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Abstract

A recent study proposed by Westerlund (CCE in Panels with General Unknown Fac-

tors, Econometrics Journal, 21, 264-276, 2018) showed that a very popular Common Cor-

related Effects (CCE) estimator is significantly more applicable than it was thought be-

fore. Contrary to the usual stationarity assumption, common factors can in fact be much

more general and not only unit root. This also helps to alleviate the uncertainty over

deterministic model components since they can be treated as unknown, similarly to un-

observed stochastic factors. While very promising, these theoretical results concern only

the pooled (CCEP) version of the estimator for the homogeneous parameters, which does

no take heterogeneous effects into account. Therefore, it is natural to generalize these

findings to the case of unit-specific slopes. It is especially interesting, because many pre-

vious studies on heterogeneous slopes did not rigorously account for the usual situation

when the factors are proxied by more explanatory variables than needed. As a result,

the current setup introduces more uniformity to the CCE theory. We demonstrate that

save for some regularity conditions, CCEP and the mean group (CCEMG) estimators are

asymptotically normal and unbiased under heterogeneous slopes and general unknown

factors.

1 Introduction

Consider the following panel data model often used in previous research (see e.g. Pesaran,

2006, or Karabiyik et al., 2017):

yi = Xiβi + Fγi + εi (1.1)

*Corresponding author: Department of Economics, Lund University. Building: EC1. Room: 275. Email
address. ovidijus.stuskas@nek.lu.se. I am grateful to Ignace De Vos for comments and discussions that helped
to significantly improve this paper.
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Xi = FΓi + Vi, (1.2)

where yi = [yi,1, . . . , yi,T]
′ ∈ RT×1 for i = 1, . . . , N, Xi = [xi,1, . . . , xi,T]

′ ∈ RT×k is the matrix

of explanatory variables, Vi = [vi,1, . . . , vi,T]
′ ∈ RT×k and εi = [ε i,1, . . . , ε i,T]

′ ∈ RT× are

matrix and vector of idiosyncratic errors and F = [f1, . . . , fT]
′ is the matrix of unobservable

common factors. Also, Γi ∈ Rm×k and γi ∈ Rm×1 are individual-specific factor loadings and

βi ∈ Rk+1 is the parameter vector of interest.

This is a setup of the so-called ’interactive effects’ model, which helps to flexibly take

unobserved heterogeneity in yi into account. While the standard ’fixed effects’ models sub-

sume heterogeneity into an additive unit– and time–specific constants, the current setup is

much more general. This is because time– and unit–specific effects enter in a multiplicative

way, and this allows for many time–specific (observed and unobserved) factors to which in-

dividuals respond differently through the loadings.1 Moreover, because the factors can be

stochastic, this gives a way to model cross-section dependence.

Clearly, examination of (1.1)–(1.2) reveals that estimation of βi is problematic due to un-

observed F. Using the structure of (1.1)–(1.2), we obtain a system

Zi = FCi + Ui, (1.3)

where Zi = [yi, Xi] ∈ RT×(k+1), Ci = C̃iBi = [γi, Γi]Bi = [Γiβi + γi, Γi] ∈ Rm×(k+1) and

Ui = ŨiBi = [εi, Vi]Bi = [Viβi + εi, Vi] ∈ RT×(k+1), where

Bi =

[
1 01×k
βi Ik

]
.

This is known as static factor model, where following common correlated effects (CCE) pro-

cedure by Pesaran (2006), the estimator of F is given by

F̂ = Z = FC + U, (1.4)

where A = 1
N ∑N

i=1 Ai is the cross-section average of arbitrary matrices Ai for i = 1, . . . , N.

It is known that as N → ∞, U →p 0T×(k+1) under various empirically relevant assump-

tions (see e.g. Pesaran and Tosetti, 2011), where ’→p’ represents convergence in probability.

Hence, F̂ is consistent for the space spanned by F, which is sufficient to control their effect.

1In fact, letting F = [1T , θ]′ and [ai, 1]′, such that 1T is a T × 1 vector of ones and θ = [θ1, . . . , θT ]
′ is a vector

with time–specific parameters, we obtain Fγi = ai1T + θ, thus fixed effects framework is a special case of the
interactive effects.
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As a result, we have two versions of CCE estimator, namely pooled (CCEP) and mean group

(CCEMG):

β̂P =

(
N

∑
i=1

X′iMF̂Xi

)−1 N

∑
i=1

X′iMF̂yi, (1.5)

β̂MG =
1
N

N

∑
i=1

β̂i =
1
N

N

∑
i=1

(X′iMF̂Xi)
−1X′iMF̂yi, (1.6)

where MA = IT − PA = IT − A(A′A)+A′ is a projection matrix for an arbitrary T-rowed

matrix A and (A′A)+ is the Moore-Penrose (MP) inverse of A′A. The estimator in (1.5)

assumes that βi = β for all i = 1, . . . , N, while the one in (1.6) takes potential parameter het-

erogeneity into account. As was alluded in Pesaran (2006) and further extensively explored

in Westerlund and Urbain (2015), CCEP estimator is asymptotically biased if βi = β for all

i = 1, . . . , N is true, unless TN−1 → 0. In fact, due to its complicated nature, this bias has

attracted much attention within theoretical CCE literature (see e.g. Karabiyik et al., 2017,

De Vos and Everaert, 2021, or De Vos and Stauskas, 2021).

On the other hand, if βi is unit–specific, such that βi = β + υi, where υi is mean-zero

random variable, both (1.5) and (1.6) are asymptotically normal and unbiased with no re-

strictions on N, T expansion rate. The reason for such elegant property is the fact that the

stochastic component υi dominates the asymptotic distribution. The parameter heterogene-

ity assumption is very popular in applied literature, where individual-specific economic re-

lationships are the focus, while it is important to control for possible unobserved heterogene-

ity and cross-section dependence. For instance, in macroeconomic setting this need arises in

estimation of cross-country growth regressions (see e.g. Eberhardt and Teal, 2011, or Eber-

hardt and Presbitero, 2015) or analysis of real estate price elasticity (see e.g. Holly et al.,

2010). An example from microeconomics is the average treatment effect (see Petrova and

Westerlund, 2020).

The aim of the current study is to consider CCEP and CCEMG estimators and their con-

venient properties under βi = β + υi in the light of new theoretical findings that previously

concerned mostly homogeneous β. Firstly, we focus on F, which was assumed to be station-

ary in the previous bulk of literature. In particular, T−1F′F is usually assumed to have a con-

stant positive definite limit. Although Kapetanios et al. (2011) allow unit root factors, such

setup is rather specific and it ignores other empirically relevant scenarios. Instead, we adopt
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the framework employed by Westerlund (2018) in case of homogeneous β. It allows many

different candidates for F without any knowledge thereof, save for some regularity condi-

tions which ensure that D−1
T,FF′FD−1

T,F has (almost surely) positive definite limit as T → ∞,

where the matrix DT,F will be described below together with our assumptions. Examples

of such factors include (mixtures of) polynomial trends of finite order, stochastic series of

finite integration order, (near) unit root series or stationary series with absolute summable

autocovariances. This approach is especially convenient, as it alleviates uncertainty over

the deterministic model components, since F can absorb the time specific components a re-

searcher is unsure of.

Secondly, we derive the asymptotic distributions following Karabiyik et al. (2017), who

showed that the asymptotic behavior of (D−1
T,F̂

F̂′F̂D−1
T,F̂

)+ differs depending on whether m =

k + 1 or m < k + 1. In the latter case, given that β is homogeneous, we obtain extra non-

estimable bias components as a price for the asymptotic boundedness of the second moment

matrix. If, however, the slopes are heterogeneous, it turns out that the analysis is very differ-

ent from the standard steps in Pesaran (2006) and that the higher moment conditions of the

idiosyncratic components vi,t and ε i,t are necessary to derive the asymptotic distributions.

To our knowledge, De Vos and Stauskas (2021) were the first to address this previously un-

noticed issue for CCEP and CCEMG. Therefore, it is important to understand how this new

approach squares with non-stationary factors. As a result, we show that under individual

specific coefficients both CCEP and CCEMG estimators are still asymptotically normal and

unbiased given the general unknown factors. This further demonstrates a wide range of ap-

plicability of the CCE type estimators and provides a more uniform theoretical framework

for the heterogeneous slope analysis.

2 Assumptions

We state and discuss assumptions under which we work in this paper. Throughout the pa-

per we use the following notation: rk(A) represents the rank of an arbitrary matrix A, while

vec(A) vectorizes A by putting its columns on top of each other and ⊗ stands for Kronecker

product. Moreover, ‖A‖ =
√

tr(A′A) is the Frobenius (Euclidean) norm and tr(A) is the

trace, while ’→d’ and ’⇒’ stand for convergence in distribution and weak convergence, re-

spectively. Next, xn = Op(an) means that a random vector sequence xn is at most of order

an in probability, where an is some deterministic sequence, while xn = op(an) means it is
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of smaller order in probability than an. Finally, M < ∞ is some generic positive constant,

which is not necessarily always of the same value when applied to different statements.

Assumption 1 (Idiosyncratic errors) ε i,t and vi,t are stationary and independent across i with absolute-

summable autocovariances, E(ε i,t) = 0, E(vi,t) = 0k×1, σ2
i = E(ε2

i,t), ΣVi = E(vi,tv′i,t), Ωi =

E(εiε
′
i), with Ωi, ΣVi positive definite and E(ε6

i,t) < M, E(‖vi,t‖8) < M for all i and t. More-

over, 1
N ∑N

i=1 σ2
i → σ2 < M and 1

N ∑N
i=1 ΣVi → ΣV with ‖ΣV‖ < M as N → ∞, and we define

ΣUi = E(ui,tu′i,t) = B′E(ũi,tũ′i,t)B = B′ΣŨi
B and 1

N ∑N
i=1 ΣUi → B′ΣŨB = ΣU positive defi-

nite, where ΣŨi
= [[σ2

i , 01×k]
′, [0k×1, ΣVi ]

′] and ΣŨ = [[σ2, 01×k]
′, [0k×1, ΣV]′] and B comes from

Bi = B + B̃i, such that B̃i = [[0, υi]
′, [0k×1, 0k×k]

′].

Assumption 2 (Common factors) Consider the m × m matrix DT,F = diag(Tp1 , ..., Tpm) with

pj ≥ 1/2 for all j. Given this matrix, the following holds:

(i) Tκ · E(‖D−1
T,FF′FD−1

T,F − ΣF‖2) ≤ M for some κ > 0 and some m× m matrix ΣF, which is

such that E(‖ΣF‖2) ≤ M and P(rk(ΣF) = m) = 1.

(ii) N ·E(‖D−1
T,FF′V‖2) ≤ M and E(‖D−1

T,FF′Vi‖2) ≤ M for all i. The same is true when V and

Vi are replaced by ε and εi, respectively.

Assumption 3 (Factor loadings) The Ci are generated according to

Ci = C̃iBi = (C̃ + η̃i)Bi = C + ηi, vec(η̃i) ∼ I ID(0m(1+k), Ωη̃), (2.1)

where C̃ = E(C̃i) = [γ, Γ], Ωη̃ = E(vec(η̃)vec(η̃)′) positive definite and
∥∥∥C̃
∥∥∥ ,
∥∥Ωη̃

∥∥ < M.

Assumption 4 (Rank condition) If m < k + 1, then C = [Cm, C−m], where Cm and C−m are

m × m and m × (k + 1− m), respectively, whereas if m = k + 1, then C = Cm. In both cases,

rk(Cm) = m and ‖C‖ ≤ M.

Assumption 5 (Independence) ft, ε i,s, vj,l , η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The heterogeneous slope coefficients follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυi)

with Ωυi a finite nonnegative definite k × k matrix such that 1
N ∑N

i=1 Ωυi → Ωυ and the υi are

independent of ft, ε i,s, vj,l , η̃n for all i, j, n, t, s, l and E(‖υi‖6) < M.
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Here, Assumption 2 comes from Westerlund (2018) and it helps to fully generalize the factor

structure. It is formulated as a high level moment condition and it avoids imposing a specific

form on F. This is convenient, because it allows to carry out the distribution analysis under

many possible scenarios simultaneously as D−1
T,FF′FD−1

T,F is an important driver of the distri-

bution. To illustrate (i) and (ii) in Assumption 2, one of empirically relevant scenarios is the

polynomial trend of a finite order m. In particular, let ft = tt = [1, t, t2, . . . , tm−1]′ ∈ Rm×1,

and rt ∈ Rp×1 be zero mean white noise with E(rtr′t) = Ip for simplicity. Then, by defining

DT,F = diag[T1/2, T3/2, . . . , T(m+1)/2], we obtain

(i) D−1
T,FF′FD−1

T,F = D−1
T,F

T

∑
t=1

ttt′tD
−1
T,F →

∫ 1

s=0
s1,ms′1,mds,

(ii) D−1
T,FF′R = D−1

T,F

T

∑
t=1

ttr′t ⇒
∫ 1

s=0
s1,mdWr(s)′

as T → ∞, where Wr(s) is the p–variate Wiener process generated by {rs}t
s=1, and the typ-

ical elements in (i) and (ii) are
∫ 1

s=0 sjskds for j, k = 0, . . . , m − 1 or
∫ 1

s=0 sjdWr,k(s) for j =

0, . . . , m− 1 and k = 1, . . . , p, respectively. Also, the matrix in (i) does not have to be deter-

ministic. Following Phillips (1987), we can define ft = ht = Θ(c)ht−1 +wt ∈ Rm×1, which is

a vector autoregressive process constituted of heterogeneous near unit root coordinates, such

that Θ(c) = diag
[
θ(c1), θ(c2), . . . , θ(cm)

]
. Here, θ(cl) = exp(cl/T) = 1 + cl/T + o(1)

for l = 1, . . . , m with cl < 0 (c → 0m gives a simple unit root process) and h0 = 0m. Also,

wt is independent and identically distributed (IID) with E(wt) = 0m and E(wtw′t) = Im.

Letting DT,F = TIm, we obtain as T → ∞

(i) D−1
T,FF′FD−1

T,F = D−1
T,F

T

∑
t=2

hth′tD
−1
T,F ⇒

∫ 1

s=0
Jc(s)Jc(s)′ds,

(i) D−1
T,FF′R = D−1

T,F

T

∑
t=2

htr′t ⇒
∫ 1

s=0
Jc(s)dWr(s)′,

where Jc(s) =
∫ s

u=0 diag
[
exp[c1(s− u)], . . . , exp[cm(s− u)]

]
dWw(u) ∈ Rm×1 is the Ornstein-

Uhlenbeck process and Ww(u) is the m–variate Wiener process generated by {ws}t
s=1. In the

Supplementary material, we provide more complicated examples of such limiting matrices.

Note that despite only weak convergence in such cases, by employing arguments from Park

and Phillips (2001), the sample space can be enlarged such that D−1
T,FF′FD−1

T,F → ΣF almost

surely.

The rest of the assumptions are similar to the ones in Pesaran (2006) or Karabiyik et al.
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(2017). One assumption which is different between those two important studies and is used

here is the random factor loadings. As Westerlund and Urbain (2013) demonstrate, under the

random loadings it is possible to obtain consistent estimate of βi even if m > k + 1 provided

that γi and Γi are independent. However, this is unlikely in practice and we acknowledge

this by letting Ωη̃ be only positive definite and not block-diagonal. A more significant differ-

ence is reflected in higher moment conditions in Assumption 1 and Assumption 6. The intu-

ition for this requirement is as follows. Provided that the condition m ≤ k + 1 is taken into

account properly, some terms that used to be treated as negligible in, for example, the stan-

dard analysis in equation (56) and further in Pesaran (2006) are now at most Op(
√

NT−1).

Therefore, in order to derive the asymptotic distributions without any restrictions on N, T

expansion rate, the price of higher moment requirements comes into play. Interestingly,

these assumptions are closer to the principal components setup of Bai and Ng (2002).

Remark 1. Assumption 4 makes it more difficult to put many unknown deterministic com-

ponents in F. However, letting F = [F1, F2], where F1 ∈ RT×m1 , F2 ∈ RT×(m−m1) and it

represents m−m1 known factors, then they can be estimated unrestrictedly. An example of

this is individual fixed effects that are common in many empirical applications.

Remark 2. Note that the cross-section independence of Ũi comes purely for convenience. We

can relax this along the lines of Pesaran and Tosetti (2011) by requiring that ũt = (M⊗ Im)νt,

where ũt ∈ RN(k+1)×1 is a cross-section stack of ũi,t and νt obeys Assumption 1. Here, M is

an N × N ’network matrix’ with bounded row and column norms.

3 Asymptotic Results

3.1 CCEMG Results

In this section we derive the asymptotic distribution based on (1.6). As suggested by the

previous literature, it must be driven by the coefficient heterogeneity component.

Theorem 1. Under Assumptions 1–6, as N, T → ∞ unrestrictedly,

√
N(β̂MG − β) =

1√
N

N

∑
i=1

υi + op(1)→d N (0k, Ωυ) ,
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where Ωυ = limN→∞
1
N ∑N

i=1 E(υiυ
′
i).

As can be seen, indeed the distribution is driven by the heterogeneity component of the

coefficients and the distribution is bias-free. We retain the
√

N rate of consistency. These

findings coincide with the ones in Pesaran (2006) or Kapetanios et al. (2011), where the anal-

ysis was done either under stationary or pure unit root F, respectively. We can see that the

result remains robust to a way more general factor structure and to the correctly accounted

case of m ≤ k + 1. Also, the results stay unchanged if m = k + 1. Therefore, this result

is reassuring for practical purposes. It implies that usage of excess k + 1− m cross-section

averages to control for common factors does not induce a non-estimable bias term, which

should be dealt with either by imposing restrictions on N, T expansion rate or employing

bootstrap methods (see e.g. De Vos and Stauskas, 2021).

3.2 CCEP Results

It is clearly possible to pool information from the heterogeneous coefficients by using CCEP

estimator. Again, the previous literature suggests that the asymptotic distribution should be

driven by υi. Therefore, we derive the asymptotic distribution based on (1.5).

Theorem 2. Under Assumptions 1–6, as N, T → ∞ unrestrictedly,

√
N(β̂P − β) = Σ−1

V
1√
N

N

∑
i=1

(
T−1V′iVi

)
υi + op(1)

→d N
(

0k, Σ−1
V ΨυΣ−1

V

)
,

where Ψυ = limN→∞
1
N ∑N

i=1 E
[(

T−1V′iVi
)

Ωυi

(
T−1V′iVi

)]
.

This result is in nature similar to the one in Theorem 2. Again, given Assumption 5, the

coefficient heterogeneity component υi dominates the asymptotic distribution because it is

independent from Vi. The estimator is
√

N–consistent under general unknown factors. Even

under pooled estimator and potentially non-stationary factors the asymptotic distribution is

correctly centered at zero and the result is robust to m ≤ k + 1 condition. Clearly, under

m = k + 1 this result remains unchanged, similarly to the result in Theorem 1.
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3.3 Inference

In order to use the results from Theorem 1 and 2 for statistical inference, we need to estimate

Ωυ and Σ−1
V ΨυΣ−1

V consistently. For this, we analyze two versions of robust variance matrix

estimator for CCEP and CCEMG estimators proposed by Pesaran (2006). In particular,

Θ̂ =

(
1
N

N

∑
i=1

Q̂i

)−1(
1

N(N − 1)

N

∑
i=1

Q̂i(β̂i − β̂MG)(β̂i − β̂MG)
′Q̂i

)(
1
N

N

∑
i=1

Q̂i

)−1

,

(3.1)

where Q̂i = T−1X′iMF̂Xi and

Ω̂υ =
1

N(N − 1)

N

∑
i=1

(β̂i − β̂MG)(β̂i − β̂MG)
′. (3.2)

Both (3.1) and (3.2) show a good small sample performance in case of stationary factors.

Theorem 3 establishes the consistency results under general unknown factors.

Theorem 3. Under Assumptions 1–6, as N, T → ∞ unrestrictedly,

NΘ̂→p Σ−1
V ΨυΣ−1

V , and NΩ̂υ →p Ωυ.

The result in Theorem 3 implies that

tβ̂MG
=

a′j(β̂MG − β)√
a′jΩ̂υaj

→d N (0, 1), tβ̂P
=

a′j(β̂P − β)√
a′jΘ̂aj

→d N (0, 1) (3.3)

as N, T → ∞, where aj is a vector of zeros with 1 in the j–th coordinate for j = 1, . . . , k. We

will further evaluate these theoretical predictions regarding the variance estimators and test

statistics in Monte Carlo simulations.

Remark 3. The results in Theorem 3 can be generalized to weak cross-section dependence–

robust covariance matrices from Pesaran and Tosetti (2011).

4 Monte Carlo Study

In this section we carry out a small-scale Monte Carlo exercise to evaluate the performance

of CCEP and CCEMG when factors are non-stationary. We will consider four scenarios,
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where T1 and T2 reflect deterministic trends, while R1 and R2 describe the effect of stochastic

trends. In particular,

T1. ft = [1, t]′, which corresponds to incidental trend setting.

T2. ft = [1, t, t2]′, which augments the trend further.

R1. ft = [1, gt]
′, where gt = gt−1 + ut, such that ut ∼ N (0, 1).

R2. ft = [1, t, gt]
′, which effectively makes yi a unit root process with an incidental drift.

These versions of ft are transparent, yet more complex than in Westerlund (2018), because

we combine deterministic and stochastic factors. Further, model error components are gen-

erated as follows:

vi,t = ρvvi,t−1 +
√

1− ρ2
vei,t, ei,t ∼ N (0k×1, σ2

e,iIk) (4.1)

ε i,t = ρεε i,t−1 +
√

1− ρ2
ε ξi,t, ξi,t ∼ N (0, σ2

ξ,i) (4.2)

C̃i = C̃ + η̃i1
′
k+1, η̃i ∼ N (0m×1, σ2

ηIm), (4.3)

where ρv = ρε = 0.8 to introduce a degree of persistence. Also, σ2
e,i = σ2

e + (we,i − 1),

σ2
ξ,i = σ2

ξ + (wξ,i − 1), where we,i and wξ,i ∼ χ2(1). We set σ2
e = σ2

ξ = 2 and σ2
η = 1. Here, C̃

is a constant matrix, such that rk(C̃) = m and thus rk(C) = m almost surely. Note that (4.3)

gives an extreme case because Γi and γi are perfectly correlated within an individual. This

setup is more complex than in Westerlund (2018) due to dynamics and heterogeneity in the

errors components, similarly to Kapetanios et al. (2011). Finally,

βi = 1k + υi, υi ∼ N (0k×1, σ2
υIk) (4.4)

where σ2
υ = 0.02 is directly taken from Pesaran and Tosetti (2011) as it ensures that the pa-

rameters are not too far from the mean. We set k = 3, therefore we maintain m < k + 1 for

all the factor scenarios, which is an important aspect of our theory. We run 1000 simulation

rounds for N, T ∈ {25, 50, 100, 200, 500} and allow for 20 burn-in values in order to eliminate

the effect of initial values. We report 5% empirical size, bias and root mean-squared error

(RMSE). In the Supplement, we provide additional simulations, where we increase σ2
η and

σ2
υ and also simulate υi from a different distribution.

We begin with Table 1 and Table 2, which involve deterministic components only. We see

that the bias and RMSE generally decline with N and T as expected and the size does not
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suffer from significant distortions. Slight jumps in bias occur when T starts dominating N.

The t–test becomes a little oversized when, again, T >> N and N is rather small. This is

expected, because approximation of the factor space is not ideal and this is especially visible

for T2 (in Table 2), where the quadratic trend dominates. In general, both CCEP and CCEMG

perform similarly for the same N, T combination, and for larger N, T values the empirical

size hovers around the nominal 5% level. These results are strikingly different from Monte

Carlo results in Westerlund (2018) for deterministic trends, where β is homogeneous and

huge size distortions occur.

Going to Table 3 and Table 4, a very important observation is that the overall results are

very similar to the ones in Table 1 and Table 2. Again, we see a similar performance of both

CCEP and CCEMG under R1 and R2. That is, the size distortions occur when T heavily

dominates N. Again, the performance of CCEP and CCEMG is similar even when the most

significant distortions occur, which happens in case of R2 – the most complex scenario com-

bining both deterministic and stochastic trends. Overall, for large N, T with no restrictions,

the size is close to the nominal 5% level.

The patterns reported in Table 1 – Table 4 resemble the results in De Vos and Stauskas

(2021), where different stress tests for CCEP and CCEMG estimators under heterogeneous

slopes were evaluated under purely stationary factors. This suggests that our theoretical

predictions are borne out well and the nature of the factors essentially does not matter as

long as the regularity conditions are satisfied. Clearly, while both estimators are theoreti-

cally unbiased, some remainder exists for the finite N and T. Hence, the similarity between

t-test performance for the stationary and non-stationary cases suggests that the inference

under trending factors for finite N and T could potentially be enhanced via bootsrapping

procedures, as was demonstrated in this other paper for stationary factors only.

5 Conclusions

In this study we discussed the effect of non-stationary factors in case of a popular CCE

estimator. Specifically, we extended the framework of general unknown factors from West-

erlund (2018) to heterogeneous slopes. As our theorems showed and simulations confirmed,

irrespective of the nature of the common factors, both CCEP and CCEMG are asymptotically

normal and unbiased. The results hold even if we over-control for the number of factors,

therefore this study further stresses flexibility and wide applicability of the CCE procedure.
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Table 1: Simulation results for T1

CCEP CCEMG
N T 5% size Bias ×100 RMSE×100 5% size Bias ×100 RMSE×100
25 25 6.9 0.989 8.204 6.3 1.050 8.565
25 50 7.7 1.149 6.830 7.4 1.296 6.832
25 100 8.5 1.422 5.586 7.8 1.462 5.422
25 200 9.6 1.114 4.629 8.3 1.367 4.362
25 500 9.1 1.049 3.936 9.0 1.205 3.611
50 25 6.2 0.109 5.996 6.0 0.457 6.144
50 50 6.5 0.383 4.984 6.7 0.683 4.922
50 100 7.3 0.687 4.003 6.8 0.951 3.935
50 200 6.2 0.732 3.335 6.4 0.836 3.155
50 500 7.7 0.800 2.831 7.0 0.802 2.559

100 25 6.1 0.445 4.129 5.7 0.678 4.192
100 50 5.4 0.183 3.378 5.5 0.397 3.357
100 100 5.4 0.289 2.644 5.3 0.295 2.671
100 200 5.5 0.433 2.323 6.1 0.516 2.204
100 500 6.7 0.266 2.006 5.8 0.385 1.783
200 25 5.6 0.142 2.950 6.0 0.182 3.163
200 50 5.2 0.275 2.381 5.8 0.350 2.460
200 100 5.5 0.119 1.966 5.7 0.148 1.938
200 200 4.7 0.135 1.675 5.1 0.218 1.585
200 500 5.2 0.064 1.412 5.5 0.131 1.238
500 25 6.0 0.097 1.933 6.2 0.123 1.994
500 50 4.0 0.166 1.505 5.0 0.119 1.525
500 100 4.6 0.146 1.272 4.3 0.111 1.207
500 200 4.5 −0.020 1.011 4.0 0.010 0.968
500 500 5.8 0.019 0.912 4.4 0.052 0.793

Notes: “T1” refers to the case when ft = [1, t]′. Also {ρv, ρε, σ2
e , σ2

ξ , σ2
η , σ2

υ} = {0.8, 0.8, 2, 2, 1, 0.02}.
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Table 2: Simulation results for T2

CCEP CCEMG
N T 5% size Bias ×100 RMSE ×100 5% size Bias ×100 RMSE ×100
25 25 8.3 2.086 8.123 6.7 2.333 8.136
25 50 9.4 2.045 7.012 8.7 2.439 6.827
25 100 8.5 1.780 5.582 10.0 2.149 5.506
25 200 11.8 2.090 4.776 9.9 2.331 4.471
25 500 11.4 1.717 3.900 11.2 1.953 3.560
50 25 6.7 0.749 5.711 6.1 0.995 5.937
50 50 7.7 0.852 4.851 5.4 1.097 4.654
50 100 7.6 1.113 3.931 7.3 1.282 3.795
50 200 7.9 1.003 3.352 8.1 1.235 3.224
50 500 7.5 0.985 2.708 7.6 1.205 2.426

100 25 6.1 0.488 3.991 5.8 0.775 4.212
100 50 6.1 0.412 3.419 6.1 0.504 3.387
100 100 6.5 0.383 2.803 6.0 0.595 2.678
100 200 6.0 0.519 2.279 6.2 0.628 2.184
100 500 7.7 0.588 2.004 8.5 0.737 1.825
200 25 5.7 0.341 2.859 6.9 0.396 2.898
200 50 4.1 0.289 2.259 4.7 0.372 2.295
200 100 5.0 0.318 1.910 5.4 0.380 1.905
200 200 5.8 0.219 1.640 6.5 0.325 1.595
200 500 5.0 0.318 1.391 5.5 0.368 1.260
500 25 4.0 0.124 1.707 4.2 0.042 1.751
500 50 6.2 0.089 1.564 5.8 0.096 1.535
500 100 4.7 0.143 1.206 4.9 0.194 1.172
500 200 5.4 0.102 1.022 5.5 0.129 0.980
500 500 4.8 0.095 0.888 5.8 0.122 0.806

Notes: “T2” refers to the case when ft = [1, t, t2]′. Also, {ρv, ρε, σ2
e , σ2

ξ , σ2
η , σ2

υ} = {0.8, 0.8, 2, 2, 1, 0.02}.
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Table 3: Simulation results for R1

CCEP CCEMG
N T 5% size Bias ×100 RMSE ×100 5% size Bias ×100 RMSE ×100
25 25 8.6 1.468 8.645 8.8 1.614 9.002
25 50 8.1 1.396 7.100 7.8 1.526 7.161
25 100 8.2 1.136 5.492 7.3 1.455 5.500
25 200 8.9 1.163 4.610 8.2 1.226 4.443
25 500 8.1 1.160 3.838 8.3 1.310 3.586
50 25 5.5 0.641 6.123 6.0 0.762 6.250
50 50 6.9 0.377 4.915 7.4 0.524 5.067
50 100 7.4 0.534 3.955 5.3 0.668 3.831
50 200 7.5 0.602 3.306 7.0 0.745 3.111
50 500 8.4 0.631 2.902 7.7 0.783 2.569

100 25 5.6 0.195 4.352 6.5 0.302 4.368
100 50 5.7 0.244 3.468 5.1 0.184 3.320
100 100 6.4 0.216 2.797 5.9 0.259 2.792
100 200 6.3 0.178 2.359 6.5 0.320 2.236
100 500 5.5 0.313 1.927 5.5 0.400 1.710
200 25 4.7 −0.012 2.902 4.6 0.065 2.952
200 50 5.8 0.287 2.459 5.8 0.258 2.443
200 100 5.0 0.126 1.965 4.6 0.112 1.927
200 200 5.7 0.201 1.650 5.3 0.214 1.548
200 500 5.3 0.214 1.384 6.6 0.209 1.278
500 25 5.1 0.037 1.865 3.3 0.074 1.854
500 50 5.1 −0.001 1.536 5.1 0.085 1.550
500 100 5.2 0.097 1.247 5.9 0.081 1.242
500 200 5.3 0.072 1.048 5.0 0.076 0.964
500 500 5.1 0.082 0.911 5.3 0.055 0.818
Notes: “R1” refers to the case when ft = [1, gt]′, where gt = gt−1 + ut, such that ut ∼ N (0, 1).
Also, {ρv, ρε, σ2

e , σ2
ξ , σ2

η , σ2
υ} = {0.8, 0.8, 2, 2, 1, 0.02}.
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Table 4: Simulation results for R2

CCEP CCEMG
N T 5% size Bias ×100 RMSE ×100 5% size Bias ×100 RMSE ×100
25 25 7.5 1.858 7.982 7.7 1.928 8.362
25 50 9.4 2.199 6.832 8.2 2.410 6.769
25 100 10.5 2.236 5.546 9.7 2.502 5.336
25 200 8.7 1.820 4.646 9.4 2.144 4.387
25 500 12.5 1.966 3.933 12.3 2.201 3.633
50 25 4.8 0.876 5.604 5.4 0.934 5.764
50 50 5.9 1.246 4.659 5.7 1.405 4.559
50 100 7.2 0.861 3.896 7.3 1.138 3.846
50 200 8.3 0.987 3.365 9.1 1.212 3.153
50 500 9.0 1.020 2.879 9.0 1.270 2.597

100 25 6.4 0.639 4.158 6.8 0.826 4.462
100 50 6.3 0.364 3.462 5.4 0.445 3.350
100 100 6.7 0.573 2.802 7.9 0.726 2.838
100 200 6.8 0.592 2.293 6.0 0.708 2.175
100 500 5.4 0.494 1.935 7.4 0.643 1.792
200 25 5.0 0.358 2.845 4.0 0.533 2.795
200 50 5.4 0.351 2.366 4.9 0.283 2.344
200 100 4.3 0.278 1.915 5.0 0.418 1.911
200 200 4.8 0.266 1.654 5.7 0.334 1.588
200 500 5.4 0.224 1.437 5.7 0.316 1.276
500 25 5.1 0.092 1.854 5.6 0.167 1.898
500 50 5.4 0.214 1.493 5.9 0.215 1.507
500 100 4.8 0.085 1.252 5.0 0.127 1.211
500 200 5.1 0.135 1.022 4.7 0.140 0.973
500 500 5.8 0.126 0.906 4.9 0.173 0.813

Notes: “R2” refers to the case when ft = [1, t, gt]′, where gt = gt−1 + ut, such that ut ∼ N (0, 1).
Also, {ρv, ρε, σ2

e , σ2
ξ , σ2

η , σ2
υ} = {0.8, 0.8, 2, 2, 1, 0.02}.
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