MF0−MF̂0 ]] −→
p∗ √τΣ−1g (3.92)

k̂∗
x = (Q̂∗

x)
−1[q̂∗

x,I,Γη − q̂∗
x,I,Vη − q̂∗

x,I,Γε − q̂∗
x,PF0

− q̂∗
x,[MF0−MF̂0∗ ]

] −→p∗ 2
√

τΣ−1g (3.93)

with g = bx − dx = q′
xyΣ′

ηvec((Γ†)′Σ(Ik − Dx,−mΣ)Γ†). The latter results follow from substituting into

both expressions (Q̂∗
x)

−1 −→p∗ Σ−1 obtained in (3.78) together with (2.66), (2.72), (2.73), (2.74) and (2.75)

obtained in Corollary 1 on the first line, and (3.79), (3.85), (3.86), (3.87) and (3.88) on the second line.

Combining (3.92)-(3.93) then gives

[k̂∗
x − k̂x] −→p∗ √τΣ−1g (3.94)

For the last term in (3.91) we know from (2.65) and (2.78) of Corollary 1 that Q̂−1
x −→p Σ−1 and ∥q̂x∥ =

Op(1), respectively. Hence, with (3.78) this results in

[(Q̂∗
x)

−1 − Q̂−1
x ]q̂x −→p∗ 0k×1 (3.95)

For the first term in (3.91) note that q̃∗
x,I,Vε = [q̂∗

x,I,Vε − q̂x,I,Vε] = [q̂∗
I,Vε − q̂I,Vε] = q̃∗

I,Vε because we have by

definition that q̂∗
x,I,Vε = q̂∗

I,Vε and q̂x,I,Vε = q̂I,Vε. Hence, the result in (3.69) of Theorem 2 directly applies

and we obtain again making use of (3.78) that

(Q̂∗)−1q̃I,Vε
d∗−→ N (0k×1, Σ−1ΨΣ−1) (3.96)

Finally, combining (3.94), (3.95) and (3.96) into (3.91) leads to the conclusion that

√
NT(β̂

∗
x − β̂x)

d∗−→ N (0k×1, Σ−1ΨΣ−1) +
√

τΣ−1g

as was to be shown. This result, together with that of Corollary 1, directly implies

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
x − β̂x) ≤ x]− P[

√
NT(β̂x − β) ≤ x]

∣∣∣ −→p 0,

where the inequalities are to be interpreted coordinate wise.
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Theorem 3 Under Ass.1-5 strengthened with E(∥vi,t∥8) < ∞ we have as (N, T) → ∞ such that T/N → τ < ∞

that A∗ −→p∗ √
τA, where A∗ = E∗(

√
NT(β̂

∗ − β̂)) and A = Σ−1(b − d − d+). If in addition Ass.7 holds,

then A∗
x −→p∗ √τAx, with A∗

x = E∗(
√

NT(β̂
∗
x − β̂x)) and A∗

x = Σ−1g.

Proof of Theorem 3

We begin the proof by verifying that the bootstrap sequences
{∥∥∥√NT(β̂

∗ − β̂)
∥∥∥} and

{∥∥∥√NT(β̂
∗
x − β̂x)

∥∥∥}
are uniformly integrable. To that end, we follow the approach of Gonçalves and Kaffo (2015) (proof of

Theorem 3.2) and demonstrate that E∗
(∥∥∥√NT(β̂

∗ − β̂)
∥∥∥1+δ

)
= Op∗(1) in probability for some δ > 0,

which is a sufficient condition for uniform integrability. Uniform integrability of the sequences then en-

ables Theorem 25.12 in Billingsley (1995), which in combination with Theorem 2 and Corollary 2 then

establishes the respective statements of the theorem.

To demonstrate integrability, we set δ = 1 and recall the following expansion from the proof of Theorem

2

√
NT(β̂

∗ − β̂) = (Q̂∗)−1q̃I,Vε + [k̂∗ − k̂] + [(Q̂∗)−1 − (Q̂)−1]q̂.

By the Cauchy-Schwarz inequality, ∥x + y∥2 ≤ (∥x∥+ ∥y∥)2 ∀x, y ∈ Rk and (x + y)2 ≤ 2(x2 + y2) ∀x, y,

we obtain the following upper bound:

E∗
(∥∥∥√NT(β̂

∗ − β̂)
∥∥∥2
)
= E∗

(∥∥∥(Q̂∗)−1q̃I,Vε + [k̂∗ − k̂] + [(Q̂∗)−1 − (Q̂)−1]q̂
∥∥∥2
)

≤ E∗
([∥∥∥(Q̂∗)−1q̃I,Vε

∥∥∥+ ∥∥∥[k̂∗ − k̂] + [(Q̂∗)−1 − (Q̂)−1]q̂
∥∥∥]2
)

≤ 2E∗
(∥∥∥(Q̂∗)−1q̃I,Vε

∥∥∥2
)
+ 2E∗

(∥∥∥[k̂∗ − k̂] + [(Q̂∗)−1 − (Q̂)−1]q̂
∥∥∥2
)

≤ 2E∗
(∥∥∥(Q̂∗)−1q̃I,Vε

∥∥∥2
)
+ 2E∗

([∥∥∥[k̂∗ − k̂]
∥∥∥+ ∥∥∥[(Q̂∗)−1 − (Q̂)−1]q̂

∥∥∥]2
)

≤ 2
[

E∗
(∥∥∥(Q̂∗)−1

∥∥∥4
)]1/2

×
[
E∗
(
∥q̃I,Vε∥4

)]1/2

+ 4E∗
(∥∥∥[k̂∗ − k̂]

∥∥∥2
)
+ 4E∗

(∥∥∥[(Q̂∗)−1 − (Q̂)−1]q̂
∥∥∥2
)

≤ 2
[

E∗
(∥∥∥(Q̂∗)−1

∥∥∥4
)]1/2

×
[
E∗
(
∥q̃I,Vε∥4

)]1/2

+ 4E∗
(∥∥∥[k̂∗ − k̂]

∥∥∥2
)
+ 4

[
E∗
(∥∥∥(Q̂∗)−1 − (Q̂)−1

∥∥∥4
)]1/2

×
[
E∗
(
∥q̂∥4

)]1/2

(3.97)

where we shall now examine boundedness term by term. Clearly, using the arguments from the proof of

Theorem 2 in combination with ∥x + y∥2 ≤ (∥x∥+ ∥y∥)2 ∀x, y ∈ Rk and (x + y)2 ≤ 2(x2 + y2) ∀x, y, we
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obtain

E∗
(∥∥∥[k̂∗ − k̂]

∥∥∥2
)
= E∗

(∥∥∥√τΣ−1(b − d − d+) + r
∥∥∥2
)

≤ E∗
([∥∥∥√τΣ−1(b − d − d+)

∥∥∥+ ∥r∥
]2
)

≤ 2
∥∥∥√τΣ−1(b − d − d+)

∥∥∥2
+ 2E∗

(
∥r∥2

)
= Op∗(1), (3.98)

where the residual is ∥r∥2 = Op∗(N−1) + Op∗(T−1) in probability by (2.53), (2.54), (2.56), (3.60), (3.61),

(3.62). Therefore the second term above vanishes as (N, T) → ∞, while the first term is bounded. Further,

using the definition of the Frobenius norm yields

E∗
(
∥q̃I,Vε∥4

)
= E∗

(( 1√
NT

N

∑
i=1

(si − 1)V′
iεi

)′
1√
NT

N

∑
j=1

(sj − 1)V′
jεj

)2
=

1
N2T2

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
k=1

E∗
(
(si − 1)(sj − 1)(sl − 1)(sk − 1)ε′iViV′

jεjε
′
lVlV′

kεk

)
. (3.99)

Note that because E∗ (V′
iεj
)
= 0k for all i, j, the expression above is non-zero only when i = j = l = k

or if there are at least two pairs of identical indices (e.g. i = j and l = k). Therefore, we further examine

these two cases. To begin with, when i = j = l = k, we have

1
N2T2

N

∑
i=1

E∗
(
(si − 1)4ε′iViV′

iεiε
′
iViV′

iεi

)
=

1
N2T2

N

∑
i=1

E∗
(
(si − 1)4

) T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

E∗ (v′
i,tvi,sv′

i,rvi,p
)

E∗ (ε i,tε i,sε i,rε i,p
)

,

which follows from independence of the bootstrap weights and model primitives. This implies that∣∣∣∣∣ 1
N2T2

N

∑
i=1

E∗
(
(si − 1)4ε′iViV′

iεiε
′
iViV′

iεi

)∣∣∣∣∣
≤ sup

i,t,s,r,p

(∣∣E∗ (ε i,tε i,sε i,rε i,p
)∣∣)× E∗

(
(si − 1)4

)
× 1

N2T2

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

∣∣E∗ (v′
i,tvi,sv′

i,rvi,p
)∣∣

= sup
i,t,s,r,p

(∣∣E∗ (ε i,tε i,sε i,rε i,p
)∣∣)× E∗

(
(si − 1)4

)
×
(

T
N

)
1

NT3

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

∣∣E∗ (v′
i,tvi,sv′

i,rvi,p
)∣∣

= Op∗(1),

because T/N = O(1) under our assumptions, E∗ ((si − 1)4) ∈ R+ and it is homogeneous across i and,

finally,

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

∣∣E∗ (v′
i,tvi,sv′

i,rvi,p
)∣∣ = Op∗(T3), (3.100)

because 4th moments are finite and we do not have any pairs in (3.100) with a common time index. Letting

say t → ∞, this implies that the dependence of vi,t with the other members of the product dies out (due

85



to stationarity) for any given combination of the other indices s, r, p. Hence, the sum of expectations over

one of the indices dies out and is summable as T → ∞, which implies the stated order. The next case

occurs when there are two pairs of common indices, say i = j and l = k with i ̸= l. Here, we obtain

1
N2T2

N

∑
i=1

N

∑
j=1

E∗
(
(si − 1)2(sj − 1)2ε′iViV′

iεiε
′
jVjV′

jεj

)
=

1
N2T2

N

∑
i=1

N

∑
j=1

E∗ ((si − 1)2(sj − 1)2) T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

E∗
(

v′
i,tvi,sv′

j,rvj,p

)
E∗ (ε i,tε i,sε j,rε j,p

)
=

1
N2T2

N

∑
i=1

N

∑
j=1

E∗ ((si − 1)2(sj − 1)2) T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

tr [Cov∗ (vi,t, vi,s)]× tr
[
Cov∗

(
vj,r, vj,p

)]
× Cov∗ (ε i,t, ε i,s)× Cov∗

(
ε j,r, ε j,p

)
,

which implies that∣∣∣∣∣ 1
N2T2

N

∑
i=1

N

∑
j=1

E∗
(
(si − 1)2(sj − 1)2ε′iViV′

iεiε
′
jVjV′

jεj

)∣∣∣∣∣
≤ sup

i,j

(
E∗ ((si − 1)2(sj − 1)2))× sup

i,t,s
(|Cov∗ (ε i,t, ε i,s)|)× sup

j,r,p

(∣∣Cov∗
(
ε i,r, ε j,p

)∣∣)
× 1

N2T2

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

|tr [Cov∗ (vi,t, vi,s)]| ×
∣∣tr [Cov∗

(
vj,r, vj,p

)]∣∣
= sup

i,j

(
E∗ ((si − 1)2(sj − 1)2))× sup

i,t,s
(|Cov∗ (ε i,t, ε i,s)|)× sup

j,r,p

(∣∣Cov∗
(
ε j,r, ε j,p

)∣∣)
× 1

N2

N

∑
i=1

N

∑
j=1

(
1
T

T

∑
t=1

T

∑
s=1

|tr [Cov∗ (vi,t, vi,s)]|
)
×
(

1
T

T

∑
r=1

T

∑
p=1

∣∣tr [Cov∗
(
vj,r, vj,p

)]∣∣)
= Op∗(1)

because of the absolute summability of the covariances and the fact that the sum over individuals is

O(N2). This implies that overall

E∗
(
∥q̃I,Vε∥4

)
= Op∗(1) (3.101)

in probability.

Next, we evaluate E∗ (∥q̂∥4). Here, we use the same convenient decomposition q̂ = q̂I − q̂PF0 − q̂[MF0−MF̂0 ]

and their respective sub-decompositions (recall section 2.2) to write:

q̂ = q̂I,Vε + a1 + r1

where a1 = −q̂I,Γε + q̂I,Γη − (q̂[MF0−MF̂0 ],Vε − q̂[MF0−MF̂0 ],Γε + q̂[MF0−MF̂0 ],Γη) collects all the terms that lead

to bias, and r1 = −q̂I,Vη − q̂PF0 + q̂[MF0+MF̂0 ],Vη contains all the vanishing terms. Combining (2.37), (2.56)
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and Lemma B-4 implies r1 = Op(N−1/2) + Op(T−1/2). In addition, from (2.30), (2.35), (2.44), (2.53) and

(2.54) follows a1 =
√

τ(b − d) + Op(N−1/2) + Op(T−1/2). Hence, we can write

q̂ = q̂I,Vε + a1 + r1 = q̂I,Vε +
√

τ(b − d) + r

where r = Op(N−1/2) + Op(T−1/2).

Therefore, using ∥x+ y∥2 ≤ (∥x∥+ ∥y∥)2 ∀x, y ∈ Rk and (x+ y)2 ≤ 2(x2 + y2) ∀x, y iteratively, we obtain

E∗
(
∥q̂∥4

)
= E∗

(∥∥q̂I,Vε +
√

τ(b − d) + r
∥∥4
)

≤ E∗
[([

∥q̂I,Vε∥+
∥∥√τ(b − d) + r

∥∥]2
)2
]

≤ E∗
[(

2 ∥q̂I,Vε∥2 + 2
∥∥√τ(b − d) + r

∥∥2
)2
]

≤ E∗
[
4 ∥q̂I,Vε∥4 + 4

∥∥√τ(b − d) + r
∥∥4
]

= 4E∗
(
∥q̂I,Vε∥4

)
+ 4E∗

(∥∥√τ(b − d) + r
∥∥4
)

≤ 4E∗
(
∥q̂I,Vε∥4

)
+ 4E∗

[((∥∥√τ(b − d)
∥∥+ ∥r∥

)2
)2
]

≤ 4E∗
(
∥q̂I,Vε∥4

)
+ 16E∗

(∥∥√τ(b − d)
∥∥4
)
+ 16E∗

(
∥r∥4

)
= Op∗(1), (3.102)

since E∗(∥q̂I,Vε∥4) = Op∗(1) by the same logic as that used to obtain (3.101), E∗
(∥∥√τ(b − d)

∥∥4
)
= O(1)

because τ = O(1) and b, d are fixed finite vectors, and ∥r∥4 = op(1) due to ∥r∥ = Op(N−1/2)+Op(T−1/2).

Further, we verify that E∗
(∥∥∥(Q̂∗)−1

∥∥∥4
)

= Op∗(1). We will verify this using Q̂∗, because the result for

the inverse is implied by the continuous mapping theorem. We begin by recalling the decomposition

Q̂∗ =
1

NT

N

∑
i=1

siX′
iMF̂∗Xi = Q̂∗

I − Q̂∗
PF0

− Q̂∗
[MF0−MF̂0∗ ]

,

where
∥∥∥Q̂∗

PF0
+ Q̂∗

[MF0−MF̂0∗ ]

∥∥∥ = Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2) in probability was established

before in the proof of Lemma C-7. Therefore, we obtain

E∗
(
∥Q̂∗∥4

)
= E∗

(∥∥∥Q̂∗
I +

(
−Q̂∗

PF0
− Q̂∗

[MF0−MF̂0 ]

)∥∥∥4
)

≤ E∗
(([∥∥∥Q̂∗

I

∥∥∥+ ∥∥∥−Q̂∗
PF0

− Q̂∗
[MF0−MF̂0 ]

∥∥∥]2
)2
)

≤ E∗
((

2
[∥∥∥Q̂∗

I

∥∥∥2
+
∥∥∥−Q̂∗

PF0
− Q̂∗

[MF0−MF̂0 ]

∥∥∥2
])2

)

≤ E∗
(

4
[∥∥∥Q̂∗

I

∥∥∥4
+
∥∥∥−Q̂∗

PF0
− Q̂∗

[MF0−MF̂0 ]

∥∥∥4
])

= 4E∗
(∥∥∥Q̂∗

I

∥∥∥4
)
+ 4E∗

(∥∥∥−Q̂∗
PF0

− Q̂∗
[MF0−MF̂0

∥∥∥4
)

. (3.103)
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Here,
∥∥∥Q̂∗

PF0
+ Q̂∗

[MF0−MF̂0∗ ]

∥∥∥4
= Op∗(N−4) + Op∗(T−4) + Op∗((NT)−2), while the first term is bounded

due to the decomposition Q̂∗
I = Q̂∗

I,VV − Q̂∗
I,VΓ − (Q̂∗

I,VΓ)
′ + Q̂∗

I,ΓΓ, where
∥∥∥Q̂∗

I,VΓ + (Q̂∗
I,VΓ)

′ + Q̂∗
I,ΓΓ

∥∥∥
= Op∗(N−1) + Op∗((NT)−1/2) in probability (see the proof of Lemma C-7). Next, following the same

steps as in (3.103), we obtain

E∗
(∥∥∥Q̂∗

I

∥∥∥4
)
≤ 4E∗

(∥∥∥Q̂∗
I,VV

∥∥∥4
)
+ 4E∗

(∥∥∥Q̂∗
I,VΓ + (Q̂∗

I,VΓ)
′ + Q̂∗

I,ΓΓ

∥∥∥4
)
= Op∗(1),

where boundedness stems from the first term. In particular, using definition of the Frobenius norm, we

get

E∗
(∥∥∥Q̂∗

I,VV

∥∥∥4
)
= E∗

[tr

(
1
N

N

∑
i=1

si

(
V′

iVi

T

)′ 1
N

N

∑
i=1

sj

(
V′

jVj

T

))]2


= E∗

[tr

(
1

N2T2

N

∑
i=1

N

∑
j=1

sisjV′
iViV′

jVj

)]2


= E∗

[tr

(
1

N2T2

N

∑
i=1

N

∑
j=1

sisj

T

∑
t=1

T

∑
s=1

vi,tv′
i,tvj,sv′

j,s

)]2
 . (3.104)

Now, observe that to show boundedness in probability, it is sufficient to work with the sums inside the

trace operator, because explicitly accounting for the trace produces sums over some index o = 1, . . . , k,

where k is fixed, and therefore such sums are O(1). Therefore, by squaring the terms inside the trace, we

obtain∥∥∥∥∥∥E∗

[ 1
N2T2

N

∑
i=1

N

∑
j=1

sisj

T

∑
t=1

T

∑
s=1

vi,tv′
i,tvj,sv′

j,s

]2
∥∥∥∥∥∥

=

∥∥∥∥∥ 1
N4T4

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
k=1

E∗ (sisjslsk
) T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

E∗
(

vi,tv′
i,tvj,sv′

j,svl,rv′
l,rvk,pv′

k,p

)∥∥∥∥∥
≤ sup

i,j,l,k

(∣∣E∗ (sisjslsk
)∣∣)× 1

N4T4

N

∑
i=1

N

∑
j=1

N

∑
l=1

N

∑
k=1

T

∑
t=1

T

∑
s=1

T

∑
r=1

T

∑
p=1

∥∥∥E∗
(

vi,tv′
i,tvj,sv′

j,svl,rv′
l,rvk,pv′

k,p

)∥∥∥
= Op∗(1) (3.105)

in probability, by the strengthened assumption that E(∥vi,t∥8) < ∞. Therefore, combining the results in

(3.103) - (3.105), we conclude that E∗(∥Q̂∗∥4) = Op∗(1) in probability and thus E∗(∥(Q̂∗)−1∥4) = Op∗(1)

by the continuous mapping theorem.

To finish, we note that E∗
(∥∥∥(Q̂∗)−1 − (Q̂)−1

∥∥∥4
)
= op∗(1) in probability, because

∥∥∥(Q̂∗)−1 − (Q̂)−1
∥∥∥ = Op∗(N−1) + Op∗(T−1/2)
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in probability. Ultimately, plugging all results back into (3.97) gives

E∗
(∥∥∥√NT(β̂

∗ − β̂)
∥∥∥2
)
= Op∗(1) (3.106)

in probability, as was required. This establishes the uniform integrability of
{∥∥∥√NT(β̂

∗ − β̂)
∥∥∥}, and in

combination with Theorem 25.12 of Billingsley (1995) and Theorem 2, proves the first statement of this

theorem. To show uniform integrability of
{∥∥∥√NT(β̂

∗
x − β̂x)

∥∥∥}, we impose Ass.7 in stead of Ass.4 and

similarly obtain, starting from (3.91) of Corollary 2,

E∗
(∥∥∥√NT(β̂

∗
x − β̂x)

∥∥∥2
)
= E∗

(∥∥∥(Q̂∗
x)

−1q̃∗
x,I,Vε + [k̂∗

x − k̂x] + [(Q̂∗
x)

−1 − (Q̂x)
−1]q̂x

∥∥∥2
)
= Op∗(1)

which follows from the same steps and arguments as above. This integrability result combined with

Corollary 2 proves the second statement of the theorem.
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3.4 Heterogeneous Slopes

We consider here the heterogeneous slope DGP where βi is characterized by Ass.6 such that βi = β +

υi and it is understood that also the cross-section averages Uw, Cw represent the heterogeneous slope

variants. Note that all the results in Section 3.2 are derived under Ass.6 and hence apply here as well. The

bootstrap CCE estimators are in this setting

β̂
∗
=

(
1

NT

N

∑
i=1

X∗′
i MF̂∗X∗

i

)−1
1

NT

N

∑
i=1

X∗′
i MF̂∗y∗

i β̂
∗
mg =

1
N

N

∑
i=1

(
X∗′

i MF̂∗X∗
i
)−1 X∗′

i MF̂∗y∗
i

Given that y∗ = [y∗′
1 , . . . , y∗′

N ]
′ = WTy and X∗ = [X∗′

1 , . . . , X∗′
N ]

′ = WTX it is equivalent to write the above

more explicitly as

β̂
∗
=

(
1

NT

N

∑
i=1

siX′
iMF̂∗Xi

)−1
1

NT

N

∑
i=1

siX′
iMF̂∗yi, β̂

∗
mg =

1
N

N

∑
i=1

si
(
X′

iMF̂∗Xi
)−1 X′

iMF̂∗yi

Here, we obtain from substituting in (3.15) and βi = β + υi for the scaled deviation of the Mean Group

CCE estimator in the bootstrap world

√
N(β̂

∗
mg − β) =

1
N

N

∑
i=1

siQ̂∗−1
i [q̂∗

υ,i + q̂∗
i ] =

1√
N

N

∑
i=1

siυi +
1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

i (3.107)

and in turn, for the scaled deviation of the CCEP estimator in the bootstrap, making use of (3.15), γi =

CiB−1
i qy = γ + η̃iqy and ∑N

i=1 siX′
iMF̂∗UwC

†
wγ = NX

∗′
MF̂∗UwC

†
wγ = 0k×1, because X

∗ ⊂ Z∗,

√
N(β̂

∗ − β) =

(
1

NT

N

∑
i=1

siX′
iMF̂∗Xi

)−1
1√
NT

N

∑
i=1

siX′
iMF̂∗ [Xiυi + εi − UwC

†
wη̃iqy]

= Q
∗−1

[q∗ + q∗
υ], (3.108)

where in (3.107) and (3.108) we have defined

Q
∗
=

1
N

N

∑
i=1

siQ̂∗
i , Q̂∗

i =
X′

iMF̂∗Xi

T

q∗ =
1
N

N

∑
i=1

siq̂∗
i , q̂∗

i =

√
NX′

iMF̂∗ [εi − UwC
†
wγi]

T

q∗
υ =

1
N

N

∑
i=1

siq̂∗
υ,i, q̂∗

υ,i =

√
NXiMF̂∗Xi

T
υi

Making use of (3.16), MF̂ = MF̂0 and MF̂0 = MF0 − [MF0 − MF̂0 ], let the following be the familiar decom-

position at the individual level

Q̂∗
i = T−1X′

iMF̂∗Xi

= T−1[Vi − UwC
†
wΓi]

′MF0 [Vi − UwC
†
wΓi]− T−1[Vi − UwC

†
wΓi]

′[MF0 − MF̂0∗ ][Vi − UwC
†
wΓi]

= Q̂∗
MF0 ,i − Q̂∗

[MF0−MF̂0∗ ],i (3.109)
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where for a stated subscript A, we obtain the breakdown

Q̂∗
A,i = Q̂∗

A,VV,i − Q̂∗
A,VΓ,i − (Q̂∗

A,VΓ,i)
′ + Q̂∗

A,ΓΓ,i

Q̂∗
A,VV,i = T−1V′

iAVi

Q̂∗
A,VΓ,i = T−1V′

iAUwC
†
wΓi

Q̂∗
A,ΓΓ,i = T−1Γ′

i(C
†
w)

′U′
wAUwC

†
wΓi

and where barred variants with an omitted i subscript denote averages over i as Q
∗
A,VV = 1

N ∑N
i=1 Q̂∗

A,VV,i.

Next, for the individual-specific numerators

q̂∗
i =

√
NT−1[Vi − UwC

†
wΓi]

′MF̂∗ [εi − UwC
†
wγi] = q̂∗

I,i − q̂∗
PF0 ,i − q̂∗

[MF0−MF̂0∗ ],i (3.110)

with for a given subscript A the decomposition

q̂∗
A,i = q̂∗

A,Vε,i − q̂∗
A,Vγ,i − q̂∗

A,Γε,i + q̂∗
A,Γγ,i

q̂∗
A,Vε,i =

√
NT−1V′

iAεi

q̂∗
A,Vγ,i =

√
NT−1V′

iAUwC
†
wγi

q̂∗
A,Γε,i =

√
NT−1Γ′

i(C
†
w)

′U′
wAεi

q̂∗
A,Γγ,i =

√
NT−1Γ′

i(C
†
w)

′U′
wAUwC

†
wγi

where barred terms will similarly be defined as q∗
A,Vε =

1
N ∑N

i=1 q̂∗
A,Vε,i. Finally, q̂∗

υ features only in (3.108)

so we can directly define the averaged term

q∗
υ =

1√
N

N

∑
i=1

si
XiMF̂∗Xi

T
υi =

1√
NT

N

∑
i=1

si[Vi − UwC
†
wΓi]

′MF̂∗ [Vi − UwC
†
wΓi]υi

= q∗
I,υ − q∗

PF0 ,υ − q∗
[MF0−MF̂0∗ ],υ (3.111)

with, given a matrix A,

q∗
A,υ = q∗

A,VV,υ − q∗
A,VΓ,υ − (q∗

A,VΓ,υ)
′ + q∗

A,ΓΓ,υ

q∗
A,VV,υ =

1√
NT

N

∑
i=1

siV′
iAViυi

q∗
A,VΓ,υ =

1√
NT

N

∑
i=1

siV′
iAUwC

†
wΓiυi

qA,ΓΓ,υ =
1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
wAUwC

†
wΓiυi

3.4.1 CCEP with the Pairs bootstrap

Theorem 5 Under Ass.1-6, with in addition E(∥vit∥8) < ∞ and E(∥υi∥6) < ∞, we have as (N, T) → ∞

√
N(β̂

∗ − β̂)
d∗−→ N (0k×1, Σ−1ΨhΣ−1)
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with Ψh defined in Theorem 4, and under the same conditions

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗ − β̂) ≤ x]− P[

√
N(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.

Proof of Theorem 5

Recall the decomposition of the scaled deviation of the CCEP estimator in (3.108)
√

N(β̂
∗ − β) = Q

∗−1
(q∗

υ + q∗)

Note that here by definition Q
∗
= Q̂∗ so that the decomposition of Q

∗
is the same as that for Q̂∗ analyzed

in Lemma C-7, save that Uw, Cw contain the heterogeneous slopes. Given that Lemmas C-2 and C-3

have been derived allowing for the slope heterogeneity characterized by Ass.6, the asymptotic orders

derived in Lemma C-7 apply directly to the heterogeneous slope setting and we have from the exact same

arguments as in that proof

Q
∗−1 −→p Σ−1 (3.112)

Similarly, since heterogeneity does not impact the orders derived in Lemmas C-2 and C-3 (only the

limit statements are affected, as noted in the lemma) and we have by definition q∗
I = 1√

T
q̂∗

I , q∗
PF0

=

1√
T

q̂∗
PF0

, q∗
[MF0−MF̂0∗ ]

= 1√
T

q̂∗
[MF0−MF̂0∗ ]

(so that we have scaled up by
√

N rather than
√

NT), the results

from Lemmas C-4, C-6, C-5 that ∥q̂∗
I ∥ = Op∗(1),

∥∥∥q̂∗
PF0

∥∥∥ = Op∗(T−1/2),
∥∥∥q̂∗

[MF0−MF̂0∗ ]

∥∥∥ = Op∗(1), imply

that ∥q∗
I ∥ = op∗(1),

∥∥∥q∗
PF0

∥∥∥ = op∗(1),
∥∥∥q∗

[MF0−MF̂0∗ ]

∥∥∥ = op∗(1). Hence, ∥q∗∥ = op∗(1) and we have
√

N(β̂
∗ − β) = Q

∗−1
q∗

υ + op∗(1) (3.113)

Consider then the decomposition of q∗
υ defined in (3.111). We start with terms containing the deviations

A = [MF0 − MF̂0∗ ]. First up is,

q∗
[MF0−MF̂0∗ ],ΓΓ,υ =

1√
NT

N

∑
i=1

siΓ
′
i(C

†
w)

′U′
w[MF0 − MF̂0∗ ]UwC

†
wΓiυi

=

[
1
N

N

∑
i=1

si(υ
′
iΓ

′
i ⊗ Γ′

i)

]
vec
(
(C

†
w)

′√NT−1U′
w[MF0 − MF̂0∗ ]UwC

†
w

)
−→p∗ 0k×1

because
∥∥∥C

†
w

∥∥∥ = Op∗(1) and inserting (3.20) in U′
w[MF0 − MF̂0∗ ]Uw gives

T−1U′
w[MF0 − MF̂0∗ ]Uw = T−1U′

wU0
w,−mΣ̂

†
u0

w,−m
T−1(U0

w,−m)
′Uw

+ T−1U′
wU0

w,mΣ̂
†
FT−1(U0

w,m)
′Uw

+ T−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Uw + T−1U′

wU0
w,mΣ̂

†
FT−1F′Uw

+ T−1U′
wF̂0

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0)′Uw

= Op∗(N−1) (3.114)
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which follows because by Lemmas C-2 and C-3∥∥∥T−1U′
wU0

w,−mΣ̂
†
u0

w,−m
T−1(U0

w,−m)
′Uw

∥∥∥ ≤
∥∥∥T−1U′

wU0
w,−m

∥∥∥2 ∥∥∥Σ̂
†
u0

w,−m

∥∥∥ = Op∗(N−1)∥∥∥T−1U′
wU0

w,mΣ̂
†
FT−1(U0

w,m)
′Uw

∥∥∥ ≤
∥∥∥T−1U′

wU0
w,m

∥∥∥2 ∥∥∥Σ̂
†
F

∥∥∥ = Op∗(N−2)∥∥∥T−1U′
wFΣ̂

†
FT−1(U0

w,m)
′Uw

∥∥∥ ≤
∥∥∥T−1U′

wF
∥∥∥ ∥∥∥Σ̂

†
F

∥∥∥ ∥∥∥T−1(U0
w,m)

′Uw

∥∥∥ = Op∗(T−1/2N−3/2)∥∥∥T−1U′
wF̂0

[
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]
T−1(F̂0)′Uw

∥∥∥ ≤
∥∥∥T−1U′

wF̂0∗
∥∥∥2 ∥∥∥Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−3/2) + Op∗(N−1T−1/2)

and also, the independence of si of the other variables, Ass.3 and 6 (the mean zero and independence of

υi) implies∥∥∥∥∥ 1
N

N

∑
i=1

si(υ
′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ = Op∗(N−1/2)

Next, the exact same arguments as for (3.39) and (3.40) in the proof of Lemma C-4 can be applied to obtain

from Vi = Uiqx∥∥∥√NT−1V′
i[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)

so that∥∥∥q∗
[MF0−MF̂0∗ ],VΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]UwC

†
wΓiυi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥si∥
∥∥∥√NT−1V′

i[MF0 − MF̂0∗ ]Uw

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ ∥υi∥

= Op∗(N−1/2) + Op∗(T−1/2)

For the final term of this kind

q∗
[MF0−MF̂0∗ ],VV,υ =

1√
NT

N

∑
i=1

siV′
i[MF0 − MF̂0∗ ]Viυi =

1
N

N

∑
i=1

si
√

NT−1V′
i[MF0 − MF̂0∗ ]Viυi

−→p∗ 0k×1

To obtain this result, note that by substituting (3.20) into q∗
[MF0−MF̂0∗ ],VV,υ and following the same argu-

ments as for (3.44) gives

1
N

N

∑
i=1

√
NT−1siV′

i[MF0 − MF̂0∗ ]Viυi

=
1
N

N

∑
i=1

√
Nsi

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
U0′

w,−mVi

T

)
υi +

1
N

N

∑
i=1

√
Nsi

(
V′

iF̂
0∗

T

)
[Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]

(
(F̂0∗)′Vi

T

)
υi

+ Op∗

(
1

N3/2

)
+ Op∗

(
1
T

)
+ Op∗

(
1√
NT

)
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where it should be noted that the expansion is sharpened by not approximating terms that are Op(
√

NT−λ)

for λ > 0. Making use of U0
w,−m =

√
NUwTHw,−m, and defining D̂w = THw,−mΣ̂

†
u0

w,−m
H′

w,−mT′ = Op∗(1)

the first term in the expansion can be rewritten as

1
N

N

∑
i=1

√
Nsi

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
U0′

w,−mVi

T

)
υi =

1
N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

sisjsk

(
V′

iUj

T

)
D̂w

(
U′

kVi

T

)
υi

Letting next d̂w
v,g denote the element on row v and column g of D̂w, and with U(l)

i denoting column l of Ui,

we obtain∥∥∥∥∥ 1
N

N

∑
i=1

√
N

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
U0′

w,−mVi

T

)
υi

∥∥∥∥∥
≤

1+k

∑
v=1

1+k

∑
g=1

|d̂w
v,g|

∥∥∥∥∥∥ 1
N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

sisjsk

V′
iU

(v)
j

T

(U(g)′
k Vi

T

)
υi

∥∥∥∥∥∥
where, given fixed and finite k, |d̂w

v,g| = Op∗(1) and Ui = [εi + Vi(β + υi), Vi], further unpacking reveals

that the term with the highest degree of dependence, and hence the driver of the asymptotic order, is∥∥∥∥∥ 1
N3/2

N

∑
i=1

N

∑
j=1

N

∑
k=1

sisjsk

(
V′

iVj

T

)
υjυ

′
k

(
V′

kVi

T

)
υi

∥∥∥∥∥
when v = g = 1. Note that the expectation of this term is zero unless i = j = k by cross-section

independence, and in the case with equal indices we obtain given finite moments that

Ai = E∗
[

1
N3/2

N

∑
i=1

s3
i

(
V′

iVi

T

)
υiυ

′
i

(
V′

iVi

T

)
υi

]
= O

(
1√
N

)
Also, by the cross-section independence, and independence of Vi and υj for all i, j

1
N3T4

N

∑
i=1

N

∑
j=1

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

E∗(sisjskslsmsn)

× E∗
{(

V′
iVjυjυ

′
kV′

kViυi − 1(i=j=k)Ai

) (
V′

lVmυmυ′
nV′

nVlυl − 1(l=m=n)Al

)′ }
= O

(
1

T2

)
+ O

(
1
N

)
since, as argued for the analysis in the original dataset, the cross-section independence of υi implies that

the expectation is zero for each part of the sums for which a single cross-section index differs from the

others. This means that the expectation is zero when more than 3 distinct indices appear. That is, in

(i, j, k, l, m, n) at least 3 pairs of indices need to be equal, and therefore the nonzero part of this sum of

expectations runs over at most 3 distinct summation operands. In the case of three operands, the expec-

tations exists either of sums over 4 Vi with the same index and 2 pairs of 2 V’s with a common index, or

summations over 2 sets of 3 V’s with a common index and one pair of 2 with a common index. In each
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case, unpacking terms over time reveals that the corresponding sum of expectations is of order O(T−2)

due to the stationarity of the vit and its finite moments up to the fourth order. For the segments of the

summation with two or less operands, we have given that E(∥vit∥8) < ∞ and E(∥υi∥6) < ∞ that they

are at most of order O(N−1). Consequently,
∥∥∥ 1

N3/2T2 ∑N
i=1 ∑N

j=1 ∑N
k=1 sisjskV′

iVjυjυ
′
kV′

kViυi

∥∥∥ = op∗(1) as

(N, T) → ∞. Since this is also the leading term in the inequality above, we conclude that

1
N

N

∑
i=1

√
Nsi

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
U0′

w,−mVi

T

)
υi −→p∗ 0k×1 (3.115)

Next, substituting F̂0∗ = F0 + [U0
w,m, U0

w,−m] into the second term of the expansion, we obtain for the two

leading terms with the slowest decay

1
N

N

∑
i=1

√
Nsi

(
V′

iU
0
w,−m

T

) [
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

] ( (U0
w,−m)

′Vi

T

)
υi −→p∗ 0k×1

1
N

N

∑
i=1

√
Nsi

(
V′

iF
0

T

) [
Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

] ( (F0)′Vi

T

)
υi −→p∗ 0k×1

where the first result follows from the same arguments as (3.115) (but noting that the rate is faster since∥∥∥Σ̂
†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) from lemma C-3, while for the second we used
∥∥T−1V′

iF
0
∥∥ =

Op(T−1/2) and the fact that υi is independent of the other terms with 1√
N ∑N

i=1 υi = Op(1). That is, in the
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bootstrap world,

E∗

∥∥∥∥∥ 1√
NT2

N

∑
i=1

siυ
′
iV

′
iF

0 ⊗ V′
iF

0

∥∥∥∥∥
2


= E∗
(

tr

[(
1√
NT2

N

∑
j=1

sjυ
′
jV

′
jF

0 ⊗ V′
jF

0

)′(
1√
NT2

N

∑
i=1

siυ
′
iV

′
iF

0 ⊗ V′
iF

0

)])

= E∗
(

tr

[(
1√
NT2

N

∑
i=1

siυ
′
iV

′
iF

0 ⊗ V′
iF

0

)(
1√
NT2

N

∑
j=1

sjυ
′
jV

′
jF

0 ⊗ V′
jF

0

)′])

=
1

NT4

N

∑
i=1

N

∑
j=1

tr
(
E∗ [(sisjυ

′
iV

′
iF

0 ⊗ V′
iF

0) (F0′Vjυj ⊗ F0′Vj
)])

=
1

NT4

N

∑
i=1

tr
(
E∗ [(s2

i υ′
iV

′
iF

0 ⊗ V′
iF

0) (F0′Viυi ⊗ F0′Vi
)])

=
1

NT4

N

∑
i=1

tr
(
E∗ [s2

i υ′
iV

′
iF

0F0′Viυi ⊗ V′
iF

0F0′Vi
])

=
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

tr
(

E∗
[
(f0

t )
′f0

s s2
i υ′

ivi,tv′
i,sυi ⊗ vi,pv′

i,r(f
0
p)

′f0
r

])
= tr

(
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E∗
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E∗[s2

i ]E
∗ [vi,pv′

i,rυ′
ivi,tv′

i,sυi
])

= 2tr

(
1

NT4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E∗
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E∗ [vi,pv′

i,rtr(vi,tv′
i,sυiυ

′
i)
])

− tr

(
1

N2T4

N

∑
i=1

T

∑
t=1

T

∑
s=1

T

∑
p=1

T

∑
r=1

E∗
[
(f0

t )
′f0

s (f
0
p)

′f0
r

]
E∗ [vi,pv′

i,rtr(vi,tv′
i,sυiυ

′
i)
])

= O(T−1) + O((NT)−1) = O(T−1).

In conclusion,

q∗
[MF0−MF̂0∗ ],VV,υ −→p∗ 0k×1

so that by combining results we come to

q∗
[MF0−MF̂0∗ ],υ −→p∗ 0k×1

Next consider terms where A = PF0 . First, using
∥∥T−1F′Vi

∥∥ = Op(T−1/2), the independence of si from

the other variables and its finite moments, and similarly the independence of υi over i and from the other

variables, with 1√
N ∑N

i=1 siυi = Op∗(1) gives

∥∥∥q∗
PF0 ,VV,υ

∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

si(T−1V′
iF

0)Σ̂
†
F0(T−1F0′Vi)υi

∥∥∥∥∥ = Op∗(T−1)
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also, with
∥∥T−1F′Uw

∥∥ = Op∗((NT)−1/2)

∥∥∥q∗
PF0 ,VΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

siT−1V′
iF

0Σ̂
†
F0 T−1F0′UwC

†
wΓiυi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥si∥
∥∥∥T−1V′

iF
0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥√NT−1F0′Uw

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ ∥υi∥ = Op∗(T−1)

which could again be sharpened noting that si, Γi and υi are independent of the other variables and
1
N ∑N

i=1 siΓiυi = Op∗(N−1/2). Finally, also

∥∥∥q∗
PF0 ,ΓΓ,υ

∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

siΓ
′
i(C

†
w)

′T−1U′
wF0Σ̂

†
F0 T−1F0′UwC

†
wΓiυi

∥∥∥∥∥
≤

√
N

∥∥∥∥∥ 1
N

N

∑
i=1

si(υ
′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2 ∥∥∥T−1F0′Uw

∥∥∥2 ∥∥∥Σ̂
†
F0

∥∥∥ = Op∗((NT)−1)

which again makes use of
∥∥∥ 1

N ∑N
i=1(υ

′
iΓ

′
i ⊗ Γ′

i)
∥∥∥ = Op∗(N−1/2). Therefore,

q∗
PF0 ,υ −→p∗ 0k×1

This establishes that both q∗
[MF0−MF̂0∗ ],υ

and q∗
PF0 ,υ are asymptotically negligible. What remains is the terms

with A = I, specifically q∗
I,υ. In its decomposition, given that

∥∥∥T−1U′
wUi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2),

Vi ⊂ Ui and
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1)

∥∥q∗
I,VΓ,υ

∥∥ ≤ 1
N

N

∑
i=1

∥si∥
∥∥∥√NT−1V′

iUw

∥∥∥ ∥∥∥C
†
w

∥∥∥ ∥Γi∥ ∥υi∥ = Op∗(N−1/2) + Op∗(T−1/2)

∥∥q∗
I,ΓΓ,υ

∥∥ ≤
√

N

∥∥∥∥∥ 1
N

N

∑
i=1

si(υ
′
iΓ

′
i ⊗ Γ′

i)

∥∥∥∥∥ ∥∥∥C
†
w

∥∥∥2 ∥∥∥T−1U′
wUw

∥∥∥ = Op∗(N−1)

we have q∗
I,υ = q∗

I,VV,υ − q∗
I,VΓ,υ − (q∗

I,VΓ,υ)
′ + q∗

I,ΓΓ,υ = q∗
I,VV,υ + op∗(1) as (N, T) → ∞, and by combining

results into (3.113) we come to

√
N(β̂

∗ − β) = Q
∗−1

q∗
I,VV,υ + op∗(1)

Subtracting then (2.88) from the proof of Lemma 4 from both sides gives the expansion around β̂

√
N(β̂

∗ − β̂) = Q
∗−1

q∗
I,VV,υ − Q

−1
qI,VV,υ + op∗(1) = Q

∗−1
q̃∗

I,VV,υ − [Q
−1 − Q

∗−1
]qI,VV,υ + op∗(1)

with q̃∗
I,VV,υ = q∗

I,VV,υ − qI,VV,υ.

Given (3.112) and Q
−1 −→p Σ−1,

∥∥qI,VV,υ

∥∥ = Op(1) from respectively (2.84) and (2.89) in the proof of

Lemma 4, we have for the final term

[Q
−1 − Q

∗−1
]qI,VV,υ −→p∗ 0k×1
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whereas we can write by combining definitions for the first term in the numerator of this expansion

q̃∗
I,VV,υ =

1√
N

N

∑
i=1

(si − 1)
V′

iVi

T
υi =

1√
N

N

∑
i=1

(si − 1)Σiυi + Op∗(T−1/2)

by the mutual independence of Vi, si, υi, the fact that 1√
N ∑N

i=1(si − 1)υi = Op∗(1) by Ass.6 and Lemma

C-1, and T−1V′
iVi = Σi + Op(T−1/2) from Ass.1. Continuing, we have

E∗
(

1√
N

N

∑
i=1

(si − 1)Σiυi

)
=

1√
N

N

∑
i=1

E∗(si − 1)E∗(Σi)E
∗(υi) = 0k×1

and by independence over i

E∗
(

1√
N

N

∑
i=1

(si − 1)Σiυi

)(
1√
N

N

∑
j=1

(sj − 1)Σjυj

)′

=
1
N

N

∑
i=1

N

∑
j=1

E∗[(si − 1)(sj − 1)]E∗
[
ΣiE

∗(υiυ
′
j)Σj

]
=

1
N

N

∑
i=1

E∗[(si − 1)2]E∗ [ΣiΩυΣi]

such that given E∗[(si − 1)2] = E∗(s2
i )− 2E∗(si) + 1 = 1+ N−1 from a) of Lemma C-1, we get by applica-

tion of a CLT that q̃∗
I,VV,υ

d∗−→ N (0, Ψh) as (N, T) → ∞, with Ψh = limN→∞
1
N ∑N

i=1 ΣiΩυΣi, which in turn,

again making use of (3.112) and the results above, leads to

√
N(β̂

∗ − β̂)
d∗−→ N (0, Σ−1ΨhΣ−1)

which is the result stated in the theorem. It then follows directly from this result and Theorem 4 that

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗ − β̂) ≤ x]− P[

√
N(β̂ − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.
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3.4.2 CCEMG with the Pairs bootstrap

Theorem 7 Under Ass.1-6 we have as (N, T) → ∞

√
N(β̂

∗
mg − β̂mg)

d∗−→ N (0k×1, Ωυ).

In addition, under the same conditions

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗
mg − β̂mg) ≤ x]− P[

√
N(β̂mg − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.

Proof of Theorem 7

Recall the decomposition of the scaled CCEMG deviation introduced in (3.107) and below. To analyze

the denominators at the individual level, we use Q̂∗
i = Q̂∗

I,i − Q̂∗
PF0 ,i − Q̂∗

[MF0−MF̂0∗ ],i
. This is the same

decomposition used to derive the asymptotic representation in Lemma C-7. The fact that the summation

over i = 1, . . . , N is absent and E∗(si) = 1 does not change the order of the remainder, therefore we can

directly apply the result from Lemma C-7, which leads to

Q̂∗
i = T−1V′

iVi + Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2). (3.116)

Also, because T−1V′
iVi = Σi + Op∗(T−1/2) and rk(Q̂∗

i )− rk(Σi)
a.s.−→ 0, we know that

Q̂∗−1
i = Σ−1

i + Op∗(N−1) + Op∗(T−1/2). (3.117)

Then, for the numerator we start from q̂∗
i =

√
NT−1[Vi − UwC

†
wΓi]

′MF̂∗ [εi − UwC
†
wγi] = q̂∗

I,i − q̂∗
PF0 ,i −

q̂∗
[MF0−MF̂0∗ ],i

, where for A representing IT, PF0 or MF0 − MF̂0∗ , we have the same decomposition q̂∗
A,i =

q̂∗
A,Vε,i − q̂∗

A,Vγ,i − q̂∗
A,Γε,i + q̂∗

A,Γγ,i. The order results in the bootstrap world are not altered due to Lemma

C-2 and Lemma C-3. Yet, for completeness, letting A = [MF0 − MF̂0∗ ], we obtain∥∥∥q̂∗
[MF0−MF̂0∗ ],Γγ,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
w[MF0 − MF̂0∗ ]UwC

†
wγi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1U′
w[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1/2), (3.118)

using the fact that
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1) from (3.114). Further, with εi = UiB−1
i qy and

the result
∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Ui

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2), which comes from the exact same

arguments as for (3.39) and (3.40) in the proof of Lemma C-4, we arrive at∥∥∥q̂∗
[MF0−MF̂0∗ ],Γε,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
w[MF0 − MF̂0∗ ]εi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥T−1U′

w[MF0 − MF̂0∗ ]Ui

∥∥∥ ∥∥∥B−1
i qy

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2),

(3.119)
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Moving on, with Vi = Uiqx, we immediately obtain∥∥∥q̂∗
[MF0−MF̂0∗ ],Vγ,i

∥∥∥ =
∥∥∥√NT−1V′

i[MF0 − MF̂0∗ ]UwC
†
wγi

∥∥∥
≤

√
N
∥∥∥C

†
wγi

∥∥∥ ∥qx∥
∥∥∥T−1U′

i[MF0 − MF̂0∗ ]Uw

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2)

(3.120)

using the same argument. To proceed, we let A = PF0 . This leads to∥∥∥q̂∗
PF0 ,Γγ,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
wPF0 UwC

†
wγi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1U′
wF0Σ̂

†
F0 T−1F0′Uw

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1U′
wF0

∥∥∥2 ∥∥∥Σ̂
†
F0

∥∥∥ = Op∗(N−1/2T−1), (3.121)

which comes from the fact that
∥∥∥T−1U′

wF0
∥∥∥ = Op∗((NT)−1/2) from Lemma C-2. Further on,∥∥∥q̂∗

PF0 ,Γε,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
wPF0 εi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥T−1U′

wF0Σ̂
†
F0 T−1F0′εi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥T−1U′

wF0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥T−1F0′εi

∥∥∥ = Op∗(T−1), (3.122)

using the facts that
∥∥∥T−1U′

wF0
∥∥∥ = Op∗((NT)−1/2) and

∥∥T−1F0′εi
∥∥ = Op(T−1/2) from εi = UiB−1

i qy and∥∥T−1F0′Ui
∥∥ = Op∗(T−1/2) in Lemma B-1. Using the latter result again with Vi = Uiqx gives

∥∥T−1V′
iF

0
∥∥ =

Op∗(T−1/2), so that in the same fashion,∥∥∥q̂∗
PF0 ,Vγ,i

∥∥∥ =
∥∥∥√NT−1V′

iPF0 UwC
†
wγi

∥∥∥ ≤
√

N
∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1V′
iF

0Σ̂
†
F0 T−1F0′Uw

∥∥∥
≤

√
N
∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1V′
iF

0
∥∥∥ ∥∥∥Σ̂

†
F0

∥∥∥ ∥∥∥T−1F0′Uw

∥∥∥ = Op∗(T−1) (3.123)

Further, we let A = IT. Firstly, this leads to∥∥∥q̂∗
I,Γγ,i

∥∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
wUC

†
wγi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1U′
wUw

∥∥∥ = Op∗(N−1/2),

because
∥∥∥T−1U′

wUw

∥∥∥ = Op∗(N−1). Also,

∥∥q̂∗
I,Γε,i

∥∥ =
∥∥∥√NT−1Γ′

i(C
†
w)

′U′
wεi

∥∥∥ ≤
√

N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥T−1U′

wεi

∥∥∥
≤

√
N
∥∥∥Γ′

i(C
†
w)

′
∥∥∥ ∥∥∥B−1

i

∥∥∥ ∥∥qy
∥∥ ∥∥∥T−1U′

wUi

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2),

because
∥∥∥T−1U′

wUi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2). Eventually, we obtain∥∥∥q̂∗
I,Vγ,i

∥∥∥ =
∥∥∥√NT−1V′

iUwC
†
wγi

∥∥∥ ≤
√

N
∥∥∥C

†
wγi

∥∥∥ ∥∥∥T−1V′
iUw

∥∥∥ ≤
√

N
∥∥∥C

†
wγi

∥∥∥ ∥qx∥
∥∥∥T−1U′

iUw

∥∥∥
= Op∗(N−1/2) + Op∗(T−1/2) (3.124)

using the same argument as for the term above. Summarizing the order results for the 3 different versions

of A, we obtain the same asymptotic representation as in the original sample space:

q̂∗
i = q̂∗

I,Vε,i − q̂∗
PF0 ,Vε,i + q̂∗

[MF0−MF̂0∗ ],Vε,i + Op∗(N−1/2) + Op∗(T−1/2) (3.125)
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which in combination with
∥∥∥Q̂∗−1

i

∥∥∥ = Op∗(1) by (3.117) yields

1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

i =
1
N

N

∑
i=1

siQ̂∗−1
i

[
q̂∗

I,Vε,i − q̂∗
PF0 ,Vε,i + q̂∗

[MF0−MF̂0∗ ],Vε,i

]
+ Op∗(N−1/2) + Op∗(T−1/2).

To proceed, consider the first term, 1
N ∑N

i=1 siQ̂∗−1
i q̂∗

I,Vε,i =
1

NT ∑N
i=1 siQ̂∗−1

i

√
NV′

iεi. Given that by (3.117)

Q̂∗−1
i is bounded with a well behaved fixed limit as (N, T) → ∞, the order of this term is driven by

1
NT ∑N

i=1

√
NsiV′

iεi. Since
∥∥∥ 1√

NT ∑N
i=1 siV′

iεi

∥∥∥ = Op∗(1) by cross-section independence, and mutual inde-

pendence of Vi, εi and si, we have by insertion into the term above (and noting that the normalisation is

N−1/2T−1)∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

I,Vε,i

∥∥∥∥∥ = Op∗(T−1/2)

Next, for 1
N ∑N

i=1 siQ̂∗−1
i q̂∗

[MF0−MF̂0∗ ],Vε,i, substituting in (3.20) and making use of the same arguments as for

(3.44), but sharpening the approximation (by not expanding terms which are Op∗(
√

NT−λ) with λ > 0)

gives

1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

[MF0−MF̂0∗ ],Vε,i =
1
N

N

∑
i=1

siQ̂∗−1
i

√
NT−1V′

i[MF0 − MF̂0∗ ]εi

=
1
N

N

∑
i=1

siQ̂∗−1
i

√
N

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
(U0

w,−m)
′εi

T

)

+
1
N

N

∑
i=1

siQ̂∗−1
i

√
N

(
V′

iF̂
0∗

T

)
[Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]

(
(F̂0∗)′εi

T

)
+ Op∗(N−3/2) + Op∗(T−1) + Op∗((NT)−1/2)

For the first term of this expansion, U0
w,−m =

√
NUwTHw,−m reveals that

1
N

N

∑
i=1

siQ̂∗−1
i

√
N

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
(U0

w,−m)
′εi

T

)

=
1

N3/2

N

∑
i=1

siQ̂∗−1
i

N

∑
j=1

N

∑
k=1

sjsk

(
V′

iUj

T

)
D̂w

(
U′

kεi

T

)

where D̂w = THw,−mΣ̂
†
u0

w,−m
H′

w,−mT′. Since
∥∥∥D̂w

∥∥∥ = Op∗(1),
∥∥∥Q̂∗−1

i

∥∥∥ = Op∗(1) and both matrices have

well behaved fixed limits as (N, T) → ∞ (see e.g. (3.117) and Lemma C-4), the asymptotic order is driven

by
∥∥∥ 1

N3/2T2 ∑N
i=1 ∑N

j=1 ∑N
k=1 sisjskV′

iUjD̂wU′
kεi

∥∥∥ = Op∗(N−1/2). The latter result can be seen from the fact

that the term is identical to (3.47) save with normalization N−3/2T−2 in stead of N−1T−2. Hence, the exact

same arguments as for the result in (3.50) can be employed to yield
∥∥∥N−1T−2 ∑N

i=1 ∑N
j=1 ∑N

k=1 sisjskV′
iUjD̂wU′

kεi

∥∥∥ =

Op∗(1). Therefore, as (N, T) → ∞∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i

√
N

(
V′

iU
0
w,−m

T

)
Σ̂

†
u0

w,−m

(
(U0

w,−m)
′εi

T

)∥∥∥∥∥ = Op∗

(
1√
N

)
(3.126)
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For the second term in the expansion, the fact that F̂0∗ = F0 + [U0
w,m, U0

w,−m] reveals that its asymptotic

behavior is determined by two leading terms. For the first we obtain from the same arguments as for

(3.126) but with
∥∥∥Σ̂

†
F̂0 − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2) that∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂−1
i

√
N

(
V′

iU
0
w,−m

T

)
[Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]

(
(U0

w,−m)
′εi

T

)∥∥∥∥∥ = Op∗

(
1
N

)
+ Op∗

(
1√
NT

)
and for the second∥∥∥∥∥ 1

N

N

∑
i=1

siQ̂−1
i

√
N
(

V′
iF

0

T

)
[Σ̂

†
F̂0∗ − Σ̂

†
Fw,u

]

(
(F0)′εi

T

)∥∥∥∥∥ = Op∗

(
1√
NT

)
+ Op∗

(
1

T3/2

)
(3.127)

because the fixed limit for Q̂∗−1
i as (N, T) → ∞ obtained in (3.117) and

∥∥∥Σ̂
†
F̂0∗ − Σ̂

†
Fw,u

∥∥∥ = Op∗(N−1/2) +

Op∗(T−1/2) from Lemma C-3 imply that the asymptotic order is driven by∥∥∥∥∥ 1√
N

N

∑
i=1

si

(
V′

iF
0

T

)(
(F0)′εi

T

)∥∥∥∥∥ = Op∗

(
1
T

)
which due to the finite moments of si and its independence from the other variates follows from the same

arguments as for (2.106). Consequently,∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

[MF0−MF̂0∗ ],Vε,i

∥∥∥∥∥ = Op∗

(
1
T

)
+ Op∗

(
1√
N

)

Finally, from the same arguments as for (3.127) given the well behaved fixed and finite limit of Σ̂
†
F0 by

Ass.2∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i q̂∗

PF0 ,Vε,i

∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i

√
N
(

V′
iF

0

T

)
Σ̂

†
F0

(
(F0)′εi

T

)∥∥∥∥∥ = Op∗

(
1
T

)
Combining then all the results above we come to∥∥∥∥∥ 1

N

N

∑
i=1

siQ̂∗−1
i q̂∗

i

∥∥∥∥∥ = Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
(3.128)

and so

√
N(β̂

∗
mg − β) =

1√
N

N

∑
i=1

siυi + op∗(1)

In turn, subtracting
√

N(β̂mg − β) obtained in (2.109) from both sides gives the expansion around β̂mg

√
N(β̂

∗
mg − β̂mg) =

1√
N

N

∑
i=1

(si − 1)υi + op∗(1)

d∗−→ N (0k×1, Ωυ),
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as (N, T) → ∞, because

E∗
[(

1√
N

N

∑
i=1

(si − 1)υi

)(
1√
N

N

∑
j=1

(sj − 1)υj

)′]

=
1
N

N

∑
i=1

N

∑
j=1

E∗[(si − 1)(sj − 1)]E∗(υiυ
′
j) =

1
N

N

∑
i=1

E∗[(si − 1)2]E∗(υiυ
′
i)

=
1
N

N

∑
i=1

E∗(υiυ
′
i) + O(N−1) → Ωυ

again using E∗[(si − 1)2] = 1 − N−1. This is the result stated in the theorem. It then follows directly from

this result and Theorem 6 that

sup
x∈Rk×1

∣∣∣P∗[
√

N(β̂
∗
mg − β̂mg) ≤ x]− P[

√
N(β̂mg − β) ≤ x]

∣∣∣ −→p 0,

where inequalities are to be interpreted coordinate-wise.
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4 Variance Estimation

Theorem 8 Consistency of variance estimators.

Under Ass.1-5, or assumptions 1-3, 5 and 7 when (y, y∗) are excluded from the CA, we have as (N, T) → ∞ such

that τN,T → τ < ∞ that

NTΘ̂ −→p Σ−1ΨΣ−1

NTΘ̂
∗ −→p∗ Σ−1ΨΣ−1

If in addition Ass.6 and the conditions of Theorem 4 hold, then

NΘ̂ −→p Σ−1ΨhΣ−1

NΘ̂
∗ −→p∗ Σ−1ΨhΣ−1

and also

NΩ̂υ −→p Ωυ

NΩ̂
∗
υ −→p∗ Ωυ

as (N, T) → ∞.

Proof.

Making use of the notation introduced in sections 2.3 and 3.4, the variance estimators for the CCEP esti-

mates in respectively the original and bootstrap samples are

Θ̂ = N−1Q
−1

Ψ̂Q
−1

, Ψ̂ =

[
1

N − 1

N

∑
i=1

Q̂i(β̂i − β̂mg)(β̂i − β̂mg)
′Q̂i

]
(4.1)

Θ̂
∗
= N−1Q

∗−1
Ψ̂

∗
Q

∗−1
, Ψ̂

∗
=

[
1

N − 1

N

∑
i=1

siQ̂∗
i (β̂

∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′Q̂∗
i

]
(4.2)

where β̂i = Q̂−1
i T−1X′

iMF̂yi and β̂
∗
i = Q̂∗−1

i T−1X′
iMF̂∗yi. The latter can using (2.4) and (2.5) be decom-

posed as

β̂i = β + υi + Q̂−1
i

1√
N

q̂i, β̂
∗
i = β + υi + Q̂∗−1

i
1√
N

q̂∗
i

such that from β̂mg = 1
N ∑N

i=1 β̂i and β̂
∗
mg = 1

N ∑N
i=1 si β̂

∗
i follows

β̂i − β̂mg = (υi − υ) + Q̂−1
i

1√
N

q̂i −
1
N

N

∑
i=1

Q̂−1
i

1√
N

q̂i (4.3)

β̂
∗
i − β̂

∗
mg = (υi − υw) + Q̂∗−1

i
1√
N

q̂∗
i −

1
N

N

∑
i=1

siQ̂∗−1
i

1√
N

q̂∗
i (4.4)
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where υw = 1
N ∑N

i=1 siυi.

Consider first the homogeneous slope setting βi = β and note that then υi = 0k×1. Applying (4.3) gives

in this case

Q̂i(β̂i − β̂mg) =
1√
N

q̂i − Q̂i

[
1
N

N

∑
i=1

Q̂−1
i

1√
N

q̂i

]
= T−1V′

iεi + Op(N−1) + Op(T−1) + Op((NT)−1/2) (4.5)

because making use of (2.108) yields∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i

1√
N

q̂i

∥∥∥∥∥ = N−1/2

∥∥∥∥∥ 1
N

N

∑
i=1

Q̂−1
i q̂i

∥∥∥∥∥ = Op

(
1
N

)
+ Op

(
1√
NT

)
(4.6)

such that
∥∥∥Q̂i

[
1
N ∑N

i=1 Q̂−1
i

1√
N

q̂i

]∥∥∥ ≤
∥∥∥Q̂i

∥∥∥ ∥∥∥ 1
N ∑N

i=1 Q̂−1
i

1√
N

q̂i

∥∥∥ = Op(N−1) + Op((NT)−1/2) for the final

term on the first line. For the first term we get by substituting in (2.101)

N−1/2q̂i = N−1/2(q̂I,Vε,i − q̂PF0 ,Vε,i + q̂[MF0−MF̂0 ],Vε,i) + Op(N−1) + Op((NT)−1/2)

= T−1V′
iεi + Op(N−1) + Op(T−1) + Op((NT)−1/2) (4.7)

since N−1/2q̂I,Vε,i = T−1V′
iεi,∥∥∥N−1/2q̂PF0 ,Vε,i

∥∥∥ ≤
∥∥∥∥V′

iF
0

T

∥∥∥∥
∥∥∥∥∥
(
(F0)′F0

T

)†
∥∥∥∥∥
∥∥∥∥ (F0)′εi

T

∥∥∥∥ = Op

(
1
T

)
and because substituting in Vi = Uiqx and εi = UiB−1qy together with (2.61) results in∥∥∥N−1/2q̂[MF0−MF̂0 ],Vε,i

∥∥∥ ≤
∥∥q′

x
∥∥ ∥∥∥T−1U′

i[MF0 − MF̂0 ]Ui

∥∥∥ ∥∥∥B−1qy

∥∥∥ = Op(N−1) + Op(T−1) + Op((NT)−1/2)

Then, recalling that
∥∥T−1V′

iεi
∥∥ = Op(T−1/2) and

∥∥T−1V′
iεiε

′
iVi
∥∥ = Op(1) by Ass.1, substituting in (4.5)

yields

TΨ̂ = T

[
1

N − 1

N

∑
i=1

Q̂i(β̂i − β̂mg)(β̂i − β̂mg)
′Q̂i

]

=
1

N − 1

N

∑
i=1

V′
iεiε

′
iVi

T
+ Op

(√
T

N

)
+ Op

(
1√
T

)
+ Op

(
1√
N

)

+ Op

(
T

N2

)
+ Op

(
1
T

)
+ Op

(
1
N

)
+ Op

( √
T

N3/2

)
+ Op

(
1√
NT

)

=
1

N − 1

N

∑
i=1

V′
iεiε

′
iVi

T
+ Op

(
1√
N

)
+ Op

(
1√
T

)
where the third line uses T/N = O(1). Note then that for the leading term we have given the mutual

independence of εi and Vi by Ass.5, and their finite fourth moments and cross-section independence
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under Ass.1 that

1
N − 1

N

∑
i=1

V′
iεiε

′
iVi

T
−→p Ψ

as (N, T) → ∞. Therefore, it follows provided T/N → τ < ∞

TΨ̂ −→p Ψ

In the bootstrap world, we get from near identical steps with (4.4)

Q̂∗
i (β̂

∗
i − β̂

∗
mg) =

1√
N

q̂∗
i − Q̂∗

i

[
1
N

N

∑
i=1

siQ̂∗−1
i

1√
N

q̂∗
i

]
= T−1V′

iεi + Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2) (4.8)

For completeness, this follows because we have from eq.(3.128)∥∥∥∥∥ 1
N

N

∑
i=1

siQ̂∗−1
i

1√
N

q̂∗
i

∥∥∥∥∥ = Op∗

(
1
N

)
+ Op∗

(
1√
NT

)
(4.9)

which with
∥∥∥Q̂∗

i

∥∥∥ = Op∗(1) leads to
∥∥∥Q̂∗

i

[
1
N ∑N

i=1 siQ̂∗−1
i

1√
N

q̂∗
i

]∥∥∥ ≤
∥∥∥Q̂∗

i

∥∥∥ ∥∥∥ 1
N ∑N

i=1 siQ̂∗−1
i

1√
N

q̂∗
i

∥∥∥ = Op∗(N−1)+

Op∗((NT)−1/2) for the second term on the first line. For the first term,

N−1/2q̂∗
i = T−1V′

iεi + Op∗(N−1) + Op∗(T−1) + Op∗((NT)−1/2) (4.10)

is obtained by first substituting in (3.125) and subsequently
∥∥∥N−1/2q̂∗

PF0 ,Vε,i

∥∥∥ ≤
∥∥∥V′

iF
0

T

∥∥∥ ∥∥∥∥( (F0)′F0

T

)†
∥∥∥∥ ∥∥∥ (F0)′εi

T

∥∥∥ =

Op∗(T−1) and
∥∥∥N−1/2q̂∗

[MF0−MF̂0∗ ],Vε,i

∥∥∥ ≤ ∥q′
x∥
∥∥T−1U′

i[MF0 − MF̂0∗ ]Ui
∥∥ ∥∥B−1qy

∥∥ = Op∗(N−1)+Op∗(T−1)+

Op∗((NT)−1/2) by eq.(3.66). Substituting in (4.8) and making use of τN,T = O(1) and si = Op∗(1) then

results in

TΨ̂
∗
= T

[
1

N − 1

N

∑
i=1

siQ̂∗
i (β̂

∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′Q̂∗
i

]

=
1

N − 1

N

∑
i=1

si
V′

iεiε
′
iVi

T
+ Op∗

(
1√
N

)
+ Op∗

(
1√
T

)
−→p∗ Ψ

by E∗(si) = 1, E∗(s2
i ) = O(1) and the independence of si, Vi and εi.

Finally, with Q
−1 −→p Σ−1 and Q

∗−1 −→p∗ Σ−1 from Lemmas B-6 and C-7, we come to

NTΘ̂ = Q
−1TΨ̂Q

−1 −→p Σ−1ΨΣ−1

NTΘ̂
∗
= Q

∗−1TΨ̂
∗
Q

∗−1 −→p∗ Σ−1ΨΣ−1

as stated in the theorem. Arguments are identical when MF̂x
is employed in stead of MF̂, provided that

rk(Γ) = m.
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Next, consider (4.1)-(4.2) under heterogeneous slopes characterized by Ass.6. In this case (4.3)-(4.4) give

β̂i − β̂mg = (υi − υ) + Q̂−1
i

1√
N

q̂i −
1
N

N

∑
i=1

Q̂−1
i

1√
N

q̂i = (υi − υ) + Op(N−1) + Op(T−1/2) (4.11)

β̂
∗
i − β̂

∗
mg = (υi − υw) + Q̂∗−1

i
1√
N

q̂∗
i −

1
N

N

∑
i=1

siQ̂∗−1
i

1√
N

q̂∗
i = (υi − υw) + Op∗(N−1) + Op∗(T−1/2)

(4.12)

which follows from substituting in (4.6) and (4.9) for the last terms in each equation and because
∥∥T−1V′

iεi
∥∥ =

Op(T−1/2),
∥∥∥Q̂−1

i

∥∥∥ = Op(1) and
∥∥∥Q̂∗−1

i

∥∥∥ = Op∗(1) together with (4.7) and (4.10) give∥∥∥Q̂−1
i N−1/2q̂i

∥∥∥ ≤
∥∥∥Q̂−1

i

∥∥∥ ∥∥∥N−1/2q̂i

∥∥∥ = Op(T−1/2) + Op(N−1)∥∥∥Q̂∗−1
i N−1/2q̂i

∥∥∥ ≤
∥∥∥Q̂∗−1

i

∥∥∥ ∥∥∥N−1/2q̂∗
i

∥∥∥ = Op∗(T−1/2) + Op∗(N−1)

Therefore,

Q̂i(β̂i − β̂mg) = Q̂iυi + Op(N−1/2) + Op(T−1/2)

Q̂∗
i (β̂

∗
i − β̂

∗
mg) = Q̂∗

i υ∗
i + Op∗(N−1/2) + Op∗(T−1/2)

because
∥∥∥Q̂iυ

∥∥∥ ≤
∥∥∥Q̂i

∥∥∥ ∥υ∥ = Op(N−1/2) by Ass.6 and also
∥∥∥Q̂∗

i υw

∥∥∥ ≤
∥∥∥Q̂∗

i

∥∥∥ ∥υw∥ = Op∗(N−1/2) be-

cause si has finite second moments and is independent from υi. Since in addition
∥∥∥Q̂iυi

∥∥∥ = Op(1),∥∥∥Q̂∗
i υi

∥∥∥ = Op∗(1) these final results lead to

Ψ̂ =
1

N − 1

N

∑
i=1

Q̂i(β̂i − β̂mg)(β̂i − β̂mg)
′Q̂i =

1
N − 1

N

∑
i=1

Q̂iυiυ
′
iQ̂i + Op(N−1/2) + Op(T−1/2)

=
1

N − 1

N

∑
i=1

Σiυiυ
′
iΣi + Op(N−1/2) + Op(T−1/2)

−→p Ψh

as (N, T) → ∞, due to E(∥υi∥6) < ∞ under Theorem 4 and cross-section independence of υi by Ass.6,

where Ψh was defined in Theorem 4 and we made use of Q̂i = Σi + op(1) from (3.116). Similarly, in the

bootstrap world, since again si is independent from υi, E∗(si) = 1 and E∗(s2
i ) = O(1),

Ψ̂
∗
=

1
N − 1

N

∑
i=1

siQ̂∗
i (β̂

∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′Q̂∗
i =

1
N − 1

N

∑
i=1

siQ̂∗
i υiυ

′
iQ̂

∗
i + Op∗(N−1/2) + Op∗(T−1/2)

=
1

N − 1

N

∑
i=1

siΣiυiυ
′
iΣi + Op∗(N−1/2) + Op∗(T−1/2)

−→p∗ Ψh

as (N, T) → ∞. In conclusion, again making use of Lemmas B-6 and C-7, we come to

NΘ̂ = Q
−1

Ψ̂Q
−1 −→p Σ−1ΨhΣ−1

NΘ̂
∗
= Q

∗−1
Ψ̂

∗
Q

∗−1 −→p∗ Σ−1ΨhΣ−1
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as required.

Finally, eq.(4.11) yields also for the estimator of the Mean Group variance

NΩ̂υ =
1

N − 1

N

∑
i=1

(β̂i − β̂mg)(β̂i − β̂mg)
′ =

1
N − 1

N

∑
i=1

(υi − υ)(υi − υ)′ + Op(N−1) + Op(T−1/2)

=
1

N − 1

N

∑
i=1

υiυ
′
i + Op(N−1) + Op(T−1/2)

−→p Ωυ

as (N, T) → ∞, and similarly from (4.12) for the bootstrap sample estimator

NΩ̂
∗
υ =

1
N − 1

N

∑
i=1

si(β̂
∗
i − β̂

∗
mg)(β̂

∗
i − β̂

∗
mg)

′ =
1

N − 1

N

∑
i=1

si(υi − υw)(υi − υw)
′ + Op∗(N−1) + Op∗(T−1/2)

=
1

N − 1

N

∑
i=1

siυiυ
′
i + Op∗(N−1) + Op∗(T−1/2)

−→p∗ Ωυ

since again E∗(si) = 1, and making use of earlier definitions
∥∥∥ 1

N ∑N
i=1 siυiυ

′
w

∥∥∥ = ∥υwυ′
w∥ ≤ ∥υw∥2 =

Op∗(N−1). This completes the proof.
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Supplement B: Monte Carlo tables

for

“Bootstrap-Improved Inference for Factor Augmented

Regressions with CCE”*

Ignace De Vos1,2 and Ovidijus Stauskas1

1Lund University, Department of Economics
2Ghent University, Department of Economics

Content of the supplement

This supplement contains additional Monte Carlo results that are not reported in the main article. The

tables are organized as follows:

• Tables regarding estimation (bias and root mean square error): Section 1

• Tables regarding hypothesis testing (empirical size): Section 2

*The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the
Flemish Supercomputer Center, funded by Ghent University; the Hercules Foundation; and the Economy, Science, and Innova-
tion Department of the Flemish Government.
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1 Estimation tables

Table A-1: Estimation results: β = 5 setting, fixed slopes
bias × 100 rmse × 100

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
CCEP 25 3.05 2.67 2.74 2.81 2.70 2.75 6.35 5.09 4.15 3.60 3.09 2.99

50 1.56 1.50 1.42 1.39 1.37 1.41 4.49 3.28 2.60 2.09 1.69 1.58
100 0.87 0.72 0.77 0.75 0.75 0.78 2.93 2.19 1.76 1.30 1.05 0.92
200 0.52 0.38 0.36 0.37 0.38 0.37 2.06 1.52 1.14 0.84 0.61 0.51
500 0.14 0.11 0.18 0.15 0.15 0.16 1.25 0.94 0.69 0.50 0.34 0.26

1000 0.05 0.06 0.05 0.07 0.07 0.07 0.88 0.66 0.48 0.34 0.23 0.17
pairs 25 1.22 0.85 0.87 0.95 0.76 0.84 7.06 5.17 3.67 2.66 1.75 1.42

50 0.33 0.32 0.21 0.17 0.15 0.19 5.11 3.33 2.41 1.68 1.05 0.75
100 0.24 0.04 0.08 0.07 0.07 0.10 3.33 2.36 1.72 1.13 0.75 0.51
200 0.20 0.01 -0.01 0.00 0.02 0.01 2.36 1.64 1.15 0.79 0.49 0.36
500 -0.01 -0.05 0.04 -0.01 0.00 0.01 1.44 1.04 0.71 0.50 0.31 0.21

1000 -0.04 -0.02 -0.02 -0.01 0.00 -0.01 1.02 0.72 0.51 0.35 0.22 0.15
CCEPx 25 3.17 2.73 2.80 2.88 2.80 2.85 6.61 5.27 4.22 3.69 3.21 3.09

50 1.56 1.53 1.44 1.43 1.41 1.44 4.58 3.36 2.63 2.13 1.73 1.61
100 0.85 0.72 0.78 0.76 0.76 0.79 2.99 2.17 1.76 1.32 1.05 0.93
200 0.52 0.39 0.37 0.37 0.38 0.38 2.09 1.50 1.15 0.84 0.61 0.51
500 0.12 0.12 0.17 0.15 0.16 0.16 1.25 0.94 0.69 0.50 0.34 0.26

1000 0.07 0.07 0.05 0.07 0.07 0.07 0.88 0.66 0.48 0.34 0.23 0.17
pairsx 25 1.08 0.64 0.65 0.74 0.59 0.64 6.58 4.89 3.38 2.45 1.63 1.24

50 0.28 0.27 0.15 0.15 0.10 0.14 4.80 3.19 2.28 1.61 1.01 0.72
100 0.19 0.03 0.08 0.06 0.06 0.09 3.14 2.18 1.63 1.10 0.73 0.50
200 0.20 0.02 0.01 0.01 0.01 0.01 2.24 1.53 1.12 0.77 0.49 0.35
500 -0.03 -0.04 0.03 -0.01 0.01 0.01 1.35 0.98 0.69 0.49 0.30 0.21

1000 -0.01 0.00 -0.02 -0.01 0.00 0.00 0.95 0.69 0.49 0.34 0.22 0.15
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 5, 1, 1, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx denote respec-

tively the CCEP estimator with and without y included in the matrix of CA. ’Pairs’ and ’pairsx’ correspond to their respective
bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section) resampling algorithm.
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Table A-2: Estimation results: σ2 = 5 setting, fixed slopes
bias × 100 rmse × 100

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
CCEP 25 3.57 2.53 2.94 2.87 2.73 2.88 13.02 9.95 7.63 5.75 4.23 3.63

50 1.77 1.60 1.46 1.43 1.32 1.36 9.42 6.86 4.96 3.70 2.51 2.04
100 1.13 0.79 0.81 0.81 0.81 0.83 6.32 4.80 3.52 2.52 1.80 1.37
200 0.70 0.35 0.38 0.36 0.40 0.38 4.45 3.33 2.42 1.72 1.14 0.85
500 0.14 0.03 0.20 0.14 0.16 0.18 2.82 2.14 1.48 1.06 0.70 0.49

1000 0.03 0.10 0.10 0.06 0.09 0.08 1.95 1.53 1.07 0.74 0.48 0.34
pairs 25 1.66 0.54 0.94 0.86 0.62 0.78 15.14 10.93 7.77 5.39 3.41 2.38

50 0.44 0.35 0.20 0.16 0.04 0.08 11.01 7.44 5.10 3.57 2.19 1.55
100 0.58 0.12 0.12 0.12 0.11 0.13 7.26 5.28 3.65 2.49 1.65 1.12
200 0.42 0.01 0.02 0.00 0.03 0.01 5.16 3.67 2.51 1.73 1.09 0.77
500 -0.03 -0.13 0.06 -0.02 0.01 0.03 3.27 2.39 1.55 1.09 0.69 0.47

1000 -0.07 0.02 0.02 -0.02 0.01 0.00 2.25 1.65 1.12 0.76 0.47 0.34
CCEPx 25 3.63 2.62 2.94 2.89 2.75 2.90 13.02 9.89 7.56 5.74 4.25 3.65

50 1.76 1.62 1.46 1.46 1.34 1.36 9.49 6.88 4.92 3.71 2.52 2.05
100 1.04 0.73 0.79 0.83 0.80 0.84 6.42 4.80 3.47 2.52 1.80 1.38
200 0.72 0.29 0.37 0.37 0.39 0.38 4.46 3.31 2.44 1.72 1.14 0.85
500 0.16 0.03 0.18 0.14 0.16 0.18 2.81 2.13 1.48 1.06 0.70 0.49

1000 0.06 0.11 0.09 0.06 0.09 0.08 1.96 1.55 1.08 0.74 0.47 0.34
pairsx 25 1.55 0.57 0.82 0.75 0.53 0.68 14.07 10.28 7.40 5.22 3.33 2.31

50 0.42 0.34 0.17 0.18 0.03 0.07 10.37 7.15 4.88 3.51 2.16 1.53
100 0.42 0.05 0.09 0.14 0.10 0.13 6.95 5.07 3.48 2.44 1.63 1.11
200 0.45 -0.07 0.02 0.01 0.03 0.02 4.86 3.49 2.49 1.71 1.08 0.76
500 0.00 -0.13 0.03 -0.02 0.01 0.03 3.03 2.27 1.51 1.07 0.68 0.46

1000 -0.02 0.05 0.02 -0.02 0.01 0.00 2.12 1.61 1.10 0.75 0.47 0.34
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 1, 5, 1, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx denote respec-

tively the CCEP estimator with and without y included in the matrix of CA. ’Pairs’ and ’pairsx’ correspond to their respective
bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section) resampling algorithm.
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Table A-3: Estimation results: heterogeneous slopes (σ2
υ = 5 setting)

bias × 100 rmse × 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 -3.97 -5.51 -4.91 -6.10 -5.83 -6.73 58.61 52.09 47.93 47.50 45.68 46.20
50 -5.09 -4.93 -0.94 -3.12 -1.31 -5.79 42.46 38.71 37.89 35.89 35.54 32.71

100 -0.85 -1.07 -2.99 -2.43 -2.16 -2.54 32.89 28.77 27.06 27.06 26.75 25.34
200 -0.75 -0.80 -1.32 -1.29 -1.15 -1.48 23.80 21.76 20.74 19.27 18.43 18.41
500 -0.74 -1.13 -0.71 -0.28 -0.34 -0.62 14.97 13.78 12.83 12.77 12.25 11.85

1000 0.39 0.29 0.15 0.09 -0.43 -0.18 10.92 10.18 8.95 8.83 8.84 8.75
pairs 25 -2.75 -3.84 -3.54 -4.29 -4.11 -4.97 69.34 58.40 52.78 51.68 48.98 49.84

50 -3.04 -3.29 1.10 -1.17 0.57 -4.11 49.14 42.68 41.32 38.54 37.84 34.46
100 0.54 0.37 -1.55 -0.88 -0.67 -1.06 37.56 31.37 28.72 28.52 28.02 26.56
200 0.26 0.17 -0.34 -0.34 -0.15 -0.49 26.23 23.30 21.72 19.95 19.09 18.96
500 -0.08 -0.62 -0.17 0.30 0.22 -0.06 16.35 14.43 13.22 13.08 12.50 12.07

1000 0.83 0.59 0.49 0.41 -0.11 0.14 11.86 10.64 9.17 8.98 8.96 8.85
CCEPx 25 5.35 2.59 2.85 1.49 2.33 1.11 67.00 58.67 53.99 53.89 51.94 51.97

50 -0.73 -0.53 3.92 1.58 3.33 -1.08 45.92 40.98 41.55 38.88 39.33 35.30
100 1.90 1.85 -0.63 0.17 0.43 -0.02 35.44 30.74 28.40 28.57 28.16 26.72
200 0.94 0.79 0.07 0.10 0.15 -0.15 24.46 22.87 21.40 19.97 19.01 18.99
500 -0.40 -0.51 -0.15 0.26 0.26 -0.05 15.18 13.85 13.04 12.94 12.47 12.03

1000 0.59 0.68 0.46 0.39 -0.14 0.13 11.12 10.30 9.04 8.91 8.90 8.82
pairsx 25 3.31 0.31 0.49 -0.78 0.05 -1.19 75.69 63.23 57.24 56.77 54.27 54.07

50 -1.75 -1.73 2.69 0.26 2.09 -2.36 50.07 43.19 43.56 40.25 40.33 36.34
100 1.07 1.21 -1.27 -0.47 -0.32 -0.74 38.01 32.04 29.13 29.13 28.57 27.17
200 0.65 0.43 -0.31 -0.33 -0.23 -0.53 25.52 23.62 21.72 20.20 19.20 19.18
500 -0.61 -0.67 -0.32 0.11 0.11 -0.17 15.85 14.08 13.16 13.02 12.52 12.08

1000 0.53 0.62 0.41 0.31 -0.20 0.05 11.57 10.48 9.10 8.93 8.94 8.84

CCEMG 25 3.52 3.82 3.85 1.52 2.54 1.74 45.51 44.76 44.64 43.58 44.17 44.31
50 1.47 -0.08 3.60 1.82 3.17 0.13 31.29 31.46 31.23 31.09 32.77 30.29

100 1.52 1.93 0.06 0.43 0.36 0.18 22.86 23.13 22.00 23.19 22.94 21.99
200 0.84 0.73 0.37 0.90 0.59 -0.11 16.28 15.95 15.69 16.18 15.82 15.37
500 -0.32 -0.08 -0.20 0.38 0.21 -0.13 9.94 10.39 9.93 9.99 10.19 9.72

1000 0.42 0.52 0.18 0.41 -0.24 0.25 7.05 7.07 7.07 6.88 7.29 7.05
pairsMG 25 1.89 2.31 2.19 0.02 0.95 0.15 45.55 44.76 44.51 43.65 44.18 44.30

50 0.19 -1.26 2.37 0.60 1.95 -1.05 31.37 31.51 31.07 31.08 32.70 30.36
100 0.78 1.17 -0.71 -0.31 -0.41 -0.56 22.88 23.12 22.04 23.22 22.97 21.99
200 0.40 0.30 -0.05 0.48 0.13 -0.55 16.31 15.96 15.69 16.17 15.79 15.37
500 -0.51 -0.27 -0.38 0.19 0.02 -0.33 9.98 10.40 9.95 10.00 10.18 9.72

1000 0.32 0.42 0.08 0.31 -0.35 0.16 7.07 7.07 7.08 6.88 7.30 7.04
CCEMGx 25 3.66 3.87 3.93 1.57 2.64 1.81 45.55 44.76 44.66 43.56 44.17 44.32

50 1.47 -0.06 3.60 1.85 3.20 0.16 31.29 31.48 31.22 31.09 32.78 30.29
100 1.54 1.97 0.09 0.44 0.36 0.18 22.87 23.14 22.00 23.19 22.93 21.99
200 0.87 0.72 0.37 0.90 0.59 -0.11 16.30 15.94 15.70 16.19 15.82 15.37
500 -0.34 -0.09 -0.19 0.38 0.21 -0.13 9.94 10.40 9.92 9.99 10.20 9.72

1000 0.42 0.52 0.17 0.41 -0.24 0.25 7.03 7.07 7.07 6.88 7.29 7.05
pairsMG,x 25 1.85 2.14 2.09 -0.18 0.76 -0.02 45.47 44.71 44.46 43.55 44.14 44.30

50 0.18 -1.32 2.33 0.59 1.92 -1.08 31.38 31.59 31.11 31.04 32.68 30.35
100 0.80 1.18 -0.67 -0.31 -0.41 -0.60 22.87 23.16 22.02 23.19 22.93 21.96
200 0.46 0.29 -0.07 0.47 0.15 -0.55 16.29 15.94 15.71 16.17 15.82 15.39
500 -0.53 -0.28 -0.38 0.19 0.01 -0.30 9.97 10.42 9.92 10.00 10.20 9.74

1000 0.33 0.41 0.07 0.30 -0.34 0.15 7.04 7.05 7.08 6.88 7.30 7.04
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 1, 1, 1, 5), with m = 2 factors and k = 3 regressors. CCEP and CCEMG denote the CCE estimators

with y included in the matrix of CA, whereas CCEPx, CCEMGx are the versions without y. The ’pairs’ and ’pairsx’ correspond to the
respective bootstrap-corrections for the CCEP/CCEPx estimators, and ’pairs’ with an additional MG subscript, i.e. pairsMG/pairsMG,x,
denote the bootstrap corrections of CCEMG/CCEMGx. All corrections are obtained from 2000 bootstrap replications with the pairs (cross-
section) resampling algorithm.
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2 Inference tables

Table B-1: Empirical size: β = 5 setting, fixed slopes
CCEP

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.10 0.13 0.18 0.30 0.47 0.69 0.07 0.07 0.05 0.05 0.03 0.01
50 0.08 0.10 0.11 0.17 0.33 0.50 0.09 0.07 0.05 0.04 0.03 0.01

100 0.07 0.07 0.10 0.11 0.24 0.37 0.06 0.06 0.07 0.05 0.05 0.03
200 0.07 0.05 0.07 0.09 0.14 0.19 0.07 0.06 0.06 0.06 0.05 0.05
500 0.06 0.06 0.05 0.07 0.08 0.10 0.07 0.07 0.05 0.06 0.06 0.04

1000 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.06 0.06 0.05 0.05 0.05
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.11 0.09 0.08 0.08 0.09 0.12 0.11 0.10 0.08 0.08 0.07 0.06
50 0.12 0.09 0.08 0.07 0.08 0.07 0.12 0.09 0.07 0.07 0.07 0.04

100 0.10 0.07 0.09 0.06 0.07 0.06 0.10 0.07 0.09 0.07 0.07 0.05
200 0.09 0.08 0.07 0.07 0.06 0.07 0.09 0.08 0.07 0.07 0.06 0.07
500 0.08 0.08 0.06 0.06 0.06 0.05 0.08 0.08 0.06 0.06 0.06 0.05

1000 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06

CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.12 0.17 0.28 0.47 0.68 0.04 0.05 0.03 0.03 0.01 0.00
50 0.08 0.09 0.10 0.17 0.32 0.51 0.07 0.04 0.03 0.03 0.01 0.01

100 0.07 0.06 0.10 0.12 0.23 0.37 0.05 0.05 0.05 0.04 0.04 0.03
200 0.07 0.05 0.08 0.08 0.13 0.19 0.06 0.05 0.05 0.05 0.05 0.04
500 0.05 0.06 0.05 0.06 0.08 0.10 0.05 0.06 0.05 0.05 0.05 0.04

1000 0.05 0.05 0.05 0.06 0.07 0.08 0.06 0.05 0.05 0.05 0.06 0.06

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.08 0.07 0.07 0.07 0.09 0.09 0.08 0.07 0.07 0.06 0.03
50 0.12 0.08 0.06 0.07 0.06 0.06 0.12 0.08 0.06 0.06 0.05 0.03

100 0.09 0.06 0.08 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.05
200 0.08 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.06 0.07 0.06 0.06
500 0.06 0.07 0.06 0.06 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.04

1000 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 5, 1, 1, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx

denote respectively the CCEP estimator with and without y included in the matrix of CA. ’t-test’ resports the
empirical size for a t-test at the α = 0.05 significance level. ’basic’ reports empirical size for tests based on the
basic (’empirical percentile’) bootstrap interval, and bootstrap−t and bootstrap−tc are respectively empirical
size for the plain and corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.
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Table B-2: Empirical size: σ2 = 5 setting, fixed slopes
CCEP

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.08 0.08 0.11 0.12 0.17 0.26 0.09 0.09 0.09 0.08 0.05 0.04
50 0.07 0.07 0.07 0.08 0.10 0.16 0.09 0.07 0.06 0.06 0.05 0.04

100 0.06 0.07 0.06 0.06 0.11 0.12 0.07 0.07 0.07 0.05 0.07 0.05
200 0.07 0.05 0.06 0.06 0.07 0.08 0.09 0.06 0.06 0.06 0.06 0.06
500 0.06 0.06 0.06 0.05 0.06 0.05 0.08 0.07 0.06 0.05 0.05 0.04

1000 0.05 0.06 0.05 0.05 0.05 0.05 0.07 0.06 0.06 0.05 0.05 0.06
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.08 0.08 0.08 0.06 0.05 0.09 0.07 0.08 0.08 0.06 0.05
50 0.10 0.07 0.06 0.05 0.05 0.05 0.09 0.07 0.05 0.05 0.05 0.05

100 0.07 0.07 0.07 0.05 0.07 0.06 0.07 0.06 0.07 0.05 0.07 0.05
200 0.09 0.07 0.06 0.06 0.05 0.05 0.09 0.07 0.06 0.06 0.05 0.06
500 0.08 0.08 0.06 0.05 0.05 0.04 0.08 0.08 0.05 0.05 0.05 0.04

1000 0.07 0.06 0.06 0.05 0.04 0.06 0.07 0.06 0.06 0.05 0.04 0.06

CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.07 0.07 0.09 0.12 0.16 0.25 0.08 0.07 0.08 0.06 0.04 0.03
50 0.06 0.06 0.06 0.07 0.09 0.15 0.08 0.06 0.05 0.05 0.05 0.04

100 0.06 0.06 0.05 0.06 0.10 0.11 0.06 0.07 0.05 0.04 0.07 0.05
200 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.05 0.06 0.06 0.05 0.06
500 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04 0.05 0.05

1000 0.04 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.05 0.04 0.05

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.08 0.06 0.07 0.07 0.06 0.05 0.08 0.06 0.07 0.07 0.06 0.05
50 0.08 0.07 0.05 0.06 0.06 0.04 0.08 0.07 0.05 0.06 0.06 0.04

100 0.07 0.06 0.05 0.04 0.07 0.06 0.07 0.06 0.06 0.05 0.07 0.05
200 0.07 0.05 0.06 0.06 0.06 0.05 0.07 0.05 0.06 0.06 0.06 0.05
500 0.06 0.06 0.05 0.04 0.05 0.04 0.06 0.06 0.05 0.04 0.05 0.04

1000 0.06 0.07 0.06 0.05 0.04 0.05 0.06 0.07 0.06 0.05 0.04 0.05
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 5, 1, 1, 0), with m = 2 factors and k = 3 regressors. CCEP and CCEPx

denote respectively the CCEP estimator with and without y included in the matrix of CA. ’t-test’ resports the
empirical size for a t-test at the α = 0.05 significance level. ’basic’ reports empirical size for tests based on the
basic (’empirical percentile’) bootstrap interval, and bootstrap−t and bootstrap−tc are respectively empirical
size for the plain and corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.
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Table B-3: Empirical size: CCEP with heterogeneous slopes (σ2
υ = 5)

CCEP
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.12 0.12 0.12 0.13 0.13 0.14 0.22 0.21 0.20 0.20 0.21 0.20
50 0.09 0.11 0.09 0.10 0.10 0.11 0.14 0.17 0.15 0.16 0.15 0.16

100 0.08 0.07 0.09 0.10 0.10 0.10 0.13 0.11 0.14 0.13 0.15 0.13
200 0.07 0.08 0.09 0.08 0.07 0.07 0.10 0.11 0.13 0.10 0.10 0.10
500 0.06 0.05 0.05 0.07 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.07

1000 0.05 0.05 0.04 0.05 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.07
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.18 0.15 0.12 0.10 0.10 0.10 0.17 0.14 0.11 0.10 0.10 0.10
50 0.12 0.12 0.10 0.10 0.09 0.08 0.12 0.12 0.10 0.10 0.09 0.08

100 0.13 0.09 0.10 0.09 0.07 0.08 0.12 0.09 0.10 0.09 0.08 0.08
200 0.10 0.10 0.10 0.08 0.08 0.06 0.10 0.10 0.11 0.08 0.08 0.06
500 0.07 0.06 0.06 0.07 0.07 0.06 0.08 0.06 0.06 0.07 0.07 0.06

1000 0.07 0.07 0.04 0.05 0.07 0.06 0.07 0.07 0.04 0.05 0.07 0.06

CCEPx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.10 0.08 0.09 0.11 0.11 0.11 0.19 0.18 0.16 0.18 0.19 0.19
50 0.08 0.09 0.08 0.08 0.09 0.09 0.13 0.14 0.12 0.13 0.13 0.14

100 0.07 0.06 0.08 0.09 0.08 0.08 0.10 0.10 0.12 0.11 0.12 0.12
200 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.10 0.10 0.09 0.07 0.08
500 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07

1000 0.05 0.05 0.04 0.04 0.06 0.06 0.06 0.06 0.04 0.05 0.06 0.06
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.18 0.13 0.11 0.11 0.10 0.09 0.16 0.12 0.10 0.11 0.09 0.09
50 0.12 0.12 0.10 0.09 0.09 0.08 0.12 0.11 0.09 0.09 0.08 0.07

100 0.10 0.08 0.09 0.08 0.07 0.07 0.10 0.08 0.09 0.08 0.07 0.06
200 0.09 0.08 0.09 0.07 0.07 0.06 0.09 0.08 0.09 0.07 0.07 0.06
500 0.07 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.06

1000 0.07 0.06 0.04 0.05 0.07 0.06 0.07 0.06 0.04 0.05 0.07 0.06
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 1, 1, 1, 5), with m = 2 factors and k = 3 regressors. CCEP and CCEPx

denote respectively the CCEP estimator with and without y included in the matrix of CA. ’t-test’ resports the
empirical size for a t-test at the α = 0.05 significance level. ’basic’ reports empirical size for tests based on the
basic (’empirical percentile’) bootstrap interval, and bootstrap−t and bootstrap−tc are respectively empirical
size for the plain and corrected bootstrap−t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.
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Table B-4: Empirical size: CCEMG with heterogeneous slopes (σ2
υ = 5)

CCEMG
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.09 0.10 0.09 0.09 0.11 0.12 0.12 0.13 0.13 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.08 0.09 0.09

100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.08 0.09 0.08 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.07
500 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.06 0.07 0.05

1000 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.04
Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05 0.05 0.04

100 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.05
500 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04

1000 0.04 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05

CCEMGx

t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.09 0.10 0.09 0.09 0.11 0.12 0.12 0.13 0.13 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.09 0.09 0.09

100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.07 0.09 0.07 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.06 0.06
500 0.05 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05

1000 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.05

Bootstrap−t Bootstrap−tc

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.06 0.05 0.06 0.07 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05

100 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.04
500 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04

1000 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05
Notes: The DGP is (du, β, σ2, σ2

η , σ2
υ ) = (10, 1, 1, 1, 5), with m = 2 factors and k = 3 regressors. CCEMG and

CCEMGx denote respectively the CCEMG estimator with and without y included in the matrix of CA. ’t-test’
resports the empirical size for a t-test at the α = 0.05 significance level. ’basic’ reports empirical size for tests
based on the basic (’empirical percentile’) bootstrap interval, and bootstrap−t and bootstrap−tc are respectively
empirical size for the plain and corrected bootstrap−t interval. All bootstrap tests are based on B = 2000
replications with the pairs (cross-section) resampling algorithm.
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