~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

De Vos, Ignace; Stauskas, Ovidijus

Working Paper
Bootstrap Improved Inference for Factor-Augmented
Regressions with CCE

Working Paper, No. 2021:16

Provided in Cooperation with:
Department of Economics, School of Economics and Management, Lund University

Suggested Citation: De Vos, Ignace; Stauskas, Ovidijus (2021) : Bootstrap Improved Inference for
Factor-Augmented Regressions with CCE, Working Paper, No. 2021:16, Lund University, School of
Economics and Management, Department of Economics, Lund

This Version is available at:
https://hdl.handle.net/10419/260336

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260336
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Working Paper 2021:16

Department of Economics
School of Economics and Management

Bootstrap Improved Inference for
Factor-Augmented Regressions with
CCE

Ignace De Vos
Ovidijus Stauskas

November 2021

UNIVERSITY



Bootstrap Improved Inference for Factor-Augmented
Regressions with CCE

Ignace De Vos!'? and Ovidijus Stauskas!
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2Ghent University, Department of Economics

Abstract

The Common Correlated Effects (CCE) methodology is now well established for the analysis
of factor-augmented panel models. Yet, it is often neglected that the pooled variant is biased
unless the cross-section dimension (N) of the dataset dominates the time series length (T).
This is problematic for inference with typical macroeconomic datasets where T often equal
or larger than N. Given that an analytical correction is also generally infeasible, the issue
remains without a solution. In response, we provide in this paper the theoretical foundation
for the “cross-section” or “pairs’ bootstrap in large N and T panels with T/N < co. We show
that the scheme replicates the distribution of the CCE estimators, under both constant and
heterogeneous slopes, such that bias can be eliminated and asymptotically correct inference
can ensue even when N does not dominate. Monte Carlo experiments illustrate that the

asymptotic properties also translate well to finite samples.

Keywords: bootstrap, pairs bootstrap, factor-augmented panel data models, interactive effects,

factors, common correlated effects, bias-correction



1 Introduction

There is an abundance of empirical evidence suggesting that cross-section units in economic pan-
els tend to be contemporaneously correlated and potentially driven by common components.
Such cross-section dependence needs to be accounted for in the estimation of the economet-
ric model if estimates and inferences are to be trusted (for details, consult e.g. Andrews, 2005;
Sarafidis and Robertson, 2009; Sarafidis and Wansbeek, 2012). One of the leading approaches
to model cross-section dependence is by assuming a multi-factor error structure, which was re-
cently also branded an “interactive effects’ structure. The central idea is that cross-section units
are simultaneously affected by a finite number of time-varying unobserved common variables,
dubbed factors, to which they can respond with unit-specific intensities, which are called load-
ings. The factors may represent global pandemics, crises, business cycle fluctuations, techno-
logical progress, or other global trends and shocks (see in particular Sarafidis and Wansbeek,
2012, for more examples and an overview of cross-section dependence in panel data). Failure to
account for these unobserved components results in inconsistent estimates and inferences when

they are correlated with the regressors.

One of the leading techniques for estimating panel models with unobserved factors is the Com-
mon Correlated Effects (CCE) approach by |Pesaran| (2006). The method boils down to augment-
ing the model of interest with the cross-sectional averages (CA) of the observed variables such
that asymptotically—as the cross-section dimension N — co—the common factor space is elim-
inated. Both a mean group (CCEMG) and a pooled (CCEP) version are suggested, depending
on whether the model slopes are assumed to be heterogeneous (variable) or homogeneous (con-
stant) over cross-sectional units. Thanks to their computational simplicity and robustness (see
e.g. Pesaran and Tosetti, 2011; |Kapetanios et al., 2011; Westerlund et al., 2019, among others)
both CCEMG and CCEP enjoy considerable popularity in practice, as evidenced by numerous
applications. Yet, it is often neglected that the pooled CCE variant is biased in large (N, T) sam-
ples unless T/N — 0 (see Westerlund and Urbain, 2015; Karabiyik et al., 2017). This result is
highly relevant in practice as it implies that inference with standard asymptotic tests will be dis-
torted unless the cross-section dimension of the dataset dominates the time series length. Such
dimensions are often encountered in microeconomic applications, but N rarely dominates T in
macro panels. In macro settings T is often similar or even larger than N. A few examples of such
applications are Ozatay et al.| (2009); Berger and Heylen! (2011); Albanese and Modical (2012);
Bertoli and Ferndndez-Huertas Moraga (2013); Mazzanti and Musolesi (2013); Ozmen and C)zge
Doganay Yasar| (2016); Stevens and Childs| (2017); Eberhardt and Teal (2020). Simulation results
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in Westerlund and Urbain| (2015) confirm that size distortions can be severe for such combina-
tions of N and T. While the obvious solution would be bias correction, this is impeded by the
fact that the asymptotic bias depends on whether or not the number of CA exceeds the number
of factors, which is unknown, as well as various unobserved matrices without consistent plug-
in estimators. Westerlund and Urbain| (2013b, 2015) and Karabiyik et al.| (2019) have proposed
plug-in corrections, but it can only be applied when the unknown number of factors is exactly
equal to the number of CA. As this is both highly unlikely in practice and difficult to check, the

applicability of the approach is very limited, and the problem remains without a solution.

The bootstrap is an attractive alternative to analytical correction when bias expressions are ines-
timable. In its essence, if the bootstrap is able to replicate the distribution of an estimator, its bias
can be eliminated without explicit knowledge of the functional formE| In this paper, we pursue
this strategy and establish the theoretical validity of the ‘cross-section” (CS) or ‘pairs’ bootstrap
for bias-adjustment and inference with the CCE estimators in large N and T panels. The key ad-
vantage of the algorithm is that the number of latent factors or time series properties of the data
do not need to be known by the researcher. This is in contrast to many residual-based bootstrap
schemes, for example when applied to time series models augmented with factors estimated
with the principal components (PC) approach (see e.g. Gongalves and Perron, 2014; Djogbenou
et al., 2015), and it is therefore a considerable advantage in practice. We first derive the general-
ized asymptotic distribution of the CCE estimators, allowing for both general serial dependence
and the possibility that the number of CA exceeds the number of factors, and show that the re-
sampling algorithm replicates the distribution, with all its bias components, under both common
and heterogeneous slopes. This generally requires in the common slope setting that the CA of
the dependent variable is excluded from the estimation. This restriction is very mild and shown
to be without loss of asymptotic efficiency. The heterogeneous slope setting requires no addi-
tional restrictions. The key implication is that the cross-section bootstrap enables elimination of
the bias of the CCEP estimator and leads to asymptotically correct inferences even when N does
not dominate. This is a novel result since the CS-bootstrap was shown for instance by Galvao
and Kato| (2014); Gongalves and Katfo (2015) to not allow correction of the Nickell-type (Nickell,
1981) incidental parameters bias of the fixed effects estimator. The resampling scheme itself was
introduced into the panel data literature by |Kapetanios (2008) and first studied in a CCEP con-
text by [Westerlund et al. (2019) as N — oo for fixed T, in which case the analysis is simplified by

1See for example Everaert and Pozzi (2007) who use the bootstrap to correct for the [Nickell (1981) bias in more
general data generating processes than considered by analytical adjustments in e.g. [Kiviet| (1995); [Bun and Carree
(2005).



the fact that the CCEP estimator is also unbiased (since T/N — O)E| This paper is therefore, to
the best of our knowledge, the first to consider the bootstrap for CCE estimators in large N and
T panel models with potential heterogeneous slopes, and the first to establish the validity of the
cross-section resampling scheme for CCE under joint asymptotics. As such, this article provides
the theoretical foundation for the standard errors and bootstrap-t intervals constructed with CS-
resampling in e.g. |[Millo| (2019); Juodis et al. (2021). In addition, bootstrap as a bias-correction
tool for CCE estimators has not yet been considered. (Goncalves and Perron, (2014); Djogbenou
et al. (2015) study bootstrap corrections for factor-augmented models, but consider in stead the

principal components (PC) estimator of Bai| (2009) in a predictive time series model.

The remainder of this paper is structured as follows: the next section introduces the working
model and assumptions. Section|3.1{considers the CCEP estimator in the common slope setting
and presents its generalized asymptotic distribution as (N, T) — oo such that T/N — T < co.
Section outlines the bootstrap methodology and establishes conditions for its consistency.
Section [3.2 presents results under heterogeneous slopes. Section {4 assesses the finite sample
validity of our theory with a Monte Carlo experiment, and Section 5| concludes. All proofs are

referred to Supplement A, and additional Monte Carlo evidence is provided in Supplement B.

Some notation: we will use A’ to denote the Moore-Penrose pseudo-inverse of the matrix A,
rk(A) for its rank, |A| for the determinant and let |A|| = [tr (AA’ )]1/ > be the Euclidean (Frobe-
nius) matrix norm. Let furthermore ¢, be an a-rowed vector of ones and the vec(.), ® and o
operators denote respectively the vectorization operation and the Kronecker- and Hadamard
(element-wise) products. Barred variables A denote the cross-section average (CA) over the
cross-section specific matrices A; as in A = % Zfil A;. A starred object A¥ stands for an ob-
served variable (matrix or scalar) that has been generated in the bootstrap world according to
the particular scheme. On the other hand, A, ; is the weighted unobserved primitive of the model.
We formalize the bootstrap probability laws similarly to Galvao and Kato| (2014). In particular,
for any matrix bootstrap sequence Aj, which depends on a generic index n, and a determin-
istic sequence a, € Ry, we have [|A}|| = op(ay) if for every e > 0 and 6 > 0, we have
P(IP*(a,'||A%|| > €) > 6) — 0as n — oo, where IP*(.) is a bootstrap-induced measure. Sim-

ilarly, ||A;|| = Op+(ay) if for every 6 > 0 and 1 > 0, there exists a constant C > 0, such that

ZNote that the theory in Kapetanios (2008) does not consider the CCE estimators. This can be seen from model
(2.1) and Assumptions 3.2 and 3.4 in that paper, the combination of which is incompatible with the CCE frame-
work. Assumption 3.1 also rules out that the regressors have a factor structure as in [Pesaran| (2006). In its essence,
extrapolations of the provided theory to a CCE context would neglect the impact of factor estimation error with the
CA.



P(P*(a,'||A%]| > C) > &) < 5 for all n > 1. Additionally, E*(-), Var*(:) and Cov*(-,-) rep-
resent, respectively, the expectation, variance and covariance taken with respect to the induced
measure IP*, and A}, = A* +0,+(1) means ||A}, — A*|| = 0, (1) for the limiting bootstrap matrix
A*. Lastly, »7* (—F) and LN (i>) represent convergence in probability and distribution with

respect to the induced (generic) probability measure.

2 Model and assumptions

Consider the setup in [Pesaran (2006) where y;; is the scalar dependent variable observed for
cross-section i = 1,...,N at time t = 1,...,T, and x;; is the corresponding k x 1 vector of
explanatory variables. The observed T x 1 vector y; = [y;i1,...,yir) and T X k matrix X; =

[X;i1,...,x; 7| are generated according to:

yi = Xiﬁi + F’)/l' +¢&;, (2.1)
X, =FI;+V;, (2.2)

where B, is a k x 1 vector of unknown coefficients which could be heterogeneous or common
over individuals, F is a T x m matrix stacking m unobserved factors f; over time, with m fixed
and finite, and -y; and I; are the associated m x 1 vector and m X k matrix of factor loadings.
The T x 1 vector ¢ and the T x k matrix V; stack the idiosyncratic errors ¢;; and v;; over time,

respectively.

By combining (2.1)-(2.2), the data generating process (DGP) for the T x (1 + k) matrix of observ-

ables can be written as an approximate static factor model
Z; = [y;, Xi] = (FC; + U;)B; = FC; + U,, (2.3)

where éi = [’yi, l"l-], ﬁi = [Ei,VZ'] = [ﬁi,lr . .,ﬁi,T]/ and ﬁi,t = [Si,tr V;,t]/’ Bi = B + ]~3i, with B =
[[1, 87, [0kx1, It]'] and B; = [[0,v],0¢1xk]- The T x (1 + k) matrix U; = U;B; = [u,...,u; 1]/,
with u; = [e;; + v} ,B;,v;,]' thus combines the idiosyncratic errors and the m x (1 + k) loading

matrix C; = @Bi stipulates the influence of the factors on each column of Z;.

We make the following assumptions:

Assumption 1 (Idiosyncratic errors) ej and vj; are stationary variables, independent across i with
E(eis) = 0, E(vig) = Opx1, 07 = E(e2,), T; = E(viv),), O = E(ge]), with O, X; positive
definite and E(e8,) < oo, E(||vi]|®) < oo forall i and t. Additionally, Iy YT IE(eiseis)| = O(1)
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and %2;:1 2;:1 23;1 ZST:1\E(Ei,t&,qSi,rSi,s)\ = 01)as T — oo, %21’111 (71.2 — 0% < oo and
%Zfil L > L < ooas N — oo, and we define £,; = E(u;u;,) = B'Eg;B and %2511 Tyi —
Ty = B'ZgB, where Ly ; = [[07,01.k]’, [Op1, Zi'] and Eg = [[0%,011)', [Opc1, Z)'].

Assumption 2 (Common factors) f; is covariance stationary with E(||£||*) < oo, absolute summable

autocovariances and T~'F'F — Egas T — oo, with Ly positive definite.

Assumption 3 (Factor loadings) The C; are generated according to

Ci=CB;=(C+7)Bi=C+y, vec(1];) ~ IID(0y (141, Q) (2.4)
where C = E(C;) = [v,T], QO = E(vec(ij)vec(if)') and T, = E(3; © 1j;) have finite elements.
Assumption 4 (Rank condition) rk(C) = m for all N.

Assumption 5 (Independence) £;, €;s, vjl,ﬁn are mutually independent for all i,j,n,t,s,l.
Assumption 6 (Slope heterogeneity) The slopes B; follow
Bi=B+vi, v~ IID(0x1, Qo)

with Q) a finite nonnegative definite k x k matrix and the v; are independent of f:,¢;5,vji, 1, for all

i,j,nt,s,l

The setting defined by 2.1)-(2.2) and Assumptions[I}6|is similar to that inPesaran/ (2006), where
the CCE methodology was first proposed, but deviates in the following respects. First, we
present the model without fixed effects or other observed factors. This is for ease of exposi-
tion only and the main results below follow through in the presence of such elements (see also
Remark. Second, we require in Ass that sixth moments of the innovations are finite and im-
pose summability conditions of the moments that are similar in spirit to (implied by) a mixing
condition. This is stronger than both Pesaran| (2006) and |Karabiyik et al.| (2017), but a conse-
quence of our T/N — T < oo asymptotics (not considered in Pesaran, 2006) in combination
with the presence of serial dependence (which is excluded in Karabiyik et al., 2017). Following
Westerlund and Urbain| (2013a); Karabiyik et al.| (2019), Assumption |3 also generalizes Pesaran
(2006) by allowing the factor loadings in the process of the dependent variable v; and those in
the explanatory variables I'; to be correlated for each cross-section unit i. This can be seen from
the fact that ) is not restricted to be a (block) diagonal matrix. We further note that Ass are
identical to Assumptions 1(iii)-(v) in Karabiyik et al./(2017).



3 CCE estimation in large N and T panels

The central idea behind the CCE methodology is to estimate the unobserved factors in eq.(2.1)
with the cross-section averages of the observed data. This idea follows straightforwardly from
eq.(2:3), which shows that the CA of the observed data Z = & YN, Z; is

Z=FC+U (3.1)
which, given the rank condition in Ass{4} can be solved for F as

F=(Z-U)C (3.2)
The key insight from is that since ||U|| = O,(N ~1/2) for a fixed T, the CA of the residuals
U is negligible and the observed Z therefore asymptotically (as N — o0) mimics the behavior of
the factors (up to a rotation). Factors can thus be estimated as F = Z, and these estimates can in

turn be used as additional regressors to control for the unobserved factor space in model (2.1).
That is, substituting (3.2) into (2.1)) gives the so called factor-augmented model

Vi = Xi,Bi + 271'1' + (Si — ﬁﬂ'i) (3.3)

where the required linear combination 7r; = E+'yl- is estimable by least squares (LS). The Com-
mon Correlated Effects estimators are the LS estimators of the parameters in this augmented
model and differ depending on whether the slopes B; are assumed to be common or variable
over cross-sections. The Common Correlated Effects Pooled (CCEP) estimator is the LS solution

in model (3.3) when slopes are homogeneous, B, = S,

R N 1N
B =) XiM;X; ) XiMgy; (3.4)
i=1

i=1

where Mg = It — Z(ZIZ) A orthogonalizes the data on the estimated factors. Pesaran (2006)

suggests the following non-parametric estimator for its sample variance
_ a1 _ 1T N
=N "Q ¥YQ , Y= m Qi(ﬁi - :Bmg) (131 B ﬁmg) Qi (3.5)
- T i=l
where Q; = T’1X§M§X,- and Q = % YN, Q.. Although is also consistent for E(B,) =
when slopes vary over individuals B; # B, the Mean Group CCE (CCEMG) approach is then

a more natural estimator. It is calculated as the average of the individual-specific LS slope esti-

mates ﬁi in (3.3)

. 1 N . 1
i=1



and has the following sample variance estimator

R N
QU ; ﬁmg :Bmg) (37)

Note the importance of Ass/]to obtain (3.3). This rank condition states that the set of CA must
span the space of the factors, or in other words that there must be at least as many CA holding
linearly independent information about the unobserved factors, as there are factors (). One
implication is that the number of factors m therefore cannot exceed the number of CA. Pesaran
(2006) has shown that this rank condition in Ass@ ensures the validity of the substitution in (3.3)
such that the CA consistently estimate the factor space. By consequence, both presented CCE

variants are consistent as N — oo.

Estimating factors with CA is an elegant solution to the unobserved factor problem but not with-
out consequences for the asymptotic properties of the CCE estimators. In practice, the number
of factors, m, is typically small and likely to be exceeded by the number of CA (the k 4 1 columns
of Z). Equation implies that k + 1 — m columns of Z are then asymptotically degenerate so
that the pseudo-inverse (T—12’2)+ that features in Mg is unbounded as (N, T) — oo (see Kara-
biyik et al., 2017). While this has no consequences for consistency, the asymptotic distribution
and how it should be analyzed are significantly affected. Many standard arguments no longer
apply. This was first addressed by Karabiyik et al. (2017) for the CCEP estimator under sim-
plified error assumptions with common slopes, but it has to the best of our knowledge not yet
been considered in asymptotic analyses of the CCEMG and CCEP estimators when slopes are
heterogeneousﬂ Hence, we begin our analysis by deriving generalized asymptotic distributions
for the CCE estimators and subsequently motivate and prove consistency of the bootstrap based
on those results. Naturally, asymptotic degeneracy (m < k + 1) in the original sample will, and
should, affect the bootstrap distribution as well. We analyze first the common slope setting in

the next section, and consider heterogeneous slopes in section 3.2}

3.1 Homogeneous slopes: . = B

The CCEP estimator in eq.(3.4) is the natural estimator in model (3.3) when the slopes are com-
mon over individuals B; = B. In the next theorem, we establish its asymptotic distribution as

(N,T) — oo such that T/N — T < oo under potential asymptotic degeneracy (due to more CA

3Karabiyik et al.[(2019) provide some results for their augmented variant of the CCE estimator under assump-
tions that are close to ours, but crucially impose that the set of averages is successfully pre-selected such that
cols(Z) = m and rk(Z) = m, where cols(Z) is the number of columns of Z. This avoids the m < cols(Z) problem,
but need not hold true in applications. Our analysis does not require this assumption, as it holds for m < cols(Z).
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than factors, m < 1 4 k), allowing for both cross-section heteroscedasticity and serial correlation

in the residuals.

Theorem 1 Let Ass[I{|hold. Then, as (N, T) — oo such that T/N — T < o0
VNT(B = B) — N (0, E¥E ) + V7E (b - d)

where ¥ = plimy 7)o 3 Lot (T~ Vi Vi), b = by — by,
by = q', Zyvec((CH)'E,CH)
by = T'(C")'[0?, 01t

and d = Oy if m = 1+ k, whereas if m < 1+ k then d = dy + dy with

d = q, Zyvec <(C*)’ZuD_mZuC+)
1N
dp = lim —;(Zi[ﬁ/ I = T'(C") Zu) D07, 01x]’
with qxy = (qy ® qx), @y = [1,0,..,]", qx = [0kx1, 1)/, Dy = TH_,,(H_, T'Z,TH_,,)'"H’_, T'.
T is the (1 + k) x (1 + k) partitioning matrix such that CT = [C,,, C_,,| with Cy, an m x m full rank
matrix and C_p ism X (k+1—m), and H_,;, = [—(C,,'C_1)), Tep1—m]’-

Theorem 1| generalizes the results in Karabiyik et al. (2017) by allowing both serial correlation
and heteroscedasticity in the innovations, and confirms that the asymptotic distribution of the
CCEP estimator also features bias terms in this setting unless the cross-section dimension of the
dataset dominates the time series length. This is at its root an incidental parameters bias (see e.g.
Neyman and Scott, 1948) induced by estimating the factors with the CA ateveryt =1,...,T in
the dataset, as this accumulates T approximation errors that vanish only with N. If T and N then
grow at a similar rate, error accumulates as quickly as it vanishes and a bias will remain in the
limit. The larger T is relative to N, the larger this over-accumulation of error, and hence bias, will
be, and only when N grows faster than T does error die out sufficiently fast for the distribution
to be correctly centered. This is represented by the T/N — T < o in Theorem (I} so that T = 0 is
the case where N dominates T, and the T < oo restriction ensures that the accumulation of error

is not explosive.

It is not difficult to see that the asymptotic bias can be highly disruptive for inference. This is
apparent from the distribution of the t-statistic under the null for the /-th coordinate in B as
(N,T) - cosuch that T/N — 7 < o0

a%4B-p) _aVNT(B-B) 4

/49,04 A NTOq,

t=

N(O,l) + ﬁq;z‘il(b T d)

\/ 49

(3.8)



where q; a k x 1 vector of zeros with a one as its [-th element. This result follows from The-
orem [l|and NT® —? ® = 'Y ~! by Theorem 8 of Supplement A. Clearly, unless T = 0,
the bias shifts the center of the distribution away from zero and thereby causes over-rejection of
the correct null hypothesis. The t-test will thus tend to be over-sized. The actual severity of the
problem depends on the drivers of the asymptotic bias, i.e. the overall noise level in the form
of the error and loading variance-covariance matrices a2, L,, Ly, X, but also on the asymptotic
information content in the CA. The latter follows from the presence of C' = C/(CC’)~! in the
bias expression. That is, recall from that the approximation error when estimating F with
ZisUC'. Asalluded to above, the residuals U are the source of the bias in Theorem [1|and they
are themselves scaled by c' Noting that C —F C and C —PCtasN — oo, we have that when
the columns of C are highly informative about the factorﬂ then the determinant |CC’| is large
so that (CC’)~! and hence HCJr H are small. The impact of the estimation error U on the bias,
in the form of o2, L,, Ly, L in the expressions above, will then be pushed down. Naturally, the
converse is also true. As |[CC’| — 0 the asymptotic information content of the CA decreases so
that (CC’)~! explodes and C' aggravates the impact of the other bias componentsﬂ The main
takeaway is thus highly intuitive: when T > 0 estimation error from the CA causes bias, and
the less informative the set of CA is, the larger the (absolute) asymptotic bias and size distor-
tions will be. If on the other hand N dominates T (t = 0), error vanishes more quickly than it
accumulates and asymptotic information content is not an issue (provided that the rank condi-
tion is satisfied). In this case is correctly centered and tests based on it are correctly sized.

In practice, it is of course unknown whether a set of CA is informative so bias remains a concern.

The obvious solution to the problem would be bias-correction. Yet, the key practical implication
of Theorem [1|is that analytical adjustments appear to be infeasible for applications. The specific
form of the bias expression depends first of all on whether the number of CA equals (m =1+ k)
or surpasses (m < 14 k) the number of factors, with b featuring in the distribution on both
occasions, whereas d is only present in the latter caseﬁ The d term represents the additional bias
caused by the asymptotic singularity of Z'Z/T when m < 1+ k. The difficulty for correction is
that firstly m is unknown so that the researcher is unaware of whether d is present or not. Even

if m were known (or estimated), the dependence of d on the unknown rotations T and H_, still

4For example when m = 2 and X loads only on the first factor, while ¥ loads only on the second.

SLogically, in the limit, |CC’| = 0, the CA are not informative for the full common factor space. The C' matrix is
then undefined and the CCE estimators are generally inconsistent. This is excluded under Ass/4]

®Note that the distribution in Theorem [1| features one less bias term than Theorem 3 in Ka?abiyik et al.| (2017).
Our proof of Theorem [I]in the supplement shows that the random loading assumption (Ass3|here or Assumption
1.(iv) in Karabiyik et al.|(2017)) implies that in their expressions by = 0.
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hinders an actual correction. In addition, while ¢?, £ and X, have consistent estimators (seee.g.
Westerlund and Urbain, 2013b), this is not the case for the loading population mean C. By con-

sequence, T and the prominent scaling matrix C' remain unknown to the researcherﬂ

Given these difficulties with implementing the bias expression in Theorem (1] for correction we
consider in the next section the bootstrap as an alternative. As we will see, this allows us to
side-step estimation of any bias components and allows the researcher to also remain agnostic

about the number of factors m.

3.1.1 Pairs bootstrap for CCE estimators

The bootstrap is an attractive alternative to analytical bias-correction and inference when bias
expressions are inestimable. In its essence, if the bootstrap is able to replicate the distribution of
an estimator, its bias can be eliminated without explicit knowledge of the functional form and

consistent inferences can be made even when classical asymptotic tests fail.

The objective is thus to replicate with the bootstrap the asymptotic distribution in Theorem
To do so, it is paramount that the resampling scheme preserves the correlation and variance
structure of the original sample. Cross-section/pairs resampling is an ideal candidate given
eq.(2.3) and Ass[I{5| The scheme was first introduced into a panel data context by Kapetanios
(2008) and boils down to generating the bootstrap dataset Z* = [Z}, ..., Z}]]" according to

7' =7 for i=1,...,N (3.9)

1

with i* drawn with replacement from (1,...,N). Put simply, the data for cross-section unit 7 in
the bootstrap sample is generated by taking the data for a random unit i* of the original sampleﬂ
This implies given (2.3) that the bootstrap data is

7' = Z; =FCj + U«

1

The loading and innovation matrices of the original sample are thus randomly (and implicitly)
redistributed over cross-sections while the factors and the time series dimensions remain un-

touched. This is advantageous in practice as the factors, time series properties, loading means,

P —

7Westerlund and Urbainl (2013b, [2015) propose the least squares estimator C =(Z z)*lz’zi of the individual-
specific loading matrix. It can be shown, however, that the mean of this estimator C= % le\il 61- is inconsistent for
C.

8Note that the presentation of the algorithm is kept simple here for ease of exposition. The interested reader is
referred to section 3.1 of the supplement for a formal exposition of its properties. There, the bootstrap dataset is
generated as Z* = WrZ, with Wr = (w® I1), w = [w},..., w}] and w; is a1 x N Boolean selection vector drawn
for a multinomial distribution with one trial and k = N events, each with probability N~1.
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and the within unit variance-covariances of the loadings and errors (Z,, (71.2, X, Ly i, ;) are repli-
cated while the researcher remains agnostic about these components and even the number of fac-
tors m that are at play. Note that the aforementioned are all key components of the asymptotic
distribution in Theorem |1, The ability to keep m unknown in the resampling process is partic-
ularly attractive because it can be difficult to estimate, and miss-specification in model-based
resampling schemes would significantly distort the bootstrap distribution. (Gongalves and Per-
ron| (2014, 2020) for instance employ a residual bootstrap scheme in a PC context and therefore
implicitly assume that the number of factors is known or correctly selected for their asymptotic
theory to follow through. With residual-based schemes one also needs to be careful with how
residuals are resampled, as the Wild Bootstrap scheme in Gongalves and Perron| (2014) for in-
stance does not reproduce error serial correlation (Djogbenou et al., 2015). In stead, none of
these considerations are required with (3.9), which makes the algorithm both easy and broadly
applicable. The key assumptions are in stead that N — oo and that loadings C; and innova-
tions U; are cross-sectionally independent as in Ass[Ijand 3| It is important to note that this
does not imply that the observed data (y;, X;) is cross-sectionally independent, but rather that
the cross-section dependence stems from F only, and that the data is therefore cross-sectionally
independent conditional on the sigma algebra 7 = o{F} (see also Andrews, 2005). Violation of
this assumption would require the use of blocked resampling variants (see e.g. Lahiri, 2003), but
this is beyond the scope of this paper. As a final note, observe that it is crucial for our purposes
to regenerate also X} in the bootstrap sample, as the bias in Theorem [1]is induced by error from
estimating factors with the CA, of which X is an integral part. Conditioning on (fixing) the re-
gressors as in classical residual bootstrap methods would therefore not replicate bias. Gongalves
and Perron| (2014) make a similar observation in the PC context. Similarly, fixing the CA over
bootstrap iterations as in Westerlund et al. (2019) (who consider a fixed T setting) will not repli-

cate bias when (N, T) — oo.

We have thus far argued that the resampling algorithm retains the key features of the original
dataset under Ass[I}5l This however does not guarantee that the asymptotic distribution of the

CCE estimators will also be replicated. Conditions for this are investigated next.

REMARK 1 Note that while our assumptions and DGP exclude cross-section fixed effects, this is for ease
of exposition only. It can be shown that the distribution of the CCE estimators is invariant to these effects
solongasa T X 1 row of constants 1t = [1,...,1]"is added to the matrix of CA, that is, H = [11, Z], such

that Mg = It — H(Hlﬁ)+ﬁ/ (see for instance Lemma 1 in \De Vos and Everaert, 2021, in a dynamic

setting). This implies that the CS-resampling scheme and the conditions for its consistency presented
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below apply directly to the fixed effects setting, provided a vector of ones is added to the CA, regardless of

whether those fixed effects are cross-sectionally dependent or not.

3.1.2 Asymptotic analysis

Recall that Z7 = [y?‘, Xf], letZ = % Zfil Z; be the CA of the observables generated from 3.9)
in the bootstrap sample and let Mg, = Iy — Z"((Z"YZ")*(Z")' be the corresponding orthogo-

nalization matrix. The CCEP estimator in the bootstrap dataset is then

. N 1N N 1N
B =Y Xi'MeXi | Y XI'Muy! =) siXiMg.X; 5 XiMg.yi (3.10)
i=1

i=1 i=1 i=1

where s; denotes the frequency with which cross-section i was resampled. Theorem [2establishes
the asymptotic distribution of (3.10) in the bootstrap world as (N, T) — oo such that T/N —

T < 0.

Theorem 2 Let Ass[I{|hold. Then, as (N, T) — oo such that T/N — T < o0
VNT(B - B) 5 N(0pr, T ¥Z ) + VTE (b —d - d¥)

where dt = (1/2) limy_ye0 5 L4 Zi[B, L] D_[0?, 01 1) and b, d, Y and D_,, are defined in Theo-
rem[l] with d = d = Oy if m = 1+ k. If either T = 0 or m = 1+ k, then

sup
x€Rkx1

P*[VNT(B" —B) < 3]~ P[VNT(B— B) < ]| —* 0,

where inequalities should be interpreted coordinate-wise.

This result reveals that the bootstrap replicates the distribution of the CCEP estimator in Theo-
rem [1} but that it also generates an additional bias d* when and m < 1+ k. The new term is
effectively the exacerbation of d in the bootstrap distribution, and it implies that the bootstrap
is only consistent when either T = 0 (no bias), or when the number of CA equals the number of
tactors m = 1 + k (as d is then absent and cannot be magnified). This is the last statement of the

theorem.

As is, the conclusions from Theorem [2| are relatively disappointing. Bootstrap bias-corrections,
confidence intervals and tests, to be discussed in further detail below, are only applicable to [AB
when either T = 0 or m = 1 + k. The obvious practical issue, as with analytical corrections, is
that the researcher is typically unaware of whether m < 1+ k or m = 1 + k so that it is unclear

whether bias will remain and conclusions can be trusted. Yet, close inspection reveals that d
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is a consequence of the dependence generated by estimating the factors with y* (in combination
with m < 1+ k). Hence, the solution is to exclude (y,y") from the employed set of CA in both
the original and the bootstrap world and use X (Y*) in stead of Z (Z*) to estimate the unknown
factors. The implied reduction of information requires that Assf]is sharpened to Ass[7]below to

ensure that X still consistently estimates the factor space.
Assumption 7 (Rank condition) rk(T) = m for all N.

Consider then the CCEP estimator that excludes y from the estimation in the original sample

-1

N N

B, = (Z ngﬁxxi> Y XMz y, with Mg =Ir—XXX)'X (3.11)
i=1 i=1

Corollary[I|presents its asymptotic distribution. An important observation is that the asymptotic

variance of ,Bx is identical to that of B, which means that no asymptotic efficiency is lost by

the exclusion of ¥ under Ass[7} In addition, while the bias remains inestimable for analytical

correction purposes, it is significantly less involved than that in Theorem

Corollary 1 Let Assumptions Bland[7\hold. Then, as (N, T) — oo such that T/N — T < o0
VNT(B, — B) = N (01, E¥E ) + V7E g

where
g = qy,Zyvec((T")'L(Iy — Dy, X))

and Dy = TxHy _p(H _, TWETxHy ) H, _,, Tk, with Tx the k x k partitioning matrix such
that TTyx = [Ty, T_p] with Ty an m x m full rank matrix and T_,, is m x (k —m), and Hy _,, =

[~ (T Tom) T -

The reduced number of terms compared to Theorem [1| does not, however, guarantee that the
asymptotic bias of Bx is also smaller than that of B The relative size depends on how much
information about the factors is lost by excluding ¥, as reflected by the presence of I'" rather
than C' of Theorem [1} That is, if the population means I are sufficiently less informative than
C = [y + I'B,T], asymptotic bias may yet be aggravated due to Hl‘* H > || c’ |- Our Monte Carlo
experiments of Section confirm that the bias of Bx tends to be larger than that of B

Hence, Bx may be more biased than E, but we nevertheless posit that Bx is better suited for
correction because the bootstrap distribution of

N N

-1
B, = (2 x;k'Mﬁix;<> Yo X{'Mg,yf with Mg, =TIy =X ((X)'X)"(X") (3.12)
i=1 i=1
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should not magnify bias when m < k (note that X has k in stead of k 4+ 1 columns). This is
confirmed by Corollary

Corollary 2 Under Ass[I|3| [5land[7} as (N, T) — oo such that T/N — T < oo,
VNT (B, — B,) 5 N (0, T ¥E 1) + VTE g
with g defined in Corollary (I, and

o~

P*[VNT(B, — B,) < 3] —P[VNT(B,— B) < ]| —"0,

sup
XERkX 1

where the inequalities are interpreted coordinate-wise.

REMARK 2 Note that Assumption /| and Corollary [I| and [2] are perfectly compatible with the usual
DGPs considered in the CCE literature. That is, the same F enters equations for X; and y;. Provided this,
we only need to increase informativeness of I'; to compensate for dependence reduction to make the popular
pairs bootstrap consistent in the CCE context when more CAs than needed are used as proxies for the
factor space. This is the main intuition behind Assumption |7} Interestingly, slightly more general DGPs
resembling those of quasi-maximum likelihood (QMLE) literature can be compatible with this sharpened
requirement. Following, [Juodis et al.| (2021), we can have a T X my matrix Fy which represents the
factors that enter equation of y;. Let X; load on T X my matrix Fx. If Fy C Fx, then m = my, and
under Assumption [/] the results presented above still go through, because X; is sufficiently informative
about the factor space. On the other hand, if Fx C Fy, the proposed solution could result in a loss of
information that cannot be compensated without further restrictions on DGP. One possible restriction is
to let the loadings of the factors entering y; only, say vy; _x € R " —")%1 pe yncorrelated with the other
loadings. Similar loading properties are considered in, for example, Pesaran| (2006), Chudik et al. (2011)
and |[Kapetanios et al | (2011).

The above corollaries establish the consistency of the bootstrap for the distribution of ,Bx for
general m < k, and hence validates the construction of bootstrap confidence intervals for this
estimator in a general setting. The next theorem confirms that the obtained bootstrap mean can

also be used for explicit bias-correction of Bx (and leads to over-correction for B).

Theorem 3 Under Ass. strengthened with E(||vi||®) < oo we have as (N, T) — oo such that
T/N — T < oo that A* —P" \/TA, where A* = E*(v/NT(B — B)) and A = £ (b —d — d™).
If also Ass.lZ] holds, then A% —P" \/TAy, with A% = E*(v/ NT(B?; —B,))and A, =X 'g.

Consider then the following bootstrap estimator for the bias of Bx
bj; = ﬁx - Bx (3.13)
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where Bi = %Zle E;b and B;b is the CCEP estimator in (3.12) applied to bootstrap sample
b=1,...,B. Theoremestablishes that B,‘; is consistent for the bias of ,Bx derived in Corollary

and by consequence, that the bootstrap adjusted estimator

:Bx,c = :Bx - bj:
is asymptotically unbiased as (N, T, B) — co such that T < oo in the general m < k setting. It
is important to reiterate the relative ease with which this bias correction is achieved: it does not

require an analytical formula or knowledge of m, only the nonparametric resampling scheme in
(3.9) and calculation of the CCEP estimates.

Corollary Pjustifies inferences on B with the ‘basic’ 100(1 — a)% confidence interval

CI(w, B,) = [2By — 011 _/2)(B), 2B, — 0% /2(By)] (3.14)

with 6 () the empirical a-quantile of the obtained bootstrap distribution for the statistic inside
the brackets. The implicit bias adjustment means that the interval attains the coordinate-wise
nominal coverage P[B € CI(«, Ei)] =1—aas(N,T,B) — oo provided m < kand 7 < ooﬂ To
establish also the asymptotic validity of bootstrap—t intervals, define ® = Z'¥Z ! and let 0

be the bootstrap world equivalent of the variance estimator in (3.5)

N A ~% ~% ~% ~
6 =N"Q7¥Q, =Y QB — BB — B0 (315

i=1
where Q =¥ Z M Q* and

. B g o 1 &
O =T XM X, B =0/ T X'Myyl,  Bro= LB
i=1
with the obvious substitution of the projection matrices with Mz, when (y,y*) are included in
the matrix of CA. Theorem 8 in the supplement shows that N TO® —? ® and NTO® —/" ©
as (N,T) — oo, irrespective of whether the number of employed CA exceeds or equals m or
if (y,y*) are also employed to estimate factors. It then follows from Corollary [1} for the /—th

coordinate of B in the original sample

q,(B, — B) 4, qr g
— — ( ) \/—
vV 1@q V 19

9Note that the absence of an implicit bias-adjustment implies that the classical percentile interval CI,(«, ﬁ:) =

(3.16)

0 /Z(B:), 001 _u/2) (Bi)] will require in stead T = 0 to attain nominal asymptotic coverage. See e.g. DiCiccio and
Efron| (1996) for several more advanced percentile bootstrap methods.
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and for the studentized bootstrap statistic, by Corollary

1/ ¥ . > . /Zfl
P ql(ﬁx/\*ﬁx) d >N(O,1) + ﬁu (3.17)
\/ q;@ (Il \/ quql

as (N,T) — oo such that T < co. It is apparent from (3.16) that the asymptotic bias also shifts

the center of the distribution of the t-statistic based on Bx and causes size distortions for the
classical t-test unless T = 0. Yet, given that t ~ t* by (3.16)-(3.17) under the null, asymptotically
correct size is achieved with the bootstrap as (N, T, B) — oo such that T < oo by rejecting the null
hypothesis when t > 6(;_, 5 (t*) or t < 6, 5 (t*). This is equivalent to rejecting when B, of the
null hypothesis falls outside the "bootstrap-t’ interval constructed with the roots (¢, t*) (see also
van Giersbergen and Kiviet, 2002):

-~

P L A1/20 P . ~1/2
Clt(lX, :Bx) = [:Bx - dlag(G) ) © 6(171x/2)(t )/ ﬁx - dzag(@)

) 067, /2 ()] (3.18)

Bootstrap-t intervals date back to Efron| (1979, 1981) and are widely advocated in econometrics
because the studentized roots in (3.16)-(3.17) lead to improved finite sample behavior, compared
to say (3.14), if they are also (asymptotically) pivotal (see e.g. Diciccio and Romano, 1988} [Beran),
1987; Hall| [1988; [Hall et al.,[1996). The bias terms in (3.16)-(3.17) imply, however, that the roots
(t,t*) are not pivotal in our setting unless T = 0, but we can re-pivot them with the bias estimate
in (3.13). Let (£, t;) be these corrected roots. We then have by Corollaries [1[2]and Theorems 3|8

_ ql(ﬁx_b;_ﬁ) d N(O,l)/ t;“ — ql(ﬁx _b; _ﬁx) i}f\/’(oll)

\/9,04q /4,0 q

as (N, T, B) — oo such that T < co. That is, the corrected roots (f, t) are asymptotically pivotal

te

and lead to the adjusted bootstrap-f, confidence interval

~1/2 N ~ ~ ~1/2

Clie(w,By) = [B, — b5 — diag(®'%) 0 07, (£2), B, — b5 — diag(®'/%) 0 07, (£1)]

(3.19)
Hypothesis tests based on (3.19) are equivalent to rejecting the null hypothesis when t. <
BZX /2) (t5) or t, > 62‘1_ 2/2) (tf). Since the confidence interval and hypothesis tests are now based
on asymptotically pivotal roots, classical theory (e.g. Hall, |1988; Diciccio and Romano, 1988)
suggests that they will have better finite sample properties than (3.18). This is confirmed by the
Monte Carlo experiments of Section 4]

To sum up, we have shown with the analysis above that the cross-section bootstrap allows elim-
ination of the asymptotic bias of the CCEP estimator and enables asymptotically unbiased infer-

ences in panels where 0 < T < oco. This is a considerable generalization compared to standard
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normal theory intervals and tests, which were shown to require the highly stringent T = 0 re-
striction. We have argued that the procedures are most generally effective when applied to Bx
compared to B, as bootstrap consistency for the former does not depend on whether the number
of CA exceeds or equals the number of factors, which is unknown. Bias adjustment and inter-
val construction can in other words proceed for [ASX without this knowledge, while B requires in
stead verification that m = 1 + k The only cost associated with Bx compared to B is that the
maximum number of factors that can be allowed is reduced from k + 1 to k, but there is otherwise

no asymptotic efficiency loss.

3.2 Heterogeneous slopes: . # B

Consider next the case where the slope coefficients (B, ..., By) in the model are heterogeneous
over individuals and characterized by Asslfl We take that the researcher is interested in the

population mean E(8;) = B in
yi = XiB; + Fy; + &, (3.20)
The CCEP estimator has the following asymptotic distribution in this model:
Theorem 4 Under Ass[i{le) with E(||v;|[®) < oo and E(||v;]|°) < oo, as (N, T) — oo
VN(B = B) 5 N (Opa, 22T
where ¥j, = imy_ o0 o L0 ZiQ ;.

This is, to the best of our knowledge, the first derivation of the asymptotic distribution of the
CCEP estimator under heterogeneous slopes which also allows m < 1+ k settings. This re-
sult is thus a generalization of that in Pesaran (2006), and reveals that with the potential for
m < 14 k comes the additional requirement that 6th and 8th moments of v; and v;;, respec-
tively, are bounded. Restrictions on the relative expansion rate of T and N are then not required,
but these moment bounds can also be dispensed with by imposing in stead that /N /T — 0. The
main conclusion remains that the estimator is now asymptotically unbiased because the conver-
gence rate is reduced to v/N compared to the v/NT rate in the homogeneous slope setting. This
is because the heterogeneity in B, is now the slowest decaying error component. The distribution
of 3,( is identical to that in Theorem@under Ass

The cross-section resampling scheme of section can also be applied to the CCE estimators

when slopes are heterogeneous. The only new requirement is that the B; are independent over

19Note that should m = 1+ k or T = 0 hold true, then (3.14), (3.18) and (3.19) can be applied to B
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cross-sections as in AssJf| In this case, the absence of asymptotic bias in Theorem {4 implies that
bootstrap consistency no longer hinges on the exclusion of (y,¥*) when m < 1+ k. This is

formalized in the next theorem.

Theorem 5 Under the conditions of Theorem
sup |P*[VN(B"—B) <+ - P[VN(B-B) < | —"0,
xcRkx1

where inequalities are to be interpreted coordinate-wise.

The result is identical for (,B:, Bx) under Ass Theorem 5| establishes the validity of percentile
and basic bootstrap intervals as (N,T,B) — co without further restrictions on N and T. In
addition, by the consistency of both N® and N 0" in for the asymptotic variance @, =
1%, 7! of Theorem {| (which is established in Theorem 8 of the supplement) the bootstrap-t
intervals presented in and also give asymptotically correct coverage when slopes
are heterogeneous. This applies irrespective of whether (y,y*) are employed in the estimation,

provided a rank condition holds (Ass4|or[7). In other words, also
~% -~ ) ~1/2 " £\ D . ~1/2 * *
Cli(a, ) = [B—diag(® ") o 9(1—4/2)(t ), B—diag(® ") o e(a/z)(t )] (3.21)

has the desired coverage in this setting, where it should be clear that t* = q (B —B)/ q;(:)*ql.
Note that the absence of bias now means that the roots (t,*) are asymptotically pivotal so that

the interval can be motivated by the usual arguments. Bias-adjustment as in

P g A /2
Clic(a, ) =[B—b* —diag(®

* ¥\ @ Tk . ~ * *
) © 001 _y/2)(tc), B—b" —diag(® ") 0 0, 5 (£c)] (3.22)

with £ = q/(B — b* — B)/q|(®")/2q, is thus not strictly necessary, but it is asymptotically
innocuous due to b* —?" 04, as (N, T, B) — oo, and may yet improve finite sample behavior

as the CCEP estimator is ‘only” asymptotically unbiased (and not in small samples).

The main conclusion from the analysis so far is that the resampling scheme in and the result-
ing bias adjustments and bootstrap confidence intervals of section[3.T)also lead to asymptotically
unbiased inferences on [E(B;) = B when slopes are heterogeneous. The researcher can in other
words safely apply the exact same bootstrap procedures indiscriminately and remain agnostic
about whether slopes vary over individuals in practice. Notwithstanding, efficiency gains could
be achieved by applying in stead of CCEP the Mean Group CCE (CCEMG) estimator defined
in (3.6). Given that slope heterogeneity is also here the slowest decaying source of error, the
CCEMG estimator converges at the slower /N rate as well and is asymptotically unbiased in

the general m < 1 4 k setting.
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Theorem 6 Under Ass[Ilfe]as (N, T) — oo
e d
\/N(:Bmg - :B) — N(kall Qv)

This is the first result for the CCEMG estimator that accounts for the potential m < 1 + k prob-

lem. Nevertheless, the asymptotic distribution is identical to that in Pesaran| (2006).

The bootstrap can also in this setting lead to refinements by for instance reducing finite sample
bias (also B,,, is only asymptotically unbiased). In addition, if the distribution of the slopes is
non-normal and skewed, bootstrap percentiles and critical values can be substantially more ac-
curate than the normal approximation in finite samples. The next theorem establishes bootstrap

consistency. Results are identical when (y, ¥*) is excluded.

Theorem 7 Under the conditions of Theorem|6} as (N, T) — oo
A~ o~ d*
m(ﬁ;g - :Bmg) — N(kall Qv)/
and in addition

sup |P*[VN(Byg = Byg) < ] = PIVN(B,, — B) < 3]| —70,

xe]kal

where inequalities are to be interpreted coordinate-wise.

Theorem 8 in the supplement establishes that the bootstrap world equivalent of
A~ % N
Qv _ 1 Z :Bmg ﬁmg)

1:1

also consistently estimates the variance in Theorem @ N ﬁz —P" O, as (N, T) — 0. It thus
follows in combination with Theorem [7|that the percentile, basic and (corrected) bootstrap-t in-
tervals apply equally to the CCEMG estimator. Thatis, CI(«, B; ) Clr(a, ﬁ; o) and Clic(a, B; )

with obvious adaptations to the CCEMG estimator, have asymptotically correct coverage.

4 Monte Carlo Simulation

In this section we assess the finite properties for the algorithms presented above.
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4.1 Design

Data for y; and X; are generated according to eqs.(2.1)-(2.2), assuming m = 2 unobserved factors
and k = 3 regressors. This corresponds to the likely practical setting where there are multiple

factors but their number is exceeded by the number of regressors. Slope coefficients are

B; = Buxi+vi,  with vy~ (x3—1)\/02/2 forl=1,...,k

where v;; denotes the I-th row of v;, so that o2 € (0,5) considers respectively the common and
variable slopes setting. We vary the slope population mean as § € (1,5) to also determine its
impact on bias. Time varying unobservables in (2.1)-(2.2) follow

ft=9ft—1+v1—921/{, V{NN(OmeIm/m)

e € 2
gip = peip—1+/1—p*vi,  vi,~N(0,07)
x X 2
Vig = pxVip1+ /1 —p3viy, vl ~ N (01, 0y Tk)

where each variable is initiated at 0 and the first 50 periods are discarded as a burn-in to neu-
tralize the initial conditions. In accordance with the high serial correlation that is typically en-
countered in practice we set p = p, = 6 = 0.8 for all experiments. To further illustrate the
robustness to heteroscedasticity, variances in the processes are drawn from 0? = 02 + (wy; — 1)
and (7%/1- = 02 + (wy; — 1) respectively, where wy; ~ x7 and wy; ~ x3. We set 02 = 2 for all

experiments to ensure, given k = 3, a minimal signal to noise level.

As discussed below Theorem[l} an important driver of the asymptotic bias of the CCEP estimator
is the extent to which the chosen set of cross-section averages are (asymptotically) informative
about the unobserved factors. We measure this with the determinant d = |CC’| in our experi-
ments and control it by choosing an upper bound d* and generating the entries in C indepen-
dently from /[0, 2] such that 4% — 0.1 < d < d*. The obtained population mean C that adheres to
this restriction is then fixed over Monte Carlo replications and sample sizes. We take d = 10 as
our baseline scenario with good information content, and study the impact of a less informative
setting by lowering d to 5 To avoid that the majority of the information stems only from y we
impose that d, = |IT’| adheres to the same bounds as d Given C, the cross-section-specific

loadings are generated as éi =C+7.t, ,, withyg, ~ N 0,,<1,02L,). This implies that loadings
g g il 1k i i P g

HThese numbers are based on the (simulated) distribution of the determinant of 2 x 4 matrices with elements
drawn from /[0, 2], which ranges roughly from 0 to 40 (with a long right tail) with [E(d) ~ 9.2.

12Note that this does not in any way inhibit the information content in § because we restrict C = [y, I] rather
than C = [y + I'8,T], so that given that in all our experiments  # 0 the information content in X also feeds into y
and C will tend to be more informative than I, as is likely the case in practice.
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in Z; are perfectly correlated within individuals, and the covariance (£, in Theorem [1) scales up

one-to-one with o7 = (1,5).

Our experiments can be summarized as follows. We take (d,, B, o2, (7%, 02) = (10,1,1,1,0) as our
baseline scenario. It considers the homogeneous slope setting with more CA than factors and
bias components at a standard level: CA are reasonably informative and none of the variances
and covariances are excessive (relative to the others). We use this to assess the properties of
CCEP and the bootstrap in a 'regular” or relatively forgiving setting, and subsequently perform
stress tests by boosting one of the other DGP components to its more extreme 5 setting (while
the other components stay on their standard setting). In each case we generate datasets where
N and T take the values (25,50, 100,200,500, 1000), such that we cover both micro (where N is
larger than T) and macro (T similar or larger than N) panels. We generate 2000 datasets for each
combination of N and T and report bias, root mean squared error (rmse) and empirical size for
tests performed at the « = 0.05 level. In each Monte Carlo iteration the bootstrap-adjusted CCE
estimate and confidence intervals are calculated from B = 2000 bootstrap samples generated
with the cross-section resampling algorithm. We report results both with and without exclusion
of y from the matrix of CA, with the former denoted as CCEP and CCEMG and the latter by
a x subscript as in CCEPy and CCEMGy,. Their respective pairs bootstrap corrections are de-
noted ’pairs” and “pairs,’. The CCE estimators with an x subscript therefore employ k = 3 > m
cross-section averages, while the CCE estimators without this subscript employ 1+ k = 4 > m.
Note that we could in principle equalize the number of CA for the CCE and CCE, approaches
(i.e. estimate both versions with 3 CA) but choose in stead the current setting to correspond to
empirical practice where one typically employs all the available CA in the estimation, and ex-
cluding y as we propose therefore entails a loss of information, and one less CA than one would
typically use. The Monte Carlo results represent this fact and are therefore more relevant for

practice.

The next section discusses results with homogeneous slopes in the baseline setting, and all the
corresponding stress tests are discussed in section Section [4.3] presents results for hetero-

geneous slopes.

4.2 Results: Homogeneous slopes

Consider first the baseline scenario where the CA have reasonable asymptotic information con-

tent and none of the respective bias components are excessive. Table[I]focuses on the estimation
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results and presents (100 ) the bias and root mean squared error (rmse) of the CCEP and CCEPy
estimators as well as their respective bootstrap corrections “pairs” and ‘pairs,’. Note that in this
and subsequent tables we have T = 1 along the diagonal, whereas respectively T > 1 above the
diagonal and T < 1 below the diagonal. Clearly, the results confirm the theory of section
as the CCEP estimators are generally biased when T is large compared to N. This holds true
for both CCEP and its variant CCEP, which excludes the CA of the dependent variable. As al-
luded to below Corollary [1, the information loss incurred by excluding y leads to larger biases
for CCEP, compared to CCEP, but the rmse at the N = T = 1000 intersection confirms that this

exclusion does not lead to efficiency losses in large samples.

Table 1: Estimation results: Baseline setting, fixed slopes

bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 305 267 274 281 270 275 635 509 415 3.60 3.09 299
50 156 150 142 139 137 141 449 328 260 209 1.69 158

100 087 072 077 075 075 0.78 293 219 176 130 1.05 092

200 052 038 036 037 038 037 206 152 114 084 0.61 0.51

500 0.14 011 018 0.15 015 0.16 125 094 0.69 050 034 0.26

1000 0.05 0.06 0.05 0.07 0.07 0.07 0.88 0.66 048 034 023 0.17

CCEP;, 25 317 273 280 288 280 285 6.61 527 422 3.69 321 3.09
50 156 153 144 143 141 144 458 336 263 213 173 1.61

100 085 072 078 076 076 0.79 299 217 176 132 1.05 0093

200 052 039 037 037 038 0.38 209 150 1.15 084 0.61 051

500 0.12 0.12 017 015 016 0.16 125 094 0.69 050 034 0.26

1000 0.07 0.07 0.05 0.07 0.07 0.07 0.88 0.66 048 034 023 0.17

pairs 25 122 085 087 095 076 0.84 706 517 3.67 2.66 1.75 1.42
50 033 032 021 017 015 0.19 511 333 241 168 1.05 0.75

100 024 0.04 0.08 0.07 0.07 0.10 333 236 172 113 0.75 0.1

200 020 0.01 -0.01 0.00 0.02 0.01 236 164 115 079 049 0.36

500 -0.01 -0.05 0.04 -0.01 0.00 0.01 144 1.04 071 050 031 0.21

1000 -0.04 -0.02 -0.02 -0.01 0.00 -0.01 1.02 072 051 035 022 0.15

pairsy 25 1.08 064 0.65 074 059 0.64 658 4.89 338 245 1.63 124
50 028 027 015 015 010 0.14 480 3.19 228 161 1.01 0.72

100 019 0.03 0.08 0.06 0.06 0.09 314 218 163 110 0.73 0.50

200 020 0.02 0.01 0.01 0.01 0.01 224 153 112 077 049 035

500 -0.03 -0.04 0.03 -0.01 0.01 0.01 1.35 098 0.69 049 030 0.21

1000 -0.01 0.00 -0.02 -0.01 0.00 0.00 095 069 049 034 022 0.15

Notes: The baseline DGP is (dy, B, 02,0,3, 02) = (10,1,1,1,0), with m = 2 factors and k = 3 regressors. CCEP
and CCEP, denote respectively the CCEP estimator with and without y included in the matrix of CA. 'Pairs’
and "pairs,” correspond to their respective bootstrap-corrected estimates obtained from 2000 bootstrap repli-
cations with the pairs (cross-section) resampling algorithm.

The table also reveals that the respective bootstrap corrected estimators “pairs” and ‘pairs,” lead
to substantial bias reductions. The corrections are clearly effective even in the smallest samples
but appear to gain particular traction when N > 50 and T > 25, in which case the remaining
distortions can be more than 10 times smaller than those for the uncorrected CCEP estimators.
Both corrected estimators are essentially unbiased for the mentioned combinations of T and N.

The bootstrap corrections do lead to increased variance in smaller samples, but the asymptotic
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variance is unaffected and it is clear that this increase is generally compensated for by the bias
reductions in a mean square error sense. Theorem [2| and Corollary [2| also predicted that the
bootstrap correction for CCEPy in this m < 1 4 k setting would be more effective than that
of CCEP, as the bootstrap distribution of the latter generates an additional distortion. Indeed,
even in this relatively low bias setting it is clear from Table [I| that although the bias for CCEP,
is larger than that of CCEP, the pairs, correction is more effective for removing bias than the
pairs correction, for which more bias remains across the board. This experiment also illustrates
that the additional bias d* generated by the bootstrap when applied to CCEP, which we recall
makes it technically inconsistent in m < 1 4 k settings, is generally quite small and potentially

even negligible at least in the baseline setting.
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Table 2: Empirical size: Baseline setting, fixed slopes

CCEP
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 010 0.13 0.18 0.30 047 0.69 0.07 0.07 005 0.05 0.03 0.01
50 0.08 010 011 0.17 033 0.50 0.09 0.07 0.05 0.04 0.03 0.01
100 0.07 0.07 010 011 024 0.37 0.06 0.06 0.07 0.05 0.05 0.03
200 0.07 0.05 0.07 0.09 0.14 0.19 0.07 0.06 0.06 0.06 0.05 0.05
500 0.06 0.06 0.05 0.07 0.08 0.10 0.07 0.07 0.05 0.06 0.06 0.04
1000 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.06 0.06 0.05 0.05 0.05

Bootstrap—t Bootstrap—t.
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 011 0.09 0.08 0.08 0.09 0.12 0.11 0.0 0.08 0.08 0.07 0.06
50 0.12 0.09 0.08 0.07 0.08 0.07 0.12 0.09 0.07 0.07 0.07 0.04
100 0.10 0.07 0.09 0.06 0.07 0.06 0.10 0.07 0.09 0.07 0.07 0.05
200 0.09 0.08 0.07 0.07 0.06 0.07 0.09 0.08 0.07 0.07 0.06 0.07
500 0.08 0.08 0.06 0.06 0.06 0.05 0.08 0.08 0.06 0.06 0.06 0.05
1000 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06

CCEPy
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.12 0.17 0.28 047 0.68 0.04 0.05 0.03 0.03 0.01 0.00
50 0.08 0.09 010 0.17 032 0.51 0.07 0.04 0.03 0.03 0.01 0.01
100 0.07 0.06 010 0.12 023 0.37 0.05 0.05 0.05 0.04 0.04 0.03
200 0.07 0.05 0.08 0.08 0.13 0.19 0.06 0.05 005 0.05 0.05 0.04
500 0.05 0.06 0.05 0.06 0.08 0.10 0.05 0.06 005 0.05 0.05 0.04
1000 0.05 0.05 0.05 0.06 0.07 0.08 0.06 0.05 0.05 0.05 0.06 0.06

Bootstrap—¢ Bootstrap—t,
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.10 0.08 0.07 0.07 0.07 0.09 0.09 0.08 0.07 0.07 0.06 0.03
50 0.12 0.08 0.06 0.07 0.06 0.06 012 0.08 0.06 0.06 0.05 0.03
100 0.09 0.06 0.08 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.05
200 0.08 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.06 0.07 0.06 0.06
500 0.06 0.07 0.06 0.06 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.04
1000 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06

Notes: The baseline DGP is (dy, 8, o2, a%, 02) = (10,1,1,1,0), with m = 2 factors and k = 3
regressors. CCEP and CCEP, denote respectively the CCEP estimator with and without ¥ in-
cluded in the matrix of CA. "t-test’ resports the empirical size for a t-test at the « = 0.05 sig-
nificance level. “basic’ reports empirical size for tests based on the basic ('empirical percentile”)
bootstrap interval, and bootstrap—t and bootstrap—t. are respectively empirical size for the
plain and corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications
with the pairs (cross-section) resampling algorithm.

The biases in Table|l|are not terribly large but nevertheless warrant serious concern for hypothe-
sis testing. This is because the deviations B — B are scaled up by a factor v/NT in the numerator of
the t-statistic under the null (recall e.g.(3.8)), so that even the modest numbers in the table above
can still lead to large location shifts away from zero in the distribution of the f-statistic, and
hence lead to size distortions. The actual impact on testing can be discerned from Table[2, where
we report the empirical size of the conventional (asymptotic) t-test and the 'basic’, bootstrap—t¢

and corrected bootstrap—t. confidence intervals, each based on 2000 bootstrap replications. As
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predicted by theory, the asymptotic t-test performs poorly as it only attains the nomimal 5% size
when N dominates the time series length, or in other words in the lower left quadrants of the
tables. This is true for both the CCEP and CCEP, estimator. Otherwise, size distortions become
quite severe the larger is T relative to N. The objective of the bootstrap was to alleviate the
T/N — 0 restriction needed for inference with the t-test, which the table confirms to be quite
successful. The basic percentile interval for instance achieves large improvements and has an
empirical size that is very close to the nominal level for nearly all combinations of N and T.
Only when T is excessive compared to N, for instance when N = 25, T = 1000, we find that the
test is undersized. This is in line with Corollary 2/and the overall requirement that T < oo, or in
other words that T should not dominate, as this leads to an over-accumulation of error. The test
is correctly sized for any other combination of N and T, which makes it is clear that the boot-
strap has significantly relaxed the T/N — 0 restriction to allow unbiased inferences even when
T/N # 0. The corrected bootstrap-t. interval too achieves tremendous improvements over the
classical t-test and shows that re-pivoting of the roots has made the test more robust than the
basic percentile interval to large T settings, as witnessed by the relatively small size distortions
even in the upper-right quadrant where T dominates. The main cost is that the bootstrap—t. is
somewhat more sensitive than the basic interval in very small samples, i.e. N < 50, T < 50, in

which case there are some remaining size distortions.

Figure 1: Power functions: T/N = 2, baseline setting
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estimator (with y excluded).

To assess power, consider the rejection functions for combinations of N and T such that T/N =

2 plotted in Figlll The plot displays rejection rates for the t-test and bootstrap—t. based on

26



the CCEP, estimator for the hypothesized values of B on the horizontal axis. The correct null
hypothesis is = 1. It is clear that the rejection curves for the t—test (left panel) are generally
not correctly centered around the true j, but are in stead shifted to the right of it as a result of the
bias. Only in the largest sample size considered (the purple line) is the curve is correctly centered
at = 1, but nominal size « = 0.05 (dotted red line) is then still not attained. The bootstrap—t.
interval is shown in the right panel and can be seen to have resolved these rightward shifts
and size distortions for most of the considered combinations of N and T, without incurring
significant reductions in power. That is, the main effect appears to have been a re-centering of

rejection curves around the true parameter, as required.

4.2.1 Stress-tests

The results so far have shown large improvements of the bootstrap over the asymptotic t-test
in our baseline setting. Next, we explore a number of more extreme scenarios to gauge their
impact on the CCEP estimator and to stress-test the inference procedures. We find that the most
challenging scenario is when the variance of the loadings is relatively large, i.e. when (7% is
boosted to 5. This scales up the X, matrix in Theorem [Ijand Corollary [I|with a factor of 5 and it
can be seen from the estimation results in Table[3|that the boosted noise level leads to an increase

in bias by a factor of at least 3 compared to Table
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Table 3: Estimation results: Boosted loading variance ((7,% = 5), fixed slopes
bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 10.04 9.66 9.89 10.06 10.00 10.07 12.04 11.03 10.68 10.58 10.32 10.34
50 597 6.02 603 601 6.04 6.06 767 694 661 636 624 621

100 344 335 339 341 339 343 472 413 385 363 352 351

200 193 179 178 178 180 1.79 289 240 213 197 188 1.84

500 072 070 078 074 075 0.75 147 120 104 089 081 0.78

1000 035 036 036 037 037 037 09 076 061 050 043 040

CCEPy 25 1142 11.13 11.32 1148 1150 11.57 13.62 1273 1233 1225 1212 1212
50 648 659 653 655 6.60 6.60 819 757 719 696 6.86 6.81

100 354 346 353 354 353 358 484 423 399 378 3.67 3.66

200 19 182 183 183 183 1.82 295 241 219 201 192 187

500 071 072 078 074 076 0.76 147 121 104 090 082 0.79

1000 037 037 036 037 037 037 097 077 061 050 043 040

pairs 25 624 582 599 619 598 6.07 1079 891 778 736 672 6.67
50 239 248 244 239 238 241 6.61 483 4.00 333 290 275

100 096 080 080 083 078 0.83 408 295 217 157 121 1.06

200 044 024 021 021 023 021 261 183 129 090 059 046

500 0.03 -0.02 0.08 0.03 004 0.04 151 109 074 052 032 022

1000 -0.02 -0.01 -0.01 0.00 0.00 0.00 1.06 073 052 035 022 0.16

pairsy 25 624 601 612 630 614 6.19 11.09 949 840 807 755 748
50 193 206 194 193 1.8 191 620 466 370 297 249 232

100 0.68 053 055 058 052 058 380 269 201 143 1.02 0.84

200 037 016 017 015 015 0.14 250 169 125 086 056 0.42

500 -0.01 -0.01 0.06 0.02 003 0.03 141 104 072 051 032 022

1000 0.00 0.00 -0.01 0.00 0.00 0.00 098 071 050 034 022 0.16

Notes: The DGP is (dy, 8,02, 0,%, 02) = (10,1,1,5,0), with m = 2 factors and k = 3 regressors. CCEP and CCEPy denote
respectively the CCEP estimator with and without ¥ included in the matrix of CA. ‘Pairs’ and "pairs,’ correspond to
their respective bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section)
resampling algorithm.

Interestingly, many conclusions from the baseline scenario extend to this more extreme setting,
save that they are now more explicit because there is more bias to correct for. That is, while
biases are again larger for CCEP, than for CCEP, less bias remains for the bootstrap correction
of the former (pairsy) than for the latter (pairs). This is exactly as predicted by our theory. Fortu-
nately, the remaining bias is for both corrections but a fraction of that for the original estimator,
in particular when N > 25. The increased noise levels in other words made the situation more
challenging for the bootstrap, but the algorithms remain highly effective given sufficient N. This
also leads to substantial improvements for nearly all combinations of N and T in a mean square

error sense.
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Table 4: Empirical size: Boosted loading variance ((7,? = 5), fixed slopes

CCEP
t-test basic
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 044 056 0.78 094 0.99 1.00 019 020 024 036 043 0.50
50 034 052 072 0.89 0.99 1.00 0.09 0.09 009 011 011 0.12
100 0.26 0.35 058 0.82 098 1.00 0.06 0.05 0.05 0.03 0.02 0.02
200 0.19 023 039 064 094 0.99 0.05 0.04 0.03 0.02 0.01 0.01
500 0.10 0.14 023 034 0.69 093 0.06 0.05 0.04 0.04 0.03 0.02
1000 0.07 0.08 0.12 0.20 0.41 0.69 0.05 0.04 0.05 0.04 005 0.04
Bootstrap—t¢ Bootstrap—t.
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 023 024 029 043 057 067 022 024 029 043 055 0.64
50 013 013 017 025 042 0.60 013 012 015 020 027 033
100 0.09 0.07 0.09 010 0.22 046 0.09 0.07 0.09 0.06 0.09 011
200 0.07 0.06 0.05 0.05 0.08 0.16 0.07 0.06 0.05 0.04 0.04 0.04
500 0.07 0.06 0.05 0.05 0.04 0.04 0.08 0.06 0.05 0.05 0.04 0.03
1000 0.06 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.06 0.04 0.05 0.04
CCEPy
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 046 061 082 094 099 1.00 015 016 0.19 022 019 020
50 037 055 074 091 099 1.00 0.06 0.05 0.03 0.02 0.01 0.00
100 026 0.38 0.60 0.84 098 1.00 0.04 0.03 0.02 0.01 0.00 0.00
200 0.19 024 041 066 094 0.99 0.04 003 0.03 0.02 0.01 0.01
500 0.09 014 021 035 0.69 093 0.03 0.05 0.04 0.04 003 0.02
1000 0.07 0.09 012 019 041 0.69 0.05 0.04 0.04 004 0.04 0.04
Bootstrap—t Bootstrap—t.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 023 024 030 038 042 048 022 023 027 033 035 037
50 0.10 0.09 0.09 012 020 0.30 0.10 0.08 0.06 0.07 0.06 0.06
100 0.07 0.04 0.06 0.05 011 0.24 0.07 0.05 0.05 0.03 0.03 0.02
200 0.06 0.04 0.06 0.03 0.06 0.10 0.06 0.05 0.05 0.03 0.02 0.02
500 0.04 0.06 0.04 0.05 0.04 0.03 0.04 0.06 005 005 0.04 0.02
1000 0.05 0.04 0.05 005 0.04 0.05 0.05 0.04 005 005 0.04 0.05

Notes: The DGP is (dy, 8, 02,0,%, 02) = (10,1,1,5,0), with m = 2 factors and k = 3 regres-
sors. CCEP and CCEP, denote respectively the CCEP estimator with and without y included
in the matrix of CA. "t-test’ resports the empirical size for a t-test at the a = 0.05 significance
level. "basic’ reports empirical size for tests based on the basic ("empirical percentile’) bootstrap
interval, and bootstrap—t and bootstrap—t. are respectively empirical size for the plain and
corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

While bias itself is now also a more direct concern for the point estimates, the
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main worry re-
mains its impact on hypothesis testing due to the implied scaling up by v/NT. Indeed, Table
discloses very large size distortions for the asymptotic ¢-test on all combinations of N and T,
much more so than in Table 2| Even the setting where the cross-section dimension dominates
the time series length N = 1000, T = 25, does not seem to suffice to obtain a correctly sized

t-test, and it suggests that N should preferably be even larger in this experiment. The benefits



of the bootstrap tests are now even more apparent and they even appear to be quintessential
for correct inferences in this high noise situation. The basic and bootstrap-t tests perform or-
ders of magnitude better than the t-test on all sample sizes, again displaying the relaxation of
the T/N — 0 restriction, but the most robust approach is clearly the corrected bootstrap-t. in-
terval when applied to the CCEP, estimator (lower panel). The fact that the bootstrap is then
generally first order consistent and that the confidence interval (and test) is here based on an
asymptotically pivotal statistic results in close to nominal test sizes on all N > 25 settings. This
is a tremendous improvement over not only the classical t-test, but also compared to the inter-
vals based on non-pivotal roots (basic and bootstrap—t). As expected, re-pivoting appears to
have translated to faster convergence and increased robustness to settings where T is relatively
large compared to N. This makes the bootstrap-t, attractive on all settings, but its comparative
advantages are biggest when T is not small. Note that while the theoretical inconsistency of the
bootstrap when applied to CCEP (upper panel) does not seem to have too much of a negative
impact on the large sample behavior of the bootstrap tests, the CCEP, variants (lower panel)
perform markedly better in small samples thanks to their consistency. This confirms our theory

and strengthens our preference for the CCEP, estimator in practice.

While it is good to see as in Table {4 that the test size is even in this challenging scenario well
controlled at the nominal & = 0.05 level by the bootstrap—t,, this is ideally not at the expense
of power. This is visualized in Figure 2, which plots the power functions of both the t-test and
bootstrap—t. test based on the CCEP, estimator, now for combinations of N and T such that

T/N = 1. Note that this is more forgiving for the t—test than T/N = 2.
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Figure 2: Power functions: T/N = 1, boosted loading variance ((7,% =5)
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estimator (with y excluded).

It is again very apparent that the power function of the -test is highly distorted forall T/N =1
combinations, with the ‘dip” for most of the curves now located much farther to the right of
the true B = 1 null hypothesis. The obvious conclusion is that the t-test cannot be trusted for
inferences on B. In contrast, the power function for the bootstrap-t. test in the right panel has a
more regular form with the majority of the curves still enveloping the true p = 1 value, where
the nominal & = 0.05 size is also attained. Yet, the situation is clearly not perfect. The plot shows
that with the increased noise level also comes a requirement for larger N to adequately correct
the distortions. The smallest N = 25 setting (dark blue), for instance, is clearly not sufficient
to deal with the boosted loading variance. This is not unexpected given the relatively extreme
scenario and the fact that cross-section resampling algorithm requires at its core that N — co.
Fortunately, increasing the number of cross-sections to N = 50 appears to resolve the remaining
rightward shift and the N > 25 curves indeed quickly tighten around B = 1, as required. As
the T/N = 2 setting is also fairly common in macroeconomics we display it in Figure 3| Clearly,
the distortions are now even larger for the t—test compared to the T/N = 1 setting in Fig[2]
whereas the power curves for the bootstrap in the right panel are much less affected by the
increase of T /N, which solidifies that T/N — 0 is no longer required for inference. This is a

major advantage in practice.
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Figure 3: Power functions: T/N = 2, boosted loading variance ((7,? =5)
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In contrast to the loading variance, boosting ¢ or 8 has a relatively small effect on performance.
Conclusions are largely the same as in the baseline setting discussed above so we will not report
the results here and in stead provide the tables in Supplement B. A more interesting scenario is
when we reduce the asymptotic information content of the cross-section averages (i.e. we reduce
the bounds of the determinant of the loading matrix d, from 10 to 5). The impact on the estima-
tion results is shown in Table 5|and it is largely as predicted below Theorem I} even though the
noise levels (loading and error variances) are identical to those in the baseline scenario, the bias
in this scenario is larger because the error components are scaled up as a result of the less in-
formative cross-section averages. The benefit of the bootstrap correction is that this information
content does not need to be known or estimated, and the bootstrap corrections clearly remain
highly effective at removing bias. Naturally, the increased bias compared to the baseline setting
also leads to larger size distortions for the t-test in Table [f| compared to Table 2 Fortunately, it
can also be seen that with the exception of the very small N = 25 setting, the performance of the
bootstrap procedures is largely unaffected by the information drop, with the CCEP,, bootstrap-t.
test once again displaying the most robustness to even dominant T. Again, performance for the

bootstrap applied to CCEP, (lower panel) is better than when applied to CCEP (upper panel).
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Figure 4: Power functions: T/N = 2, reduced information (4, = 5)
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The power function for T/N = 2 in Figure {4| also allows comparison to earlier situations. This
scenario is clearly somewhat less disruptive for the t—test compared to the boosted loading vari-
ance scenario, but a correct size is still not attained, not even in large samples, and the majority of
the curves are still considerably shifted to the right of the true parameter. The bootstrap curves
in the right panel are much better behaved, with the relatively minor distortions limited to the

smallest N = 25 case.

In conclusion, we have confirmed with our fixed slope experiments that the properties of the
t—test are indeed highly sensitive to the T/N — 0 restriction. The higher the noise in the
dataset (or CA), the larger N needs to be compared to T. In contrast, the results confirm that
the bootstrap does not require T/N — 0, as evidenced by the near nominal size and adequate
power on nearly all combinations of N and T. The bootstrap is in addition substantially more
robust to the challenging settings we have considered. This is particularly true for the bootstrap-

tc procedure applied to CCEPy, provided that N is not too small.
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Table 5: Estimation results: reduced asymptotic information content (d,, = 5), fixed slopes

bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

CCEP 25 435 381 395 405 4.01 4.04 726 592 515 470 434 4.26
50 229 226 217 217 217 220 492 373 311 270 241 234

100 135 117 121 118 120 1.22 315 236 202 160 141 1.32

200 0.72 061 060 060 062 0.61 214 162 124 097 079 0.70

500 024 022 027 025 025 026 128 097 0.72 054 0.39 033

1000 010 011 010 012 012 0.12 0.88 0.67 049 035 025 0.19

CCEP;, 25 462 403 417 426 426 4.28 764 623 533 491 4.60 450
50 236 234 224 227 227 229 502 3.83 319 280 251 242

100 134 1.18 124 121 122 1.25 324 236 204 163 143 1.35

200 073 0.63 062 061 063 0.62 214 161 125 098 079 0.71

500 022 023 027 025 026 0.26 127 097 072 054 040 0.33

1000 0.12 012 010 012 012 0.12 0.89 0.68 048 035 025 0.20

pairs 25 232 168 178 187 170 1.76 773 568 422 324 243 219
50 0.67 067 053 053 049 054 538 346 253 180 120 0.94

100 043 017 020 017 017 0.20 341 232 177 116 0.78 0.55

200 0.18 0.05 0.03 0.03 0.05 0.04 239 168 117 080 050 0.36

500 0.00 -0.03 0.03 0.00 0.01 0.01 148 1.06 0.71 050 031 0.21

1000 -0.03 -0.02 -0.03 0.00 -0.01 0.00 1.02 073 050 034 022 0.15

pairsy 25 218 147 155 161 147 1.51 733 544 387 297 221 194
50 062 057 043 046 041 044 503 331 239 172 113 0.86

100 035 013 017 015 014 0.17 328 218 170 113 0.76 0.53

200 017 0.05 0.05 0.04 004 0.03 221 158 1.12 0.78 050 0.36

500 -0.04 -0.02 0.02 0.00 0.01 0.01 137 099 0.68 049 030 0.21

1000 0.00 0.00 -0.03 -0.01 0.00 0.00 096 070 049 034 022 0.15

Notes: The DGP is (dy, 8, o2, (T%, 02) = (5,1,1,1,0), with m = 2 factors and k = 3 regressors. CCEP and CCEPy
denote respectively the CCEP estimator with and without y included in the matrix of CA. 'Pairs” and “pairs,’
correspond to their respective bootstrap-corrected estimates obtained from 2000 bootstrap replications with
the pairs (cross-section) resampling algorithm.
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Table 6: Empirical size: reduced information content (d,, = 5), fixed slopes

CCEP
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 015 019 028 045 070 0.87 0.11 0.09 0.07 0.07 0.04 0.02
50 012 013 020 030 058 0.81 0.10 0.05 0.05 0.04 0.02 0.01
100 0.09 0.09 015 021 042 0.71 0.06 0.05 0.07 0.04 0.04 0.02
200 0.08 0.08 0.11 013 027 045 0.07 0.06 0.05 0.05 0.05 0.04
500 0.06 0.07 0.06 0.09 0.12 0.23 0.07 0.07 0.06 0.05 0.05 0.04
1000 0.04 0.05 0.06 0.07 0.09 0.13 0.06 0.06 0.06 0.05 0.06 0.05

Bootstrap—¢ Bootstrap—t,
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 013 012 011 015 0.16 0.26 0.13 012 0.11 0.14 0.11 0.16
50 0.12 0.08 0.08 0.09 010 0.15 0.12 0.08 0.08 0.07 0.07 0.07
100 0.08 0.06 0.09 0.06 0.08 0.08 0.08 0.06 0.08 0.06 0.07 0.05
200 0.09 0.07 0.07 0.06 0.07 0.07 0.09 0.07 0.06 0.06 0.07 0.06
500 0.08 0.08 0.06 0.06 0.05 0.05 0.08 0.08 0.06 0.06 0.06 0.05
1000 0.07 0.07 0.06 0.05 0.06 0.06 0.07 0.07 0.06 0.05 0.06 0.06

CCEP,
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 014 018 029 045 071 0.88 0.07 0.07 0.05 0.05 0.02 0.01
50 0.11 0.14 020 0.31 058 0.80 0.07 0.04 0.03 0.03 0.02 0.00
100 0.08 0.09 016 021 043 0.71 0.06 0.03 0.06 0.03 004 0.01
200 0.07 0.07 0.10 0.14 0.27 0.46 0.06 0.04 0.05 0.04 0.04 0.04
500 0.05 0.07 0.06 0.08 0.13 0.24 0.05 0.06 0.05 0.05 0.04 0.04
1000 0.04 0.06 0.06 0.07 0.09 0.14 0.05 0.05 0.05 0.05 0.056 0.05

Bootstrap—¢ Bootstrap—t,
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 012 012 011 013 015 0.24 012 011 0.10 0.11 0.08 0.09
50 0.09 0.07 0.07 0.08 010 0.15 0.09 0.07 0.06 0.06 005 0.04
100 0.08 0.05 0.07 0.06 0.07 0.08 0.09 0.05 0.07 0.05 0.07 0.05
200 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.05 0.06 0.06 0.06 0.06
500 0.06 0.07 0.06 0.05 005 0.04 0.06 0.07 0.06 0.05 005 0.04
1000 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06

Notes: The DGP is (dy, B,02, a,%, 02) = (5,1,1,1,0), with m = 2 factors and k = 3 regres-
sors. CCEP and CCEP, denote respectively the CCEP estimator with and without y included
in the matrix of CA. "t-test’ resports the empirical size for a t-test at the « = 0.05 significance
level. "basic’ reports empirical size for tests based on the basic ("empirical percentile’) bootstrap
interval, and bootstrap—t and bootstrap—t. are respectively empirical size for the plain and
corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

4.3 Results: Heterogeneous slopes

In this section we set 03 = 5 and present results for when the slope coefficients in the model are
heterogeneous. We find that the pairs bootstrap also in this setting leads to finite sample bias
reductions for both the CCEP and CCEMG estimator. These results are reported in Table A-3 of
Supplement B. Regarding inference, we find that the results are qualitatively the same with or

without the exclusion of y. Hence, to save space we only report results for the latter, given also
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our preference for it in the (fixed slope) theory section. The full results are presented in Tables
B-3 and B-4 of Supplement B. Table [/| summarizes empirical size with the CCEP, estimator in
the top panel and the bottom panel contains results for the CCEMG; estimator.

Table 7: Empirical size: Heterogeneous slopes (02 = 5)

CCEPy
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 010 0.08 0.09 011 011 0.11 019 0.18 0.16 0.18 0.19 0.19
50 0.08 0.09 0.08 0.08 0.09 0.09 013 0.14 0.12 013 0.13 0.14
100 0.07 0.06 0.08 0.09 0.08 0.08 010 0.0 0.12 011 0.12 0.12
200 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.10 0.10 0.09 0.07 0.08
500 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07
1000 0.05 0.05 0.04 0.04 0.06 0.06 0.06 0.06 0.04 0.05 0.06 0.06

Bootstrap—t Bootstrap—t.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 018 0.13 0.11 0.11 0.10 0.09 0.16 0.12 0.10 0.11 0.09 0.09
50 0.12 012 010 0.09 0.09 0.08 0.12 0.11 0.09 0.09 0.08 0.07
100 0.10 0.08 0.09 0.08 0.07 0.07 0.10 0.08 0.09 0.08 0.07 0.06
200 0.09 0.08 0.09 0.07 0.07 0.06 0.09 0.08 0.09 0.07 0.07 0.06
500 0.07 0.06 005 0.06 0.06 0.06 0.07 0.06 005 0.06 0.06 0.06
1000 0.07 0.06 0.04 0.05 0.07 0.06 0.07 0.06 0.04 0.05 0.07 0.06

CCEMGy
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.09 0.09 010 0.09 0.09 0.11 012 012 013 013 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.09 0.09 0.09
100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.07 0.09 0.07 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.06 0.06
500 0.05 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05
1000 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.05

Bootstrap—t¢ Bootstrap—t,
(NT) 25 50 100 200 500 1000 25 50 100 200 500 1000

25 0.06 0.05 0.06 0.07 005 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 005 0.05 0.06 0.05 0.05 0.05 0.05 0.05
100 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 0.05 005 0.04
500 0.05 0.06 0.05 0.05 005 0.04 0.05 0.06 005 0.05 0.05 0.04
1000 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.05 005 0.05 0.05 0.05

Notes: The DGP is (dy, B, o2, (7%,(75) = (10,1,1,1,5), with m = 2 factors and k = 3 regressors.
CCEPy and CCEMG; denote respectively the CCEP and CCEMG estimators with y excluded
from the matrix of CA. "t-test’ resports the empirical size for a t-test at the & = 0.05 significance
level. "basic’ reports empirical size for tests based on the basic ("empirical percentile’) bootstrap
interval, and bootstrap—t and bootstrap—t. are respectively empirical size for the plain and
corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with the
pairs (cross-section) resampling algorithm.

As predicted by Theorems [ and [7} the t-test performs relatively well in the heterogeneous slope
setting. This is because both the CCEP, and CCEMG, estimators are asymptotically unbiased.
The bootstrap is therefore not as quintessential as in the fixed slope setting. For the CCEP,

estimator (top panel), the basic percentile interval performs noticeably worse in small N sam-
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ples. The bootstrap-t. interval, on the other hand, offers performance gains over the ¢-test when
T is relatively large but otherwise largely mimics its behavior, with the t-test even performing
slightly better in very T small samples. Hence, for the CCEP, estimator with heterogeneous
slopes, the relative strength of the bootstrap-t. is more pronounced in larger samples, and gains
are generally not as large as when slopes are fixed. The main advantage is in stead that the
bootstrap—t. applies directly to both the fixed and heterogeneous slope setting, while the re-
sults of the previous section clearly indicate that the t-test should not be attempted when slopes
may be homogeneous. There is in other words, in contrast to the t—test, little risk associated
with the bootstrap—¢. on either setting so that one does not need to know whether slopes are

heterogeneous to decide whether inferences can be trusted.

While the bootstrap—t. is more valuable in larger samples when applied to CCEPy, the converse
seems to be true for the CCEMG, estimator in the bottom panel. The basic bootstrap again does
not offer performance gains, but the bootstrap-t and bootstrap-t. tests do improve significantly
over the t-test when N is very small, over the entire range of T. We find that the latter are cor-
rectly sized for all combinations of N and T, whereas the t-test is oversized when N < 100. This
reflects an improved finite sample approximation of the null distribution by the bootstrap. That
is, given that slope heterogeneity is drawn from the x? distribution, the null distribution of the ¢-
statistic is likely to be asymmetric and heavy tailed for small N so that the normal approximation
employed by the t-test is not very accurate. The bootstrap intervals do not impose a distribution,
or symmetry, and therefore achieve a more accurate test size. Indeed, we find that (unreported)
symmetric versions of the (corrected) bootstrap-t test perform markedly worse than the unre-
stricted ones for this reason. The power functions for the CCEMG; estimator when T/N = 2 in

Fig[5are also informative for the situation.
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Figure 5: Power functions: T/N = 2, Heterogeneous slopes, CCEMG,
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Fig 5| shows that the small N rejection curves have been shifted to the left of = 1 for the t-test
but that the bootstrap has ensured that their minimum once again coincides with the correct
B = 1 hypothesis at the « = 0.05 intersection. Note that while this correction appears to have
somewhat flattened the right hand side of the small N curves (blue and red) compared to those
of the t—test, which implies a loss of power against § > 1 alternatives, this is compensated to

some extent by the increase in power against f < 1 hypotheses caused by the re-centering.

We have also run experiments where the slope heterogeneity is drawn from the normal distri-
bution. In this case there are no noticeable performance gains of the bootstrap as in Table[7] This
is because the leading term in the distribution of the CCEMG estimator then has an exact normal
distribution, i.e. for all sample sizes, in which case numerical approximations like the bootstrap
will not lead to improvements. Assuming normality of the slopes is of course a strong assump-
tion in practice and the experiment shows that the bootstrap offers robustness and performance

gains in case the slope distribution is less well behaved.

5 Conclusion

We propose in this paper the cross-section or pairs bootstrap to improve inference with the CCE
estimators in large N and T panels where the cross-section dimension need not dominate the
time series length. In datasets of these dimensions standard asymptotic inference with the CCEP

estimator is distorted by bias terms for which analytical corrections are not generally feasible.
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We show in this paper that the cross-section bootstrap enables the elimination of this bias, and
asymptotically correct inference, even when N does not dominate, so long as 0 < T/N < oo.
This result holds true most generally when the cross-section average of the dependent variable
is excluded from the estimation, but otherwise requires the number of factors to equal the num-
ber of cross-section averages. In the former setting, the number of factors or the general time
series properties of the original dataset do not need to be known, which makes the algorithm
both extremely simple and generally applicable. We show in addition that the bootstrap is also
consistent for the distribution of the CCE estimators when slopes are heterogeneous, and leads
to improved inference in this setting as well. In other words, the exact same bootstrap algorithm
and inference procedures achieve asymptotically correct inferences on the population mean of
the slopes, irrespective of whether those slopes are heterogeneous or not. This is a considerable
advantage in practice. Monte Carlo simulations illustrate that these asymptotic properties also

translate well to finite samples.
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SUPPLEMENT A: MATHEMATICAL PROOFS
FOR
“BOOTSTRAP IMPROVED INFERENCE FOR FACTOR-AUGMENTED
REGRESSIONS WITH CCE”

Ignace De Vos!? and Ovidijus Stauskas'

' Lund University, Department of Economics
2Ghent University, Department of Economics

This supplement can be divided into three parts. The first section introduces the stacked notation and re-
states the working assumptions. Section 2] gathers proofs in the original sample, with preliminary results
given in and main results are derived in [2.2| for homogeneous slopes and in section [2.3| for hetero-
geneous slopes. Section [B| contains proofs in the bootstrap world, with basic properties for the bootstrap
resampling operator presented in (3.1l and preliminary results derived in section The main analysis
under homogeneous slopes is presented in section [8.3]and slope heterogeneity is considered in[3.4}

1 Notation and assumptions

Let the stacked matrices of the main variables in model (1)-(3) of the main text be

=y, v, ...,vnI, X =[X,X, ..., X\, Z =[Z,...,Z\] =y, X
(TZ\?’xl) [y1, 2 Y (TRXK) (X1, X3 N (TN<1+8) 21 N ly, X]
(Tlfﬂ):[si,sé,...,e}\,}’, (TA\]/Xk):[ LV, VAT, (TN}<J1+k):[ ',...,UN] = [e, V]B

so that we have the following data generating processes (DGP) for the stacked observed matrices

y=XB+Ey+e (1.1)
X=FIL+V (1.2)
Z=FC+U (1.3)



where the remaining unobservables are defined as

F =(Iy®F)
(TN xmN)
r =[r,T,..T
(Nmxk)
Y =Ml
(Nmx1)
no =My
(Nmx1+k)
C =IB=(w®C)+y
(Nmx1+k) o

The cross-section average operation for general 'stacks” of N cross-section specific /—rowed matrices is
A =N1(iyor), (1.4)

where we note that for matrices repeated over individuals, such as F, this averaging operator is commu-

tative
ArF =Ny ®Ir)(Iy®F) = N} ({yIy®F) = FN 1 (iy ® I,) = FA,, (1.5)
We work under (a subset of) the following assumptions:

Assumption 1 (Idiosyncratic errors) ;; and v, ; are stationary and independent across i with absolute summable
autocovariances, E(g;;) = 0, E(vi;) = Ogyq, 07 = ]E(slz-’t), L; = E(viyvi,), Q; = E(ee])), with O, X; positive
definite and E(e8,) < oo, E(||vi;|®) < oo for all i and t. Additionally, & YN, 0% — 02 < coand £ YN, Z; —
L < coas N — oo, and we define L,; = E(u;u},) = B'E(u;,u},)B = B'Lg;Band Y\, L, — B'ZgB =

Ly, where Tg; = [[07,01,k]’, [Okx1, Zi]'] and Zg = [[0%,01,4]', [Ok1, Z'].

Assumption 2 (Common factors) f; is covariance stationary with E(||£||*) < oo, absolute summable autocovari-

ances and T~'F'F — Zg as T — oo, with L positive definite.
Assumption 3 (Factor loadings) The C; are generated according to

C;=CB,; = (C+7,)B;=C+y, vec(if;) ~ 1ID(0,1 1), ), (1.6)

7

where C = E(C;) = [v,T], QO = E(vec(i)vec(iy)') and H(NZ

Oy < oo. We also define T, = E(ij; @ 17;),

which is a restructuring of O
Assumption 4 (Rank condition) rk(C) = m for all N.

Assumption 5 (Independence) £, ¢;5,vj1, 1, are mutually independent for all i, j,n,t,s, L.



Assumption 6 (Slope heterogeneity) The heterogeneous slope coefficients follow
ﬁi:ﬁ+vi/ viNIID(kalznv)
with Q, a finite nonnegative definite k x k matrix and the v; are independent of f;, €;5, le,ﬁn foralli,j,n,t,s,l.

Assumption 7 (Rank condition) rk(T) = m for all N.

Some additional notation: In this supplement we use A" to denote the Moore-Penrose pseudo-inverse of
the matrix A, rk(A) for its rank, |A| for the determinant and let |A| = [tr (AA")]"/? be the Euclidean
(Frobenius) matrix norm. Let furthermore ¢, be an a-rowed vector of ones and the vec(.), ® and o oper-
ators denote respectively the vectorization operation and the Kronecker- and Hadamard (element-wise)
products. Barred variables A denote the cross-section average (CA) over the cross-section specific ma-
trices A; as in A = YN, A;. A starred object A stands for an observed variable (matrix or scalar) that
has been generated in the bootstrap world according to the particular scheme. On the other hand, A, ;
is the weighted unobserved primitive of the model. We formalize the bootstrap probability laws similarly
to (Galvao and Kato| (2014). In particular, for any matrix bootstrap sequence A;, which depends on a
generic index 7, and a deterministic sequence a, € Ry, we have ||A;| = o0, (ay) if for every e > 0
and 6 > 0, we have P(P*(a, !||A%|| > €) > 6) — 0asn — oo, where IP*(.) is a bootstrap-induced
measure. Similarly, [|A};|| = Op+(ay) if for every 6 > 0 and 1 > 0, there exists a constant C > 0, such
that P(P*(a, ||A|| > C) > §) < 7 for all n > 1. Additionally, E*(-), Var*(-) and Cov*(-, -) represent,
respectively, the expectation, variance and covariance taken with respect to the induced measure IP*, and
A = A* +0p(1) means ||A;; — A*|| = 0p+(1) for the limiting bootstrap matrix A*. Lastly, —"* (—7) and
£, (i>) represent convergence in probability and distribution with respect to the induced (generic)

probability measure.



2 Original Data
Note that

N
Y. Zi=ArZ=AFC+ArU=FA,C+AU=FC+U

2.1)

As Karabiyik et al| (2017) point out, the pseudo inverse (T*12/2)+ when used in the projection matrix

P; = Z(Z'Z)'Z is unbounded asymptotically since the T x 1 4 k matrix Z converges to a reduced rank

matrix as (N, T) — oo when m < 1+ k. This requires the use of the R = THDy rotation matrix in

the analysis. Here, let T be the (1 + k) x (1 + k) matrix that partitions/reshuffles C in an m x m full

rank matrix C,, and an m x (k + 1 — m) matrix C_,, as CT = [C,;, C_,] and yields the corresponding

partitioning of the error terms UT = [U,,,U_,,]. The remaining terms are

=T C -C,, C- Ly 0m><(k+1m):|
H=[H, H »] = m m Com DN:[ (2.2)
[ " M] 0(k+1—m)><m | P 0(k+1—m)><m VNILii1-m
where since it is easily seen under AssE' that C = (N 172y and rk(C,,) = m under Ass@l, we have
_c-1
|H — HJ| = O,( (N"V2) withH = [H,, H ] = [ Co Cm] and C,, and C_,, denoting the
(k+1—m) Ik+1—m

partitioning following from CT = [C,,, C_,,

This gives in turn

F=ZR=Z"=FR=[FC+UR=F +T’

with F* = FR = [F, 07y (51— and U’ = UR = [ﬁi,ﬁgm],whereﬁ;1 =U, é and ﬁo
VN(U,, — T,,C, C_,,). Here we note that since R is full rank, Py = ZR(RZ'ZR)'R'Z =
P; and analyzing Py is equivalent to analyzing P:.
Substituting in F = (Z — U)C from (2.1)) into the DGP of y; and X; yields
yi = XiB; + Fy;+ & = XiB, + ZC'y; + & — UC v,
X;=FI;+V;=ZC +V, - UC'T;

2.1 Preliminary results

Let f.f:o =T (F°)F and

(2.3)

=+/NUTH_,, =

Z(Z7)'7 =

(2.4)
(2.5)

(2.6)



where Zr = T"'F'Fand £ W, = T-1(T",,)'T",, and

Mpo — Mgy = T 10 S5 (T°) + T 10 SR () + T84 (T°) + T 1F° [i% — [TY(E) } (FO)".

(2.7)
By using the definition of U", the two first terms on the right-hand side of the expansion above can be
written as
+

. 0 — T-'F'F (o —0Ta 0.,

T 1080 (T’ = T[T, U° Ot no|+T 22| (T
PO =T OOy, | | o 26 — Iy, | (T

e T S T U(lm(Tfl(ﬁ,m)’UO,m) U,m + 71’ [):Fo ~Fp } @y,
(2.8)
and

-0 S5 (F0)

+
0 — T-'F'F 0,1, (k1 F —0Tat  of
— 7 [T,, T el Spi [ ]+T‘1U Tho — Zp | (F0)
O g 0 (k+1—m)xm T_l(ﬁim)/ﬁ) m Okr1-m)xT [ e F”} (F)
ot NS
= TI0EF 4+ 71T° [Zﬁo - ZFJ (KO’ (2.9)
The third term is just a transpose of the second. The fourth can be rewritten using
fl*: — (T Y(F)F) + 0mscm 0m16k+1118 .
! 0(k+1fm)><m (Til ([Ifm)/[Ifm)-r
Hence, because the last k + 1 — m rows of FC are zero
T—lFO[i%O _ (T—l(FO)/FO)'r](FO)/
et a . O O (k111
= TR0 [£h — 2f | (B0 + T-1F° " g (FO)’
[ F Fu} 0(k+1 m)xim (T_l(UfmyU m)Jr
— 71§ [i%o - i;u} (FO)’ (2.10)

By substituting (2.8)-(2.10) into (2.7), and using the definition of F, we obtain
_1750 1,570 0 =0
Mpo — M?O =T 1U—m(T 1(U—m)/U—m)+(U
ST [k 5] P

=TT, By, (00,) + T, Ep(T),) + T'FER(T,,) + T 10, EF
FTOR Bk - 2] (8,

O+ TIOLEN T + TYULELF + T1FE (T, )

(2.11)
This expression will play an important role in the analysis that follows

Next we establish the following auxiliary lemmas



Lemma B-1 Under Ass[1}f3| Bland 6] it follows as (N, T) — oo that
T'UU=0,(N"") T 'FU=0,(NT)"/?)
T'FU;=0,(T"%) T 'UU;=0,(N")+0,((NT)"/?)

Proof of Lemma Under Ass[I}B} 5| and [f] the proof of this lemma is identical to Lemmas 1 and 2 in

Pesaran| (2006). Details are therefore omitted.
Lemma B-2 Under Ass[Ilje]it follows as (N, T) — oo that

1,550 /770 - —1/5750 \/5=0 -
T™T,) T, =0y(N")  T7H(T,)' T, = Op(N"'?)

T-'FU, = O,((NT)"V/?) T 'FU,, = 0,(T /%)
_15+/+=0 _ 15+ _
U0, = 0,(N 1) T 00", = 0,(N"1/?)

T71(T,)'U; = 0,(N1) +0,((NT)~/?)
T—l(ﬁo_m)/Ui _ OP(N—l/Z) + Op(T_l/z)

TF'U=0,(N"V%)  TF'U; = 0,(N V) + 0,(T7?)

moreover, with & W = Tfl(ﬁ)_m)'% and T, defined in
NT'U'U = £, + 0,(T/?) (2.12)
o =Zp +0,(NV2)+0,(T1?) (2.13)
T =Eh +Op(NTV2) £ 0,(T7112) (2.14)
|26 — 5, || = 0p(N7172) + 0, (T172) (2.15)

Oy nvec(L)  0pxk

where Lo = H_,T'Z,,TH_,, L,y = Ty + <
e Orx1 Op sk

) and where Oy = E(v; @ v)). If

v; = 0yx1Vi (homogeneous slopes), then Ly, = Ly.

Proof of Lemma|(B-2|
From Lemma we have HT”ﬁ’ﬁH = Op(N7') and ||T 1F’UH O,((NT)~1/2), such that substi-
tuting in the respective definitions and noting that || T| = Op( (1) (and therefore also its

partitioning) gives

T U)T | =[BT UOTH, | < L) TR T T - o,v
T (00| = VN [H, T TUTE, | < VN [HL | [Hon | TP 77100 = 0,8 2)
TP | = [T FOTH, | < |7 PO T [Fa) = 0p(vT) /%)

T'FUL, | = VN | T'FUTH., | < VN | T'FU|| ||| [|H|| = O,(T~"/2)

T'UT, | = ||T'UOTH, | < ||/ T [T70'T]| = 0,(N7)

TUTL,| = VN||T'UOTH-., | < VN [H-..| |T|| |T'0'T| = 0,(N"1/2)
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Similarly making use of H T1U'Y;

= O0,(N71) 4+ Op((NT)~1/2) from lemma

[T 1O Y| < | TH|| | 70U = 0,(N ) + 0, (NT)T12)
HT*l(ﬁlm)’Ui < VN||TH_,|| HT*lﬁ’Ui = 0,(N"2) 4+ 0,(T"/?)

Next, noting that F* = [F, 0714k—_n] and now inserting || T~'F'U;|| making use of the orders in Lemma
[B-T gives

|T1E0|| < |7 )T + VN ||TH | 70T = 0,(N12)

el <

+VN||TH| ||T'T'0; | = 0,(N772) +0,(T1/2)

This establishes the first set of results in the lemma.

Next, for eq.(2.12) we get

N L O (2.16)

Qpevec(E) 0k

with X, = Zy + > and where Q, v = E(v} ® v}). The remainder in T in the second

O 1 Ok
line follows from
1 YU ~
Ll | =0T, (2.17)
i=1j#i
because
1 L YU
E{ =YY — | =000k (2.18)
Ni:lj;éi T

1 NN yU 1 NNy 1 NN N { T T
e[ (FEL) (FELYY) | - R EEE L L (st
i=1j£i k=1 1k i=1j£ik=11#k 1~ t=1s=1
1 N N 1 T T 1 N N 1 T T
:72227222112<u1fu]tu]5u15>+ﬁZZﬁZZE<ultuﬂuzsu]s)
i=1j#i t=1s=1 i=1j#i t=1s=1
_ 1 2y -1
= (NT)ZO,,(N T)=0,(T™1), (2.19)

since due to cross-sectional independence of &;, V;, v; stipulated in Ass[T|and |} the expectation is non-zero

onlyifi = k,j = lori = [,j = k and the final step comes from the following argument. Recalling that



i #J

1 T T 1 T 1 T T
f Z Z E (ul tu; tulsu]s> = ? Z E <ul tu] Ui, tu] t) + ? Z ZIE (ul tu] tulsu] s) - O(]') + O(l)
t=1s=1 t=1 t=1s#t
(2.20)
because finite second moments of u;; and absolute summable autocovariances of u;; ensure that
T
Y E (wisuf i ) = O(1). (2.21)

s#t
We will use this argument to deduce the orders of the similar terms. For the leading term in (2.16), making

use of B; = B + B; gives

1 duy 1Y, (U L& (U0 5 1 (O /U’U

as (N, T) — oco. On the second line, since by Ass|§|we have [E(v;) = 0k so that ]E(Ei) = 0(144) x (14k) and

since also v; is independent of the other variables and over 7,

1Y UU; ) ~
E NZB/< ZTZ>Bz‘] :0(1+k)><(1+k)
i=1
and also
~ o~ /
1 N Uy, N U’U 1 NN
E NZ%B’( }) ” ZB’( Bj| =E (NT)ZZ%Z%B’UUBB’UUB
i= i=1j=
N N
= VT 2ZEB’]E[UU]E1313’|U1,U)UU]B
i=1j=1
-1 B'E |00, (B:B) U0, B =0 ( -
_(NT)2; [il(ii)iz} = N
1=
results in

o)

1Y, (U
—V'B/| =B
e (9

The final line follows from

1 N U'U; 1 N B
Nz;w( £[Z>B:NZ;ZM+O,,(T 1/2)
1= 1=




as (N, T) — oo by Ass and because U;B; = [Viv;, 07| leads to

;Z;ﬁ; (UiUz> B, = (NT Yis1 v ViViv; 01><k> — (N Yo UViLiv; 01><k> +0,(T72)
1=

T O x1 Ok O x1 Ok
N (Qv@vec(z) 01><k>
Orx1 Ok

as (N,T) — oo, with Q5 = E(v) ® v}) and T~V!V; = £, 4+ O,(T~!/?) from Ass and@ Note that the
term is zero when v; = 0. This establishes (2.12)).

Next, again making use of ﬁ),m = +/NUTH_,, and substituting in (2.12)) gives, as (N, T) — oo
7/7
fu(im = Tfl(ﬁ),m)’ﬁ),m = ﬁ’,mT’gTﬁ_m —H ,TL,,TH , + O, (T~1/2)
=H_, T'Zy, TH_,, + Op(N1/2) + 0,(TV?)

= Zu[lm + Op(Nil/z) + Op(Til/Z)

because ||H_,, — H_,|| = Op(N~1/2) and note that Lo =H_,TZ,TH yisa(l+k—m)x (1+k—
m) positive definite matrix. It is positive definite, because X, is positive definite and hence by Exercise
8.26 in |Abadir and Magnus (2005), rk(T'Z, ;T) = rk(T). Therefore, by part (b) of the same exercise,
rk(B’AB) = rk(B) = ¢ for B € R”*1 and positive definite A € RP*? implies that the whole matrix
quadratic form is positive definite. The result follows by applying the same argument again, now taking
H_, as B and T'E, ;T as A. This establishes 2.13), and since rk(Z o )= rk(Eg ) 2% 0, it follows from
Theorem 1 in Karabiyik et al.[(2017)

Zu, =Tl +O0,(N2) +0,(T1%)

This is of the lemma.
Next, consider
s g _1[FU,+(T,)F FU, ] 1 [ (@) (T)T°,
o~ ~F, — & = T — —0
f T (U—m)/F 0(1+k—m)><(1+k—m) T (U—m)/Um 0(1+k—m)><(1+k—m)

where substituting in the results established in the first part of the lemma results in

Noting then that rk(f.f:o) = 1+k, and since I, is a block diagonal matrix also rk(Z,
”k(iu(im) =1+kevenas (N,T) — oo from Ass andlgl Since then rk(Zg) — rk(ZF,) =5
Theorem 1 in Karabiyik et al.[(2017)

£r0 — x| = 0,(N12) + 0,(T772)

) = rk(f.l:) +
0, we have by

|25 — 25, | = 0p(NV2) + 0y (T712)

which establishes the last statement of the lemma in (2.15).



2.2 Homogeneous Slopes

In the homogeneous slope setting, we impose a common slope by setting v; = 0,1 so that B, = B and
B; = Bforalli =1,...,N. In this setting, given that Mf:z = 075 (14k), the scaled deviation of the CCEP

estimator is

VNT(B—B) = —V/NTB + ( NT)’lx’Mf:X)’l(NT)’l/ZX’MAy

—~

1 X, X , "
= | w7 Z;XZM?XZ- i Z;leﬁ[el —UC v
1= =
1 &, R )
=\ ~NT ;Xsz:Xi TNT gszf:[sz —UC (v +7;qy)]
1N T
!/ !/
= NT ZXZMIA:XZ' NT ZXZMIA:[EI - UC ﬂlqy]
i=1 i=1
— 01, (2.22)

where use wasmade of y; = C;B~'q, = (C+7,)B'qy = v +7,qyand L X;MIA:WJF')/ = NY,M?WW =
0k 1, because X C Z. Making use of M; = My and My = Mpo — [Mpo — Mg, the denominator in the

final expression is

0=

.[\12

Il
—_

N

X!M % Y [V, — UC'T}/M[V; — TC'T}]

i=1
—t —t 1 Y —t —t

2 [Vi—UCT|'Mp[V; - UCT] - = Y [Vi— UCTi) [Mp — Mp][V; — UC T}]

i i=1

= Qm;y — Qv M- (2.23)

Z‘H Z‘H
~ ~
™=

Il
—_

For a stated subscript A, we define the further decomposition

Qa =O0avv — Qavr — (Qavr) + Qarr
Qavv = == )  V;AV;
NT = !

0 1 S yaTcT
A VI — 1 i
NT &

1

Oarr = - Y T(C)YTATCT,
AT = 5 ot i
Next, similar arguments yield for the numerator

— —=t- ~ ~ ~
[Vi — UC'T;)'Mge; — UC 7,qy) = &1 — Gr,o — Aimo— M) (2.24)

1=

1
1= NT

Il
—_

10



where for a given subscript A the respective terms are decomposed as

da = qA,ve — qavy — qATe T qaTy

V;Aei

=R 1
qA,V€ - \/m g
. 1 N
qavy = W Y VIAUC 7,qy

=

qA,rg = E 1"’ U Ael
CIA ry = \/7 Z r/ /U AUC ﬂlqy

2.2.1 Lemmas
Lemma B-3 Under Ass[I}5|we have as (N, T) — oo such that T/N = Tyt — T < oo that
P _ -1/2 -1/2
q[MFo*Mfo] = \ﬁ(d1 + dz) + Op(N ) =+ Op<T ) (2.25)

where d; = dy = 0k provided m = 1 + k, whereas in case m < 1+ k

d; = q;yz' vec ((C*)’zuD,mzuG) (2.26)
dz = lim ZZ [8, 1D —[07,01x) — T'(CT) ZuD—[0?, 01,t) (2.27)

ﬂnd w1th qu = (qy ® qx), q]/ e [1’ 0;{><1]/’ qx = [kal, Ik]/ and D_m = TH_mzzgmHLmT/
Proof of Lemma|[B-3|

Recall that q[MFO*Mf:O] = q[MFO*MfO}rVE — q[Ml:O*Mf:OLVVI — q[MFO 7M§0],r8 + q[MFO*MiO}rrU' We first Consider

———t
[ F0—Mgol T = FZF’ /U [Mpo — Mg |UC 77,9y

— 1/ Zr’ )'NT 1T [Mpo — Mg, ]UC 7,9,
Inserting (2.11) in U’ [Myo — M;,]U gives

NT U [Mp — Mg, |U = NT—lﬁ’ﬁo_miig mT—l(U U+ NT'UT ST (T
+NTWURELT 1T U+ T IUTL ST IFU
+NTUF [i%o - EH T-1(F)'T
= NT'UT, Ly T 1(T,) T +0,(N"V2) +0,(T 72
= L,TH_,Z}, H,T'Ey + Op(N7V2) +0,(T71/?) (2.28)

11



because by Ass and H_,, = H_,, + Op(N~'/2) we have

— N UU 1Y —
VNT-IU'T, = ( Z Z ) TH , = (N 2zu,i> TH_,, + 0,(T"?)

i=1j=1

=Xy TH_, + Op(N"V2) + 0,(T" /2 (2.29)
which implies together with (2.14) that the first term is

NTUT, L THT,) U= VNT UT, L VNT (T,)T
=L ,TH ,Ef H,T'Zy+O0,(N"?)4+0,(T"?)

whereas for the other terms, making use of f; = O,(1) and the orders established in Lemmas and
[B-2gives
0w 0, — 2 (|~
HT*U’@ZLT*(U?”)’UH < HT‘lU/ﬁ;H Hz;H = 0,(N?)
HT‘T’FEET*(U&)’GH < HT—

(r)n)lﬁH _ OP(T_l/ZN_3/2)

e T R o 12
HT‘IU/FO [):%o - zu T—l(FO)’UH < HT—1U’F°

Zr| = 0,(N2) 4 0, (NTITTI2)

Hence, substituting in ([2.28), using oy, = T/N = O(1) and vec (ABC) = (C' ® A)vec (B) (Abadir and
Magnus, [2005, Exercise 10.18) yield

Q[M - FO]F;y

= \/ Zr/ )'NT U [Mpo —Mf:O]UC 7,9y

1 N
= WN Y T(C)Z,TH ,Z}, H’ T'E,C iy +0,(N"V2) + 0, (T71/2)
i=1
1 N / —t\/ + ’ , —+ _1 _12
Wwr (N Z(qynl ®@T;) | vec ((C ) ZuTH,mZugmH_mT r.C ) +0,(N"V2) 1 0,(T~1/2)
i=1

1 & _ _
™,T <N Y (f9y ® Fi>’> vec ((C+)’ZuTHmeia,nHLmT’Zuc*) +0,(N"V2) +0,(T1/?)

~.

1
— VT, Evec ((c+ )’zuD_mzuc’f) +0,(N"2) 4 0,(T1/2) (2.30)

withD_,, = TH_mZ:rl(l H T, L, =E@,;®7;)and quy = (q, ® qx), and where we also made use of the
following facts: Ty T — T < 00, and from Assthaté+ =Ct+0,(N"V2), LN T =7 T=0 »(N~1/2)
and & YN, (7, @ 7;) = E, + Op(N~1/2), which lead to

1 & 1 ~ 1 & ~ -
N (Wiqy QI;) = N Z(Wiqy @I+ ’L'qx) = N Z(’L‘ly ® ’11%6) + Op(N 1/2)
i=1 i=1 i=1
1 & 1/2
= N 20 @) (9 ® 4x) + Op(NTH)
= Z,qxy + Op(N~1/2) (2.31)

12



o —t\ :
Next up is qm,, M| re = ﬁ YN, TU(C U [Mpo — Mg ]e;. Making use of &; =

U;B~'q, and with 2.11)
follows the decomposition

T7'0' [Mpo — Mg le;

=T 10T io T1(0,)UB lq,+T"'UT, O ErT (T UB g,

+ TR T (TR U B! q+ 70 UmZFT’lF’UiB’1qy
+TIUF [E%o ~ | T ) uB g,

=700 io T 1T,)'UB g, + 0,(N"¥2) + 0,(N"'T1/2) 4 0,(T%?)

(2.32)
because substituting in results from Lemma [B-1|and [B-2| gives
PUairehrum e < o ] s o)
= Op(N72) + O, (N/2T71/2)
TIUFLT ! (U,,)'UB g, || < | T'U'F|| [ [T (W) ui| [B7a
S op<N*3/2T s 0,((NT)™)
TS| < [T 5] TPl B = 00T
TR [gh - 51| T () UB g | < [TOF| |k - 24 [ H
= O0p(N¥2) 4 0,(N7'T?) + 0,(T%?)
and we note that
HT*1UU £ T71(T, 0,(N") + 0, ((NT)/?) (2.33)

Making use of (2.32) and T/N = O(1), scaling it by vV NT gives
VNT V2T [Mp — MpJe; = T WWNU'TY,, E0 T V2(T,)UiB ' qy + O, (N"2) + 0, (T1/2)

=L TH wZ}y T~ 172(@% YUB q, + 0,(N"V2) +0,(T/2)

=X, TH_ mzin *’_mT’x/NT—l/Zﬁ UB~'qy +O,(N"/2) + 0,(T1/?)

where in the second line we have substituted in (2.14) and 2.29) and in the final line ﬁ)_m = /NUTH_,,.
Then

1

[ FO— MFO] Te = \/7 ZF/ MFO - M?O]ei

1 N
=5 LT "YVNT V20 [Mp — Mgle;
i=1
1y, —
— — Y TY(CE,TH X, H. ST VNT2U'UB qy + 0, (N"2) + 0,(T1/?)
i=1

13



where we have defined D = (éJr)’ ZuTH,mZL " 2T’ Noting that U = N~1U; + N ﬁél Uj, the remain-

ing term can be written as

! %F’Dﬁ/UB’lq ,/T ! i I'DUJUB 'q +\/T ! ii I'DUUB 'q
e i i y = NT NTT Vi y NT NI ! y
VNT & NNT & ! NNT =&

1 = / 1 1 & / -1
= /INT Nl;rlD(T U/U;)B 'q, + N;; ;DUU;B™'qy
(| N / X / R
LY =1
-1 3 2 / -1/2
= VINT ﬁZ([‘Ti'lek]@)ri) vec(D) + O,(T~'/?)
LY =1

=T ([0%,01,4) ®T') vec((C’L)’ZuTH_mZleH’_mT’) +O0p(N7V2) +0,(T1/?)

because T~ 1U/U; = Z,,; + O,(T~1/2) from Ass Z.B gy = [07,
([02,0144] @ T) by Ass! and@ We also have that

lek]/ and % Zzlil ([0.1_2, lek] ® r:) —F

1 1
F DU U,B™ =0, — 2.34
| NT Zz]; '@ =00 () @34
due to
i 1 NN T
E WZZ DUUB 'qy| = 01
L i=1j#i i
and
_ 1 N N ) , . T 1 N N ) / 9 /
E mZ;Z;riDU]UZB Y| | N7 Y. ) ,DUUB g,
L i=1j#i k=11#k
1 SLSLBkY / L / 1 / 1\/ / /
- (NT)Z Z%Z#:kz:l l;;‘{]E rlD tZ% Z;E[u]‘/tul',tB_ q]/q]/(B_ ) uk,Sul,s] D I-‘k
1=1j#F1k= =1 s=
1 N N : T T /
=17 =1s=
1 Sy L 1 1
/ I B— l —1y/ ! /
+ (NT)Z Z%;E rlD tZ: Z;]E[u]'rfui,tB quy(B ) uj,sui,s] D 1—‘j
1=1j7#1 =1s=
1 ” 1
T) = -
0 (V1) =07

where the second equality follows from noting that under Ass[I| (independence over cross-sections) the
inner expectation of errors is only non-zero when (k = i,! = j) or (k = j,1 = i) (because i # jand I # k).

The final order result follows from (2.20). Therefore, combining the results lead to the conclusion

My Mgl re = VINT ([0, 0150] @ T') vee((CT) EoTH-w Ly H', T') +O,(N~"2) + 0, (T1?)

= T (CT)ELTH Z}y H', T'[0%,014]' +Op(N7/2) +- O, (T~/?)

1/2)

= VAT (C) EuD_[0?, 014]' + O (N7V/2) + 0, (T~ (2.35)
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whereD_,, = TH , X, H T

The analysis of q[MFo—M -0,V is near identical to that of ’OI[MFO_M o) re- Noting that V; = U;q,, we obtain

VNT V2V/[Mp — Mg U = T-/2qUTY, Eq0 T VN(TY,,)T + 0,(N~/2) +0,(T/2)
=T"?VNqUUTH_,E{, H' ,T'Eu+0,(N""?) +0,(T""?)

because from V; = U;qy the terms in this decomposition contain the exact same variables that drive the
orders as for T-'U' [Mp — MgoJe; = T-'U [Mpo — Mpo]U;B™1q, in (2:32) and we again substituted in
2.14) and (2.29) and ﬁ)_m = V/NUTH_,, on the final line. Then

1

N

——t

Mpo—Mgol Vi = \/ﬁ Zi Vi[Mp — Mg ]UC 77,9y
i=

)

1 N _ N
- N Z VNT UZV;[MFO — Mg JUC 1,9y
i=1

1 Y — N ,
iTZq;UiUD’mqup(N 12) 4 0,(T71/?)
i1

where we again made use of D = (é+)’ ZuTH,mZI& H’ , T’ and obtain using analogous arguments as

above
— iQ'U'UD’N-q = /T -1i T-1UU,)D'7,qy + — ! ZZq U/U;D7j,q
\/Wizl x i 79y N,T NT =~ 19y NTz g x 19y
_1 - = ~1/2
TN, T Nzlqzu,iD iy +Op(T )
1=
™, T N Y a7 © q;Zu,i] vec(D') 4+ 0,(T~1/?)
Y =1
:OP(N_1/2)+Op(T_1/2)
because by Ass[|

1Y, 1Y ~
[N )i ® q&Zu,i] (4 ® 435 X [ © Zui] = Op(N71/2)
i=1 i=1

and where

Ni ) quU’U D'i1,q4|| = O, (\/1?) (2.36)

i=1j#i
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from its zero expectation and

1 NN . o 1 NN / o !
E NT Z quUinD 1,9y NT Z Z qukUlD 1,9y
i=1 j#i k=11+#k

E [“i,t“],',tD/]E(ﬁiquly%)D“l,s“;gs} qx

I

=z

3
=
=
=z
1=

2

1=
Nagh

i
I

e
s
T
[N
-
£
LS
-

i
I\

E [ultu]tD E( qlquynl)Duzsuls] qx
[

E [ui/E [u) D'E(7,q,q;7) Dus|Ui] ] .

Il
—_
—.
g
lin
=

Il
z
=3

™=z
™=z
™=z
.

1=
1=

S
-
I
L
w
[
L

I
L
~.
*®
iy
=
H
-
I
R
w
I
L

Il
z|.
=3

1=
™=z
gk
.

1=
1=

1 NY !/ g g !/ / ~ 1~/ !/
- (NT)2 Z;qx Z% Z;IE [ui,tu]’,tD ]E(”iquy”i)Duj,sui,s} qx
i=1j#i  t=1s=
_ 1 2y _ (L
- oo 1) =0 (1)

since E(7;qy q/yﬁf() = 0 when k # i and one sum in the fourth line is eliminated by noticing zero expecta-

tion when [ # j. Otherwise, we use arguments identical to (2.20). We thus conclude that

Hq[MFO*MiOLVﬂ H = Olﬂ(Nil/Z) + Olﬂ<Til/2) (2.37)
Lastup is
1 X q )
M- Myo Ve = T Y Vi[Mp — Mjole; = F Z q,Uj[Mp — M) U;B™'q,
i=1

Making use of results in Lemma [B-2) yields

2
<ol |

L, || = Op(N) +0,(T™) + O, (NT)72)

~t
T U’ e TY(T,)'U,

T U0, T (T))'U| < HT*lu’ﬁ) HZ HELH = 0,(N"2) + 0,(N"3>T"1/2) 4 O,((NT) ™)

) Op(Nflel/Z)+OP(N71/2T71)

T-'UFELT (U )'U

<[

T-U/F [i%o —ZFJ T=1(F0) UZ-H < HT—1U§F0H ‘
= Op(N¥2) + 0, (NTV2T™) + O, (NT'T™2) + 0,(T/?)

~t
ZFuH

so that we obtain for the familiar decomposition

T~ U/ [Mp — Mpo|U;

=T UT°, L T Y(T,)'U; + T U, T 1 (T,,)'U;

+TWEELT (TR )U; + T IV SR T IFU; + T UIFO [i%o - EH T-1(F)'U;

S VT w T™ HTY,) Ui+ 0, (N72) £ 0,(NV2T 1) 4 0,(N'T"V2) + 0, (T 3/?)

- NT’ZUQUTH_mZugmH,mT’ﬁ U; + Op(N¥2) + Op(NV2T™1) + O, (N 'T7V2) + 0,(T%/?)
(2.38)
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Substituting in (2.38) and making use of T/N = O(1) gives

N
Mo Mo, Ve = FZ%U' [Mp — Mp|UB gy = \f[ L a:NT'UiMp —Mp]UB g,

= /INT ,ﬁquUUTH_mz o H ,TUUB q,| +0,(N"V2) +0,(T"/?)

N
= JINT sz U/UD_,,UUB 'qy | +0,(N"2) +0,(T'/?)
i=1

I=1

(N N N 1N !
= JINT quU’ ( ZU]-> D_, <N ZUz) UB g,
N
B

N N
= VINT | N7z o +0,(N712) 4+ 0,(T1/?)

where to go to the third line we have made use of , H.,=H_,+ OP(N -1/ 2) and have defined
D_, =TH_,Z}, H ,T"

Next, to study the remainder, let d,; denote the element on row v and column g of D_;, and let q, be a
k x 1 vector of zeros with a 1 on its a — th row. Then UZ@ = Uiqq (VE”) = V,q,) is the a — th column of U;
(Vi) and VE/‘I) = v} q, denotes the a — th row of v;;. Note that if ¢ = 1 then by definition U]m =&+ VB
whereas for ¢ > 1 we have U](g) = V](.g “U. Then we can unpack the remaining expression between
brackets as follows

N N

1
N—ZZZVUD mUj&

i=1j=11=1

1 Ltk1tk N N N (©)¢ 1(g)/
= N2 o L dog )L ) Y ViU U e
NT v=1g=1 i=1j=11=1
1 14k N N N (v) 1 Lltk1+k N N N e (@) (g—1)
= 72 2o te1 )0 Y ViU e+ ViBl'ei+ i ) ZdUgZZZVin VE g
v=1 i=1j=11=1 v=1g¢=2 i=1j=11=1

17
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and now also unpacking the first U(®) with

N N N 1+k N N N (0-1)
NTZdllzZZV: €]+Vﬂ][81+vlﬁ] & + NT2 deZZZV;Vj [Sl—f—Vl,B],Si
i=1j=1I[=1 i=1j=1I[=1
1 1+k N NN (-1, 14k 1+k N NN (0-1)< (g1
+ NT?2 E di,g Z E Evi[gj + Vjﬁ]Vzg ' NT2 Z E dog E E ZViV]' A7
§=2  i=lj=ll=1 v=2g=2  i=1j=1I=1
1 N N N , )
=yt L 2 X [Viejele: + Viei'Vie: + ViVBeje; + ViV;ppViei]
i=1j=11=1
1 14k N NN (v-1) er(o=1) oy
+ i LA Y ) VIV Vel + VIVITUB Ve |
v=2  i=1j=1I=1
1 1+k N N N B B
+ 57z e ) ) VieiviE Ve + vivigvis Ve
g=2  i=1j=1I=1
1+k 14k N N N (0-1)<,(g-1)7
NTz L L s L L ViV OV e
v=2g=2  i=1j=1I=1

1 N N
=d1, {NTZ Y YY) ) [Vz',tsj,tgl,ssi,s + Vi V] Bejieis + ViV Berseis + Vi,tV;',tﬁﬁ,Vl,ssi,s} }

1+k 1 N N N T (0-1) (0-1)
+ ) doa NT2 YY) [Vz tVip Els€is T VitV Vf,sﬁfi,s}
v=2 i=1j=11=1t=1s=1

N N N T (g-1) . (g-1)
NT2 Z Z Z Z Z [Vi/tvl,s €isEt + vi,tvj,tﬁvlls Si,s:|

§=2 i=1j=1[=1t=1s=1
1+k 1+k 1 NNN T T (0-1)_ (g-1)

T2 L gy jpr o 2 L ViV Vie s (2:39)
v=2g=2 i=1j=1l=1t=1s=1

Consider then that we can write the second term in the first set of brackets as
N NNTT

NTZ Z Z Z Z Zvl tvlsﬁ‘c'] t€is

i=1j=11=1t=1s=

N T
1
ﬁ Z Z Z ZitsB0its + NT2 Z E Z Z Z(Vi,tvfs 1(l z)zi,t,s)ﬁ(ej,tgi,s - 1(] Z)Uzts)

i=1t=1s=1 i=1j=11=1t=1s=1
1 N T T 1 N NN T T L
N Z%ZZ zts,BU-i,t,s+NT2 Z%Z;ZZ;;Z l,Be
=1t=1s=1 i=1j=11=1t= s=1

_ / _ ts / ts
where Zi,t,s = IE(Vi,tVZ‘,s)/ Oits = E(si,teils), Vi,l = Vi,tvlls — l(l:i)Zilt,S and ei,]- = ej,teils — 1(] z)alts The

second term has expectation zero and we can write given independence of Vfls and elt.’;
L 1NNNTTrqrq'
S /S ’ ,
E Z ViiBei; NT2 Z Z Z 2 Z Vo Bermn
T NNN N N N o o,
LYY YY) Y E (VIR Vi) E (ef5el)
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As the analysis is highly tedious but features a repeating pattern, we shall sketch out the rationale. First,
consider that either of these expectations is zero when one of the indices differs from all others. Then, the
rightmost expectation is only non-zero if (n =m = j =1i), (n =i,m =j,j #i)or (n =jm =1i,j #i).
(Note that (n = m,j = i,i # m) equals zero since by definition E (eflse;ﬂm> = 0 when i # m). The
(n=m = j =1i) case yields

N N

e DL L LYYV (Vi Vi) B (456

=ls=1r=1g=1i=1l=10=

for which the left expectation is zero unless also (0 = = i) or (0 = 1,i # 1) . These two cases give

=1i#l 1 vy NNIE BBV E (effel) = L omer?y—o( L
o=Li71) N2T4t2121 12121121 (Vizps Vil )E (”eiri)_NZT‘l (NT) =0(7
=ls=1r=1g=1i=1l=
1 I T T T N . . 1 1
(o=1=1) N2TA Zzzxﬁ(vtsﬁﬁvq/> (efzselzq> N2T4O<NT4>:O<N>

since ¢;; has finite fourth moments and because i # [ and stationarity (absolute summable autocovari-

ances) of v;; results in

@izim( ?ﬁﬁV””)> - (iim[vw@vlt) (

1s=1r=1g= t=1r=1

||M~1

i E v, ® Vl,s]> vec(BB') = O(T?)

1g4=1

-
[y

Consider then (n = i, j, i # m), which gives

m=

T N NN N 5 o s

S S

NZT4EZZZZZZZ (VllBﬁV )E(eljejl)
=1s=1r=1q=1i=1j=11=10=1

where the left expectation is again zero unless one of 2 additional restrictions are imposed, either (0 =

i,j=1,1%#1i)or (I =j=o0=1i). The latter was already covered above and the first yields

N 1

s L L 111 (VAR ) B (467) = a0 (V27) =0 (72

since i # [ and el ,el f = €€ 4€15€1, gives by ¢;; having absolute summable autocovariances that

T T T T T T T T
2 2 E(ef:lse;:zq) = 2 2 Z ]E 81 tszq gls“‘:l r) — <Z 2 E(£i,t£i,q)> (2 ElE(gl,ssl,r)>

t=1s=1r=1g=1 t=1s=1r=1g=1 t=1qg=1 s=1r=1
T T
= (z z Ui,t,q) (Z Z‘Tlsr> - TZ)
t=1q=1 s=1r=
Finally, if (n = j,m = i,j # i), then we require either (o = i,] = i) or (0 = 1), which gives respectively
. . A ts A/ ts 1 1 272 1
0=il=)  eEL L LYY L E(VEBEVE)E () = a0 () =0 ()
t=1s=1r=1g=1i=1j=1
N

%im ( PP VW) (eztfselrfq) N21T4O (N°T%) =0 (i]F\D

i=1j=1I[=1
1
-o(7)

T T T T
o=1
o) erLEELL
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by similar arguments as above, and T/N = O(1). Hence, combining results yields

-a(Ge) o (3

{ NNNT T / | N T T . .
N7 L L X Y ViaviaBeiitis = 1 Yo 3 Y- ZigsBOiss + O (\/N) 10, (ﬁ)
0

() o (3

since by Ass (summable autocovariances) also H T-1 thTzl ZST:1 LitsB0its

= O(1). The exact same ar-

guments also yield

1 N N T T (g—1) 1 1
— VitV Eis€itl| = Op () +Op <>
v LLLE Lt e =00 () o (G5
Next, for combinations such as v,',tv;-,t Bei s€i s we can write with Vl =v; tv] e and €] = €is€ls —

-0}

1 N N N T T , 1 2 1 N N N T T ; ;
T2 L 2 D X D ViviBerseis = N : + 377 2 2 2 2 ) VigBel,

i=1j=1l=1t=1s=1

el

Il
—_
~
Il
—_
—
Il
—
-
Il
—
w
Il
—_

NT
T T T T NNN N N N ,
=PIl L LYY Y Y Y Y (VIR VL) E (ceh)

We see that the left expectation is zero unless (m = j = n = i), or either (n = m,j = i,i # m), (n =
jym =1i,i # j)or (n=im=ji# j). Depending on this choice, the free indices 0 and [ in the second
expectation must be chosen such that the whole product is non zero. In what follows we proceed with
the systematic elimination using absolute summability and the arguments similar to the ones used above.

We indicate the appropriate index choice for the first expectation in the first parentheses and the relevant
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0,1 adjustment for the second expectation in the second ones.

lNI\
|
3
I
]
1=
1=
1=
1=
™=z
1=

E (V,BB'VI) E (¢¢l,) = O(N*T®)

.*
I
—
w
Il
—_
-
Il
—_
-
Il
—_
Il
_
—
Il
—_

E (VBBV} E (¢el,) = O(NT*)

[l

I

3

[l
=
<

I

I
1=
1=
1=
1=
™=

..,
I
—_
w
Il
—
-
Il
—_
-
Il
—_
Il
_

E (ViBBVI) E (e5e],) = O(NT?)

1=
1=
1=
1=
M=
=
=

(n=jm=ii#j),(0=1

_,
I
—_
w
I
—_
-
Il
—_
-
Il
—_
Il
—_
-
Il
—_
—
Il
—_

1=
1=
1=
1=
™M=
™=z
e

(n=jom=ii#))(0=1=1i) BBV E (el ) = ONT?)

H.
Il
—_
w
Il
—_
-
Il
—_
-
Il
—_
Il
—_
.
Il
—_

es

(m=jn=ii#j),(l=jo=i)

Ip-
(-
11~
M-
I
M= 1=

sl

1=
1=
1~
1=
™M=

(v
(V!,BB'VI;) E (e5jel,) = O(NPT?)
(m=j,n=ii#)),(I=i0=) (v

BBV E (eel;) = O(NPT?)

H‘
Il
—_
v
Il
—_
-
Il
N
-
Il
—_
Il
A
—.
Il
—

E (VEBB'Vii) E (¢5,el,) = ONT?)

1=
1=
1=
1=
M=
™=z

(m=mn,j=1ii#m),(o=1il=m)

T
I,
w«
f
N
.
i
I,
i
[N
i
I
=z

E (Vi;BB'Vi,n) E (€ i€hm) = O(N*T°)

1=
1=
1=
1=
M= 1
Mz I

(m=mn,j=1ii#m),(o=ml=1i)

..,.
I
—_
w
Il
—_
-
Il
—_
-
Il
—_
Il
_
3
Il
—

which by making use of T/N = O(1), leads to the conclusion that

o) o 32

%%%ii B 1§NZ,32—|—O<1>_|_0(1>
VitV PE1s€is = — B0 L L
NT® i=1j=11=1t=1s=1 HEPELT TN -1 ll : VN P VT
L%ﬁii i v Ve e = = EN x, o>+ 0 <1> O <1>
NT? 5] VitVie  Slstis N = Ao "\VN PAVT

It remains to analyze the terms with triples of the same variable, and a single occurrence of an indepen-

dent variable, such as the very first term v; ;¢; ;¢ s¢; 5. For such terms we obtain that

-0, (\%) (2.42)

N NNT T
H NT2 Z Z Z Z Z Vit€)t€1,s€i,s

since, by independence of all v;; and ¢ ;,

1 NNNT T
NT2 Z Z Z Z Z Vi/fsf/fslfsgi,SI = 01
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and also

1 N N N T T 1 N N T T
E NT2 E Z Z E Z Vit€jt€] sgzs] NT2 Z Z E Z Z Vi, r€n,r€o,q€m,q
i=1j=1l=1t=1s=1 m=1n=10=1r=14g=1

—_

Il
Z
!
1=
1~
1=
1=
=
1=
1=
™=
™=z
Mz

w
Il
—_
w
Il
—_
2
Il
—_
-
Il
—_
Il
_
~.
Il
_
—
Il
—_
3
Il
—_
3
Il
—_
o
Il
—_

E <vi,tv;1,r)IE (€j,t€l,s€i,sSn,rso,qgm,q)

—_

|
Z
e
1=
™=
1=
1=
=
M=
™=z
™=z
™=z

N
Il
—
w
Il
_
2
Il
—
-
Il
—
Il
—_
-
Il
—_
—
Il
_
3
Il
_
f=}
Il
_

E (Vi,tV;,rﬂE (ej,tgl,ssi,ssn,reo,qsi,q)

because E(v;;v;,,) = Ogyi for all m # i. The further analysis of the remaining term is too extensive
and cumbersome to fully write down here, but careful elimination making use of the independence over
cross-sections in Ass[I|shows that four typical terms remain in the expression above, of which the orders

are given next

E(vi Vi, )E(i i€ €7 ,) = 55 O(NT?) = O <>
N>T* t=1s5=1r=1g=1i=1 v Eirkistig) = T NT
1

1 1
E(v3¥} (e B i Ele1401) = 15 ON°T?) = 0 (1)

1 1
JE(Virvi, JE(esscireig)E (e11€15819) = WO(N2T3) =0 <T>

,ﬁ
I
iR
v
I
IR
S
I
iR
-
[
R
-
[
iR
=
i
=

oz
3
1=
1=
1=
1=
™=
1=
il g2

1=
1=
1=
1=
™=
1=

N2T t=1s=1r=1g=1i=11#i
1 T T T T N N 1 — 1
N2T4 Z Z Z Z ZZ]E(Vi,tvg,r)lE(ei,tei,sei,rgi,q)]E(el,qgl,s) = 7N2T4O(N T ) =0 <T1> ’
t=1s=1r=1g=1i=11#i

because of stationarity of both involved variables, T/N = O(1), and E(¢,) < oo by Ass Here, for

example, the order of the last term can be deduced from

\ LT S b (e B
1

=1s=1r=1g=1i=11#i
T T T T N
= Nsup ||[E(v;v;,)|| X sup [E(ejse14)] X N2T4 Yo Y)Y [E(eiistireig)]
it Lq,s t=1s=1r=1q=1i=1

= N2T4O(N2T3) =O(T™Y).

This results in the original statement above, and we similarly obtain

(%)

( ")

N T
NT2 £~ Yo Y vievi BB Vistis

N N N T T v
NTz.ZZZZZv”V]t vls.Bst




Combining then all these results in (2.39) gives

{ NNN N NNT T
NTZ Y. ) ) ViUD_nUje = diy {NT2 Z Z Y)Y {Vi,tv;‘,tﬁgl,sgi,s] }

i=1j=11=1

w0 (75) +or (75
14k 1N
_d“{ ZZ[&U}—}—Z:Zd“{NEZqu_laZ}
o )0
N 1 Nkt

1
:—Z 112ﬁ0’ —|—NZZdU12qU 10'

i=1 i=1v=

+o, (7)o (5)
i |

Z

% (B, LD [07, 01k) + O (T71/2) + O, (N71/2), (2.43)

_1
N
such that finally

_ 1Y _ _
iy Myolve = VT lim 3 B[ T]D (07, 014]' + Op(T772) + Oy (N71/2) (2.44)
i=1

Combining then (2.30), 2.35), (2.37) and (2.44) into Q[MFO M) = ﬁ[MFo M| Ve ﬁ[MFO MV — q[MFO_Mﬁo]/FS +
Q[MFO —Mj) Ty 8ives the final result in (2.25).

It remains to show that d; = dp = 0;,; when m = 1+ k. In this case, given T-1Z'Z = CT-'FFC +
Op(N71)+ Op((NT)~%/?) and rk(T‘lz/Z) - rk((élT_lF/Fé)) 2% 0 it follows by Theorem 1 in Karabiyik
et al| (2017) that H(T*?’Z)* - (é’Tle’FEﬁH = 0,(N"1) 4+ 0,((NT)"1/2) and H(T*Z/Z)*H = 0,(1).
Hence, whereas m = 1 + k yields by definition R = C ! so that Mpo = M, the fact that by the prop-
erties of the generalized inverse we have Mp = Mfr = Mg and also My = Mg, of which crucially all
components are well behaved, lets us simplify and analyze the decomposition in (givenm =1+ k)

as
Mp — Mg = Mye — My = T-'O(T'Z'Z)'0 + T '0U(T'Z'Z)'CF + T 'FC(T'Z'Z)'T
+T'FC[(T'Z'Z)" — (C'T'FFC)'|C'F (2.45)
Then, substituting in this decomposition yields

1% n
(q,7; @ T})
N &l

@M iy | < v I H N [T70' Mg — Mg ||| = 0,(N") + O, (NT)"72)
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because by application of the results in lemma we now obtain

ZZ
T

FU

oo’

HT—lﬁ’[MFO - Mﬁo]ﬁH <

) ||

<sz> _@C)

— Op(Niz) + Op(N*3/2T71/2)

Next up are qm,, M) re and Gm,, M), vy- Making use of & = UB!q,, Vi=U;qcrand T/N = O(1)

10U [Mpo — Mg U;

| = 0y (NTH) +0,(NT)/2)

‘ ) Q[MF(J ~Mjo) e

1 N
<V TN,TN
i=1

- 1 & g =t s - -
it -wa | < VAT L llasl N 710 Mg — MU | [ €7 iy | = 0p(N 1) + 0, (NT)172)
i=1
since from (2.45) and lemma B-1|follows

HT*lﬁ’ (Mo — M?O]UiH

!/

I ——\ T — — —— — ——\ T —
vu||l(zz\'||vu  |vo||(zz) ic F’U L Zz)\ | ||Uy
=T T T T T T T
_ ——\ T
2|FU|| | (ZZ) dilire HFuU;
T T T
= 0p(N2) + O, (N3/2771/2)
Finally, for q[MFngo],Ve we find
_ 1 _ _ _ _
@m0 wolve]| < VAT L llaell N|| T U Mp — MgoUs | [ B1q || = 0, (N 1) + 0,(T7172)
i=1
from T/N = O(1) and
HT—lUg[MFo - Mﬁo]UiH
— 2 ==\ 1 — ==\t , , —— ,
Uy, zz\'| ,|vu||(zz ic| F'U; ‘c FU Q f/EC
=T T T T T T

=0p(N) +0,(N'TV2) + 0,(NV2T71)
Hence, by combining results we have whenm =1+kas (N, T) — oo

= O0p(N™") +0,(T7/?)

HQ[MFFM?O]
which implies that d; = dy = 07 in eq.(2.25) of the lemma, as needed to be shown.
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Lemma B-4 Under Ass[IH5 we have

=0,(T™?) (2.46)

Jar

as (N, T) — oo

Proof of Lemma [B-4]
Recall that QPFO = qPFO,Vg — ?q\pFO,v,7 — ?q\pFO,rg + ?q\pFO,rW. We begin the proof by noting that Pro = Fof;o TR

and F® = [F, 071 4_,]. Rewriting the last term gives
qe o1y = Z r;(C)'U U PFUUC 79y

. —_+1/ __ ~ _
™NT )| [C 2T vee (NTTUFERT 'FT) =0,(TY)  (247)

N
Z q7; @ T7)
1

Z:

because H%ZN (qy7; @ T})|| = Op(1) from Ass and ||[T'FU|| = O,((NT)"'/?) from Lemma

yields
HNT‘lﬁlFOf;oT_lFO’UH <N HT—lﬁ’FOH Hi;o HT—lFO’ﬁH = 0,(T™)

Next, with HT 1Foy; H = Op(T™ 172 from Lemmaand V; = Uiqy, & = U;B!q, follows
H\/NT_lﬁ/FOf;oT_lFo’ei < \/NHT—lﬁ’FOH Hf;o HT‘lFO/UiH HB‘lqu = 0,(T)
|[VNTURELT V| < VN | 10F| |2 || T 0,(T™1)

such that
qp o e = VTL Zr’ Y VNT U REpT 1 F%; = 0,(T1/2) (2.48)
Gryovy = \/TN Y TV VNT T EUC g, = 0,(T2) (2.49)

i=1

Next, by independence in Ass5|and expectation zero error terms in Ass/[I|

N
B (Arove) = = L E (V) (Pp) B (&) = Oy

i=1
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and also
~ o~ / 1 N !/ /
E (qPFO’V£> <QPF0,V8) - ZIE (ViPFo]E(sisi)PFOVi)

E (V;PFolE(eie;)PFovj)
i=1

/ NT

Il
—

j

=

Z‘,_\ Z‘H

— ~

' 1=
1=

N
I
—_

E (V;FOEFOT—lFO’]E(sie;)FOEFoT—lFO’Vi)

1 N T T et ,
NT3 2 2 Z Z IE (Viztft 2“FOfs]E(‘c'i,ssi,;’)f Z}:qu Zq)
i=1t=1s=1r=1¢g=1
1 N T T T T
N Z Z Z E vltf Z“FO Z Z 1srfO ZFOfg :q)
i=1t=1g=1 —1r=1
1

NT3O(NT2) <T>

by the stationarity of f;, ¢;;, v; ; and their mutual independence, implies that

=0,(T"'/?) (2.50)

qry, Ve

Combining all the results above then leads to

qr, || < HQPFO,Vs + HQPFO,VUH + HQPFO,rg + HqPFO’r”H = 0,(T/?)

which is what needed to be shown.

Lemma B-5 Under Ass[l}[5las (N, T) — oo such that Ty — T < oo,

dr = qve + VT(b1 —ba) +0,(1) (2.51)
4 - N (0kx1, ¥) +/T(b1 — b2) (2.52)

ZUlth ql/v‘g = \/% Zf\il V;Si and
b, = q;yZ;vec((CJr)’ZuC*)
b2 = rl(CJr)/[U'Z,O]Xk]/
and where ¥ = plimy 1)_, ., LN (TIVIQV)).

Proof of Lemmal[B-5
Recall that

qr = qive — qrvy — qLre + qrry

For the last term in this decomposition we find using familiar operations

/
- 1 & P
dury = ZT' ’U UC 1,9y = \/IN,T [N Z(’ii‘Iy ®@T;)| vec ((C*)’T 1NU/UC+)
i=1
_ ﬁquz;vec ((c*)’zuc*) +0,(N"V2) +0,(T1/2) (2.53)

26



where we have substituted in 231) and T'NU'U = £, + O,(T~1/2). Similarly making use of & =
U;B1q, yields

N
Qure = 7oz L THC U = WNTZF’ T U

1 t 1 SNt -
= INT [N Y T/(CH (T 'UjU)B qy | + /Tnr NT Y. ) ri(C)'UjuB 'qy
= =1 j7i
1 al / -1/2
= VINT |37 L THC) (07, 00| + 0, (T7H2)
i=1
ety 1 y Y 1/2
= VN I'(C) N Y 107, 00) + /TN T Z )'[07,01.k]" | +Op(T~?) (2.54)
i=1 =1
= VIl (C)'[0%,01.4) + Oy (N~V/2) + O,(T1/?) (2.55)

where we substituted in and made use of T~1U/U;B~!q, = Z,;B~1qy + Op(T~2) = [07,01) +
O,(T~1/2). For the next term, making use of V; = U;q, and substituting in the same results as above

leads to

~ 1 N 1 Y
Gy = ——= Y VIUC 7,qy = VinT | < Y qx(T""UU)C gy | + N Zqu T-'U/U;)C Tqy
VNT N5

i=1 l 1j#i
/
Ly oz, S5 0,(T"V?) = /inr 3 z CH +0,(T71/2
N, T N qu ui'- 1;qy + ( ) TN, quy Z 7; ® uz vec( )+ P( )
i=1 1=1
= 0,(N"V2) +0,(T7?) (2.56)

because ~ YN, 7, = O,(N~V/2) by Ass@ Finally, as ||qr,ve|| = Op(1) and fourth moments are finite it

follows under Ass[i]that
Grve = b i Viei -5 N (Oxser, F) (2.57)
I,VE \/m = 1¢1 kx1rs *

as (N, T) — oo, with ¥ = plimy 1, YN (T7'VIO,V;) and Q; = E(g;e}). Hence, combining (2.53)-
(2.57) in the decomposition of q then leads to

ql i> N (kalz‘f) + \ﬁ(bl — bz)

with by = q}, Z;vec((C")'Z,C") and by = I'(C")'[0?, 01 4], which is what needed to be shown.

Lemma B-6 Under Ass[IH5 we have that

Q —'x (2.58)
Q! —rxt (2.59)
as (N, T) — o0
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Proof of Lemma[B-6
Recall that

Q—LZX’MX

——t ——t PP ~
NT ! [Vi = UCTi'Mg[V; ~UCT,] = Qi — Qnyo — QM)

L
NT :

1=

which for a given subscript A is in turn decomposed as

- iVQAVZ
NT =
~ 1 X, +
Qayr = WEVZAUC T;
Qarr = L i (CYTATC'T
NT =
Recall that HT g UH p(N71) and HT g FOH = Op((NT)"1/2) by Lemma and note that (2.28)
implies HT 10 [Mpo — Mg UH = Op(N~1). Then we have
ol < [ o e Je 0] - 000
=1
Grnr] < | g K@ ey [ 0w g = oyny
i=1

Q[MFO*MFO]/FFH < Hf’er HT—lﬁ/[MFo — M?O]GH = Op(N_l)

1 i / /
—) (TieI)
N = 1 1

Next, the fact that V; = U;q, and using also H T-'U
O,(T~1/2) of Lemma reveal that

= Op(N™1) + O,((NT)"/2) and ||T'FVU;|| =

. 1 N B
Our]| < L llasl |7

Op(N1) +0,((NT)~1/2)

. N
Q| < N 3l |7 Zp|| [TUF| ||| Il = 0p (2T
Qrvv| < ;iluqxuz |- =0p(T7)

For the next result, given that we made use of &; = UiB_lqy to derive the results in equations (2.32) and
(2.33), they imply directly that

HT—lﬁ’[MFO — Mg |Ui|| = 0,(N"1) + O, ((NT)"1/2) (2.60)

so that in turn

| @t = i lax |70 [Mp — MU = 0p(N™") + Op((NT)"1/2)
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Next, we have obtained in (2.38) that

T-'U/[Mp — Mp|U; = T U, 20 T-1(T,)'U;

_’_Op(Nf?)/Z)_’_Op(Nfl/ZTfl)_’_Op(Nflel/Z)_}_OP(T*3/2)

which using H T-! (ﬁo_m )'U;

= 0,(N"12) + 0,(T1/2) from Lemmaleads to

|70l Mg — Mg ]U

< | @y v | 2,

+OP(N73/2)_’_Op(Nfl/ZTfl)_’_Op(Nflel/Z)_’_Op(TfC%/Z)

= O0p(N"1) +0,(T1) +0,((NT)V/?) (2.61)

and substituting in this result yields

z

HQ[M ~My] VVH NZ%H%H HT 'U/[Mp — Mpo]Ui|| = Op(N 1)+ Op(T 1) + O, ((NT)1/2)

For the last remaining term it follows from Ass that

N —-1/2
N): )

Finally, by combining then all the previous results

. 1 & Vi,
Qrvv = N 2

i=1

z

Q=Y % +0,(TV*)+0,(N "

1
N =

Equation (2.58) of the lemma follows from this and Zl 1Z; —P Las N — co by Assl w1th L positive

definite, which in turn, given that 7k(Q) — rk(Z) = 0, then leads to [2:59) by Theorem 1 of Karabiyik
et al.[(2017).
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2.2.2 Theorems and Corollaries

Theorem 1 Under Ass[I}B|we have as (N, T) — oo such that Tyt = T/N — T < oo that
VNT(B— )~ N (01, Z¥E) + V7= (b — d)

where b = by — by, d = dy + dy are given in Lemmas [B-3|and [B-5 with d = O when m =1+ k.

Proof of Theorem[ll
Recall that the scaled CCEP estimator is

VNT(B-B)=Q '3
Substituting in lemmas@andinto 9 =d1 — dpy, — qm,, M) results in
q 5 N (01, ¥) +vVT(by — ba) — v/T(d1 +d2)

as (N, T) — oo such that Ty — T < co. This together with Q! —? £~ as (N, T) — co from Lemma
[B-6l then leads to

VNT(B = B) ~5 N (0, Z¥E™) + vTZ (b — d)

where b = by — by and d = d; + dj, as was to be shown.

Corollary 1 Under Assandﬂ we have as (N, T) — oo such that TN — T < oo that
VNT(B, ) - N (0p, Z7¥E 1) + VT2 Tg

where
g = q;yz;vec((r*)’z(lk — Dy )T

and with Dy _y = TxHy _(H, _, T\ ETHyx ) H, _,, T,

X,—Mm *x*

Proof of Corollary/]

The asymptotic distribution of the CCEP estimator when y is excluded in the estimation of the factors
can be studied by replacing Z, U, C with X, V and T, respectively, such that F = (X — V)T" and Py =
Y(Y’Y)*Y/. The appropriate rotation matrix in case m < k is then Ry = TxHxDy x where Ty is the k x k
partitioning such that TTy = [T}, T_,,] with T, an m x m full rank matrix and also VTx = [V, V_y,].
The remaining matrices are now

— - — I I 0 _
Hy = [Hx,m/ Hx,fm] = L ] ’ Dnx = [ " \r/nﬁ(lkk m) (2.62)
—m



-1 -1
with also Hy = [Hym, Hx—m] = O(kr’”) FI’]’: Tom and T, and I'_,, denoting the partitioning fol-
—m)Xm —m

lowing from I'Ty = [Ty, T'—].

Replacing in the analysis of Theorem the R, T,H,H respectively with Ry, T, H, and H, and allows us

to study the CCEP estimator, with for completeness now

~

F = [FT+ VIR = F + V' (2.63)

where F* = FRy = [F, 07, t_m)], V) = V), V", ], and with Vo, = V,,T,," and V°,, = vVNVTHy _, =

P J— i_li
VNV = VI, T_y).
Denote now the scaled deviation of CCEP estimator

VNT(B, — B) = Q. '4x (2.64)

where we will employ the same decompositions as introduced in (2.23) and (2.24) but we denote with
the additional x subscript the fact that in the decomposition Z, U, C are replaced with X, V and T and the

rotation has also been redefined as above.

Consider then that since V.C U, X C Zand T C C, all the derived orders in Lemmasto are upper
bounds for the analysis here. Hence, it follows directly from Lemma

Qo' —rx! (2.65)

whereas from Lemma [B-4]

and from (2.37)) in Lemma [B-3

Also, employing the same arguments as for (2.30) but setting U=V,C=Tand T =T,, H = H, reveals

Q|| = Op(T7V?) (2.66)

qX,[MFo—Mf:oLVW H - OP(N_UZ) + OP(T_l/z) (2.67)

G MM 1y = VTG Eyoec((TT)EDy,ZT7) + Op(NY2) +0,(T7V?) (2.68)

with Dy = TxHy—u(H} _,, T{ZTxHy ) "H, _, T}. The latter follows since setting U = V yields in
eq.(229) that vVNT-'UU_,, = ET,Hy _ + Op(Nfl/z) + OP(T*”Z) as eq.(2.14) of Lemmambecomes

Tro = (H, ,T.ETH, )" +0,(N2)+0,(T 2 (2.69)

m X,—Mm * X
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Next, we have for qn[MFOfooLFs by substituting in the same results as in the proof for q[MFofoo],Fs in
2.70) of Lemma [B-3| defining also Dy = T YDy and using V.= N"1(V; + YN V;
& , 2] j#i V]

QX,[MF()*M?O],FE - Z r/ MFO - Mﬁo]si
er’ )EDy_wVNT V2V e; + 0,(N~V2) +0,(T1/?)

_ 1
TN’T [N Z F;DX(T 1V;€l Ni
i=1

mZ

N
Y T'DVigi| +0,(N"1?) +0,(T~?)
j#i

1N _ _ _
N T [NngDX(T Vi) +Op(N 1/2) +O0,(T 1/2)
i=1
= O0,(N"V2) +0,(T7?) (2.70)

where on the fourth line the upper bound for the rightmost term on line three, as derived in (2.34), was
substituted in, and the fifth line makes use of ||T;|| = O,(1) and ||T~!Vlg]|| = O,(T~'/?) from Ass
Next up is cA[x,[MFO,M?O],Ve. Following the same steps, notation, and making use of the same results as

below (2.38) gives, with dz’ﬁ,g denoting row v and column g of Dy _,

N
QX,[MFofMﬁO],Vs = IN,T Z Z VQVij,—mVQSi + Op(N71/2> -+ Op(Til/z)

NT2 -

| NNNT T
T, T!Z Zd;lg{WZZZZZVHV Vlsﬁls} +0,(N7V2) +0,(T71/?)

v=1¢=1 i=1j=11=1t=1s=1

= 0,(N"V2) + 0,(T7/?) (2.71)

Where we used that fact that since the result in holds for sums of products of ¢;; and v;; which
feature three occurrences of one and a single of the other, the order obtained in is the same as for the
leading term here, specifically H ﬁ Zf\il Zjl\il le\il Zthl Zstl Vi,tV](,Z;)Vl(:Z)Ei,s = OP(T_l/ 2). Combining
then 2.67), 2.68), @70) and @.7I) in Gy v, M) = My Myl Ve — G [Mpo—Myo], vy — G, [Myo— M) Te T

qX, [MFO —MIA:()},FU glVeS

Ay Mo My] —7 VTdx (2.72)

with dyx = ql, Zjvec((T")'ZDyx,_, ETY).

Consider next

q\x,l = q\x,I,Vs - QX,I,V'r] - q\x,l,l"e + q\x,l,l"iy

Recalling that V C U implies that the earlier derived orders in Lemma are upper bounds for the
analysis here, it follows directly from (2.56) of the proof of Lemma [B-5| that

|@xsvy|| = Op(N7H2) + 0, (T~1/2) (2.73)
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Then, for the last term in this decomposition,

/

L vec ((f+)’NT_1V/W+)

Ax1ry = Zrl )'V'VI'7 19y = VIN,T [N
_|_

quy)::ivec<(l”+ )’zr*) +0,(NV2) +0,(T1/2) (2.74)

[\12

(1;9y ®T;)

Il
—

i

where we have substituted in (2.31) and (NT~1V'V) = £ + O,(T~1/2). Next,

N
qx1re = \/t Y T YV'ei = ing Zr/ T Ve
N
= /TN [ Z T W) | + Nt [NTZZF/ V/Sl]
i=1j#i
= 0,(T?) (2.75)

since by the same arguments as for (2.34) the rightmost term on the second line is O, (T~1/2), and for the

left term we have used T‘lVgsi = Op(T_l/ 2). Then, since by definition qx1v: = qrv. equation 2.57)

directly applies and
Gurve = ! %V/s 5 N (041, ) (2.76)
x,ILVe — = —— €1 kx1s .
VNT 5

combining 2.73), 2.74), 2.75) and (2.76)) in the decomposition of gy gives

Gt —5 N (0g1,F) + /by 2.77)

with by = q;yZ;vec((l’Jr)’ ZI"). In turn combining 2.66), @272) and @.77) into Gx = Gx1 — Gxp, —

Qx,[M o — Mg results in

Gx 5 N (0ge1, F) + v/T(by — dy) (2.78)
such that with also (2.65) substituted into (2.64) we get
v NT(BX - ﬁ) i> N <0k><11271‘1’271) + \/?Z‘ilg

where g = by — dx = q}, T, vec((T")'Z (I — Dy, X)TT). This is the stated result.
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2.3 Heterogeneous Slopes

We consider here the heterogeneous slope DGP where B; is characterized by Asslf|such that ; = B + v;,
and it is understood that also the cross-section averages U, C represent the heterogeneous slope variants.
Note that all the results in Section 2.T|are derived under Asslf|and hence apply here as well. In this DGP,
we obtain from substituting in @24), B; = B +v; and MpZ = Or, (1) for the scaled deviation of the Mean
Group CCE estimator
N 1N N
VNB =) = L O Qv+l = \ﬁZv Z 2.79)
i=1 i=1
and in turn, for the scaled deviation of the CCEP estimator, making use of y; = C;B; 'q, = 7 + 7,q, and
YN, X;M?WJF'Y = NY,M13W+'Y = 01, because X C Z,

-1

3 / ™M i STall
x/N(ﬁ—ﬁ):—\/Nﬁ+<NT2XMx> \FZX #[XiB; + & — UC 7]

-1

1 1 & et

(NTZX’M x) NTZX #[Xivi + & — UC 7,qy]
i=1

=Q '[a+q,), (2:80)

where in 2.79) and we have defined

~ 1Y ~ XIMgX;
Q=53 ;Ql, i= =
—=t
__ liA - VNX!Mg[e; — UC v
q N = qlr 1 T
1y N VNX;M;X;
v = N qu,l qv,i = #vl

N
Il
—

Making use of 2.5), MzZ = 07,11k, Mz = My and Mz = Mpo — [Mpo — My, let the following be the
familiar decomposition at the individual level
Q; = T IX!M;X;
= TV [V; = UC'T;)/Mp[V; = UC'T;] — T"'[V; = UC'T;) [Mps — M, |[V; — UC T}

~

= Owmy,i — Qv —My)s (2.81)
where for a stated subscript A, we define the further decomposition
Qa;i=Qavvi—Qavri— (Qavr:) + Qarr;
Qavv, = T~ 'ViAV;
Qavr; = T"'VIAUCT;

Qarri=T'T] (EJF)’ﬁ/AWJrFi
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and where barred variants with an omitted i subscript denote averages over i as QA,VV = % Zfil Qayvv,

Next, for the individual-specific numerators

~ _ —t =t PO N

Gi = VNT'[V; = UC T,)'Mge; — UC 7] = qui — G0 — Givy0- Myl (2.82)
where for a given subscript A the respective terms are decomposed as

dA,; = qA,vei — 9A,Vy,i — GATei + ATy,
dave; = VNT 'ViAg
davy; = VNT'V/ATC v,
dare; = VNT'T)(C') U Ag
dar,; = VNT'T)(C' )T ATC
where barred terms will similarly be defined as q . = + YN | Gave;. Finally, g, features only in

so we can directly define the averaged term

_ 1 Y XiMﬁxi 1 N R N
= v; = V; — UC I;’'Mz[V; — UC T]v;
qv \/N; T 1 \/NTE[ 1 l] F[ 1 l] 1

= ql,v - qPFo,U - q[MFO *Mf;o},v (2'83)

with, given a matrix A,

QA,U = QA,VV,U - QA,VF,U - (qA,VF,v)/ + QA,IT,U
. 1
AVV,y —
" VNT!

_ 1 X
davre = == 2 Vi AUC Tv;

VNT o

— 1 N / —t 1< —=t
darre = UNT ) T;(C)'UAUC T;v
iz

N
V;AVl-vi
=1

We next establish the distributions under heterogeneous slopes
2.3.1 Analysis of CCEP
o s 8 6
Theorem 4 Under Assli{6] with in addition E(||v;||®) < oo and E(||v;]|®) < oo, we have as (N, T) — oo that
VN(B - B) - N (01, 27,27
with Th = limNﬁoo % Zzl\il Ziﬂv):i.

Proof of Theorem [4]
Recall the scaled CCEP deviation in the heterogeneous slope model defined in (2.80). Note that Q = Q so
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that the decomposition of Q is the same as that for Q employed in Lemma Given then that Lemmas
and [B-2 apply equally under the slope heterogeneity characterized by Ass[] the asymptotic orders
derived in Lemma [B-6|apply directly to the heterogeneous slope setting and we have from the exact same

arguments as in that proof
Q' —rz? (2.84)

Similarly, since heterogeneity does not impact the orders derived in Lemmas[B-T|and [B-2)(only limit state-
ments are affected) and we have by definition q; = %ql’ql’w = %quolq[MFO*MﬁU} = ﬁq[MFO*Msz]
(so that we have scaled up by /N rather than v/NT), the results from Lemmas that llqr] =
0,(1), [dr, | = 0,(T172), — 0,(1), imply that ]| = 0,(T~/2),|[ap, | = 0,(T"1),
O,(T~1/2). Hence, ||q|| = O,(T~'/2) and q,, is the leading term in the asymptotic expansion.

0 —Mgo] £0 —Mpo]
P —1_ _
VN(B—B)=Q q,+0,(T?)

For q, we start the analysis with the terms containing the deviations A = [Mp — Mz|. For the last term

in the decomposition we have

—
qdm Mo —Mzo) IT,0 — \/>T El"/ /U [Mpo — Mg JUC Tiv;

1 N I/ !
=N Y (v} ®T;)

i=1
—F 0k><1

vec ((EJF)’\/NT’lﬁ/[MFo — Mfgo]ﬁJr)

because inserting in U'[Mpo — M, ]U gives
T U0 [Mp — MU = T'UT, Ep T1(T,)T + T 'UT, LT (T),)'T
+ TIUFEET1(TY)U + T 'UULELT'FU
+T TP [2%0 - 2;} T-1(F)'T
— op(N—l) (2.85)
which follows analogously to earlier results by application of Lemmas [B-T|and [B-2Jto get

177 = 177 2
U, TNT, UH HT U ,mH‘

Zo,| =0,

70T f.FT‘ ( UH < HT 1UH)‘

o
T-'UFELT ’UH HT g FH HZF

)/GH = 0,(T"V/2N73/2)

T-1U'F [fﬂﬁo I | TR U < 7T FOH =

~1 _ _ _
IE, H = 0,(N%2) + O,(N"'T71/2)
and also, since by ASS@ and|§| the mean zero and independence of U; 1mp11es

(VT @T)| = Op(N%)

‘1 N
Nizl
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Next, noting V; = U;q, and substituting in from the proof of Lemma [B-6] gives

|VNT Vi IMp — Mg ]| = 0y (N172) + 0y (172)

= ||-=t
<NHWTWMWMMMQWMM

so that
N

=t
\/77 Zl MFO - Mﬁo]UC rl‘vi

‘ ‘ q[MFU *MF(]},VF,U

O N™ l/Z)_i_Op(Tfl/Z)

which is not the sharpest possible bound, yet sufficient for our purposes. Then for the final term of this
kind

_ 1Y _
[ 0 —Mgl,VV,0 = \/7T ZV/ N[F0 Mﬁo]vivi - N Z \/NT 1V§[MF0 - Mf:o]ViUi
i=1
—F Orx1
This can be seen from the following expansion obtained by substituting into qpy ;) vv,er and

making use of the same arguments as for (2.38), but not approximating terms that are O, (\/ NT- ),

z

Z \/NTﬁlvl{[MFo — M]?O]Vivi

N vio',\ ot [TV, V; 1N V/E _+ . [Py,
E < Ly, % vi+N2\/ﬁ T P:FO—ZF] Tl v;

i=

+OP(N22>+O () o ()

Recall that Uo,m = V/NUTH_,, such that with D = Tﬁ_milg mﬁ’,mT’ = Op(1) the first term in this

1
N :

Z\H

expansion can be rewritten as

N V’U ~+ o’ v, 1Y L, (VUL [Ty,
— _ /2 1 )
Z ( Tuo, 17? ViT N ElN T D T )Y

Lkitk 1 NN N (VU /ylry,
_ j k Vi
QR PR DIy DY T )V

where dAU,g denotes the element on row v and column g of D, and U ;

—~
—
—

denotes column [ of U;. Hence,

7 (v) ()
1 N V/.A)U, 4 U(l/ V. 1+k 1+k N N N (VU u¥'v,
NZVN< = ’”)2 T v <X Zldvgl ZZZZ e | vi
= v=1g¢=1 i=1j=1k=1
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where we recall that ]dAz,,g| = O,(1) and that k is fixed and finite. Noting that U; = [&; + V(B + v;), V],
the term with the highest degree of dependence (and hence the driver of the asymptotic order) occurs

when v = ¢ = 1. In that case, the leading term is (since ¢; is independent of all other terms)
N VIV VY
Z ) 7 ) vk g ) v

Its expectation is zero unless i = j = k, and in the latter case, given finite moments

ik () o () o] o (35)

Also, by the cross-section independence, and independence of V; and v; for all 7,

-

N3/

A=

N NNNN N ,
N3TA ZZ Y2 ) ) E <[V§Vj”jvch§<Vz’Ui — 1o k)A} [Vlvmvmv V, Vi, — 12 m:n)Al} >

which is notably not the sharpest possible order, but sufficient for our purposes. The argument for this
result is as follows: the cross-section independence of V; and v; implies that the expectation is zero when
one of the indices (k,1,m,n,i,j) differs from the others. This means that the expectation is zero when the
product features more than 3 different CS-indices (6 options means at most 3 different index pairs can
be constructed without having at least one index differ from all the others). The non-zero part of this
expectation can thus be split up into cases with sums over either 3, 2 or 1 distinct CS-indices.

For the case with sums over 3 distinct index pairs, the following situations arise:

¢ if i = |, the structure takes the following form, with for example j = kand m = n

N N N
o Y E ([V Vo0 V’Vl-vz} [ngmvmv;nvgnviui]/)
i=1j#i m#i,j

The summation is always over one set of 4 V’s with a common index, and two pairs of 2 V’s with a
common CS-index. Let without loss of generality k = 1 for expositional convenience, such that we
can explicitly unpack the sums over time. Using also CS-independence, we have

N N T T T T
W EL L 1Y VR[] avdvovio])

i=1j#im#i,jt=1s=1g=1r=1

E
S

N N N 1TTTT
IS PE@R) 75 1 1 1 Y E(VirvisvigVin B (vievjs) E (Vg V) = O(T )

i=1j#i m#i,j t=1s=1g=1r=1

Z‘)_\
W
-

because E(||vi||*) < oo for all (i,t) and ¥, YL, 23:1 S E(vjivis) E(Vigvy) = O(T?) by the

finite summability of autocovariances by Ass[I}
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e Ifi # I, then the structure takes the form below, with for examplei = j, I = kand m = n,

N N

([VivioVivio] [ViVaouo, V), Vio]')
i=11i m#i,l

Summations always contain two sets of 3 V’s with a common index, and one set of 2 V’s with
common index (two 3rd moments and one 2nd moment). Setting again k = 1 for expositional

convenience gives that

1 N N N T T T
N3T4 Y2 X Y X Y Y E([vavaviuvisvis] [VigVmgUn Vi)
i=11#im#il t=1s=1g=1r=1
1 N N N 1 T T T T
= 3 ZZ Z IE(UzZ)]E(UIZ)]E(Ui)ﬁ Z Z Z Z tVlS VlsquVlr)IE(quer) = O(T_Z)
i=11#4i m#i,l t=1s=1g=1r=1

because YL YT, Zq YL E(v VaVis ) E(Visvigviy )E(VigVimr) = O(T?) follows from the stationarity
of v;; under Ass[l]

This covers the cases with three distinct indices. For cases with 2 or less distinct CS indices, it is easily
seen given the N~3T~* scaling, E(||vy||®) < co and E(||v;|°) < oo, that the sum of expectations can be
ﬁ%ﬁzﬁﬁj;zﬁﬂwvwwpqu =0y(1) as (N, T) — oo

and given that this is also the leading term in the inequality above (where the other terms can be analyzed

at most of order O(N~1!). Consequently,

with near similar arguments), we have
1Y vio', (T2,
N Y VN ( ’T_m> qum ( 77’13 L v —P 0 (2.86)
i=1

Next, making use of F=F + [ﬁ;,ﬁlm], and substituting it into the second term of the expansion, it is

easily seen that from Ui = UTH,, and ﬁ)_m = VNUTH_,, the two drivers with the slowest decay are

respectively

1N VgL, rat ot 1 [TV
Z\/ﬁ ( > |:Zf:0 — ZFZ,] ((mT)l> V; —P O 1

1:1

from the same arguments as (2.86)), but noting that the rate is faster since also Hf.%o — f;u H = Op(N —1/2) 4
0,(T~1/2) from lemma For the second driver we similarly find

N Zf (V,F()) [Z‘FO Z‘F } (FO;V ) v; — O

because

~t
Lr,

Y (viVIF' @ VIFY)

N V/FO) _t (FO’V H 1
p IR <

=
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where H \/%TZ Y (viVIFY @ VIE) H = Op(T™1) due to |T'F'V;| = O,(T~'/?) and because v; is in-

dependent of (V;, F%), with & YN, /Nv; = O,(1). Rigorously, by using (A ® B)(C® D) = AC® BD

(Abadir and Magnus, 2005} Exercise 10.3) in connection to 2 ® A = aA for a scalar a, we obtain
2)
- / -
1 % lv/FO ® V/FO 1 % lvlFO ® V/FO
=E| tr vV’ f v-V- .
\VNT2 57 j JNT2 =0 i

i 1 N AVZA =\ IR0 1 al IAVA =Y IR0 |
T i:1vivir~ ® VF TN j:1v]-V]-F ® V/F _

N
= 1 L 2 tr (E [(viVIF' ® VIF') (FVju; @ F'V;) ])

1 N
E (H Niie Y vjVIF' @ V/F°
i=1

N T T T
= L L L Yt (E () ol 00 v, v, (6) €]
ZZZZH@M@WMmemmM)

N T T T T
Nﬂzzzzzﬂ@M@mmhwmmem>

= O(T™), (2.87)

t,s,p,r
X 1 % 1 i i i i HIE [V' v, tr(v; v v~v/-)] H = O(Tﬁl)
N 4P=1 = LpYir L tVis¥Vivi - ’

i=1 r=1 =1

since Z&; is independent from the rest of the terms. In conclusion,

AM; Mg,V V0 > Okt

and combining results leads to

p
q[MFofMﬁo],U — 0k><1
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In similar fashion as above, we have given Hi;o = Op(1) that

A vve = \F Z T V) Eh (T V)0, = 0,(T )
also, given ||[T'F'U|| = O,((NT) /)
q —| L iT*lv’F(’i+ T'F"UC T,v;
dp o, vru|| = \/71':1 i FO iUj

1 & ~ ERTETE
< 5 X | viE | 2| [V Erg] [ i e = 0,7
i=1

which could again be sharpened noting that I'; and v; are independent of the other variables and H % YN, Tv; H =

O,(N~1/2). Finally,

HqPFo [T Hfzr/ T 'UFERT 'F"UC Ty,

—1112 — 112 (|~
S e

stHNg@m®u> —0,(NT) )
i=1

because H YN (VT ®T))

= 0,(N~1/2) by Ass andH Therefore,
QPF(),U —>p ka 1
This establishes that both v, Mg) 0 and qp,,, are asymptotically negligible. What remains is

_ = _ —_ / p—
Qo = davve — divre — (davre) +darre

For the final two terms, given that HT* = 0,(N71) + Op((NT)"1/2) and HT”U/UH =0,(N7)

Hmmﬂs§i$ﬁTmeﬂwmwwz@m*®+@w“%
£

faseal < V8| Dirieny| [ 100 0,00

Hence, combining all the results so far yields as (N, T) — oo

- =-1_
VN(B=B)=Q iy, +op(1) (2.88)
where for the leading term we find as (N, T) — oo

_ d
A,vv,e — N (Okx1, Fn) (2.89)
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with ¥, = limy e % Zfil X;Q,X; because IE(QLVV,U) = Okx1 and by cross-section and mutual indepen-
dence of v; and V;

N

Y E

L <V;TVZ) (vv’|vl,v)<v;:j>]
e (e ()]
£[(%)a. (%) o

so that the result in follows from applying a CLT to the leading term in

1 & /Viv; 1 ¥ 1
qa = — = Z . T* /2
qI,VV,v /*N Zzzl ( T > U; /fN 1221 iU + Op( )

Combining then (2.84) and (2.89) into (2-88) gives

Wﬂi’(ql VVv -

Z\H
Mz

I
—_

1

I
M=

Il
—_

zl= Z
1=

Il
—_

1

VN(B - B) -5 N (041, 277,271 (2.90)
as (N, T) — oo, which is the result stated in the theorem.

2.3.2 Analysis of CCEMG
Theorem 6 Under Ass[I}felas (N, T) — oo
- d
VN(B,g = B) = N (0, Q)

mg

Proof of Theorem 6]
Recall the scaled deviation of the CCEMG estimator defined in (2.79) and the decomposition of its com-
ponents given in (2:81) and (Z82). For the analysis of the denominator, Q; = T"'X/MX; = T~ 'X/MgX;

can be decomposed into
_ e Tell =t =~ = A
T~'[V; = UCT;|'Mp[V; = UC T}] = Qui — Qwmiyo,i — Qpmyo, Mol (2.91)

which is an identical decomposition as in the proof of Lemma but focused on the summands for
individual 7 only. Because averaging over i = 1,...,N does not alter the order of the remainder, it is
immediate from the same lemma that Q; = T~ V!V, + 0,(N~1) + 0,(T~!) + O,((NT) /). Because
T-1V/V; = Z; + O,(T1/%), we thus obtain

Qi =L+ 0p(T %)+ 0y(N 1) (2.92)
and hence, because rk(Q;) — rk(Z;) =¥ 0, we come to
Q' =X 1+ 0,(T"V2) +0,(N71). (2.93)
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where we note that Z; is positive definite by Ass/[l]
Next, we analyze the numerator and use its decomposition qa; = qa,vei — qa, vy — A Tei T AT,

Then, letting A = [Mpo — Mzo], we obtain

_ H\/Ntr—lr;(é*)/ﬁ’[mw — M, ]UC
< VN[ri@) | |['y|

|

77U Mg — Mfo]ﬁH = 0,(N"1?), (2.94)

H q[Mp—Mzo) T,

—t
ri(c)

using the fact that HT”ﬁ/[MFo - Mgo]ﬁH = Op(N7') from @:85). Further, with &; = UiBflqy and the
result HT*G/[MFO — M;]U;|| = Op(N71) + O, ((NT)~1/2) from

= [VNT (€)Y U Mp — Mg e,
<VN|

H q[MFU 7Mf0},r€,l’

rj(C')

HT*lﬁ/[MFO - MﬁO]Ui(

B0y = 0912 + 0,12,
(2.95)

Moving on, with V; = U;qy, we also immediately obtain

_ Hx/NT—lvg Mo — Mg, ]TC
<+VN HEJr'yi

H q[Mp—Mzo), Vi ‘

lasll | T UiMe — M[U|| = O)(N"V2) +0,(T772)  (2.96)
using the same argument. To proceed, we let A = Pro. This leads to

|arervi] = [VNTTI(C)UPLUC || < VN [Ty
< m(

—t
HC Vi

H T‘lﬁ,FOf};oT_lFO’ﬁH

_ _ 2]~
r/(c'y HT—lu’FOH Hz;o

Hé*% = 0,(N"/2T71), (2.97)

which comes from the fact that ‘Tflﬁ/FO H = 0,((NT)~1/2) from Lemma Further on,

o]

Ty —t
)'U Ppoe; r/(C')

= HWT*H(
< \/N’

<N )
@y [T O] 2| |7

H T UL T 1,

H qpo Ie,i

=0,(T™), (2.98)

using the facts that HTflﬁ/FOH = Op((NT)"¥2) and ||T~'F"¢|| = O,(T~'/2) from & = U;B; 'q, and
|T'FVU;|| = Op(T~/?) in Lemma Using the latter result again with V; = U;q, gives || T 'V/F|| =

O,(T~1/2), so that in the same fashion,

HQPFO,W _ H\/NT_lVQPFoﬁJr'yi <VN Hé+7fH ”T‘lVfFof;oT_lFO/ﬁH
< WHG*%H HT—lngOH Hi;o HT—lFO’ﬁH = 0,(T) (2.99)
Further, we let A = Ir. Firstly, this leads to
el = |[VNTITAE)TTC | < VN [i€|| [ | 71 T'T| = 0, (v 172,
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because HT‘lﬁ’ﬁH = O,(N1). Also,
lareil = |[VNTITAC') U ri(c'y
< \/ﬁ‘

< \FN\
[ el | Tw;

|0
rj(C')

= 0p(N7V2) +0,(T1/?),

because H T-1U'U;

= 0,(N~1) + Op((NT)~1/2). Eventually, we obtain

vl = [T | < [ v <

la:l |7~ urg]
= 0,(N7V2) +0,(T71/?) (2.100)

using the same argument as for the term above. Summarizing the order results for the 3 different versions

of A, we come to
i = Arves — Apyo,vei T Ay Mol vei T Op(NT2) + 0, (T72) (2.101)

which in combination with HQ:l H = Oy(1) by 2.93) yields

T~ 1T & . . _ _
N Z Qi 1%’ = N Z Qi 1 |:qI,V8,i _ qPFO/‘/s/i + q[MFO—Mf:OLVSIi:| + OP(N 1/2) + OP(T 1/2).
i=1 i=1

Next, consider % Zfil Q;lql,vg,i = ﬁ Zf\il Qi’l\/ﬁVgsi. Clearly, given that by (2.93) (:)lfl is bounded
with a well behaved fixed limit as (N, T) — oo, the order of this term is driven by 37 YN, VNV'e;. For
the latter,

1 N
E (W T_1/2V§ei> = Ofyq (2.102)
i=1

N
= < L E(T'ViV) = 0(1), (2.103)

by the independence of V; and ¢; implies that H ﬁ YN T V2Vl = O, (1), and therefore, by insertion

into the term above (and noting that the normalisation is N —1/27-1)

= 0,(T7?)

nLer
— ) Q. qrve,
N=Z™
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Next up is & N, Q;lq[ — M), Ve,i- Substituting in (2.11) and making use of the same arguments as for
[2:38), but sharpening the approximation (by not expanding O, (N“T~?) terms with a,b > 0) gives

Z|
-
Q)
)

My —Mg],Vei = ZQ WNT- 'Vi[Mp — Mpoe;

N vio', ot (@) 1 &4 VY ot ot (B
-1 - — i -1 T i
o (Ve el (5% ) §E o (Y ek (O

+O0,(N32) +0,(T™") + 0,((NT) 12

Consider the first term of this expansion. Making use of U",, = v NUTH_,, and D = Tﬁ_mf.:g mﬁl,mT’

gives

1Y viol,,\ ot (@) 1 Yo NN VUGN L (Ul

wEeve (Ve (B - e By ()0 (%)

i=

Since HﬁH = 0,(1), _1H = 0p(1) and both matrices have well behaved limits as (N, T) — oo (see
e.g. 3) and Lemma D the asymptotic order is driven by N~ 3/27-2 Z Zjl\il Z,ﬁ\Ll V;Uj]A)Ufcei. As

such, making use of HN -2y N ijl i, V;U]-DUksl- H = O,(1), which is obtained by the exact same

arguments as for (2.43), we have as (N, T) — oo

184 V;UO,m ot (ﬁo_m)’si B 1
N;Qi VN (T> Zuw,, (T =0y (W) (2.104)

Recall that (2.43) was proven under two restrictions which we do not employ here: B; = Band T/N =

O(1). For completeness, we will briefly argue that the arguments used to obtain the orders for (2.43)
also follow through in the current setting. Firstly, concerning B, = B, note that Lemma was de-
rived under heterogeneous slopes, which thus enables its use in preliminary steps. In addition, the v; are
cross-sectionally independent mean zero variables that are also independent from the rest of the model
primitives. Hence, given that the v; also appear in a frequency that is always lower than the number of
v; in any of the expressions leading up to (with indices also shared with v;), the determinant of
the dependence structure remains (v, ¢) as in the previous analysis, and all the employed arguments to
obtain the asymptotic orders therefore follow through in the heterogeneous setting. Second, concerning

T/N = O(1), we note that in the current case the terms are multiplied by an additional N~!/2

scaling
term. Therefore, given that the highest order remainders from the variance calculations leading to (2.43)

took the form O(N®T?), which vanishes when T/N = O(1), the additional scaling by N~!/2 here

i
already brings down the order such that the relative rate restriction is no longer required for the terms to

vanish. In conclusion, the heterogeneity does not alter the order results.

For the second term in the expansion, decomposing it with FO = F0 + [ﬁgﬂﬁo_m] reveals that there are

two leading terms. For the first we obtain from the same reasoning as for (2.104), but noting also that
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HZFO_ZF H = 0, (N~ 1/2 +0, (T_l/z),

ZQ R (vﬁ) ) £ 5 <(U0;)£> 'l _o, (;) +o, (&)

and for the second

V/F° (F%)g; 1
ZQ RF( ) pe —zFu T) 1 || )+op <T3/2) (2.105)
because HQ’lH = 0,(1) and Hf.%o - f;u H = O0,(N712) + 0,(T~/2) imply that the asymptotic order is
driven by
VIFO 0\ ..
(F)'e\ || _ (2.106)
\/»

which follows from E[N~V2T-2YN, VIFO(F%)’e;] = Oyx; by Ass and also by making use of the cross-

section independence of ¢; and V;

() (=] [ £ () ()]

N

es

==
1=

E |V (F) e;e/F(F)'V,

I

2‘ ~

!

=
I

z

g

Il
—_
~.

Il
—_

Il
—_

E [Vi,t(f ) f st€1l(f0)/f9 ;,r]

Il
_
-
I
—
w
I
—_
—
Il
—_
-
Il
—_

I Il

3~ 3~
1= LM
1= [
1= £
1= M-
1= L7

Il
_
-
Il
—_
wn
Il
—_
—
Il
—_
-
Il
—_

1
E(eisei0) E(vievi, )E [()'£(£)'F)] = O <T>

where the final line employs the absolute summability of autocovariances in Ass and the bounded

fourth moments of factors by assumption 2} Hence,

=O0,(N"V2) +0,(T™)

1Y
N.Z%Qi q[Mp—M;o), Ve i
1=

Finally, given the well behaved limit of 2;0, and the fact that the driving terms are identical to (2.105), we

have by the same arguments

N VIE o+ ((F)g; 1
1 i 1 _
qp,vei = N 'E Q; \/N< T )ZFO ( T ) =0, <T> (2.107)

Combining all the results above we come to

mZ

= 0,(N"V2) +0,(T?) (2.108)

£ )0
Ni:l l l
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Therefore,

as (N, T) — oo.
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3 Pairs bootstrap

3.1 The bootstrap resampling matrix W and its properties

Letw; = [w;1,W;», ..., w;N]bealx N Boolean selection vector ([0,0, 1, ...,0]) drawn from a multinomial
distribution with 1 trial and k = N events, with all event probabilities equal to p; = N~1. It can also be

interpreted as Bernoulli random vector, such that it has probability mass function for § € RM:

0;j, wij =1and x;x = 0 forj #k,
pW,' = . .
0, w; is not a unit vector.

Note that this implies that ||w;|| = 1 foralli = 1,..., N and for the scalar elements w;; in this vector,
further using 0, ; := IP* (w;; = 1), we have

E*(w;;) = P* (w;; =1) =N""

P* (w;; =0) =1-N""

Var*(w;;) = N"'(1-N71)

Cov* (w;;, w; ) = —N72 for i#]

Next, gather these vectors in the N x N matrix

(N‘Q’N) = [wi,..., wy] (3.1)

Then, it holds that ||w||? = N (deterministically) and we can also define the important 1 x N vector

N
INW =) w;=[s1,5,...,5N] =s (3.2)
i=1
and additionally the property that
w'w = diag(s) (3.3)

The scalar elements s; of the s vector indicate the frequency with which cross-section i has been resampled
in the bootstrap dataset. The s; give the total resampling counts and hence have the known properties that
follow from the multinomial distribution with N trials and N events. That is, following Chatterjee| (1998)
or Bose and Chatterjee| (2002), the sums are {s; € Ny|s; < N}, such that IP*(s; = x;) = N~! for some non-
random {x; € No|x; < N}, E*(s;) = 1, for all i. Moreover, Var*(s;) = 1 — N~ and Cov*(s;,s;) = —N!
for all i and i # j, respectively. Consequently, E*(s?) = Var*(s;) + (E*(s;))> = 2 — N~!'. Ultimately,
we have P* (Zfil si=N ) = 1, because this is how the support of the multinomial is defined. The
corresponding matrix which permutes a stack of N different 2—rowed matrices according to the cross-
section re-allocation weights given in w is then

( I\\]NaN) = (w®l,) (3.4)
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where ||W,||* = aN since

WW,=(wWaL) (wel,)=Wwal,) =diag(s®1,) (3.5)
1 W Wty = aN

With and (3.2) we can then establish the important relation with the averaging matrix
AW, =N (yoL)(weol)=N1{jwel,)=N1(saIl,),

which illustrates that units making up the CA are weighted according to the CS-counts s, and implies,
when pre-multiplied with an aN x z matrix G that stacks the N cross-section specific, a—rowed matrices

G;
1 & —
AW,G=N1s®1,)G = N Y 5iG;i = Gy. (3.6)
i=1

where we will use a w subscript to denote the dependence on the resampling weights.

Finally, we will repeatedly make use of the key property for multiplication between "whole cross-section’
permutation matrices as in (3.4) when multiplied with matrices repeated over individuals, such as G =

(IN ® G), with G an a x b, matrix that

W,G = GW,. (3.7)
which is easily shown using familiar Kronecker properties

W,G=(w®I,)(IN®G) = (WIy®LG) = (Inw® GI}) = (Iy®G) (W 1,) = GW,

Note that (3.7) implies commutation for WrMg and for instance WrF = EW,,.

Next, we establish the important lemma of the resampling counts
Lemma C-1 (Higher moments of permutation weights)

a) o =E*(s?) =2— N1

b) s =E*(s}) =5+

o) pa=E*(s}) =15+p

d) ps and pe are both O(1)

e) 0< ]E*(slz,sjz.) < oo fori#j

f Vart(s?) =11+¢
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g) E*(si,s;) =1—-N"!
where r, p, q are remainders of order O(N~1).
Proof. a) This simply follows from
wo =Var*(s;)) + E*(s;)* =1-N'41=2-N"1,

using the known expressions of the variance and the mean.

We derive the higher moments of the multinomial random variable s; using the Moment Generating

Function (MGF). The joint MGF of the vector s = (s1, ..., sy) for t € RN in neighbourhood of 0y is given
by

N N
M (t) = (; P*(s; = xi)et") .

The marginal MGF for an arbitrary s; is obtained by setting t = (0, ..., t;, ..., 0), i.e by focusing only on the
i-th coordinate. Using this together with the fact that probability masses are P*(s; = x;) = N~! Vi, we
obtain
N
(1, N Y 1, N1V
The third and the fourth (u3 and y4) moments are obtained by taking the respective derivatives and eval-

uating at t; = 0.

b) We show that for the third moment, the derivative at t; = 0 is:

_ dsMSi(ti)

1 N—1)N‘31€3ti
dt

= [(N—l)(N—Z) <N€ti+N N2

1, N-1\"?22, 1, N-1\"?21,
i i N_l __pli - _ i
> NG + ( ) Ne TN ¢

= (N*~3N+3)N >+ (N—-1)2N"'4+2-N""!
=5+4r

where r is the remainder independent of i and it is of the order O(N~1!). The result is obtained using the

fact that (e’ + %)N =1 for all N. Also, observe that

i=

A2 M. (t; 1 —1\N?2 1 1 1\ N!
i

£=0
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therefore, the third moment can be alternatively represented, ji3 = a 4 p», where a is a finite constant.

¢) We show that for the fourth moment, the derivative at t; = 0 is:

e = W - [(N C (N - 2)(N-3) (Ibeti 4 NI\_,1> o et
+(N—-1)(N-2) (;,eff + NI\—]1> o %e%

+(N—-1)(N-2) (;Ieff + NI;1> o %63“ +(N—1) <11]et" + Nz\_jl)N_z %esz
+(N—-1)(N -2) (I‘beﬁ + NI\_I1> o %@ff

+(N-1) <i] iy NI\_]1>N_2 %ezfz‘ +(N—-1) <111€ti + NI\_[1>N_2 %ezﬂ

= (N* —6N?+ 12N —9) N® 4 (N? = 3N +3) 3N 2+ (N* —= 3N + 3) 2N ?
+(N-=1)4N"145+7
=15+p,

where the result follows, since the last 4 terms in the sum represent y3, which means that the same recur-

sion applies: jiy = a’ + p3. Similarly, p is is the remainder independent of i and it has the order of O(N~1).

d) Because it is enough to demonstrate finiteness of y5 and j, it is sufficient to use the recursion estab-

lished in b) and ¢). In particular, ys = a” + u4, where a” is a finite constant and ji4 is established to be

finite. Thus, also, pe = a’" + us, where a’” is another finite constant and jis is established to be finite.

e) with result c) and the Cauchy-Schwarz inequality, we obtain the following bounds:

0 < E*(sfs7) < \/E*(s}),/B*(s}) < o0 (3.8)

for i # j. This implies that Cov*(s?, SJZ) < 00, as well.

f) Next up, we derive the variance of s?. In particular,
Var*(s?) = E*(s}) —E*(s?)> =154+ O(N 1) =11 +g¢, (3.9)

where ¢ = O(N~!) and is independent of i. Hence, this variance is bounded for all i and N.

g) Lastly, we deduce [E*(s;s;) for i # g. From the covariance formula, we obtain

Heis) = E*(s;s;) = Cov*(s;,5;) +E*(s;)E*(s;) = 1 — N7, (3.10)
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3.2 Preliminary results
Given the bootstrap resampling matrix Wt defined in the previous section, the bootstrap observables are
y'=Wry=[yi’...,ynl (3.11)
X = WX = [X7,..., XY (3.12)
so that the entire bootstrap data matrix Z* = [y*, X*] can in turn be written as
7" =Wrly,X| = WrZ = [ZV,...,Z3) (3.13)
Making use of and reveals that the employed CA of the bootstrap observables are
Z' = ArZ" = ATWrZ = AfWr(FC+U) = FA,W,,C + AtW7U = FC,, + Uy,

with Cy = £ YN, 5,Ciand Uy, = £ YN, 5:U;, or generally that Z* = £ YN 5,Z;, i.e. the bootstrap CA
are a simple reweighting of the original CA. Factors in the bootstrap world can in turn be expressed as

F=(Z' -U,)C, (3.14)

It will be convenient for the analysis that follows to have expressions for the original data orthogonalized

on the bootstrap CA’s (Z"). That is, substituting (3.14) into the DGPs of y;, X;,

— —t
M;.yi = Mg [XiB; + & — U Cyil (3.15)
— —t
M. X; = Mg [V; — U, Co ] (3.16)

— i

coand Pp. = Z(Z°Z )'Z". It is then easily seen that
Cy — C|| = 0, (N"2) and || Uy|| = Op- (N~1/2) (for a fixed T) also Z" asymptotically

because Mf:,i* = Orx(14x) where Mg. = Ir — P

since rk(C) = m,
converges to a reduced rank matrix when m < 14 k and a rotation will need to be employed in the
analysis. To that end, let R, = TH,Dy be the rotation matrix in the pairs bootstrap world, with T
and Dy defined as in Section IZl such that C,yT = [Cy,m, Cw,—m| are the alternatively weighted C,, and
C_,, respectively, and similarly for U, T = [Uy, s, Uy,—m]. The bootstrap transformation matrix Hy, has a

similar, but not identical, form as in (2.2)

ﬁw = [ﬁw,mzﬁw,fm] - Cw,m —Cw’ma,,m (3.17)
0(k+1—m)><m | P
such that the rotated quantities in the bootstrap world become
S0x o S = | T 0
F* =Z'R, = F'Ry, = [FC, + Uy]R, = F* + U, (3.18)

where FU is identical to that in Sectionand U, = UyRy = [@,m,ﬁi,_m] with ﬁ;,m = ﬁw,mé;llm and

ﬁ;/,m = VN Uy — ﬁw,mf;jﬂéw,_m). Similarly, since Ry, is full rank we have analogously to SectionEI
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*/ — i

that Pgy. = Z° Ro(R,Z'Z'R,)'R,Z" =Z"(Z"'Z)Z" = P;. and analyzing Py, is equivalent to analyz-

ing Pg..

Let now Zg. = T~'(F**)'F%* and define also

- )3 0 _
r = F mx (1+k=—m) (3.19)
w,u 0 Z
(14+k—m)xm ul

where £ = T-'F'Fand Z w, =T (Uw _2)'U Uw _m- We then have using familiar steps
Mpo — Mgy, = T 00 E 0. (T0) + T 100 g (F) + T P80, (T)) + T1F° [iﬁo* - [T—l(FO)'FUH (KO’
which given the definitions above corresponds to

N —
MF0 - MﬁO* = T w mZ m(Uw,—m

),+T 1meiF(le m) + T lFZ‘F( wm) +T" ! wmiFF/
+ TR [zﬁo* - sz,M} (O’ (3.20)
Next we establish the following auxiliary lemmas in the bootstrap world.

Lemma C-2 Under Ass[i}B}[pland|6] it follows as (N, T) — oo that

T-'U0, U, = Op (N7) (3.21)
NT U, Uy = 28y, + Op (N"V2) + 0, (T71/?) (3.22)
T 'FU, = 0, ((NT)"'/?) (3.23)
T7'U0,U; = Op (N7Y) 4+ O, (NT)"1/2) (3.24)

Oy zvec(E) 01k

where Ly, = Ly +
wh " ( O 1 0% x k

) and Ly, = Ly in case v; = Oy 1 (homogeneous slopes).

Lemma C-3 Under Ass|1}fe]it follows as (N, T) — oo that
1,0 0 _ 10 0 N
T 1(Uw,m)/Uw,m = OP* (N 1) T 1(Uw,m)/Uw,—m = OP*(N 1/2)
R N - _
T 1F,me = OP*((NT) 1/2) T 1F,Uw,fm = Op*(T 1/2)
10,0, = 0, (N1 710, U, _,, = Oy (N"1/2)
T-Y(U,,,) Ui = Op (N1) + Oy ((NT) "1/2)

TN (Ty, ) Ui = Op (N"V/2) 4 0, (T71/?)

T-1(F*)'T, = O, (N~1/2) T-1(F%)'U; = Oy (N"V/2) + O, (T~ 1/2)
moreover, with & W = Tfl(USUﬁm)’ﬁgkm
Ty, =2y, +0p (NT2) +0p (T2 (3.25)
Ty, = (1/2)El +0,(N"V2) +0, (T2 (3.26)
HZFO* e, || = 0p (N2 + 0, (T71/2) (3.27)
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where E,, , is defined in §19) and T o s stated in Lemma

Proof of Lemmal[C-2]

Defining U, ;; = u;su’ ir— 1 1(j=i)Zu,i, With 1(,) the indicator function that returns 1 when condition 4 inside

Qy,zvec(L;) 01><k> and Qy o, = E(v/®
’ 1

the brackets is true, and zero otherwise, and with X, j,; = Ly ; + <
Or 1 Ok

v’), we can write

N N /
=1 ss]UU 1
T Uwa—ﬁzziT

N

1
== 22‘”” N2T ZZS S [UU L j)TZu,h,i]
i=1j=

i=1j=1
T

ﬁz
1 N N N
:ﬁgs uhz Zizslsjzﬁifj't

1 t=1
X7 S‘Zu,h,i
N i
1

o () 0 (v7)

uh+o (N 3/2)+OP (N 1T 1/2)

which made use of % P 2y — HoZup = 2Ly, +0(1) as N — oo by Ass where 2, = Zy +
<Qv,®vec(2) 01Xk> and y2 =2 — N1 from Lemma C-1, with || Z, ;|| = O(1) and

Okx1 Ok
1 1
Or (NW) O (Nﬁ)

because the independence of s; and u;; implies independence between s; and u; j;, and it follows in turn

from E*(1; ;) = 0 for all , j, t under Ass that [E* {Z -1 Z Yy sisi N uz]t} = 0. Also,

b

t=1

1 LN T 1 NN T !
(I\]ZT E]; Sﬁ]é“i,j,t) (NZT 1_21,:1 Slsr;ulrs>
1 N N N N T T _
~ NAT2 4 ZEZE*(SiSfSZSV)ZZIE (ul]fulrs)
i=1j=1l=1r=1 t=1s=1
_— iiﬂi*(szsz)iiﬁ*@ W) + . iirﬂ*(ssz)iim ()
N4T? i=1j=1 rEa TS NAT? i=1j=1 R e T
1 al * (L4 LJ * [~ ~/
+N4T2 Z]E (SI)ZZIE (Wi ;)
i=1 t=1s=1

because s; has finite moments up to the fourth order from Lemma C-I|and the second equality is obtained
by noting that by Ass[IJ}f|and the cross-section independence of the error terms and slope heterogeneity
E* (ﬁi,j,tﬁ;,r,s) = 0 when at least one of the indices (i, j, I, r) differs from the others or when (j = i,r = 1,1 #

i). This implies then by definition that either (I = i,r = j,i #j), (I =jr=ii# jlor (Il =r=j=1i)
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give non-zero expectation, which are O(N?), O(N?) and O(N) sums respectively. To obtain the last line

we make use of

1 T T o, 1 T o, 1 T T .,
=1 s= = =1s

for all i # j, because E* (ﬁi,]}tﬁ;,j,t> = E* (ui,t]E*(u}’tuj,t)uglt) = O(1) since u;; and u;; are independent

with finite second moments, and the second term follows from ZST# E* (ﬁi,]-,tﬁ;j o) =E*(u;; ZZ# E* (u; Ujs)u; ) =

O(1) by u;; having absolute summable autocovariances. This with H T2y YL B (w4, )

11,8
by E ||u; ||4 < oo from Ass implies

—0(1)

E*(s7s? E* (6,0 :.) = O ( ~5m
N4T21_21]_21 (ZJ)EE ( Lt ”S) N2T
1 N N i ) T T e (e~ 1
N4TZZZ]E (SZS]>ZZIE <u1]tu]zs):O(I\I2T

i=1j=1 t=1s=1
e L E L L F i) =0 ()
N*T? i=1 l t=1s=1 v N3

The second result follows directly from the first
NT™'T, Uy = N [N 7128y + Opr (N™2) 4 0 (NI TV2) | = 28y + 0, (NTV2) + 0, (T772)

Next consider

1

N
T-'¥U0, = NT Z;Si ftu;,i
i=

T
t=1

where given the independence of s; and ASSEI we have E*(NT)'YN, s, YL, fruj;) = 0 and since

E*(uj ;u;;) = 0 (scalar) for i # j

E* (ftuélius,]-f;)

Z| -
™=z
M=
o)
3
\‘U)
3~
1=
1=

E* [T‘ZF’ﬁwﬁ;F} -

Il
—_
~
I
—_
-
Il
—_
v
Il
—_

1 3 * 1 & * / /
= N2 Y E (515) 72 Y ) E (frujusf)
i=1 t=1s=1
1 * 1 &¢ * ' * '
= ﬁ EIE (SZS])ﬁ Z 2 [tr (ut,ius,i)] E (ftfs)

T
o
Il
—_
w
Il
—_

=l
N——— -

I
o
A~

I
—_

SN— ——
Z -~ Z
¥
o
o
—— =

were use was made of Y| E* [tr (ut,i“;,iﬂ E* (fi£)) = O(1) since f; and u;; are stationary with fi-

nite summable autocovariances, and second moments are finite for all variables. Hence, ||T~'F’ UwH =
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Op<((NT) —1/2), Similarly, making use of Lemma and the independence of s; from all other variables

N U'U: "u
71*/ o 1 j 1 1 U
T Uin_NZSj< T >2N51< > ?( )
] i
B 2 0 1 1
l( 101 VT P \V/NT

(H ( )
=or () +or ()

2

because T~'U/U; = B, [001' ng} B, + O,(T"/2) = Op(1) and s; = O(1) for all i and N. This estab-
kx1 i

lishes (3.24).

Proof of Lemmal[C-3|

From Lemma |C-2| we have HTflﬁ;,UwH = Op(N7Y) and ||T'F'Uy| = Op+((NT)~1/2), such that sub-
stituting in the definitions ﬁﬂ, = VNU,THy, ﬁf,, m = UupTHy,, and noting that ||T|| = O,-(1),

|Hol|| = (1) (and therefore also its partitioning) gives

1,50 (/550 = 1 T e = 2 1 = .
T 1<Uw,m>'uw,mH = [ T T OO TH | < (Bl I | 7710, U | = 0, (N7

1550 0 - - e _
T (00) Uy || < VN [Hao | [ Bl ITIP | TT, T | = 0, (N7172)
_ —0 _ e _ = = _
T 1F’Uw,mH _ HT 1F’UwTHw,mH < HT 1F’UwH T |[Hap|| = Ope ((NT)"1/2)
_ —0 _ e _ _—
TIFUY, mH - \/NHT 1F’UwTHw_mH < \/NHT IF'U,

[T [[H ]| = Op (T12)

70,0 H - HT avj UwTmeH < |[Hom T HT 1UwaH =0, (N

T 10Uy, || = VN || T 0, U0 TH, || < VN[BT T 1U | Oo| = 0, (N71/2)
Similarly making use of H T-1U, Op+(N71) + Oy ((NT)~1/2) from lemma |C-2

[T @u] < HTﬁme 700 = 087+ 0 (091

|1 @) v HT = 0, (N"1/2) £ 0, (T71/2)
Next, noting that FO = [F, 0714k, | T 'FUi|| = Op*(T_l/ 2) and making use of the orders in Lemma

C-2

HT*l(fO*)’UwH < HT”(FO)’EUH + VN || TH]| HT*U;,E,,H = 0,-(N"172)

HT—l(iEO*)/UiH < HT_l(FO)/Uz — OP*(N_UZ) +Op*(T_1/2)
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This establishes the first set of results in the lemma. Next, again making use of Ufol,m = VNU,THy,
and substituting in eq.(8.22) of Lemma[C-2|establishes that

< —1,579 =0 =/
Zug,, . T 1(Uw,fm)/Uw,fm = Hw,fm

,— M

T'NT U0, Uy THy,
=H, T (2Zy,) THy,—m + Op (N"V/2) + 0, (T71/2)
=2H' , T'E,; TH_,, + Oy (N"V/2) + 0, (T~1/?)

=2%,0 40, (NT2) + 0, (T2
because Hﬁw,_m — H_mH = Op*(Nfl/z) and where Lo is the (1+k—m)

X
matrix defined in Lemma This establishes (3.25). Given that then rk(f.u
follows that

(1 +k — m) positive definite
) = rk(Eg ) % 0 it also

0
w,—m

ot
Zuow -

,—1m

= (1/2)Z}, +0p(NTV2) 4+ 0, (T2

by Theorem 1 in Karabiyik et al.[(2017). This is (3.26) of the lemma. Next, consider

=0 —0 =0 —0
(Uw,m)/Uw,m (Uw,m)/Uw,fm

~ -~ 1

S0 —Lp, == )
FOx Fuu

T T (Uw,fm)/Uw,m 01+k7m><1+k7m

=0 =0 =0
FU,, +(U,,)F FU, ] 1

<ﬁw,fm>,F 01+k7m><1+k7m

where substituting in the results established in the first part of the lemma results in

Noting then that as in the original setting rk(f?O*) =1+k, and Vk(i]:wlu) = rk(Zg) + rk(f‘.ugu ) =1+k
also as (N, T) — oo under Ass it follows that rk(flf:g*) - rk(fFW) 2% 0. This allows us to invoke
Theorem 1 in Karabiyik et al.|(2017) and obtain

Lo — LF

— Op*(Nfl/Z) + Op*(Tfl/Z)

w,u

ot ot
|26 —Zx,, || = Op (NT2) 4+ 0y (T7172)

which establishes the last statement of the lemma in (3.27).
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3.3 Homogeneous Slopes

In the homogeneous slope setting, we impose v; = 0 so that ; = Band B; = Bforalli =1,...,N. In

addition, recall that this implies that £ 5 = Z in Lemmas|C-2Jand [C-3| The bootstrap CCEP estimator is
B = (XM X*) T XMy (3.28)
with Mz, = (Iy ® Mz, ). Then, making use of y* = Wry and X* = WrX and substituting and
into (3.28) gives
B = (X'Mp.X") " XMz Wry
= (X"Mg.X") " X Mg. Wr [XB+ Fy + ]
= B+ (X"Mg.X") " X' Mg Wr [Fy +é|

such that
VNT(B - B) = Q" '§’ (3.29)
where
A * — 1% *
Q" = (NT)"' XMz X (3.30)
4" = (NT)""/2X"'M;. |WrEy + Wre| (331)

The denominator Q* in the bootstrap world can, by making use of (3.5) and (B-7), be expressed as
Q" = (NT) XM X* = (NT) " 'X'W;Mp. WX = (NT) X' Wi WM. X

= (NT) " "X'diag(s @ t5,)Mz, X
g T) Mg

1

N
= N7 &M X
1=

and in turn substituting in (3.16) gives

Q" = 7 L sXIMEXi = = 3 s Vi — UuC L M. [V, — U C, T
=1 i=1
= QK/IFO - QE(MFO_M]A:O*] (3-32)

where for a given subscript A we define the following decomposition
QA =Qrvy —Qavr — (Qavr)' +Qarr
. 1y
Qavv = N7 ; 5iViAV;

. 1 XN 4
Qiyr = NT Y s ViAU,C,T;
i=1

-~ N AT AT AT
Q IT = 1 Siri<Cw) U,AU,C,T;
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Making use of (3.5), (3.7) and yields with similar operations for the bootstrap numerator

§" = (NT)"/2X'W;: M. Wy [Ev + e} — (NT) V2 X' Wi WrMs. [51 + e}

1 N
:mz XMF*[F71+SZ —\/7251 [ '7+’71qy)+€l]
i=1
1 T =t — =t
N \/ﬁ Z i[Vi = U C, i) M. [&; — Uy CyyTj;qy]
i=1
=41 —dry, — My My (3.33)

where we also made use of 7; = C;B~'q, = (C+1#;)B~!q, = 7 +1,q, under Ass@ and YN, siX[Mg.Fy =
NX' M;. Fy = 01 because X" C Z". For a given subscript A we employ the following decomposition

q\j& = q\z,Ve - qz,Vq - qz,I’s + qz,ﬂl
1 X
qav. = s;ViAg;
qA Ve — \/ﬁ 1221 [ 1
- I G ——"
dare = Zsll"’ )'U, As;
q\;k\,l"q \/7 Zsl UwAUw w’71C1y
3.3.1 Lemmas

Lemma C-4 Under Ass[T{[5|we have as (N, T) — oo such that T,y — T < oo that

v Mgor] " 2VT(d1 +do) + V/Td " (3.34)

where d; = dy = A" = Oy when m = 1+ k, whereasif m <1+ k

N—o0

1N ,
d" = (1/2) lim Ni;zi[ﬁ’ L]D_[07, 01 4] (3.35)

and dy, d are defined in eqs.(2.26)-(2.27) of Lemma[B-3| respectively.

Proof of Lemmal[C-4
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For convenience, we restate here the decomposition of QE‘M 0—Meg. ]
F

~% %

_ ok ok ~x
Ay —Mgo.] — AMpo—Mgo. ], Ve — AMp—Mzo. ], vy — DM —Mgo. ] Te + Mo —Mgo. )7

ok 1 X
q[MFO*MfO*],VS = \/ﬁ 1_21 SiV; [MFO — MfO*]Si

. 1 Y I —
i = g £ 0

QE(MFofM?o*],rs = Z r/ w MFO M/F\O*]el'
o = =t
q[ 0—Mgo. ]I — \/7 2 Si r/ [MFO - M?O*]Uwcwﬂiqy
First up is
N = =t
QFM ~Mzol Iy — Z Uy MFO = Mzpo. JUuwCo 7,9y
=1
T1Y - — it
NN Y s:TH(Cy)' NT U, [Mpo — Mo, |UnCooffiqy
=1

Substituting (3:20) into U, [Mgo — M;..] Uy, gives

15 — e =0 ot 1,50 —
NT'U,,[Mp — M.]U, = NT U, U, _,,Z o, T (U ) U + NT~ 1UwaszT 1T, ) Uu

—m

+NT U, FET- (me)’Uw+T B mef‘.FT '¥u,

+ NT U, B [Zf:o* - ZFW} T-1(F%)'T,

— ~71 —
=NT 0,0, ,Ep T (U, )Ty +Op (N72) + 0, (T71/2)
= 25,TH ,Z}, H,T'Zu + O (NV2) +0,(T71/2) (3.36)

because for the first term in the decomposition we obtain

NT'U,U, L0 T ' (T )Ty = VNT 0,0, L0 VNT LT, _,)T

w,—m

= (4/2)L,TH 2} H', T'Zy+ Oy (N7V2) 4 0,-(T71/?)
— ZZuTH,mZT&mH’_mT/Zu + 0, (N"V2) + 0, (T71/2)

where we have substituted in (3.26) of Lemma (C-3| together with the result obtained from ﬁz)u/,m =
\/NﬁwTﬁw,—m

VNT 'O, U,y = NT'U, UG TH, - = 254 TH - + Op (N71/2) + 0, (T71/2) (3.37)

where use was made NT-1U,, U, = 2%, + Op(N7V2) + 0,+(T71/2) in 322) and Hy—y = H_ +
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Op+(N~1/2). The results of Lemmareveal for the other terms

— 2 |1~
<[t e8] oo
5 o] -0y

==

Substituting in the result above, noting é; =C'+0,(N"V2)and ty,r = T/N = O(1) yields

|70, 0s B T (Uy,,) U

HT U, FERT (T ) UwH < HT U/ FH

_ Z‘Fw'u — Op* (N—3/2) + OP* (N—l T—l/Z)

HT—luwFO* {Zﬁo* —sz’u} T=1(E*) UwH < HT—luwFO*

. [T1 Y —t R —
q[MFo—MiO],TU = NN ;Sl Q(Cw)/NT 1Uw[NIF0 - Mf:o*]UwaT]iqy

|

= 2/7q}, Eyvec ((C')E,TH I}y HL,T'E,CY)+0,(N7/?)
= 2/7q},E}vec ((c*)/zuD,mzuc*) +0,-(N7172) (3.38)

N RV 15+ — —t
Y si(fqy @T;) | vec ((Cw) NT U, [Mp — M@*]Uwa)
i=1

Z\H

where we recall that D_,, = TH_,, X, 'y H T, %, =E(; ®7;) and qxy = (qy ® qx) and use was made

of

1Y _
Sl(”zqy @I+ ”qu) - N Z(”zq/ ®11qu) + O (N 1/2)

Z_

1
N

Mz
Mz

Si (ﬁiqy ®T;) =

Il
—_
-
Il
—_

i

5i(7; ©77;)(qy © qu) + Opr (NV/?)

I
—_

12y Qy + O (N_l/z)

Il
R Z\H
[\12

because the independence between s; and 7, as well as the independence of 7; over i imply that under
ASSEI N ZZ s = Op- (N~1/2) and % Zf\il si(1; ®1;) = mZy + Op*(N_l/z) with y; = E*(s;) = 1 from
Section[3.11

Next, making use of &; = U;B~!q, gives v Moo Te = F YN s F’(C ) U, [Mpo — M;.|U;B1q,,
F F % |7
and with (3.20) follows the decomposition

T7'U,, [Mpo — M. ]U;

= T'0, 0, ,E T U0, ,)'Ui+ T7'U, U, 5T (T5,,)'U;

+ T UL FEL T (TS,,) Ui + T71U0,UY, , Ze T 'F'U

+ 7710 B [2%0* - i}] T-1(F*)'U;

TY(Ts, ) Ui + 0, (N"3/2) + 0, (NITV2) 40, (T3/?) (3.39)

—155/ 750 ot
=T 0, Uy, I w,-m

w,—m
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because substituting in results from lemmas[C-2]and [C-3| gives

T-1U meiFT (me) = Op:(N72) + Op (N32T771/2)

L Lo
<[oue] 55 -

T-10 FZFT (me) ;

N*3/2T*1/2) + op*((NT)*l)

1T, 00, BT

e [ [

710, B {Zﬁo* - ZFW} T‘l(fo*)’UiH < HT—lﬁ;,FO*

= 0p (NT2) + 0p (NT'TV2) + 0, (T73/?)

- ZFWH 7

and we note that

T YTy ) Uil| = O, (N"1) + O, (NT)1/2) (3.40)

ZU —m

HT R U0 S

Hence, making use of (3.39), T/N = O(1) and substituting in (3.26) and (3.37)

— T T -l- - -
\/NT UZUZU[MFU_ FO*] =T lwa w mz‘u0 mT 1/2(Uw m)/U +O (N 1/2)+OP*<T 1/2)

= (2/2)ETH T}y T7V2(Uy, ) Ui+ Op (N7V/2) 4 0pe (T72)
= Z,TH_, X}, H_ WTVNT V20, U; + 0, (N"V2) 4+ 0, (T~ 1/2)
= £,D_,VNT 20, U; + O (N"V/2) + 0, (T~1/?) (3.41)

where as before D_,,, = TH_m):‘Jr H' ,, T'. Then

q\E(MFO—Mf:O*]IFS = ZS l"/ \FT 1/ZUw[NIFO M?O*]UiBilqy
— Zs T/(Ch)EyD_,VNT V20U, UB ' qy + Op (N"V/2) + 0, (T71/2)

Next, with the shorthand D = (C')'Z,D_,, and U, = N~'5;U; + % Z]I-\;i s;U;, the remaining term is

N
— _ 1
fz sTIUUB 'q, = TNT[ ZSZFD “uju)B ! QY+ 57 ZZss]FDUUB qy
i=1 z 1j#i

1 _
o [N Y S2ID[0?, 01| + O (77172
i=1

where the order of the rightmost term on the first line follows from 7y = O(1) and the fact that s; are
independent of U; and have finite fourth moments (Lemma so that their presence does not alter
the order established before in (2.34). Also, T‘lUgUi = Xy +Op (T‘l/ 2) from Ass and by definition
Zu,,‘Bflqy = [07,01x)". Then, substituting in the result leads to

+ Op* (N71/2) + Op*(Tfl/Z)

o~ 2
qrMpo—MfO*]/TS - [ ZS [iD(07, 01
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and noting that &; Y~ | s?2T/D[0?, 0] using E* (s?) = yp = 2 — N~! follows
— Zszl" D[0?,0;.] —" 2I'D[0?,01,1)
by a) of lemma|[C-T|and Ass[T|and [} we come to conclusion that

Gy —¥ 23/TT (C")ZuD (02, 01 k] (3.42)

F0—Mgo.].Te

For the next term, Gy | _np v, Doting that Vi[Mgpo — M;0] Uy = q,Uj[Mpo — M;] Uy, we obtain from
F' F * |7

substituting in (3.41)
VNT 2V|[Mp — Mg |U = T"V2V/Nq,UjU,D’ Ly + Op (N"V/2) + 0, (T7/2)

which yields when inserted into QE‘MFWM?O*]’W that

. 1 N SN 1Y ) 4
UMMy V1 = NT ;sivg[MFo ~ M U Cofiiay = ;si\/ﬁT V2V [Mpo — M;z0.] U0 Cy 7,9y

1 Y — _ N
- ﬁ;si‘lﬁcUﬁUD/mqﬁOp*(N Y2) +0,(T7?)

. —t . .
where we again made use of D = (C )'2,D_,, and obtain using analogous arguments as above

N N
— -1

i=1 i= 1];&1

qy + Op*(T_l/z)

1 ~
= . /TN,Tq;c [N ESZ'ZZu,iD/”i
i=1

= Op (N2 +0,-(T71?)

because the presence of the s; again does not change the arguments for the order of the second term as

obtained before in (2.36) and by independence and Ass@follows

Zl=

N N
= Zl 7Ly, D7 = [;, Y st (@ zu,»’] vec(D') = Op (N7/?)

i=1

Therefore

To analyze the final term, note

-1/2 -1/2
FUfMﬁO*],VnH = Op (NTV2) + 0, (T71/2) (3.43)

)

Ao —Myo Ve = F Es Vi[Mpo — Mgo. ] &; F ZsquU’ Mp — Mg |UB 'qy
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For the middle term, making use of results in Lemma [C-3| yields

0
w,fm)

2ot
< HT‘lUiﬁfu,mH HEFH = O0p(N2) +0p ((NT) ™) + Op- (N3/2T771/2)
= Op (N'T7V2) + 0, (NV/2T )

~1 _ _ —
Z.o0 = O0p(N"H) + Op: (T7) + 0, ((NT)~1/2)

w,—m

2
rue

/Ul

<|

T, L T\ (T

— —0 at1,70
T U0 Zp T (Uy )" Ui

o M e
k] |7 @0 = 0p (N2 4 0y (N ET Y
@y,

U0, 2k T 'FU;

<]

< s

TUFELTH(TY,,) U,
T_lU;/F\O* [2%0* — f‘;w,ui| T—l(iEO*)/UiH < HT—lﬁfﬁo*
= 0, (N"32) + 0, (N"V2T~1) 4 0, (N T71/2) + 0, (T2

~+ ~F
|26 — Zx,

so that we obtain for the decomposition

_ g0 ot _ R
T 1U;[MF0 _M?U*]Ui =T 1U§U2),—mzu?0ﬁmT 1(ﬁ(z)u,—m)lUi+T 1U;U21,mZFT 1(ﬁ(z)u,m)/Ui

+ T WUFERT (UL, ) U + TIUU, , ExT ' F'U;
+ T [Zp — Zp,, | TG,
= TU,, Ry, T (T, ) U;
+0p (NT2) 4 0p (NTV2T ) + O (NTITV2) 4+ 0 (T2)
= (1/2)T’lx/ﬁUQUwTH,meﬂmH’,mT’T’l\/Nﬁ;uUi +0p (NTV2) + 0, (T7/?)

= (1/2)NT'U[U,D_, T U, U; + Op (N~ V/2) 4 0 (T71/2) (3.44)

where the before last line substitutes in (3.26). This also gives, with ﬁg,,_m = VNU,TH_,,, (NT'U/U,) =
Op+(1) by Lemma substituting in (3.26) and using T/N = O(1)

NT 'U}[Mp — Mg.]U;

= NT U, B T (TS5, ) Ui+ 0y (N7V/2) 4 0p (NV2T7Y) 4 0, (T2) 4 0, (NT/2)
= VNT WU, ,Ep  VNT YT, ) Ui+ 0, (N7V/2) 4+ 0, (T2

= (NT”UQﬁw)TH_miL&%HL W T (NT UL U;) + Op (N7V2) 4+ 0, (T~ 1/2)

= (1/2)(NT 'UUy)D_(NT U, U;) + Ops (N~ V/2) 4 0 (T71/2)

= (1/2)N*T7'U[U,D_, T U, U; + O, (N7V/2) 4 0, (T~1/2) (3.45)
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which is Op+(1), and substituting in the result gives

o .
Q[MFO—MfO*},Ve F Z qxszU’ [Mpo — f:o*]UiB qy

= VINT9% [N Y siNT'Uj[Mpo — MfO*]Ui] B lqy
i=1

1 1Y I . _ _ _
= E,FN,Tq; NZsiNZT "W U,D_wT ' (Uw)' Ui | B lqy + Ops (NV2) + 0, (T71/2)
1 N ~1/2 ~1/2
= S VINT ﬁZsiVZU Ut | 4+ O0p (N7V2) 4 0, (T71/2)
| =1
1 [N N 1N 1N ' i '
= SVINT |77 1siVi | g o5Uj | Do | 5y LosiUn | & | +0p (N /2) + 0y (T1/2)
L= j=1 I=1

1
1 1 S8 / / ~1/2 ~1/2
= 5 IN,T | 73 Z Z Z SZ'S]'SZViU]'D_mUISZ' + Op* (N )+ Op* <T ) (3.46)

The leading term in the brackets can be rewritten in similar form using the notation introduced in the

proof of lemma [B-3]
1 N NN
NeE) 21 21 ZZS isjsiViU;D_,Ujg; (3.47)
i=1j
{1 NNN T T / , oo
=d11 NT2 Z Z Z Z Z 5iSjS] [Vi,tﬁj,tﬁz,sﬁi,s + ViV oBEji€is + Vi,th,tﬂﬁl,s€i,s + Vi,th,tﬁﬁ Vl,ssi,s}
i=1j=11=1t=1s=1
14k { NNNT (0-1) (0-1)
+ Z dv,l NT2 Z Z Z Z Z SiSjS1 |:Vz tV] ¢ €ls€is +v; tv]t V;,S,BEi,s]
0=2 i=1j=11=1t=1s=1
14k 1 N NN T T D
+ Y dig N YN N Y ) sisis [vl A RTITR R t,BVlg szs}
=2 i=1j=11=1t=1s=1

=1 =1
1+k 1+k 1 NN N T (0-1). (5-1)
+ ZZ Z dvg NT2 Z Z Z Z Z SI'S]'SIVi,th,t Vis Eigs (3.48)
V=28=
Consider then that we can write the second term in the first set of brackets as
N NNTTT

NT2 ZZ Z ZSS]SlVl tvlsﬁ‘S] t€is
i=1j t=1s=

—1]=

[Sy

SiSjSI(Vi,tVf,s - 1(1:1')Zi,t,s)ﬁ(€j,t€i,s - 1(] z)szts)

1=
=
1=
1=
1~

1
L1 sBUILs + NT2

Il
3~ 1
=z |
1= |
rj'ﬂ

i=1t=1s=1 i=1j=1l=1t=1s=1
1 N T T N N N T T
= N7z o o S TinsBliss + 5omm 202 2L ) Y sisisiViiBer;
i=1t=1s=1 i=1j=11=1t=1s=1

_ / _ ts __ / ts __ :
where L5 = E(visv;,), 0irs = E(eieis), Vi = vigv) o — 13— Eis and ej = €j€is — L(j=i)Tis Given

that s;ss, Vfls and ef-’; are mutually independent for all 7,1, ¢t,s

1 NNN T T y 1 NNN T T N
s
E W;Z_ L L SzS]SlV ﬁe :NiTi L L ZZIE SS]SI V )ﬁ]E( >—0k><1
=1j=11=1t=1s=1 i=1j=11=1t=1s=1



and similarly, the independence of s;s;s;ssx5, and these weights having finite sixth moments by d) of

Lemma [C-T|implies

(S opop o) SR E) | L8 op spwp poR MR CVEN

m=1n=10=1r=1g9=1

:;T:;NNNNN ,
VY YN Y Y E (sssisusase) E VBBV E (el

by the exact same arguments as those for (2.40) in the proof of Lemma|[B-3] This leads to

1 N N N T T ; ; 1 1
Eep— :Sq V,'s .'? = * — * —_—
NT2 Z Z Z 5i8jS1 il ﬂez,] OP <m> + OP (\/T)
1 1

i=1j=11=1t=1s=1
1 N N N T T N T 1 1
NT2 2 Z 2 2 E 5iSjS1Vi, fvl S:B‘C'] t€is = N 11215 =~ 1;5; LitsP0its + Op* <\/N> + Op* <\/T>
= Oy

i=1j=11=1t=1s=1
1 1
+0p | —=
4 (VN) P <ﬁ>

= O(1) for all i due to ¢;, v;; having absolute summable autocovari-

o (g5) o ()

and therefore

~

. 1T T
since || T~ Y1 Xs—1 ZitsBOits

ances. The same arguments yield also

T T
T2 ZZ ZZ SJslVltVls UEilsgjlt

i=1j=11
Next, for combinations such as v; 1V tﬁsl s€is we can write as before with V = v; tV]t 1(j—yZ; and
ei,l = &is€ls — 1(1 1)0-12
2y

1
NT? :

[\12

N T
YY1 Y sisviavybenseis =
. j

j=11=1t=1s=1 i=

1=

N NN T T
T NT2 > 2.2 ) Y sismViBe

i=1j=1l=1t=1s=1

I
—_
—_

. . e t s
where again by independence of s;s;s;, V; ; and ¢},

E

N NNT T
220 ). Y sisisiViiBei| = Oka
~ j

j=1l=1t=1s=1

and the independence of the s;’s together with them having finite sixth moments implies that by the exact

same arguments as for (2.41) in the proof of Lemma

T T !
sVl [ £ £ 5 E F onovian

m=1n=10=1r=1g=1

T T

A Y Y Y Y YL Y Y E (ssmsss) E (VBB VL) E (¢ieh)

1

—_
Il
—
—.
Il
A
—
Il
—_
3
Il
—_
3
Il
—_
f=}
Il

66



z

N T T
1 - —
NI 5555 1Z;Sisjslvi’tv;'tﬂgl'sei's B NZ1 STZiBo7 + Op (N7V/2) + 0, (T71/?)

i=1j=1l= 5= —

Then, from & YN | $2Z;80% =P pslimy_ye0 o Loy Zif0? as N — oo, where 3 = E*(s}) = 5+ O(N})
by b) in Lemma [C-1} follows the conclusion

Z‘ "
™=z
™=z
™=z
1=
MH

Il
—_
«
Il

72 SiSjSIVi V) BEl oEis —P'5 hm — ZZ Bo?

t 1

Il
—_
~.

Il
—_
-

Il
=

and by the same reasoning also

‘ -

1=
1=
1=
1=
MH

2 s]slv,tvj(t )slss,s—> 51520N22q7,1

z
0

Il
—_
I
w
Il

I

Il
—_

t=1s=1

j
Finally, the independence of the s;, s, s; from the other variables, with ]E(s?) < o0, allows us to use the

same arguments as for [2.42) in the proof of Lemma[B-3|and get

1 N N N T T o 1
1 N NN T T / / . 1
W lZ;]Z; lg;’ ; 5';1 SZS]Slvlrth,fﬁﬁ vl,Sgl,S - p" <\/T>

5~
™=z
™=z
™=z
1=
M’ﬂ

_.
I
—
-
Il
—_
—
Il
—_
-
Il
—
wn
Il
—

(v=1)_1
SiSiSIVitV, Vz,s,Bffi,s

1
— 0, [ —
(7

‘ -

(&-1)

/
Sisjslvi,tvj,tﬁvl,S Eis

Z

3

1=
™=
1=
1=
1=

N
Il
—_
-
Il
_
—
I
—
-
I
—
wn
Il
—_

‘ .

(0-1) (g=1)
S]SZV1 tV] ¢ Vli Eis

Z

i)

™=z
™=z
™z
1=
MH

— 0, <1> (3.49)

I
—
-
I
—_
—
Il
_
-
Il
—_
Il
—_

S

Combining then all these results in gives



and subsequently

1+k
si85/ViU;D_,Uje; —7" 5d1 Jim —ZZ,BU +5Zdv1 lim —ZZ Qo107

=

1 N
NTE o

i=1j

M=
Mz

Il
=
—~
Il
—

= 51\1,1m EZ (B, LtID_p[07,015)

so that from insertion into (3.46) follows

q\)[kM 1, Ve —V \F hm ZZ‘ ,B Ik —m[a}zzolxk]/

1:0*

=27 lim —ZZ (B, I]D_u[0?, 01 k)

N—oo N
. - . 2 !
+(1/2)V7 lim ; (B, 1D 02, 01.4], (3.51)

where we will use the second term to formulate the bias as in that of Lemma [C-4 Combining then (3.38),

1[?.42'0, (B.43|) and 1|3.51|D into q[MFo—Mgo*] = quFo—MﬁJ*],Vﬁ — q[MFo—M§0*],Vi7 — q[MFO_Mf:O*]/rS + q[MFo—M§0*],rl7’
and recalling from their definitions in (2.26)-(2.27) of Lemma [B-3] that

d; = q},Z;vec ((C+)’ZuD_mZuC+)

d> = lim — Ez [B,Ii]D_ (02,01 xk) — T'(CHYELD_u[0?,01i)

N—oco N

we come to the conclusion that

q\EFMFo—Mf:o*] — 2V/7(d; + dp) + V/Td "

with dF = (1/2) imy e o Lovq Zi[B, Ie]D_m[0?, 01k]', as needed to be shown.

It remains to show that d; = d» = d* = 0 when m = 1 + k. To see this, note first that by Lemma

T-YZ"YZ = C, T 'FFC, + C,T 'FU, + T 'U,FC, + T 'U, U,
7/ _ — _ _
= C,T 'FFCy + Oy (N1 + 0, ((NT)"1/?)

and also rk(T-Y(Z")'Z") — rk(C,, T-'F'FC,) = 0 implies that Theorem 1 in Karabiyik et al. (2017)
can dlrectly be apphed to yield H (Z'YZ")t - (C, T-F'FC,) +H = Op+(N71) + O, ((NT)"1/2) and
H H = 1), thereby foregoing the need for a rotation. Hence, since if m = 1+ k we get us-
ing the earlier def1n1t1on that Ry, = Cw1 such that Mpo = Mf and Mg, = It — Z Rw(R/ Z"'Z'R )*R;UZ* ,
but that by the properties of the generalized inverse Mg = Iy — F(F'F)'F = Iy — FCw(C T-F FCw)Jrf/ F

Mge, and Mg. = Mg., the components of which are all well behaved, equation ( can be simplified
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and analyzed as

!
w

Mp — Mg, = T 'U(T"Y(Z")Z")'U,, + T 'U(T " Y(Z")Z")'C,,F + T"'FC, (T Y(Z")'Z")'T
+ T 'FC,[(T"YZ"YZ")t - (C, T 'FFC,)"|C,F (3.52)
Then, substituting in this decomposition yields

1 _
. ],1"17H < VINT sti(q/ﬂ;@r;)
i=1

= 0, (N"1) + 0, (NT)2)

42 et _
e it s

because by application of the results in lemmanwe now obtain

7 17 17 * /
[ 0L - | < [T (= chu\”w
— FU — F'F—~
ol FRe ( ) ) —(c; Frc)

*

Next up are q Mo~ Mqo. ] Te

and QE‘MFFM?O*WW Making use of &; = UiB'q,, V; = Uiqy and T/N = O(1)

x 1 Y —t 1=/ _
‘q[MFo—M?O*],l‘s < \/TN,TN 251‘ IT:| HCw NHT 1Uw[MF0 —M?O*]Ui HB 1CIyH
i=1
= 0p (N1 + 0 ((NT)"1/2)
st 1 N 1=/ + ~
’ vy Mo L vy || S VINT Y Y sillaxlIN HT 0, [Mp — M. JU|| | C,, ‘ 7|
i=1

=0, (N1 + 0, ((NT)"1/?)
since from (3.52) and lemma|C-2]follows

HT 10, [Mpo — MFO*]UZ-H

NG t = =k \ T
_ U Uw z )'Z U, U; U U |||/ (Z)Z c
- T T T T €
=y \ T T T7T N

L [|F G G (Z")Z U, U; 4Gl FU|||((Z)Z') (o FFe " Py,

T v T T v T T wor T T
= 0p(N72) + Op (N32T71/2)

Finally, for QE‘M o~ M. Ve WE find
F F*I

_ 1 _ _ _ _
’ vel| < ,FN,TNZSinXHNHT U/ [Mgpo — Mg, U ’B 1qu = 0, (N1 4+ 0, (T2

i=1
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from T/N = O(1) and

HT*lug[MFO — Mz |U;

vyl | (@yz\'| || @)z e [FY
=T T T T v T
o 1
_ FU;||? || ((Z)Z L, FF_ \'
el T2 ) (EFE) - ()

= 0p (N2) +0p (N'T1/2) 4.0, (N7
Hence, by combining results we have whenm =1+kas (N,T) — oo

p*
M, —Mgo] Ok 1

which translates to d; = d; = d™ = 04,1 in eq.(3.34) of the lemma, as needed to be shown.
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Lemma C-5 Under Ass[IHblwe have

as (N, T) — oo

= O, (T~1/2) (3.53)

Proof of Lemmal[C-5

The proof of this lemma is nearly identical to that of lemma [B-4l That is, since g% = q5 —q; —
p y qPFO qPFO ,VE qPFO ,V?]

~ ~ . ot i .
Gpq,re + Ap,, 1y, and noting that Ppo = FOZp T 1FY and FO = [F, 071, 4_], rewriting the last term gives

q\ik’Fo,l"ry ZS r/ /U PFOUwai]qu

> et =t 177 gos! 1507 -1
stl a7, © T)) {Cw®Cw} vec (NT U, F°S T 1F Uw) =0, (T

i=1

(3.54)

because the independence of s; from the other variables and E*(s;) = O(1) implies H N Ly si(qy; @ 1)
Op+(1) from AssEIand |T7'F"Uy || = Op+ ((NT)~1/2) from Lemma-ylelds

_ ~ _ 2~
HNT‘lU;UFO):;oT_lFO/Uw gNHT—lFO/UwH Hz:;o =0, (T

For the next two terms, using also HT”FO’ UZ-H = Op*(Tfl/ 2) from Lemma and V; = Ujqy, & =
U;B~1q, follows

|[VNT 1O, FER T 1F | < VN |70, |25 | 7 | =o0p )
|VNT 1T, R T TP 28| |7 O (T
such that
o 1 & =t 177 gosst 150 ~1/2
are]| < VIR LIl €| [VNT 1O FERT 'FVs | = 0, (T71/2) (3.55)
‘ H VT4 Z||sl|| HT WS VNT- 1F°’UwH HC H 170 |ay|| = Oy (T7/2) (3.56)

Next, by the independence of s; and mutual independence in Ass[5| with expectation zero error terms in

Ass[I]

Mz

E* (q;po,Vt?) )'E*(Ppo)E* (&;) = Ogsy
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and also, since V; and ¢; are independent over i with E* (SZZ) < 00

N

N
Y E(sis)E* (VPR E (ei¢)) PV
i=1j=1

* =k ~% 1

E (qPFO,Ve)(qPFg,Ve NT

b %E*(SZ)E* (ViPpE* (g;€])PpoV;)
NT * i it F 1<{)*F 1
L
NT

N
Y E*(s2)E" (V;FOZFOT*FO’JE*(eisg)FOZFoT*FO’Vi)

i=1
1 XN T r I . orat 0w et 0
T NT? LEGHY Y)Y LE (Vi,tft IZpofsE (€i 58, ) fy Zpofyv lq)
i=1 t=1s=1r=14=1
1 ¢ SRS * ot 040
— W Z Z Z E Vi,tft ZFO Z Z (Tlsrf ZFqu lq
i=1 t=1g=1 s=1r=

%O(Nﬂ) o} <;>

by the stationarity of f;, €;, v;; and their mutual independence. This implies that

= 0, (T2 (3.57)

’ ‘ qPFO Ve

Combining (3.54), (3.55), (3.56) and (3.57) then leads to the conclusion

~ ~ ~ ~ ~ -1/2
[are| = [arre] + [@ros] + [aror] + [aror | = 00 (771

which is what needed to be shown.
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Lemma C-6 Under Ass[i}b|as (N, T) — oo such that TN,y — T < o,

4i = qive +2VT(b1 —b2) +0,(1) (3.58)
G 55 N (0p1, 2%) +2¢/T(by — by) (3.59)

with qy . = F YN 5iV'e; and by, by and ¥ defined in lemma

Proof of Lemmal[C-6
Recall that

B s o s
d1 = qrve — drvy — 9dire T 4Ly

For the last term in this decomposition we find from

_ 18 . . e _
Sz(’iz‘qy ®T;) = N Esi(’iz‘qy ® (C+ ﬂi)qX) =E"(s;)E (’11' ® ’7;‘)(‘1y ® qx) + Op*(N 1/2)
i=1
— Z”qu + Op*(N_l/z)

1
N :

I

by the independence of s; from the other variables, E*(s;) = 1 and Ass[] together with substituting in
(22) from Lemma|C-2land C,, = Ct + O, (N~1/2) that

/

ok 1Y —t 5+t == =t
diry = \/7 Z s;T ’U Uwa;qu/ VINT N E{ si(7,qy ®T;) | vec ((Cw)/NT 1UwaCw>
— 2/7q), Zjvec ((c*)’zuc’f) + 0, (N7V2) 4+ 0,-(T71/2) (3.60)

Next, making use of &; = UiB_lqy and Uy, = N~1(s;U; + Z}\;i S]'U]'),

71— S
sTH(C,) Ule; = ,FNTZS T/(C,)' T 'U, e

~%
dire = 7=

1
VNT ;
v IN,T

S2T}(CL) (T 'UIU)B gy | + T

1=

ZZS 5;T}(Cy)'UMUB ' qy
NTI 1j#i

el g &

1

—t _
$TT1(Co)'[07, 01k’ | +Op (T71/2)

L=

= VIN,T [

Z|

i
where the order of the rightmost term on the second line equals that of (2.34) due to the independence
of s;,s; from the other variables, and we used T~ 'U/U;B~!q, = [07,01.]' + Op-(T~1/2). It thus follows
under Ass/l}3and given that E*(s?) =2+ O(N 1) that

?lf,re _>p* zﬁr/(CJr),[O—Z/ 01><k]/ (3.61)
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For Q}"VU, making use of V; = U;q, and substituting in the same results as above leads to
qi ! % siV/U,C' 7 q
qLv = ivViYw'- 1,9y
7] NT = i i

s;(T~'UiU;)C wa

z| =
'MZ

I
—_

= TN,Tq;c [

qQy + IN T, [ZZS s;(T-'UMU)Cotr; | qy
i=1j#i

1

—t - _
SiZu,icwﬂi qQy + OP* (T 1/2)

z|=
™=

I
—

= V/IN,T9% [

1
!/

vec(é;) + 0, (T71/?)

—_

Mz

Sl(ﬁi ® Z‘u,i)

[ey

= TN,Tq;cy N
+

= Oy (N"V2) + 0,-(T1/?) (3.62)

because +; YN 7= Op+(N~1/2) by AssEl and the independence from the s; (with the latter having finite
variance) implies that their presence will not change this order.

Finally, recalling that

. 1 ¥
qik,Vs = \/ﬁ ZSiV;Si
i=1

we have H?ﬁk Ve H = Op+(1), and it follows under Ass and the independence of the s; with respect to V;

and &; that E*(qj ,) = Ox1. The cross-section independence of V; and ¢; with E*(s?) = 2+ O(N™!) in
lemma[C-T|leads to

Var* (qiy.) = E NT E ;sisjVQsis;-Vj NT 2 Y E*(sis))E* (VIE* (e;€)) V)

1 N
= e Y E(E (VI () V)

N
= L YR (viv,) ro(N Y

with Q; = E(¢;¢}). Hence, given that all 4th order moments are finite and {s;v;;&;;} are stationary and

cross-section independent we have by a CLT for independent heterogeneous variables as (N, T) — co

~x 1 al ar
dive = m 1:21 Sivgei — N (0k><1/211,) (363)
with ¥ as defined in Lemma Combining (3.60)-(3.63) in the decomposition of q; then gives
~x dF
q — N (0k><1; ZT) + 2\5(]31 — b2)

with by and b, as defined in Lemma This is what needed to be shown.
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Lemma C-7 Under Ass[IHbwe have that

Q* _>p* Y (364)
(Q") ! —F ! (3.65)
as (N, T) — o0
Proof of Lemmal[C-7]
Recall that

1 N / A * A * A *
= N7 Z;SiXiMf:*Xi =Q — QPFo - Q[MFO_MIA:O*]
1=
which for a given matrix A was decomposed as Q*A = QZ,VV - (:)Z,Vr - (QZ,VF)/ + (:)Z,rr with

~ 1
Qrvy = NT Zs VAV,

~ 1 — —t
Qavr = o= ZSiV{AUwC T;
NT = 1 w

~ 1 XN
Qarr = o )_Si /(C )'U., AUwC T;
NT =

For the analysis, recall from Lemma[C-2|that HT U, UwH = )and || T 'F"Uy|| = Op- ((NT)~1/2)

and note that (3.36) implies HT U, [Mpo — Mgo. UwH =0y (N~ ) Given also that H YN s (F' ®T})
Op+(1) by Assf3|and the independence of s; and T;, we have

Q;HH < Z1l,isi(r;<§_@r;) Hé;HZHTﬂﬁ;JUw — 0, (N1
=
Qe < ;]isl'(r;@gr;) < ’ ‘T*lﬁ;}FOWiFO — 0, ((NT)™ )
=
Qivto oyt | < i (T} T)) ‘GZUHZHTJﬁ;U[MFo ~ M U, = Op (N7)

Next, the fact that V; = U;q, and using also ’ T"
T'FVU;|| = Op-(T~1/2) of Lemma.reveal that

= O, (N~ + Op- ((NT)~1/2) from Lemma [C-2

., 1Y _
QI,VFH < N Zsz‘ gl HT

—t _ _
LI = 0y (V1) + 0, (NT) V)

Qi < Lol 75 HZF° [ro| [ fim = o (v
Qpyorv]| < 3y il P - =0, (1)
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For the next result, equations (3.39) and (3.40) imply

| 7710, Mp — Mg U | = 05 (N71) 4 Oy ((NT) 7172

so that in turn

~, 1 ¥ 1=t —1 _ _
Qoo < Losi sl [ 71T Mo — Mg U | | o il = 0pr (N71) 0 (NT) 72
1=

Next, from two lines above eq.(3.44)

T-UMp — Mg JU; = TIUT, 20 T7H(T,, ,)'U;

m

+ 0y (NT2) + 0, (NTV2T™) + 0, (NTITV2) + 0,0 (T73/2)

which using H T-1 (U?u,—m)/Ui

= Op+(N7Y2) + Op+(T~1/?) from Lemma|C-3{leads to

ot
X0

w,—m

2
v -] < [t o

+ 0y (NT2) + 0y (NTV2T™) + 0, (NTITV2) + 0, (T73/2)
= Op (N1 + 0, (T1) + Op: ((NT) ) (3.66)

Substituting this result into QE‘MFO Mg, VY gives

=0 (N 4+ 0, (T1) 4+ 0, (NT)1/?)

A * 1 N 2 —
|yt | = 5 Losi el | T Ui M — Mo U
i=1

For the last remaining term it follows from Ass and the independence between s; and V; that

. 1Y Vi, 1Y -
QI,VV:NgSi( sz> :N;Sizi‘FOp*(T 12)
1= 1=

Combining then all the previous results into Q* = Qf — Q;,[FU - QE‘ makes

Mo —Mzox]
A 1 al 1/2 1
Q" = NZSI'ZZ‘-FOP*(T_ /2) 4+ 0p (N7

i=1

Then, given that from [E*(s;) = 1 and Ass]]|

1Y — .
N Y siZi —F E*(s)E* (%) = &
i=1

it follows that
Q" —rx

as in eq.(3.64) of the lemma. As X is positive definite by Ass the previous result implies that rk(Q*) —
rk(Z) “3 0, which by application of Theorem 1 in [Karabiyik et al., (2017) then leads to eq.(3.65) of the

lemma. This finishes the proof.
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3.3.2 Theorems and Corollaries

Theorem 2 Under Ass[I}B|we have as (N, T) — oo such that T/N = Tyt — T < oo that
VNT(B" = B) 5 N (0, Z¥E 1) 4+ 72 (b —d — d)

where b = by — by and d = dy + dy are given in Lemmas andand d* is defined in Lemma If in
addition either T = 0 or m = 1 + k then

~% ~

P*[VNT(B —B) < x] = P[VNT(B— B) < 2| —"0,

sup
xeRkx1

where inequalities are to be interpreted coordinate wise.
Proof of Theorem 2| Consider that from (2.22) and (3.29) we have

VNT(B" - B) = (Q")'§"
VNT(B' ) ~VNT(B~ )= (@) 'a' ~Q '
VNT(B = B) = (@) '[a —al+ (@) - (Q) g (3.67)

and using further the definitions in (2.24) and (8.33) we can write, specifically with g = qrve — qrvy —

-~ ~ % ek % ~% %
qure +qiry and G = qyy, — qrv,; — dire T qiry that

VNT(B — B) = (Q*) 'quve + [K* — K] +[(Q) ' - (Q) g (3.68)

with qrve = qjy, — qive and we have defined k = (Q*)—l[ql,r,, — vy — qure — qpy, — q[MFO_M?O]],

and similarly for the starred bootstrap world equivalent k* = <Q*>_1[Qik,ri7 —Aiyy — dire — dp, —

qFMFU *Mﬁo*]]'

Recall then that by definition qyyv. = ﬁ YN, Vie; and qfy, = ﬁ YN, siVie; and therefore we can

write

_ . 1
aLve = qrve — qLVe = \/ﬁ Z;(Si —1)Vig;

Here, Ass and the mutual independence of s;, V; and &; implies E[qyv:] = Oxx1. We have also by the
cross-section independence of V; and &; under Ass[l| that
N

¥ [~ * [~ ~ 1 al * * *
Var'(Quve) = B [Quvedrve] = 17 Z%Z%]E [(si =1)(s; = 1)]E [VﬂE (SiS})Vj}
i=1j=

E*[(s; — 1)°JIE" [VIE" (ei¢]) V]

2~ 3|~
>~] H
™M=

M=

N
I
—_

E* [V:QZVZ] + O(N_l)
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where the final line uses E*(s;) = 1 and E*(s?) = 2 — N~! from Lemma such that E*[(s; — 1)?] =
E*(s?) —2E*(s;) + 1 = 1 — N~1. Hence, by a CLT for independent but heterogeneous stationary variables
as (N, T) — oo

~ d*
arve — N (01, ¥) (3.69)

with ¥ defined in Theorem (I} Therefore, since by Lemma E7| we have (Q*)"! —#" 71, the leading
term in is the one that drives the asymptotic distribution

(Q") 'quve > N (0, ZIFE) (3.70)

Next up, since Lemma shows that also Q! —? ' we have [(Q*) 1 — Q1] —"" 0Op. As
Lemmas [B-3} [B-4and [B-5/imply ||q|| = O,(1), it follows for the last term in as (N, T) — oo that

(@) —Q7'g —" 04 (3.71)

o~ o~

Consider next [k* — k|. Lemmas @ and results 2.53), 2.54), (2-56) in the proof of Lemma

give

k —" V7= (b —d)

whereas from lemmas|[C-4} [C-5, [C-7]and (3.60), (3.61), (8.62) in the proof of Lemma [B-5we get

k' —? 272 (b —d) — 7= 'd*
Hence, it follows that
k*—k] —" VT2 ' (b—d—d") (3.72)

such that combining (3.70), (3.71) and (3.72) into returns

VNT(B' — B) 55 N (041, Z¥E) + VT2 (b —d — d¥) (3.73)

which is the reported distribution in the theorem.
For the final statement of the theorem we make use of the fact that provided m = 1 + k we have by lemma
mthat d = dj + dy = 04« in the original sample, and similarly d = 01, d" = 0k in the bootstrap

world by lemma Therefore, it follows under the additional condition that m = 1 + k from the same

arguments as above

VNT(B = B) 5 N (01, Z¥Z 1) + T2 b (3.74)
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From this result and Theorem (when m = 1 + k) directly follows thatif m =14k

~

P'[VNT(B' - B) < x] - PVNT(B— p) < 2| —"0,

sup
xeRkx1

where the inequalities are to be interpreted coordinate wise. The statement holds similarly when T/N —
T = 0, without the requirement that m = 1 + k, since the distributions in (3.73)) and Theorem are then

unbiased.
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Corollary 2 Let Ass Hand EI hold. Letting B: be the CCEP estimator in the bootstrap world with Pg. =

Vil vl

Y*(X X )Y*/, we have as (N, T) — oo such that T/N — T < oo that
VNT (B, — B) == N0, E¥E ) + /727 'g
with g defined in Corollary[T} By consequence,

sup
xeRkx1

P*[VNT(B, — B,) < 2] —~ PIVNT(B, — B) < x]| —"0,
where inequalities are to be interpreted coordinate wise.

Proof of Corollary [2| As in the proof of Corollary |1, we can study the CCEP estimator with y* ex-
cluded for the estimation of the factors by replacing in all expressions Z*, Uy, C, with respectively Y*, Vo
and T,,. Hence, F = (X' — V,,)T,, and Pr. = X (X'X")*X"'. The associated rotation matrix is then
Ry = TxHyx Dy x with Ty and Dy 4 as defined in Corollarywith Ty Tx = [Topm Tw,—m] and V, Ty =
(Vwm, Vio,—m], and

o TonTum
0(k—m)xm I —m

with also Hﬁx,w — H, H = Op+(N ~1/2) and H, was defined in Corollary

e y
Hx,w = [HX,ZU,M/ Hx,w,—m] =

(3.75)

Replacing then in addition also everywhere in the analysis of Theorem Ry, T, Hyy, Hwith Ry o, Tx, Hx o, Hx

allows us to analyze the CCEP estimator Bx in the pairs bootstrap world, with for completeness now

FO* = [FTy + V|Ryw = O + V), (3.76)

where F = [F, 07, (t_,] and Vo = [Vg,,m,vg,,_m],with Vﬁ,m = Vw,mf;llm and va,_m = VNV, THyw m =

VNVeom — VeomTgmLu-m).

Denote now the scaled deviation of the CCEP estimator in the pairs bootstrap
VNT(B, — B) = (Q})'a; (3.77)

where the breakdown of Q;“( and qj is identical to that outlined in (3.32) and (3.33), but we will use an
additional x subscript to make explicit that in this breakdown Z", Uy, C,, are replaced with X", Vy, Ty
and the rotated matrices have also been redefined as above. For the analysis, since X C Z', V,, C Uy,

and T, C C,, the asymptotic orders derived in Lemmas [C-2} [C-3 (C-4} |C-5| |C-6] [C-7| for Z", U,,, C,, are

upper bounds for the analysis with X", V4, Ty, here (i.e. the terms here converge at a rate at least as fast or

faster). Hence, it follows directly from Lemmas|C-5and [C-7]
Q) ' —r ! (3.78)

|

=0, (T71/?) (3.79)

=%
qX,PFO
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~% /'\ ~% ~%

[Mpo—Mzo.] 9, Mpo—M;o. ], Ve [MFO Mo Vi qx,[MFO—Mﬁo*],l"e T qx,[MFo—Mﬁ()*],l“r]’
we have directly from (3.43) in Lemma [C-4]

Also, employing the same arguments as for (3.38) but replacing Uy, Cy, T, Hy, with respectively Vi, Ty, Tx

For the analysis of q

D (Mo Mo,V H =0y (N7V2) + 0 (T71?) (3.80)

and H, ,, reveals
s (M0 Moo, = 2v/7q}, Zyoec((I") EDy wET") + O (N7V2) + 0, (T 1/?) (3.81)

with Dy, = TXHX,,m(H;,_mT;ETXHx,,m)*H;,_mT;. The latter follows since replacing U, with V,
yields in eq.(3.37) that \/NT_lva?U,,m = 25T Hy, i + Op: (N71/2) + O, (T~1/2) because also replacing
ﬁz)u/,m with V?U,,m = VNV, TxHy _, in the proof eq.(3.26) of Lemma [C-3|results in

Tro = (1/2)(H,_, T.ETyHy u)' + 0, (N7V/2) 40, (T71/2) (3.82)

ZU —m

Next, we have for q; [Myo—Mgo. ]I by substituting in the same results as in the proof for QE‘MFerO*]/rS in

2) of Lemma |C-4] defining also Dy = (f+)’ZDX,_m and noting V,, = N~ 1(s;V; + Z}L s;V;) that

q\;[ M~ MFO* ZS 1“/ MFo M’F\O*]Si
1Y . —
= S st (TL)'ZDy _VNT V2V, i + O, (N~ 1/2) + 0, (T1/?)
i=1

1 ¥ _ _
ZSZFD i) + NZ§sisjr;va;si +O0p (NTV2) + 0, (T71/?)
=1j#i

= VIN,T [
= /INT [ ZSZFD “WVie) | +0p (NTV2) + 0, (T7V?)
Op (N~ 1/2)+Op*(T 1/2) (3.83)

where on the fourth line we made use of V; = U;qy, & = UiBflqy and the independence of s;, s; from
the other variables (with their 4th moments being finite) to substitute in the order derived in (2.34) for
the rightmost term on line three, and the fifth line makes use of T~ 'Vig; = O, (T"1/2). Next up is

~

q: A5 Mo~ Mg. Ve Given the relation between U; and V;, we obtain the same result as (3.46) but where U;

and U are replaced with Vi,V and D_,, = Dyx_, so that with d’zj,g denoting row v and column g of

Dx,—m

1 N NN - B
= VINT ?ZZZS S1IViV, Dy Vig; | + Op (N"V2) + 0, (T71/2)
i=1j=11=1
ko k 1 N NN T T ©)(2)
v | 5 N {33 s 1o L v e | + 0, () 0
v=1g¢=1 i=1j=11=1 t=1s=1
= O0p (N7V2) + 0, (T71?) (3.84)



where on the last line of the proof of Lemma [C-4 was substituted in. Combining then (3.80), (3.81),
(3.83) and in the definition of ﬁ;[MFOfM?O*] gives

M- My, 7 2V/Td (3.85)
where we recall from Corollarythat dyx = qu):’ vec((I'")EDy _,,EIT).
Consider next

A1 = Gr,ve — Gxrvy — dxrre T Axnry

As before, the fact that X’ ¢ Z*,T, C Cy, Vi C Uy implies that the orders derived in Lemma are
upper bounds for the analysis with Z" replaced by X', so that it follows directly from (3.62) of the proof
of Lemma

Then, for the last term in this decomposition

vy | = Op (NTV/2) +0p (T7172) (3.86)

/

N
ok =t i o =t
driry = Zs /(T )V le"waqy = N Z (1;9y ®@T;) | vec <(Fw)’ NT 1vwvwrw)
i=1
= 2ﬁqu>:;,vec ((r*)/zr*) +0p (NTV2) + 0, (T71/?) (3.87)

where we have substituted (3.22) of Lemma into NT-'V, V,, = ¢.(NT'U, Uy)qx = 2q.Zuqx +
Op (N7V2) + Ops (T7V/2) = 25 + Oy (N7V/2) + Op+ (T71/2). Next,

Qi,l,rs = \/7 Zsz V w& = V/IN,T ZSZF/ TV, wEi

N N
TN, T [ 2521"' T Vi) | +nr [NT Yo ) osi s]l"/ o) Viei
i=1j#i

=0, (T1/?) (3.88)

since given the independence of s;, s; from the other variables and V; = Ujqy, & = U;B!q, the rightmost
term on the second line is O, (T~!/2) by the same arguments as for in the proof of Lemma and
for the left term we have used T~'V/g; = O, (T~1/2). Then, since q ; v, = qj ., the result in eq.(3.63) of
the proof for Lemma [C-6| directly applies and we can combine it together with (3.86), (3.87) and (3.88) in

the decomposition of gy to conclude thatas (N, T) — co
Qx1 = Qive +2VTbx +0p(1) (3.89)
which implies in turn

Qi -5 N (0px1, 2F) +21/Tby (3.90)
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with by = q;y):.:ivec((l“*)’}:.l’*).

Consider then the following expansion of Bi around Bx

<~ B = (0071 — gx + [(Q) ' - O
= (Q5) aLrve — Guorve) + [K; — k] + [(Q1) 7! — 05 1]
(Q) G ve + [k — k] + [(Q5) 7! — 05 Y] dx (3.91)

I
o)
X ¥

N
a1

~ s ~
where Q51 ve = [A5 1 ve — dx1,ve] and

Ex = (Qi)il[q&I,ﬂy - QX,I,Vr] - q\x,l,l"s - q\x,I’Fo - QX,[MF()*M?O]] _>P* \ﬁzilg (392)
ki = (Qi)fl[@,l,rq — A rvy ~ Gxrre — Axpyy q\;[MFO—M?O*]] —" 2y/TL g (3.93)

with g = by —dx = q;yZ;vec((I’Jr)’ X(I; — Dy_»Z)I"). The latter results follow from substituting into
both expressions (Q%)~! —#" £~ obtained in together with 2.66), 2.72), 2.73), (2.74) and
obtained in Corollary [1] on the first line, and (3.79), (3.85), (3.86), (3.87) and on the second line.
Combining (3.92)-(3.93) then gives

~

[k; — k] —" VTE'g (3.94)

For the last term in (3.91) we know from (2.65) and (2.78) of Corollarythat Q! —?xr'and llax|| =
Oy (1), respectively. Hence, with (3.78) this results in

[(Q3) ! = QM dx — 0kt (3.95)

For the first term in (3.91) note that qyy v = (G ve — dx1ve] = [ ye — qLve] = 4y because we have by
definition that ’o];’;LVE = ’q\fvg and qx1,ve = qrve. Hence, the result in (3.69) of TheoremEldirectly applies
and we obtain again making use of (3.78) that

(0) " quve 5 N (0pq, Z7¥ET) (3.96)

Finally, combining (3.94), (3.95) and (3.96) into (3.91) leads to the conclusion that

VNT(B, — By) -5 N (0t Z¥E 1) + 727 g

as was to be shown. This result, together with that of Corollary([T} directly implies

~

P*[VNT(B, - B,) < x] - P[VNT(B,— B) < ]| —"0,

sup
xeRkx1

where the inequalities are to be interpreted coordinate wise.
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Theorem 3 Under Ass|1|5|strengthened with E(||v;||®) < oo we haveas (N, T) — cosuch that T/N — T < co
that A* —V" \/TA, where A* = E*(v/NT(B — B)) and A = £~ (b — d — d*). If in addition ASSEI holds,
then A —P" \/TAx, with A} = E*(vVNT(B, — B,)) and A; = £ 'g.

Proof of Theorem [3

We begin the proof by verifying that the bootstrap sequences { H VNT(B - B) H } and { H VN T(Bi -B) }
are uniformly integrable. To that end, we follow the approach of Gongalves and Katffo| (2015) (proof of

SRS
Theorem 3.2) and demonstrate that E* <H\/ NT(B —PB) H > = O, (1) in probability for some § > 0,

which is a sufficient condition for uniform integrability. Uniform integrability of the sequences then en-
ables Theorem 25.12 in |Billingsley| (1995), which in combination with Theorem 2| and Corollary [2| then

establishes the respective statements of the theorem.

To demonstrate integrability, we set § = 1 and recall the following expansion from the proof of Theorem

VNT(B — B) = (Q")'arve + [k* —k] + [(Q) ' - (@) ']4.

By the Cauchy-Schwarz inequality, ||x 4+ y|[|2 < (||x|| + ly|)* Vx, y € RF and (x + y)? < 2(x% + 12) Vx, v,

we obtain the following upper bound:
- (Hm@ _ g)HZ) _ g <H<Q*>—1ql,vg +R K4 [(@9) 7 - @)—1]611{2)

< ([J@) tae] + | & - R+ (@)1 - @] )
< 2B ( (0) 1quve ) 4 2F° (Hu?* ~K+ Q) - @-Wauz)
<2 (@) ) 2 ([ & - + 1@ - @ a )
<2 [ (J@ )] "< e <Hﬁwew‘*)}”
+4]E*(H[ i >+4]E*<H (@)~ (Q) 4 H2>
<2 [ (@) )] [ (rawer)]
vae (w0 vl (J@ - @ )] e ()]

(3.97)

where we shall now examine boundedness term by term. Clearly, using the arguments from the proof of

Theoremin combination with || x +y||2 < (||Ix]| + [[y])* Vx,y € R¥and (x +y)? < 2(x2 + 12) Vx,y, we
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obtain
e ([ - 8") =& (e o a—a o]
< E* <{Hﬁzl(b —d- d*)H + Hr||]2>
<2||veE b —d—a")| + 28 () = 0, (1), (3.98)

where the residual is [[r]|> = Op+(N~1) 4+ O, (T™') in probability by 2.53), 254), 256), (3.60), (3-61),
[3.62). Therefore the second term above vanishes as (N, T) — oo, while the first term is bounded. Further,

using the definition of the Frobenius norm yields

N N N N
= G DL L YV E (5= 15— D(s = 1) (se— DefViVigeViVie) . (399)

Note that because E* (Vgs]-) = 0 for all 7, j, the expression above is non-zero only wheni = j =1 =k
or if there are at least two pairs of identical indices (e.g. i = j and | = k). Therefore, we further examine

these two cases. To begin with, when i = j = | = k, we have
1 N * 4 1 !/ / /!
oz LE (5= 1)'eViVieeViVie,)
i=1

1 N T T T T
= e L (6 1) L L LB (sl v) B (eiseicsy)
1= t=1s=1r=1 :

which follows from independence of the bootstrap weights and model primitives. This implies that

1 X
‘NZTZ Z]E <(Si - 1)4£;Vz’V§£iS§V1’V§Si)
i=1

1 N T T T T
< sup (JE (epeciseireiy)|) X B (5= D*) X 5o UL 1 10 1 B (vhviavlvig)|

it,sr,p i=1t=1s=1r=1p=1

* * 4 T 1 DR * / /
= sup (|E* (eis€iseis€ip)|) X E ((Sz‘ —-1) ) “\N) N3 ZZ Yo Y ET (Vievisvivip)|

it,s,r,p

= Op+(1),

because T/N = O(1) under our assumptions, E* ((s; — 1)*) € R, and it is homogeneous across i and,

finally,
T T T T
> 2 2 Y B (Vigvisvi vip) | = Op (T%), (3.100)
t=1s=1r=1p=1

because 4th moments are finite and we do not have any pairs in (3.100) with a common time index. Letting

say t — oo, this implies that the dependence of v;; with the other members of the product dies out (due
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to stationarity) for any given combination of the other indices s, 7, p. Hence, the sum of expectations over
one of the indices dies out and is summable as T — oo, which implies the stated order. The next case

occurs when there are two pairs of common indices, say i = j and | = k with i # [. Here, we obtain

(Si — 1)2(5]- — 1)2g§ViV§sis}VjV}s]->

Z
)\]
1=
M™M=
o)
/N

1 NN T T
= N2T2 2 ) E((si—1*(s YY) Y E ( VitVisVj, rVJP) E” (ei4€is8)rep)
i=1j=1 t=1s=1r=1p=1
1 NN T T T T
= o7z YN E* ((si—1)%(s Y YN Y #r[Cov* (vig,vis)] X tr [Cov* (v, v)p)]
i=1j=1 t=1s=1r=1p=1
x Cov* (i, €i5) X Cov* (gj,,€j,) ,
which implies that
N N
‘NZTZ 21 ZlJE* ( —1)%[ViVieie]V;Vie;)
i=1j=
< sup (E* ((s; — —1)%)) x sup (|Cov* (e;4,€i5)|) x sup (|Cov* (e;r,€;,)])
i it,s jirp
NNTTT T
NZTZ ZZZZZZ’ r[Cov™ (Vi Vis) ‘X‘tr [COU (V]f'V]P)H
i=1j=1t=1s=1r=1p=1
= sup (E* ((s; — 1)*(s; — 1))) x sup (|Cov* (e;1,;5)|) x sup (|Cov* (g1, €j,)|)
i,j its iy
1 N N 1 T T 1 T T
L L (FE L wien i) < (31 5 oo (s
i=1j=1 t=1s=1 r=1p=1

because of the absolute summability of the covariances and the fact that the sum over individuals is

O(N?). This implies that overall

E* (||qw8||4) —0,-(1) (3.101)
in probability.
Next, we evaluate E* (||q||*). Here, we use the same convenient decomposition q = qr — qp,, — q[M,o - Myo]
and their respective sub-decompositions (recall section 2.2) to write:

q=qiveta;+rn
where a; = —qyre + qiry — (q[MFO—Mf:OLVs — AM,o M) Te + q[MFO_MﬁOW) collects all the terms that lead

to bias, and 1 = —qvy; — ql’po + q[MFO MgV contains all the vanishing terms. Combining (2.37), (2.56)

86



and Lemmaimplies 11 = Op(N"1/2) + 0,(T~'/2). In addition, from 2.30), (2.35), (2.44), 2:53) and
259) follows a; = /T(b — d) + O,(N~1/2) + O,(T~1/2). Hence, we can write

QZQI,V8+31+1‘1qu,vg+ﬁ(b—d)+r

where r = O,(N~1/2) + 0, (T~1/2).
Therefore, using [|[x +y||2 < (||Ix]| + [lyl|)* Vx,y € R¥and (x +y)? < 2(x2 4 ?) Vx, y iteratively, we obtain

B (Jal) = & (s Ve -+ )
< | ([l + Ve - @)+ )]
2
< (21l + 2w - )+ of?)]

<E* [4)uvel* + 4] Ve - d) + 1]
:4]E*(||q1,v8\|)+41E*(Hfb 4)+1)

<4E ([lguvell’) +4E° [(<Hﬁ<b — )]+ ||r||)2>2]

< 4E" ([[auye]*) +16E" ([[v/r(b—a)[*) +26E" (]lr]*)
= 0,:(1), (3.102)

since E*([|qr,ve||*) = Op+(1) by the same logic as that used to obtain (.101), IE* <H\E(b —d) H4> =0(1)

because T = O(1) and b, d are fixed finite vectors, and ||r||* = op(1) dueto [|[r]| = O,(N~V2)+0,(T1/2).
~ 4 ~

Further, we verify that E* (H (Q*)~! H ) = Op+(1). We will verify this using Q*, because the result for

the inverse is implied by the continuous mapping theorem. We begin by recalling the decomposition

~

* 1 = O Q; Q;
Q" = 7 L sXiMe X = Qf = Qi = Qv

where HQ}EFU + QFMFU_Mf()*] ‘ = O0p(N71) + 0y (T71) + Op ((NT)~1/2) in probability was established

before in the proof of Lemma [C-7} Therefore, we obtain

B (1)) = B <Héi‘ (-9, ~ Q) H4)

<= (([Jos
== ((

-0, — Qi ]DZ)
0, — Oy ZD )
)

4
Mo ) : (3.103)

HQI

-

4
~ |14
= 4E* (HQ?

~ ~
_QPFO - Q FO M-, 0]

) + 4F* <H—Qi‘3w —Qim,,
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. . 4
Here, |Qp  + QE‘MFFM@*} ’ = Op(N™*) + Op(T*) 4+ Op-((NT)~2), while the first term is bounded

due to the decomposition Qf = vav - Qf,vr - (var)/ + Qf,rrr where ‘ var + (Qik,vr)/ + Qik,rrH
= Op(N71) + O, ((NT)~1/2) in probability (see the proof of Lemma @) Next, following the same
steps as in (3.103)), we obtain

E* (HQ? '

where boundedness stems from the first term. In particular, using definition of the Frobenius norm, we

e (Joil!) = ([ (4o (2 28 (F))])

[ 1 NN
* /
=E" | |tr NZTZZZSS]VVVV

) < 4E* (HQT,VVH4> + 4E* (H@fvr +(Qfyr) + QT,FFHAL) = Op-(1),

get

r 2
=[E* <N2T2 Z SiS; Z Z ViV VsV, s)] . (3.104)

Now, observe that to show boundedness in probability, it is sufficient to work with the sums inside the
trace operator, because explicitly accounting for the trace produces sums over some index o = 1,...,k,
where k is fixed, and therefore such sums are O(1). Therefore, by squaring the terms inside the trace, we

obtain

* / / / /
‘]E (Vi,tVi,th,st,sVI,er,rVk,ka,p) H

AN
=k
]
qu
M=
™=z
™=z
Ragls
1=
1=

Eﬂ

= op* (1) (3.105)

in probability, by the strengthened assumption that IE(||v;||®) < co. Therefore, combining the results in
(3.103) - (3.105), we conclude that E*(||Q*||*) = Op+(1) in probability and thus E* (| Q") 714 = Op(1)

by the continuous mapping theorem.

. . 4
To finish, we note that [E* (H Q)1 —(Q)! H > = 0, (1) in probability, because

@) = @7 = 0p (N +0p (1773
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in probability. Ultimately, plugging all results back into (3.97) gives
p Y- Y, plugging g
o~ 12
E* <H\/NT(,B —ﬂ)H ) = 0,-(1) (3.106)

in probability, as was required. This establishes the uniform integrability of { H vN T(ﬁ* — E)‘

}, and in
combination with Theorem 25.12 of [Billingsley]| (1995) and Theorem @ proves the first statement of this
theorem. To show uniform integrability of {H VNT (Bi - Bx) }, we impose ASSH in stead of ASSEI and
similarly obtain, starting from of Corollary@

e (VT3 - B

~ ~

2> -F (H@U‘la;[,w + [k — I +[(03) " = (Q0) ]

2) —0,(1)

which follows from the same steps and arguments as above. This integrability result combined with

Corollary 2 proves the second statement of the theorem.
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3.4 Heterogeneous Slopes

We consider here the heterogeneous slope DGP where ; is characterized by Asslé|such that g; = B +
v; and it is understood that also the cross-section averages Uy, Cy, represent the heterogeneous slope
variants. Note that all the results in Section[3.2)are derived under Ass[6|and hence apply here as well. The

bootstrap CCE estimators are in this setting

% 1 N ’ ! 1 N / 5 1 N / -1 /
B =\~7 gxi M Xi | NT gxi Miyi B = 21 (Xi'Me.X7)  X'Mg.y;
1= 1= 1=
Given thaty* = [y7,...,yy]' = Wry and X* = [X{,...,X})]' = WrX it is equivalent to write the above
more explicitly as

= (el R B = 1 s (XMp.X)
ﬂ = | == SiX{MlA:*Xi — SiX{Mlg*yi, ‘B = —= Si X{M?*Xi B X/'Mlg*yi
NT = NT = " N&F : :
Here, we obtain from substituting in (3.15) and B, = B + v; for the scaled deviation of the Mean Group

CCE estimator in the bootstrap world

VNB, — B) = ZSZQ* Ya;,+4d]= Zs vit ZSZQ* g (3.107)

and in turn, for the scaled deviation of the CCEP estimator in the bootstrap, making use of (3.15), v; =
CB;'q, =y +7qyand I, singf:*ﬁwé;’y = NY*,Mf*ﬁwé;'y = 01, because X € Z°,
N

—1
—
VN(B - B) = (NT ZSzX-Msz) Z Mg. [Xiv; + & — UpCoif;qy]

=1
=Q" [ +9q;, (3.108)

where in (3.107) and (3.108) we have defined

e 1Y . XIMg.X;
Q :NZSiQi’ Q; :%

E—
s 1 N . q* \/NX:M@ [81' _Uwa'Yi]

Making use of (3.16), Mg = My and Mg = Mg — [Mpo — Mg, let the following be the familiar decom-

position at the individual level

Q; = T XMz X;

1

= =t _ = —t = —t
;) — TV, = UuC,Ti] [Mp — Mgo.] [V — Uy C, T

= Qo — Qv Mool (3.109)

I
3
<
|
=
S
o
g
s
<
3
<
|
-
g
n
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where for a stated subscript A, we obtain the breakdown
Qi = Qavvi — Qavri — (Qavrs) + Qarr,
Qi v =T 'ViAV;
Qi vri = T-'V/AU,C,T;
Qi rr; = T7'TH(C,) T, AT C, T,
and where barred variants with an omitted i subscript denote averages over i as éz,vv = % YN QZ,VV,i‘

Next, for the individual-specific numerators

~ — 7 =T 7 =T %k % %

= VNT ' [V; = U C,. T} Mg [ — U] = @1 — Gp o, — i, Meo. (3.110)

with for a given subscript A the decomposition

Aai = AAvei — dAvyi — darei T AT,

dave = VNT 'ViAg;

A~k — ¥ ~T

qA,V’y,i = \/NT 1V§AUwa7i

. At =t v

qA,Fe,i = \/NT 1F;(CW)IU;)A81'

ok B L

qA,T’y,i = \/NT 1r;(Cw)IUwAUwa7i
where barred terms will similarly be defined as q} ;. = & YN q v¢;- Finally, q;, features only in (3.108)

so we can directly define the averaged term

1 & XiMg.X; 1 Y — N
= s; v, = s;/[V; — U,C.,I;'Mz. [V, — U,C, I;lv;
Z ! \/NT; l[ 1 w = z] F[ 1 w1 1] i
— ﬁi‘,v ~dp0 ~ AMy My, o (3.111)

with, given a matrix A,
AQro = AAvve — ﬁf& vio — (@avre) T darre
Tavve = \f ZS,V AV,v;
. 1 J—
davre = 7\F ZSiViAUwarivi
Qarre = Z sT/(Ch) U, AT, C. Tv;
3.4.1 CCEP with the Pairs bootstrap

Theorem 5 Under Assli{6] with in addition E(||vy||®) < oo and E(||v;]|®) < oo, we have as (N, T) — oo

VNB — B) 5 N (01, 27,271
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with ¥, defined in Theorem [, and under the same conditions

P VN~ B) < x| ~P[VN(B-B) <x]| —0,

sup
x€Rkx1

where inequalities are to be interpreted coordinate-wise.

Proof of Theorem[5l
Recall the decomposition of the scaled deviation of the CCEP estimator in (3.108))

VNGB -p)=Q" (@ +q)
Note that here by definition 6* = Q* so that the decomposition of 6* is the same as that for Q* analyzed
in Lemma save that U, C, contain the heterogeneous slopes. Given that Lemmas and
have been derived allowing for the slope heterogeneity characterized by Asslf the asymptotic orders
derived in Lemma|C-7]apply directly to the heterogeneous slope setting and we have from the exact same

arguments as in that proof
Q! —ryx! (3.112)
Similarly, since heterogeneity does not impact the orders derived in Lemmas and [C-3] (only the

limit statements are affected, as noted in the lemma) and we have by definition q; = \}’q\;‘,ql,

%q;FO’quFO*MﬁO*] = \%T q*MFO—Mf:O*} (so that we have scaled up by VN rather than v N ), the results
from Lemmas [C-4} (C-6| (C-5| that ||q;| = Op(1),]|q = Op(T712), ||qly. | = Op*(l), imply
F
that ||qy|| = 0, (1), ||qp. || = 0p* (1), quFero*} = 0p+(1). Hence, ||q*|| = 0p+(1) and we have
* 1y
VNB —B)=Q" q; +op(1) (3.113)

Consider then the decomposition of q, defined in (3.111). We start with terms containing the deviations
A = [Mgpo — Mgy, |. First up is,

qE(MFO—Mf:O*],rF,U = \FT ZS rl w),U [MFO MﬁO*]UwC zUz

si(vilh @ Th)
Z

_>p 0k><1

—t g — —t
vec ((cw)’\/NT 10, Mo — M§O*]UIUCZU>

because HEZ’H = O, (1) and inserting (3:20) in U,,[Mpo — Mz,.]Uy, gives

T, [Mp — Mz, ]Ty = T 10,0y, Ew T (T ) Ta

w,—m

+ 7710, Ug 25T (Ug ) U

+ T UL FERT (U, ,,) Uy + T-'U, Uy, Ze T 'F U,

+ T [Ep — B, | T(E)'T,

=0, (N1 (3.114)
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which follows because by Lemmas|C-2]and

T, Uy g, T (U ) Ua| < | T70L0G |2y, || = 00 (N7T)
70,0 2T LTS, ) UwH<HT 10,0 me HZFH— A(N72)
T U, FE T (TS, ,) UwH < HT g’ FH H):F w), UwH = O, (T"1/2N3/2)
-0, F [i%o* —):FWJ T-1(E)U,| < HT*luwFO* Hzﬁo* ~ %, ( = 0, (N"¥2) 4+ 0, (N"'T1/2)

and also, the independence of s; of the other variables, Ass@ and |§| (the mean zero and independence of
v;) implies

N

1
||N 3 s (T e )

= O, (N"1/2)
i=1

Next, the exact same arguments as for (3.39) and (3.40) in the proof of Lemma[C-4|can be applied to obtain
from V; = U;qx

H\/NT_lvg[MFo - Mﬁo*]ﬁwH =

so that

Op(N72) + 0, (T71/?)

N

Z MFO -

E—
Mg, |Uy C Tiv;
=

— VARO* ]/Vr/l’

VAN

N
— —t
N 3 sl |[VNT 1 ViiMpo — Mo [0 || Ca | T 1]
= 0y (N2 4 0y (T172)

For the final term of this kind

Z

1 e
qE(MFO—MiO*],VV,v = \/NT Z%SiVQ[MFO - M?O*]V'vi - ﬁ 21 NT 1V;[MFO - M?O*]V‘vl
i= —
_>p* 0k><1

ments as for (3.44) gives

To obtain this result, note that by substituting ( into q[M oMo, VV,0 and following the same argu-

N
N Y VNT's;Vi{[Mpo — Mzo.] Viv;

N V/U R UO/ V V/FO* N T0x\/\7.
sz ( 2 m>2390_7n( Son V) urs 3V £h - g5, (LY
i=1
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where it should be noted that the expansion is sharpened by not approximating terms that are O, ( VNTH)

!

for A > 0. Making use of ﬁ?u,—m — +/NU,, THy, ,,, and defining D,, = Tﬁw,—mi:g CHy, T = 0p:(1)

the first term in the expansion can be rewritten as

150 =0/
T o\t (U Vi N N N VU ~ (ULV,
wE s (Yo (B 3 B F e (V) 0o ()

i=1j=1k=

()

Letting next &\%’ ¢ denote the element on row v and column g of Dy, and with U ;

—07
V’ ~ [8) Vi
E \/‘ ( w, m> Z;:?Uﬁm < w, Tm l) v;

denoting column [ of U;,

we obtain

14k 14k N N N viul?\ [y,
J k !
<L L ek L (U7 ) ()
g= i=1j=1k=1
where, given fixed and finite k, |d? ‘ol = Op-(1) and U; = [e; + V(B + v;), V], further unpacking reveals

that the term with the highest degree of dependence, and hence the driver of the asymptotic order, is

N N N A VA
HNWZZZZSIS]S"( > ]k< T )Ui'

i=1j=1k=1
when v = ¢ = 1. Note that the expectation of this term is zero unless i = j = k by cross-section

independence, and in the case with equal indices we obtain given finite moments that

e [ () ()] -0l )

Also, by the cross-section independence, and independence of V; and v; for all 7, j

1=

)

i=1j

N N N
3% B s

k=11=1m=

/
]E*{ (V:V]U]U;<V;(V1Uz - 1(i:]':k)Ai> (V;vamv;V%Vlv, — 1(1:m:n)Al) }
@)

-o(z)+o(x)

since, as argued for the analysis in the original dataset, the cross-section independence of v; implies that

T
I
A

X

the expectation is zero for each part of the sums for which a single cross-section index differs from the
others. This means that the expectation is zero when more than 3 distinct indices appear. That is, in
(i,7,k,1,m,n) at least 3 pairs of indices need to be equal, and therefore the nonzero part of this sum of
expectations runs over at most 3 distinct summation operands. In the case of three operands, the expec-
tations exists either of sums over 4 V; with the same index and 2 pairs of 2 V’s with a common index, or

summations over 2 sets of 3 V’s with a common index and one pair of 2 with a common index. In each
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case, unpacking terms over time reveals that the corresponding sum of expectations is of order O(T~?2)
due to the stationarity of the v;; and its finite moments up to the fourth order. For the segments of the
summation with two or less operands, we have given that E(||vi||®) < co and E(||v;]|°) < oo that they
Wﬂil Z]'Z\il YN, sisjsngVjvjvf(V,QViviH = 0,:(1) as

(N, T) — oo. Since this is also the leading term in the inequality above, we conclude that

are at most of order O(N~!). Consequently,

N ViU, ) « oy _V;
NV ( T m) L, ( a0 = 0 (3.115)
i=1

T —0 =0
Next, substituting F** = F° + (U, mr Uy, ) into the second term of the expansion, we obtain for the two

leading terms with the slowest decay
T =0
~t ~t u.,_VV; .
= E‘/ 5; ( :;f) m) [Z?O* _ ZFW} <(me)l) v; —P" Oy

VIFO\ 1ot of FO)'V; .
~ E \/751 < > [Zfso* — Zqu,u:| <(,1)_,1> U; —F O x1

where the first result follows from the same arguments as (3.115) (but noting that the rate is faster since
HZFO* 2; H = Op+(N7Y/2) + Op+(T~1/?) from lemma|C-3, while for the second we used | T~ V/F°|| =
»(T~1/2) and the fact that v; is independent of the other terms with \/7 YN, v; = O,(1). That is, in the
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bootstrap world,

2
Y siv)VIF' @ ViF

“ (et

- I -
* 1 al IAVZA =) /0 0 110
=E (tr <\/NT2 Jg S]U]V]F ® V]F \/» ” ZSZU V F & V F

N .
— E* (tr (x/%ﬁ Zsiv§V§F0®V§FO> ( Zs]v V’F0®V/F°) )
L i=1 _
1 Al * IAVZA w0 /50 07 \
= WZ;Z;U‘ (E* [(sisjviVIF' @ VIF’) (F'Vjv; @ F'V;)])
i=1j=
N
_ ﬁ Y tr (E* [(s20/V/E® © VIFY) (F'Vi0; © FV,)])
i=1
1 al * [o2,./x7/p0R0/ 100/
= WZ” (E* [siv;VIF'F"Vv; ® VIF'FV])
i=1
1 ARNIGNEgRE 0Y/¢0.2 / / 0/ ¢0
= NTi Z%; Z; Z:l Z;u( [ (f)) fJs7v] iVitVi Ui ®Vi,pVi,r(fp) f’D
i=1t=1s=1p=1r=
lNTTTT*O/OO/O * ol )
=tr| Z;; Z; Z:l Z;IE [ (ff) £ (£,)'£; ] E*[s7]E* [,V 0iv; V] v;]
i=1t=1s=1p=1r=

1
N4

(i
i=

=O(T"H+O((NT)™H)y =0(T™).

= 2tr

1=

3

=1

1=

D

E* [ (%) ’fo(fo)’fﬂ E* [vi,v] tr(vz',tVLSwv?)})
=1

1 1

ii
2
i

/
oy

=

1=

»

p=1r

M'ﬂ

»

t=1s

Mz

E* [ (£9) ’fO(fO)’fO} E* [v;,v) tr(w,wi,wwé)])

—_
Il

—_
I

—

In conclusion,

7* p*
q[MFo Fo*]VVv—> 01

so that by combining results we come to

q[MFo —Mgo« ], v —" O

Next consider terms where A = Pro. First, using ||[T'F'V;|| = O,(T~!/2), the independence of s; from
the other variables and its finite moments, and similarly the independence of v; over i and from the other
variables, with ﬁ YN siv; = Op: (1) gives
_ 1 _
T
i=1

W) Ep (T V))oi|| = 0, (T
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also, with || T7'F'Uy|| = O, ((NT)71/2)

1 & Iypost —1pos &
=7~ Y 5T 'VIFZpT 'F'U,C,Iv;
i=1

1Y Y
N & sl [T viEe | |25
i=1

—%
H 9p,vrv

| VNTEO | [ Il loill = 0y (T71)

which could again be sharpened noting that s;, I'; and v; are independent of the other variables and

LN sTv; = O, (N~1/2). Finally, also

—x 1 N —t 15 at e — —t
qp,o T || = H\/N gsir;(cw)/T U, FZpT 'F'U,C, v
=

=Op((NT)™)

—+ (12 112
[l 7o

~t
‘ZFO

1 N
< V¥ Dstuirion)
i=1

which again makes use of H YN (T} @T})|| = Op (N~V/2). Therefore,

Q;Fo,u _)P 0k><1

This establishes that both quFo VIR and qf,Fo » are asymptotically negligible. What remains is the terms
with A = 1, specifically qj . In its decomposition, given that H T-10,U; H = 0, (N71) 4+ Op-((NT)"1/2),
V; C U; and HT_lﬁ;UUwH = Op* (N_l)

I 3]l = Ops (N"V/2) 4 0, (T-1/2)

B 1N T
HqI,VF,vH = N 2 Isi H\/NT 1V;UU’H HC:"
i=1

el o] o7

—x 1 N
[qirr, | < VN HN Z;Si(vfl"f oT)
1=

wehaveqi, = qivy, ~ divre — (Avre) T dirre = Ayv,e +0pr(1) as (N, T) — o, and by combining
results into (3.113) we come to

VNP - B) = ﬁkilﬁiﬁ,vv,v +0p+(1)

Subtracting then (2.88) from the proof of Lemma@from both sides gives the expansion around ﬁ

=1y 1 7*_1]

% -~ —*—1_ ——1_ —_— _
VN(B —B)=Q AUrve—Q Qyve 0 (1)=Q qivve—[Q —Q '|qyy,+0p(1)

withqi vy, = Qrvve — ALvv,e-
Given (3.112) and 6_1 —p 1

Lemma 4] we have for the final term

qyvell = Op(1) from respectively and in the proof of

[ﬁ—l . 6*—1]

Qryve —" Ok
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whereas we can write by combining definitions for the first term in the numerator of this expansion

VA

1
ax 0 = —— Sl‘—l v; = Zvl—i—O (T71/2>
qi,vv, N Z;( ) T ﬁ Z

by the mutual independence of V;,s;, v;, the fact that \/l—ﬁ YN (si — 1)v; = Oy (1) by Ass|§| and Lemma
and T~!V!V; = £; 4+ O,(T~1/?) from Ass Continuing, we have

(\/*Z Zvl) = ﬁgm (Sl 1)]E (Zz>]E ( 1) = Okx1

and by independence over i

<1Nfi sz> (\F}: 2v]>l
1

N
N L ];IE*[( (= 1)(s; =~ DJE" [EE (00| = <)

E*[(s; — 1)*]E* [Z;Q,%;]

=

N
Il
—_

such that given E*[(s; — 1)?] = E*(s?) — 2E*(s;) +1 = 1+ N ! from a) of Lemma we get by applica-
tion of a CLT that G yy , — N (0, %) as (N, T) — co, with ¥}, = limn 0 1 Y4 L, E;, which in turn,
again making use of (3.112) and the results above, leads to

VNGB - B) 5 N,z Y,
which is the result stated in the theorem. It then follows directly from this result and Theorem 4] that

Sup
xeRkx1

P[VN(B —B) < x| -P[VN(B—B) <x]| —0,

where inequalities are to be interpreted coordinate-wise.
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3.4.2 CCEMG with the Pairs bootstrap

Theorem 7 Under Ass[1}j6|we have as (N, T) — oo
o~k ~ 4+
\/N(ﬁm _ﬁm ) —>N(0k><110v)-
g g

In addition, under the same conditions

P*[VN(Byg — Bug) < %] = P[VN(B,,, — B) < x]| —70,

sup
xelRkx1

where inequalities are to be interpreted coordinate-wise.

Proof of Theorem[7
Recall the decomposition of the scaled CCEMG deviation introduced in (3.107) and below. To analyze

the denominators at the individual level, we use Ql" = Qi“l — Q;FO P — QE‘M This is the same

F0—Mgo.],i°

decomposition used to derive the asymptotic representation in Lemma [C-7] The fact that the summation
overi =1,...,N is absent and E*(s;) = 1 does not change the order of the remainder, therefore we can

directly apply the result from Lemma|C-7] which leads to

Qf = T7WVIV; + 0y (N7Y) + 0, (T7Y) + 0 (NT)71/2). (3.116)
Also, because T 1V/V; = Z; + O, (T~1/2) and rk(@l*) — rk(Z;) £ 0, we know that

Q=X 140, (N ) +0, (T2 (3.117)

. = —t = =t . .
Then, for the numerator we start from q; = vVNT '[V; — U,C,Ti|'Mg. [&; — UnCpv;] = q; — dp i —
/qTMFofo:o*],i’ where for A representing I7, Pro or Mpo — Mg, we have the same decomposition /q\zli =
A vei — 9avyi — dare; T 9arq,- The order results in the bootstrap world are not altered due to Lemma

and Lemma Yet, for completeness, letting A = [Mp — M. ], we obtain

=ty — =t
= ||VNTITH(CL) T, [Mpo — Mo U Clp|
—t
< A et
using the fact that HT*U;, [Mpo — MfO*]UwH = Op+(N71) from (3.114). Further, with &; = U;B; 'q, and

the result HT‘lﬁ; [Mpo — Mzo.]U;|| = Op(N71) 4+ O, ((NT)71/2), which comes from the exact same
arguments as for (3.39) and (3.40) in the proof of Lemma we arrive at

o~k
AM0 —Mgo. ] T ‘

r/(C,,)’

10, [Mpo — M@*]UWH — 0, (N"1/2), (3.118)

= ||VNTIT(CL) T, My — Mo Je;
< \FN\

~%
Mo —Mgo. ] Te,i

r/(C,)’

HT—lﬁ;, [Mgo — M?O*]UZ-‘

HBflqu = 0p (N2 +0,(T7V?),
(3.119)
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Moving on, with V; = U;q,, we immediately obtain

’ ~

= |VNTVi[Mp — M. JUCyy
<VN Hé;%‘

— VARO* ]/V’}’/l

laxll | 710/ Mp — Mo [T | = O (N712) + 0y (T7172)
(3.120)
using the same argument. To proceed, we let A = Pro. This leads to

r/(C.)’

] = H\/NT—lrg(é;)’ﬁ;,PFodemH < \/N’
<VN|

% 177 wosst +—1g0r77
Fo,T%i’ U, F'ShT F’UwH

_ 2 || ~
HT’lU;FOH HZ;() = 0, (N"12771), (3.121)

—t —t
r; (Cw ) ' wYi

which comes from the fact that H T-10, F° H = O, ((NT)~1/2) from Lemma [C-2| Further on,

] Gy rei]| = H\/NT—lr’. é*)/ﬁ’ Pre | < VN ‘ r/(chy _1U;JF0§;(>T_1FO'£Z-H
< f’r’ -1y FOH H):F H HT 11:0’&( =0, (TY), (3.122)
using the facts that HT‘lﬁ/ FOH = Op((NT)~"/?) and || T'F”¢|| = O,(T~"/?) from &; = U;B; 'qy and
|T7'FUi|| = Op(T~1/2) in Lemma. Using the latter result again with V; = U;q, gives || T VIF?|| =

Op(T™ 172), 50 that in the same fashion,

= [VNTViPeTCon|| < VN S| [T VIFERTTRVT,,
<VN Hé;’h'

H TV

~t
|

HT—lFO’ﬁwH =0, (T (3.123)

Further, we let A = Ir. Firstly, this leads to

= |VNT (€T, OC, | < VN[ | ||| | 770LT|| = 0 (1),
because HT‘lﬁ;ﬁw = Op+(N1). Also,
J— —t 1=
@il = || VNTTA(C )’U;,ei < VN |Ti(@)|| | T 0L
< VN||ri(€ el | = 0, (NV2) 1.0, (T71/?),

because HT* U, U;|| = 0, (N~1) 4 O, ((NT)~1/2). Eventually, we obtain

H = H\/NT_lVfﬁwE;’Yi < \/NHE;% < \FNHGZ,%
= O0p(N72) + 0, (T71/?) (3.124)

H VU,

laull | T7MUiT|

using the same argument as for the term above. Summarizing the order results for the 3 different versions

of A, we obtain the same asymptotic representation as in the original sample space:

q\z* = qr,Ve,i - q;Fo,Vs,i + qFMFO —Mgo. ], Ve,i + OP* (N_l/z) + OP* (T_l/z) (3125)
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which in combination with Héf_l H = Op(1) by (3.117) yields

Mz

1 o - . - -
N qf = Z Si [ql Vei — APy, Ve,i + q[MFU*MiO*],V&Z} + Op+ (N 1/2) + Op+ (T 1/2).
i=1

To proceed, consider the first term, 5 ZN 15i Q* 1qi‘ Vei = ﬁ Zf\il sié;‘_lx/ﬁvgsi. Given that by (3.117)
Ql’f 'is bounded with a well behaved fixed limit as (N, T) — oo, the order of this term is driven by
= YN V/Ns;Vle;. Since H ﬁ YN siVie
pendence of V;, &; and s;, we have by insertion into the term above (and noting that the normalisation is
N—1/2 Tfl)

= Op+(1) by cross-section independence, and mutual inde-

H ZS Q* 1@fv“ :Op*(T_l/z)

Next, for & N, SzQ* 131*M oMy Ve substituting in (3.20) and making use of the same arguments as for
F % |7 7
(8:44), but sharpening the approximation (by not expanding terms which are O, (VNT*) with A > 0)

gives

N
Y51 A, My e = ¢ 2o 51Q T VNT TV [Mpo — Mo e

18 VEF*\ o+ ot (FO)g;
+ﬁ2sigi VN lT ) [Zfo — Zg, ] TI
+O0p (NT¥2) + Op: (T™) + 0, ((NT)~1/2)

For the first term of this expansion, Ug,,_m = +vNU,THy,_,, reveals that

=0 =0
N &= T Yo, —m T

1 Joaidh g ViUj\ 5 (Ui
- L@ L (V) 50 ()

where D,, = Tﬁw/,mf;:owimﬁ;ﬁmT’. Since HﬁwH = 0p(1), Qz*_lH = Op+(1) and both matrices have
well behaved fixed limits as (N, T) — oo (see e.g. (3.117) and Lemma , the asymptotic order is driven
by H W Zfil Zf\lzl 25:1 sis]-sngUj]/ij,’{ei

that the term is identical to (3.47) save with normalization N=3/2T~2 in stead of N~'T~2. Hence, the exact

’ = O, (N~1/2). The latter result can be seen from the fact

same arguments as for the result in (3.50) can be employed to yield HN T2y N, Z]‘Ii1 YN siss ViU Dy Ule
Op+(1). Therefore, as (N, T) — oo

x— 72} -m | at (ﬁgv,fm)/gi 1
Zs Q 1\F< ) Lo, <T> H =Op (W) (3.126)




For the second term in the expansion, the fact that F* = F0 + [Ug,m,ﬁ;],m] reveals that its asymptotic

behavior is determined by two leading terms. For the first we obtain from the same arguments as for

(3126) but with HzFo—zF H_ (N"12) 4 0, (T~1/2) that

1N ViUy ) ot ot o (O e\ 1 1
e (5] o 3

and for the second

0
il ZSZQ 1\/7 (V F ) [ZFO* —i;zw H ) +O <T;l/2> (3127)

because the fixed limit for Qj’l as (N, T) — oo obtained in (3.117) and Hf.%o* — i;w,“ H = Op (N71/2) +
O, (T~1/2) from Lemma imply that the asymptotic order is driven by

ke () (575)] o (5

which due to the finite moments of s; and its independence from the other variates follows from the same

arguments as for (2.106)). Consequently,

o0 (3) o0 ()

Finally, from the same arguments as for (3.127) given the well behaved fixed and finite limit of f.;o by

AssD
1Y o~ (VIFN ot (B 1
HNZ._1 i T T

Combining then all the results above we come to

~0, (\}N) Lo, (\/1?) (3.128)

[\12
10>
- *
_@z

N 0 _Mf(]* ]rvgri

i:1

*—1 %
7ZSQ qPF[) Ve,i

H

~k N
VN(B,, —B) = & Yo sivi+ oy (1)
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1 Y 1 N ’
E Wi, ;(Sl — 1)v1> (\/N].Z{(S] - 1)v]> ]
1 -y * * ! 1 al * 2170 * /
— N;];IE [(si = 1) (sj — 1)]E* (v;v}) = N;]E [(s; — 1)?E* (v;0))
1 N
=N Y E*(vv}) +O(N™) = Q,

again using E*[(s; — 1)?] = 1 — N L. This is the result stated in the theorem. It then follows directly from
this result and Theorem [A that

A~k ~ ~

]P*[\/N(ﬁmg - ﬁmg) < X] - H)[\/N(ﬂmg - ﬁ) < X]‘ —F 0,

sup
x€ERKx1

where inequalities are to be interpreted coordinate-wise.
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4 Variance Estimation

Theorem 8 Consistency of variance estimators.

Under Ass[I|B] or assumptions[1}f3| [pland [7|when (y,y*) are excluded from the CA, we have as (N, T) — oo such

that INT > T <00 that

NTO® —/ xlyx-1

NT® —¥ ¥z
If in addition Ass6land the conditions of Theorem[d hold, then

NO —? z 'y, x!

NO® —7 »ly,x!
and also

NQ, —7 Q,

NOQ, —" O,
as (N,T) = o

Proof.

Making use of the notation introduced in sections [2.3/and [3.4} the variance estimators for the CCEP esti-

mates in respectively the original and bootstrap samples are

6-N'gl9g!,  ¥-

N N ' - -~ -~ ~
N1 0B B (B - /smgmi] @)
o = Nflﬁ*fhif*ﬁ*fl’ g — [N ZS Qz* 3 B )(El* _ B;g)@?] (4.2)

where Bi = Q;IT_lngf:yi and BT = Qf‘lT*X;Mﬁ*yi. The latter can using (2.4) and (2.5) be decom-

posed as

B — . A_—li/\. R _ .1 0O*1 1
ﬁi - ﬁ+vl+Qz \/qul :Bz :3+vl+Qz \/>q1
such that from Bm ¢ = % YN Bi and B YN s [3 follows
~ ~ . N ~
ﬁi - ﬁmg = (Ui - U) T ; Q T (4.3)
oF o *— 1 A* N A*x— *
.Bi - :Bmg = (U ) + Q ! \/* - Z Qz T (44)
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where v, = % YN s

Consider first the homogeneous slope setting B, = B and note that then v; = 0y,1. Applying gives

in this case

63 -3 ) La_o0 Ly o1 La
Ql(ﬁi _ﬁmg) - \/qu Q; [Nl_lel \/qul
=T 'WVie;+ O0,(NY) +O0p(T™) + O,((NT)/?) (4.5)

because making use of (2.108) yields

1L, 1 ol & A 1 1
=Y O '—qi|| =N =Y. O/ 'q| =0 <>+o () 4.6
NEQ N N Q=0 N O (Nt (&0
such that ||Q; | £ XN, Q1L |{| < [|Q:|| |4 N1 Q7 -LGi|| = Op(N~1) + 0, ((NT)~1/2) for the final
VN VN

term on the first line. For the first term we get by substituting in (2.101)

N7V2q; = N™V2(Quves — Gy vei + dimy My vei) + Op(N™1) + Op((NT)71/2)
=T 'Vie;+ 0,(N1) + Op(T™) + O, ((NT)"/?) (4.7)

since N"Y2qpye; = T~ 'Vlg,

V;FO (FO),SZ'
T

—1/2A
HN qr,,Ve,i T

() 115 o )

and because substituting in V; = U;qy and &; = UiB_lqy together with (2.61) results in

< [Jaz| HTﬁlUg[MFO — Mpo]U;

ISR [B7ay | = 0p(N"1) + 0, (T71) + O, ((NT) 772

Then, recalling that ||T~!Vle]|| = O,(T7'/2) and || T~'Vie;e/Vi|| = O,(1) by Ass substituting in
yields

Sk o (5] 0 G ()
O RIORIORACARAC

1 N Vgsiesz- ( 1 ) < 1 >
= +0p| —= | +0p | —=
N-1 Z; T PAVN PAVT

where the third line uses T/N = O(1). Note then that for the leading term we have given the mutual

independence of & and V; by Ass| and their finite fourth moments and cross-section independence
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under Ass[I]that

1 N Viegev;
Nois o Y
i=

as (N, T) — oo. Therefore, it follows provided T/N — T < o0
TY —'¥

In the bootstrap world, we get from near identical steps with

Ax/pf  of 1 ~x x— A*
Q;k(ﬁl _ﬁmg) :ﬁql [ ZSQ 1\/»
=T 'Vig;+O0p (N +Op (T71) + 0, ((NT)/2) (4.8)

For completeness, this follows because we have from eq.(3.128)

o0 (3) o (i)

1 *—1 A*
Lo e

i=1

whichwithHQj‘ =0,(1 )leadstoHQ*[ oV 50 ] ‘ < HQ;‘ H £ 50 g | = 0, (N1 +
Op+((NT)~1/2) for the second term on the first line. For the first term,
N7Y2q; = T 'WVig; + Op (N7') + Op (T71) + Op (NT) /2 (4.10)

is obtained by first substituting in (3.125) and subsequently HN -1/2g;

( FO /FO)
Op (T and | N"V2y i e | < 194l 7710 Mpo — Mo U | [B 1 || = Op (N )+op*(T— )+
Op((NT)~1/2) by eq.(3:66). Substituting in and making use of y,r = O(1) and s; = Op+(1) then

results in

FO IVS/i

by E*(s;) = 1, E*(s?) = O(1) and the independence of s;, V; and ;.
Finally, with 671 —Px land 6*71 —P" 27! from Lemmasand we come to

NTO =Q 'T¥Q ' —" x-lyx!

NT® =Q 'T¥'Q" ' —7 zlyx!

as stated in the theorem. Arguments are identical when Mg is employed in stead of Mg, provided that

rk(T) = m.
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Next, consider (@.I)-@#.2) under heterogeneous slopes characterized by Asslf In this case #.3)-(4.4) give

l. ﬁqi = (0; —=0) + Op(N1) +0,(T" V) (4.11)

sr o ~q 1 NP
_ se1_ 1 s—1_1 - -1 ~1/2
Bi — Bug = (vi — V) + Q; ﬁ%_ﬁigsiQi Nk = (Ui = Tw) + 0p (N7 + 0pe (T71/?)
4.12)
which follows from substituting in (4.6) and (£.9) for the last terms in each equation and because || T~ Vi || =

0,(T71/2),

H = ) and HQ* 1H = Op+(1) together with (£.7) and (4.10) give
< a7
ERSRIE [

=0,(T"V?)+0,(N71)

=Op (T2 +0p (N7

Therefore,

Qi(B; — B ):ini*‘OP(N*l/z)ﬂLOp(Til/z)
Q; (B; — B,,

because HQZ

) = Q; v} + Op (N"V2) 4 0, (T1/?)

‘ < HQZH o]l = Op(N~Y2) by AssHand also HQ*va < HQ* [Twll = Opr (N71/2) be-

cause s; has finite second moments and is independent from v;. Since in addition

‘lel = 0,(1),
HQ UZH = ) these final results lead to
o 1 Moo oo o e 1 N 12 12
¥Y="1"7) QB = Bug) (B = Bug)' Qi = Y QiwiviQ; + Op(N™2) +- O, (T71?)
N-1 i=1 N-1 i=1
_ 1 ¢ 172 “1/2
=% Y ZivivZi 4+ Op(N~V2) + 0, (T ?)
T hi=1
—P ‘I’h

as (N, T) — oo, due to E(||v;||°) < co under Theorem EI and cross-section independence of v; by Ass@

where ¥;, was defined in Theorem El and we made use of Qi = L; + 0p(1) from (3.116). Similarly, in the
bootstrap world, since again s; is independent from v;, E*(s;) = 1 and E*(s?) = O(1),

B — B, Q; 1 S O* A * — _
— ZSle .Bmg)(.Bi — By)' Qi = N_1 Y 5iQFvivjQ] + Op: (N7V2) + 0, (T7/2)
i=1
1 - p—
“N_1 Z;Sizivivizi + 0, (NTV2) 40, (T7V/?)
i=

_)P* ‘Ifh

s (N, T) — oo. In conclusion, again making use of Lemmas B-6|and [C-7, we come to
NO=Q '¥Q ' —rrly,z!

N6 =Q T ¥'Q T —r oy,
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as required.

Finally, eq.(4.11) yields also for the estimator of the Mean Group variance

Nﬁv = ﬁ lﬁl(ﬁz - Bmg)(Bz - Bmg)/ = ﬁ iNl(Ui - ﬁ)(vi - U)/ + Op(N_l) + Op(T_l/z)
N

1 _ _
- mZvivHOp(N ") +0p(T1?)
i=1

_>P Qv

as (N, T) — oo, and similarly from (4.12) for the bootstrap sample estimator

~ % 1 N ~k % ~k % 1 N _ _ _ _
NQ, = N_1 Zsz’(ﬂi - ﬂmg>(ﬂi - ﬁmg)/ T N_-1 Zsi<vi —Uy)(vi — Tw) + Op+ (N 1) + Op*(T 1/2)
i=1 i=1
_ 1y '+ Oy (N"YH) + 0, (T2
= mgsivivi"' p*( )+ P*( )
_>P* Qv
since again [E*(s;) = 1, and making use of earlier definitions H% Zfil siviﬁguH = |[v?l,| < HEwHZ =

Op+(N~1). This completes the proof.
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Content of the supplement

This supplement contains additional Monte Carlo results that are not reported in the main article. The

tables are organized as follows:
¢ Tables regarding estimation (bias and root mean square error): Section 1

¢ Tables regarding hypothesis testing (empirical size): Section 2

“The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the
Flemish Supercomputer Center, funded by Ghent University; the Hercules Foundation; and the Economy, Science, and Innova-
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1 Estimation tables

Table A-1: Estimation results: p = 5 setting, fixed slopes

bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
CCEP 25 3.05 267 274 281 270 275 6.35 5.09 4.15 3.60 3.09 2.99
50 156 150 142 139 137 141 449 328 260 2.09 1.69 1.58
100 0.87 072 077 075 075 0.78 293 219 176 130 1.05 0.92
200 052 038 036 037 038 0.37 206 152 114 084 0.61 0.51
500 0.14 0.11 0.18 0.15 0.15 0.16 125 094 069 050 0.34 0.26
1000 0.05 0.06 0.05 0.07 0.07 0.07 0.88 0.66 048 034 023 0.17
pairs 25 122 08 087 095 076 0.84 706 5.17 3.67 266 1.75 142
50 033 032 021 017 015 0.19 511 333 241 1.68 1.05 0.75
100 024 004 0.08 0.07 007 0.10 333 236 172 113 0.75 0.51
200 020 0.01 -0.01 0.00 0.02 0.01 236 164 115 0.79 049 0.36
500 -0.01 -0.05 0.04 -0.01 0.00 0.01 144 1.04 071 050 0.31 0.21
1000 -0.04 -0.02 -0.02 -0.01 0.00 -0.01 1.02 0.72 051 035 0.22 0.15
CCEP, 25 317 273 280 288 280 285 6.61 527 422 369 3.21 3.09
50 156 153 144 143 141 144 458 336 263 213 1.73 1.61
100 085 0.72 078 076 076 0.79 299 217 176 132 1.05 0.93
200 052 039 037 037 038 0.38 209 150 1.15 0.84 0.61 0.51
500 0.12 0.12 017 0.15 0.16 0.16 1.25 094 0.69 050 0.34 0.26
1000 0.07 0.07 0.05 0.07 0.07 0.07 0.88 0.66 048 0.34 023 0.17
pairsy 25 1.08 064 065 074 059 0.64 6.58 4.89 338 245 1.63 1.24
50 0.28 027 015 0.15 010 0.14 480 319 228 161 1.01 0.72
100 0.19 0.03 0.08 0.06 006 0.09 314 218 163 1.10 0.73 0.50
200 020 0.02 0.01 0.01 0.01 0.01 224 153 1.12 0.77 049 0.35
500 -0.03 -0.04 0.03 -0.01 0.01 0.01 1.35 098 0.69 049 0.30 0.21
1000 -0.01 0.00 -0.02 -0.01 0.00 0.00 095 0.69 049 034 022 0.15

Notes: The DGP is (dy, B, 02,02,0%) = (10,5,1,1,0), with m = 2 factors and k = 3 regressors. CCEP and CCEP, denote respec-
tively the CCEP estimator with and without 7 included in the matrix of CA. "Pairs’ and "pairsy” correspond to their respective
bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section) resampling algorithm.



Table A-2: Estimation results: 02 = 5 setting, fixed slopes

bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
CCEP 25 357 253 294 287 273 288 13.02 995 763 575 4.23 3.63
50 1.77 160 146 143 132 1.36 942 6.86 496 3.70 251 2.04
100 1.13 079 081 081 0.81 0.83 632 480 352 252 1.80 1.37
200 0.70 035 038 036 040 0.38 445 333 242 1.72 1.14 0.85
500 0.14 0.03 020 014 016 0.18 282 214 148 1.06 0.70 0.49
1000 0.03 0.10 0.10 0.06 0.09 0.08 195 153 1.07 0.74 0.48 0.34
pairs 25 166 054 094 0.86 062 0.78 15.14 1093 7.77 539 341 2.38
50 044 035 020 0.16 0.04 0.08 11.01 744 5.10 357 219 1.55
100 058 0.12 0.12 0.12 0.11 0.13 726 528 365 249 1.65 1.12
200 042 0.01 002 0.00 003 0.01 516 3.67 251 173 1.09 0.77
500 -0.03 -0.13 0.06 -0.02 0.01 0.03 327 239 155 1.09 0.69 0.47
1000 -0.07 0.02 0.02 -0.02 0.01 0.00 225 165 112 076 047 0.34
CCEP, 25 363 262 294 28 275 290 13.02 989 756 574 4.25 3.65
50 176 162 146 146 134 1.36 949 6.88 492 371 252 2.05
100 1.04 073 079 083 0.80 0.84 642 480 347 252 1.80 1.38
200 0.72 029 037 037 039 038 446 331 244 172 1.14 0.85
500 0.16 0.03 018 0.14 0.16 0.18 281 213 148 1.06 0.70 0.49
1000 0.06 0.11 0.09 0.06 0.09 0.08 196 155 1.08 0.74 047 0.34
pairsy 25 155 057 082 0.75 053 0.68 14.07 1028 7.40 522 3.33 2.31
50 042 034 017 018 0.03 0.07 1037 7.15 4.88 351 216 1.53
100 042 005 0.09 014 010 0.13 695 507 348 244 1.63 1.11
200 045 -0.07 0.02 0.01 003 0.02 486 349 249 171 1.08 0.76
500 0.00 -0.13 0.03 -0.02 0.01 0.03 3.03 227 151 1.07 0.68 0.46
1000 -0.02 0.05 0.02 -0.02 0.01 0.00 212 161 1.10 075 047 0.34

Notes: The DGP is (dy, B, a2, 0,%,05) = (10,1,5,1,0), with m = 2 factors and k = 3 regressors. CCEP and CCEP, denote respec-
tively the CCEP estimator with and without ¥ included in the matrix of CA. 'Pairs” and pairs,” correspond to their respective
bootstrap-corrected estimates obtained from 2000 bootstrap replications with the pairs (cross-section) resampling algorithm.



Table A-3: Estimation results: heterogeneous slopes (02 = 5 setting)

bias x 100 rmse x 100
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
CCEP 25 -397 -551 -491 -6.10 -5.83 -6.73 58.61 52.09 4793 4750 45.68 46.20
50 -5.09 493 -094 -3.12 -131 -5.79 4246 38.71 37.89 35.89 35.54 32.71
100 -0.85 -1.07 -299 -243 -216 -2.54 32.89 28.77 27.06 27.06 26.75 25.34
200 -0.75 -0.80 -1.32 -129 -1.15 -148 23.80 21.76 20.74 19.27 1843 18.41
500 -0.74 -1.13 -0.71 -0.28 -0.34 -0.62 1497 13.78 12.83 12.77 12.25 11.85
1000 039 029 015 0.09 -043 -0.18 1092 10.18 8.95 8.83 8.84 8.75
pairs 25 275 -3.84 -354 -429 -411 -497 69.34 58.40 5278 51.68 4898 49.84
50 -3.04 -3.29 1.10 -1.17 057 -4.11 49.14 42.68 41.32 3854 37.84 34.46
100 054 037 -155 -0.88 -0.67 -1.06 3756 3137 2872 2852 28.02 26.56
200 026 0.17 -0.34 -0.34 -0.15 -0.49 26.23 2330 21.72 1995 19.09 18.96
500 -0.08 -0.62 -0.17 030 0.22 -0.06 1635 14.43 13.22 13.08 12.50 12.07
1000 0.83 059 049 041 -0.11 0.14 11.86 10.64 9.17 898 8.96 8.85
CCEP, 25 535 259 285 149 233 1.11 67.00 58.67 5399 53.89 51.94 51.97
50 -0.73 -0.53 3.92 158 3.33 -1.08 45.92 4098 4155 38.88 39.33 35.30
100 190 185 -0.63 0.17 043 -0.02 3544 30.74 2840 28.57 28.16 26.72
200 094 079 0.07 010 0.15 -0.15 2446 2287 2140 1997 19.01 18.99
500 -0.40 -051 -0.15 026 0.26 -0.05 15.18 13.85 13.04 1294 1247 12.03
1000 059 0.68 046 039 -0.14 0.13 11.12 10.30 9.04 8.91 8.90 8.82
pairsy 25 331 031 049 -0.78 0.05 -1.19 75.69 63.23 5724 56.77 54.27 54.07
50 -1.75 -1.73 269 026 2.09 -2.36 50.07 43.19 4356 4025 40.33 36.34
100 1.07 121 -1.27 -047 -0.32 -0.74 38.01 32.04 29.13 29.13 2857 27.17
200 0.65 043 -0.31 -0.33 -0.23 -0.53 25.52 23.62 21.72 20.20 19.20 19.18
500 -0.61 -0.67 -0.32 0.11 0.11 -0.17 15.85 14.08 13.16 13.02 12.52 12.08
1000 053 0.62 041 031 -0.20 0.05 11.57 1048 9.10 893 894 8.84
CCEMG 25 352 382 385 152 254 174 4551 4476 44.64 4358 44.17 44 .31
50 147 -0.08 360 1.82 317 0.13 31.29 3146 31.23 31.09 32.77 30.29
100 152 193 0.06 043 036 0.18 22.86 23.13 22.00 23.19 2294 21.99
200 084 073 037 090 059 -0.11 1628 1595 15.69 16.18 15.82 15.37
500 -0.32 -0.08 -0.20 0.38 0.21 -0.13 994 1039 993 9.99 10.19 9.72
1000 042 052 018 041 -024 0.25 7.05 7.07 7.07 6.88 7.29 7.05
pairsyc 25 1.89 231 219 0.02 095 0.15 4555 44.76 4451 43.65 44.18 44.30
50 0.19 -126 237 0.60 1.95 -1.05 31.37 31.51 31.07 31.08 32.70 30.36
100 078 117 -0.71 -0.31 -0.41 -0.56 22.88 23.12 22.04 2322 2297 21.99
200 040 030 -0.05 048 013 -0.55 16.31 1596 15.69 16.17 15.79 15.37
500 -0.51 -0.27 -0.38 0.19 0.02 -0.33 9.98 10.40 995 10.00 10.18 9.72
1000 0.32 042 0.08 031 -035 0.16 707 707 7.08 6.88 730 7.04
CCEMG, 25 366 3.87 393 157 264 181 4555 4476 44.66 4356 44.17 44 .32
50 147 -0.06 360 1.85 320 0.16 31.29 3148 31.22 31.09 32.78 30.29
100 154 197 009 044 036 0.18 2287 2314 2200 2319 2293 21.99
200 0.87 072 037 090 059 -0.11 16.30 1594 15.70 16.19 15.82 15.37
500 -0.34 -0.09 -0.19 038 0.21 -0.13 994 1040 992 9.99 10.20 9.72
1000 042 052 017 041 -024 0.25 703 707 7.07 688 729 7.05
pairsyc x 25 1.85 214 2.09 -0.18 0.76 -0.02 4547 4471 4446 4355 44.14 44.30
50 0.18 -1.32 233 059 192 -1.08 31.38 31.59 31.11 31.04 32.68 30.35
100 080 1.18 -0.67 -0.31 -0.41 -0.60 22.87 23.16 22.02 23.19 2293 21.96
200 046 029 -0.07 047 0.15 -0.55 16.29 1594 15.71 16.17 15.82 15.39
500 -0.53 -0.28 -0.38 0.19 0.01 -0.30 997 1042 9.92 10.00 10.20 9.74
1000 033 041 0.07 030 -034 0.15 7.04 7.05 7.08 6.88 7.30 7.04

Notes: The DGP is (dy, 8,02, (7 02) = (10,1,1,1,5), with m = 2 factors and k = 3 regressors. CCEP and CCEMG denote the CCE estimators
with 7 included in the matrlx of CA, whereas CCEPy, CCEMG; are the versions without y. The "pairs” and ’pairsy” correspond to the
respective bootstrap-corrections for the CCEP/CCEP, estimators, and "pairs” with an additional MG subscript, i.e. pairsy;/pairsyc s,
denote the bootstrap corrections of CCEMG/CCEMG,. All corrections are obtained from 2000 bootstrap replications with the pairs (cross-
section) resampling algorithm.



2 Inference tables

Table B-1: Empirical size: B = 5 setting, fixed slopes

CCEP
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.13 0.18 030 047 0.69 0.07 0.07 0.05 0.05 0.03 0.01
50 0.08 0.10 0.11 0.17 0.33 0.50 0.09 0.07 0.05 0.04 0.03 0.01
100 0.07 0.07 0.10 0.11 024 0.37 0.06 0.06 0.07 0.05 0.05 0.03
200 0.07 0.05 0.07 0.09 0.14 0.19 0.07 0.06 0.06 0.06 0.05 0.05
500 0.06 0.06 0.05 0.07 0.08 0.10 0.07 0.07 0.05 0.06 0.06 0.04
1000 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.06 0.06 0.05 0.05 0.05
Bootstrap—¢ Bootstrap—t.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.11 0.09 0.08 0.08 0.09 0.12 0.11 0.10 0.08 0.08 0.07 0.06
50 0.12 0.09 0.08 0.07 0.08 0.07 0.12 0.09 0.07 0.07 0.07 0.04
100 0.10 0.07 0.09 0.06 0.07 0.06 0.10 0.07 0.09 0.07 0.07 0.05
200 0.09 0.08 0.07 0.07 0.06 0.07 0.09 0.08 0.07 0.07 0.06 0.07
500 0.08 0.08 0.06 0.06 0.06 0.05 0.08 0.08 0.06 0.06 0.06 0.05
1000 0.07 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06
CCEP;,
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.12 0.17 028 047 0.68 0.04 0.05 0.03 0.03 0.01 0.00
50 0.08 0.09 0.10 0.17 032 051 0.07 0.04 0.03 0.03 0.01 0.01
100 0.07 0.06 0.10 0.12 023 0.37 0.05 0.05 0.05 0.04 0.04 0.03
200 0.07 0.05 0.08 0.08 0.13 0.19 0.06 0.05 0.05 0.05 0.05 0.04
500 0.05 0.06 0.05 0.06 0.08 0.10 0.05 0.06 0.05 0.05 0.05 0.04
1000 0.05 0.05 0.05 0.06 0.07 0.08 0.06 0.05 0.05 0.05 0.06 0.06
Bootstrap—t Bootstrap—t.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.08 0.07 0.07 0.07 0.09 0.09 0.08 0.07 0.07 0.06 0.03
50 0.12 0.08 0.06 0.07 0.06 0.06 0.12 0.08 0.06 0.06 0.05 0.03
100 0.09 0.06 0.08 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.05
200 0.08 0.07 0.06 0.06 0.06 0.06 0.08 0.07 0.06 0.07 0.06 0.06
500 0.06 0.07 0.06 0.06 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.04
1000 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06

Notes: The DGP is (dy, B, a2, (7,%, (75) = (10,5,1,1,0), with m = 2 factors and k = 3 regressors. CCEP and CCEPy
denote respectively the CCEP estimator with and without ¥ included in the matrix of CA. "t-test’ resports the
empirical size for a t-test at the a = 0.05 significance level. ‘basic’ reports empirical size for tests based on the
basic ('empirical percentile’) bootstrap interval, and bootstrap—t and bootstrap—t. are respectively empirical
size for the plain and corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.



Table B-2: Empirical size: 0 = 5 setting, fixed slopes

CCEP
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.08 0.08 011 0.12 0.17 0.26 0.09 0.09 0.09 0.08 0.05 0.04
50 0.07 0.07 0.07 0.08 0.10 0.16 0.09 0.07 0.06 0.06 0.05 0.04
100 0.06 0.07 0.06 0.06 0.11 0.12 0.07 0.07 0.07 0.05 0.07 0.05
200 0.07 0.05 0.06 0.06 0.07 0.08 0.09 0.06 0.06 0.06 0.06 0.06
500 0.06 0.06 0.06 0.05 0.06 0.05 0.08 0.07 0.06 0.05 0.05 0.04
1000 0.05 0.06 0.05 0.05 0.05 0.05 0.07 0.06 0.06 0.05 0.05 0.06
Bootstrap—t Bootstrap—t.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.08 0.08 0.08 0.06 0.05 0.09 0.07 0.08 0.08 0.06 0.05
50 0.10 0.07 0.06 0.05 0.05 0.05 0.09 0.07 0.05 0.05 0.05 0.05
100 0.07 0.07 0.07 0.05 0.07 0.06 0.07 0.06 0.07 0.05 0.07 0.05
200 0.09 0.07 0.06 0.06 0.05 0.05 0.09 0.07 0.06 0.06 0.05 0.06
500 0.08 0.08 0.06 0.05 0.05 0.04 0.08 0.08 0.05 0.05 0.05 0.04
1000 0.07 0.06 0.06 0.05 0.04 0.06 0.07 0.06 0.06 0.05 0.04 0.06
CCEP,
t-test basic
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.07 0.07 0.09 012 0.16 0.25 0.08 0.07 0.08 0.06 0.04 0.03
50 0.06 0.06 0.06 0.07 0.09 0.15 0.08 0.06 0.05 0.05 0.05 0.04
100 0.06 0.06 0.05 0.06 0.10 0.11 0.06 0.07 0.05 0.04 0.07 0.05
200 0.05 0.05 0.06 0.06 0.07 0.08 0.07 0.05 0.06 0.06 0.05 0.06
500 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04 0.05 0.05
1000 0.04 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.05 0.04 0.05
Bootstrap—t Bootstrap—t.
(N, T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.08 0.06 0.07 0.07 0.06 0.05 0.08 0.06 0.07 0.07 0.06 0.05
50 0.08 0.07 0.05 0.06 0.06 0.04 0.08 0.07 0.05 0.06 0.06 0.04
100 0.07 0.06 0.05 0.04 0.07 0.06 0.07 0.06 0.06 0.05 0.07 0.05
200 0.07 0.05 0.06 0.06 0.06 0.05 0.07 0.05 0.06 0.06 0.06 0.05
500 0.06 0.06 0.05 0.04 0.05 0.04 0.06 0.06 0.05 0.04 0.05 0.04
1000 0.06 0.07 0.06 0.05 0.04 0.05 0.06 0.07 0.06 0.05 0.04 0.05

Notes: The DGP is (dy, B, o2, 17,%, (73) = (10,5,1,1,0), with m = 2 factors and k = 3 regressors. CCEP and CCEP,
denote respectively the CCEP estimator with and without ¥ included in the matrix of CA. "t-test’ resports the
empirical size for a t-test at the # = 0.05 significance level. "basic” reports empirical size for tests based on the
basic ("empirical percentile’) bootstrap interval, and bootstrap—t and bootstrap—t. are respectively empirical
size for the plain and corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.



Table B-3: Empirical size: CCEP with heterogeneous slopes (02 = 5)

CCEP
t-test basic

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 012 012 012 013 0.13 0.14 0.22 021 020 0.20 0.21 0.20
50 0.09 0.11 0.09 0.10 0.10 0.11 0.14 0.17 0.15 0.16 0.15 0.16

100 0.08 0.07 0.09 0.10 0.10 0.10 0.13 0.11 0.14 0.13 0.15 0.13

200 0.07 0.08 0.09 0.08 0.07 0.07 0.10 0.11 0.13 0.10 0.10 0.10

500 0.06 0.05 0.05 0.07 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.07

1000 0.05 0.05 0.04 0.05 0.06 0.06 0.07 0.07 0.05 0.06 0.06 0.07
Bootstrap—t Bootstrap—t.

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.18 0.15 0.12 0.10 0.10 0.10 0.17 0.14 0.11 0.0 0.10 0.10
50 0.12 0.12 0.10 0.10 0.09 0.08 0.12 0.12 0.10 0.10 0.09 0.08

100 0.13 0.09 0.10 0.09 0.07 0.08 0.12 0.09 0.10 0.09 0.08 0.08
200 0.10 0.10 0.10 0.08 0.08 0.06 0.10 0.10 0.11 0.08 0.08 0.06
500 0.07 0.06 0.06 0.07 0.07 0.06 0.08 0.06 0.06 0.07 0.07 0.06
1000 0.07 0.07 0.04 0.05 0.07 0.06 0.07 0.07 0.04 0.05 0.07 0.06
CCEP;
t-test basic

N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.10 0.08 0.09 0.11 0.11 0.11 0.19 0.18 0.16 0.18 0.19 0.19
50 0.08 0.09 0.08 0.08 0.09 0.09 0.13 0.14 0.12 0.13 0.13 0.14

100 0.07 0.06 0.08 0.09 0.08 0.08 0.10 0.10 0.12 0.1 0.12 0.12

200 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.10 0.10 0.09 0.07 0.08

500 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07

1000 0.05 0.05 0.04 0.04 0.06 0.06 0.06 0.06 0.04 0.05 0.06 0.06
Bootstrap—t Bootstrap—t.

(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.18 0.13 0.11 0.11 0.0 0.09 0.16 0.12 0.10 0.11 0.09 0.09
50 0.12 0.12 0.10 0.09 0.09 0.08 0.12 0.11 0.09 0.09 0.08 0.07

100 0.10 0.08 0.09 0.08 0.07 0.07 0.10 0.08 0.09 0.08 0.07 0.06
200 0.09 0.08 0.09 0.07 0.07 0.06 0.09 0.08 0.09 0.07 0.07 0.06
500 0.07 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.06 0.06
1000 0.07 0.06 0.04 0.05 0.07 0.06 0.07 0.06 0.04 0.05 0.07 0.06

Notes: The DGP is (dy, B, o2, 17,%, (73) =(10,1,1,1,5), with m = 2 factors and k = 3 regressors. CCEP and CCEP,
denote respectively the CCEP estimator with and without ¥ included in the matrix of CA. ’t-test’ resports the
empirical size for a t-test at the a = 0.05 significance level. "basic” reports empirical size for tests based on the
basic ('empirical percentile’) bootstrap interval, and bootstrap—t and bootstrap—t. are respectively empirical
size for the plain and corrected bootstrap—t interval. All bootstrap tests are based on B = 2000 replications with
the pairs (cross-section) resampling algorithm.



Table B-4: Empirical size: CCEMG with heterogeneous slopes (¢2 = 5)

CCEMG
t-test basic
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.09 0.10 0.09 0.09 0.11 012 012 013 013 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.08 0.09 0.09
100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.08 0.09 0.08 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.07
500 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.06 0.07 0.05
1000 0.04 004 005 005 0.05 0.04 0.04 005 005 005 0.06 0.04
Bootstrap—t Bootstrap—1.
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.06 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.06 0.05 005 0.05 0.04
100 0.05 0.06 005 006 005 0.05 0.05 0.06 0.05 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 005 0.05 0.05
500 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04
1000 0.04 004 005 005 005 0.05 0.04 0.04 005 005 0.05 0.05
CCEMGy
t-test basic
(NT) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.09 0.09 010 0.09 0.09 0.11 012 012 013 013 0.13 0.13
50 0.07 0.08 0.06 0.07 0.08 0.07 0.09 0.10 0.08 0.09 0.09 0.09
100 0.07 0.07 0.06 0.07 0.07 0.06 0.08 0.08 0.07 0.09 0.07 0.08
200 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.06 0.06
500 0.05 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05
1000 0.04 004 005 005 005 0.04 0.04 0.05 005 005 0.06 0.05
Bootstrap—t Bootstrap—t,
(N,T) 25 50 100 200 500 1000 25 50 100 200 500 1000
25 0.06 0.05 0.06 0.07 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05
50 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05
100 0.05 0.06 005 006 005 0.05 0.05 0.06 0.04 0.06 0.05 0.05
200 0.05 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.04 005 0.05 0.04
500 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.05 0.04
1000 0.04 005 005 005 0.05 0.05 0.04 0.05 005 0.05 0.05 0.05

Notes: The DGP is (dy, ,0%,07,03) = (10,1,1,1,5), with m = 2 factors and k = 3 regressors. CCEMG and
CCEMGy; denote respectively the CCEMG estimator with and without 7 included in the matrix of CA. "t-test’
resports the empirical size for a t-test at the « = 0.05 significance level. 'basic’ reports empirical size for tests
based on the basic (‘'empirical percentile’) bootstrap interval, and bootstrap—t and bootstrap—t. are respectively
empirical size for the plain and corrected bootstrap—t interval. All bootstrap tests are based on B = 2000
replications with the pairs (cross-section) resampling algorithm.
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