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Abstract

In this article, we propose a new estimator of panel data models with interactive fixed

effects and multiple structural breaks that is suitable when the number of time periods, T,

is fixed and only the number of cross-sectional units, N, is large. This is done by viewing

the determination of the breaks as a shrinkage problem, and to estimate both the regression

coefficients, and the number of breaks and their locations by applying a version of the Lasso

approach. We show that with probability approaching one the approach can correctly de-

termine the number of breaks and the dates of these breaks, and that the estimator of the

regime-specific regression coefficients is consistent and asymptotically normal. We also pro-

vide Monte Carlo results suggesting that the approach performs very well in small samples,

and empirical results suggesting that the coefficients of the deterrence model of crime are not

constant as typically assumed but subject to structural change.
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1 Introduction

Dealing with structural breaks is an important step in most, if not all, empirical economic re-

search. This is particularly true in panel data comprised of many cross-sectional units, such as

individuals, firms or countries, which are all affected by major economic events. The worry is

that if left unattended, existing breaks will manifest themselves as omitted variables, leading to

inconsistent estimates of the slope coefficients of the model. It is therefore important to know

if and when structural breaks have occurred. Of course, such knowledge is rarely available in

practice, which means that it has to be inferred from the data. We need to be able to check

if there are any breaks present and, if there are, to infer both the break dates and the regime-

specific slope coefficients. This should be possible even if the number of time periods, T, is fixed

and only the number of cross-sectional units, N, is large, as many economic data sets have this

“short” form. The procedure should also be easy to implement, it should not require data to be

stationary, and it should be robust to unobserved heterogeneity. This last demand is potentially

very important because unattended heterogeneity can be mistaken for structural breaks. The

current paper contributes by developing a procedure that meets the above list of demands.

While the literature concerned with structural breaks in time series is huge, the literature

concerned with such breaks in panel data is much smaller (see Boldea et al., 2020, for a recent

overview). Yet, panel data are particularly susceptible to structural change. One reason for this

is that the sample frequency is usually much lower than in pure series data. Panel data sets

therefore tend to have long time spans, which means that the assumption of constant coeffi-

cients is likely to be violated because of major economic events. Another reason is that while

T is usually quite small, because the number of cross-sectional units for which time series data

is readily available is ever-increasing, N is potentially very large. This is important because the

larger is N, the higher the risk that at least some of the cross-sectional units are subject to struc-

tural change. A related issue is how many breaks there are. If the literature on structural breaks

in panel data is sparse, the part of the literature that deals with an unknown number of breaks

is almost nonexistent.1 The only exceptions known to us are Boldea et al. (2020), Li et al. (2016),

1An incomplete list of studies dealing with a single structural break in panel data include Antoch et al. (2019),
Baltagi et al. (2016, 2017), Hidalgo and Schafgans (2017), Karavias et al. (2021), and Zhu et al. (2020).
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and Qian and Su (2016), where the last two studies assume that both N and T are large, which is

again something that we would like to avoid in the present paper.2

Another prominent feature of the type of disaggregated “micro” panel data that we have in

mind, where typically the regressors explain only a small fraction of the variation in the depen-

dent variable, is the presence of unobserved heterogeneity. Studies such as Ahn et al. (2013),

Bai (2009), Moon and Weidner (2015), Pesaran (2006), Robertson and Sarafidis (2015), and West-

erlund et al. (2019) allow for unobserved heterogeneity in the form of interactive effects that

are dealt with by using either some kind of “de-factoring” or generalized method of moments

(GMM); however, they do not allow for breaks and many assume that T is large. Li et al. (2016)

allow for both multiple breaks and interactive effects, but then again in their paper T is large.

Boldea et al. (2020) allow for interactive effects without for that matter requiring any correction

thereof. This makes their approach very simple, although at a cost in terms of additional restric-

tive conditions. In particular, it is assumed that the omitted variables bias caused by the omitted

interactive effects is time-invariant, up to the breakpoints, which limits the type of effects and

regressors that can be permitted.

The proposed methodology builds upon the so-called “adaptive group fused” Lasso ap-

proach of Li et al. (2016), and Qian and Su (2016), which is suitable when the variation in the

slopes has a natural ordering, as when time-stamped like in the current paper. However, because

in our setup T is fixed, we cannot use principal components as a means to purge the interactive

effects as in Li et al. (2016). In fact, a major complication when T is fixed is that we cannot easily

separate the breaks from the effects. Qian and Su (2016) transform their data by taking first-

differences before applying Lasso, which is expected to work also when T is fixed. However,

differencing can only handle time-invariant effects. Moreover, while differencing solves the sep-

aration problem, it does so in an awkward way, since the (time-varying) slope coefficients in the

model for the data in differences are not the same as for the data in levels.

The approach used in the present paper can be seen as a reaction to the discussion of the

last paragraph. The idea is to apply Lasso to cross-sectionally demeaned data. The demeaning

2Qian and Su (2016) recognize the importance of allowing T to be finite and discuss likely implications for theory,
but they do not provide any formal results for the fixed-T case. Similarly, while in Baltagi et al. (2016) there is a
discussion of how to proceed in the presence of multiple breaks, their theory supposes that there is just one break.
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does not affect the slopes and it makes the resulting estimator, henceforth referred to as “post-

demeaned Lasso least squares (LS)”, “PDL2S” for short, robust to interactive effects, provided

that they satisfy a certain random coefficient condition. Another advantage of the new procedure

is that it puts almost no assumptions on the structure of the breaks. In fact, there can be no breaks

at all, and if there are breaks present the procedure does not make any assumptions about their

number. The procedure is therefore valid even if some, or indeed all, regimes have a single

observation, which is very useful when wanting to detect a break as quickly as possible. Yet

another advantage is that the procedure does not place any conditions on the serial correlation

properties of the data. Hence, the data can be stationary, as required in the bulk of the previous

literature (see Baltagi et al., 2017, for a discussion), but it does not have to be.

The rest of the paper is organized as follows. Section 2 describes the model and the PDL2S

approach that we will use to estimate it. Section 3 reports our main asymptotic results, whose

accuracy in small samples is evaluated by means of Monte Carlo simulation in Section 4. Section

5 presents the results of a small empirical illustration using as an example the economics of

crime. Section 6 concludes. All proofs and theoretical results of secondary nature are provided

in the online appendix.

2 Model and estimator

Consider a scalar panel data variable yi,t, observable across t = 1, . . . , T time periods and i =

1, . . . , N cross-section units. The data generating process of this variable is given by

yi,t = x′i,tβt + ui,t, (2.1)

ui,t = λ′ift + εi,t, (2.2)

where xi,t is a p× 1 vector of known regressors with βt being a conformable vector of unknown

slope coefficients that we allow to change over time, and ui,t is a composite error term that can be

both serially and cross-sectionally correlated in a very general fashion. The assumption we make

is that ui,t admits to a common factor structure in which ft and λi are r× 1 vectors of unobserved

factors and loadings, respectively, and εi,t is a mean zero error term.3 The interactive effects are

3As we explain later in Section 3, the type of factors that can be permitted under our assumptions is very broad.
This suggests that there is no need to discriminate between known and unknown factors, but that one can just as
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here given by λ′ift. Any cross-sectional dependence in ui,t are assumed to be captured by these

effects, so that the remainder, εi,t, is completely idiosyncratic. As usual, r and p are assumed to

be fixed numbers.

We will assume that β1, . . . , βT takes on m + 1 distinct vectors α1, . . . , αm+1, such that

βt = αj (2.3)

for t = Tj−1, . . . , Tj − 1, j = 1, . . . , m + 1, m ∈ [0, T − 1], T0 = 1 and Tm+1 = T + 1. Hence,

in this model, βt has m + 1 distinct regimes, or m breaks, that occur at time T1, . . . , Tm. At the

one end of the scale, we have m = 0, in which case there is only one regime and β1 = . . . =

βT = α1, whereas, at the other end, m = T − 1, which means that there are as many regimes

as time periods, and hence βt = αt for all t = 1, . . . , T. It is useful to stack α1, . . . , αm+1 and

β1, . . . , βT into the (m + 1)p× 1 and Tp× 1 vectors Am = [α′1, . . . , α′m+1]
′ and BT = [β′1, . . . , β′T]

′,

respectively, and to denote by Tm = {T1, . . . , Tm} the set of breakpoints when m > 0. If m = 0,

then we define Tm = T0 = ∅ as the empty set. It is also useful to note that if m + 1 = T, so

that each regime contains only one observation, then the set of breakpoints is given by TT−1 =

{1, . . . , T}. In what follows, we will therefore use TT−1 to denote the full set of time series

observations.

Remark 1. The fact that the number of time periods within each regime is completely unre-

stricted is noteworthy because in the existing literature it is standard to assume that the break

regimes are expanding with T (see, for example, Baltagi et al., 2016). There is also no need

to truncate the sample endpoints, and in this way restrict the breakpoint to the middle of the

sample, which is again standard in the literature. This means that breaks can be detected very

quickly.

The goal of this paper is to infer Am and Tm. Let us therefore denote by A0
m0 = [α0′

1 , . . . , α0′
m0+1]

′

the true value of Am, where m0 is the true value of m. The set of true breakpoints is henceforth

denoted T 0
m0 = {T0

1 , . . . , T0
m0}. It is also useful to introduce B0

T = [β0′
1 , . . . , β0′

T ]
′ as the true value

of BT.

well treat them all as unknown. This is the main rationale for writing (2.2) in terms of (the unknown) ft only.
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Denote by at = N−1 ∑N
i=1 ai,t the cross-sectional average of any variable ai,t, and let ãi,t =

ai,t − at be the cross-sectionally demeaned version of ai,t. In this notation, (2.1) can be written as

ỹi,t = x̃′i,tβt + ũi,t. (2.4)

Cross-sectional demeaning is tantamount to demeaning with respect to common time effects. It

is important to point out, however, that while we do allow for common time effects, our model

does not necessarily include such effects. Hence, unless λi = λ for all i, so that λ′ift = λ′ft, the

model is misspecified. Demeaning is still key, though, as it enables us to eliminate the mean of λi

from the regression error in (2.4), which is enough to ensure consistency and asymptotic (mixed)

normality as long as the remaining part is uncorrelated with x̃i,t.

To estimate B0
T, we propose minimizing the following objective function:

`γ(BT) =
1
N

N

∑
i=1

T

∑
t=1

(ỹi,t − x̃′i,tβt)
2 + γ ·

T

∑
t=2

wt‖βt − βt−1‖, (2.5)

where γ = γ(N) > 0 is a tuning parameter, wt is a data-driven weight defined by wt = ‖β̇t −

β̇t−1‖−κ, κ > 0 is a user-specified constant, and β̇t is a preliminary estimator of βt, which is

obtained by minimizing the first term in `γ(BT). That is, β̇t is simply the period-by-period LS

estimator;

β̇t =

(
N

∑
i=1

x̃i,tx̃′i,t

)−1 N

∑
i=1

x̃i,tỹi,t. (2.6)

Simple as it may be, it is useful to be able to write this estimator in a more general notation. Let

us therefore introduce

QN(Tm) = diag

(
1
N

T1−1

∑
t=T0

N

∑
i=1

x̃i,tx̃′i,t, . . . ,
1
N

Tm+1−1

∑
t=Tm

N

∑
i=1

x̃i,tx̃′i,t

)
, (2.7)

RN(Tm) =


1
N ∑T1−1

t=T0
∑N

i=1 x̃i,tỹi,t
...

1
N ∑

Tm+1−1
t=Tm

∑N
i=1 x̃i,tỹi,t

 , (2.8)

whose dimensions are given by (m + 1)p × (m + 1)p and (m + 1)p × 1, respectively. These

quantities are well defined not only when m > 0 but also when m = 0, in which case Tm+1 =

T1 = T + 1, and hence QN(T0) = N−1 ∑T
t=1 ∑N

i=1 x̃i,tx̃′i,t and RN(T0) = N−1 ∑T
t=1 ∑N

i=1 x̃i,tỹi,t.
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We also note how QN(TT−1) = diag(N−1 ∑N
i=1 x̃i,1x̃′i,1, . . . , N−1 ∑N

i=1 x̃i,T x̃′i,T) and RN(TT−1) =

[N−1 ∑N
i=1 x̃′i,1ỹi,1, . . . , N−1 ∑N

i=1 x̃′i,T ỹi,T]
′. In this notation,

ḂT =

 β̇1
...

β̇T

 =

 β̇1(TT−1)
...

β̇T(TT−1)

 = QN(TT−1)
−1RN(TT−1). (2.9)

The proposed PDL2S estimator of B0
T is given by

B̂T =

 β̂1
...

β̂T

 = arg min
BT

`γ(BT), (2.10)

where the dependence on γ here is suppressed for notational simplicity. For a given B̂T, the set

of estimated breaks is given by T̂m̂ = {T̂1, . . . , T̂m̂}, where T̂1 < . . . < T̂m̂ for m̂ > 0 are such

that ‖β̂t − β̂t−1‖ 6= 0 for t = T̂1, . . . , T̂m̂. If ‖β̂t − β̂t−1‖ = 0 for all t = 1, . . . , T, then m̂ = 0 and

T̂m̂ = T̂0 = ∅. We also define T̂0 = 1 and T̂m̂+1 = T + 1. The set T̂m̂ divides the sample into m̂+ 1

regimes such that the parameter estimates remain constant within each regime. The proposed

estimator Âm̂ of A0
m0 is obtained by PDL2S, which is regime-by-regime LS conditional on T̂m.4 In

terms of the notation introduced earlier,

Âm̂ =

 α̂1
...

α̂m̂+1

 =

 α̂1(T̂m̂)
...

α̂m̂+1(T̂m̂)

 = QN(T̂m̂)
−1RN(T̂m̂), (2.11)

where the dependence on T̂m̂ and γ is again suppressed.

Remark 2. Tibshirani et al. (2005) propose the fused Lasso, which penalizes the `1 norm of both

the individual slope coefficients themselves and their differences. Our objective function, which

is similar to the one in Li et al. (2016), and Qian and Su (2016), differs from the one used in

fused Lasso. The main differences are; (i) the penalization is done by using the Frobenius norm,

as opposed to the `1 norm, (ii) only the coefficient differences are penalized, and (iii) different

weights wt are assigned to different coefficient differences. The use of the Frobenius norm allows

us to induce sparsity for the entire vector of differences βt− βt−1, there is no reason to shrink the

coefficients themselves to zero, and the weighting is necessary to achieve consistency. Because

4One can also use the regular Lasso estimator of A0
m0 , as given by [β̂

′
T̂0

, . . . , β̂
′
T̂m̂
]′. However, as is well known in

the literature, post-Lasso typically outperforms regular Lasso, and our (unreported) Monte Carlo results confirm
this. In this paper, we therefore focus on post-Lasso LS.
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of these differences, (2.5) can be seen as an adaptive group fused Lasso objective function (see Li

et al., 2016, and Qian and Su, 2016, for discussions).

3 Assumptions and asymptotic results

3.1 Assumptions

The conditions that we will be working under are given in Assumptions EPS, LAM, Q, MOM

and J. However, before we state these assumptions, we introduce some notation. Specifically, if

A is a matrix, λmin(A) and λmax(A) signify its smallest and largest eigenvalues, respectively, tr A

signifies its trace, and ‖A‖ =
√

tr A′A signifies its Frobenius norm. If B is also a matrix, then

diag(A, B) denotes the block-diagonal matrix that takes A (B) as the upper left (lower right)

block. The symbols →d, →p and MN(·, ·) signify convergence in distribution, convergence in

probability and a mixed normal distribution, respectively. We use w.p.1 (w.p.a.1) to denote with

probability (approaching) one. C denotes the sigma-field generated by (f′1, . . . , f′T)
′.

Assumption EPS.

(a) εi,t is conditionally independent across i given C with E(εi,t|C) = 0 w.p.1;

(b) εi,t is independent of xj,s for all i, j, t and s.

Assumption LAM.

(a) λi = λ + νi, where νi is conditionally independent across i given C with E(νi|C) = 0r×1

w.p.1;

(b) νi is independent of (xj,t, ε j,t) for all i, j and t.

Assumption Q.

(a) infTm λmin[QN(Tm)] > 0 w.p.1;

(b) QN(Tm)→p Q0(Tm) = limN→∞ E[QN(Tm)|C] as N → ∞, where ∞ > infTm λmin[Q0(Tm)] >

0 w.p.1.
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Assumption MOM. E‖x̃i,t‖4 < ∞, ‖ft‖ < ∞ w.p.1, E‖ft‖4 < ∞, E‖νi‖4 < ∞ and Eε4
i,t < ∞ for

all i and t.

Assumption J.

(a) Jmax = max1≤j≤m0+1 ‖α0
j+1 − α0

j ‖ = O(1);

(b)
√

NγJ−κ
min → c1 ∈ [0, ∞) and

√
NJmin → c2 ∈ (0, ∞] as N → ∞, where Jmin = min1≤j≤m0+1 ‖α0

j+1−

α0
j ‖;

(c) N(κ+1)/2γ→ ∞ as N → ∞.

Some comments are in order. Consider Assumption EPS. Many papers in the literature as-

sume that εi,t is (conditionally) independent over i (see, for example, Ahn et al., 2013, Moon and

Weidner, 2015, Pesaran, 2006, Robertson and Sarafidis, 2015, and Westerlund et al., 2019), and

so do we. Independence is not necessary, though, and can be relaxed to allow for weak cross-

sectional dependence at the expense of additional high-level moment conditions (as in Bai, 2009).

This is demonstrated in Section 4, where we use Monte Carlo simulations to investigate the effect

of error cross-section dependence. The assumption that εi,t is independent of xi,t, which is the

same as in, for example, Bai (2009), Moon and Weidner (2015), Pesaran (2006), and Westerlund

et al. (2019), is necessary and cannot be easily dispensed with. Qian and Su (2016) allow for

endogenous regressors by using GMM (see also Ahn et al., 2013, and Robertson and Sarafidis,

2015, in absence of breaks), and in the empirical illustration of Section 5 we consider a version

of this estimator. However, GMM requires that valid external instruments are available, which

is not always the case in practice. Moreover, the condition that εi,t is independent of xi,t does

not rule out endogeneity, as xi,t can still be correlated with ft. The heteroskedasticity and serial

correlation properties of εi,t are not restricted in any way.

Assumption LAM is a random coefficient condition. It demands that λi is randomly dis-

tributed with constant mean, and that it is independent of xi,t and εi,t, which are standard re-

quirements in the common correlated effects (CCE) strand of the literature (see Westerlund et

al., 2019, for an overview). As mentioned in Section 2, because of the demeaning, the PDL2S
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estimator is exactly invariant with respect to λ′ift when λi = λ for all i, so that λ′ift = λ′ft re-

duces to a common time effect. Assumption LAM ensures that the PDL2S estimator is consistent

and asymptotically mixed normal even in cases when λ1, . . . , λN are not all equal.5 To put this

into perspective, Boldea et al. (2020) assume that N−1 ∑N
i=1 xi,tλ

′
ift →p aj as N → ∞ for all

t = Tj−1, . . . , Tj − 1 and j = 1, . . . , m + 1, so that asymptotically the sample cross-moment of

the regressors and the interactive effects is constant within break regimes.6 By contrast, under

Assumption LAM, N−1 ∑N
i=1 xi,tλ

′
ift = N−1 ∑N

i=1 xi,tλ
′ft + op(1), which may vary freely over t.

Assumption Q is a non-collinearity condition that rules out cross-section-invariant regressors

in xi,t. This is the same as the usual time fixed effects-only condition. The simplicity and trans-

parency of this condition is a great advantage when compared to studies such as Bai (2009), and

Moon and Weidner (2015), where the factors are estimated and the regressors are de-factored,

as opposed to just demeaned. As a result, general “low-rank” regressors have to be ruled out in

order to ensure that the de-factored regressors have enough variation.7 The problem is that the

ruled out low-rank regressors depend on λi and ft, which are unknown to the researcher. There

is therefore a risk that the defactoring exhausts too much variation, causing the signal matrix to

become (near) singular. This is particularly true in the type of small-T (microeconomic) panels

that we have in mind where many regressors have low variation.

Assumption MOM supposes that x̃i,t, ft, νi and εi,t have a certain number of finite moments.

Four finite moments are required for x̃i,t, which is a standard condition. This condition together

with the non-collinearity condition in Assumption Q, and the independence of εi,t and νi in

Assumptions EPS and LAM are the only conditions placed on the regressors. This is different

from the CCE strand of the literature where it is standard to assume that xi,t has a common

factor structure that loads on the same factors as ui,t (see Pesaran, 2006, and Westerlund et al.,

2019), which is restrictive in itself but also because it rules out models involving, for example,
5The condition that λi and xi,t are uncorrelated is testable and has been subject to some scrutiny in the recent

empirical literature (see, for example, Kapetanios et al., 2019, and Petrova and Westerlund, 2020). The evidence is
favourable.

6The need for this condition is partly expected given the discussion in Section 1 on the difficulty of separating the
breaks from the interactive effects. Boldea et al. (2020) do not do anything to control for the interactive effects but
apply LS as if there were no effects present at all. This means that they have to put enough structure on the effects
so as to ensure that they do not interfere with their break estimation procedure. One of the terms in the resulting
omitted interactive effects bias of the LS estimator is given by N−1 ∑N

i=1 xi,tλ
′
ift. If this is not constant within break

regimes, the interactive effects will be mistaken for structural breaks.
7Certain low-rank regressors can be permitted but they then require special treatment (see Bai, 2009).
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powers or products of the regressors. Boldea et al. (2020), and Qian and Su (2016) assume that

the regressors are independent across the cross-section, which is even more restrictive.8 In the

present paper, xi,t does not have a factor structure, nor does it have to be independent. In fact,

xi,t does not even have to be stochastic, but can also contain deterministic terms such as dummy

variables. And those regressors that are stochastic can be arbitrarily correlated across both time

and cross-section. The same is true for ft, which is almost completely without restriction. Note in

particular that there are no conditions on the number of factors, r, provided that it is fixed. This is

different from most CCE studies where r is bounded from above by the number of observables,

p + 1 (see, for example, Westerlund et al., 2019). Moreover, unlike in most GMM- and principal

components-based studies, the proposed PDL2S estimator does not depend on the availability

of a consistent estimator of r (see, for example, Ahn et al., 2013, Bai, 2009, and Robertson and

Sarafidis, 2015).

Assumption J imposes some conditions on the tuning parameter γ and the size of the breaks,

and are easy to justify. For example, if we assume that all the breaks are bounded away from

zero and infinity, then Assumption J requires that γ = O(N−(1+δ)/2) with δ ∈ [0, κ). One way

to satisfy Assumption J is therefore to set γ proportional to N−1/2 (as in, for example, Belloni et

al., 2016, and Hansen and Liao, 2019). We also note that the breaks do not have to be bounded

away from zero and hence that some, or indeed all, breaks may be shrinking to zero. The breaks

therefore do not have to be “large” for our procedure to be able to detect them, which is reassur-

ing.

3.2 Asymptotic results

Our first main result characterizes the limit of β̂t.

Theorem 1. Suppose that Assumptions EPS, LAM, Q, MOM and J hold. Then, uniformly in t ∈ TT−1,

‖β̂t − β0
t ‖ = Op(N−1/2).

Theorem 1 establishes that the PDL2S estimator is consistent and that the rate of convergence

8The condition that the regressors are identically distributed can be relaxed (see Boldea et al., 2020). However, it
is still necessary that the sample second moment matrix of the regressors is asymptotically time-invariant (within
break regimes).
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is given by N−1/2, which is the highest possible rate for the type of parametric fixed-T panel data

models that we consider. In Lemma A.1 of the online appendix, we show that the preliminary

period-by-period LS estimator, β̇t, is consistent at the same rate, which is just as expected because

T is fixed. Hence, from a rate of convergence point of view, nothing is gained by using PDL2S.

However, the preliminary estimator does not account for the fact that the slopes are constant

within break regimes. It is therefore not as efficient as PDL2S. It is also completely uninformative

regarding the number of breaks and their location. This brings us to our second main result.

Theorem 2. Suppose that Assumptions EPS, LAM, Q, MOM, and J hold. Then, as N → ∞,

P(‖β̂t − β̂t−1‖ = 0 for all t ∈ T 0c
m0 = TT−1 \ T 0

m0)→ 1.

The set T 0c
m0 is the complement of T 0

m0 . Hence, since β0
t is constant within break regimes, we

have that β0
t = β0

t−1 for all t ∈ T 0c
m0 . Theorem 2 states that β̂t − β̂t−1 is strongly consistent for

β0
t − β0

t−1 when t ∈ T 0c
m0 , which is a reflection of the usual sparsity result in the variable selection

literature (see, for example, Fan and Li, 2006). But from Theorem 1, we know that β̂t − β̂t−1 is

consistent for all t, including t ∈ T 0
m0 . This means that PDL2S is able to identify the true model

in (2.1) with the correct number of breaks and break dates. The following corollary to Theorems

1 and 2 formalizes this.

Corollary 1. Suppose that Assumptions EPS, LAM, Q, MOM and J hold. Then, as N → ∞,

(a) P(m̂ = m0)→ 1;

(b) P(T̂m̂ = T 0
m0 |m̂ = m0)→ 1.

Theorem 3 reports the asymptotic distribution of the PDL2S estimator, and it does so condi-

tional on the high probability even that m̂ = m0.

Theorem 3. Suppose that Assumptions EPS, LAM, Q, MOM and J hold, and that m̂ = m0. Then, as

N → ∞,

√
N(Âm̂ −A0

m0)→d MN(0(m0+1)p×1, Q−1
0 Ω0Q−1

0 ),
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where

Q0 = Q0(T 0
m0),

Ω0 = lim
N→∞

1
N

N

∑
i=1

E(uiu′i|C),

ui = ui(T 0
m0) =


∑

T0
1−1

t=T0
0

x̃i,tũi,t

...

∑
T0

m0+1
−1

t=T0
m0

x̃i,tũi,t

 .

The definitions of Q0 and Ω0 in Theorem 3 reveal that the PDL2S estimator is asymptotically

equivalent to the infeasible LS estimator of (2.4) that takes all the breaks as known. In this sense,

PDL2S is “oracle efficient”. That being said, Ω0 does depend on ũi,t, which is a function of

ν̃′ift. Hence, while oracle efficient in the sense that it is asymptotically equivalent to the known

break LS estimator, the PDL2S estimator is not asymptotically equivalent to the LS estimator

that takes both the breaks and the factors as known. As pointed out in Section 2, the demeaning

removes the mean of λi, and this is enough to ensure
√

N-consistency and asymptotic (mixed)

normality as long as εi,t and νi are uncorrelated with x̃i,t. However, this does not mean that the

PDL2S estimator is asymptotically invariant with respect to λ′ift, and Theorem 3 confirms this.

In Section 4, we use Monte Carlo simulations as a means to investigate how the variance of the

PDL2S estimator is affected by the interactive effects.

The asymptotic distribution of
√

N(Âm̂ − A0
m0) is normal conditional on C, which means

that unconditionally it is mixed normal (see Andrews, 2005, for a discussion). The asymptotic

distribution therefore supports standard normal and chi-squared inference. Of course, for such

standard inference to be possible, we need a consistent estimator of Q−1
0 Ω0Q−1

0 . Let us therefore

define ûi,t = ỹi,t − x̃′i,tα̂j, where t = T̂j−1, . . . , T̂j − 1 with j = 1, . . . , m̂ + 1. A natural estimator of

Q−1
0 Ω0Q−1

0 given by

QN(T̂m̂)
−1Ω̂QN(T̂m̂)

−1 (3.1)

where QN(T̂m̂) is as before and the (m̂ + 1)p× (m̂ + 1)p matrix Ω̂ is given by

Ω̂ =
1
N

N

∑
i=1

ûiû′i, (3.2)
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where

ûi = ûi(T̂m̂) =


∑T̂1−1

t=T̂0
x̃i,tûi,t
...

∑
T̂m+1−1
t=T̂m

x̃i,tûi,t

 . (3.3)

The consistency of this estimator is a direct consequence of the consistency of Âm̂, m̂ and T̂m̂.

Corollary 2. Suppose that Assumptions EPS, LAM, Q, MOM and J hold. Then, as N → ∞,

QN(T̂m̂)
−1Ω̂QN(T̂m̂)

−1 →p Q−1
0 Ω0Q−1

0 .

Remark 3. A major point about Corollary 2 is that the asymptotic covariance matrix of the PDL2S

estimator is very easily estimable. This stands in sharp contrast to the large-T framework that

typically involves some kind of heteroskedasticity and autocorrelation consistent (HAC) correc-

tion (see, for example, Bai, 2009, and Pesaran, 2006), which is not only difficult to implement but

also known to lead to poor small-sample properties.

Consider testing the null hypothesis of H0 : RA0
m0 = r, where R is a q× (m0 + 1)p matrix of

rank q ≤ (m0 + 1)p and r is a q× 1 vector. Again, conditional on the high probability even that

m̂ = m0, the relevant Wald test statistic is given by

W = N(RÂm̂ − r)′[RQN(T̂m̂)
−1Ω̂QN(T̂m̂)

−1R′]−1(RÂm̂ − r). (3.4)

Suppose that H0 is true. Then, because of Theorem 3 and Corollary 2,

W =
√

N(RÂm̂ − r)′(RQ−1
0 Ω0Q−1

0 R′)−1
√

N(RÂm̂ − r) + op(1)→d χ2(q) (3.5)

as N → ∞. Similarly, if q = 1, then the t-statistic

t =
√

N(RÂm̂ − r)√
RQN(T̂m̂)−1Ω̂QN(T̂m̂)−1R′

(3.6)

has a limiting N(0, 1) distribution under H0.

All the estimates considered so far are conditional on the tuning parameter γ. While in theory

any choice satisfying Assumption J will do, as with most other tuning parameters, in practice

the results can be sensitive to different specifications of γ. It might therefore be preferable to set
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this parameter in a data-driven fashion. In this paper, we follow Li et al. (2016), and Qian and

Su (2016), and set γ by minimizing an information criterion;

γ̂ = arg min
γ

IC(γ), (3.7)

with

IC(γ) = σ̂2(T̂m̂(γ)) + φ · p[m̂(γ) + 1], (3.8)

where T̂m̂(γ) and m̂(γ) are T̂m̂ and m̂, respectively, when treated as functions of γ, φ = φ(N) > 0

is a penalty, and

σ̂2(Tm) =
1

NT

N

∑
i=1

m+1

∑
j=1

Tj−1

∑
t=Tj−1

(ỹi,t − x̃′i,tα̂j)
2. (3.9)

Theorem 4. Suppose that Assumptions EPS, LAM, Q, MOM and J hold, that φ→ 0 and that Nφ→ ∞.

Then, as N → ∞,

P[m̂(γ̂) = m0]→ 0.

As usual, the penalty φ is not unique and has to be set by the researcher. Analogous to Qian

and Su (2016), in this paper we set φ = (ln N)/N, which makes IC(γ) similar to the conventional

Schwarz Bayesian information criterion (BIC).

4 Monte Carlo simulations

4.1 Setup

In this section, we use Monte Carlo simulations as a means to evaluate the finite sample prop-

erties of the proposed PDL2S approach. The data generating process used for this purpose is

given by a restricted version of (2.1) and (2.2) that sets p = 4 and r = 5. Similarly to Qian and

Su (2016), we consider m0 ∈ {0, 1, 2} with βt = 0p×1 when m0 = 0, βt = 1p×1 · 1(T/2 ≤ t ≤ T)

when m0 = 1 and βt = 1p×1 · [1(bT/3c ≤ t < b2T/3c) + 2 · 1(b2T/3c ≤ t ≤ T)] when m0 = 2,

where 1(·) and b·c are the indicator and integer part functions, respectively, and 0p×1 (1p×1) is a

p× 1 vector of zeroes (ones).
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If ui,t and xi,t are independent, the interactive effects in (2.1) can be ignored without risk-

ing the consistency of the regular post-Lasso LS estimator based on raw (non-demeaned) data.

Hence, in order to make ui,t and xi,t dependent, we allow xi,t to load on the same set of factors

as ui,t, which as pointed out in Section 3.1 is a requirement in CCE. Specifically, xi,t is generated

according to the following factor model:

xi,t = Γift + νi,t, (4.1)

where

ft = (1− ϕ) + ϕft−1 + ηt, (4.2)

with f0 = 0r×1, ϕ ∈ {0.8, 1} and ηt ∼ N(0r×1, Ir). Hence, while stationary (although highly

persistent) when ϕ = 0.8, when ϕ = 1, ft is unit root non-stationary. The data generating

process considered for νi,t is also very general and is the same as in, for example, Petrova and

Westerlund (2020). It is given by

νi,t = πνi,t−1 + ei,t +
K

∑
j=1

π(ei−j,t + ei+j,t), (4.3)

where ν1,0 = ... = νN,0 = 0p×1, π ∈ {0.4, 0.8}, K = 10 and ei,t ∼ N(0p×1, Ip). This means that

νi,t is weakly correlated over time as well as with 2K of its neighbouring cross-sectional units.9

If π = 0.4, we say that the error dependence is “low”, whereas if π = 0.8 the error dependence

is said to be “high”. A similar process is used for generating εi,t;

εi,t = πεi,t−1 + ξi,t +
K

∑
j=1

π(ξi−j,t + ξi+j,t), (4.4)

where ε1,0 = ... = εN,0 = 0 and ξi,t ∼ N(0, σ2
i ) with σ2

i ∼ U(0.5, 1). Hence, εi,t is not only

weakly serially and cross-sectionally correlated but also heteroskedastic. Finally, to ensure that

Assumption LAM is met the loadings in Γi and λi are drawn independently from N(2, 1).

As for the sample size, we consider all combinations of N ∈ {25, 50, 100, 200, 600} and T ∈

{5, 10, 20}, where the values considered for T are intentionally smaller than those considered for

N.
9The cross-sectional sum in νi,t is truncated at beginning and end when not enough cross-sections are available.

For example, when generating ν1,t, the sum only includes e2,t, ..., e11,t.
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We report four performance measures, the frequency of false detection of the estimated num-

ber of breaks, the frequency of false detection of the estimated breakpoints given that the number

of breaks is selected correctly, the average number of estimated breaks, and the mean squared

error (MSE) of the PDL2S estimator (times 100), computed as the average ‖Âm̂−A0
m0‖/(m̂+ 1)p

across the Monte Carlo replications, whose number is here set to 1,000.

The estimation code was written in Python, which is one of the most common programming

language in applications of the Lasso. Following the previous literature on the adaptive Lasso

(see Qian and Su, 2016), we set κ = 2. For a given value γ, we optimize (2.5) using the convex

optimization package CVXPY. We then determine the most appropriate value of γ by minimiz-

ing the information criterion in (3.8). To accomplish this, we need to choose a suitable grid

containing values of γ that yield the true breaks. One way to do so is to first select an interval

[γmax, γmin], where γmin (γmax) is chosen so that the number of estimated breaks is zero (“many”)

(see Qian and Su, 2016). We then slice [γmax, γmin] into 50 evenly sized intervals on a log-scale,

optimize (2.5) at each value and select as γ̂ the value that minimizes the information criterion in

(3.8).

The simulations are too time consuming for a personal computer. We used the UPPMAX (Up-

psala Multidisciplinary Center for Advanced Computational Science) cluster Rackham, which is

accessible via the SNIC (Swedish National Infrastructure for Computing). Rackham consists of

486 nodes, each containing two 10-core Intel Xeon V4 central processing units.

4.2 Results

Tables 1–5 contain the results, which are reported for different constellations of ϕ and π. We

consider four cases; (i) stationary factors (ϕ = 0.8) and low error dependence (π = 0.4), (ii) non-

stationary factors (ϕ = 1) and low error dependence (π = 0.4), (iii) stationary factors (ϕ = 0.8)

and high error dependence (π = 0.8), and (iv) non-stationary factors (ϕ = 1) and high error

dependence (π = 0.8).

INSERT TABLES 1–5 ABOUT HERE

We begin by considering the results reported in Table 1 for the case with stationary factors

and low error dependence. The first thing to note is that PDL2S does very well even when N
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and T are as small as N = 25 and T = 5. In fact, in this case the breaks are estimated perfectly.

The only exception is when m = 2, in which case the number of breaks is not always estimated

correctly. However, this is only a small-sample effect that goes away with increasing values of

N and T. The breakpoints are always estimated correctly. Hence, as expected given Corollary 1,

the PDL2S approach is robust to the number of breaks, and works very well even if there are no

breaks at all. The MSE decreases with increasing values of N and T. The effect of N is anticipated

and is a reflection of the consistency of the PDL2S estimator (Theorem 1). The improvement that

comes from increasing T cannot be explained by our theoretical results, which are silent about

the effect of T. It suggests that T does not have to be “small” but that the estimator works well

also when T is relatively large.

As expected given the unrestricted specification of the factors, increasing their persistence

from ϕ = 0.8 to ϕ = 1 has no effect on the results. This is clear from comparing the results

reported in Table 1 with those reported in Table 2. In the literature it is common to assume

that the factors are stationary (see, for example, Bai, 2009, and Pesaran, 2006), which rules out

factors that are, for example, breaking or trending. This may be justified in some applications,

but certainly not in general. The fact that the performance of the PDL2S estimator is unaffected

by the specification of the factors is therefore a great advantage.

High error dependence generally leads to worse performance than if the dependence is low,

as is evident by comparing the results reported in Tables 1 and 3. Note in particular how the

gain in performance that comes from increasing N is relatively slow when the dependence is

high, which is partly expected given the high level of error cross-section correlation in this case.

The effect is not detrimental, though, and so performance is still acceptable. Hence, as discussed

in Section 3, error cross-section independence is not necessary. This is true not only when the

factors are stationary, but also when they are non-stationary, as they are in Table 4.

The results reported so far are for the proposed PDL2S estimator. In order to investigate the

importance of the demeaning as a means to account for the interactive effects, in Table 5 we

report some results for the post-Lasso LS estimator when applied to raw (non-demeaned) data.

As in Table 4, the factors are non-stationary and the error dependence is high. As expected given

the presence of ft in the equations for both xi,t and ui,t, failure to demean leads to a massive loss of
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performance. Not only are the results reported in Table 5 uniformly worse than those reported

in Table 4 but there is also no improvement as the sample size increases, suggesting that the

estimator is inconsistent, as expected.

All-in-all, we find that the PDL2S estimator performs very well in the type of small-T panels

considered, and that it does so under a wide range of empirically relevant scenarios. It should

therefore be an attractive alternative to the already existing menu of estimators of panel regres-

sion models with possible interactive effects and breaks.

5 Empirical illustration

5.1 Motivation

There is a large and growing empirical literature concerned with the socioeconomic determi-

nants of crime. Usual suspects include deterrence variables capturing the probabilities of ap-

prehension and punishment, and variables that control for the relative rate of return of legal

opportunities. One of the main conclusions from this literature is that aggregate data do not

provide much support of the deterrence idea that policy can reduce crime by raising expected

costs (see, for example, Dills et al., 2010).

One of the most widely held explanations for this lack of empirical support is the presence

of unobserved heterogeneity, which, unless appropriately accounted for, may well render the LS

estimator biased and inconsistent. Cornwell and Trumbull (1994) were among the first to make

this point. According to them, the issue of unobserved heterogeneity cannot be ignored, and

there are by now plenty of research that confirms this (see, for example, Bushway et al., 1999,

Cherry and List, 2002, and Worrall and Pratt, 2004). The following quotation, taken from Nagin

and Paternoster (2000, page 131), illustrates the issue: “There is also a critical substantive reason

for employing models that control for unobserved heterogeneity. If there is unobserved het-

erogeneity that accounts for offending over time, the failure to explicitly consider this will lead

to biased estimates of observed time-varying factors [...] Unobserved heterogeneity is like any

other omitted variable, it will result in biased estimates of other parameters in the model, such

as prior offending or delinquent peers (see Bushway et al., 1999). The practical consequence is

that the estimated effect of time-varying variables that reflect state dependence will be inflated.”

19



Another explanation is that while most theories of crime are about the behaviour of individ-

uals, many studies use aggregated data, usually at the state or country level, even though there

is by now plenty of evidence to suggest that individual (crime) behaviour is not well preserved

under aggregation. For instance, Lott and Mustard (1997) use both state- and county-level data

in their study of the effect of concealed handgun laws on violent crime in the US. One of their

main conclusions is that “the very different results between state- and county-level data should

make us very cautious in aggregating crime data and would imply that the data should remain

as disaggregated as possible” (page 39).

Yet another explanation for the lack of support of the deterrence idea is the presence of struc-

tural breaks. According to McDowall and Loftin (2005, page 359), “[c]onventional explanations

of crime rate trends assume that changes in the rates follow a process that is linear and constant

[...] Questioning the conventional assumptions, an emerging class of historical contingency the-

ories stresses variation in the crime-generating mechanism. According to contingency explana-

tions, the process underlying the rates [...] has a structure that shifts over time.” The concern

is that failure to control for such shifts is likely to result in inconsistent estimates of the model

parameters.

Although the presence of unobserved heterogeneity and structural breaks have been more or

less ignored in most studies, some attempts have been made to obtain at least a partial solution.

Cornwell and Trumbull (1994) use data on 90 counties in North Carolina between 1981 and

1987. The fact that their data set has a panel structure makes it possible to control for certain

types of unobserved heterogeneity while at the same time maintaining a relatively low level of

aggregation. The main conclusion is that the estimated deterrence effect is highly sensitive to the

treatment of unobserved heterogeneity, and hence that researchers “should no longer disregard

this important source of specification error” (page 366). By contrast, studies such as Batton and

Jensen (2002), and Carlson and Michalowski (1997) employ aggregate time series data that they

split into subperiods based on major events in order to account for structural change.

Of course, while potentially quite useful by themselves, these solutions are bound to be inad-

equate in any application that is characterized by both unobserved heterogeneity and structural

breaks. One possibility is to use panel data to account for unobserved heterogeneity and to slice
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up the sample period to account for breaks. But then this means that the breaks are treated as

known, which is risky, as misplaced breaks are just as problematic as omitted breaks. This is im-

portant, as there is usually great uncertainty over both the number of breaks and their location.

As an example, Batton and Jensen (2002) used the Chow test to test for the presence of breaks

at given dates. They urged caution in interpreting their test results, since almost every potential

breakpoint was found to be significant.

The discussion of the last paragraph suggests that there is a need for an approach that is

general enough to accommodate not only unobserved heterogeneity but also structural breaks.

The PDL2S estimator fits this bill and we will therefore use it in this empirical illustration.

5.2 Main results

The data that we will use are the same as in Cornwell and Trumbull (1994) (see also Baltagi,

2006, and Baltagi and Liu, 2009).10 Hence, in this illustration, N = 90 and T = 7, which means

that it is important to use techniques that do not require T to be large. This is another reason for

considering PDL2S.

The included deterrence variables, which are standard in the literature, are the probability

of arrest (PRBARR), the probability of conviction given arrest (PRBCONV), the probability of a

prison sentence given a conviction (PRBPRIS), the average prison sentence in days (AVGSEN),

and the number of police per capita (POLPC). In addition to the deterrence variables, the data set

contains a number of wage variables that are intended to capture opportunities in the legal sec-

tor. These are the average weekly wages in construction (WCON), transportation, utilities and

communication (WTUC), wholesale and retail trade (WTRD), finance, insurance and real es-

tate (WFIR), services (WSER), manufacturing (WMFG), federal government (WFED), state gov-

ernment (WSTA) and local government (WLOC). Population density (DENSITY), and percent

young male (PCTYMLE) are also included, as crime tends to depend on these. All-in-all there

are p = 16 regressors, which are again similar to those considered previously in the literature

(see, for example, Ghasemi, 2017, and the references provided therein). All regressors are trans-

10The data can be downloaded on-line from the Journal of Applied Econometrics data archive, available at
http://qed.econ.queensu.ca/jae/.
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formed into logs, as is the crime rate (CRMRTE).11

INSERT TABLE 6 ABOUT HERE

The PDL2S estimator is implemented as described in Section 4. We estimate m̂(γ̂) = 5 breaks

in 1982, 1983, 1984, 1985 and 1986, which means that according to our break detection procedure

the only year where there is no break is 1981. The resulting PDL2S results are reported in Ta-

ble 6, which also contains the results for a model without breaks. The first thing to note is that

PRBARR and PRBCONV are significant. The estimated effects of the former (latter) regressor

vary quite substantially, from −0.681 (−0.569) to −0.417 (−0.271), but they are all negative. This

is important because PRBARR and PRBCONV are two of the deterrence variables that have at-

tracted most interest in the previous literature (see, for example, Cherry and List, 2002, Cornwell

and Trumbull, 1994, and Ghasemi, 2017). The results reported here for PRBARR and PRBCONV

are therefore supportive of the deterrence idea. They also suggest that the deterrence effect

is not constant, as usually assumed, but time-varying. The estimated effects of PRBPRIS vary

even more and even change sign on several occasions. Most of these estimates are, however,

insignificant, which means that the differences in the results need not be due to structural shifts

but that they also reflect estimation uncertainty. The same is true for AVGSEN, PCTYMLE and

the legal sector wages (with possible exceptions for WFED). Not all estimates are insignificant,

though, and there are some marked jumps in the results over time. POLPC enters significantly

but with an unexpected negative sign, a finding that is consistent with the results of Cornwell

and Trumbull (1994), Baltagi (2006), and Baltagi and Liu (2009). The estimated effects vary quite

substantially, and this is true also for DENSITY, which enters significantly positive, as expected.

The fact that PRBPRIS and AVGSEN are generally insignificant is consistent with studies

such as Baltagi (2006), Bun et al. (2020), and Ghasemi (2017). This fact, together with the signif-

icantly negative effect of PRBARR and PRBCONVI, suggests that imprisoning more criminals,

or imprisoning them for longer, is not as effective as increasing the risk of apprehension or con-

viction once arrested. This provides support to the idea that the consequences of being arrested

and found guilty of a crime do not stop with the punishment of the criminal justice system but

11We refer to Cornwell and Trumbull (1994) for a more detailed description of the data.
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that they also include indirect sanctions imposed by society. “A convicted individual may no

longer enjoy the same opportunities in the labor market or the same treatment by their peers,

and so the opportunity cost of lost income and the cost to the individual of social stigmatization

is implied in the event of conviction” (Bun et al., 2020, page 2322).

The importance of the risk of apprehension or conviction once arrested is one of the main

findings of this empirical illustration. Another finding is that the estimated coefficients are not

stable but time-varying. This is important because the role of breaks in the crime generating

process is still an unsettled issue. The following quotation from McDowall and Loftin (2005,

page 361) captures the sentiment in the literature: “contingency theories do not disagree with

the conventional approach about the variables that produce the rate changes. Instead, they add

a new layer of complexity to allow for the context within which the rate-generating process

operates. If these theories are correct, they could significantly improve knowledge about how

crime rates change over time. If they are incorrect, they might needlessly complicate attempts

to refine the standard approach.” Hence, while there are theories that are suggestive of shifts,

their empirical relevance has not yet been determined. For the 1981–1987 period that we are

considering there were a number of major events that might have caused the crime process to

change (see, for example, Carlson and Michalowski, 1997). Most importantly there was (i) the

election of Ronald Reagan in 1980 and the political-economic reorganization that followed, (ii)

a displacement of nonwhite inner-city males from the regular labour force to the criminogenic

informal drug economy, and (iii) a steep increase in juvenile violent crime. Of course, societal

change is rarely abrupt but trends to be gradual in nature (see, for example, Batton and Jensen,

2002, and McDowall and Loftin, 2005). It is therefore difficult say exactly what event caused

which breaks. What we can say, however, is that breaks are important and that they cannot be

ignored when estimating models of crime.

5.3 Robustness

In order to get a feeling for the validity of the interactive effects assumption, we computed the

average correlation coefficient of the PDL2S residuals for all pairs of counties, and the CD test of

Pesaran (2021), which tests the null hypothesis of no cross-sectional correlation. If the interactive
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effects assumption is correct, the regression errors should be cross-county uncorrelated, whereas

if the assumption is incorrect there should be some remaining cross-county correlation. Hence,

only if the residuals are cross-county uncorrelated can we conclude in favor of the interactive

effects assumption. The average correlation coefficient is −0.011 and the CD statistic is −1.806,

which is significant at the 10% but not at the 5% level or better. We take these results to suggest

that there are no major violations of the interactive effects assumption.

As mentioned in Section 3, our assumptions allow for virtually any dynamics in the idiosyn-

cratic regression errors. In order to shed some light on the persistence of these errors, we esti-

mated the largest autoregressive root of the PDL2S residuals. The estimated autoregressive root

is 0.752 and it is highly significant. Hence, as expected given the results of Bun et al. (2020), and

Ghasemi (2017), crime is highly persistent and it is therefore important to use methods that are

robust in this regard.

Cornwell and Trumbull (1994) argue that PRBARR and POLPC may be endogenous. As

pointed out in Section 2, we do not require strict exogeneity but only exogeneity conditional

on the factors. In order to assess the validity of this condition, we employed a post-demeaned

version of the Lasso GMM of Qian and Su (2016). The instruments used are the same as in

Cornwell and Trumbull (1994). They are the fraction of crimes that involve face-to-face contact,

and per capita tax revenue. While the first instrument is likely to be correlated with PRBARR,

as face-to-face contact makes it possible for victim to identify the offender, the second is likely

to correlate with POLPC, as counties with preferences for law enforcement will vote for higher

taxes to fund a larger police force.12 The results, available upon request, are very similar to those

reported in Table 6. The main difference is that the standard errors are much larger in the GMM

specification, which is consistent with the results of Baltagi (2006), Baltagi and Liu (2009), Bun et

al. (2020), and Cornwell and Trumbull (1994). We interpret these results as providing evidence in

favor of the PDL2S results reported in Table 6. The logic goes as follows: While LS and GMM are

12Hence, there are two instruments, one for each of the two endogenous regressors. This means that the model
is just identified. We experimented with using the one-year lagged values of PRBARR and POLPC as additional
instruments. Because the resulting model is overidentified, we can apply the overidentifying restrictions J-statistic
to assess the validity of the instruments. The instruments passed the test. The problem is that the lags do not
appear to be very relevant, in that PRBARR and POLPC are basically serially uncorrelated, which casts doubt on
the results based on the larger instrument set. For this reason, we follow the previous literature and focus on the
just-identified model specification. All other regressors are treated as exogenous and are therefore included in the
set of instruments.
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both consistent under exogeneity (conditional on the factors), the GMM instruments are not as

informative as the regressors that they replace, leading to variance inflation. Hence, as Murray

(2006, page 115) points out, “even valid instruments that are correlated with the troublesome

variable might still prove too inefficient to be informative”. This is consistent with Bun et al.

(2020), and Cornwell and Trumbull (1994), who on efficiency grounds prefer LS over GMM.

6 Conclusion

The present paper considers what we believe to be an empirically very relevant scenario, namely,

a researcher faced with the task of estimating a panel data model with unobserved heterogeneity

and slope coefficients that may be subject to multiple structural breaks. The researcher wants to

be able to estimate not only the slope coefficients within each regime, but also the unknown

breakpoints and their number. Moreover, because the panel data set is short, estimation must be

possible even if the number of time periods, T, is fixed and only the number of cross-sectional

units, N, is large. The current paper contributes by developing a Lasso-based approach that

meets this list of demands.

Our asymptotic results show that with probability approaching one the new approach cor-

rectly determines the number of breaks and their locations, and that the estimator of the regime-

specific regression coefficients is consistent and asymptotically normal. Simulation results are

also provided to suggest that the asymptotic predictions are borne out well in small samples.
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Â
m̂
−

A
0 m

0
‖/

(m̂
+

1)
p

ac
ro

ss
th

e
M

on
te

C
ar

lo
re

pl
ic

at
io

ns
,r

es
pe

ct
iv

el
y.

m
,φ

an
d

π
re

fe
r

to
th

e
nu

m
be

r
of

br
ea

ks
,t

he
pe

rs
is

te
nc

e
of

th
e

fa
ct

or
s,

an
d

th
e

se
ri

al
an

d
cr

os
s-

se
ct

io
na

lc
or

re
la

ti
on

of
th

e
er

ro
rs

in
th

e
eq

ua
ti

on
s

fo
r

y i
,t

an
d

x i
,t

,r
es

pe
ct

iv
el

y.

29



Ta
bl

e
2:

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

ca
se

w
it

h
no

n-
st

at
io

na
ry

fa
ct

or
s

(φ
=

1)
an

d
lo

w
er

ro
r

de
pe

nd
en

ce
(π

=
0.

4)
.

T
=

5
T
=

10
T
=

20
N

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

m
=

0
N

B
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

4
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

03
8

0.
00

2
0.

00
0

0.
00

0
0.

00
0

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

4
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

03
8

0.
00

2
0.

00
0

0.
00

0
0.

00
0

M
SE

0.
11

9
0.

10
8

0.
03

5
0.

02
0

0.
02

2
0.

05
6

0.
06

0
0.

03
9

0.
02

7
0.

01
6

0.
07

7
0.

05
2

0.
03

1
0.

01
2

0.
01

1
m

=
1

N
B

0.
01

5
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

3.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
BP

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
A

V
E

0.
98

5
0.

99
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

3
1.

00
0

1.
00

0
1.

00
0

1.
00

0
M

SE
0.

35
1

0.
09

6
0.

07
6

0.
08

1
0.

03
0

0.
13

1
0.

04
3

0.
03

9
0.

04
1

0.
02

1
0.

05
0

0.
05

3
0.

01
39

0.
02

4
0.

01
4

m
=

2
N

B
0.

15
3

0.
04

3
0.

01
2

0.
00

0
0.

00
0

0.
00

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
1.

84
7

1.
95

7
1.

98
8

2.
00

0
2.

00
0

1.
99

8
2.

00
0

2.
00

0
2.

00
0

2.
00

0
2.

00
0

2.
00

0
2.

00
0

2.
00

0
2.

00
0

M
SE

1.
59

6
0.

45
7

0.
19

1
0.

03
9

0.
02

9
0.

12
4

0.
07

3
0.

06
8

0.
02

4
0.

01
6

0.
09

9
0.

05
8

0.
02

7
0.

02
6

0.
00

0

N
ot

es
:S

ee
Ta

bl
e

1
fo

r
an

ex
pl

an
at

io
n.

30



Ta
bl

e
3:

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

ca
se

w
it

h
st

at
io

na
ry

fa
ct

or
s

(φ
=

0.
8)

an
d

hi
gh

er
ro

r
de

pe
nd

en
ce

(π
=

0.
8)

.

T
=

5
T
=

10
T
=

20
N

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

m
=

0
N

B
0.

01
1

0.
05

0
0.

06
2

0.
00

0
0.

00
1

0.
01

7
0.

04
7

0.
06

0
0.

00
0

0.
00

1
0.

01
4

0.
05

7
0.

04
3

0.
01

4
0.

00
1

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
0.

01
1

0.
00

1
0.

06
8

0.
00

0
0.

00
1

0.
01

8
0.

05
1

0.
00

0
0.

00
0

0.
00

1
0.

01
4

0.
06

9
0.

04
7

0.
01

5
0.

00
1

M
SE

0.
12

8
0.

10
2

0.
13

2
0.

02
3

0.
04

4
0.

07
6

0.
07

4
0.

07
1

0.
03

5
0.

02
5

0.
04

9
0.

03
8

0.
01

1
0.

02
8

0.
00

0
m

=
1

N
B

0.
01

1
0.

02
4

0.
03

0
0.

00
7

0.
00

1
0.

00
3

0.
01

8
0.

01
0

0.
00

2
0.

00
0

0.
01

5
0.

01
9

0.
00

4
0.

00
3

0.
00

0
BP

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
A

V
E

1.
00

5
1.

02
4

1.
03

3
1.

00
7

1.
00

1
1.

00
3

1.
02

0
1.

01
0

1.
00

2
1.

00
0

1.
01

5
1.

02
3

1.
00

5
1.

00
3

1.
00

0
M

SE
0.

31
3

0.
32

9
0.

17
7

0.
12

3
0.

04
3

0.
17

3
0.

14
4

0.
13

3
0.

05
1

0.
04

1
0.

05
4

0.
12

0
0.

01
9

0.
03

1
0.

01
5

m
=

2
N

B
0.

09
8

0.
03

7
0.

00
8

0.
00

3
0.

00
0

0.
00

3
0.

01
3

0.
00

4
0.

00
2

0.
00

0
0.

00
5

0.
01

3
0.

00
6

0.
00

0
0.

00
0

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
1.

90
9

1.
99

2
2.

00
7

2.
00

3
2.

00
0

2.
00

3
2.

01
2

2.
00

4
2.

00
2

2.
00

0
2.

00
5

2.
01

3
2.

00
6

2.
00

0
2.

00
0

M
SE

1.
18

2
0.

48
5

0.
23

8
0.

11
3

0.
05

7
0.

20
8

0.
18

1
0.

14
3

0.
06

2
0.

02
3

0.
14

8
0.

12
7

0.
07

6
0.

05
0

0.
02

0

N
ot

es
:S

ee
Ta

bl
e

1
fo

r
an

ex
pl

an
at

io
n.

31



Ta
bl

e
4:

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

ca
se

w
it

h
no

n-
st

at
io

na
ry

fa
ct

or
s

(φ
=

1)
an

d
hi

gh
er

ro
r

de
pe

nd
en

ce
(π

=
0.

8)
.

T
=

5
T
=

10
T
=

20
N

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

m
=

0
N

B
0.

01
5

0.
04

9
0.

04
8

0.
01

9
0.

00
0

0.
02

8
0.

05
7

0.
05

1
0.

02
0

0.
00

1
0.

05
7

0.
06

8
0.

03
4

0.
00

7
0.

00
3

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
0.

01
7

0.
05

1
0.

05
2

0.
02

0.
00

0
0.

02
9

0.
06

8
0.

05
6

0.
02

0.
00

1
0.

06
1

0.
07

5
0.

03
7

0.
00

7
0.

00
5

M
SE

0.
17

9
0.

06
9

0.
07

4
0.

07
3

0.
04

0
0.

10
4

0.
04

9
0.

07
1

0.
04

1
0.

02
5

0.
03

8
0.

03
4

0.
03

2
0.

01
4

0.
01

2
m

=
1

N
B

0.
00

3
0.

02
1

0.
02

1
0.

00
6

0.
00

0
0.

00
2

0.
01

2
0.

00
9

0.
00

1
0.

00
0

0.
00

5
0.

01
6

0.
00

7
0.

00
2

0.
00

0
BP

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
A

V
E

1.
00

3
1.

02
4

1.
02

3
1.

00
6

1.
00

0
1.

00
2

1.
01

5
1.

00
9

1.
00

1
1.

00
0

1.
00

5
1.

01
6

1.
00

7
1.

00
2

1.
00

0
M

SE
0.

27
0

0.
23

8
0.

15
0

0.
06

1
0.

05
6

0.
17

0
0.

15
1

0.
05

1
0.

06
3

0.
05

3
0.

10
2

0.
05

9
0.

04
9

0.
03

5
0.

01
3

m
=

2
N

B
0.

10
3

0.
02

6
0.

00
8

0.
00

1
0.

00
0

0.
00

2
0.

00
5

0.
00

4
0.

00
0

0.
00

0
0.

00
3

0.
00

3
0.

00
6

0.
00

0
0.

00
0

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
1.

89
8

1.
99

8
2.

00
7

2.
00

1
2.

00
0

2.
00

2
2.

00
5

2.
00

4
2.

00
3

2.
00

0
2.

00
3

2.
00

4
2.

00
6

2.
00

0
2.

00
0

M
SE

1.
20

8
0.

41
2

0.
23

8
0.

13
0

0.
04

8
0.

11
5

0.
12

1
0.

14
3

0.
06

2
0.

03
2

0.
10

0
0.

06
5

0.
07

6
0.

02
4

0.
01

5

N
ot

es
:S

ee
Ta

bl
e

1
fo

r
an

ex
pl

an
at

io
n.

32



Ta
bl

e
5:

Si
m

ul
at

io
n

re
su

lt
s

fo
r

th
e

po
st

-L
as

so
LS

es
ti

m
at

or
ba

se
d

on
no

n-
de

m
ea

ne
d

da
ta

w
he

n
fa

ct
or

s
ar

e
no

n-
st

at
io

na
ry

(φ
=

1)
an

d
er

ro
r

de
pe

nd
en

ce
is

hi
gh

(π
=

0.
8)

.

T
=

5
T
=

10
T
=

20
N

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

25
50

10
0

20
0

60
0

m
=

0
N

B
0.

50
5

0.
62

1
0.

65
9

0.
58

7
0.

52
6

0.
68

5
0.

75
7

0.
71

0
0.

65
8

0.
58

1
0.

77
1

0.
81

6
0.

81
2

0.
70

8
0.

59
1

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
0.

95
3

1.
32

6
1.

47
8

1.
12

5
0.

87
1

1.
87

6
2.

41
2

2.
30

5
1.

84
9

1.
38

3
2.

88
9

3.
52

9
3.

30
5

2.
63

2.
01

8
M

SE
3.

99
0

3.
86

3
3.

89
7

3.
90

2
3.

94
8

2.
99

0
3.

00
9

2.
97

0
2.

95
9

3.
02

7
2.

32
1

2.
25

0
2.

26
1

2.
25

8
2.

27
0

m
=

1
N

B
0.

40
7

0.
49

1
0.

50
3

0.
44

0
0.

37
6

0.
44

3
0.

54
4

0.
54

3
0.

47
2

0.
42

7
0.

62
2

0.
65

2
0.

61
9

0.
51

9
0.

42
4

BP
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

A
V

E
1.

62
0

1.
84

3
1.

83
7

1.
70

4
1.

52
4

2.
03

3
2.

46
3

2.
39

9
2.

11
3

1.
87

0
2.

88
2

3.
32

8
3.

15
7

2.
59

5
2.

15
8

M
SE

3.
87

0
2.

38
0

3.
81

0
3.

83
4

3.
86

6
3.

11
0

3.
01

2
2.

92
0

2.
97

5
2.

96
8

2.
28

2
2.

25
9

2.
25

9
2.

24
1

2.
24

3
m

=
2

N
B

0.
27

5
0.

37
1

0.
38

5
0.

31
0

0.
27

8
0.

38
3

0.
45

7
0.

43
5

0.
36

0
0.

37
1

0.
49

5
0.

52
0

0.
50

3
0.

40
0

0.
37

1
BP

0.
00

4
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
1

0.
00

1
0.

00
0

0.
00

0
0.

00
0

0.
00

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
A

V
E

2.
34

1
2.

50
5

2.
52

1
2.

41
1

2.
34

1
2.

70
5

3.
01

3
2.

97
3

2.
69

6
2.

63
7

3.
26

8
3.

61
9

3.
44

9
3.

05
2

2.
87

6
M

SE
3.

70
0

3.
75

0
3.

61
2

3.
70

6
3.

68
9

3.
03

2
2.

94
7

2.
93

4
2.

93
6

2.
92

9
2.

28
4

2.
25

7
2.

24
8

2.
24

9
2.

25
1

N
ot

es
:S

ee
Ta

bl
e

1
fo

r
an

ex
pl

an
at

io
n.

33



Ta
bl

e
6:

Em
pi

ri
ca

le
st

im
at

io
n

re
su

lt
s.

PD
L2

S
R

eg
re

ss
or

19
81

–1
98

2
19

83
19

84
19

85
19

86
19

87
N

BR
PR

BA
R

R
−

0.
41

7*
**

−
0.

68
1*

**
−

0.
53

2*
**
−

0.
66

3*
**
−

0.
63

4*
**
−

0.
45

7*
**
−

0.
52

1*
**

PR
BC

O
N

V
−

0.
36

0*
**

−
0.

37
9*

**
−

0.
40

5*
**
−

0.
39

4*
**
−

0.
56

9*
**
−

0.
27

1*
**
−

0.
39

8*
**

PR
BP

R
IS

0.
05

5
0.

41
9*

**
0.

06
7

−
0.

11
6

0.
21

4
−

0.
05

2
0.

09
0

A
V

G
SE

N
−

0.
11

3
−

0.
25

3*
0.

09
4

−
0.

04
4

−
0.

12
3

−
0.

25
8

−
0.

11
6

PO
LP

C
0.

17
5*

*
0.

37
7*

**
0.

33
8*

**
0.

30
9*

**
0.

47
4*

**
0.

27
1*

*
0.

29
0*

**
D

EN
SI

TY
0.

21
8*

**
0.

01
2

0.
24

6*
**

0.
19

8*
*

0.
03

8
0.

24
8*

**
0.

17
9*

**
W

C
O

N
−

0.
12

6
−

0.
04

9
0.

04
0

−
0.

12
8

0.
33

3
0.

23
1

−
0.

02
1

W
TU

C
−

0.
07

0
−

0.
00

7
−

0.
50

2*
*

0.
26

4
−

0.
22

6
−

0.
04

9
−

0.
04

6
W

TR
D

0.
12

4
1.

01
9*

**
0.

08
8

0.
47

6
0.

04
3

0.
18

9
0.

15
3

W
FI

R
0.

01
1

−
0.

08
8

0.
15

5
−

0.
25

9
0.

07
2

−
0.

50
6

0.
02

9
W

SE
R

0.
00

2
−

0.
46

3
0.

06
8

−
0.

57
8

0.
02

7
−

0.
29

3
−

0.
03

2
W

M
G

F
−

0.
13

3
−

0.
12

9
−

0.
47

6*
**

−
0.

15
2

−
0.

14
4

0.
02

0
−

0.
21

7
W

FE
D

0.
68

7*
*

0.
54

7
0.

54
1

0.
48

0
0.

52
4

1.
00

5*
*

0.
62

6*
*

W
ST

A
−

0.
26

6
−

0.
21

3
−

0.
38

9
−

0.
32

0
−

0.
44

9
−

0.
08

5
−

0.
27

9
W

LO
C

0.
25

7
0.

48
1

0.
12

1
0.

85
0

0.
51

0
−

0.
09

1
0.

25
1

PC
TY

M
LE

0.
29

2
0.

24
3

−
0.

02
2

0.
20

0
−

0.
07

6
0.

20
0

0.
17

5

N
ot

es
:

Th
e

de
pe

nd
en

t
va

ri
ab

le
is

th
e

cr
im

e
ra

te
(C

R
M

R
TE

).
Th

e
de

te
rr

en
ce

re
gr

es
so

rs
ar

e
ca

se
s

th
e

pr
ob

ab
ili

ty
of

ar
re

st
(P

R
BA

R
R

),
th

e
pr

ob
ab

ili
ty

of
co

nv
ic

ti
on

gi
ve

n
ar

re
st

(P
R

BC
O

N
V

),
an

d
th

e
pr

ob
ab

ili
ty

of
a

pr
is

on
se

nt
en

ce
gi

ve
n

a
co

nv
ic

ti
on

(P
R

BP
R

IS
).

Th
e

in
cl

ud
ed

co
nt

ro
lv

ar
ia

bl
es

ar
e

av
er

ag
e

pr
is

on
se

nt
en

ce
in

da
ys

(A
V

G
SE

N
),

th
e

nu
m

be
r

of
po

lic
e

pe
r

ca
pi

ta
(P

O
LP

C
),

po
pu

la
ti

on
de

ns
it

y
(D

EN
SI

TY
),

pe
rc

en
t

yo
un

g
m

al
e

(P
C

TY
M

LE
),

an
d

th
e

av
er

ag
e

w
ee

kl
y

w
ag

e
by

in
du

st
ry

,w
he

re
th

e
in

cl
ud

ed
in

du
st

ri
es

ar
e

co
ns

tr
uc

ti
on

(W
C

O
N

),
tr

an
sp

or
ta

ti
on

,u
ti

lit
ie

s
an

d
co

m
m

un
ic

at
io

n
(W

TU
C

),
w

ho
le

sa
le

an
d

re
ta

il
tr

ad
e

(W
TR

D
),

fin
an

ce
,i

ns
ur

an
ce

an
d

re
al

es
ta

te
(W

FI
R

),
se

rv
ic

es
(W

SE
R

),
m

an
uf

ac
tu

ri
ng

(W
M

FG
),

fe
de

ra
lg

ov
er

nm
en

t
(W

FE
D

),
st

at
e

go
ve

rn
m

en
t(

W
ST

A
),

an
d

lo
ca

lg
ov

er
nm

en
t(

W
LO

C
).

A
ll

va
ri

ab
le

s
ar

e
ex

pr
es

se
d

in
lo

gs
.T

he
co

lu
m

n
la

be
lle

d
“B

N
R

”
co

nt
ai

ns
th

e
es

ti
m

at
io

n
re

su
lt

s
w

he
n

no
br

ea
ks

ar
e

al
lo

w
ed

.T
he

sy
m

bo
ls

*,
**

an
d

**
*

de
no

te
st

at
is

ti
ca

ls
ig

ni
fic

an
ce

at
th

e
10

%
,5

%
an

d
1%

le
ve

ls
,r

es
pe

ct
iv

el
y.

34



ONLINE APPENDIX TO “ESTIMATION OF PANEL DATA
MODELS WITH INTERACTIVE EFFECTS AND MULTIPLE

STRUCTURAL BREAKS WHEN T IS FIXED”

Yousef Kaddoura
Lund University

Joakim Westerlund∗

Lund University

and

Deakin University

September 17, 2021

Abstract

This online appendix supplement provides the proof of the asymptotic results provided

in Section 3 of the main paper.

Lemma A.1. Suppose that Assumptions EPS, LAM, Q, MOM and J hold. Then, uniformly in t ∈ TT−1,

‖β̇t − β0
t ‖ = Op(N−1/2).

Proof: Clearly,

√
N(β̇t − β0

t ) =

(
1
N

N

∑
i=1

x̃i,tx̃′i,t

)−1
1√
N

N

∑
i=1

x̃i,tũi,t. (A.1)

Note how ũi,t = λ̃
′
ift + ε̃i,t = ν̃′ift + ε̃i,t. Let gi,t = ν′ift + εi,t. By using this and deviations from

means,

N

∑
i=1

x̃i,tũi,t =
N

∑
i=1

x̃i,tgi,t. (A.2)

∗Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden. Telephone: +46 46 222 8997. Fax:
+46 46 222 4613. E-mail address: joakim.westerlund@nek.lu.se.
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Let us further define Xi = [xi,1, ..., xi,T]
′ and denote byX be the sigma-field generated by (X1, ..., XN).

Since E(gi,tgj,t|C) = 0 for j 6= i and E(g2
i,t|C) = f′tΣift + σ2

i,t, where Σi = E(νiν
′
i|C) and

σ2
i,t = E(ε2

i,t|C), we can show that

E

∥∥∥∥∥ 1√
N

N

∑
i=1

x̃i,tgi,t

∥∥∥∥∥
2

|C

 = E

(
tr

[(
1√
N

N

∑
i=1

x̃i,tgi,t

)(
1√
N

N

∑
i=1

x̃i,tgi,t

)′]
|C
)

=
1
N

N

∑
i=1

N

∑
j=1

E[tr(x̃i,tx̃′j,t)gi,tgj,t|C]

=
1
N

N

∑
i=1

N

∑
j=1

E[tr(x̃i,tx̃′j,t)E(gi,tgj,t|X , C)|C]

=
1
N

N

∑
i=1

E[tr(x̃i,tx̃′i,s)E(g2
i,t|X , C)|C]

=
1
N

N

∑
i=1

E[tr(x̃i,tx̃′i,t)|C](f′tΣift + σ2
i,t)

≤
(

1
N

N

∑
i=1

E(‖x̃i,t‖4|C)
)1/2(

1
N

N

∑
i=1

(f′tΣift + σ2
i,t)

2

)1/2

≤
(

1
N

N

∑
i=1

E(‖x̃i,t‖4|C)
)1/2(

2
N

N

∑
i=1

(‖ft‖4‖Σi‖+ σ4
i,t)

)1/2

= Op(1). (A.3)

Hence, since the variance is bounded,∥∥∥∥∥ 1√
N

N

∑
i=1

x̃i,tgi,t

∥∥∥∥∥ = Op(1). (A.4)

It follows that since ‖(N−1 ∑N
i=1 x̃i,tx̃′i,t)

−1‖ = Op(1) by assumption,

‖
√

N(β̇t − β0
t )‖ ≤

∥∥∥∥∥∥
(

1
N

N

∑
i=1

x̃i,tx̃′i,t

)−1
∥∥∥∥∥∥
∥∥∥∥∥ 1√

N

N

∑
i=1

x̃i,tũi,t

∥∥∥∥∥ = Op(1), (A.5)

which is what we wanted to show. �

Proof of Theorem 1.

Define bt =
√

N(βt − β0
t ) and b̂t =

√
N(β̂t − β0

t ). The first term in the objective function

depends on ỹi,t − x̃′i,tβt. Making use of the definition of bt and ỹi,t = x̃′i,tβ
0
t + ũi,t, this term can

2



be written as

ỹi,t − x̃′i,tβt = ỹi,t − x̃′i,t(β0
t + N−1/2bt) = ũi,t − N−1/2x̃′i,tbt. (A.6)

Since N and `γ(B0
T) do not depend on BT, centering and scaling of the objective function by these

quantities are inconsequential. We therefore proceed to minimize N[`γ(BT)− `γ(B0
T)]. Note first

that

N`γ(BT) =
N

∑
i=1

T

∑
t=1

(ỹi,t − x̃′i,tβt)
2 + Nγ

T

∑
t=2

wt‖βt − βt−1‖

=
N

∑
i=1

T

∑
t=1

(ũi,t − N−1/2x̃′i,tbt)
2

+ Nγ
T

∑
t=2

wt‖β0
t + N−1/2bt − (β0

t−1 + N−1/2bt−1)‖

=
N

∑
i=1

T

∑
t=1

ũ2
i,t −

2√
N

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,tbt +
1
N

N

∑
i=1

T

∑
t=1

b′tx̃i,tx̃′i,tbt

+ Nγ
T

∑
t=2

wt‖β0
t − β0

t−1 + N−1/2(bt − bt−1)‖. (A.7)

Hence, since

N`γ(B0
T) =

N

∑
i=1

T

∑
t=1

ũ2
i,t + Nγ

T

∑
t=2

wt‖β0
t − β0

t−1‖, (A.8)

we obtain

N[`γ(BT)− `γ(B0
T)]

=
1
N

N

∑
i=1

T

∑
t=1

b′tx̃i,tx̃′i,tbt −
2√
N

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,tbt

+ Nγ
T

∑
t=2

wt[‖β0
t − β0

t−1 + N−1/2(bt − bt−1)‖ − ‖β0
t − β0

t−1‖]

=
1
N

N

∑
i=1

T

∑
t=1

b′tx̃i,tx̃′i,tbt −
2√
N

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,tbt

+ Nγ ∑
t∈T 0

m0

wt[‖β0
t − β0

t−1 + N−1/2(bt − bt−1)‖ − ‖β0
t − β0

t−1‖]

+ Nγ ∑
t∈T 0c

m0

wt‖N−1/2(bt − bt−1)‖, (A.9)

where T 0c
m0 = {1, . . . , T} \ T 0

m0 is the complement of T 0
m0 and the last equality holds because

β0
t = β0

t−1 for all t ∈ T 0c
m0 (β0

t is constant within break regimes). Let us write the above equation

3



more compactly as

N[`γ(BT)− `γ(B0
T)] = H1(b)− 2H2(b) + H3(b) + H4(b), (A.10)

where b = [b′1, . . . , b′T]
′ and implicit definitions of H1(b), H2(b), H3(b) and H4(b). For ‖b‖,

there are two possibilities; it is either bounded or unbounded. We now show that if ‖b‖ > 0

is unbounded, N[`γ(BT)− `γ(B0
T)] > 0, which means that `γ(BT) cannot be minimized in this

case. This implies that B̂T is consistent with ‖b‖ = ‖b̂‖ = Op(1).

Consider H1(b). This term is positive, as is clear from

H1(b) =
1
N

N

∑
i=1

T

∑
t=1

b′tx̃i,tx̃′i,tbt = b′QN(TT−1)b = |b′QN(TT−1)b|

≥ λmin[QN(TT−1)]‖b‖2 > 0, (A.11)

where QN(TT−1) is as in the main text.

Define

UN(Tm) =


1
N ∑T1−1

t=T0
∑N

i=1 x̃i,tũi,t
...

1
N ∑

Tm+1−1
t=Tm

∑N
i=1 x̃i,tũi,t

 , (A.12)

a (m + 1)p× 1 vector. Note that UN(TT−1) = [N−1 ∑N
i=1 x̃′i,1ũi,1, . . . , N−1 ∑N

i=1 x̃′i,Tũi,T]
′. Hence,

in this notation, H2(b) = b′
√

NUN(TT−1). This is not positive but we know from the proof

of Lemma A.1 that ‖N−1/2 ∑N
i=1 x̃′i,tũi,t‖ = Op(1) uniformly in t, and hence ‖

√
NUN(TT−1)‖ =

Op(1). It follows that

|H2(b)| ≤ ‖b‖‖
√

NUN(TT−1)‖ = Op(‖b‖). (A.13)

Hence, since H1(b) = Op(‖b‖2), if ‖b‖ is unbounded, H2(b) will be dominated by H1(b).

Next up is H3(b). Consider

∑
t∈T 0

m0

‖bt − bt−1‖ ≤

 ∑
t∈T 0

m0

‖bt − bt−1‖2


1/2

≤

 ∑
t∈T 0

m0

‖bt + bt−1‖2


1/2

≤

2 ∑
t∈T 0

m0

(‖bt‖2 + ‖bt−1‖2)


1/2

≤

2 ∑
t∈T 0

m0

‖bt‖2


1/2

≤
√

2‖b‖, (A.14)
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which in turn implies

H3(b) = Nγ ∑
t∈T 0

m0

wt[‖β0
t − β0

t−1 + N−1/2(bt − bt−1)‖ − ‖β0
t − β0

t−1‖]

≤ N ∑
t∈T 0

m0

wt[‖β0
t − β0

t−1‖+ ‖N−1/2(bt − bt−1)‖ − ‖β0
t − β0

t−1‖]

=
√

Nγ ∑
t∈T 0

m0

wt‖bt − bt−1‖

≤
√

Nγ max
s∈T 0

m0

ws ∑
t∈T 0

m0

‖bt − bt−1‖

≤
√

2Nγ max
s∈T 0

m0

ws‖b‖. (A.15)

Consider maxs∈T 0
m0

ws. By Lemma A.1, ‖β̇t − β0
t ‖ = Op(N−1/2). By using this, the fact that

‖β0
t − β0

t−1‖ > 0 for t ∈ T 0
m0 , and assumption J (b) we get

wt = ‖β̇t − β̇t−1‖
−κ =

(
‖β0

t − β0
t−1‖+ Op(N−1/2)

)−κ

≤
(

min
t∈T 0

m0

‖β0
t − β0

t−1‖+ Op(N−1/2)

)−κ

=

(
min

1≤j≤m0+1
‖α0

j+1 − α0
j ‖+ Op(N−1/2)

)−κ

= Op(J−κ
min) (A.16)

for all t ∈ T 0
m0 , which means that maxs∈T 0

m0
ws is of the same order. By using this and the condi-

tion that
√

NγJ−κ
min = Op(1) (Assumption J), we obtain

H3(b) ≤
√

2Nγ max
s∈T 0

m0

ws‖b‖ = Op(
√

NγJ−κ
min‖b‖) = Op(‖b‖). (A.17)

The above results imply

H1(b)− 2H2(b) + H3(b) ≥ H1(b)− 2|H2(b)| − |H3(b)|

= Op(‖b‖2)−Op(‖b‖) > 0. (A.18)

We also see that H4(b) ≥ 0. Hence, if ‖b‖ is unbounded, then N[`γ(BT)− `γ(B0
T)] > 0. But we

also know that N[`γ(B̂T)− `γ(B0
T)] ≤ 0, which means that ‖b‖ = ‖b̂‖ must be bounded. The

required result is implied by this. �
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Proof of Theorem 2.

Let θ̂t = β̂t − β̂t−1 and θt = βt − βt−1. We want to show that ‖θ̂t‖ = 0 for all t ∈ T 0c
m0 w.p.a.1.

This is done through a contradiction argument. Let us therefore assume that ‖θ̂t‖ > 0 for some

t ∈ T 0c
m0 and all N, including N → ∞. We now show that if this is the case, θ̂t cannot satisfy the

first-order condition from which it was derived. This implies that ‖θ̂t‖ > 0 cannot be true and

that ‖θ̂t‖ = 0 w.p.a.1.

We now consider the first-order partial derivative of `γ(BT) with respect to βt,p, the p-th

element of βt. In so doing, we make use of

∂

∂βt,p
‖βt − βt−1‖ =

∂

∂βt,p
[(βt,1 − βt−1,1)

2 + . . . + (βt,p − βt−1,p)
2]1/2

=
βt,p − βt−1,p

[(βt,1 − βt−1,1)2 + . . . + (βt,p − βt−1,p)2]1/2 =
θt,p

‖θt‖
(A.19)

for ‖θt‖ > 0, and similarly

∂

∂βt,p
‖βt+1 − βt‖ = −

θt+1,p

‖θt+1‖
(A.20)

for ‖θt+1‖ > 0. Also, from the proof of Theorem 1, ỹi,t − x̃′i,tβt = ũi,t − x̃′i,t(βt − β0
t ). By using

these results and the definition of `γ(BT),

∂`γ(BT)

∂βt,p
=

∂

∂βt,p

N

∑
i=1

1
N

T

∑
t=1

(ỹi,t − x̃′i,tβt)
2 +

∂

∂βt,p
γ

T

∑
t=2

wt‖βt − βt−1‖

= − 2
N

N

∑
i=1

(ỹi,t − x̃′i,tβt)x̃i,t,p + γ
∂

∂βt,p
(wt‖βt − βt−1‖+ wt+1‖βt+1 − βt‖)

= − 2
N

N

∑
i=1

(ỹi,t − x̃′i,tβt)x̃i,t,p + γwt
θt,p

‖θt‖
− γwt+1

θt+1,p

‖θt+1‖

=
2
N

N

∑
i=1

x̃′i,t(βt − β0
t )x̃i,t,p −

2
N

N

∑
i=1

ũi,t x̃i,t,p + γwt
θt,p

‖θt‖
− γwt+1

θt+1,p

‖θt+1‖
, (A.21)

where x̃i,t,p is the p-th row of x̃i,t. Assume without loss of generality that |θ̂t,1| ≤ . . . ≤ |θ̂t,p|,

where θ̂t,j is the j-th row of θ̂t. Moreover, while for the purpose of this proof we can assume that

‖θ̂t‖ > 0, we do not want to impose ‖θ̂t+1‖ > 0. Therefore, in order to ensure that θt+1,p/‖θt+1‖

is well defined when evaluated at θt+1 = θ̂t+1, we introduce the p × 1 vector gt, whose p-th

element is denoted gt,p. This vector is such that gt,p = θ̂t,p/‖θ̂t‖ if ‖θ̂t‖ > 0 and ‖gt‖ ≤ 1

6



if ‖θ̂t‖ = 0, where the latter result is due to the theory on sub-differential calculus. In this

notation, the sought first-order condition (multiplied by
√

N) is given by

√
N

∂`γ(B̂T)

∂βt,p
=

2√
N

N

∑
i=1

x̃′i,t(β̂t − β0
t )x̃i,t,p −

2√
N

N

∑
i=1

ũi,t x̃i,t,p +
√

Nγwtgt,p

−
√

Nγwt+1gt+1,p

= M1,t −M2,t + M3,t −M3,t+1 = 0, (A.22)

with M1,t, M2,t and M3,t implicitly defined.

Consider M1,t. By Theorem 1, ‖β̂t − β0
t ‖ = Op(N−1/2), implying that

|M1,t| =
∣∣∣∣∣ 2
N

N

∑
i=1

x̃i,t,px̃′i,t
√

N(β̂t − β0
t )

∣∣∣∣∣ ≤ 2

∥∥∥∥∥ 1
N

N

∑
i=1

x̃i,t,px̃i,t

∥∥∥∥∥ ‖√N(β̂t − β0
t )‖

≤ 2

(
1
N

N

∑
i=1

x̃2
i,t,p

)1/2(
1
N

N

∑
i=1
‖x̃i,t‖2

)1/2

‖
√

N(β̂t − β0
t )‖ = Op(1), (A.23)

and by the proof of Lemma A.1, |M2,t| is of the same order. For |M3,t|, we use the fact that

β0
t − β0

t−1 = 0p×1 for t ∈ T 0c
m0 . This implies

wt = ‖β̇t − β̇t−1‖
−κ = ‖β0

t − β0
t−1 + Op(N−1/2)‖−κ = Op(Nκ/2). (A.24)

Also, since ‖θ̂t‖ > 0 by assumption, gt,p = θ̂t,p/‖θ̂t‖. It follows that

|M3,t| =
√

Nγwt|gt,p| =
√

Nγwt
|θ̂t,p|
‖θ̂t‖

≥
√

Nγ
wt√

p
= Op(N(κ+1)/2γ)→ ∞, (A.25)

where the inequality is due to

1
√

p
≤
|θ̂t,p|
‖θ̂t‖

≤ 1, (A.26)

and the divergence follows from N(κ+1)/2γ→ ∞ (Assumption J).

The order of |M3,t+1| depends on whether (A) t + 1 ∈ T 0
m0 for j ∈ {1, . . . , m0}, or (B) t + 1 ∈

T 0c
m0 . Suppose that (A) is true, such that ‖β0

t+1 − β0
t ‖ > 0. Then, by Theorem 1,

wt+1 = ‖β̇t+1 − β̇t‖
−κ = ‖β0

t+1 − β0
t + Op(N−1/2)‖−κ = Op(J−κ

min). (A.27)

Since ‖gt+1‖ ≤ 1, we know that |gt+1,p| = Op(1). By using this, wt+1 = Op(J−κ
min) and

√
NγJ−κ

min =

O(1) (Assumption J), we can show that

|M3,t+1| =
√

Nγwt+1|gt+1,p| = Op(
√

NγJ−κ
min) = Op(1). (A.28)

7



Hence, if (A) holds, then M1,t, M2,t and M3,t+1 are all Op(1), while |M3,t| → ∞, which means that

the first-order condition is violated. It must therefore be that ‖θ̂t‖ = 0 w.p.a.1. But if ‖θ̂t‖ = 0,

M3,t =
√

Nγwtgt,p and this term must be Op(1) for the first-order condition to hold. The fact

that M3,t = Op(1) is partly unexpected, because wt = Op(Nκ/2) → ∞, which means that gt,p

must be going to zero at the same rate. We will use this result again now when we continue onto

case (B).

If (B) holds, then t + 1 ∈ T 0c
m0 , and so we again have wt+1 = Op(Nκ/2) → ∞. We will now

argue why, as in the proof of (A), this divergence does not spill over to M3,t+1. Let us without loss

of generality consider the case when t + 1 = T0
j under (A). This means that t = T0

j − 1 and, from

the analysis of (A), we have M3,t = M3,T0
j −1 = Op(1). We also know that the first-order condition

is violated and hence that ‖θ̂t‖ = ‖θ̂T0
j −1‖ = 0 w.p.a.1. Suppose now instead that t = T0

j − 2,

or t + 1 = T0
j − 1, so that (B) holds. In this case, |M3,t| = |M3,T0

j −2| = Op(N(κ+1)/2γ) → ∞

just as before and M3,t+1 = M3,T0
j −1 = Op(1), since we know from (A) that M3,T0

j −1 = Op(1).

This means that the first-order condition is again violated, and therefore ‖θ̂t‖ = ‖θ̂T0
j −2‖ = 0

w.p.a.1. This recursive argument can be used repeatedly to show that ‖θ̂t‖ = 0 for all t =

T0
j − 2, . . . , T0

j−1 + 1 w.p.a.1. �

Proof of Corollary 1.

By Theorem 2, m̂ ≤ m0 w.p.a.1, since asymptotically no time periods in T 0c
m0 can be misclassified

as a breakpoint. In what remains, we show that all time periods in T 0
m0 are correctly classified as

breakpoints. This implies that m̂ = m0 w.p.a.1, and hence both (a) and (b) are proved. We begin

by noting that by Theorem 1,

‖θ̂t‖ = ‖β̂t − β̂t−1‖ = ‖β
0
t − β0

t−1‖+ Op(N−1/2) (A.29)

for all t ∈ T 0
m0 . Hence, if ‖θ̂t‖ = 0, so that t ∈ T 0

m0 is not classified as a breakpoint, then

‖β0
t − β0

t−1‖ = Op(N−1/2). (A.30)

However, since ‖β0
t − β0

t−1‖ ≥ Jmin for all t ∈ T 0
m0 , this violates the condition that

√
NJmin → ∞

(Assumption J). We therefore conclude that ‖θ̂t‖ > 0 for all t ∈ T 0
m0 w.p.a.1, which means that

all time periods in T 0
m0 are correctly classified. �
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Proof of Theorem 3.

By Corollary 1, we know that Âm̂ = Âm0 = Âm0(T 0
m0) = [α̂1(T 0

m0)
′, . . . , α̂m+1(T 0

m0)
′]′ w.p.a.1. The

asymptotic distribution of Âm̂ is therefore equal to that of Âm0 , which we now derive. From

ỹi,t = x̃′i,tα
0
j + ũi,t (A.31)

for t = T0
j−1, . . . , T0

j − 1 with j = 1, . . . , m0 + 1, we get

Âm = A0
m0 + QN(T 0

m0)
−1UN(T 0

m0), (A.32)

where QN(T 0
m0) is defined in the main text and UN(T 0

m0) is defined in Proof of Theorem 1. Let

Q0 = Q0(T 0
m0). In this notation,

√
N(Âm −A0

m0) = Q−1
0

√
NUN(T 0

m0) + [QN(T 0
m0)
−1 −Q−1

0 ]
√

NUN(T 0
m0). (A.33)

By Assumption Q, ‖QN(T 0
m0)−Q0‖ = op(1), where QN(T 0

m0) and Q0 are both positive definite

(w.p.1). Analogously to the proof of Lemma A.1, ‖
√

NUN(T 0
m0)‖ = Op(1), ‖Q−1

0 ‖ = O(1) and

‖QN(T 0
m0)
−1 −Q−1

0 ‖ = op(1), (A.34)

which in turn implies

‖[QN(T 0
m0)
−1 −Q−1

0 ]
√

NUN(T 0
m0)‖ ≤ ‖QN(T 0

m0)
−1 −Q−1

0 ‖‖
√

NUN(T 0
m0)‖

= op(1). (A.35)

The second term on the right-hand side of the above expression for
√

N(Âm −A0
m0) is therefore

negligible.

We now show that
√

NUN(T 0
m0) is asymptotically normal conditional on the sigma-field gen-

erated by (f1, . . . , fT), C. Let

ui = ui(T 0
m0) =


∑

T0
1−1

t=T0
0

x̃i,tgi,t

...

∑
T0

m0+1
−1

t=T0
m0

x̃i,tgi,t

 , (A.36)

an (m0 + 1)p × 1 vector. Here gi,t = ν′ift + εi,t, as in Proof of Lemma A.1. In this notation,
√

NUN(T 0
m0) = N−1/2 ∑N

i=1 ui. Let Fi be the sigma-field generated by C and (u1, ..., ui). Then

9



{(ui,Fi) : i ≥ 1} is a martingale difference sequence (MDS), because ui is independent across

i conditional on C, and E(ui|Fi−1) = E(ui|C) = 0(m0+1)p×1 (see, for example, Andrews, 2005,

for a similar MDS construction). A conditional Lindeberg condition holds because ui have four

finite moments. Therefore, by the MDS CLT given in Proposition A.1 of Magdalinos and Phillips

(2009),

1√
N

N

∑
i=1

ui →d MN(0(m0+1)p×1, Ω0) (A.37)

as N → ∞, where MN(·, ·) signifies a mixed normal distribution and the (m0 + 1)p× (m0 + 1)p

matrix Ω0 is given by

Ω0 = lim
N→∞

E

[(
1√
N

N

∑
i=1

ui

)(
1√
N

N

∑
i=1

ui

)′
|C
]
= lim

N→∞

1
N

N

∑
i=1

N

∑
j=1

E(uiu′i|C). (A.38)

We now characterize this matrix by considering a typical block. In particular, by the same ar-

guments used in Proof of Lemma A.1 to show that ‖N−1/2 ∑N
i=1 x̃i,tgi,t‖ = Op(1), the (m, n)-th

p× p block of Ω0 with (m, n) ∈ {1, . . . , m0 + 1} is given by

lim
N→∞

1
N

N

∑
i=1

N

∑
j=1

T0
m+1−1

∑
t=T0

m

T0
n+1−1

∑
s=T0

n

E(x̃i,tx̃′j,sgi,tgj,s|C)

= lim
N→∞

1
N

N

∑
i=1

N

∑
j=1

T0
m+1−1

∑
t=T0

m

T0
n+1−1

∑
s=T0

n

E[x̃i,tx̃′j,sE(gi,tgj,s|X , C)|C]

= lim
N→∞

1
N

N

∑
i=1

T0
m+1−1

∑
t=T0

m

T0
n+1−1

∑
s=T0

n

E[x̃i,tx̃′i,sE(gi,tgi,s|X , C)|C]

= lim
N→∞

1
N

N

∑
i=1

T0
m+1−1

∑
t=T0

m

T0
n+1−1

∑
s=T0

n

E(x̃i,tx̃′i,s|C)(f′tΣifs + σi,t,s), (A.39)

where σi,t,s = E(εi,tεi,s|C), and Σi and X are as in the proof of Lemma A.1.

The asymptotic mixed normality of N−1/2 ∑N
i=1 ui can be used together with Slutsky’s theo-

rem to show that

√
N(Âm −A0

m0) = Q−1
0

√
NUN(T 0

m0) + [QN(T 0
m0)
−1 −Q−1

0 ]
√

NUN(T 0
m0)

= Q−1
0

√
NUN(T 0

m0) + op(1)

→d MN(0(m0+1)p×1, Q−1
0 Ω0Q−1

0 ) (A.40)
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as N → ∞, which is what we wanted to show. �

Proof of Theorem 4.

Define Γ− = {γ : m̂(γ) < m0}, Γ+ = {γ : m̂(γ) > m0} and Γ0 = {γ : m̂(γ) = m0}. The idea

behind this proof is to show that P[m̂(γ) = m0] → 0 for all m̂(γ) 6= m0, which is equivalent to

showing that P[IC(γ) > IC(γ0)]→ 1, or equivalently

P[IC(γ)− IC(γ0) > 0]→ 1 (A.41)

for γ ∈ Γ− ∪ Γ+ and γ0 ∈ Γ0. In so doing, it is convenient to split the proof in two cases;

m̂(γ̂) < m0 and m̂(γ̂) ≥ m0.

Consider the case when m̂(γ) < m0, so that the number of breaks is underspecified. Note

first that since φ = o(1) by assumption, and T̂m̂(γ
0) = T 0

m0 w.p.a.1 by Corollary 1,

IC(γ)− IC(γ0) = σ̂2(T̂m̂(γ))− σ̂2(T̂m̂(γ
0)) + φ · p[m̂(γ)− m̂(γ0)]

= σ̂2(T̂m̂(γ))− σ̂2(T 0
m0) + op(1). (A.42)

The proof for the case when m̂(γ) < m0 consists of showing that σ̂2(Tm)− σ̂2(T 0
m0) →p c > 0 as

N → ∞ for Tm = Tm(γ) and γ ∈ Γ−, which in turn implies

P[IC(γ)− IC(γ0) > 0]→ 1 (A.43)

for γ ∈ Γ−.

Let σ2
0 = (NT)−1 ∑N

i=1 ∑T
t=1 g2

i,t, where gi,t = ν′ift + εi,t. In this notation,

σ̂2(Tm)− σ̂2(T 0
m0) = σ̂2(Tm)− σ2

0 − [σ̂2(T 0
m0)− σ2

0 ], (A.44)

where

σ̂2(Tm)− σ2
0 =

1
NT

N

∑
i=1

m+1

∑
j=1

Tj−1

∑
t=Tj−1

[(ỹi,t − x̃′i,tα̂j)
2 − g2

i,t]. (A.45)
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Consider σ̂2(T 0
m0)− σ2

0 . From ỹi,t = x̃′i,tα
0
j + ũi,t,

σ̂2(T 0
m0)− σ2

0

=
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

[(ỹi,t − x̃′i,tα̂j)
2 − g2

i,t]

=
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

[(ũi,t − x̃′i,t(α̂j − α0
j ))

2 − g2
i,t]

=
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

[ũ2
i,t − 2ũi,tx̃′i,t(α̂j − α0

j ) + (α̂j − α0
j )
′x̃i,tx̃′i,t(α̂j − α0

j )− g2
i,t]

=
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

(ũ2
i,t − g2

i,t)−
2

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

ũi,tx̃′i,t(α̂j − α0
j )

+
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

(α̂j − α0
j )
′x̃i,tx̃′i,t(α̂j − α0

j )

= M1 − 2M2 + M3, (A.46)

with implicit definitions of M1, M2 and M3. For M1, we use ũi,t = gi,t − gt, where gt = ν′ft + εt,

giving

M1 =
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

(ũ2
i,t − g2

i,t) =
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

[(gi,t − gt)
2 − g2

i,t]

=
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

(−2gi,tgt + g2
t ) = −

1
T

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

g2
t = −

1
T

T

∑
t=1

g2
t . (A.47)

Hence, since ‖ft‖ < ∞ w.p.1, ‖ν‖ = Op(N−1/2) and ‖εt‖ = Op(N−1/2) for all t,

|M1| =
1
T

T

∑
t=1

g2
t ≤

2
T

T

∑
t=1

(‖ν‖2‖ft‖2 + ε2
t ) = Op(N−1). (A.48)

For M2,

|M2| =

∣∣∣∣∣∣∣
1

NT

N

∑
i=1

m0+1

∑
j=1

T0
j −1

∑
t=T0

j−1

ũi,tx̃′i,t(α̂j − α0
j )

∣∣∣∣∣∣∣
≤

m0+1

∑
j=1

∥∥∥∥∥∥∥
1

NT

N

∑
i=1

T0
j −1

∑
t=T0

j−1

ũi,tx̃′i,t

∥∥∥∥∥∥∥
2


1/2(
m0+1

∑
j=1
‖α̂j − α0

j ‖2

)1/2

= Op(N−1), (A.49)
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which holds because ‖N−1 ∑N
i=1 ũi,tx̃′i,t‖ = Op(N−1/2) by Proof of Lemma A.1 and ‖α̂j − α0

j ‖ =

Op(N−1/2) by Theorem 1. The order of M3 is the same, as is clear from

|M3| ≤

m0+1

∑
j=1

∥∥∥∥∥∥∥
1

NT

N

∑
i=1

T0
j −1

∑
t=T0

j−1

x̃i,tx̃′i,t

∥∥∥∥∥∥∥
2


1/2(
m0+1

∑
j=1
‖α̂j − α0

j ‖4

)1/2

= Op(N−1). (A.50)

It follows that

|σ̂2(T 0
m0)− σ2

0 | ≤ |M1|+ 2|M2|+ |M3| = Op(N−1). (A.51)

Next up is σ̂2(T0) − σ2
0 . Suppose for simplicity that m = 0 < m0 = 1. By using ỹi,t =

x̃′i,tβ
0
t + ũi,t and the fact that |M1| = Op(N−1),

σ̂2(T0)− σ2
0 =

1
NT

N

∑
i=1

T

∑
t=1

[(ỹi,t − x̃′i,tα̂1)
2 − g2

i,t]

=
1

NT

N

∑
i=1

T

∑
t=1

[ũ2
i,t − 2ũi,tx̃′i,t(α̂1 − β0

t ) + (α̂1 − β0
t )
′x̃i,tx̃′i,t(α̂1 − β0

t )− g2
i,t]

=
1

NT

N

∑
i=1

T

∑
t=1

(ũ2
i,t − g2

i,t)−
2

NT

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,t(α̂1 − β0
t )

+
1

NT

N

∑
i=1

T

∑
t=1

(α̂1 − β0
t )
′x̃i,tx̃′i,t(α̂1 − β0

t )

= − 2
NT

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,t(α̂1 − β0
t ) +

1
NT

N

∑
i=1

T

∑
t=1

(α̂1 − β0
t )
′x̃i,tx̃′i,t(α̂1 − β0

t )

+ Op(N−1). (A.52)

Note how

1
N

N

∑
i=1

T

∑
t=1

x̃i,tỹi,t =
1
N

N

∑
i=1

T0
1

∑
t=1

x̃i,tỹi,t +
1
N

N

∑
i=1

T

∑
t=T0

1+1

x̃i,tỹi,t

=
1
N

N

∑
i=1

T0
1

∑
t=1

x̃i,tx̃′i,tα
0
1 +

1
N

N

∑
i=1

T

∑
t=T0

1+1

x̃i,tx̃′i,tα
0
2 +

1
N

N

∑
i=1

T

∑
t=1

x̃i,tũi,t

= Q0,1α0
1 + Q0,2α0

2 + op(1), (A.53)

where Q0,j = limN→∞ N−1 ∑N
i=1 ∑

T0
j −1

t=T0
j−1

E(x̃i,tx̃′i,t|C). Hence, letting Q0 = Q0(T 0
1 ) and α∗1 =

Q−1
0 (Q0,1α0

1 + Q0,2α0
2),

α̂1 =

(
1
N

N

∑
i=1

T

∑
t=1

x̃i,tx̃′i,t

)−1
1
N

N

∑
i=1

T

∑
t=1

x̃i,tỹi,t = α∗1 + op(1) (A.54)
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It follows that∣∣∣∣∣ 1
NT

N

∑
i=1

T

∑
t=1

ũi,tx̃′i,t(α̂1 − β0
t )

∣∣∣∣∣ ≤
 1

T

T

∑
t=1

∥∥∥∥∥ 1
N

N

∑
i=1

ũi,tx̃′i,t

∥∥∥∥∥
2
1/2(

1
T

T

∑
t=1
‖α̂1 − β0

t ‖
2

)1/2

= Op(N−1/2), (A.55)

and

1
NT

N

∑
i=1

T

∑
t=1

(α̂1 − β0
t )
′x̃i,tx̃′i,t(α̂1 − β0

t )

=
1

NT

N

∑
i=1

T0
1

∑
t=1

(α̂1 − α0
1)
′x̃i,tx̃′i,t(α̂1 − α0

1) +
1

NT

N

∑
i=1

T

∑
t=T0

1+1

(α̂1 − α0
2)
′x̃i,tx̃′i,t(α̂1 − α0

2)

=
1
T
[(α∗1 − α0

1)
′Q0,1(α

∗
1 − α0

1) + (α∗1 − α0
2)
′Q0,2(α

∗
1 − α0

2)] + op(1)

→p c > 0 (A.56)

as N → ∞, where c is simply the sum of the first two terms on the right. Direct insertion into the

above expression for σ̂2(T0)− σ2
0 gives

σ̂2(T0)− σ2
0 =

1
NT

N

∑
i=1

T

∑
t=1

(α̂1 − β0
t )
′x̃i,tx̃′i,t(α̂1 − β0

t ) + Op(N−1/2)→p c > 0. (A.57)

This last result holds not only in the simple case considered here but in general when m < m0,

although the exact definition of c will vary. It follows that

σ̂2(Tm)− σ̂2(T 0
m0) = σ̂2(Tm)− σ2

0 − [σ̂2(T 0
m0)− σ2

0 ] = σ̂2(Tm)− σ2
0 + Op(N−1)

→p c > 0, (A.58)

which is what we set out to show. This establishes the required result for the case when m̂(γ) <

m0.

Suppose now that m̂(γ) ≥ m0, so that the number of breaks is not underspecified. We have

already shown that σ̂2(T 0
m0)− σ2

0 = Op(N−1). If γ ∈ Γ+, σ̂2(Tm) contain estimated regimes in

between which there are no breaks. But since the slope estimates are consistent even if there are

no breaks, σ̂2(Tm)− σ2
0 = Op(N−1) even if γ ∈ Γ+. It follows that

σ̂2(Tm)− σ̂2(T 0
m0) = σ̂2(Tm)− σ2

0 − [σ̂2(T 0
m0)− σ2

0 ] = Op(N−1). (A.59)
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By using this,

1
φ
[IC(γ)− IC(γ0)] =

1
φ
[σ̂2(T̂m̂(γ))− σ̂2(T̂m̂(γ

0))] + p[m̂(γ)− m̂(γ0)], (A.60)

and the fact that φ > 0, we can show that

lim
N→∞

P[IC(γ)− IC(γ0) > 0]

= lim
N→∞

P

(
1
φ
[IC(γ)− IC(γ0)] > 0

)
= lim

N→∞
P

(
1

Nφ
N[σ̂2(T̂m̂(γ))− σ̂2(T̂m̂(γ

0))] + p[m̂(γ)− m̂(γ0)] > 0
)

= lim
N→∞

P(p[m̂(γ)− m̂(γ0)] > 0) = 1 (A.61)

for all γ ∈ Γ+, where the third equality is due to N[σ̂2(T̂m̂(γ))− σ̂2(T̂m̂(γ
0))] = Op(1) and Nφ→

∞ by assumption, while the fourth and last equality is due to the fact that m̂(γ)− m̂(γ0) > 0 for

all γ ∈ Γ+. We have therefore shown that

P[IC(γ)− IC(γ0) > 0]→ 1 (A.62)

for all γ ∈ Γ− ∪ Γ+. In other words, the minimizer of IC(γ) cannot be given by γ ∈ Γ− ∪ Γ+

w.p.a.1, but can only be given by γ ∈ Γ0 w.p.a.1. �
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