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Abstract

We study learning in a decentralized pairwise adverse selection economy, where

buyers have access to the quality of traded goods but not to the quality of non-

traded goods. Buyers categorize ask prices in order to predict quality as a function

of ask price. The categorization is endogenously determined so that outcomes that

are observed more often are categorized more finely, and within each category beliefs

reflect the empirical average. This leads buyers to have a very fine understanding

of the relationship between qualities and ask prices for prices below the current

market price, but only a coarse understanding above that price. We find that this

induces a price cycle involving the Nash equilibrium price, and one or more higher

prices.

Keywords: Adverse selection; Bounded rationality; Categorization; Learning;

Model misspecification; OTC markets.

JEL codes: C70, C73, D82, D83, D91.

1 Introduction

Consider an adverse selection market of the Akerlof type in which the sellers know the

quality of their good, but the buyers do not. It is well known that if buyers are fully

rational such adverse selection may lead to low volumes of trade (Akerlof 1970). However,
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the kind of inference required for such a prediction has sometimes been challenged in

light of the counterfactual reasoning it may involve. In particular, if one only observes

the quality of past traded goods, and not the quality of non-traded goods, it may be hard

to infer what the quality would have been if the transaction prices had been higher than

those observed from previous trades.

We consider such adverse selection markets where pairs consisting of a buyer and

a seller are matched to have the opportunity to trade with each other. The trading

mechanism takes the form of a double auction in which, in each pair, the seller submits

an ask price and the buyer submits a bid price and a transaction takes place only if

the bid price exceeds the ask price (at a price assumed to be equal to the bid price

to make the analysis simpler on the seller’s side). Such a trading procedure can be

viewed as decentralized in the sense that the trading conditions are decided for each pair

separately. We note that over-the-counter (OTC) markets are typically decentralized (a

limited number of sellers and buyers, out of the total population of buyers and sellers,

meet to negotiate and transact). OTC markets are important both in terms of volume of

trade and in recent debates about policy and regulation (Weill 2020). Our analysis will

be used to shed a novel light on fluctuations in OTC markets. By comparison, we will

also discuss how the analysis changes if centralized trading mechanisms are considered

instead.

We envision the following dynamic setting. Time is discrete and in every period a

new generation of buyers and sellers are matched to interact with each other. The buyers

at time t have information about all bid and ask prices from period t − 1 as well as

information about quality in matches where trade occurred. Crucially, we assume that

the quality of non-traded goods is not observed. Based on the data observed from the

previous period, buyers (who are uninformed of the quality) form beliefs about how the

behavior of sellers (the ask prices) relate to the quality of the proposed good.1 The focus

on recent observations may be due to limited memory or limited availability of historical

data, and is in line with the well-documented recency bias observed in experiments on

learning (Agarwal et al.. 2008; Erev and Haruvy 2014).2

We assume that belief formation is based on categorical thinking. Buyers bundle

ask prices into categories and believe that the quality associated with an ask price in

a particular category is equal to the average quality of objects with ask prices in the

same category, as observed in the previous period (similar to the modeling of analogy

based expectation equilibrium (ABEE) of Jehiel 2005 and Jehiel and Koessler 2008).

Importantly, we also assume that the number and size of categories depend endogenously

on the available data in agreement with the bias—variance trade-off routinely considered

1We discuss below the effect of longer memories.
2From an evolutionary perspective recency bias may reflect an adaptation to changing environments

where old data are generally less informative.
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in statistics. This implies that each category should contain approximately the same

mass of transactions (see Mohlin 2014 for an explicit model).

This heuristic method to form beliefs has important implications for the analysis of

adverse selection markets. We assume that a small minority of informed buyers are

able to observe the quality of the seller they are matched with, while the remaining

uninformed buyers do not observe the quality of the good of their seller and form their

beliefs according to the heuristic method. Suppose that in pairs involving uninformed

buyers, the bid price was p∗ in the previous period. Then in those matches, only qualities

for which the ask price is lower than p∗ will be observed. Thus, it will not be possible

from those matches (which are more numerous than matches with ask price above p∗)

to relate ask prices above p∗ to quality. Instead, such a relationship will have to be

derived from the matches involving informed buyers.3 Since informed buyers are few, the

categorization will be much coarser for ask prices above p∗ than for ask prices below p∗

(for which data are abundant thanks to the pairs involving uninformed buyers). In turn,

the coarse belief for ask prices above p∗ will lead buyers to have an excessively optimistic

view of the effect of increasing slightly the bid price above p∗. We pay special attention

to the limiting case where the number of categories below p∗ goes to infinity, while there

are only a few categories above p∗. This gives the buyers a perfect understanding of how

quality is related to the ask price for prices below p∗, as in the standard Bayes—Nash

analysis, but only a coarse understanding of how quality is related to the ask price for

prices above p∗.

Such an erroneous perception will cause the prices to follow a cyclical pattern. Starting

from a price that corresponds to the Bayes—Nash equilibrium, we will establish that

the bid price chosen by uninformed buyers will have to be strictly larger in the next

generation. The price chosen by uninformed buyers may then increase over the next few

generations, but at some point when it gets too high, increasing the bid price will not

look profitable and at this point uninformed buyers will quote the Nash equilibrium bid

price instead. The bid prices of uninformed buyers will cycle from then on, always being

weakly above the price arising in the full rationality benchmark.

The key to understanding why our heuristic leads to cycles is to realize that if the bid

price of uninformed buyers becomes very large, then the next generation will have all the

needed data to compute the correct best response, which is the Nash equilibrium price.

However, when this bid price is low (as in the Nash equilibrium or rational expectation

equilibrium of the type studied in Akerlof), increasing the price will seem attractive, pre-

cisely because the coarse categorization for ask prices above this bid price will incorrectly

lead buyers to think they can gain a lot in quality by just increasing slightly the bid

3These take place at a variety of prices due to the heterogeneity of quality, and in all such matches,
there is trade, since we assume, as does Akerlof, that there is always gain from trade.
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price.4 More specifically, buyers believe that quality within a category is constant, and

equal to the empirical average quality within the category. Thus, to the buyers it will

seem that raising the bid price slightly above p∗ has a slight effect on the price to be paid,

but increases quality more than slightly. Thus, it will seem as if the utility function of

the buyers has a local optimum above p∗. Whether this local optimum also seems like a

global optimum to the buyers depends on the level of the current price p∗. For p∗ below

or at the the Nash equilibrium price, it will in fact seem to the buyers that the best

response is above p∗. For p∗ suffi ciently above the Nash equilibrium price it will instead

seem to the buyers that the best response is at the Nash equilibrium price.

After developing our main insights in a simplified setting, we develop various robust-

ness checks in order to strengthen our conclusion that categorical learning leads to cycles

in decentralized trading mechanisms. We then explain why in the presence of centralized

markets, no cycle should be expected, and we suggest that decentralized markets of the

OTC type may be a way to boost volumes of trade when agents form their expectations

based on categorical learning applied to data from past recent transactions.

Our paper is related to a number of approaches in which players may form erroneous

expectations about some aspects of the interaction. In the context of adverse selec-

tion economies studied here, prominent such approaches include the cursed equilibrium

(Eyster and Rabin 2005), in which buyers may fail to relate the strategy of the seller to

the quality, and the behavioral equilibrium (Esponda 2008), in which buyers addition-

ally only observe the quality when there is trade (similar to what we assume). These

approaches, as well as the analogy-based expectation equilibrium, consider steady-state

notions of equilibria, and as a result cannot capture the possibility of cycling. The main

observation in Esponda is that, in contrast to what can arise in a cursed equilibrium, one

will always obtain lowere volumes of trade in adverse selection economies when only the

quality of the traded good is observed, as compared to the rational benchmark. What

our analysis adds to this is that, if the coarseness of the understanding is adapted to the

available data, then convergence to a steady-state is typically invalidated, and instead

the economy will cycle, thereby generating more trade than in the rational benchmark.

Building on Esponda and Pouzo (2016) and Berk (1966) there is a growing literature

on games with players who are Bayesian learners with misspecified models (see also

Spiegler 2016). In this literature, beliefs take the form of a probability distribution over a

set of parameters. The support of the belief is identified with a model, and if the support

does not contain the true value of the parameter, the model is said to be misspecified.5

4On a technical note, the reason why, at the Nash equilibrium price, increasing the price is viewed as
strictly beneficial is that under the coarse categorization, the effect of such a price increase would seem
of second order while the coarse categorization leads to an upward boost of the estimate of an upward
shift that is of first order.

5Perhaps the most straightforward interpretation of our theory (and ABEE in general) is that our
agents are frequentists, but one can reinterpret them as being Bayesian with a suitable prior.
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A few recent papers identify cycles of beliefs in the context of misspecified models. In

Esponda, Pouzo and Yamamoto (2021) and Bohren and Hauser (2021) (see also Nyarko

1991), the evidence accumulated while taking a particular action may push beliefs in a

direction that makes another action seem optimal, and once this new action is taken the

data that are being generated induce a belief that makes the previous action seem optimal

again. In Fudenberg Romanyuk, and Strack (2017) cycles may arise from the fact that

the learner never ceases to perceive an information value of experimenting with another

action. Note that in all of these papers, the learner sticks to a fixed model and in every

period the learner selects a belief that maximizes fit with the data generated by current

behavior (typically minimizing Kullback—Leibler divergence from the true distribution

as the sample size goes to infinity). By contrast, in our case the learner’s beliefs cycle

because the learner switches between models. Moreover, the switch is not purely driven by

likelihood considerations (choosing the best-fitting parameters), but also by probability

mass constraints (i.e., the bias—variance trade-off).6

We hope that our finding may help usunderstand better some implications of OTC

markets in financial contexts, in particular in relation to the boost in volumes of trade

and cycling. Fluctuations in assets traded on OTC markets are documented by e.g. Bao

et al. (2011) and Ivashchenko and Neklyudov (2018) among others. For a review of the

large theoretical literature on OTC markets, that focuses on search-theoretic models, see

Weill (2020). Maurin (2020) develops a liquidity-based theory of fluctuations in OTC

markets with asymmetric information. Exogenous liquidity shocks, in the form of shocks

to sellers’valuations, cause fluctuations in the price and average quality of traded assets.

Price movements are driven by the fact that if future liquidity is high, forward-looking

buyers expect to easily resell a low-quality asset and bid up its price.7 A related model

of cycles based on liquidity shocks is due to Asriyan et al. (2019). In our case seller

valuations are entirely endogenously determined, and buyers are not forward-looking.

Instead fluctuations in prices are due to boundedly rational expectation formation.

6A few papers study the choice between misspecified models, e.g., Cho and Kasa (2015) and Gagnon-
Bartsch, Rabin, and Schwartzstein (2020). Fudenberg & Lanzani (2020) and He & Libgober (2020)
perform evolutionary analyses of the stability of different misspecified models that the agents may con-
sider. However, none of these papers obtain cycles.

7Asset owners face persistent idiosyncratic liquidity shocks in the form of shocks to their private value
of the asset. The supply of high-quality assets will disproportionately be due to low-valuation sellers.
Suppose that in the current period most owners of high-quality assets currently have a low valuation.
Then the average quality of supplied assets is high and buyers are willing to pay more. In the next
period, these buyers will own a large share of high-quality assets that they will not sell unless they face a
liquidity shock. Hence the average quality of supplied assets is now lower, and buyers are willing to pay
less. Thus the market becomes illiquid. The supply of high-quality assets eventually increases because
of liquidity shocks.
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2 Model

2.1 Market

We present our model in the context of an OTC market for loans.8 Banks and other

financial intermediaries act as sellers of loans (borrowers) to buyers of debt (lenders).

The traded objects, the loans, are indivisible objects with random quality ω distributed

on Ω = [0, 1] according to a continuous density function g, with cumulative G. One may

think of the quality ω of a loan as being inversely related to the default probability, say

one minus the default probability. The valuation of the seller/borrower coincides with the

quality ω. The corresponding valuation of a buyer/lender is v = ω + b, where b ∈ (0, 1)

represents gains from trade.9

We model OTC markets by considering one-to-one trading mechanisms between pairs

consisting of one seller and one buyer drawn at random from their respective pools. In

each pair, the seller and the buyer act simultaneously. The seller quotes an ask price

a (ω) that depends on the quality ω that he privately observes. The buyer quotes a bid

price p that depends on her information. The buyer is assumed to be uninformed of the

quality ω with probability 1 − γ and informed of the quality with probability γ, where
γ is assumed to be small. The market mechanism is such that if p < a then there is no

trade, and if p ≥ a then trade occurs at price p. Hence, if there is trade the buyer obtains

utility u (p) = v − p, and the seller obtains utility p. If there is no trade, the seller gets
ω and the buyer gets 0. This modeling of the trading mechanism allows us to simplify

the analysis of the strategy of the seller, since setting the ask price equal to the quality

a(ω) = ω is a weakly dominant strategy for the seller, just as bidding one’s own valuation

is a weakly dominant strategy in the second-price auction. In the rest of the paper we

assume that the seller employs his weakly dominant strategy.

We also assume that b < (g (1))−1 and that G has the monotone reversed hazard rate

property (or equivalently that G is strictly log-concave). That is, for all p,

∂

∂p

(
g (p)

G (p)

)
< 0.

Moreover, we assume the following smoothness condition. For all p,

|g′ (p)| < g (p) .

8The formalism can readily be reinterpreted in terms of any decentralized market for bilateral exchange
where one side has private information.

9We may assume that gains from trade are a random variable B with mean E [B] = b and variance
σ2. Draws of B are independent and identically distributed across individuals and across values of ω. All
results are unchanged. We also briefly discuss the case in which gains from trade take a multiplicative
form, as in Akerlof’s original modeling of the market for lemons.
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While not essential for our main conclusion regarding the presence of price cycles, these

extra assumptions will simplify the analysis by ensuring that there is a unique interior

Nash equilibrium and will allow us to more completely analyze the cycling phenomenon.

2.1.1 Buyer/Lender and Seller/Borrower Behavior

As already mentioned, we assume that each seller/borrower follows the weakly domi-

nant strategy that sets a (ω) = ω. We also restrict attention to pure strategies of the

buyer/lender. When the buyer is informed of the quality ω (with probability γ), she

bids10 p = ω = a. When the buyer is uninformed of the quality, she chooses a current

bid p∗ that will be determined by her current understanding of the strategy of the seller

and how it relates to quality. The choice of p∗, which is an essential feature of our model,

will be described below. The resulting density of transactions is11

h (s) =

{
g (s) if s ≤ p∗

γg (s) if s > p∗
.

As already mentioned, we will think of γ as being small. The technical effect of the small

fraction of perfectly informed buyers is to generate information about quality associated

with prices that are different from what uninformed buyers currently perceive to be their

optimal bid price. Our results are qualitatively the same if we instead assume that no

buyer is perfectly informed but each buyer experiments with a small probability (see

Section 4.1.6).

2.1.2 Dynamics

There is a population of buyers and a population of sellers. Each population has measure

one. Time is discrete and in every period buyers and sellers are matched to interact with

each other in the market. Data available at the end of period t are used by buyers in

period t + 1 to form beliefs about how the strategy of the seller relates to the quality

of the loan. These beliefs are next used by uninformed buyers to adjust their choice of

bid price in period t + 1. Our preferred interpretation is that there is a new generation

of buyers and sellers in every period rather than the same buyers and sellers interacting

over many periods.

10We implicitly assume here that an informed buyer also knows the strategy of the seller. We can
rationalize this by requiring not only that such an informed buyer know the quality ω, but also that the
seller know it.
11Observe that the total mass of transactions G(p∗) + (1− γ)G(p∗) is less than 1 since matches

with uninformed buyers do not result in transactions whenever ω > p∗. The presented density is not
normalized by this mass of transactions.
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2.1.3 Data

The buyers at time t have information about bid and ask prices from period t− 1 as well

as information about whether trade occurred. This allows them to form empirically based

beliefs about the distribution of ask prices and the probability of trade as a function of

bid price. Buyers also have information about quality in all the cases where trade took

place in period t− 1, but they do not have information about quality in the cases where

trade did not occur. Based on these data, buyers form beliefs about the link between

the quality ω and the ask prices by forming categories in the data set as we will explain

shortly.

Up to now, our model has borne a strong resemblance to that of Esponda (2008). In

a similar adverse selection environment, he also assumes that only the quality of traded

goods is observed. Yet, as we will show below, our model differs from his in the modeling

of the cognitive limitations of buyers, as well as in how categorical reasoning can give rise

to cycling, which does not arise in his model.

Coming back to the OTC application, it seems highly plausible that there will be more

information about those interactions in which transactions took place, than about those

in which no transaction took place, as assumed in our model. By contrast, our assumption

that ask and bid prices are accessible for all transactions may perhaps seem extreme in

light of the relative opaqueness that is considered characteristic of OTC markets. In OTC

markets, information about ask prices and quality in other matches may be limited. Our

model emphasizes the impact of the opaqueness on the quality of the non-traded goods

rather than on the transaction prices, but we believe our cycling phenomenon is likely

to arise for more general specifications of what is observed about the transaction prices.

From the perspective of our model, what matters is the relative abundance of information

about transactions with an ask price below and above p∗, respectively.

2.2 Categorization and Beliefs

2.2.1 Categorization

Categorization is used by uninformed buyers to understand the statistical link between

ask price and quality. Let p∗ be the bid price chosen by uninformed buyers in the last

period. Since the share γ of informed buyers is small, for ask prices less than or equal to

p∗ there are data on many transactions, while for ask prices above p∗ there are data on

only a few transactions (corresponding to informed buyers with ω > p∗). Therefore, it is

easy for buyers to predict quality as a function of ask prices less than or equal to p∗, but

diffi cult to predict quality as a function of ask prices above p∗. In our main analysis we

assume that buyers have a perfect understanding of how quality varies as a function of

ask prices less than or equal to p∗. By contrast, in order to predict quality as a function

8



of ask prices above p∗ buyers bundle sets of ask prices into categories, thereby generating

a coarse understanding of the mapping between ask prices and quality. Roughly, we

require each category to contain the same share of the data set of transactions, and each

category to consist of interval ask prices defined so that the mass of observed transactions

within that range is above a target threshold, viewed as a primitive of the model. In each

category, the observed average quality is computed from the data, and it is used to

relate any ask price in this range to this average quality. In Section 4.1.7 we examine

what happens when categories are used to predict quality both below and above p∗, and

suggest that the same qualitative insights arise.12

A buyer’s categorization C is a partition of (p∗, 1] into k ≥ 1 categories C1, C2, ..., Ck.

It is defined based on a collection of cutoffs

p∗ = c0 < c1 < c2 < ... < ck−1 < ck = 1.

We assume that each category includes its left boundary point:

C = {C1, C2, ..., Ck}
= {(c0, c1] , (c1, c2] , (c2, c3] , ..., (ck−2, ck−1] , (ck−1, ck]} .

Let i (p) denote the index of the category to which price p belongs. All buyers use the

same categorization and make the same predictions.

2.2.2 Categorization Formation

Buyers form a categorization on the basis of the distribution of transactions. They use

a heuristic that aims to split the mass of transactions into equally sized bins. The

minimal probability mass in each category is κ̄ ≤ 1; i.e., each category should satisfy

κ̄ ≤
∫ ci
ci−1

h (s) ds, where h(·) denotes the density of transactions for the various qualities.
Thus the number of categories is

k+ = max

{
1,

⌊
1

κ̄

∫ 1

p∗
h (s) ds

⌋}
= max

{
1,

⌊
γ (1−G (p∗))

κ̄

⌋}
,

each with a density of κ+ = γ (1−G (p∗)) /k+. Note that a categorization C is described

completely by the parameters k+, and p∗. Thus, taking the quality distribution G as

12The data are also used to estimate the probability of different ask prices. In principle, buyers may
use a separate categorization for this purpose. However, since the total number of ask prices will be much
larger than the number of ask prices associated with transactions, we simplify the analysis by assuming
that buyers estimate the distribution of ask prices without the help of categorizations. Moreover, quality
is probably best viewed as multidimensional and hence the modelling assumption that quality is uni-
dimensional may obscure the fact that it is naturally more diffi cult to estimate the distribution of quality
than the distribution of ask prices (even if the data sets are of the same size).
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given, the categorization C is completely determined by13 κ̄, γ, and p∗. Appendix A.3

provides details on how the numbers of categories below and above p∗ are determined as

κ̄→ 0 and γ → 0.

2.2.3 Beliefs Based on Categories

Since the buyers and sellers constitute continuum populations with measure one, the

empirical distribution of prices and qualities will (be assumed to) coincide with the true

distributions.14 For a bid price p less than or equal to p∗ the buyers understand that

expected quality in case of trade is E [ω|ω ≤ p]. Since they know that the probability

of trade given a bid price p is G (p) they correctly believe that the expected utility of

bidding p ≤ p∗ is G (p) (E [ω|ω ≤ p] + b− p).
The buyers’expectation about quality in category Ci is derived from the actual quality

of transactions associated with ask prices within category Ci. The expected value for a

buyer from trades with an ask price in Ci is

v (Ci) = E [ω|ci−1 < ω ≤ ci] + b,

and the expected quality of objects with an ask price in Ci is

E [ω|ci−1 < ω ≤ ci] =

∫ ci
ci−1

ωh (ω) dω∫ ci
ci−1

h (s) ds
=

∫ ci
ci−1

ωg (ω) dω∫ ci
ci−1

g (s) ds
.

It follows that buyers form the following belief about the expected payoff from bidding p:

πCE (p|p∗) =



G (p) (E [ω|ω ≤ p] + b− p) if p ≤ p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p)
+
∑

i(p)−1

j=1 (G (cj)−G (cj−1)) (v (Cj)− p)
+
(
G (p)−G

(
ci(p)−1

)) (
v
(
Ci(p)

)
− p
) if p > p∗.

The reference to p∗ reflects the fact that C is completely determined by p∗ together with

the parameters κ̄ and γ.

As an illustration consider the case of a uniform quality distribution g, i.e., G (p) = p

13The minimum probability mass per category κ̄ induces a minimum number of categories k̄ as a
function of κ̄, p∗, and γ. One may consider a categorization heuristic that takes the total number of
categories k̄ as given and derives the minimum average probability mass per category κ̄, as a function of
k̄, p∗, and γ. The results are qualitatively identical.
14On a literal reading, our continuum population assumption may suggest that buyers have access to

data that allow them to use an arbitrarily fine-grained categorization also for ask prices above p∗, since
even a fraction of a continuum population is also a continuum. However, the continuum assumption is
merely a mathematical convenience that allows us to avoid the stochasticity that would arise in a model
with finite populations. Working with large but finite populations would lead to complications but would
not affect the main insights.
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for all p ∈ [0, 1]. Each category Ci = [ci−1, ci] has the same width ci−ci−1 = γ (1− p∗) /k+

(where k+ = max {1, bγ (1− p∗) /κ̄c}). The expected valued to a buyer from trades with
an ask price in Ci is v (Ci) = (ci + ci−1) /2 + b. Figure 1 illustrates this for parameter

values γ = 0.3, κ̄ = 0.1, and b = 0.3 and four different values of p∗. The parameter

assumptions imply that if p∗ ∈ {0.2, 0.3} there are two categories above p∗, whereas if
p∗ ∈ {0.4, 0.5} there is only one category above p∗. Note that when p∗ = 0.2 the buyer

will perceive utility to be maximized by p somewhere between 0.3 and 0.4. However, when

p∗ = 0.3 it will seem to the buyer that utility is maximized at p ≈ 0.4, when p∗ = 0.4 it

will seem that utility is maximized around p ≈ 0.5, and when p∗ = 0.5 it will seem that

utility is maximized around p ≈ 0.3.
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2.2.4 Dynamics

Our dynamic system is completely characterized by the sequence of prices p∗t quoted by

uninformed buyers in period t. Given current price p∗t , the next price p
∗
t+1 is chosen so

11



that

p∗t+1 = arg max
p
πCE(p; p∗t )

where πCE(·; ·) is defined as in subsection 2.2.3.
We are interested in understanding the sequence p∗t , and our main result will establish

that this sequence must be cyclical no matter what the initial condition is.

3 Results

3.1 Nash Benchmark

In a Nash equilibrium buyers have correct expectations about the mapping between ask

price and quality. They maximize

πNE (p) =

∫ p

ω=0

(ω + b− p) g (ω) dω = G (p) (E [ω|ω ≤ p] + b− p) .

In the case of a uniform quality distribution g this becomes

πNE (p) = p ·
(p

2
+ b− p

)
= p

(
b− p

2

)
,

and so the solution for buyers is pNE = b. More generally, we have the following result:

Proposition 1 There exists a unique Nash equilibrium in which the bid price pNE of

uninformed buyers is uniquely defined by

g
(
pNE

)
G (pNE)

=
1

b
.

Proof. Note that

∂

∂p
(E [ω|ω ≤ p]) =

1

G (p)
pg (p)−

(∫ p

ω=0

ωg (ω) dω

)
g (p)

G (p)2

=
g (p)

G (p)

(
p−

∫ p

ω=0

ω
g (ω)

G (p)
dω

)
=
g (p)

G (p)
(p− E [ω|ω ≤ p]) .

12



Thus

∂

∂p
πNE (p) = g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
∂

∂p
(E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
g (p)

G (p)
(p− E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) + g (p) (p− E [ω|ω ≤ p])−G (p)

= g (p) b−G (p) ,

and so the first-order condition of maxp π
NE(p) is

g (p)

G (p)
=

1

b
,

and the second-order condition is satisfied in virtue of the assumption that |g′ (p)| < g (p).

Notice that limp→0
g(p)
G(p)

=∞ and g(1)
G(1)

= g (1). Hence, by the assumption that g (1) < 1/b

and ∂
∂p

(
g(p)
G(p)

)
< 0, the first-order condition has a unique solution that is interior.

3.2 Categorical Learning

Our main result is that the sequence of p∗t in the categorical learning model has no rest

point and must cycle over finitely many values p(k), one of them being pNE as previously

characterized, and the others being above pNE. In order to establish this, we first derive

three properties related to how p∗t+1 varies with p
∗
t depending on whether p

∗
t is below,

above, or equal to pNE. These properties are referred to as lemmata and are proven in

the Appendix.

The first property demonstrates that if at time t it is the case that p∗t = pNE, then at

time t+ 1 uninformed buyers bid p∗t+1 > pNE.

Lemma 1 If p∗t = pNE then

p∗t+1 = arg max
p∈[0,1]

πCE
(
p|pNE

)
> pNE.

The next property demonstrates that if at time t it is the case that p∗t > pNE, then

at time t+ 1 buyers either bid p∗t+1 = pNE or p∗t+1 > p∗t .

Lemma 2 If p∗t > pNE, then either

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) = pNE

or

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) > p∗t .

13



The third property demonstrates that if at time t it is the case that p∗t < pNE, then

at time t+ 1 buyers bid p∗t+1 > p∗t .

Lemma 3 If p∗t < pNE, then

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) > p∗t .

Roughly, these three properties can be understood as follows. As already mentioned,

categorical reasoning induces uninformed buyers to correctly infer that the quality corre-

sponding to an ask price a below p∗ is a. On the other hand, the coarse bundling for ask

prices above p∗ leads uninformed buyers to incorrectly infer that ask prices slightly above

p∗ are associated with an average quality that lies strictly above p∗. Thus, a buyer would

choose a bid price strictly above p∗ whenever p∗ ≤ pNE as she would incorrectly perceive

a jump in quality when increasing slightly the bid price above p∗ (and any bid price

below p∗ would rightly be perceived to be suboptimal). This is in essence the content of

lemmata 3 and 1. By contrast, when p∗ > pNE, the best bid price below p∗ is rightly

perceived to be pNE and the same logic leads the uninformed buyer to either choose pNE

or a bid price strictly above p∗ with the aim of taking advantage of the jump in the

perceived quality when the ask price lies above p∗.

The above properties immediately imply that the price dynamic has no rest point,

i.e., there is no p∗t such that

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) = p∗t .

To see this, assume by contradiction that p∗ is a rest point. By Lemma 3, it cannot be

that p∗ < pNE since p∗t = p∗ < pNE would imply that p∗t+1 > p∗t = p∗. By Lemma 1, it

cannot be that p∗ = pNE since p∗t = p∗ would imply that p∗t+1 > pNE. Finally, by Lemma

2, it cannot be that p∗ > pNE since p∗t = p∗ would imply either that p∗t+1 > p∗t or that

p∗t+1 = pNE and thus p∗t+1 6= p∗t (given that p
∗
t = p∗ 6= pNE).

Even though there is no rest point, we will establish that there is a price cycle. In

order to establish convergence to the price cycle we need one more lemma, which is again

proven in the Appendix.

Lemma 4 There is some δ > 0 such that if p∗ ≤ pNE then E [ω|ω ∈ C1] > p∗ + δ.

We can now state our main result to the effect that there is global convergence to a

price cycle that consists of the Nash price and one or more prices above the Nash price.

Proposition 2 There exists an increasing sequence (p(1), ..., p(m)) with m ≥ 2 and p(1) =

pNE such that if p∗t = p(i) for i ∈ {1, ...,m− 1} then p∗t+1 = p(i+1), and if p∗t = p(m) then

p∗t+1 = p(1). Moreover, the dynamic converges to the set
{

(p(1), ..., p(m))
}
from any initial

price p0 ∈ [0, 1].

14



Proof. Assume, to derive a contradiction, that the sequence p∗t is monotonic. Lem-
mata 1—3 imply that

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) > p∗t

for all t. Since p∗t ≤ 1 for all t, it follows that p∗t → p̄ for some p̄ > pNE as t → ∞. (To
see that there is a p̄ > pNE note that if p∗1 ≥ pNE then p∗t ≥ pNE for all t.) This implies∣∣p∗t+1 − p∗t

∣∣→ 0, which, by continuity of πCE (p|p∗t ), implies
∣∣πCE (p∗t+1|p∗t

)
− πCE (p∗t |p∗t )

∣∣→
0. Since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ], we have

∣∣πCE (p∗t+1|p∗t
)
− πNE (p∗t )

∣∣ → 0,

and consequently πCE
(
p∗t+1|p∗t

)
→ πNE (p̄). Since the Nash equilibrium pNE is unique it

holds that πNE
(
pNE

)
> πNE (p̄), and since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ] we get

πCE
(
p∗t+1|p∗t

)
→ πNE (p̄) < πNE

(
pNE

)
= πCE

(
pNE|p∗t

)
.

This is in contradiction to p∗t+1 = arg maxp∈[0,1] π
CE (p|p∗t ). We conclude that the sequence

p∗t is not monotonic. Lemmata 1—3 imply that it must be cyclical, consisting of cycles

with pNE and one or more price above pNE.

Note that the preceding argument can be used to show, that starting at p∗1 ≥ pNE

there is convergence to the cycle, from which there is no escape. To see this, suppose (to

obtain a contradiction) that there is some p∗1 > pNE that does not belong to the cycle

(i.e., p∗1 6= p(1) for all i ∈ {1, ...,m}), from which there is no convergence to the cycle.

This means that p∗t+1 > p∗t for all t and p
∗
t → p̄ for some p̄ ∈

[
pNE, p(m)

]
as t→∞.

It remains to show that starting at p∗1 < pNE there is convergence to the set
[
pNE, 1

]
.

Consider p∗t < pNE. By Lemma 3 we know that p∗t+1 = maxp π
CE (p|p∗t ) > p∗t . For p > p∗t

the FOC for maxp∈Ci(p) π
CE (p|p∗t ) is

g (p)
(
v
(
Ci(p)

)
− p
)
−G (p) = 0⇐⇒ p = v

(
Ci(p)

)
− G (p)

g (p)
.

Suppose that

p∗t+1 = max
p
πCE (p|p∗t ) ∈ C1 = (c0, c1] = (p∗t , c1] .

Then p∗t+1 satisfies

p∗t+1 ≥ v (C1)−
G
(
p∗t+1

)
g
(
p∗t+1

) ,
holding with equality in the case p∗t+1 < c1. Note that

G(p)
g(p)

is increasing in p. Thus

p∗t+1 ∈ C1 and p∗t+1 < pNE imply that

p∗t+1 > v (C1)−
G
(
pNE

)
g (pNE)

= v (C1)− b = E [ω|ω ∈ C1] .

Lemma 4 further implies that p∗t+1 − p∗t > δ > 0. Above we assumed that p∗t+1 =

maxp π
CE (p|p∗t ) ∈ C1. Clearly, if p∗t+1 /∈ C1 then p∗t+1 > c1 > p∗t + δ.
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The cycling result has interesting implications in light of the OTC application. It

suggests that in the cycle there will be periods with higher volumes of trade (as arising

when the bid price lies strictly above pNE) followed by a period with a lower volume of

trade that corresponds to the standard functioning of the adverse selection market (and

that follows a logic similar to that developed in Akerlof’s market for lemons).

4 Discussion

The purpose of this section is threefold. First, we consider several variants of the OTC

model in which we suggest that the cycling phenomenon we identified in the main model

is robust to a number of variations. Second, we consider a centralized trading mechanism

and suggest there that no cycling should be expected. Finally, we position our study

in relation to other approaches to bounded rationality in adverse selection markets, and

highlight the novelty of the cycling phenomenon.

4.1 Variants

4.1.1 Multiplicative Gains from Trade

In the main model, gains from trade were assumed to be additive. Now we consider

the possibility that gains from trade are instead multiplicative (as in Akerlof 1970).

Specifically, suppose that the buyer’s valuation is v = βω, where β ∈ (1, 2) parameterizes

the gains from trade. For simplicity, assume quality is uniformly distributed on (0, 1).

With multiplicative gains of trade the expected valued for a buyer from trades with an

ask price in Ci is v (Ci) = E [ω|ci−1 < ω ≤ ci] · β. Let all other aspects of the model
be unchanged. It turns out that the results are qualitatively similar to those obtained

for the additive specification. (See Supplement S.2 for formal statements and proofs.)

However, with a multiplicative specification adverse selection completely eliminates trade

under the standard Bayes—Nash analysis: the unique Nash equilibrium is pNE = 0. This

observation is, of course, similar to that made in Akerlof. As in the additive specification,

the Nash equilibrium is not a rest point under the dynamic induced by categorization-

based learning: if in period t we are at the Nash price p∗t = pNE = 0, then in the next

period buyers will perceive it to be utility-maximizing to state a bid price above the Nash

price p∗t+1 > 0. For a learning model similar to the one studied with additive gains from

trade, we can establish that categorization-based learning leads to cycle of the same kind

as in the additive case. The cycle consists of the Nash price and at least one higher price.

In the case where the cycle consists of more than two prices, the dynamic moves from one

price to the next higher price until the highest price of the cycle is reached, from which

there is a jump back to the lowest price, the Nash price.
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4.1.2 When Some Buyers are Rational

In the main model, we have assumed that all buyers follow the categorical heuristic.

Now suppose that the buyer population consists of two subpopulations: a fraction of

individuals referred to as rational with a correct understanding of the mapping between

ask prices and quality, and a complementary fraction of individuals using the categorical

heuristic. Rational buyers will maximize πNE and hence play pNE regardless of what other

players do. The question is whether they will affect the behavior of the non-rational

players. When the non-rational buyers bid p∗ = pNE the types are indistinguishable.

Suppose the non-rational buyers bid p∗ > pNE. In this case, the data that are generated

by the population as a whole will be different from the case without rational buyers. Let

the fraction of rational buyers be µ. The total mass of transactions is then15

h (s) =


g (s) if s ≤ pNE

(1− µ) g (s) + µγg (s) if pNE < s ≤ p∗

γg (s) if p∗ < s

.

Regardless of the size of the fraction of rational buyers µ, there will be few transactions in

the interval (p∗, 1] and hence a coarse understanding of the relationship between quality

and ask prices above p∗. If µ is small enough there will be suffi ciently many transac-

tions in the interval
(
pNE, p∗

)
to allow for a perfect or near-perfect understanding of the

relationship between quality and ask prices less than or equal to p∗. In this case, the

above result will be robust to the introduction of rational buyers. By contrast, if µ is

suffi ciently large there will be only a few transactions in the interval
(
pNE, p∗

)
. Thus,

it may be natural to assume a coarse understanding on the whole of
(
pNE, 1

]
. In that

case, the cycle will vanish. Instead, the rational players play pNE and the non-rational

players play p∗ in every period. Thus, the cycling phenomenon requires that the share of

non-rational buyers be not too small.

4.1.3 Heterogeneous Categorizations

Another relevant variation of the basic model is to allow different buyers to use different

categorizations, such as arise from the use of different values of κ̄. Consider the case of

15More explicitly, the distribution of transactions of Nash players is

hNE (s) =

{
g (s) if s ≤ pNE
γg (s) if s > pNE

,

and the distribution of transactions of non-Nash players is, as before,

hNN (s) =

{
g (s) if s ≤ p∗
γg (s) if s > p∗

.

The total mass of transactions is then h (s) = (1− µ)hNN (s) + µhNE (s).
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two kinds of buyers, denoted by A and B, who use different values of κ̄. Suppose that

all buyers initially bid the same price p∗t = pNE and have a perfect understanding of

quality for ask prices less than or equal to p∗t = pNE. The two different kinds of buyers

may now have different beliefs about their best responses but they will both perceive

their best responses to be above p∗t . Without loss of generality we may assume that

p∗t < p∗At+1 < p∗Bt+1. The behavior in period t + 1 will generate many transactions in the

interval
[
0, p∗At+1

]
, and few transactions in the interval

(
p∗Bt+1, 1

]
, and so in period t + 2

we can assume a perfect understanding of quality for ask prices in
[
0, p∗At+1

]
and a coarse

understanding of quality for ask prices in
(
p∗Bt+1, 1

]
. Whether the understanding of quality

for ask prices in
(
p∗At+1, p

∗B
t+1

]
is fine or coarse depends on whether the fraction of type-B

buyers is large or small. In either case neither type will perceive it in their best interest to

play the same bid price in period t+ 2 as in period t+ 1. As in the case of homogeneous

categorizations it cannot be the case that p∗At < p∗At+1 and p
∗B
t < p∗Bt+1 forever. Eventually

either buyer type will switch back to pNE. Thus, we will have cycling also in the case of

heterogeneous categorizations, albeit of a more complicated kind than in the homogeneous

case.16

4.1.4 Longer Memory

We have assumed that buyers base their categorizations and beliefs on data from the pre-

vious period only. What happens if buyers use data from the last m ≥ 2 periods instead?

In period t the highest period in the last m periods is p∗max
t = maxτ∈{t−m,...,t−1} p

∗
τ . The

buyers in period t have a perfect understanding of how quality depends on ask prices less

than or equal to p∗max
t (assuming that the amount of data needed for a perfect under-

standing is not larger in the case of m ≥ 2 than in the case of m = 1). The coarseness

of the categorization above p∗max
t depends on how much data have been generated above

p∗max
t over the past m periods. If m is large enough (or rather if mγ is large enough) then

there might be enough data to afford a perfect or near-perfect understanding of quality

above p∗max
t . In that case, the best response is the Nash price for any t, and there is no

cycle. If insteadm is small enough (or rather ifmγ is small enough) then buyers will have

a coarse understanding of quality above p∗max
t . In this case there will be a cycle where

pNE is played for m periods before there are a number of periods with higher prices. To

see this, note that if p∗max
t = pNE then p∗t > pNE and so in the next period p∗max

t+1 = p∗t

and then p∗t+1 > p∗t or p
∗
t+1 = pNE. To illustrate the new form of cycling, assume that

p∗t+1 = pNE; then in the next m − 1 periods p∗max = p∗t and p
∗ = pNE, i.e., p∗max

j = p∗t

and p∗j = pNE for j ∈ {t+ 1, t+ 2, ..., t+m}.
16One can view the situation studied in Section 4.1.3 as a limiting case of the one studied here in which

the rational type would use κ̄ = 0.
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4.1.5 Buyer Competition

Up to now, we have looked at one buyer—one seller interactions. We may alternatively

consider matches consisting of more than one agent either on the buyer or on the seller

side, in order to reflect that there is more competitive pressure on one side of the mar-

ket. When there is more than one seller and just one buyer, everything boils down to

considering the seller with the highest quality and so no qualitative changes should be

expected in this case. When there is more than one buyer and just one seller, buyers

engage in a kind of Bertrand competition. To simplify the analysis, we will assume that

when several buyers are matched to a seller, they are either uninformed of the quality ω

and make their choices of bid price based on categorical reasoning as described above, or

they are informed of ω in which case they will now bid ω + b (instead of ω in the one

seller—one buyer case) following the logic of Bertrand competition.

The more interesting aspect concerns the bidding of uninformed buyers. Each buyer

is willing to outbid the opponent and increase her bid up to the point where she perceives

that she earns zero expected profit. The perceived profit for buyer i bidding pi when the

other buyer bids p−i, with categories and beliefs formed on the basis of price p∗t as chosen

by uninformed buyers in period t, is

πBi (pi, p−i|p∗t ) =


πCEi (pi|p∗t ) pi > p−i
1
2
πCEi (pi|p∗t ) pi = p−i

0 pi < p−i.

In period t+ 1, uninformed buyers will choose p∗t+1 such that

πCEi
(
p∗t+1, p

∗
t+1|p∗t

)
= 0.

A rest point of the dynamic, denoted by pB, would have to satisfy πBi
(
pB, pB|pB

)
= 0.

In order for p∗t = pB to be a rest point it must be the case that πBi
(
pi, p

B|pB
)
≤ 0 for

all pi > pB. If this is not the case then the buyer competition will lead to a higher price

p∗t+1 > p∗t in the next period. Later periods may lead to even higher prices but eventually,

when in some period t + τ it holds that πBi
(
pi, p

∗
t+τ |p∗t+τ

)
≤ 0 for all pi > p∗t+τ (and

πBi
(
p∗t+τ , p

∗
t+τ |p∗t+τ

)
< 0), the dynamic will return to p∗t = pB.

For the uniform case, and assuming that there is always a single category above p∗

(i.e., κ̄ suffi ciently large and γ suffi ciently small), one can show that if b < 1/8 then there

is a cycle, such that if p∗t = pB = 2b then p∗t+1 >
1
2
− 2b. There may be more than two

prices in the cycle (if b > 1
16
) but eventually the dynamic returns to pB. (See Supplement

S.3 for details.)

This analysis suggests that cycling may still emerge in the presence of richer specifi-

cations of the competitive pressures.
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4.1.6 Experimentation or Noise

In the model presented above, observations of quality in transactions with quality above

the equilibrium price p∗ are generated by the fraction γ of matches in which the buyer

is perfectly informed about quality. Without these transactions there would be no data

on which the uninformed buyers could base their beliefs about the relationship between

quality and ask prices above p∗. However, transactions with quality above the equilibrium

price p∗ could also be generated due to experimentation, or simple noise in the uninformed

buyers’choice of bid price.

Suppose that with probability 1− ξ a buyer chooses a best response given her current
beliefs. With probability ξ a buyer experiments and randomly chooses an action for

the purpose of exploration according to a continuous density d with full support on [0, 1].

Suppose that buyers currently find p∗ optimal. Noting that conditional on experimenting,

a good of quality s would be traded with probability 1 − D(s), we obtain that the

distribution of transactions is

h (s) =

{
(1− ξ) g (s) + ξ (1−D (s)) g (s) if s ≤ p∗

ξ (1−D (s)) g (s) if s > p∗.

With this distribution of transactions, one can (qualitatively) recover the same results as

in the main model.

4.1.7 Coarse Categorization below p∗

So far we have assumed that the buyers perfectly understand how quality is related to ask

prices below p∗, but has a coarse understanding of this relationship for ask prices above

p∗. We now analyze the case where a categorization is used also to predict quality for

ask prices below p∗. The previous assumption that buyers perfectly understand quality

below p∗ may then be viewed as a limiting case of an infinitely fine-grained categorization

below p∗. (See the Appendix for details.)

A buyer’s categorization C is now a partition of [0, 1] into k = k− + k+ categories

C1, C2, ..., Ck.. It is defined based on a collection of cutoffs

0 = c−k− < c−k−+1 < ... < c−2 < c−1 < c0 = p∗ < c1 < c2 < ... < ck+−1 < ck+ = 1.

We assume that each category includes its left boundary point. The left-most category

also includes its right boundary point:

C = {C−k− , , ...C−2, C−1, C1, C2, ..., Ck+}
= {(c−k− , c−k−+1] , ..., (c−1, c0] (c0, c1] , (c1, c2] , ..., (ck−1, ck]} .
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The numbers k− and k+ are set as the minimum ones so that each category has mass no

less than κ̄. Accordingly, we expect k−to be large relative to k+. More precisely, buyers

form a categorization using a heuristic that aims to split the mass of transactions into

equally sized bins where the minimal probability mass in each category is κ̄ ≤ 1.

The buyers’expectation about quality in category Ci is derived from the actual quality

of transactions associated with ask prices within category Ci as before. The buyers’belief

about the expected payoff from bidding p is now

πCE (p|p∗) =

i(p)−1∑
j=1

(G (cj)−G (cj−1)) (v (Cj)− p) +
(
G (p)−G

(
ci(p)−1

)) (
v
(
Ci(p)

)
− p
)
.

In Figure 2 we illustrate this for parameter values γ = 0.3, κ̄ = 0.1, and b = 0.3

and four different values of p∗. These are the same values as in case of an arbitrarily

fine-grained understanding of quality below p∗ (i.e., the case of k− → ∞). Again, the
parameter assumption implies that if p∗ ∈ {0.2, 0.3} there are two categories above p∗,
whereas if p∗ ∈ {0.4, 0.5} there is only one category above p∗.
The picture is very similar to the case of a perfect understanding of quality below

p∗. When p∗ = 0.2 then the buyer will perceive utility to be maximized by p somewhere

between 0.3 and 0.4. However, when p∗ = 0.3 it will seem to the buyer that utility

is maximized at p ≈ 0.4, when p∗ = 0.4 it will seem that utility is maximized around

p ≈ 0.5, and when p∗ = 0.5 then it will semme that utility is maximized around p ≈ 0.3.

Assuming a uniform quality distribution g we are able to obtain a number of analytical

results. There is convergence to an interval containing the Nash price b. Starting from

any initial p∗0, as t→∞ the dynamic will converge to, and never escape, the set

P ∗ (κ̄, γ) =

(
b− 1

2
(

1
κ̄
− 1
) , b+

1

2
(
γ
κ̄
− 1
)) .

As the minimal mass of categories κ̄ decreases and approaches 0 the set P ∗ (κ̄, γ) converges

to (the singleton set consisting of) b. One might conjecture that p∗ = b is a steady-state

for a small enough value of κ̄. However, this is not the case. If p∗ = b then the buyer’s

perceived best response is bounded away from b. In the special cases of k− = 1 and

k+ = 1 we can identify a cycle with two price levels. (For formal statements and proofs

see Supplement S.1.)

We expect our main result, regarding convergence to a price cycle, to apply in this

more elaborate setting when there are suffi ciently many categories below p∗ and suffi -

ciently few categories above p∗. We examine this numerically by examining how price

movements vary when we vary the information parameter γ, and the categorization

coarseness parameter κ̄. (The results are presented in Supplement S.1.2.) In general,

increasing the share of informed buyers γ, and decreasing the required mass per category
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κ̄, dampens fluctuations by increasing the number of categories above p∗.
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4.2 Centralized Trading Mechanism

The market studied so far was decentralized in the spirit of OTC markets with trades

involving small sets of agents (one seller—one buyer in the basic formulation). In that

context we found that when buyers rely on the categorical heuristic, prices in the corre-

sponding dynamic model cycle and never fall short of the price that would arise if buyers

had a perfect understanding of the relationship between ask prices and quality (as in the

standard analysis).

It is of interest to analyze what would happen in similar observational contexts if

instead of considering decentralized trading procedures, the trading mechanism was cen-

tralized with a single market governing all transactions. We will illustrate that in such a

case, no cycling should be expected and (at least in some cases) the induced volume of

trade may be smaller than that arising in decentralized markets.

To establish this, consider the following trading mechanism. In each period, all sellers
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and all buyers simultaneously submit their ask and bid prices to a central clearinghouse

that chooses p∗ to equate supply and demand. As implied by the centralized nature of

the market, the traded goods are assigned randomly to those buyers who engage in trade.

If we had the same number n of buyers and sellers and the clearing price was chosen to

be the largest one that allows the clearinghouse to equate demand and supply, the sellers

would have a weakly dominant strategy consisting of setting an ask price a(ω) = ω when

the quality is17 ω. When considering the limit case with a continuum of buyers and sellers

of equal mass, we will suppose that a seller sets a(ω) = ω when selling a good of quality

ω. We note that in the context of centralized trading mechanisms, it is irrelevant whether

a buyer observes the quality of the sellers’goods to the extent that she has no control

over which good she will receive (since the traded goods are assigned randomly). The

average quality of goods traded at price p∗t at time t is then E [ω|ω ≤ p∗t ].

In line with our assumptions on decentralized markets, we assume that buyers observe

the average quality of the goods sold as well as the distribution of ask prices in the

previous period. Thus, at time t+ 1 a buyer’s perceived expected value of an object is18

E [ω|ω ≤ p∗t ] + b. This implies that at time t + 1 a buyer will not post a price pt+1 >

E [ω|ω ≤ p∗t ]+b, since this would be dominated by posting a price equal to E [ω|ω ≤ p∗t ]+b.

Moreover, in the limit of an infinite buyer population, the probability of a single buyer

affecting the equilibrium price is zero. Hence, posting a price pt+1 < E [ω|ω ≤ p∗t ] + b

is weakly dominated by setting19 pt+1 = E [ω|ω ≤ p∗t ] + b. Consequently, the market

clearinghouse (Walrasian auctioneer) would have to set a price p∗t+1 = E [ω|ω ≤ p∗t ] + b

to equate demand and supply, since at any price p < E [ω|ω ≤ p∗t ] + b there is excess

demand, and at any price p > E [ω|ω ≤ p∗t ] + b there is excess supply.

A steady-state price pC of the centralized market satisfies E
[
ω|ω ≤ pC

]
+b = pC . It is

readily verified that if b < 1−E [ω] (or b < 1/2 in the uniform case) the steady-state price

pC would need to be interior.20 We note that pC coincides with pB as described above

in the decentralized case when there are at least two buyers matched with a seller and

these are rational. (This should come as no surprise given that if the masses of buyers

and sellers are the same, and if the price is interior, (the effective competitive pressure is

on the buyers’side.) It is also the rational expectation equilibrium of the type studied

in Akerlof.
17This follows the same logic as in the one-object second-price auction and can be viewed as an

illustration of Vickrey’s generalized version of it.
18In the case of p∗t = 0 there is no trade and we assume that E [ω|ω ≤ p∗t ] = limp∗t→0 E [ω|ω ≤ p∗t ] = 0.
19Alternatively, we may replace the simultaneous bid assumption with a gradual process in which the

auctioneer starts with a low price and then gradually increases it. Buyers once they drop out cannot
come back. Sellers once they join cannot drop out. The price increase stops when there is an equal
number of buyers and sellers.
20When b < 1 − E [ω] a steady price pC = 1 can be ruled out as it means that all sellers would want

to sell, but the buyer’s perceived utility is E
[
ω|ω ≤ pC

]
+ b− pC = E [ω] + b− 1 < 0, thereby leading to

a contradiction. A steady-state price pC = 0 can be ruled out since it leads to zero supply but positive
demand due to E

[
ω|ω ≤ pC

]
+ b− pC = b > 0.
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We are interested to know whether the dynamic p∗t+1 = E [ω|ω ≤ p∗t ] + b, which would

arise from the learning dynamic in the centralized trading case, converges to the steady-

state pC . It turns out that under our maintained assumption that G is strictly log-concave

pC is locally attracting. That is, there is an open interval
(
p, p
)
around pC , such that if

p∗0 ∈
(
p, p
)
then p∗t → pC . Furthermore, if we impose the additional condition that

g (p)
∫ p

0
G (ω) dω

G (p)2 < 1, (1)

then pC is globally attracting. (See the Appendix for details.)

In order to compare the volume of trade in the decentralized and centralized cases it

may be useful to assume that ω is uniformly distributed on (0, 1). The condition for a

steady-state in the centralized market case becomes 1
2
pC + b = pC , and so p∗ = 2b. Since

only a fraction 2b of sellers have a valuation less than 2b, this value it is also the volume of

trade. By comparison, the Nash equilibrium in the decentralized (one seller—one buyer)

case is pNE = b, and in our learning dynamic the prices take values above pNE. When

b is small enough, the expected price arising in the decentralized case is larger than p∗,

showing that there is more trade under the decentralized trading mechanism.

To be more specific, in the case of a uniform distribution one can show (Supplement

S.3, Proposition S6) that if there is always a single category above p∗ then the cycle con-

sists of exactly two prices, the Nash price pNE = b and a higher price equal to (1 + 3b) /4.

The cycle alternates between these two prices and so the average price is (1 + 7b) /8.

Since there is always trade in matches involving informed buyers, the resulting average

trade volume is at least (1 + 7b) /8. Thus, average trade volume in the decentralized case

exceeds that of the centralized case whenever (1 + 7b) /8 > 2b or equivalently b < 1/9,

i.e., gains from trade of less than 11%.

For larger values of b, there may be more expected trade in the centralized trading

mechanism than in our main decentralized version. However, the conclusion that there is

more trade in the decentralized than in the decentralized case would always hold if in the

decentralized case we were to assume that there is more than one buyer in every match

involving a seller (since then pB = p∗ and we may have cycles involving prices above pB in

the decentralized case). The conclusion that there is more trade in the centralized than

in the decentralized case would also hold when gains from trade take a multiplicative

form, since in this case (as in Akerlof) there would be no trade at all in the centralized

trading mechanism.

Altogether, these insights support the conclusion that decentralized trading mecha-

nisms may lead to larger volumes of trade than centralized trading mechanisms, when

buyers follow a categorical learning heuristic that is based on the available data from past

recent trades.
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4.3 Related Literature

The assumption that information about quality is only available for past instances of

trade, together with the resulting lack of data above the current market price, is taken

from Esponda (2008). He assumes that buyers are able to form an accurate belief about

how quality depends on ask prices below the equilibrium price, but not necessarily on

those above it. He considers a naive and a sophisticated alternative. Naive buyers believe

that the average quality above the equilibrium price is the same as the average quality

below the equilibrium price. Thus, naive buyers do not understand that increasing the

bid price leads to transactions with higher quality. By contrast, sophisticated buyers

do to some extent understand the positive relationship between ask prices and quality.

If all buyers are naive the resulting behavioral equilibrium price is even lower than the

Nash equilibrium price: adverse selection is aggravated by the naive buyers’pessimistic

view of quality associated with prices above the equilibrium price. If instead buyers are

sophisticated the resulting behavioral equilibrium price is bounded from below by the

naive equilibrium price and bounded from above by the Nash equilibrium price (under

the belief consistency conditions imposed by Esponda).

Eyster and Rabin (2005), see also Miettinen (2009), define a notion of cursedness,

such that in our setting a fully cursed buyer fails entirely to take selection into account

and believes that quality is independent of the ask price. Presumably such buyers entirely

ignore the correlation between ask price and correlation that they can observe below the

equilibrium price. In the case where all buyers are fully cursed the cursed equilibrium

may be below or above the Nash equilibrium price depending on the size of gains from

trade. In our setting the fully cursed price is below the Nash price if gains from trade

are large (b > 1/2 in the uniform case) and above if gains from trade are small (b < 1/2

in the uniform case). A partially cursed buyer partially takes selection into account in

the sense that her expected utility is a convex combination of what a cursed buyer and a

Nash buyer would believe. Depending on the degree of cursedness the cursed equilibrium

is somewhere between the Nash price and the price in an equilibrium with only fully

cursed buyers.

Suppose that, as in Esponda’s setup, buyers observe quality only in cases where trade

took place, and suppose that, as in our model above, with some small probability a

buyer is perfectly informed about quality. In the analogy-based expectations equilibrium

(ABEE), due to Jehiel (2005) and Jehiel and Koessler (2008), buyers use categories to

judge quality as a function of prices (as in our model) but categories are fixed. For

simplicity, assume that all categories have the same width.21 In such a setup one can

21Miettinen (2012) provides a refinement of ABEE, called a payoff-confirming analogy equilibrium
(PAE), that requires that the payoffs that players obtain are consistent with their ABEE-induced beliefs
about the distribution of play and types. In the lemons market that we consider, only the arbitrarily
fine-grained categorization constitutes a PAE.
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show that as the number of categories goes to infinity the ABEE price approaches the

Nash equilibrium price, while if there is a single category then the ABEE price coincides

with the fully cursed equilibrium price. A detailed comparison of behavioral equilibrium,

cursed equilibrium, and ABEE is provided in Supplement S.5.

In summary, in the behavioral equilibrium prices are bounded from above by the Nash

price, while in our case the price cycle is bounded from below by the Nash price. In the

cursed equilibrium and the ABEE price may be above or below the Nash price but there

is no cycling. The key facet of our model that generates cycles is the endogeneity of the

categories: the empirical observations endogenously determine what model the agents’

use to form their beliefs.

The kind of market that we have examined theoretically was implemented experimen-

tally by Fudenberg and Peysakhovich (2016), for the case of a uniform quality distribution

g. They compare treatments corresponding to b = 0.3 and b = 0.6 as well as different

information conditions. They find prices above the Nash equilibrium, and they find that

a lower value of b yields relatively more overshooting. This is in line with our theory. As

mentioned above, we can show that if there is always a single category above p∗ then the

cycle consists of exactly two prices (Supplement S.3, Proposition S6). For b = 0.3 our

then theory predicts a cycle between 0.3 and 0.475, where the latter price is 58% above

the former price. For b = 0.6 our theory predicts a cycle between 0.3 and 0.7, where the

latter price is 14% above the former price. Fudenberg and Peysakhovich find that buyers

continue to bid above b even when provided with information about the distribution of

quality and when they can observe quality associated with ask prices that did not result

in trade. Providing information about average quality in the data set does bring bids

down to an average of 4.12 (for b = 0.3).

5 Conclusion

Our analysis shows that decentralized trading mechanisms, in contrast to centralized

ones, may generate cyclical patterns with volumes of trades never below that of the

rational expectation benchmark. Specifically, this holds when uninformed traders rely on

categorical learning to form expectations, and quality is observed only for traded assets.

The identified mechanism provides a novel explanation of fluctuations in OTC markets.

It also suggests a rationale for using OTC markets to generate higher volumes of trade

as opposed to more traditional centralized markets, thereby explaining the widespread

use of OTC markets despite improved information technology (Weill 2020; Riggs et al.

2020). Further empirical work is needed to assess the extent to which fluctuations in

OTC markets are better explained by our mechanism or by more traditional ones in the

presence of rational forward-looking agents. Further theoretical work may investigate the

effect of market entry and exit during booms and busts.
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Appendix

A.1 Preliminaries

Note that limp↑ci π
CE (p|p∗) = limp↓ci π

CE (p|p∗), for all i ∈ {1, ..., k − 1}, implying that
πCE (p|p∗) is continuous everywhere. Moreover, πCE (p|p∗) is piecewise differentiable with
points of non-differentiability only at category boundaries. Consider the problem of

maximizing πCE (p|p∗) under the restriction that the price p > p∗ belongs to category Ci,

max
p∈Ci

πCE (p|p∗) = G (p∗) (E [ω|ω ≤ p∗] + b) +

i(p)−1∑
j=1

(G (cj)−G (cj−1)) (v (Cj))

−G
(
ci(p)−1

) (
v
(
Ci(p)

))
+ max

p∈Ci

(
G (p)

(
v
(
Ci(p)

)
− p
))
.

The first derivative at p ∈
(
ci(p)−1, ci(p)

)
is

∂πCE (p|p∗)
∂p

= g (p)
(
v
(
Ci(p)

)
− p
)
−G (p) .

The second derivative is

∂2πCE (p|p∗)
∂p2

= g′ (p)
(
v
(
Ci(p)

)
− p
)
− 2g (p)

= g (p)

(
g′ (p)

g (p)

(
E
[
ω|ω ∈ Ci(p)

]
+ b− p

)
− 2

)
≤ g (p)

(
|g′ (p)|
g (p)

(1 + b)− 2

)
≤ 2g (p)

(
|g′ (p)|
g (p)

− 1

)
< 0,

where the inequality is verified using the assumption that |g′ (p)| < g (p). Thus πCE (p|p∗)
is concave on each interval

(
ci(p)−1, ci(p)

)
.

A.2 Proof of Lemmata Needed for the Proof of Proposition 2

Proof of Lemma 1. Since πCE
(
p|pNE

)
coincides with πNE (p) on [0, p∗] =

[
0, pNE

]
,

the constrained optimal p ∈ [0, p∗] is at p = p∗ = pNE. Differentiating πCE at p ∈ C1 =
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(
pNE, c1

]
, and letting p go to pNE, we obtain

∂πCE
(
p|pNE

)
∂p

∣∣∣∣∣
p↓pNE

= g
(
pNE

) (
E [ω|ω ∈ C1] + b− pNE

)
−G

(
pNE

)
= G

(
pNE

)( g (pNE)
G (pNE)

(
E [ω|ω ∈ C1] + b− pNE

)
− 1

)

= G
(
pNE

)(1

b

(
E [ω|ω ∈ C1] + b− pNE

)
− 1

)
=
G
(
pNE

)
b

(
E [ω|ω ∈ C1]− pNE

)
= g

(
pNE

) (
E [ω|ω ∈ C1]− pNE

)
> 0.

Here, the third and fifth equalities use the fact that g
(
pNE

)
/G
(
pNE

)
= 1/b. Since

πNE (p) is continuous, the desired result is implied.

Proof of Lemma 2. Since πCE (p|p∗t ) coincides with πNE (p) on [0, p∗t ], the con-

strained optimal p ∈ [0, p∗t ] is at p = pNE < p∗t . Suppose that arg maxp∈[p∗t ,1] π
CE (p|p∗t ) =

p∗t (requiring
∂πCE(p|p∗t )

∂p

∣∣∣
p↓p∗t
≤ 0). Then by continuity of πCE (p|p∗t ), arg maxp∈[0,1] π

CE (p|p∗t ) =

pNE < p∗t .

Proof of Lemma 3. Suppose, p∗t < pNE. Then the constrained optimal p ∈ [0, p∗t ] is

at p∗t and

∂πCE (p|p∗t )
∂p

∣∣∣∣
p↓p∗t

= g (p)
(
v
(
Ci(p)

)
− p
)
−G (p)

∣∣
p=p∗t

= g (p∗t ) (E [ω|ci−1 < ω ≤ ci] + b− p∗t )−G (p∗t )

= G (p∗t )

(
g (p∗t )

G (p∗t )
(E [ω|ci−1 < ω ≤ ci] + b− p∗t )− 1

)
≥ G (p∗t )

(
g
(
pNE

)
G (pNE)

(E [ω|ci−1 < ω ≤ ci] + b− p∗t )− 1

)

= G (p∗t )

(
1

b
(E [ω|ci−1 < ω ≤ ci] + b− p∗t )− 1

)
= g (p∗t ) (E [ω|ci−1 < ω ≤ ci]− p∗t ) > 0.

By continuity of πCE we have arg maxp∈[0,1] π
CE (p|p∗t ) > p∗t .

Proof of Lemma 4. Let gmin = minω∈[0,1] g (ω) and gmax = maxω∈[0,1] g (ω). By

the full-support assumption gmin > 0. Similarly, define hmin and hmin, and note that
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hmin = γgmin and hmax = γgmax. Moreover, note that

κ+ ≤
∫
ω∈C1

h (ω) dω = γ

∫
ω∈C1

g (ω) dω ≤ γ

∫
ω∈C1

gmaxdω = γ (c1 − c0) gmax

⇒ c1 − c0 ≥
κ+

γgmax
.

We have ∫
ω∈C1

hmindω = (c1 − c0)hmin = (c1 − c0) γgmin,

and ∫
ω∈C1

ω
hmin∫

s∈C1
hminds

dω =
c1 + c0

2
= c0 +

c1 − c0

2
.

We can use this to find a lower bound on E [ω|ω ∈ C1]:

E [ω|ω ∈ C1] ≥ 1

κ+

((
κ+ −

∫
ω∈C1

hmindω

)
c0 +

(∫
ω∈C1

hmindω

)(∫
ω∈C1

ωhmindω∫
s∈C1

hminds

))

=
1

κ+

((
κ+ −

∫
ω∈C1

hmindω

)
c0 +

(∫
ω∈C1

hmindω

)(
c0 +

c1 − c0

2

))
= c0 +

(
1

κ+

∫
ω∈C1

hmindω

)
c1 − c0

2

= c0 +

(
γgmin

κ+

)
(c1 − c0)2

2

≥ c0 +

(
γgmin

κ+

)(
κ+

γgmax

)2
1

2

= c0 +
gminκ+

2γ (gmax)2 .

Finally we find a lower bound on κ+. Recall that

κ+ =
γ (1−G (p∗))

k+
=

γ (1−G (p∗))

max
{

1,
⌊
γ(1−G(p∗))

κ̄

⌋} .
If 1 >

⌊
γ(1−G(p∗))

κ̄

⌋
then

κ+ = γ (1−G (p∗)) ≥ γ
(
1−G

(
pNE

))
,

provided that p∗ < pNE . If 1 <
⌊
γ(1−G(p∗))

κ̄

⌋
then

κ+ =
γ (1−G (p∗))⌊

γ(1−G(p∗))
κ̄

⌋ ≥ γ (1−G (p∗))
γ(1−G(p∗))

κ̄

= κ̄.
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Thus

E [ω|ω ∈ C1] ≥ c0 +
gmin

2γ (gmax)2 min
{
κ̄, γ

(
1−G

(
pNE

))}
.

A.3 Limit Case: k− →∞ and k+ Finite

Consider the case of a coarse categorization below p∗, as introduced in subsection 4.1.7.

As before, buyers form a categorization using a heuristic that aims to split the mass of

transactions into equally sized bins. The minimal probability mass in each category is

κ̄ ≤ 1. Due to the discontinuity of the probability density function of transactions h at

p∗, the intervals [0, p∗] and (p∗, 1] are categorized separately. Below p∗ the number of

categories is

k− := max

{
1,

⌊
1

κ̄

∫ p∗

0

h (s) ds

⌋}
= max

{
1,

⌊
G (p∗)

κ̄

⌋}
,

each with a density of κ− = G(p∗)
k− . Above p∗ the maximal number of categories is k+ each

with a density of κ+, as defined above. Note that a categorization C is described com-

pletely by the three parameters k−, k+, and p∗. Thus, if we take the quality distribution

G as given, the categorization C is completely determined by κ̄, γ, and p∗.

We now show how the case of a perfect understanding of quality for ask prices less

than or equal to p∗ can be obtained by letting the number of categories below p∗ go to

infinity. Let κ̄→ 0 and γ → 0 at such a rate that κ̄
γ
→ a for some constant a > 0. Note

that, for any p∗ ∈ (0, 1),

k+ ≤ max

{
1,
γ (1−G (p∗))

κ̄

}
≤ max

{
1,
γ

κ̄

}
.

Thus κ̄
γ
→ a implies that 1 ≤ k+ ≤ 1/a for all1 p∗ ∈ (0, 1). Intuitively, this corresponds

to a situation with suffi ciently many data on transactions to allow for an arbitrarily fine-

grained categorization below p∗ but a suffi ciently low level of perfectly informed buyers

1More formally, consider sequences {κ̄n}∞n=1 and {γn}
∞
n=1 such that κ̄n → 0 and γn → 0, with κ̄n

γn
→ a

for some constant a > 0. For each n ∈ N, let k−n (p∗) and k+
n (p∗) be induced by κ̄n and γn, given p∗.

For any n and p∗,

k+
n (p∗) ≤ max

{
1,
γn (1−G (p∗))

κ̄n

}
≤ max

{
1,
γn
κ̄n

}
.

It follows that for any K− there is an N such that if n > N then k+
n ≤ 1/a and k−n > K−.
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γ, and so a coarse categorization is required above2 p∗. If k− →∞ then for p ≤ p∗,

i(p)−1∑
j=1

(G (cj)−G (cj−1))
(
v
(
Ci(p)

)
− p
)
→
∫ p

ω=0

(ω + b− p) g (ω) dω

=

∫ p

ω=0

ωg (ω) dω + (b− p)G (p)

= G (p)

∫ p

ω=0

ω
g (ω)

G (p)
dω + (b− p)G (p)

= G (p) (E [ω|ω ≤ p] + b− p) .

Thus

πCE (p|p∗)→



G (p) (E [ω|ω ≤ p] + b− p) if p ≤ p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p)
+
∑

i(p)−1

j=1 (G (cj)−G (cj−1)) (v (Cj)− p)
+
(
G (p)−G

(
ci(p)−1

)) (
v
(
Ci(p)

)
− p
) if p > p∗.

A.4 Centralized Market

In order to show that the dynamic p∗t+1 = E [ω|ω ≤ p∗t ]+b converges to the steady-state p
C

from any initial condition p∗0 ∈
(
p, p
)
, it is suffi cient so show that ∂

∂p
(E [ω|ω ≤ p] + b− p) <

0, or equivalently ∂
∂p
E [ω|ω ≤ p] < 1, for all p ∈

(
p, p
)
. Since E

[
ω|ω ≤ pC

]
+ b = pC , the

condition ∂
∂p
E [ω|ω ≤ p] < 1 implies that if p∗t ∈

(
p, pC

)
, then p∗t+1 = E [ω|ω ≤ p∗t ]+b > p∗t

and the condition ∂
∂p
E [ω|ω ≤ p] > 0 implies that p∗t+1 < pC . Similarly, if p∗t ∈

(
pC , p

)
,

then p∗t+1 = E [ω|ω ≤ p∗t ] + b ∈
(
pC , p∗t

)
.

A.4.1 Local Stability

We have

E [ω|ω ≤ p] =
1

G (p)

∫ p

0

ωg (ω) dω,

and so

∂

∂p
E [ω|ω ≤ p] = − g (p)

G (p)2

∫ p

0

ωg (ω) dω +
1

G (p)
pg (p) =

g (p)

G (p)
(p− E [ω|ω ≤ p]) .

Note that

∂

∂p
E [ω|ω ≤ p]− 1

∣∣∣∣
p=pC

=
g
(
pC
)

G (pC)

(
pC − E

[
ω|ω ≤ pC

])
− 1 =

g
(
pC
)

G (pC)
(b)− 1.

2We may further restrict attention to k− → ∞ and k+ = 1. For any p∗ ∈ (0, 1) this holds when we
let a > 1. In this case the categorization is arbitrarily fine-grained below p∗ but maximally coarse above
p∗.
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This is negative if
g(pC)
G(pC)

< 1
b
, which is the case since (i) pC > pNE, and (ii)

g(pNE)
G(pNE)

= 1
b

and (iii) ∂
∂p

(
g(p)
G(p)

)
< 0. By continuity, ∂

∂p
E [ω|ω ≤ p] < 1, for all p in an open interval

around pC .

A.4.2 Global Stability

As noted above, the log-concavity ofG implies ∂
∂p

(
g(p)
G(p)

)
< 0. Moreover, (p− E [ω|ω ≤ p])

is monotonically increasing in p if and only if G is log-concave, by Lemma 5 in Bagnoli

and Bergstrom (2005). Note that, via integration by parts,

p− E [ω|ω ≤ p] = p− 1

G (p)

∫ p

0

ωg (ω) dω

= p− 1

G (p)

(
pG (p)−

∫ p

0

G (ω) dω

)
=

1

G (p)

∫ p

0

G (ω) dω.

Thus ∂
∂p
E [ω|ω ≤ p] < 1 is equivalent to (1).
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SUPPLEMENT to Cycling and Categorical Learning

in Decentralized Adverse Selection Economies

Philippe Jehiel and Erik Mohlin

S.1 Coarse Categorization below p∗

We pursue analytical results assuming a uniform quality distribution g. Hence each

category Ci = [ci−1, ci] below p∗ will have the same width ci − ci−1 = p∗/k− (where

k− = max {1, bp∗/κ̄c}) and each category Ci = [ci−1, ci] above p∗ will have the same

width ci − ci−1 = γ (1− p∗) /k+ (where k+ = max {1, bγ (1− p∗) /κ̄c}). The expected
value for a buyer from trades with an ask price in Ci is v (Ci) = (ci + ci−1) /2 + b, and

the (perceived) expected utility of a buyer is

πCE (p|p∗) =

i(p)−1∑
j=1

(cj − cj−1) (v (Cj)− p) +
(
p− ci(p)−1

) (
v
(
Ci(p)

)
− p
)
.

S.1.1 Analytical Results

Convergence We can show that there is convergence to an interval containing the

Nash price b. For this we need two lemmata.

Lemma S1 There is some ε− > 0 such that if p∗ < b − p∗

2k− then ∂πCE(p)
∂p

> 0 for all

p ≤ p∗ + ε (whenever ∂πCE(p)
∂p

is defined).

Proof. For p ∈ (ci−1, ci) with ci ≤ ci(p∗) = p∗ we have

∂πCE (p)

∂p
=
ci + ci−1

2
+ b− 2p

≥ ci + ci−1

2
+ b− 2ci

= b− ci −
ci − ci−1

2

= b− ci −
p∗

2k−
,

which is positive since p∗ < b− p∗

2k− .

1



For p ∈
(
ci(p∗), ci(p∗)+1

)
=
(
p∗, ci(p∗)+1

)
we have

lim
p↓p∗

∂πCE (p)

∂p
=
ci(p∗) + ci(p∗)+1

2
+ b− 2p∗

= b− p∗ +
ci(p∗)+1 − ci(p∗)

2

= b− p∗ +
(1− p∗)

2k+
,

which is positive since p∗ < b− p∗

2k− implies that p
∗ < b+ (1−p∗)

2k+ .

Recall that πCE (p|p∗) is concave within each category, and note that for p ∈
(
ci(p∗), ci(p∗)+1

)
∂πCE (p)

∂p
=
ci(p∗) + ci(p∗)+1

2
+ b− 2p = 0,

which implies that

p =
1

2

(
ci(p∗) + ci(p∗)+1

2
+ b

)
=

1

2

(
p∗ +

ci(p∗) − ci(p∗)+1

2
+ b

)
=

1

2

(
p∗ +

(1− p∗)
2k+

+ b

)
.

Thus, either ∂πCE(p)
∂p

> 0 for all p ∈
(
ci(p∗), ci(p∗)+1

]
, or

arg max
p∈(ci(p∗),ci(p∗)+1]

πCE (p|p∗) =
1

2

(
p∗ +

(1− p∗)
2k+

+ b

)
∈
(
ci(p∗), ci(p∗)+1

]
.

Note that p∗ < b− p∗

2k− implies

1

2

(
p∗ +

(1− p∗)
2k+

+ b

)
>

1

2

(
p∗ +

(1− p∗)
2k+

+ p∗ +
p∗

2k−

)
= p∗ +

1

2

(
(1− p∗)

2k+
+

p∗

2k−

)
> p∗ +

1

2

(
(1− p∗) κ̄

2
+
κ̄p∗

2

)
= p∗ +

1

4
κ̄,

where the last inequality uses

k+ = max

{
1,

⌊
γ (1−G (p∗))

κ̄

⌋}
≤ max

{
1,

1

κ̄

}
=

1

κ̄
,

2



and

k− = max

{
1,

⌊
G (p∗)

κ̄

⌋}
≤ max

{
1,

1

κ̄

}
=

1

κ̄
.

Lemma S2 There is some ε+ > 0 such that if p∗ > b + (1−p∗)
2k+ then ∂πCE(p)

∂p
< 0 for all

p ≥ p∗ − ε (whenever ∂πCE(p)
∂p

is defined).

Proof. For p ∈ (ci−1, ci) with ci−1 ≥ ci(p∗) = p∗ we have

∂πCE (p)

∂p
=
ci + ci−1

2
+ b− 2p

≤ ci + ci−1

2
+ b− 2ci−1

= b− ci−1 +
ci − ci−1

2

≤ b− p∗ +
(1− p∗)

2k+
,

which is positive since p∗ > b+ (1−p∗)
2k+ .

For p ∈
(
ci(p∗)−1, ci(p∗)

)
=
(
ci(p∗)−1, p

∗) we have
lim
p↑p∗

∂πCE (p)

∂p
=
ci(p∗)−1 + ci(p∗)

2
+ b− 2p∗

= b− p∗ −
ci(p∗) − ci(p∗)−1

2

= b− p∗ − p∗

2k−
,

which is positive since p∗ > b+ (1−p∗)
2k+ implies that p∗ > b− p∗

2k− .

Recall that πCE (p|p∗) is concave within each category, and note that, for p ∈
(
ci(p∗)−1, ci(p∗)

)
,

∂πCE (p)

∂p
=
ci(p∗)−1 + ci(p∗)

2
+ b− 2p = 0,

which implies that

p =
1

2

(
ci(p∗)−1 + ci(p∗)

2
+ b

)
=

1

2

(
p∗ −

ci(p∗)−1 − ci(p∗)

2
+ b

)
=

1

2

(
p∗ − p∗

2k−
+ b

)
.
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Thus, either ∂πCE(p)
∂p

> 0 for all p ∈
(
ci(p∗)−1, ci(p∗)

]
, or

arg max
p∈(ci(p∗)−1,ci(p∗)]

πCE (p|p∗) =
1

2

(
p∗ − p∗

2k−
+ b

)
∈
(
ci(p∗)−1, ci(p∗)

]
.

Note that p∗ > b+ (1−p∗)
2k+ implies that

1

2

(
p∗ +

p∗

2k−
+ b

)
<

1

2

(
p∗ − p∗

2k−
+ p∗ − (1− p∗)

2k+

)
= p∗ − 1

2

(
p∗

2k−
+

(1− p∗)
2k+

)
< p∗ − 1

2

(
κ̄p∗

2
+

(1− p∗) κ̄
2

)
= p∗ − 1

4
κ̄,

where the last inequality uses k−, k+ ≤ 1
κ̄
, as argued at the end of the proof of Lemma

S1.

We can now prove convergence to a an interval containing the Nash price b.

Proposition S1 Suppose that κ̄ < 1
2
. Starting from any initial p∗0, as t→∞ the dynamic

will converge to, and never escape, the set

P ∗ (κ̄, γ) =

(
b− 1

2
(

1
κ̄
− 1
) , b+

1

2
(
γ
κ̄
− 1
)) .

Proof. Note that

k− = max

{
1,

⌊
p∗

κ̄

⌋}
≥ max

{
1,
p∗

κ̄
− 1

}
,

k+ = max

{
1,

⌊
γ (1− p∗)

κ̄

⌋}
≥ max

{
1,
γ (1− p∗)

κ̄
− 1

}
.
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This further implies (using 1
2
> κ̄ in the last two equalities to get rid of the min-operator),

p∗

2k−
≤ min

{
p∗

2
(
p∗

κ̄
− 1
) , p∗

2

}
= min

 1

2
(

1
κ̄
− 1

p∗

) , 1

2


≤ min

{
1

2
(

1
κ̄
− 1
) , 1

2

}
=

1

2
(

1
κ̄
− 1
)

(1− p∗)
2k+

≤ min

{
1,

(1− p∗)
2
(
γ
κ̄

(1− p∗)− 1
)} = min

1,
1

2
(
γ
κ̄
− 1

(1−p∗)

)


≤ min

{
1,

1

2
(
γ
κ̄
− 1
)} =

1

2
(
γ
κ̄
− 1
) .

Thus, if p∗ < b − 1

2( 1
κ̄
−1)

then p∗ < b − p∗

2k− and hence S1 states that there is some

ε− > 0 such that ∂πCE(p)
∂p

> 0 for all p ≤ p∗ + ε− (except at finitely many points of

non-differentiability). Similarly, if p∗ > b+ 1

2( γκ̄−1)
then p∗ > b+ (1−p∗)

2k+ and hence Lemma

S2 states that there is some ε+ > 0 such that ∂πCE(p)
∂p

< 0 for all p ≥ p∗ − ε+ (except at

finitely many points of non-differentiability). This means that if p∗ < b − 1

2( 1
κ̄
−1)

then

p∗t+1 − p∗t > ε− and if p∗ > b+ 1

2( γκ̄−1)
then p∗t+1 − p∗t < −ε+.

No Rest Point As the minimal mass of categories κ̄ decreases and approaches 0 the

set P ∗ (κ̄, γ) converges to (the singleton set consisting of) b. One might conjecture that

p∗ = b is a steady-state for a small enough value of κ̄. However, this is not the case.

Proposition S2 Suppose that p∗ = b. Then,

arg max
p∈[0,1]

πCE (p) ≤ b− b

4k−
,

or

arg max
p∈[0,1]

πCE (p) ≥ b+
1− b
4k+

.

Proof. The constrained optimal p ∈
(
ci(p∗)−1, ci(p∗)

]
is given by

∂πCE (p)

∂p
=
ci(p∗) + ci(p∗)−1

2
+ b− 2p = 0

⇐⇒
b+ b− p∗

k−

2
+ b− 2p = 0

⇐⇒ p = b− p∗

4k−
,

5



and note that b − p∗

4k− ∈
(
ci(p∗)−1, ci(p∗)

]
. The constrained optimal p ∈

(
ci(p∗), ci(p∗)+1

]
is

given by

∂πCE (p)

∂p
=
ci(p∗)+1 + ci(p∗)

2
+ b− 2p = 0

⇐⇒
b+ 1−p∗

k+ + b

2
+ b− 2p = 0

⇐⇒ p = b+
1− p∗
4k+

,

and note that b+ 1−p∗
4k+ ∈

(
ci(p∗), ci(p∗)+1

]
.

Cycle for k− = 1 and k+ = 1 To obtain analytical results regarding cycles we now

look at the special cases where k− = 1 and k+ = 1. In these cases v (C1) = p∗

2
+ b and

v (C2) = 2−p∗
2

+ b. We identify the following cycle with two price levels.

Proposition S3 There is a price cycle with two prices, p∗low = (2b+ 1/5) /3 and p∗high =

(2b+ 4/5) /3, such that, if p∗t = p∗low then p∗t+1 = p∗high, and if p∗t = p∗high then

p∗t+1 = p∗low. Moreover, if p∗t > p̄ := (2b+ 1/2) /3 then p∗t+1 < p∗t , whereas if p
∗
t < p̄

then p∗t+1 > p∗t .

Proof. We look for a cycle with two price levels. The first derivative at p ∈ [0, p∗) is

∂πCE (p)

∂p
=
p∗

2
+ b− 2p,

and so the FOC for an interior constrained optimal p ∈ [0, p∗] is p = (p∗/2 + b) /2,

generating utility ((p∗/2 + b) /2)2.

The first derivative at p ∈ (p∗, 1] is

∂πCE (p)

∂p
=

1 + p∗

2
+ b− 2p,

and so the FOC for an interior constrained optimal p ∈ (p∗, 1] is p = ((1 + p∗) /2 + b) /2,

generating utility (((1 + p∗) /2 + b) /2)2 − p∗/2. Thus the low category is perceived to

contain the optimum if(
1

2

(
p∗

2
+ b

))2

−
((

1

2

(
1 + p∗

2
+ b

))2

− 1

2
p∗

)
=

1

16
(6p∗ − 4b− 1) > 0

or equivalently

p∗ > p̄ :=
2b+ 1/2

3
.

This implies that if p∗t > p̄ then p∗t+1 < p∗t , whereas if p
∗
t < p̄ then p∗t+1 > p∗t .
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In order to have a cycle with two price levels we need

p∗low =
1

2

(
p∗high

2
+ b

)
and

p∗high =
1

2

(
1 + p∗low

2
+ b

)
or equivalently

p∗low =
1

2

(
1

2

(
1

2

(
1 + p∗low

2
+ b

))
+ b

)
⇐⇒ p∗low =

1 + 10b

15
=

2b+ 1/5

3

and

p∗high =
10b+ 4

15
=

2b+ 4/5

3
.

If b = 0.3 then p∗high = 0.467 and p∗low = 0.267. This is illustrated in Figure S1

(γ = 0.1, κ̄ = 1/2, b = 0.3), for initial prices equal to 0.1, 0.5, and 0.9, respectively.
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Figure S1

S.1.2 Numerical Results

We expect our main result, regarding convergence to a price cycle, to be relevant when

there are suffi ciently many categories below p∗ and suffi ciently few categories above p∗.

We examine this numerically by examining how price movements vary when we vary the

information parameter γ, and the categorization coarseness parameter κ̄. Throughout

we let b = 0.3 and use an initial price of p = 0.1. The results are displayed in Figure

S2. The qualitative pattern does not depend on the exact level of b, and convergence

does not depend on the initial price. In general, increasing the share of informed buyers

γ and decreasing the required mass per category κ̄, dampens fluctuations by increasing

the number of categories above p∗.
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S.1.3 Categorization without (Automatic) Category Boundary at p∗

Now that categories are used both below and above p∗ one may wonder what happens if

buyers ignore the discontinuity at p∗ when forming categories. Suppose that each category

has a mass of transactions exactly equal to κ̄, regardless of whether the category is below

p∗, above p∗, or includes p∗. That is,

ci − ci−1


= κ̄ if ci ≤ p∗

∈
(
κ̄, κ̄

γ

)
p∗ ∈ (ci−1, ci]

= κ̄
γ

if ci−1 ≥ p∗

.

For the case of a uniform g we can show that starting from any initial p∗0, as t→∞ the

dynamic will converge to, and never escape, the set

P̃ ∗ (κ̄, γ) =

(
b− 2κ̄

γ
, b+

2κ̄

γ

)
.

As the probability of perfect information γ increases, and as the number of categories k

increases, the set P̃ ∗ (κ̄, γ) converges to (the singleton set consisting of) b. Still, as before,

we can show that b is not a rest point.

Figure S3 reports numerical results for the dynamics in the case where there is no

(automatic) category boundary at p∗. We vary γ and κ̄ in the same way as in the

numerical investigation of the case with a category boundary at p∗. In some cases there

is pronounced cycling, while in other cases there appears to be none. The reason is that

cycles appear for parameter combinations that generate a category boundary suffi ciently

close to p∗ (for each p∗ in the cycle). In the case of κ̄ = 1/10 with γ = 0.05 or 0.1 the

trajectory depends on the initial condition. For consistency, we report the trajectory

starting at p = 0.1.
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S.2 Multiplicative Gains from Trade

Note that, as in the additive case, we still have

max
p∈Ci

πCE (p) = max
p∈Ci

i(p)−1∑
j=1

(G (cj)−G (cj−1)) (v (Cj)− p)+
(
G (p)−G

(
ci(p)−1

)) (
v
(
Ci(p)

)
− p
)
,

and the first derivative at p ∈
(
ci(p)−1, ci(p)

)
is

∂πCE (p)

∂p
= g (p)

(
E
[
ω|ci(p)−1 < ω ≤ ci(p)

]
· β − p

)
−G (p) .

S.2.1 Nash Equilibrium

Proposition S4 The unique Nash equilibrium is pNE = 0.

Proof. In the Nash equilibrium the buyers have correct expectations about the

mapping between ask price and quality. They maximize

πNE (p) =

∫ p

ω=0

(ω · β − p) g (ω) dω = G (p) (E [ω|ω ≤ p] β − p) .

From the additive case we know that

∂

∂p
(E [ω|ω ≤ p]) =

g (p)

G (p)
(p− E [ω|ω ≤ p]) .

Thus

∂

∂p
(G (p) (E [ω|ω ≤ p] · β − p))

= g (p) (E [ω|ω ≤ p] · β − p) +G (p)

(
∂

∂p
(E [ω|ω ≤ p]) · β − 1

)
= g (p) (E [ω|ω ≤ p] · β − p) +G (p)

(
g (p)

G (p)
(p− E [ω|ω ≤ p]) · β − 1

)
= g (p) (E [ω|ω ≤ p] · β − p) + g (p) (p− E [ω|ω ≤ p] · β)−G (p)

= g (p) (E [ω|ω ≤ p] · β − p)− g (p) (E [ω|ω ≤ p] · β − p)−G (p)

= −G (p) < 0.

S.2.2 Nash Not a Rest Point

Lemma S3 If p∗t = pNE = 0 then,

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) > 0.
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Proof. Differentiating πCE at p ∈ (c0, c1), and letting p go to 0 = c0, we obtain

∂πCE (p)

∂p

∣∣∣∣
p↓pNE=0

= g (p)
(
v
(
Ci(p)

)
− p
)
−G (p)

∣∣
p=pNE=0

= g (0) (E [ω|ci−1 < ω ≤ ci] β) > 0.

S.2.3 Cycle When k− →∞ and k+ <∞

Define

pβ(NE) := arg max
p∈[0,1]

πCE (p|p∗ = 0) .

Let k− = pβ(NE)

κ̄
→ ∞ and k+ =

γ(1−pβ(NE))
κ̄

→ a < ∞. This means that for any

p∗ ≥ pβ(NE) we have

k− =
p∗

κ̄
>
pβ(NE)

κ̄
→∞

and

k+ =
γ (1− p∗)

κ̄
=
γ
(
1− pβ(NE)

)
κ̄

(1− p∗)
(1− pβ(NE))

→ a
(1− p∗)

(1− pβ(NE))
<∞.

This implies that, for any p∗ ≥ pβ(NE) and any p ≤ p∗, we have

p∑
j=1

(cj − cj−1)
(
v
(
Ci(p)

)
− p
)
→
∫ p

ω=0

(ωβ − p) g (ω) dω = G (p) (E [ω|ω ≤ p] β − p) ,

and so, for any p∗ ≥ pβ(NE)

πCE (p|p∗)→



G (p) (E [ω|ω ≤ p] β − p) if p ≤ p∗,

G (p∗) (E [ω|ω ≤ p∗] β − p)
+
∑

i(p)−1

j=i(p∗)+1 (G (cj)−G (cj−1)) (v (Cj)− p)
+
(
G (p)−G

(
ci(p)−1

)) (
v
(
Ci(p)

)
− p
) if p > p∗.

Suppose that at time t it was the case that p∗t = pNE = 0. Then at time t + 1 the

buyers bid p∗t+1 = pβ(NE) > p. For period t + 2, the following result demonstrates that

either p∗t+2 = pNE = 0 or p∗t+2 > p∗t+1.

Lemma S4 If p∗t > pNE = 0, then either

p∗t+1 = arg max
p∈[0,1]

πCE (p) = pNE = 0

12



or

p∗t+1 = arg max
p∈[0,1]

πCE (p) > p∗t .

Proof. Since πCE (p) coincides with πNE (p) on
[
0, p∗t+1

]
, the constrained optimal

p ∈
[
0, p∗t+1

]
is at p = pNE = 0. Suppose that arg maxp∈[p∗t+1,1]

πCE (p) = p∗t+1 (requiring
∂πCE(p)

∂p

∣∣∣
p↓p∗t+1

≤ 0). Then by continuity of πNE (p), arg maxp∈[0,1] π
CE (p) = pNE = 0.

We can now prove that there is a cycle.

Proposition S5 There exists an increasing sequence (p(1), ..., p(m)) with m ≥ 2 and

p(1) = pNE such that if p∗t = p(i) for i ∈ {1, ...,m− 1} then p∗t+1 = p(i+1), and if p∗t = p(m)

then p∗t+1 = p(1). Moreover, the dynamic converges to the set
{

(p(1), ..., p(m))
}
from any

initial price p0.

Proof. Assume that there is no cycle. Lemma S4 implies that

p∗t+1 = arg max
p∈[0,1]

πCE (p|p∗t ) > p∗t ,

for all t. Since p∗t ≤ 1 for all t, it follows that p∗t → p̄ for some p̄ > pNE as t→∞. This
implies that

∣∣p∗t+1 − p∗t
∣∣→ 0, which, by continuity of πCE (p|p∗t ), implies that∣∣πCE (p∗t+1|p∗t

)
− πCE (p∗t |p∗t )

∣∣→ 0.

Since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ], we have
∣∣πCE (p∗t+1|p∗t

)
− πNE (p∗t )

∣∣ → 0, and

consequently πCE
(
p∗t+1|p∗t

)
→ πNE (p̄). Since the Nash equilibrium pNE is unique it holds

that πNE
(
pNE

)
> πNE (p̄), and since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ] we get

πCE
(
p∗t+1|p∗t

)
→ πNE (p̄) < πNE

(
pNE

)
= πCE

(
pNE|p∗t

)
.

This is in contradiction to p∗t+1 = arg maxp∈[0,1] π
CE (p|p∗t ). We conclude that there is a

cycle. Lemma S3 and Lemma S4 imply that the cycle consists of pNE and one or more

prices above pNE.

Note that the preceding argument can be used to show, that there is convergence to

the cycle, from which there is no escape. To see this suppose (to obtain a contradiction)

that there is some p∗1 > pNE that does not belong to the cycle (i.e., p∗1 6= p(1) for all

i ∈ {1, ...,m}), from which there is no convergence to the cycle. This means that p∗t+1 > p∗t

for all t and p∗t → p̄ for some p̄ ∈
[
pNE, p(m)

]
as t→∞.
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S.3 Buyer Competition

A rest point of the dynamic with Bertrand pricing, denoted by pB, must satisfy πBi
(
pB, pB|pB

)
=

0, i.e., satisfy πCEi
(
pB|pB

)
= 0 or, equivalently,

G
(
pB
) (
E
[
ω|ω ≤ pB

]
+ b− pB

)
= 0⇐⇒ pB = E

[
ω|ω ≤ pB

]
+ b. (S1)

In order for p∗t = pB to be a rest point it must be the case that πBi
(
pi, p

B|pBt
)
≤ 0 for

all pi > pB (since otherwise buyer competition would lead to increasing prices). For the

same reasons as in the case without buyer competition, πBi
(
pi, p

B|pBt
)
is continuous in

pi and concave in pi within each category. Thus it holds that πBi
(
pi, p

B|pBt
)
≤ 0 for all

pi > pB if and only if limpi↓pB
∂
∂pi
πBi
(
pi, p

B|pBt
)
≤ 0.

For simplicity, suppose that there is a single category above p∗t (i.e., κ̄ suffi ciently

large and γ suffi ciently small). For pi > pB we have

∂

∂pi
πBi
(
pi, p

B|pBt
)

= g (pi)
(
E
[
ω|pB ≤ ω ≤ 1

]
+ b− pi

)
−G (pi) ,

and so

lim
pi↓pB

∂

∂pi
πBi
(
pi, p

B|pBt
)

= g
(
pB
) (
E
[
ω|pB ≤ ω ≤ 1

]
+ b− pB

)
−G

(
pB
)
.

Using (S1) this is non-positive iff

g
(
pB
)

G (pB)

(
E
[
ω|pB ≤ ω ≤ 1

]
− E

[
ω|ω ≤ pB

])
≤ 1. (S2)

If instead limpi↓pB
∂
∂pi
πBi
(
pi, p

B|pBt
)
> 0 then pB is not a rest point. From p∗t = pB the

dynamic will move to p∗t+1, which solves π
B
i

(
p∗t+1, p

∗
t+1|p∗t

)
= 0, i.e., p∗t+1 that solves

G (p∗t )
(
E [ω|ω ≤ p∗t ] + b− p∗t+1

)
+
(
G
(
p∗t+1

)
−G (p∗t )

) (
E [ω|p∗t ≤ ω ≤ 1] + b− p∗t+1

)
= 0.

(S3)

For uniform g equation (S2) becomes pB ≥ 1/4. Moreover, in the uniform case (S1)

becomes pB = 2b. Thus, in order for the perceived marginal utility of pi to be non-positive

at pB we need 2b ≥ 1/4 ⇐⇒ b ≥ 1/8. If instead b < 1/8 then when p∗t+1 = 2b equation

(S3) becomes (
p∗t+1

)2 − 1

2
p∗t+1 − 4b2 + b = 0.

The solutions are p∗t+1 = 2b and p∗t+1 = 1
2
− 2b. With the former solution p∗t+1 = p∗t . With

the latter solution (which requires b < 1
4
to be non-negative) p∗t+1 − p∗t = 1

2
− 4b. This is

positive only if b < 1/8. Next note that if p∗t+1 > p∗t then π
B
i

(
p∗t+1, p

∗
t+1|p∗t+1

)
< 0. Thus we

must have p∗t+2 > p∗t+1 or p
∗
t+1 = p∗t = pB. (If p∗t = 1

2
− 2b then limpi↓p∗t

∂
∂pi
πBi (pi, p

∗
t |p∗t ) =

14



4b− 1
4
, which is positive iff b > 1/16.)

Summing up, we have shown, for the uniform case, that if b < 1/8, and if there is

always a single category above p∗ (i.e., κ̄ suffi ciently large and γ suffi ciently small) then

there is a cycle, such that if p∗t = pB = 2b then p∗t+1 >
1
2
− 2b. There may be more than

two prices in the cycle (if b > 1
16
) but eventually the dynamic returns to pB.
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S.4 Uniform g

Proposition S6 Suppose that g is uniform. If p∗t = pNE = b then

p∗t+1 =
1 + 3b

4
= arg max

p∈[0,1]
πCE (p)

and

p∗t+2 = b = arg max
p∈[0,1]

πCE (p) .

Proof of Proposition S6. If k+ = 1 then

πCE (p)→


p
(
p
2

+ b− p
)

if p ≤ p∗

p∗
(
p∗

2
+ b− p

)
+
(
p− ci(p∗)

) (
1+p∗

2
− p
) if p > p∗.

Suppose that p∗t = pNE = b = ci(p∗). The first derivative at p ∈ [0, p∗) is ∂π
CE(p)
∂p

= b−p,
and so, since p∗ = b, the constrained optimal p ∈ [0, p∗] = [0, b] is p∗ = b. The constrained

optimal p ∈
(
ci(p∗), 1

]
is given by

∂πCE (p)

∂p
=

1 + p∗

2
+ b− 2p = 0⇐⇒ p =

1 + 3b

4
.

Note that limp↑b
∂
∂p
πCE (p) = 0 and

lim
p↓b

∂πCE (p)

∂p
= lim

p↓b

(
2b+

1 + b

2
− 2p

)
=

1 + b

2
> 0.

Thus, since πCE (p) is continuous, we have

max
p∈(ci(p∗),1]

πCE (p) = πCE
(
p̃Ci(p∗)+1

)
> max

p∈[0,p∗]
πCE (p) .

Now suppose that p∗t+1 = (1 + 3b) /4 = ci(p∗). The first derivative at p ∈ [0, p∗) is
∂
∂p
πCE (p) = b− p, and so, since p∗ > b, the constrained optimal p ∈ [0, p∗] is b, yielding

a payoff of b2/2. For p ∈ (p∗, 1] we have

∂πCE (p)

∂p
≥ lim

p↓p∗
∂πCE (p)

∂p
=

1 + p∗

2
+ b− 2p∗ =

1

8
(1− b) > 0

and the optimum is given by the FOC

∂πCE (p)

∂p
=

1 + p∗

2
+ b− 2p = 0⇐⇒ p =

11b+ 5

16
,
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which yields the payoff

πCE
(

11b+ 5

16

)
=

1

256

(
137b2 − 2b− 7

)
.

We compare this with the constrained optimal p ∈ [0, p∗], which is b, yielding a payoff of

b2/2. Since

b2

2
− 1

256

(
137b2 − 2b− 7

)
=

1

256

(
2b+ 7− 9b2

)
>

1

256
(2b+ 7− 9b)

=
7

256
(1− b) > 0,

we conclude that if p∗ = (1 + 3b) /4 = ci(p∗) then

max
p∈[0,p∗]

πCE (b) > max
p∈(p∗,1]

πCE
(

11b+ 5

16

)
.
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S.5 Comparison with Related Models

In this section we compare our model with a number of related models. Throughout we

assume a uniform quality distribution g.

S.5.1 Cursed Equilibrium

Eyster and Rabin (2005) define a notion of cursedness, capturing an inability to (fully)

understand the mapping between types and actions in an incomplete information game.

A fully cursed buyer fails entirely to take the selection into account and believes that the

expected value is E [v] independent of the ask price, and so the perceived expected payoff

is

πCursed (p) = Pr (ω ≤ p) · (E [ω + b]− p)

= p

(
1

2
+ b− p

)
.

The solution is pCursed = 1
2

(
b+ 1

2

)
. Thus a cursed buyer bids too much if b < 1/2 and too

little if b > 1/2. The reason for the former effect is that a cursed buyer is overoptimistic

about the value v since E [v] ≥ E [v|ω ≤ p] for all p. The reason for the latter effect is

that the cursed buyer fails to understand that a higher bid will elicit higher quality.

A partially cursed buyer partially takes selection into account. Her expected payoff is

πPartial (p) = (1− δ)πNE (p) + δπCursed (p)

= p

(
(1− δ)

(p
2

)
+ δ

(
1

2

)
+ b− p

)
.

The solution is p = 1
(1+δ)

(
b+ δ

2

)
, which for δ = 1 reduces to, 1

2

(
b+ 1

2

)
, the choice of a

fully cursed buyer, and for δ = 0 reduces to b, the Nash equilibrium choice.

S.5.2 Behavioral Equilibrium

Esponda (2008) defines a notion of behavioural equilibrium. Buyers have unlimited in-

formation about all past bid and ask prices as well as information about whether trade

occurred. Thus buyers are able to perfectly assess the probability of trade as a function

of bid price. Buyers have information about quality in all those cases trade took place,

but no information about quality in the cases trade did not occur. Thus in equilibrium

buyers are able to form correct beliefs about how quality depends on ask prices below

the equilibrium price, but not on those above the equilibrium price. In order to form

a belief about quality associated with bid prices above the equilibrium price they have

to use data on bid prices below the equilibrium price. Esponda considers a naive and a

sophisticated way of doing this.
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Let pN be the equilibrium bid price with naive buyers. It is w.l.o.g. to assume

that pN ≤ 1. Naive buyers believe that the expected value is the same above the equi-

librium price as it is below the equilibrium price. Formally, the buyers assume that

E
[
v|a ≤ pN

]
= E

[
v|a > pN

]
, and hence their expected payoff is

πN (p) = Pr (a ≤ p) ·
(
E
[
ω + b|a ≤ pN

]
− p
)

= p ·
(
pN

2
+ b− p

)
.

This is concave in p and so the FOC gives us

max
p
πN (p) =

1

2

(
pN

2
+ b

)
.

In equilibrium we must have pN = maxp π
N
(
|pN
)
. The solution is pN = 2

3
b < pNE, so

the adverse-selection problem is aggravated.

Esponda also considers sophisticated buyers. Let pS be the equilibrium price in this

case. It is w.l.o.g. to assume that pS ≤ 1. Let ρS (p) denote the expected quality

conditional on a bid price p being accepted. Since pairs consisting of an ask prices and a

quality are observed for ask prices below the equilibrium bid price pS, is it is assumed that

ρS (p) = E [ω + b|ω ≤ p] for p ≤ pS. Moreover, ρS (p) is assumed to be non-decreasing in

p for all pS. That is, sophisticated buyers may have some understanding that higher bids

elicit higher quality. This implies that for p > pS we have ρS (p) ≥ E
[
ω + b|ω ≤ pS

]
. (In

addition Esponda adds restrictions to the effect that beliefs are consistent with observed

distributions of quality.) The expected payoff is given by

πS (p) = Pr (ω ≤ p) ·
(
ρS (p)− p

)
=

{
Pr (ω ≤ p) (E [ω + b|ω ≤ p]− p) p ≤ pS

Pr (ω ≤ p)
(
ρS (p)− p

)
p > pS

=

{
p
(
b− p

2

)
p ≤ pS

p
(
ρS (p)− p

)
p > pS

.

Esponda notes that pN is a lower bound for the set of equilibrium prices with a sophisti-

cated buyer. He also notes that pNE is an upper bound for the set of equilibrium prices

with a sophisticated buyer. To see this, note that if pS > pNE then the buyer knows

E [v|ω ≤ p] for all p < pS and so will realize that he is better off at a price below pS.

Alternatively, the buyer will want to deviate to an even higher price, which means that

pS is not an equilibrium.
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S.5.3 Analogy-based expectations equilibrium (ABEE)

Suppose that, as in Esponda’s setup, buyers only observe quality when trade took place,

and suppose that, as in our model above, with probability γ a buyer is perfectly informed

about quality. In analogy-based expectations equilibrium (ABEE), due to Jehiel (2005)

and Jehiel and Koessler (2008), buyers use categories to judge quality as a function of

prices (as in our model) but categories are fixed. For simplicity, assume that all categories

have the same width 1/k. We may either assume (i) that players observe quality only in

cases where trade took place and that with probability γ a buyer is perfectly informed

about quality, or (ii) that players observe quality also when trade did not take place. In

either case the payoff function has the same form as in our model:

πABEE (p) =

i(p)−1∑
j=1

(cj − cj−1) (v (Cj)− p) +
(
p− ci(p)−1

) (
v
(
Ci(p)

)
− p
)
.

One can show that as the number of categories goes to infinity the solution to the problem

of maximizing πABEE (p) on [0, 1] approaches the Nash equilibrium price b = pNE. If

there is a single category then the solution coincides with the fully cursed equilibrium

price pCursed = 1
2

(
b+ 1

2

)
.

Proposition S7 As the number of categories goes to infinity the solution tomaxp∈[0,1] π
ABEE (p)

approaches the Nash equilibrium price b = pNE. If there is a single category then the so-

lution to maxp∈[0,1] π
ABEE (p) coincides with the fully cursed equilibrium price pCursed =

1
2

(
b+ 1

2

)
.

Proof. Note that, for p ∈ (ci−1, ci),

∂πCE (p)

∂p
=
ci + ci−1

2
+ b− 2p

≥ ci + ci−1

2
+ b− 2ci

= b− ci −
ci − ci−1

2

= b− ci −
1

2k
.

Thus, if b − 1
2k
≥ ci then

∂πCE(p)
∂p

> 0 for all p ∈ (ci−1, ci). Furthermore, note that, that

for p ∈ (ci−1, ci),

∂πCE (p)

∂p
≤ ci + ci−1

2
+ b− 2ci−1

= b− ci−1 +
ci − ci−1

2

= b− ci−1 +
1

2k
.
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Thus, if b+ 1
2k
≤ ci−1 then

∂πCE(p)
∂p

> 0 for all p ∈ (ci−1, ci). It follows that as the number

of categories goes to infinity the solution to maxp∈[0,1] π
ABEE (p) approaches the Nash

price b = pNE.

By contrast, if there is a single category then we obtain the same payoff function as

for a fully cursed buyer, namely,

πABEE (p) = p

(
1

2
+ b− p

)
= πCursed (p) ,

and so the solution is pABEE = pCursed = 1
2

(
b+ 1

2

)
.
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