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Abstract

We analyze the problem of allocating indivisible objects and monetary compensations to
a set of agents. In particular, we consider envy-free and budget-balanced rules that are
least manipulable with respect to agents counting or with respect to utility gains. A key
observation is that, for any profile of quasi-linear preferences, the outcome of any such least
manipulable envy-free rule can be obtained via so-called agent-k-linked allocations. Given
this observation, we provide an algorithm for identifying agent-k-linked allocations.

JEL Classification: C71, C78, D63, D71, D78.
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1 Introduction

People encounter fair division problems in their everyday lives. For example, how to fairly split
restaurant bills, taxi fares, and rents. Nowadays, there are even online tools, such as the website
spliddit.org (Goldman and Procaccia, 2014), that help people to fairly divide costs among
themselves. This paper considers the rent division problem where a set of roommates share a
house and need to decide who gets which room and at what (room-specific) rent. This problem
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helpful comments on this paper. Andersson thanks the Jan Wallander and Tom Hedelius foundation (research grant
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has received considerable attention by economists and computer scientists, see, e.g., Gal et al.
(2017), Procaccia et al. (2018), or Velez (2018,2020) for an overview.

In division problems, the concept of envy-freeness (Foley, 1967) is often adopted as fairness
notion because it is compelling and since an envy-free allocation always exists when monetary
compensations are allowed (Svensson, 1983).1 An allocation is envy-free if no agent (strictly)
prefers the consumption bundle assigned to some other agent over the consumption bundle as-
signed to herself. In the rent division problem, this means that no agent prefers a room assigned
to some of her roommates to the room assigned to herself at the given (room-specific) rents.

Rent division problems are naturally restricted by a balanced budget condition meaning that
the sum of the individual rents paid by the roommates must equal the total cost for renting the
house. However, if the roommates insist on budget-balance and adopt envy-freeness as a fairness
notion, a famous result by Green and Laffont (1979) states that it generally is impossible to pre-
vent roommates from manipulating the outcome of rent division problem in their advantage. This
type of friction between desirable properties of social choice rules and matching mechanisms is
not unique for the fair rent division problem. In fact, policy makers often adopt mechanisms that
are vulnerable to manipulation by strategic misrepresentation, e.g., voting rules, school choice
mechanisms, and auction procedures. This has motivated researchers to identify rules and mech-
anisms that are “least manipulable” according to some predetermined measure.

Two prominent measures of “the degree of manipulability” are (a) to count the number of
profiles at which a rule is manipulable (Maus et al., 2007a,b) or (b) to compare (via set inclusion)
the preference domains where different rules are manipulable (Pathak and Sönmez, 2013). Even
though those measures are natural, Andersson et al. (2014a) demonstrated that, in the context
of the fair rent division problem, they do not distinguish envy-free and budget-balanced rules.
Consequently, a “finer” measure is needed to identify least manipulable rules among the envy-
free and budget-balanced rules.

In Andersson et al. (2014a), rule ϕ is judged to be more manipulable with respect to agents
counting than rule ψ if, for each preference profile, the number of agents that can manipulate ϕ
is larger than or equal to the number of agents that can manipulable ψ. Andersson et al. (2014b)
and Fujinaka and Wakayama (2015) considered a different approach and calculated the maximal
amount by which an agent can gain from manipulating a given rule. In this case, rule ϕ is defined
to be more manipulable with respect to utility gains than rule ψ if, for each preference profile,
the maximal gain that any agent can obtain by manipulating ϕ is weakly larger than the maximal
gain that any agent can obtain by manipulating ψ. Even though these two finer measures appear
to be quite different, they share one important feature. Namely, as observed in this paper, for
any given profile of quasi-linear preferences, the outcome of least manipulable envy-free and
budget-balanced rules can be identified via agent-k-linked allocations. Here, an allocation is
agent-k-linked if for each agent i, there is a sequence of agents from i to k such that any agent in

1See, for example, Alkan et al. (1991), Aragones (1995), Nicoló and Velez (2017), Su (1999), Tadenuma and
Thomson (1991,1993,1995a,b), or Velez (2018,2020).
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the sequence is indifferent between his consumption bundle and the consumption bundle of the
next agent in the sequence.

Even if agent-k-linked allocations have played a central role in other contexts than the above
mentioned, see, e.g., Alkan et al. (1991), Velez (2011), Fujinaka and Wakayama (2015), or
Tadenuma and Thomson (1995a,b), an algorithm for identifying such allocations is lacking in
the literature. The main contribution of this paper is to provide an algorithm for identifying
envy-free, budget-balanced and agent-k-linked allocations under quasi-linear preferences.

The remaining part of the paper is organized as follows. Section 2 presents the model and
some basic definitions. In Section 3, the two least manipulable envy-free and budget-balanced
rules from Andersson et al. (2014a,b) are introduced. The section also carefully explains why
agent-k-linked allocations are important for identifying the outcome of these rules. Section 4
provides the algorithms and the main convergence theorem.

2 The Model and Basic Definitions

Let N = {1, . . . , n} and M = {1, . . . ,m} denote the sets of agents and objects, respectively,
with |N | = |M |. Each agent i ∈ N consumes one bundle (j, xj) ∈M ×R containing one object
j ∈ M and some amount of money xj ∈ R. One can think of the agents as roommates and the
objects as rooms in the house that they rent jointly. In this interpretation, each agent “consumes”
exactly one room j and pays the corresponding rent xj .

For each agent i ∈ N , i’s preferences over bundles (j, xj) are represented by a quasi-linear
utility function ui where:

ui(j, xj) = vij + xj for some vij ∈ R. (1)

A list of utility functions u = (u1, . . . , un) is a (preference) profile. Let U denote the set of
profiles.

An allocation (a, x) is a list of |N | bundles where a : N → M assigns object ai to agent i ∈
N and x :M → R assigns monetary compensation xj to j ∈M . An allocation (a, x) is feasible
if ai 6= aj whenever i 6= j for i, j ∈ N , and

∑
j∈M xj ≤ α for some α ∈ R+. If

∑
j∈M xj =

α, allocation (a, x) is budget-balanced. Let A denote the set of feasible and budget-balanced
allocations. For convenience, we write “allocation” instead of “feasible allocation satisfying
budget-balance”. At profile u ∈ U , allocation (a, x) is envy-free if ui(ai, xai) ≥ ui(aj, xaj) for
all i, j ∈ N . Let F(u) denote the set of envy-free allocations at profile u ∈ U .

A rule is a non-empty correspondence ϕ choosing for each profile u ∈ U a non-empty set of
allocations ϕ(u) such that ui(ai, xai) = ui(bi, ybi) for all i ∈ N and all (a, x), (b, y) ∈ ϕ(u). A
rule ϕ is envy-free if ϕ(u) ⊆ F(u) for each profile u ∈ U . Given a profile u ∈ U , a rule ϕ is
manipulable at profile u by agent i ∈ N if there exists (ûi, u−i) ∈ U and two allocations (a, x) ∈
ϕ(u) and (b, y) ∈ ϕ(ûi, u−i) such that ui(bi, ybi) > ui(ai, xai). If rule ϕ is not manipulable by
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any agent at profile u, then ϕ is non-manipulable at profile u.
We use the following concepts from Andersson et al. (2014a) to describe indifference rela-

tions at any allocation:

Definition 1. Let (a, x) ∈ A and u ∈ U .

(i) For any i, j ∈ N , we write i→(a,x) j if ui(ai, xai) = ui(aj, xaj).

(ii) An indifference chain at (a, x) consists of a tuple of distinct agents g = (i0, . . . , ik) such
that i0 →(a,x) · · · →(a,x) ik.

(iii) Agent i ∈ N is linked to agent k ∈ N at (a, x) if there exists an indifference chain
(i0, . . . , it) at (a, x) with i = i0 and it = k.

(iv) Allocation (a, x) is agent-k-linked if each agent i ∈ N is linked to agent k ∈ N .

Definition 2. Let (a, x) ∈ A. An indifference component at (a, x) is a non-empty set G ⊆ N

such that for all i, k ∈ G there exists an indifference chain at (a, x) in G, say g = (i0, ..., ik) with
{i0, . . . , ik} ⊆ G, such that i = i0 and ik = k, and there exists no G′ ) G satisfying the previous
property at allocation (a, x).

The following lemma from Svensson (2009, Proposition 2) will be important in the analysis.

Lemma 1. Let u ∈ U . If (a, x) ∈ F(u) and (b, y) ∈ F(u), then (a, y) ∈ F(u) and (b, x) ∈
F(u).

3 Least Manipulable Envy-Free and Budget-Balanced Rules

We will next restate three previously established facts that hold for any agent k ∈ N at any
profile u ∈ U . The first of these facts are from Alkan et al. (1991) whereas the last two are from
Andersson et al. (2014a).

Fact 1. There exist an allocation in F(u) that maximizes agent k’s utility in F(u). Such alloca-
tions will be called agent-k-preferred.

Fact 2. An allocation (a∗, x∗) ∈ F(u) is agent-k-linked if and only if (a∗, x∗) maximizes agent
k’s utility in F(u).

Fact 3. For any envy-free rule ϕ, there exists a profile (ûk, u−k) ∈ U such that some (a∗, x∗) ∈
ϕ(ûk, u−k) is agent-k-linked (under profile u).

Given a rule ϕ and a profile u ∈ U , let Pϕ(u) denote the set of agents who can manipulate ϕ at
profile u. Rule ϕ is non-manipulable at u if:

|Pϕ(u)| = 0. (2)
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Because condition (2) is never satisfied for all profiles when insisting on envy-freeness and
budget-balance (Green and Laffont, 1979), an alternative approach is to search for rules where
|Pϕ(u)| is minimized for each profile u.

Definition 3. Envy-free rule ϕ is least manipulable with respect to agents counting if for any
envy-free rule ψ, we have |Pϕ(u)| ≤ |Pψ(u)| for all profiles u ∈ U .

Andersson et al. (2014a, Lemma 4) showed that the set of indifference components is invariant
for any two envy-free allocations, and second, that agent k cannot manipulate an envy-free rule
if and only if all allocations chosen by the rule are agent-k-linked (or, equivalently, agent-k-
preferred). An immediate consequence from Andersson et al. (2014a, Theorem 3) is now that
the least manipulable envy-free rules with respect to agents counting are exactly “maximally pre-
ferred” envy-free rules: for each profile u, we choose some agent k belonging to an indifference
component with maximal cardinality and then a non-empty subset of agent-k-linked allocations.
Note that such allocations are agent-i-linked for any agent i belonging to the same indifference
component as agent k. Hence, to identify the outcome of a least manipulable envy-free rule with
respect to agents counting, envy-free agent-k-linked allocations must be identified (and then in-
difference components with maximal cardinality may be found). Here, it suffices to identify one
agent-k-linked allocation for each k ∈ N .

Andersson et al. (2014b) and Fujinaka and Wakayama (2015) determine the maximal utility
gain which each agent can obtain by manipulating an envy-free rule. For any profile u ∈ U and
any allocation (a, x) ∈ ϕ(u), let:

fk(ϕ, u) = sup
(ûk,u−k)∈U

max
(b,y)∈ϕ(ûk,u−k)

uk(bk, ybk)− uk(ak, xak),

denote agent k’s maximal gain from manipulating ϕ at profile u.
Let ϕ be an envy-free rule, u ∈ U , k ∈ N , and (a, x) ∈ ϕ(u). By Fact 1 there exist

agent-k-linked (a∗, x∗) ∈ F(u). By Lemma 1, now (a, x∗) ∈ F(u) and, by envy-freeness,
uk(ak, x

∗
ak
) = uk(a

∗
k, x

∗
a∗k
) implying that (a, x∗) is agent-k-linked. Now, the above facts and

quasi-linearity imply:

fk(ϕ, u) = vkak + x∗ak − (vkak + xak) = x∗ak − xak . (3)

Hence, fk(ϕ, u) represents the maximal amount of money that agent k can obtain by manipulat-
ing the rule ϕ at profile u.

Definition 4. An envy-free rule ϕ is least manipulable with respect to utility gains if for any
envy-free rule ψ, we have maxi∈N fi(ϕ, u) ≤ maxi∈N fi(ψ, u) for all profiles u ∈ U .

Andersson et al. (2014b, Theorem 5) show that (a) there exist least manipulable envy-free rules
ϕ with respect to utility gains, (b) that any such rule ϕ satisfies fi(ϕ, u) = fj(ϕ, u) for all agents
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i, j ∈ N and all profiles u ∈ U , and (c) that the allocations chosen by any such rule ϕ can be
identified via agent-k-linked allocations for any profile u.

More explicitly, for a given profile u ∈ U , start by identifying one agent-k-linked allocation
in F(u), say (ak, xk), for any k ∈ N . Using Lemma 1 and the above argument, we may suppose
that a1 = · · · = an ≡ a, i.e., that allocation (a, xk) ∈ F(u) is agent-k-linked. By condition (3),
for all k ∈ N , xkak ≥ xak where (a, x) ∈ F(u), and

∑
k∈N x

k
ak
≥ α. Thus, the compensations

(x1a1 , . . . , x
n
an) need to be reduced by β ≥ 0 in order to satisfy budget-balance, i.e., we choose

β ≥ 0 such that
∑

k∈N(x
k
ak
− β) = α. Andersson et al. (2014b, Theorem 5) show that the

allocation (a, (xkak − β)k∈N) is envy-free. Now, for profile u, any envy-free rule ϕ choosing
(a, (xkak − β)k∈N) satisfies, by condition (3), fi(ϕ, u) = β = fj(ϕ, u) for all i, j ∈ N . Hence,
the outcome of a least manipulable rule with respect to utility gains may be found via identifying
envy-free agent-k-linked allocations. Again, it suffices to identify one agent-k-linked allocation
for each k ∈ N .

4 Identification of Agent-k-linked Allocations

For the remaining part of this section, fix a profile u ∈ U and an agent k ∈ N . Similarly to
Aragones (1995), our algorithm starts with an arbitrary envy-free allocation (a, x) ∈ F(u). This
assumption is not restrictive since such allocations can be easily found in polynomial time, see,
e.g., Klijn (2000) or Haake et al. (2003). Note that, in every step of the algorithm, we keep the
assignment a fixed. This will, by Lemma 1, not cause any problems as long as the allocation is
envy-free.

Definition 5. A group of agents C ( N is isolated at (a, x) if i 6→(a,x) j for all i ∈ N \ C and
all j ∈ C.

An allocation cannot be agent-k-linked if agent k belongs to an isolated group C ( N because
then at least one agent is not linked to agent k. The termination criterion for our algorithm will
be the non-existence of an isolated group containing agent k.

Algorithm 1. Let (a, x) ∈ F(u) and set K0 = {k}. For each iteration t = 1, . . . :

Step t. Define Kt ≡ Kt−1 ∪ {i ∈ N \ Kt−1 | i →(a,x) j for some j ∈ Kt−1}. If Kt = Kt−1,
then stop. Otherwise, continue with Step t+ 1.

Lemma 2. Algorithm 1 identifies an isolated group containing agent k in at most |N | iterations.

Proof. Let Algorithm 1 terminate at Step T . If KT 6= N , then i 6→(a,x) j for all i ∈ N \ KT

and all j ∈ KT by construction. Thus, KT is isolated and k ∈ KT since {k} = K0 ⊆ KT .
Furthermore, note that |Kt| − |Kt−1| ≥ 1 for all t ∈ {1, . . . , T − 1}, and Algorithm 1 terminates
in at most |N | iterations.
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Example 1. Let N = {1, 2, 3, 4, 5}, M = {1, 2, 3, 4, 5} and α = 0. Let also and the valuations
vij be given by the matrix:

v11 v12 v13 v14 v15
v21 v22 v23 v24 v25
v31 v32 v33 v34 v35
v41 v42 v43 v44 v45
v51 v52 v53 v54 v55

 =


1 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 2 2 0

0 0 0 0 3

 (4)

For these valuations, the allocation (a, x) where ai = i and xai = 0 for all i ∈ N is envy-free
and budget-balanced. To identify an isolated group containing agent 1, let K0 = {1}. In this
case, Algorithm 1 terminates in two steps.

Step 1. From matrix (4), it is clear that i →(a,x) 1 only for i = 2. Hence, K1 = {1} ∪ {2} =
{1, 2}.

Step 2. From matrix (4), it is clear that i 6→(a,x) j for all i ∈ N − K1 and all j ∈ K1. Hence,
K2 = K1 and Algorithm 1 terminates. �

Note that both the distribution x and the assignment a are fixed in Algorithm 1. We next provide
an algorithm for identifying an agent-k-linked envy-free allocation given that the distribution x
is allowed to change.

Algorithm 2. Let (a, x) ∈ F(u) and setK0 = {k} and x0 = x. Let xt denote the compensations
determined in iteration t. For each iteration t = 1, . . . :

Step t. Run Algorithm 1 for (a, xt−1) and let N t denote the output of Algorithm 1. If N \N t =

∅, then stop with output (a, xt−1). Otherwise, let λtij ≡ ui(ai, x
t−1
ai

) − ui(aj, x
t−1
aj

) for each
i ∈ N \N t and each j ∈ N t. Set λt ≡ mini∈N\Nt,j∈Nt λtij , and define xt by:

xtai ≡ xt−1ai
− |N

t|
|N |
· λt for each i ∈ N \N t,

xtaj ≡ xt−1aj
+
|N \N t|
|N |

· λt for each j ∈ N t,

and continue to Step t+ 1.

Theorem 1. Algorithm 2 identifies an agent-k-linked envy-free allocation in at most |N | itera-
tions.

Proof. Note that the adjustment of compensations in Step t from xt−1 to xt respects budget-
balance because (a, x0) is budget-balanced, and by induction, if (a, xt−1) is budget-balanced,

7



then: ∑
i∈N

xtai =
∑
i∈N

xt−1ai
− |N

t|
|N |
· λt · |N \N t|+ |N \N

t|
|N |

· λt · |N t| =
∑
i∈N

xt−1ai
= α.

Note that (a, x0) ∈ F(u). By induction, we show that if (a, xt−1) ∈ F(u), then (a, xt) ∈ F(u).
Equivalently, we show for all i, j ∈ N ,

if ui(ai, xt−1ai
) ≥ ui(aj, x

t−1
aj

), then ui(ai, xtai) ≥ ui(aj, x
t
aj
). (5)

If i, j ∈ N t or i, j ∈ N \ N t, then condition (5) holds because (a, xt−1) ∈ F(u) and the
adjustments of xt−1ai

and xt−1aj
are identical. If i ∈ N t and j ∈ N \ N t, then condition (5) holds

because (a, xt−1) ∈ F(u) and xt−1ai
is increased and xt−1aj

is decreased. If i ∈ N \ N t and
j ∈ N t, then condition (5) holds because (a, xt−1) ∈ F(u) and by definition of λt, λt ≤ λtij =

ui(ai, x
t−1
ai

)− ui(aj, xt−1aj
), i.e.:

ui(ai, x
t
ai
) = viai + xtai ,

= viai + xt−1ai
− |N

t|
|N |
· λt,

≥ viai + xt−1ai
− |N

t|
|N |
· λtij,

= ui(ai, x
t−1
ai

)− λtij +
|N \N t|
|N |

· λtij,

= ui(aj, x
t−1
aj

) +
|N \N t|
|N |

· λtij,

≥ viaj + xt−1aj
+
|N \N t|
|N |

· λt,

= viaj + xtaj ,

= ui(aj, x
t
aj
).

Because (a, x0) = (a, x) ∈ F(u), now condition (5) yields (a, xt) ∈ F(u).
Finally, we show that Algorithm 2 terminates in at most |N | iterations. By construction of

N t, each agent i ∈ N t must belong to an indifference chain g = (i, . . . , k) at allocation (a, xt−1).
Note that at Step t, for i ∈ N \ N t and j ∈ N t such that λtij = λt, all the above inequalities
become equalities and we obtain ui(ai, xtai) = ui(aj, x

t
aj
), i →(a,xt) j and i ∈ N t+1. Note also

that N t ⊆ N t+1 because for any i, j ∈ N t such that i →(a,xt−1) j, the adjustments of xt−1ai
and

xt−1aj
are identical and we also have i→(a,xt) j. Thus, |N t+1| − |N t| ≥ 1 as long as N \N t 6= ∅.

Hence, Algorithm 2 terminates in at most |N | iterations.

Example 2. From Example 1, we know that K0 = {1}, ai = i and x0ai = 0 for all i ∈ N . We
next run Algorithm 2.
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Step 1. From Example 1 we know that N1 = {1, 2} and N − N1 = {3, 4, 5}. From matrix
(4), it is also easy to see that λ13j = 1, λ14j = 2 and λ15j = 3 for all j ∈ N1. Thus, λ1 = 1, so
x1 = (x11, x

1
2, x

1
3, x

1
4, x

1
5) = (3

5
, 3
5
,−2

5
,−2

5
,−2

5
).

Step 2. Given the distribution x1 identified in Step 1, the following holds:

(vij + x1j)i,j∈N =


8
5

3
5
−2

5
−2

5
−2

5
8
5

8
5
−2

5
−2

5
−2

5
3
5

3
5

3
5
−2

5
−2

5
3
5

3
5

8
5

8
5
−2

5
3
5

3
5
−2

5
−2

5
13
5


Thus, when we run Algorithm 1, agent 3 is first included in N2 (because agent 3 is indifferent
between objects 1, 2 and 3) and then agent 4 is included in N2 (because agent 4 is indifferent
between objects 3 and 4). Hence, N2 = {1, 2, 3, 4}. Now, λ251 = λ252 = 2 and λ253 = λ253 = 3.
Thus, λ2 = 2 and, as a consequence, x2 = (x21, x

2
2, x

2
3, x

2
4, x

2
5) = (1, 1, 0, 0,−2).

Step 3. Given the distribution x2 identified in Step 2, the following holds:

(vij + x2j)i,j∈N =


2 1 0 0 −2
2 2 0 0 −2
1 1 1 0 −2
1 1 2 2 −2
1 1 0 0 1


By construction of x2, agent 5 is indifferent between objects 1, 2 and 5 at allocation (a, x2).
Thus, N3 = N and Algorithm 2 terminates at Step 3. �

We end this paper by stating a few remarks related to the quasi-linearity assumption. A first
observation is that the existence of an envy-free allocation is not dependent on this assumption
(Svensson, 1983). A second observation is that quasi-linearity often is assumed in real-world
applications (see, e.g., the website spliddit.org) and in theoretical studies because it is easy
for agents to report their preferences, i.e., agents simply have to report a vector of object valu-
ations as illustrated in the matrix (4). For weaker assumptions on preferences, preference elic-
itation is more cumbersome and it will typically require repeated interactions with the agents
and, normally, also some type of approximation. See, e.g., Andersson and Svensson (2018),
Arunachaleswaran et al. (2019), or Su (1999).

Furthermore, quasi-linearity implicitly assumes that agents are not budget constrained. For
example, if agent i has quasi-linear preferences and is indifferent between objects 1 and 2 at
compensations (x1, x2) = (100, 300), then the agent is also indifferent between these objects
at compensations (x′1, x

′
2) = (x′1, x

′
1 + 200) for any x′1 ∈ R. In most real-world applications,
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agents are budget constrained2 meaning that agent i will not be able to afford object 1 or 2 for
a “sufficiently low” compensation x′1, or, equivalently, for a “sufficiently high” price −x′1. This
well-known limitation of the quasi-linearity assumption has motivated researchers to study the
fair rent division problem under more general circumstances.

Budget constraints in rent division were first studied by Nicoló and Velez (2017) in the con-
text of partnership dissolution. Procaccia et al. (2018) extended the fair rent division problem by
allowing agents to report their budget restrictions. Given such reports, they provided a computa-
tionally feasible algorithm for identifying when there exists an envy-free allocation that respects
the individual budget restrictions. However, their solution does not offer any recommendation
in the case when the intersection between the set of envy-free and budget-balanced allocations
and the set of allocations that respect the (individual) budget restrictions is empty. In a recent
contribution, Velez (2020) proposed an intuitive mechanism that allows agents to inform the
mechanism designer about their budget constraints on a preference domain that includes the
quasi-linear domain as a special case. On this domain, the agents report their valuations of the
rooms (exactly as on the quasi-linear domain) together with two additional parameters: one that
represents her “housing earmark” and an index that penalizes the utility the agent gets from pay-
ing above her reported earmark amount. Velez (2020) convincingly argues that his proposed
mechanism retains its practicality also on his proposed preference domain.

The mechanism proposed in this paper is defined on the quasi-linear domain, which implic-
itly implies that the agents in our model not are budget constrained. Algorithm 2 does not stretch
beyond this domain since the adjustment of the compensations in Step t of the algorithm depends
on the quasi-linearity assumption. It would, however, be interesting to investigate if these com-
pensation adjustments can be modified to fit into Velez (2020) more realistic framework. This
question is beyond the scope of this paper and it is left for future research.
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