
Fischer, Thomas

Working Paper

Determinants of Wealth Inequality and Mobility in
General Equilibrium

Working Paper, No. 2019:22

Provided in Cooperation with:
Department of Economics, School of Economics and Management, Lund University

Suggested Citation: Fischer, Thomas (2019) : Determinants of Wealth Inequality and Mobility in
General Equilibrium, Working Paper, No. 2019:22, Lund University, School of Economics and
Management, Department of Economics, Lund

This Version is available at:
https://hdl.handle.net/10419/260292

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/260292
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Working Paper 2019:22

Department of Economics
School of Economics and Management

Determinants of Wealth Inequality and
Mobility in General Equilibrium

Thomas Fischer

December 2019



Determinants of wealth inequality and

mobility in general equilibrium∗

Thomas Fischer†

Lund, December 2019

What determines inequality and mobility of wealth? This paper quantifies

in closed form both the bottom and the top (Pareto) tail of the distribution

for a rich continuous-time model. The distribution is especially shaped by

bequest motives, demographics, and the asset portfolio composition under id-

iosyncratic wealth risk. Factors that increase inequality also reduce mobility.

The model – enriched by a realistic income process and non-trivial portfolio

constraints – is solved in general equilibrium and calibrated to match US

evidence. A bequest tax is shown to reduce inequality and increase mobility.

Several partial-equilibrium intuitions do not carry over into general equilib-

rium.

JEL classification: D31 – E21 – H23 – C68 – G11

Keywords: wealth inequality – mobility of wealth – portfolio selection – fat tails

– bequest tax

∗An earlier version of this paper was circulated under the title "A tractable model of wealth inequality
and mobility". Financial support from the Thule Foundation (Skandia) is gratefully acknowledged.

†Department of Economics and Knut Wicksell Centre for Financial Studies, Lund University,
thomas.fischer@nek.lu.se

1



1. Introduction

The publication of the popular book Capital in the 21st century by Thomas Piketty

has revived interest in the distribution of economic resources – especially wealth. In

this book, Piketty (2014) documents that wealth inequality – notably in the USA –

has been accelerating since the 1980s after a period of moderation. In particular, he

documents the share of top-wealth holders, suggesting that the latter is described by a

Pareto-distribution. Piketty (2014) argues that wealth inequality is increasing by the

measure r− g, with r being the return on capital g the aggregate growth rate. In order

to halt this evolution, he suggests a global tax on capital.

Piketty (2014) focuses on the role of distribution, i.e. the cross-section of wealth at a

given point in time t. However, he also stresses the role of mobility, emphasizing that

inheritance links the wealth of generations. Compared to inequality, mobility focuses on

a certain individual i and tracks its change over time and thus considers the dimension

which stands in opposition to inequality. Recent empirical evidence reported in Clark

and Cummins (2015) using novel evidence from rare surnames in England and Wales

reports a considerably lower degree of wealth mobility than previously assumed. Piketty

(2014) (implicitly) assumes that both outcomes – high inequality and low mobility – go

hand in hand. Yet, the latter correlation is not straightforward.

In a cross-country analysis, Corak (2013) finds a negative correlation between income

inequality and mobility of income, implying that high inequality is accompanied by low

mobility. This relationship has been called the Great Gatsby Curve. Yet, comparable

evidence for the stock measure of wealth is not available. The latter is of particular

interest as it is well known that wealth is more unequally distributed than income and,

moreover, in contrast to income wealth can be perfectly transferred between generations

in the form of inheritance.

In this paper, we investigate this relationship theoretically within a rich micro-founded

Bewley-type model analyzed in general equilibrium. Moreover, the impact of a bequest

tax as a policy measure is discussed. We find that by setting a wedge between the wealth

of an individual and her heirs the tax increases the mobility, while at the same time

decreasing the degree of inequality. The tax itself – being highly progressive – directly

reduces inequality at the very top, which witnessed a stark increase in recent years.

The model emphasizes the role of the portfolio composition and the risk associated with

wealth holdings. These issues were usually not captured in the analysis of inequality in
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the macroeconomics literature focusing on the role of income as a driver of subsequent

wealth inequality.

The discussion of bequest taxes in theoretic models by itself is not new.1 In our

reading, the literature is split into two branches. On the one hand, there are highly

stylized models that still rely on clear economic intuition. While classic papers such

as Becker and Tomes (1979) and Davies (1986) argue that bequest taxes eventually

increase inequality due to hampering the inter-generational redistribution within the

family, the newer literature such as Bossmann et al. (2007) and even more recently

Wan and Zhu (2019) with joy-of-giving preferences (rather than perfect altruism) argue

that redistributive bequest taxes acutally decrease overall wealth inequality. Opposed

to these stylized models, there are large scale models of the Bewley-type calibrated

to match empirical evidence such as DeNardi (2004) or Castaneda et al. (2003) that

investigate the intergenerational connection in terms of wealth respectively argue that

bequest taxes (slightly) decrease wealth inequality. What unifies these two strands of

the literature is that they locate the original source of inequality in the labor income.

As, however, formally argued in Benhabib et al. (2011) this approach will fail to match

the top tails of the wealth distribution. This is well-known for Bewley-type models

(Aiyagari, 1994) and (partly) addressed by the introduction of superstar income states

(Castaneda et al., 2003).

Our approach combines both strands of the literature. Despite the richness of the

model we are able to provide closed-form solutions in an elaborate model with capital

income risk quantifying both inequality and mobility. This model is enhanced by stan-

dard features of Bewley-type models – a rich income process featuring superstars and

financial market imperfections imposing portfolio constraints – fitted to US evidence,

and analyzed in general equilibrium. As the analysis shows, several intuitive findings

of the partial-equilibrium framework do not carry over into general equilibrium. The

model is cast in continuous time, which boosts the analytical discussion. This toolbox

– in particular the Fokker-Planck equations available in this framework providing the

cross-sectional distribution – has been successfully employed recently in order to ana-

lyze issues of inequality (Aoki and Nirei (2017), Cao and Luo (2017), Nuño and Moll

(2018)). The model features an overlapping generations structure with uncertain life

time and a bequest motive in the presence of annuity markets. Agents form a portfolio

1This paper provides a positive and not a normative analysis. In contrast, Piketty and Saez (2013)
discuss the optimal inheritance tax rate.
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featuring risk-free assets and risky assets with idiosyncratic capital risk. Moreover, their

labor income grows at a given rate g which allows us to analyze Piketty’s (2014) r − g

proposition.

In the tradition of Benhabib et al. (2011), we can quantify top tails of the Pareto-

type driven by multiplicative wealth risk. Interestingly, higher portfolio risk actually

decreases inequality as individuals internalize this by reducing their exposure to the

risky asset. The bequest tax is shown to reduce inequality, especially at the top. In

line with Piketty (2014), the gap r− g increases top inequality. Even more importantly,

higher equity premia captured by higher Sharpe ratios contribute to high top wealth

inequality. Besides these economic factors, we also emphasize the role of demographics

in shaping the distribution of wealth. In the face of higher life expectancy due to medical

advances, the increased savings amplify top wealth inequality.

Besides the right tail capturing the top wealthy, we also quantify the effect of the

left tail of the distribution as a measure of poverty. A larger human capital – e.g.

due to higher growth rates g – available to borrow against is shown to increase bottom

inequality. Hence, this already counteracts the r−g rationale provided in Piketty (2014).

The existing literature – both empirical and theoretical – focuses mostly on the cross-

sectional distribution of wealth. The focus on the notion of the top shares is misleading

as it suggests a closed community of super rich. In fact, there are a lot of entries into

and exits out of the club of super rich. Hence, a high level of inequality might be socially

acceptable if there were the opportunity of upward mobility which reflects the idea of

the American Dream. In this analysis, however, we show that measures that increase

inequality also have a tendency to decrease mobility. As such high inequality and low

mobility come as twins. This suggests a relationship similar to the Great Gatsby Curve

for the stock measure of wealth. The intuition is that if the distribution is less dispersed

it requires only small changes in terms of the currency unit in order to enter a different

class.

In line with the evidence, the model documents that both the bottom and the upper

tail of the distribution display the highest persistence. Benhabib et al. (2019) develop

a model featuring capital income risk and showcase its capability to fit the empirical

evidence of wealth mobility for the USA. We extend their work by including random

deaths, a portfolio decision, and by analyzing the framework in general equilibrium.

The employed continuous-time framework is also helpful as it allows for fast and accu-

rate solutions of the large general equilibrium model (Achdou et al., 2017). We enhance
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the model with a rich income process that also matches the tails and intergenerational

correlation.2 Moreover, realistic portfolio constraints related both to the stock of wealth

and the flow of income are considered. This model is then solved in general equilibrium.

As such, the wage rate and especially the interest rates are endogenous. We identified

several factors in partial equilibrium that increase savings and, by increasing the growth

rate of wealth, will therefore increase wealth inequality. These results do not immediately

carry through into general equilibrium. Increased savings also reduce the rate of interest.

As a result, a reduced return on assets actually reduces inequality in line with Piketty’s

(2014) r − g rationale. For example, the general equilibrium analysis suggests that

the inequality-reducing property of the bequest tax is lower than suggested by partial

equilibrium models such as Benhabib et al. (2014). We also show that relaxed borrowing

constraints increase indebtedness and thereby wealth inequality at the bottom.

In order to get a realistic fit to the data and in line with several other calibrated

studies (DeNardi (2004), Benhabib et al. (2019)), we impose preferences for bequests

to be of the luxury type creating persistent bottom inequality. The further assumption

of a minimum consumption desire – making consumption an inferior good relative to

bequests – reduces wealth inequality at the bottom and also increases mobility.

The remainder of this paper is organized as follows. Section 2.1 introduces the model,

while Section 2.2 gives closed-form solutions for inequality at the bottom and at the

top as well as mobility. This model is enhanced in Section 3 by a realistic process

of income, portfolio constraints, and a general equilibrium structure. The calibrated

version (Section 4) is quantitatively analyzed against US evidence. Factors driving both

inequality and mobility are investigated in Section 5. The final section concludes and

provides an outlook.

2Hence, we consider both superstar income (Castaneda et al., 2003) and capital income risk (Benhabib
et al., 2011) as drivers for top inequality. Hubmer et al. (2016) present a rich model that also adds
stochastic time preferences in the tradition of Krusell and Smith (1998) in order to fit the top tails.
Given the complexity, this model can, however, not be solved analytically. Yet, Toda (2018) formally
shows that time-varying discount rate factors are also able to generate Pareto tails. Pugh (2018)
runs a horse-race of the tree mentioned mechanisms and shows that heterogeneous returns match
the evidence best.
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2. The model

In this section we present the underlying model. We employ a continuous time approach

as it allows for easy-to-interpret closed-form solutions. Having established the individual

problem and its solutions in Section 2.1, we present results regarding inequality and

mobility in Section 2.2.

2.1. Individual problem

The model closely follows Merton (1971), in which he jointly derives optimal savings /

consumption rules as well as portfolios. In the spirit of Richard (1975) we also include

bequest motives, uncertain death, and annuity markets.

Assume that there are two assets, a risk-free asset yielding a certain return r and risky

asset whose prices PR,t follow a geometric Brownian motion:

dPR,t = RPR,tdt+ σPR,tdZt,

with R > r as a risk compensation and dZt being the increment to a Wiener process.

Agents hold a share µ in the risky asset.3 The aggregate portfolio return is thus given

by:

R̃ = µR + (1 − µ)r = r + µ(R− r).

Thus, the evolution of wealth Wt is given as follows:

dWt = [rWt + µt(R− r)Wt + Et − Ct]dt+ µtσWtdZt,

for which Et signifies the earnings (not related to wealth) and Ct current consumption.

We assume that earnings follow an exponential growth process (Et = E0 exp(gt)) with

a given exogenous growth rate g.

Moreover, we assume that agents have a death probability p governed by a Poisson

process in the tradition of Blanchard (1985).4 Hence, the expected life time is 1/p.

We normalize all variables by the growth rate g and write them with lower case letters

3Note that if agents can borrow at the risk-free rate, µ > 1 implies that agents hold leveraged (i.e.
debt-financed) positions in risky assets, whereas µ < 0 implies that they have short positions in the
risky asset. Details on the derivation are suspended to Online Appendix B.

4The stationary age distribution for the discrete case is labeled Poisson-distribution, whereas in con-
tinuous time it is given by an exponential distribution (f(a) = p exp(−pa)).
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(et ≡ Et exp(−gt)). We can decompose earnings e = ωz + Tr into a transfer (Tr)

and a labor earnings component. Labor earnings depend on the wage rate ω and the

labor endowment z. Labor supply is inelastic and earnings are certain, allowing for a

neat closed-form solution.5 In the extended model we explore the effect of idiosyncratic

income risk in the tradition of Aiyagari (1994). More specifically, we model the evolution

of labor endowment z as an exogenous Markov chain. In the model, the government

redistributes the proceedings from the bequest tax τb to all living individuals in a lump-

sum manner.6

Thus, the constraint finally reads as follows:7

dwt = [(r − g)wt + µt(R− r)wt + e− ct − p(1 + θ)ιt]dt+ µtσwtdZt.

Individuals buy annuities with a value ιt paid out at the time of death. Therefore,

there is a constant stream p(1 + θ)ιt paid to the insurance company, for which θ is the

premium charged by the insurance company. In an actuarial fair case (cf. e.g. Yaari

(1965)) we would have θ = 0.8 Of course the modeling of the demographics is highly

stylized. We assume that each dying individual is replaced by a new born keeping the

total population size constant. While a particular individual ceases to exist, her dynasty

continues to exist forever.9

As a utility function for consumption, we assume:

u(c) =
(c− c̄)1−γ

1 − γ
,

for which c̄ > 0 represents a minimum consumption level.10 This utility function is

of the Hyperbolic Absolute Risk Aversion (HARA) type which – as shown in Merton

5As discussed in Bodie et al. (1992), with flexible labor supply (including time of retirement) individuals
hold riskier asset portfolios as the labor supply offers them a further degree of adjustment. In our
model, this would directly lead to higher wealth inequality.

6For a system with a simple linear tax rate τb that effectively taxes all 1/p periods and then redis-
tributes, transfers are given by T r = τbpE(w), for which E(w) describes the cross-sectional average
wealth.

7Note that et = E0 ≡ e is constant in time.
8For a reverse insurance the premium would be captured by −1 < θ < 0.
9We also abstract from mixing of dynasties by marrying. Note that the marriage market as a device

for creating social mobility has lost its importance due to assortative mating (Greenwood et al.,
2014).

10Note that as c is normalized, so is the minimum consumption level c̄, implying that the minimum
consumption level grows with the aggregate growth rate g.
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(1971) – provides a closed-form solution to the problem. In fact, the utility function

is of the decreasing relative risk aversion type, implying that wealthier individuals hold

riskier portfolios, also implying higher returns. For the case of no minimum consumption

requirement (c̄ = 0) the standard Constant Relative Risk Aversion (CRRA) function is

nested.

The overall utility function also includes a bequest motive and is given by:

U(c, b) =
(c− c̄)1−γ

1 − γ
+ pχ

([1 − τb](b+ b̄))1−γ

1 − γ
.

The free parameter χ determines the strength of the bequest motive. Individuals form

their utility on net of tax bequests. If this were not the case, the optimal decision

would be independent of the level of taxation. Here we assume a simple flat tax rate τb

independent of the level of wealth. In the extended model (cf. Section 3) we, however,

consider a more realistic progressive tax system. Finally, we introduce a factor b̄ > 0,

capturing the property of bequests as a luxury good (DeNardi, 2004). Or put differently,

for c̄ = b̄ = 0 the utility function would be homothetic.11

For an expectation operator Et the objective function is given by:

max
Ct,Bt,µt

Et

∫

∞

t
exp[−(ρ+ p)(τ − t)]U [Cτ , Bτ ]dτ

= max
ct,bt,µt

Et

∫

∞

t
exp([(1 − γ)g − ρ− p](τ − t))U [cτ , bτ ]dτ.

(1)

The discounting includes a pure time preference factor ρ and the probability of death

p. We summarize the overall discount rate by ρ̃ ≡ ρ + p − (1 − γ)g. For a prevailing

income effect (γ > 1) individuals discount the future stronger for higher growth rates g

and thus form larger savings. The reverse holds true for a prevailing substitution effect

(γ < 1).

Following Richard (1975) and its more recent application in Benhabib et al. (2014)

total bequests are given by:

b = w + ι, (2)

11Benhabib et al. (2019) discuss a similar problem (with a certain life length) and an isoelastic utility
function for both bequests and consumption, yet they assume heterogeneous coefficients γc 6= γb.
In their calibrated model, they find γw < γc, also indicating that bequests are a luxury good - i.e.
their share increases in wealth.
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being the sum of wealth and the insured value in the annuity. Agents with a weak

bequest motive take out a reverse life-insurance that pays out a constant stream during

the insurer’s lifetime (ι < 0). In the case of death, the value −ι > 0 is transferred to

the insurance company, reducing the bequest to the heirs. In contrast, individuals with

a high bequest motive pay annuities to a life insurance that pays a bulk ι > 0 to their

descendants in the case of their death.

Using the relationship in equation 2, we write the optimization problem as a function

of b only in the following Hamilton Jacobi Bellman (HJB) equation:12

ρ̃V = max
c,b,µ

{U+V ′((p(1+θ)+r−g)w+µ(R−r)w+e−c−p(1+θ)b)+0.5σ2µ2w2V ′′}. (3)

The derivation of the (standard) problem is suspended to Online Appendix B. The

following proposition summarizes the optimal household plan. Note that this closed-form

solution does not consider risky labor income or constraints on the portfolio composition.

Proposition 2.1 (The optimal household plan)

The optimal plan is given by an optimal consumption rule:

ct = c̄+ cw

(

wt +
e− c̄+ p(1 + θ)b̄

(1 + θ)p + r − g

)

= (1 − ce)c̄+ ce(e+ p(1 + θ)b̄) + cwwt

= (1 − ce)c̄+ cep(1 + θ)b̄+ cw(wt + h),

(4)

for human wealth h = e
(1+θ)p+r−g

= K2e (and K2 = 1
(1+θ)p+r−g

) and marginal propensities

from the flow measure income ce = K2cw and the stock measure of wealth:

cw =
ρ+ p(γ − (1 − γ)θ) − (1 − γ)

(

r + 0.5 (R−r)2

γσ2

)

γ
(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1
γ

) . (5)

The intended bequests are:

bt = cw(1 + θ)−
1
γ (1 − τb)

1−γ
γ χ

1
γXt − b̄, (6)

12The problem must also obey the transversality condition limt→∞ Et exp(−ρ̃t)Vt = 0.
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with Xt ≡ wt + e−c̄+p(1+θ)b̄
p(1+θ)+r−g

. Finally, the optimal portfolio share is given by:

µt =
R− r

γσ2

wt + e−c̄+p(1+θ)b̄
(1+θ)p+r−g

wt

=
R− r

γσ2

Xt

wt

= µ̃
Xt

wt

, (7)

for µ̃ ≡ R−r
γσ2 (as in Merton (1969)).

These results provide some important economic insights. In the following, we discuss

the optimal rules separately, starting with the optimal consumption rule.

In general, consumption grows at the same pace as labor income (Ct = ct exp(gt)).

Consumption depends both on the stock of wealth wt and the flow of earnings e as well

as the preference parameters c̄ and b̄. The marginal propensity to consume (MPC) from

the flow of earnings ce is higher than the MPC out of wealth (ce = cw

(1+θ)p+r−g
> cw).13

The MPCs are not affected by the overall growth rate. The MPC out of physical wt and

human capital h are identical. In this model the earnings are risk-free and can thus be

discounted by the risk-free interest rate in order to measure human capital.

The model captures several savings motives as encompassed in the MPC out of wealth

cw (cf. equation 5). Firstly (i), individuals save due to the standard Euler equation logic

balancing the (risk-free) interest rate r and their time preference ρ relative to their

intertemporal elasticity of substitution (IES, 1
γ
).14 Moreover, individuals save due to

a longevity risk (ii), as captured by the death probability p. A longer expected life

time (lower p) decreases their MPC from wealth cw and thus increases their savings

propensity. Finally, there are savings due to a bequest motive (iii).

In order to discuss the latter it is convenient to rewrite the MPC from wealth as:

cw =
1

1 + ψ
c̃w,

with c̃w = ρ+p(γ−(1−γ)θ)−(1−γ)r
γ

−0.51−γ
γ

(R−r)2

γσ2 and the factor ψ = p(1+θ)
γ−1

γ (1−τb)
1−γ

γ χ
1
γ .

The sum of consumption and savings due to a bequest motive is given by:15

ct + p(1 + θ)bt = c̃wXt

(

1

1 + ψ
+

ψ

1 + ψ

)

= c̃wXt,

13Formally, this requires the reasonable assumption (1 + θ)p + r − g < 1.
14Note that in this model we cannot disentangle risk aversion γ and the IES as e.g. in Wang et al.

(2016).
15Note that, here, we disregard the non-homothetic factors by setting c̄ = b̄ = 0. More generally, we

have, (ct − c̄) + p(1 + θ)(bt − b̄) = c̃wXt.
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and thus independent of ψ capturing the bequest motive. Essentially, a larger value of

ψ implies a larger share of consumption devoted to future generations (in the form of

bequests) as opposed to the currently living individuals.

Similar to the MPC we can define a marginal propensity to bequeath bw:

bw = cw(1 + θ)−
1
γ (1 − τb)

1−γ
γ χ

1
γ = c̃w

ψ

(1 + ψ)(1 + θ)p
= cw

ψ

(1 + θ)p
. (8)

For the special case of bw = 1, we have ι = 0 implying that individuals do not buy

annuities. The case of bw > 1 corresponds to buying of life time insurance ι > 0 which

is paid out to the descendants at the time of death of the individual, whereas bw < 1

implies ι < 0 and a positive cash flow for the insurance company at the time of death.

It shares the comparative statics with the regular MPC and furthermore increases with

death probability p and bequest strength χ capturing both the likelihood of bequeathing

and the preference for it.

For the case without a bequest motive χ = 0 we have the standard case of cw ≡ c̃w.

This also holds true if the government imposes a complete tax on bequests (τb = 1).

As individuals perceive that net of taxes bequests will be zero, they also do not form

savings for bequests.

For the special case of log-utility (γ = 1) – for which income and substitution effects

cancel out each other – the tax rate τb has no impact on the consumption decision as

captured by the marginal propensity to consume cw (Lansing, 1999). Yet, for any other

case the tax rate τb has an impact on the intended bequests. In line with the discussion

in Straub and Werning (2014) the case of a prevailing income effect (γ > 1) implies

that higher taxes are accompanied by higher savings (∂cw

∂τb
< 0) . For the opposing case

of a prevailing substitution effect (0 < γ < 1), higher bequest taxes increase current

consumption and thereby lower bequests to future generations. The same comparative

statics as for the tax rate τb hold true for the insurance premium θ, both being deviations

from a friction-less market.

Of course, bequests increase with the bequest motive χ, but are lowered with b̄. The

latter captures the luxury-good nature of the bequests and implies that the share of

bequests relative to wealth w increases with the level of wealth. Individuals with a low

wealth level eventually leave negative bequests to their descendants, implying that the

generational transfers actually go from children to parents and not vice versa.16

16In the complete model (cf. Section 5) we disallow negative bequests.
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Note that this discussion misses precautionary savings due to earnings risk identified

as the key mechanism driving wealth inequality in Bewley-type models (Aiyagari (1994),

Huggett (1993)). In Section 3.1 we introduce a realistic income process featuring per-

manent and transitory income shocks as well as retirement all leading to precautionary

savings. Furthermore, we provide a discussion of the determinants of portfolio structur-

ing in Section 3.2 with and without constraints.

2.2. Closed-form solutions for inequality and mobility

One of the key advantages when employing the continuous time framework is the pres-

ence of the so-called Fokker-Planck equations (henceforth FP and also known as Kol-

mogorov forward equations). These equations allow for a derivation of the cross-sectional

distribution given the nature of the stochastic process. For the simple linear problem

considered so far – without binding portfolio constraints or risky labor income – we

can even find closed-form solutions that provide economic intuition. Even for the more

elaborate general equilibrium model, they do not impose a numerical challenge. Once

the individual optimization problem in the form of the HJB equation is solved, finding

the solution to the FP equation only requires one single computational step. For details

on the numerical algorithm the reader is referred to Online Appendix D.

We begin by abstracting from insurance payments at time of death (bw = 1 implying

ι = 0) and bequest taxation (τb = 0). We can insert the optimal rules for consumption

c, bequests b, and portfolio composition µ into the overall flow equation.

The evolution of wealth wt can be written as function of the state variable Xt:
17

dwt = [((1 + θ)p + r − g)wt + µt(R− r)wt + e− ct − p(1 + θ)bt]dt+ µtσwtdZt

= [((1 + θ)p + r − g − cw − cwψ + (R− r)µ̃)Xt]dt+ µ̃σXtdZt

= [((1 + θ)p+ r − g − c̃w + (R− r)µ̃)Xt]dt+ µ̃σXtdZt.

Note that the result is independent of the bequest motive (captured in the variable ψ).

More generally, we can write this as a modified version of a Geometric Brownian Motion:

dwt = gw(wt − wNB)dt+ σw(wt − wNB)dZt,

17Note that for readability we ignore the effect of b̄ > 0. The latter constitutes a constant term in the
drift of (ce − 1)pb̄ > 0 ensuring w > wNB.
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with wNB = − e−c̄
(1+θ)p+r−g

being the natural borrowing constraint18 and a growth rate:

gw = (1+θ)p+r−g− c̃w +(R−r)µ̃ = (1+θ)p+ R̃−g− c̃w = (1+θ)p+r−g− c̃w +
S2

γ
,

and a diffusion parameter:

σw = µ̃σ =
S

γ
,

with S = R−r
σ

representing the Sharpe ratio of the risky asset, implying R̃ = r + S2

γ
.

Using the definition of the marginal propensity to consume out of wealth (equation

5) we can write the drift parameter as follows:

gw =
R̃− g − ρ̃− (1 − γ)S2

2γ
+ (1 + θ)p

γ
=
θp + r + 0.5(1 + γ)S2

γ
− ρ

γ
− g.

We find the cross-sectional distribution f(w, t) – focusing on the stationary19 distri-

bution f(w) – from the solution of the Fokker-Planck equation:

∂f(w, t)

∂t
= 0 = −

∂

∂w
[s(w)f(w, t)] +

∂2

∂w2
[0.5 ·D(w)2f(w, t)], (9)

for the (linear) savings function s(w) = gw(w − wNB) and the diffusion term D(w) =

σw(w − wNB).

The following proposition summarizes the result.

Proposition 2.2 (The cross-sectional distribution without traded annuities

and taxes) The stationary cross-sectional distribution of wealth without taxation, in-

come risk and portfolio constraints is given by a Pareto II distribution of the type:

f(w) ∼ (w − wNB)−(a+1) w > wNB, (10)

with a Pareto coefficient:

a = 1 −
2gw

σ2
w

= 1 −
2gwγ

2

S2
. (11)

18In the natural borrowing constraint w = wNB individuals consume all flow income from both earnings
e and capital income, constituting a stationary level of wealth and X = 0.

19Note that in this paper we focus on the stationary distribution (setting the left term in the Fokker-
Planck equation to zero). In contrast, Gabaix et al. (2016) focus on the dynamics of inequality.
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We can compute the Gini-coefficient with:

Gini(w) =
1

a+ wNB(a− 1)

a

2a− 1
, (12)

and the measure of the top x [%] with:

sx(w) =
1

a+ wNB(a− 1)

[

ax1−
1
a + wNB(a− 1)x

]

. (13)

Proof The proof is suspended to Appendix A.1.

Both measures of inequality – the broad Gini-coefficient and the tail-focused top shares

– decrease with both the Pareto coefficient a and the minimum level wNB.20

First of all, it is important to point out that a stable distribution of the Pareto-type

requires a > 1 and hence gw < 0. Thus, wealth must be mean reverting. Therefore, the

slope of the savings function must be negative:21

∂s(w)

∂w
= gw < 0.

The condition (gw < 0) holds when:

ρ > θp + r +
1 + γ

2γ

S2

γ
− γg, (14)

which nests the well-known condition ρ > r required in standard models for a stationary

equilibrium (Aiyagari, 1994). While this constraint is relaxed for growing income (g > 0),

it becomes more tight for imperfect insurance markets (θ > 0).

20Moreover, for wNB → 0 the standard Pareto distribution is nested. For the other extreme case of
wNB → ∞ we have a Lorenz-curve equal to the 45-degree line and hence total equality.

21In this simple economy without binding wealth constraints or income risk, all individuals will decrease
their wealth to w → wNB . The more elaborate version of the model outlined in Section 3 features
both income risk and borrowing constraints tighter than the natural borrowing constraint (w >
wNB). The former implies that individuals in a high income state j′ will form equilibrium savings
larger than the borrowing constraint (w∗

j′ > w). Secondly, the tight (arbitrary) borrowing constraint
technically acts as a boundary condition in the overall Fokker-Planck equation, which transforms
the overall log-normal distribution into a distribution of the Pareto-type (Sornette and Cont, 1997).
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It is also easy to verify that the condition gw < 0 also implies ce = c̃w

(1+θ)p+r−g
> 1.

As individuals consume more than one-on-one of their flow income, they will eventually

run down their level of wealth.22

We can exploit this property to conduct comparative statics. Using the micro-founded

terms using the optimal savings rule, the Pareto coefficient is given by:23

a = γ

(

2(ρ̃− (r − g) − (1 + θ)p)

S2
− 1

)

= γ

(

2(ρ− r − γg − θp)

S2
− 1

)

. (15)

First of all, the inequality increases (a decreases) for a higher Sharpe ratio. Thus, the

higher the risk premium (R− r) individual wealth grows at a higher pace. Interestingly

and somewhat surprisingly, higher volatility σ of the risky asset eventually decreases

inequality. This results from the fact that individuals internalize this risk and react

by reducing their portfolio exposure to the risky asset. We also find support for the

argument entertained in Piketty (2014) showing that the gap between interest rate and

labor growth r−g is a factor contributing to higher wealth inequality. Besides economic

factors, pure demographics also shape the distribution of wealth. In an imperfect insur-

ance market (θ > 0) a higher life expectancy (lower values for p) promotes savings for

longevity risk, increasing wealth growth gw and hence wealth inequality.

By analyzing the Pareto coefficient we focused on the right tail of the distribution.

The other parameter wNB eventually impacts mostly on the left tail of the distribution.

Higher earnings e increase the value of human capital available to borrow against and

thereby contribute to more inequality at the bottom. In contrast, a larger minimum

consumption desire c̄ acts in the opposing direction, eventually decreasing bottom in-

equality. For the (realistic) case of wNB < 0 we find an opposing effect to the one

proposed by Piketty (2014) prevalent at the top end. At the bottom tail the rationale is

yet highly different. A larger effective discount r− g reduces the value of human capital

available for borrowing and thus reduces bottom inequality.24

22Equipped with the drift expression gw we can also investigate the transversality condition (cf. footnote
12). The latter requires (1 − γ)(gw − 0.5σ2

w) − ρ̃ < 0. After some algebra one can show that this
coincides with c̃w > 0 and thus holds for any positive consumption propensity.

23A similar spirited analysis is presented in the Online Appendix E of Achdou et al. (2017) in an infinite
horizon model without labor growth.

24When incorporating b̄ > 0 into the natural borrowing constraint this factor increase bottom inequality
as individuals lever up.
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Next, we take a stand on mobility. A simple measure of mobility – e.g. discussed

in Fischer (2018) – is the mean reversion rate gw.25 The properties of this measure are

summarized in the following proposition.

Proposition 2.3 (Mobility of wealth) We can measure mobility of wealth for a time

lag τ by:

0 ≤ Mobτ (w) = 1 − exp(gwτ) ≤ 1. (16)

Mobility decreases with gw. As this measure also increases inequality, high inequality and

low mobility of wealth emerge jointly.

This measure of mobility is broadly in line with common measures of mobility such as

the simple but very popular inter-generational correlation26 (Jäntti and Danziger, 2000)

and the Shorrocks index27 based on transition matrices (Shorrocks, 1978) also employed

in the quantitative investigation of the model in the latter sections.

To have mobility in the first place we require gw < 0. Of course, in the long run (τ →

∞) mobility is perfect (limτ→∞Mobτ (w) = 1) as all states of the wealth distribution can

be reached. In general, measures that decrease gw increase mobility. Note that a low

value of gw was already identified as a factor contributing to higher equality. Hence, in

the model the suggested relationship of the Great Gatsby curve (Corak, 2013) – i.e. high

inequality comes with low mobility and vice versa – is confirmed. Thus, larger Sharpe

ratios S and gaps between capital and labor growth r − g also lead to lower mobility

locking in the success of wealthy individuals.

Our measure of mean reversion does not consider the dispersion parameter σw which

matters more at the upper tail of the distribution. In Appendix A.2 we show that

mobility in general decreases with σw = S
γ
. As this measure also increases inequality,

this result is also in line with the Great Gatsby curve.

25Fernholz (2016) shows that mobility increases with the mean reversion rate |gw| and also posits that
high mobility is accompanied by low inequality and vice versa.

26Formally, the inter-generational correlation is ρw = exp(gw/p) < 1.
27It can be shown that for an autoregressive process of first order the Shorrocks index (for a one period

gap) amounts to 1 − exp(gwτ) exactly as used in our mobility measure.
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Thus far, we have abstracted from both annuities and taxes on bequests as a policy

parameter. In order to account for them we have to consider the factor b̃w = (1 − τb)bw

and include it into the FP equation:

∂f(w, t)

∂t
= 0 = −

∂

∂w
[s(w)f(w, t)] +

∂2

∂w2
[0.5 ·D(w)2f(w, t)] − pf(w, t) +

p

b̃w

f

(

w

b̃w

, t

)

.

(17)

The penultimate term captures that dying individuals (death probability p) are removed

from the distribution, while the last term captures their descendants reemerging at a

different level of wealth after taxes and annuities pay out.

The formal derivation of the general case is suspended to Appendix A.2. In this

instance, our (approximate) statement concerns the top tails only. As these individuals

are far away from the natural borrowing constraint we write a simplified savings function

s(w) = gww and a diffusion term D(w) = σww.

Proposition 2.4 (The distribution of top wealth and mobility with bequest

taxes and traded annuities) Extending Proposition 2.2 with a linear tax on bequests

τb, annuities a, and exponentially distributed deaths with a probability p, the right tail

of the wealth distribution is approximately described by a Pareto tail limw→∞ f(w) ∼

w−(ã+1) with the property:

ã ≈ a +
2pγ2

S2
(1 − b̃w). (18)

Our measure of mobility is now given by:

Mobτ (w) = 1 − exp([gw − p(1 − b̃w)]τ). (19)

Proof The proof is presented in Appendix A.2.

Compared to the case without taxes and annuities (implying a Pareto coefficient of

a), the measure of top tails ã can increase or decrease relative to the benchmark a. For

b̃w > 1 it is lower implying more top inequality as the descendants furthermore receive

life insurance payments when their ancestors die reducing top inequality.

It is also insightful to consider the special case without annuities for which b̃w = 1−τb

(as bw = 1). It is easy to see that without taxation (τb = 0) deaths do not matter

implying that the same results as in Proposition 2.2 hold. For the polar extreme case
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of total redistribution τb = 1, we will have a double Pareto distribution with both a fat

tail in the left end and the right end of the distribution.28

For a general tax level τb we have:

ã ≈ a+
2pτbγ

2

S2

The redistributive effect of the effect increases with its effective tax rate τbp, this being

the product of the tax rate and the likelihood the tax is imposed (the death probability

p). Given that the tax is imposed infrequently the effective tax rate is low and thus

the redistributive character of this tax is limited. With the increase in longevity (lower

values for p) the bequest tax also loses its redistributive impact as it is imposed at lower

frequency. We will explore this quantitatively in the calibrated version of the model.

Once again, higher Sharpe ratios (by increasing σw = S
γ
) decrease ã and thus increase

inequality.

Secondly, the proposition makes a statement about mobility. With higher levels of

b̃w capturing the willingness to bequeath, mobility decreases. For the case of bw > 1

– implying that descendants profit from their parent’s death by receiving life insurance

payments – there is higher mobility as compared to the case without annuities (associated

with bw = 1). For the latter case the measure of mobility simplifies to:

Mobτ (w) = 1 − exp([gw − pτb]τ).

This shows that in the presence of taxation there is a higher degree of mobility. The

rationale is that the redistributive taxation introduces a higher degree of mean rever-

sion by resetting individuals in the direction of the cross-sectional mean. Hence, the

policy measure of taxes reduces both inequality and increases mobility. In Section 5.2

this relationship is quantitatively explored in an extended and calibrated version of the

model.

Note that these comparative statics take the perspective of a partial equilibrium econ-

omy. In a general equilibrium economy, the prices of goods – especially the returns on

28Formally, this is a combination of Geometric Brownian Motion evaluated at an exponentially dis-
tributed time (due to the Poisson death) as the last term in the FP culminates to a Dirac impulse.
For a more detailed discussion on the formal mechanism the interested reader is referred to, for
example, Fischer (2018).
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assets – depend on the individual decision and hence some of the comparative statics

might not bear up. We explore this in more detail in the following Sections.

3. The extended model

The partial equilibrium model developed so far contains some interesting implications

and comes with the great advantage of possessing closed-form solutions. Yet, it also lacks

two major features, namely (i) income inequality and (ii) borrowing constraints. Section

3.1 introduces a realistic discrete-state income process. The constraints on borrowing

and more generally on composing the portfolio are considered in Section 3.2. The model

is closed in general equilibrium in Section 3.3.

3.1. A joint income process

Thus far, we have assumed that labor income is not subject to variation within the life-

time. This is diametrical to the Bewley-type literature which identifies uninsured labor

income risk as the driving mechanism to explain income and subsequent consumption

and wealth inequality.

We follow a well-established literature and model the labor endowment process z by

means of a Markov transition matrix. Individual labor income ei results from the labor

endowment z and the prevailing (overall) wage rate ω (ei = ωzi). Labor income can

vary due to transitory, permanent shocks, and retirement status. In order to keep it

parsimonious we employ a binary differentiation for all cases including permanent (high

h and low l, with Ph > Pl) and transitory (good and bad, Sg > Sb) shocks, implying a

total of 23 = 8 states. We briefly explain the construction of this matrix. Details are

relegated to Online Appendix C.

For the relationship between working (index w) and retired (index r) individuals, we

assume that a Pay-As-You-Go (PAYG) social insurance system is at place. The system

is financed by a linear tax τr levied on working age individuals to finance transfers
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0 < ǫr < 1 redistributed to the current retired. With the average labor efficiency z̃ the

self-financing condition implies:29

z̃τrπw = z̃ǫrπr → τrpr = pwǫr

→ τr =
pw

pr
ǫr.

(20)

Here the value 1
pw

captures the average time in employment, whereas 1
pr

measures the

average time in retirement. The overall expected life length amounts to T̃ = 1
p

= 1
pr

+ 1
pw

.

Thus, the tax rate increases with the age-dependency ratio pw

pr
(the ratio of retired to

working individuals).

From this we can derive the final Markov transition matrix M (8 states):30

M =





(1 − pw)MP;S pwI

prMgen (1 − pr)I



 , (21)

incorporating the labor-state transition Matrix MP;S and another square matrix with 4

states Mgen which captures intergenerational correlation in (permanent) income which

we discretize using Rouwenhorst’s (1995) method with an intergenerational correlation

of ρz.31

In the calibrated version, the model performs very well in capturing the distribution

of the bottom 99% of the population. On the other hand, it severely underestimates the

tail of the distribution.

Thus, we explicitly target the top 1% by introducing a new working state which –

following Castaneda et al. (2003) – we label the superstar state.32 The rationale is

29The linear transfer implies that each retired individual earns a fixed fraction of her working income
and thus disregards the fact that the social security system in the US entails a high degree of
redistribution (Kaymak and Poschke, 2016). In fact, inequality among the working as well as retired
individuals is identical for this modeling. Yet, it is in line with the evidence of Rios-Rull and Kuhn
(2016) (refer in particular to table 27 and 31 of their paper) that income inequality among the
retired is as high (or even slightly higher) among retired individuals.

30Note that the identity matrices are of dimension 4.
31For details, the reader is referred to Online Appendix C.
32A more recent calibration capturing the increase in overall inequality in the USA in a similar setting

is presented in Kaymak and Poschke (2016).
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that some individuals can be considered superstars, i.e. top-earners in fields such as

entertainment or sports. We modify the transition matrices as follows:

M
e =

















(1 − λs)MP;S(1 − pw) λs1(1 − pw) pwI 0

(1 − pw) · 0.25 · 1′ 0 0′ pw

prMgen 0 (1 − pr)I 0

pr · 0.25 · 1′ 0 0′ (1 − pr)

















, (22)

for which 1 represent a vector with four unit entries and 0 is a vector with zero entries of

dimension 4.33 The assumption is that every working individual can become a superstar

with probability λs. The superstar state yet only lasts one simulation period (cp. second

line of the matrix). Furthermore, no individual is born into the superstar state (cf. last

two lines of the matrix).

As we cast our model in continuous time, the transition matrix must also be in con-

tinuous time. In a first-order approximation the continuous time transition matrix R is

related to the discrete time transition matrix M
e as follows:34

R ≈ M
e − I.

3.2. Portfolio constraints

Given the stochastic nature of the income process, individuals want to insure these

shocks by forming precautionary savings. They are, however, restricted in their ability

to form portfolios.

In the presented framework individuals invest in two assets. There is a risk-free asset

B (being a bond):

B = (1 − µ)w,

33We assume that the four groups of working individuals represent a share of identical magnitude.
Hence we have the factor 0.25 to redistribute superstars into the regular distribution (last line of
the equation).

34More formally the relationship between the two follows from the matrix exponential as we have πt =
M

eπt−1 in discrete and π̇ = Rπ → πt = exp(Rt)π0 = exp(R)πt−1 in continuous time. The matrix
exponential is given by the power series exp(R) =

∑∞

k=0

1

k!
R

k which in a first order approximation
is exp(R) ≈ I + R. While for the discrete time matrix all lines sum to one, they sum up to zero for
its continuous time counterpart.
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and a risky asset k (representing stocks or other risky assets such as real estate or private

business):

k = µw.

If an individual shorts the risk-free asset, she holds a debt position (D = −B) which is

assumed to have the same interest rate as the risk-free asset.

Individuals are constrained in their portfolio composition by market imperfections.

Even in the absence of market imperfections, the portfolio composition – in particular

the ability to borrow – is constrained by a natural borrowing constraint wNB. It is given

by:

B = −
e− c̄+ pb̄

r − g
= −h +K2(c̄− pb̄) ≡ wNB, (23)

for which e represents the lowest possible earnings. Note that in the presence of either

minimum consumption (c̄ 6= 0) or a minimum bequest motive (b̄ 6= 0) the maximum debt

is unequal to the human capital h. Consider for a moment the case with a homothetic

bequest motive (b̄ = 0). In fact, for high minimum consumption requirements (e < c̄)

the natural borrowing limit is eventually positive. This implies that individuals should

actually hold a minimum stock of wealth rather than borrow money in order to sustain

a minimum consumption level.

We can rewrite the overall portfolio rule in the following manner:

µ = µ̃
(

1 −
wNB

w

)

For extremely wealthy agents the optimal share is as in the standard model of Merton

(1969) (limw→∞ µ = µ̃). We can also analyze the portfolio composition as a function of

wealth. The slope is given by:
∂µ

∂w
= µ̃

wNB

w2
.

For a positive natural borrowing constraint (wNB > 0) the share of risky assets increases

with wealth as generally suggested by decreasing relative risk aversion.

The more interesting case is the one with a negative natural borrowing constraint

implying individuals with a negative net worth in the lower end of the wealth distribution

as suggested by the empirical evidence (cf. e.g. Rios-Rull and Kuhn (2016)). In this

case the share of risky assets µ eventually decreases with wealth. Nevertheless, the level

of risky assets k = µ · w increases with overall net worth w.
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When the constraint is at the level of the natural constraint and in the absence of

income risk, the consumption function is linear. The case of the borrowing constraint

being tighter than the natural borrowing constraint (w > wNB), is frequently referred

to as a liquidity constraint and associated with a concave consumption function (Holm,

2018).

Stock constraint

Unconstrained

decision rule

Short sale

constraint

Flow constraint

Figure 1: Relationship between debt D and net worth w

The model produces a inverse u-shaped relationship between net worth and debt. Low net worth
individuals are primarily constrained by the stock constraint. With wNB < 0 the debt level decreases
for the unconstrained individuals.

Assume borrowing is generally allowed, yet its magnitude is restricted. Thus, a value

of µ > 1 is possible. This value implies that individuals lever their position in the risky

asset by short-selling risk-free assets, i.e. they borrow. A straightforward example would

be borrowing in the form of a mortgage in order to finance the purchase of real estate.

In the tradition of Kiyotaki and Moore (1997) we assume that borrowing is subject to a

collateral constraint:

−B ≡ D = (µ− 1)w ≤ (1 − φw)k = (1 − φw)µw.
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The equation states that debt −B should be lower than a fraction (1 − φw) of the total

stock value of wealth µw invested in assets. As a result the overall portfolio constraint

reads:

µ ≤
1

φw
.

There are different interpretations for the value 0 < φw ≤ 1. It can be considered a

haircut on the collateral. A different interpretation would be that of an equity ratio (the

ratio of net worth w to total assets µw). For the case of φw = 1 we identify a nested

case without borrowing (µ ≤ 1). With φw < 1, the measure w now represents net worth

– i.e. assets net of debt – rather than pure assets. This constraint is related to the stock

of wealth. Note that in our model – and in line with the evidence – net worth can be

negative. This contrasts with a large share of the existing literature which considers

idiosyncratic income risk in production economies (e.g. Krusell and Smith (1998)) that

restrict individual wealth holdings such that they are positive.35

Following Iacoviello and Pavan (2013) we introduce a second constraint related to the

flow of income and more precisely to the natural borrowing constraint wNB. In line

with the discussion of Holm (2018) this constraint must be tighter than the natural

borrowing constraint and constitutes the lowest level of wealth possible w = φewNB < 0

with 0 < φe < 1. In contrast to the other constraint, it is related to the flow measure of

earnings (index e). Hence, our second constraint is:

B = (1 − µ)w ≥ w = φewNB, (24)

leading to:

µ ≤ 1 −
w

w
= 1 −

φewNB

w
.

Thus, in total we restrict the portfolio composition by:

k = µw ≤ min

{

w

φw
, w − φewNB

}

. (25)

The two constraints interplay in an interesting way. For households with positive,

but low net worth w, the stock constraint is more binding (cf. Figure 1). They are

constrained in their ability to lever up by the low amount of assets available as collateral.

35Of course, short positions are allowed in economies in the tradition of Huggett (1993) as the individuals
trade risk-free bonds that are in zero net supply and shorted by individuals in the high income state.
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For higher values of net worth the flow constraint becomes more binding.36 Thus, for

medium values of net worth the flow constraint is binding, which also puts an upper

absolute cap on overall debt to the level of w (cf. Figure 1). Finally – and as already

discussed – due to wNB < 0, for high levels of net worth w the share of risky assets

µ declines. Thus, the overall level of debt also declines for high levels of net worth.

Hence, we have a realistic inverse u-shaped relationship between net worth and debt as

displayed in Figure 1 for households with positive net worth. This relationship is also

documented in the empirical evidence (Rios-Rull and Kuhn, 2016) and primarily results

from mortgage debt being especially prevalent for middle class households. Note that

the unconstrained decision rule shifts up for higher levels of income. Hence, households

with a higher level of income (e2 > e1) hold both a higher level of risky assets and debt

(cf. Figure 1) for a given level of net worth w.

Furthermore, we introduce a short-sale constraint for the risky asset (k > 0). As such,

households with negative net worth do not own risky assets, but only hold debt – i.e.

a short position in the risk-free asset (cf. Figure 1). The long positions in the risk-free

asset – indicated by a negative value of debt in Figure 1 – are taken by the households

with the highest net worth, providing the supply of the risk-free asset, which allows for

an aggregate zero net supply of risk-free assets.

Finally, we also introduce a non-linearity for bequests. In the presence of a luxury

motive for bequests (b̄ > 0), negative bequests can emerge. One could consider this as

the case in which rather than transfers running from parents to their children parents

receive net transfers from their descendants (e.g. paying for a place in a retirement

home). However, in our model the warm glow motive only considers future generations

and not past generations. Moreover, by law individuals are allowed to decline negative

bequests. As such, for our extended model solved numerically, we require:

b = max {0; b} , (26)

implying positive bequests only.

36In fact the two constraints coincide for w = − l
w

, for which l ≡ 1−φw

φw
represents the leverage ratio

defined as the ratio of the debt share relative to the equity share.
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3.3. Equilibrium

Thus far, we have considered a partial equilibrium economy. Let us extend this to

allow for both endogenous wages ω and risky interest rates R determined by production

function with a geometric depreciation rate δ. The risk-free interest rate r follows

from the condition of a zero net supply of the risk-free bonds. Hence, this model is

both a production economy in the spirit of Aiyagari (1994) (for the risky asset) and an

endowment economy in the tradition of Huggett (1993) (for the risk-free asset).

In the tradition of Angeletos (2007) we assume that individuals have access to some

idiosyncratic backyard production technology determining idiosyncratic returns. We

assume that the production technology is of the Cobb-Douglas type yi,t = Ai,tf(ki,t, li,t)

with a capital share α and an idiosyncratic time-varying Total Factor Productivity (TFP)

Ai,t > 0. Individuals decide how much efficiency labor li,t to hire in their self-owned

business at the economy-wide efficiency wage rate ω in order to maximize:

Ri,tki,t = max
li,t

{Ai,tf(ki,t, li,t) − ωli,t − δki,t} .

For the chosen constant returns-to-scale production function the optimal individual and

economy-wide capital share coincide (α =
(Ri,t+δ)ki,t

yi,t
= (Rt+δ)kt

yt
) implying that the in-

dividual return rate is linear in the TFP (Ri,t ∼ Ai,t). As before the risky returns are

assumed to follow from an Arithmetic Brownian Motion with a cross-sectional standard

deviation σ and an expected rate of return R determined in general equilibrium.

Stationary equilibrium 1. Households are of unit measure. Given wages ω, ex-

pected risky interest rates R, risk-free interest rates r,37 labor endowments zj , and

the distribution of wealth gj(w) private households maximize the problem pre-

sented in equation 3.38 Thus, for a given labor endowment zj they find optimal

values for consumption cj , intended bequests bj , and portfolio shares µj, resulting

in an overall savings rule sj .

37As we consider a stationary equilibrium we omit time indexes.
38The problem does not feature idiosyncratic income risk. Details on how to incorporate this are

detailed in step 3 of Online Appendix D describing the solution algorithm.
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2. Given risky capital k, firms maximize their profits implying risky interest rates:39

R = α

(

k

z̃

)α−1

− δ, (27)

and wages:

ω = (1 − α)

(

k

z̃

)α

= (1 − α)y, (28)

with y being overall output.

3. Given R, ω, r and the savings rules sj , the stationary distribution of wealth gj(w)

follows from the solution of the Fokker-Planck equation (Eq. 17).40

4. The government budget is balanced:

Tr = T̄ = p
∑

j

∫

τb(w)wgj(w)dw. (29)

The proceedings of the bequest tax T̄ are redistributed as transfers Tr = T̄ .

5. For a labor endowment zj and some wealth w risky capital is given by kj(w) =

µj(w)w. Given gj(w) and k, the market for risky capital clears:

k =
∑

j

∫

kj(w)gj(w)dw (30)

Risk-free bonds are in zero net supply. Hence, the risk-free interest rate r is

determined by:
∑

j

∫

(w − kj(w))gj(w)dw = 0. (31)

In the aggregate we have:

Ȳ = K̄(δ + g) + C̄, (32)

for which capital letters with a bar denote aggregate measure adjusted for (exogenous)

income growth g.

39Note that we have
∑

i li = z̃ equalizing individual and aggregate demand.
40Details are presented under step 4 in the Online Appendix D describing the solution algorithm.
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To capture a progressive bequest tax system we model the bequest tax as follows:

τb(w)w =







0 w < wE

τb(w − wE) w ≥ wE

There is an exemption level wE. If the wealth transferred at time of death is below

this specific level, no bequest tax is imposed. At the point wE marginal taxes jump

to τb. Values in excess of the exemption level are subject to taxation. Hence, this is a

progressive tax system with increasing average tax rates. Even without an exemption

level (wE = 0), the bequest tax system is progressive due to the lump sum transfer to

all individuals of Tr.

In the following, the full scale model is calibrated to evidence for the USA, solved,

and discussed.

4. Calibrating the model

Thus far, we have presented an analytic solution to a simplified version of the model.

The complete model entails several non-linearities that require a numerical solution of

the model. Given that we employ the continuous time approach, the numeric solution

is substantially faster than using standard discrete time methods. In particular this ex-

ploits the sparsity of the transition matrices required in both value function iteration and

the solution of the Fokker-Planck equation, which determines the cross-sectional distri-

bution (Achdou et al., 2017). Details about the computational procedure are relegated

to Online Appendix D.

We split the calibration procedure into two parts. First of all, we aim at finding an

income process – in the form of a discrete state Markov chain, as detailed in Section 3.1

– to fit the overall exogenous income distribution. In a second step, we determine the

other variables of the model.41

4.1. The income process

The values with respect to demographics are set according to the established literature

(Castaneda et al. (2003), Kaymak and Poschke (2016)). We assume a working-life length

41Parra-Alvarez et al. (2015) show that one can exploit the computational efficiency of the continuous
time approach in order to estimate model parameters in a small scale version of a similar model.
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1
pw

= 45 years and a retirement length of 1
pr

= 15 years, making a total (economic)42 life

length of 1
p

= 60 years. The parameters pw and pr are also in line with a share of retired

and disabled individuals in the overall population of 25% (Rios-Rull and Kuhn, 2016).

In line with Krueger et al. (2016) we set a replacement ratio for retired individuals of

ǫ = 40% which with equation 20 implies τr = 13%.

Secondly, we decompose income of the working individuals into a permanent and

transitory component:

z = SiPj ↔ log(z) = log(Si) + log(Pj). (33)

For these measures we set Sb = Pl ≡ 1, implying that Ph is the ratio between high income

earners versus low income earners. Moreover, we thereby normalize the lowest income of

the level of the working population (z1 = SbPl = 1). The permanent deviation between

income mostly results from education gaps. Broadly in line with Rios-Rull and Kuhn

(2016) we set the education premium and thus the value of Ph = 4.2. The transitory

income variance is slightly lower and set to Sg = 3.4. We impose λg = λb = 0.2 for the

annual transitory probabilities, implying an equal share in each state and an average

staying time of 5 years. We set the income of the superstar zs = z5 in order to match

the share of the top 1% in the population.43 This assumption helps us to provide a

good (discrete) fit of the overall income distribution including the top tail.44 The overall

income growth is assumed to be g = 1% (Storesletten et al., 2004). The final transition

matrix and the stationary states are documented in Appendix C.

4.2. Other variables

Table 1 summarizes the general parameters employed for the model. Most of the param-

eters follow the well-established literature. Some comments are nevertheless warranted.

42Note that economic life starts at an age of roughly 25, when eduaction is completed, making the
expected biological life length 85 years.

43To fit the top x%, the income of the superstar is given by zs = sx

1−sx

1−x
x

z̄, with z̄ being the average
income in the population when disregarding the superstars and sx is the overall income share of the
top x%. The transition probability is given by λs = sx

1−sx
.

44We show in Appendix E, that while the superstar state helps to match top income inequality and
overall wealth inequality, it leads to the fact that the model understates the Pareto tails of the wealth
distribution from idiosyncratic wealth risk (due to a general equilibrium effect) and understates
wealth mobility.
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Category Definition Symbol Calibration
Values

Risk aversion γ 0.9
Preference parameters Time preference ρ 5%

Strength bequest motive χ 5
Minimum bequest

value b̄ 120
Financial market Standard deviation σ 20%
variables risky asset

Annuity premium θ 0
Production Capital share α 0.38
function Depreciation δ 0
Portfolio Equity ratio φw 0.75
constraint Flow constraint φe 0.25

Table 1: Parameters baseline simulation
Parameter choices follow the literature closely and are explained in the text. In Online Appendix E the
robustness of the results with respect to parameter variations is investigated.

The annual time discount rate is assumed to be ρ = 5%, which has its discrete time

equivalent (in standard notation) of β = exp(−ρ) = 0.95 and is a common value in

the literature (cf. e.g. Kaymak and Poschke (2016)) capable of explaining a realistic

wealth-to-income ratio.

A first major departure from the literature is the assumption of γ = 0.9 < 1, implying

an intertemporal rate of substitution (IES) that exceeds unity (IES = 1
γ
). Most of the

literature employs a value for risk aversion that is close to log-utility, but exceeds the unit

measure (cf. e.g. Castaneda et al. (2003) or Kaymak and Poschke (2016)). As discussed

in Açıkgöz (2018) or Achdou et al. (2017), such an assumption is highly problematic as

it entails the possibility of multiple equilibria. The (graphic) intuition is that not only

the capital demand (following from the production function), but also the capital supply

determined by individual savings (in some range) decreases with the interest rate R for

the prevailing income effect (γ > 1). Thus, there can be multiple intersections of the

two curves constituting multiple equilibria, including potentially unstable ones.

We employ a non-standard preference function. For our baseline calibration, we ab-

stract from a minimum consumption desire (c̄ = 0). In similar models, Benhabib et al.

(2011) and Benhabib et al. (2014) set the bequest strength χ = 2.48, respectively,
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χ = 14.4 for the bequest motive.45 We employ a middle of the road calibration of χ = 5.

Following from the discussion in Section 2.2 the minimum bequest motive is a key de-

terminant for the left tail of the wealth distribution. We adjust b̄ in order to broadly

capture this tail and the overall level of inequality. The collateral constraints are set to

φw = 0.75 (equity ratio) and φe = 0.25 (flow constraint) broadly following Iacoviello and

Pavan (2013).

Following the evidence reported in Kaymak and Poschke (2016) we set the bequest tax

to τb = 35%, with an exemption level wE of 5 million US dollar which is approximately

10 times the mean wealth level. Following Angeletos (2007) we set σ = 20%.46 In the

baseline we abstract from premia in the annuity market (θ = 0).

Rios-Rull and Kuhn (2016) document a wealth-to-earnings ratio of 6.1. This ratio

is far beyond the value usually targeted in Bewley-type models of roughly 3 (cf. e.g.

Castaneda et al. (2003), Kaymak and Poschke (2016)). As argued in Storesletten et al.

(2004) this value follows from disregarding the top 1% and their substantially higher

wealth-to-income ratios. The baseline model produces a wealth-to-earnings ratio of 6.46

and thus still slightly overstates the evidence. Given the wealth-to-earnings ratio and a

common capital share of α = 0.38 (standard in the literature , cf. e.g. Castaneda et al.

(2003)), we adjust the depreciation rate δ to get a realistic equilibrium interest that also

shapes the top wealth distribution.47 As shown in Proposition 2.2 the top tail measure

a hinges on both the growth rate of wealth gw and the Sharpe ratio S, which in turn

depend on both the risky and the risk-free interest R respectively r which are objects

determined in equilibirum. As – in contrast to the partial equilibrium world in e.g.

Benhabib et al. (2011) and Benhabib et al. (2019) – we consider a general equilibrium

context, these objects cannot be hard-wired into the model any longer in order to match

the top tails.

The major preference parameters are subject to robustness checks in Online Appendix

E.

45Note that these values are already adjusted for a slightly different specification and assumption about
mortality. DeNardi (2004) assumes χ = 16.18.

46Detailed recent micro studies for Norway, respectively, Sweden (Fagereng et al. (2016), Bach et al.
(2016)) investigate the role of idiosyncratic risk in portfolio returns. We compare their evidence in
the light of the model in Section 5.

47In fact, for the calibration of the US economy we completely abstract from depreciation (δ = 0).
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Quintile Top

Gini I II III IV V 10% 1% 0.1%
Evidence Income 0.58 3.03% 6.55% 10.90% 18.15% 61.37% 46.95% 19.68% 6.40%
2013 Earnings 0.67 -0.09% 3.00% 10.42% 20.19% 66.48% 49.62% 18.83% 6.41%

Wealth 0.87 -0.67% 0.65% 3.22% 9.79% 87.02% 74.94% 35.47% 13.17%
Model Income 0.56 3.13% 3.77% 10.39% 21.53% 61.18% 40.93% 20.56% 2.06%

Earnings 0.59 1.67% 5.87% 9.81% 21.99% 60.66% 43.86% 16.60% 2.39%
Wealth 0.82 -1.62% 0.11% 4.05% 13.83% 83.63% 66.30% 21.55% 5.80%

Table 2: Measures of inequality for income, earnings, and wealth - US evidence (Rios-
Rull and Kuhn, 2016) and model predictions

The exogenous income process broadly matches evidence for income inequality in the USA. The non-
targeted measure of earnings inequality also fares well with empirical evidence. For the distribution of
wealth bottom inequality is overestimated, while top inequality is underestimated.

Quintile Shorrocks
I II III IV V index

Evidence Income 0.86 0.41 0.47 0.46 0.66 0.535
Wealth 0.67 0.47 0.45 0.50 0.71 0.55

Model Income 0.70 0.63 0.45 0.49 0.65 0.52
Wealth 0.67 0.50 0.50 0.62 0.84 0.469

Table 3: Diagonal elements for quintile income transition matrix and Shorrocks index -
US evidence (Castaneda et al., 2003) and model predictions

Both evidence and model display a inverse u-shaped relationship of mobility. While the model matches
income mobility rather well, it underestimates wealth mobility.

5. Quantitative investigations

In this Section we investigate the quantitative predictions of the calibrated model.

Firstly, the predictions of the baseline calibration are considered and compared to empir-

ical evidence for the USA. We employ this model in Section 5.2 in order to evaluate the

impact of the bequest tax on both inequality and mobility. Other factors shaping both

inequality and mobility – in particular the overall growth, demographics, and preference

parameters – are considered in Section 5.3.

5.1. The baseline calibration

The model’s ability to account for inequality is compared to evidence from the year

2013 documented in Rios-Rull and Kuhn (2016) and reported in Table 2. As presented

in Section 3.1 the income process is endogenously imposed and broadly fits the overall
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income inequality as measured by the Gini-coefficient. By construction, the top 1%

are also well matched. Due to the discrete nature of the income process the more

narrow shares are, however, underestimated. Earnings are the sum of labor earnings

and capital earnings.48 The model slightly underestimates the (non-targeted) degree

of earnings concentration at the bottom of the distribution. Our main focus lies on

the distribution of wealth. While the overall wealth inequality is well matched, this

comes at the cost of slightly overestimating bottom inequality and underestimating top

inequality.49 This contrasts with the partial equilibrium model with capital income risk

presented by Benhabib et al. (2011) that overstates top inequality, while understating

bottom and overall wealth inequality. In partial equilibrium, the top inequality can be

wired-in as it does not have to obey a general equilibrium market clearing condition for

the interest rates which to a large extent determines the top inequality (cf. Proposition

2.2).
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Figure 2: Savings as function of net worth.

While individuals with positive temporary shocks (Sg) build up buffer-savings, individuals with negative
shocks (Sb) take on debt. Individuals in the superstar state always form positive savings.

This savings function is documented in Figure 2. The slope of the savings function

– jointly incorporating the decisions rules for consumption c, portfolio composition µ

48Formally they are computed as dw + c in the model.
49For the Pareto coefficient in the tails we measure a value of a = 2.3 as opposed to a = 1.5 observed

in the evidence (Vermeulen, 2018).
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and bequests b – has a negative slope, as suggested in Section 2.2, in order to satisfy a

stable equilibrium holding of wealth. It is important to point out that the superstars

(cf. Figure 2a) save substantially more than the average earners (cf. Figure 2b) not

only in overall level, but even as a ratio of their already high labor income. For the

working agents – besides the superstars – only the individuals with good temporary

shocks (Sg) accumulate wealth, whereas those with bad shocks (Sb) incur debt. Among

the retired individuals (lower panels of Figures 2) only superstars and those with both

good temporary shocks and high permanent income (Ph) form equilibrium savings in

order to leave as bequests to their heirs.50

Besides the widely discussed issue of inequality, this paper also investigates mobility.

Table 3 presents evidence51 for mobility and compares evidence to the model results.

We report the diagonal elements of the 5 year transition matrices and the resulting

Shorrock index as a simple scalar measure of mobility. High values for the diagonal

elements and low values for the Shorrocks index indicate low mobility respectively high

persistence.52 The model roughly matches income inequality yet slightly underestimates

the level of mobility as captured by the Shorrocks index. The mobility of wealth is

slightly underestimated. Interestingly, the model posits that wealth is less mobile than

income, whereas the evidence suggests the opposing order. Part of this result might

yet also be due to upward biased estimates of wealth mobility (cf. the discussion in

footnote 51). In their model, aiming to fit the same evidence, Castaneda et al. (2003)

underestimate the degree of mobility to an even larger extent. It is interesting to point

out that both the model and the evidence display an inverse u-shape of mobility. Both

the very bottom state (poverty trap) and the top state are highly persistent. In Table

50To get an order of the magnitude in US dollars the reader should keep in mind a rough conversion
between model currency unit and US dollars by factor 5,000.

51This evidence is taken from Castaneda et al. (2003). Rios-Rull and Kuhn (2016) also provide more
novel evidence on mobility yet consider only the (two year) change between 2007 and 2009. They
report substantially higher levels of mobility. This measure is, however, highly biased by the presence
of the financial crisis, which peaked in 2008, presenting a major shock to the households portfolios
in the USA. Even the measure reported in Castaneda et al. (2003) probably overstates the mobility
of wealth by considering the years 1984 until 1989 featuring the substantial stock market crash in
1987. The celebrated study by Charles and Hurst (2003) investigating the correlation of wealth
across generations, is also not helpful to benchmark our model as it explictly excludes the role of
bequests central to our investigation.

52Finding a scalar measure of mobility is even more challenging than finding a scalar measure of
inequality as mobility is characterized by a matrix whereas inequality is only a vector. The popular

(trace) measure of Shorrocks (1978) is given by 0 ≤ Mob =
n−
∑

n

i=1
Mi,i

n−1
≤ 1 with M being the

transition matrix and n the number of states (here n = 5).
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5 we provide more detailed evidence for the top 10%.53 While it matches the overall

evidence rather well, the model understates mobility at the very top. Meanwhile, the

model understates the magnitude of the poverty trap for the flow measure of income (cf.

Table 3).
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Figure 3: Savings rates and expected return rates as a function of the net worth distri-
bution.

The model produces an inverse u-shaped relationships of savings rates (out of wealth), expected returns,
and idiosyncratic risk along the net worth distribution.

Figure 3 presents measures of savings as well as return and return risk along the

net worth distribution. As argued intensively in Section 2.2 both the savings rate out

of wealth gw – increasing with the expected return on wealth – and the idiosyncratic

risk σw shape the distribution of wealth. The documented inverse u-shape behavior

mirrors the debt holdings, as depicted in Figure 1 for households with positive net

worth. Households with low net worth are severely constrained in their ability to lever

up and hence hold portfolios with low returns and low idiosyncratic risk. The relationship

peaks for households in the median of the net worth distribution with strongly leveraged

portfolios, while high net worth households have a low leverage. The same pattern is

documented for the savings rate, for which both households at the bottom and the top

53Kennickell and Starr-McCluer (1997) report evidence for a six-year transition. We adjust the complete
transition matrix to consider a five-year gap to make it comparable to the evidence presented in
Table 3.
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of the wealth distribution decrease their wealth. As already discussed, the latter is

important to produce an ergodic distribution of wealth. The decreasing savings rate is

also empirically documented in a detailed micro-study by Bach et al. (2017) for Sweden.

Bach et al. (2016) provide a detailed study of returns and portfolio risk for Swedish

households in the years 2000 to 2007. They only investigate the top 60% of households

(in order to exclude households with negative net worth). They show that for positive net

worth households which range to the top 10%, returns as well as idiosyncratic wealth

risk eventually (slightly) decrease as a function of net worth in line with our model.

Quantitatively, Bach et al. (2016) report that returns range between 7.9% and 6.5%,

whereas the standard deviation of returns amounts to values between 21% and 13.5%,

broadly in line with our chosen calibration (cf. Figure 3). Yet, empirical evidence

suggests that in the very top 10% there is a positive relationship between the net worth

quantile and the return, respectively, the idiosyncratic risk. A similar pattern for Norway

is documented in Fagereng et al. (2016). As discussed in detail in Section 3.2 and in line

with Merton (1971), the (normative) model, however, predicts a decrease in risky asset

holdings for very wealthy individuals due to the presence of human capital. This also

implies lower returns and lower idiosyncratic wealth risk for the very top. Hence, this

evidence at the very top is at odds with the standard normative theory.

Using the calibrated model we investigate how the policy maker influences the distri-

bution and the mobility of wealth using a bequest tax. Moreover, we discuss the role of

borrowing constraints on both inequality and mobility of wealth. The exercises in the

following two sections focus on factors influencing the stationary distribution of wealth

and thus reconcile the closed-form comparative statics regarding inequality and mobility

of Section 2.2 numerically in a general equilibrium environment. This in the spirit of the

empirical investigation by Corak (2013) who documents substantial cross-country differ-

ence for inequality and mobility (for the flow measure income). We aim at uncovering

the determinants driving this behavior.

5.2. The role of the bequest tax and borrowing constraints

We consider changes in bequest taxes τb.
54 We investigate the case of a large tax, which

we set to τb = 77%. As documented in Piketty and Saez (2013), this top tax rate was

54The tax system is also characterized by the tax-free level wE . A lower tax free level increases both
the taxes at the bottom end and the level of transfers. The numerical investigation confirmed that
the distribution of wealth remains largely unchanged.
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Gini Quintile Top

Wealth I II III IV V 10% 1% 0.1%
1 Baseline 0.82 -1.62% 0.11% 4.05% 13.83% 83.63% 66.30% 21.55% 5.80%
2 High taxes 0.81 -1.59% 0.18% 4.25% 14.41% 82.75% 64.89% 19.77% 5.33%
3 High taxes partial 0.81 -1.66% 0.05% 4.21% 14.50% 82.91% 64.92% 19.45% 5.06%
4 Low equity ratio 0.82 -1.68% 0.20% 4.32% 14.12% 83.05% 65.74% 20.99% 5.56%
5 Relaxed overall 0.83 -1.91% -0.10% 3.84% 13.95% 84.23% 66.73% 21.58% 5.79%

constraint

Table 4: Measures of wealth inequality in the model under different tax regimes.
Higher taxes decrease wealth inequality. This effect is, however, dampened by a general equilibrium
effect of increased interest rates and Sharpe ratios. Relaxing borrowing constraints increases wealth
inequality at the bottom.

prevailing in the USA after World War II to the 1980s. Of course, higher taxes decrease

top inequality. Yet, the change is only of low magnitude (cf. number 1 and 2 in Table

4).55

First of all this is because the effective tax rate τbp ≈ 0.58% (for the baseline) is

low to begin with. Note that in contrast to a pure wealth tax, bequests are only taxed

on average all 1/p years. Our finding also contrasts with Benhabib et al. (2011) and

Benhabib et al. (2014), who argue that in the presence of capital risk, wealth or bequest

taxation has a substantial impact on wealth inequality. Of course, the effect is mostly

visible for the top shares. Yet, the partial equilibrium rationale of Benhabib et al. (2011)

or Benhabib et al. (2014) ignores an important effect. Line 3 of Table 4 presents the

effect of an increase of the bequest tax in a partial equilibrium model which emphasizes

the effect for the top wealth holders. There is, however, a counteracting effect in gen-

eral equilibrium. With higher taxes wealthy individuals bequeath less and hence save

less. The reduced savings, however, increase the interest rates – especially for the risky

asset mostly held by wealthy individuals – and as such the Sharpe ratio determing the

top inequality. As shown in Proposition 2.2, a higher Sharpe ratio increases the top

inequality. The exact opposing reaction emerges for a tax reduction. In the words of

Keynes (1936), the latter promotes a euthanasia of the rentier for which wealthy savers

cannibalize themselves.

55Like in Castaneda et al. (2003) we also investigated the effect of an abolition of the bequest tax.
While top inequality is slightly increased, overall inequality remains largely unchanged comparable
to their result.

37



Shares Shorrocks

0-25 25-50 50-75 75-90 90-95 95-99 99-100 index

Evidence 0.706 0.534 0.592 0.522 0.406 0.511 0.646 0.514
1 Baseline 0.744 0.557 0.654 0.599 0.384 0.600 0.700 0.460

2 High taxes 0.739 0.579 0.644 0.600 0.376 0.590 0.680 0.465
3 High taxes partial 0.744 0.560 0.642 0.600 0.380 0.585 0.680 0.468

4 Low equity ratio 0.679 0.545 0.628 0.597 0.376 0.605 0.700 0.478
5 Relaxed overall 0.753 0.600 0.650 0.601 0.384 0.600 0.700 0.452

constraint

Table 5: Diagonal elements for extended wealth transition matrix and Shorrocks index
– US evidence (Kennickell and Starr-McCluer, 1997) and model predictions for
various tax regimes

Higher taxation is associated with higher mobility at the top. While the relaxation of the stock-
dependent borrowing constraint increases mobility at the bottom, the relaxation of the overall constraint
eventually decreases mobility at the bottom.

Yet, taxation also matters for our second objective – mobility. As shown in Table 5

higher top tax rates reduce persistence at the top.56

The (negative) net worth at the bottom is driven by borrowing. We numerically

investigate how the relaxation of borrowing constraints impact on the distribution by

reducing the equity ratio (φw = 0.25), respectively, the overall constraint (φe = 0.3)

increasing the value of −w > 0. In line with Figure 1 the change in the equity ratio

has a less pronounced impact as it only impacts individuals with low positive net worth.

Yet, both cases increase wealth inequality at the bottom.

In terms of mobility, the two changes are visible at the lower end of the distribution,

but result in opposing outcomes. An relaxation of the the equity ratio extends the

possibility of individuals with very low (but positive) net worth and thus helps them

escape their poverty trap. This group is not impacted by the increase of φe eventually

aggravating the poverty trap.

We conclude this Section by stating that in general higher bequest taxes reduce both

wealth inequality and increase mobility. The former effect might be low or even out-

done due to a countervailing general equilibrium at the top. Yet, it is shown that the

redistributive bequest tax increases mobility. Allowing for more borrowing increases

56We also computed an overall welfare measure W =
∑

j

∫

U(c, b)gj(w)dw for both the case with low

and high taxes. There is a loss in terms of certainty equivalence terms (
(

Wτb=35%

Wτb=77%

)
1

1−γ

− 1) of 5.4%

resulting mainly from the fact that lower capital accumulation also lowers overall output.
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wealth inequality. If this is, however, allowed for the low net worth group (by relaxing

borrowing constraints), this reduces the prevalence of the poverty trap.

5.3. Other factors influencing inequality

Gini Quintile Top

Wealth I II III IV V 10% 1% 0.1%
1 Baseline 0.82 -1.62% 0.11% 4.05% 13.83% 83.63% 66.30% 21.55% 5.80%
2 Long life 0.86 -1.33% -0.90% 2.93% 11.86% 87.43% 71.64% 26.03% 7.67%
3 No growth 0.82 -1.47% 0.46% 4.33% 13.54% 83.14% 66.50% 23.24% 6.84%
4 Homo. beq. 0.71 0.29% 3.04% 7.30% 15.35% 74.03% 58.23% 19.72% 5.60%
5 Min. cons. 0.73 0.45% 2.77% 6.43% 14.18% 76.16% 60.63% 21.43% 6.45%

Table 6: Measures of wealth inequality in the model under different specifications.
A higher life expectancy (lower p) increase wealth inequality, while lower income growth rates leave it
largely unchanged. Moreover, both homothetic bequest motives and a minimum consumption desire
reduce wealth inequality.

Shares Shorrocks

0-25 25-50 50-75 75-90 90-95 95-99 99-100 index

1 Baseline 0.744 0.557 0.654 0.599 0.384 0.600 0.700 0.460

2 Long life 0.745 0.565 0.679 0.627 0.424 0.625 0.700 0.439

3 No growth 0.746 0.607 0.654 0.596 0.372 0.595 0.700 0.455

4 Homo. beq. 0.713 0.522 0.568 0.573 0.376 0.570 0.680 0.500

5 Min.cons. 0.654 0.519 0.610 0.597 0.384 0.600 0.700 0.489

Table 7: Diagonal elements for extended wealth transition matrix and Shorrocks index
– Different model specifications

Resulting from a decrease in income mobility, there is also lower wealth mobility in a scenario with
longevity. Wealth mobility remains largely unchanged in a scenario without (homogeneous) income
growth. Both homothetic bequest motives and a minimum consumption desire increase mobility.

As already discussed in Section 2.2 there are other factors which also determine both

inequality and mobility. One important non-economic factor is demographics. We can

simply capture demographics by the expected life time 1/p. Due to the medical advances

overall life expectancy has increased. Let us contrast our baseline model with the case

for which (adult) life expectancy has increased to 80 years. We jointly assume that

the working life itself does not change, meaning that the (expected) time spent in the

retirement status increases.57

57Note that old individuals live on their pension income, which in the considered PAYG economy is
substantially lower than the income for the working age population. As the share of the elderly
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An increase in longevity reduces the effective discount rate ρ̃ and thus implies higher

savings.58 Longevity not only raises savings but also reduces the effective rate of taxation

(τbp) as the underlying event (the death of an individual) becomes less likely. Both

factors increases top inequality in line with Propositions 2.2 and 2.4, as displayed in line

2 of Table 6.

Yet, there is another effect at the bottom end of the distribution. With a longer

life expectancy individuals reduce their debt exposure; thus, the minimum wealth level

−w > 0 is also reduced.59 In line with the comparative static logic of Proposition 2.2

this eventually leads to a reduction in inequality at the bottom. In the calibrated version

of the model (cf. line 1 of Table 6) the former effect, however, dominates for the overall

Gini-coefficient, suggesting an overall increase of wealth inequality for longevity.

The effects for wealth mobility are reported in Table 7. In line with the Great Gatsby

argument, the increase in inequality is also reflected in a lower wealth mobility mostly

in the middle of the distribution. The latter results primarily from a decrease in income

mobility as individuals are stuck in the retirement state for a longer period of time.60

Another exogenous factor frequently considered as a driver of inequality is the growth

rate of income g. As we assume a homogeneous income growth rate, changes in the

income growth rate do not have an impact on the distribution of income. Following the

celebrated r − g argument in Piketty (2014) a reduction of labor growth (relative to

returns on capital) will lead to an increase in wealth inequality at the top. This is in line

with Propostion 2.2. This effect is yet reduced in a general equilibrium environment.

Lower growth of labor income requires higher savings and thereby reduce interest rates

lowering the gap r − g. We consider the case of a zero growth (g = 0) economy.61 The

calibrated model displays a (slight) increase in top inequality. Yet, there is another effect

at the bottom of the distribution. The increasing gap r−g emerges as a discount rate in

order to compute human capital. As such, a reduction in g reduces human capital and

hence the ability to lever up reflected in lower bottom inequality. Overall inequality –

poor population increases, income inequality also increases marginally leading to a Gini-coefficient
of 0.57 (as opposed to 0.56 in the baseline calibration).

58With perfect insurance markets (θ = 0) we have a one-on-one reaction ∂c̃w

∂p
= 1.

59Formally the condition
∂w

∂p
< 0 requires b̄ >

e−c̄

r−g
holding in our calibration. It is important to

acknowledge that this condition never holds under homothetic preferences b̄ = c̄ = 0 for which an
increase in longevity always increases debt.

60The Shorrocks index for the 5-state income process reduces from 0.52 to 0.348 under longevity.
61A detailed discussion of this case in a model without capital risk is presented in Carroll and Young

(2018).
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as measured by the Gini-coefficient – remains largely unchanged. Similarly, the mobility

remains largely unaffected.

Of course, preferences also matter. In line with DeNardi (2004), we presumed that

bequests exhibit features of a luxury good. We can deviate from this assumption by

setting b̄ = 0 and hence introduce homothetic preferences for bequests (cf. line 3 in

Table 6). As such, the overall level of bequests increases reducing the prevalence of the

poverty trap. The luxury structure in the bequest motive, thus, creates higher wealth

inequality.

As usual we also investigate the impact on mobility of wealth. For homothetic be-

quest motives, mobility – especially in the lower tails of the distribution – substantially

increases (cf. line 4 of Table 7). Thus, once again the luxury structure of the bequests

locks in wealth status.

The assumption c̄ > 0 makes consumption an inferior good. In the baseline calibra-

tion we abstracted from that. Let us consider a value of c̄ = 2, which is 30% of the

median income. As such even in this economy some individuals consume less than the

(relative) poverty threshold defined as 50% of median income by the popular index of

the United Nations. As predicted in Proposition 2.2 the minimum consumption motive

reduces wealth inequality at the bottom as people form savings to satisfy their minimum

consumption desire (cf. line 5 in Table 6). The presence of a minimum consumption

desire increases mobility (cf. number 5 in Table 7) in line with the Great Gatsby curve.

In Appendix E we show that the model results are robust after assuming an annuity

premium (θ > 0), preferences with a prevailing income effect (γ > 1), or the absence of

bequest motives (χ = 0).

6. Conclusion

This paper discussed a rich micro-founded general equilibrium model to investigate both

inequality and mobility of wealth. The model can be analytically solved to reveal factors

that drive both bottom and top inequality. It is argued that the factors that contribute

to higher wealth inequality in general also result in lower wealth mobility.

It is straightforward to put this theoretic notion to the empirical test. Unfortunately,

both the evidence on inequality of the stock measure wealth and even more so measures

on its mobility are too scarce to run a meaningful cross-country study. Thus, the gath-
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ering and documentation of wealth mobility for several countries seems like a promising

future research area.

We extended the model to feature risky labor income and non-trivial portfolio con-

straints. The analysis in general equilibrium also revealed that a simple partial-equilibrium

analysis might yield misleading results. The model fits evidence for the USA. Unfortu-

nately, the complete model – at least for the time being – has not been solved analytically.

Another fruitful theoretical research area thus lies in shedding more analytic light on

more elaborate models to gain economic intuition on the working mechanism rather than

relying on purely numeric solutions. In particular, exploring the effect of risky income

on savings with portfolio constraints seems worthwhile for a detailed analytic discussion.
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A. Solution of the Fokker-Planck equation

A.1. Proof of proposition 2.2

As shown in (Karlin and Taylor, 1981, p. 221), the stationary solution to the probability
density function is given by:

f(w) =
C

D(w)2
exp

(

2
∫ w

0

s(x)

D(x)2
dx

)

,
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for which the integration constant C is determined by the standard integration property
of the cumulative probability density (CPDF) (

∫ wmax

wmin
f(w)dw = 1). For our concrete

case this implies:

f(w) =
C

σ2
w(w − wNB)2

exp
(

2
gw

σw

∫

(x− wNB)−1dx
)

= C̃ (w − wNB)
2gw

σ2
w

−2
∼ (w − wNB)−(a+1),

with a = 1 − 2gw

σ2
w

.

This is the Pareto II distribution as discussed in Arnold (1983) with the CPDF:

F (w) = 1 − (w − wNB)−a w ≥ wNB + 1.

Arnold (1983) shows that:

Gini(w) = 1 −
wNB + 1 + 2a · B(2a− 1, 2)

wNB + 1 + a · B(a− 1, 2)
,

which when evaluating the Beta function with B(2a − 1, 2) = 1
2a(2a−1)

, respectively,

B(a− 1, 2) = 1
a(a−1)

leads to:

Gini(w) =
1

a+ wNB(a− 1)

a

2a− 1
.

Following Arnold (1983), the top shares are given by:

sx(w) =
(wNB + 1)x+ a · I

x
1
a
(a− 1, 2)

wNB + 1 + a · B(a− 1, 2)
,

which, when evaluating the incomplete Beta function I
x

1
a
(a−1, 2) = 1

a(a−1)

(

ax1−
1

a − (a− 1)x
)

,
implies the final result:

sx(w) =
1

a+ wNB(a− 1)

[

ax1−
1
a + wNB(a− 1)x

]

.

A.2. Proof of proposition 2.4

A convenient way to solve FP equations – also used in Gabaix et al. (2016) and Kasa
and Lei (2018) – is to use Laplace transforms and the log-transform w̃ ≡ ln(w). The
overall stochastic process (disregarding wNB ≈ 0 not mattering for the very top) reads:

dwt = gwwtdt+ σwwtdZt + (b̃w − 1)wtdJt,
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for a jump dJt emerging with the death probability p. Using Itô’s lemma and the
equivalent for jumps (cf. e.g. Section 4.2.4 in Hanson (2007)) the process for w̃ reads:

dw̃t = (gw − 0.5σ2
w)dt+ σwdZt + ln(b̃w)dJt.

With the expectation operator E, the associated FP equation is given by:

∂f

∂t
= −g̃w

∂f

∂w̃
+ 0.5σ2

w

∂2f

∂w̃2
+ pE[f(w̃ −K) − f(w̃)],

with g̃w ≡ gw − 0.5σ2
w and the jump K ≡ ln(b̃w). The two-sided Laplace transform

L {f(w̃)} ≡ F (s) ≡
∫

∞

−∞ f(w̃) exp(−sw̃)dŵ is a very convenient tool to solve this partial
differential equation. In particular, we have L {fn(w̃)} = snF (s) for the n-th order
derivative. Following Gabaix et al. (2016) the jump part can be written as:

E[f(w̃ −K) − f(w̃)] =
∫

∞

−∞

[f(w̃ −K) − f(w̃)]h(K)dK

= (f ∗ h)(w̃) − f(w̃),

for which h(K) is the distribution of the jumps and ∗ signifies the convolution operator.
When performing the Laplace transform for this, we get:

L {(f ∗ h)(w̃) − f(w̃)} = F (s)H(s) − F (s).

As the jump itself is uniform at the value K, it is easy to see that h = δ(w̃ − K)
for δ being the Dirac impulse. The Laplace transform of the latter is L {δ(w̃ −K)} =
exp(−Ks) = H(s). As such the Laplace transform of the overall FP equation becomes:

∂F (s)

∂t
= sg̃− 0.5σ2

ws
2 + p[1 − exp(−s ln(b̃w))] = sg̃− 0.5σ2

ws
2 + p(1 − b̃−s

w ) = λ(s), (34)

also constituting the characteristic equation λ(s). To find the Pareto coefficient we need
to solve λ(s = −a) = 0 implying:

− g̃wa− 0.5σ2
wa

2 + p(1 − b̃a
w) = 0. (35)

We approximate the non-trivial root (a 6= 0) by conducting a first-order Taylor approx-
imation around b̃w = 1 implying b̃a

w − 1 ≈ a(b̃w − 1). This results in the following
(approximate) equation characterizing the right tail:

0.5σ2
wa

2 + (gw − 0.5σ2
w + p(b̃w − 1))a = 0

→ ã = a +
2p

σ2
w

(1 − b̃w).
(36)
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Following Gabaix et al. (2016) – exploiting the relationship between the moment-generating
function and the Laplace transform – the characteristic equation is also helpful to con-
sider convergence rates. For example, the mean reversion rate is given by λ(s = −1):

λ(s = −1) = −g̃w − 0.5σ2
w + p(1 − b̃w) = −gw + p(1 − b̃w). (37)

A higher mean reversion rate is accompanied by more mobility. It is easy to see that for
p = 0 this nests the case discussed in proposition 2.3. For the special case of bw = 1 we
have:

λ(s = −1) = −gw + pτb.

For the Pareto distribution f(w) ∼ w−(ã+1) corresponding to f(w̃) ∼ exp(−ãw̃) and
the Laplace transform F (s) = 1

s+ã
, only 0 < −s < ã finite moments exist. For higher

moments 1 < −s < ã – mattering especially for the top shares – there is also an effect
of σw on the convergence rate λ(s). In fact higher values of σw – in the structural model
related to higher Sharpe ratios and low risk aversion – are associated with lower mobility.
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ONLINE APPENDIX NOT INTENDED FOR PUBLICATION

B. Proof of proposition 2.1

As already discussed, the prices of risky assets PR,t follow a Geometric Brownian Motion:

dPR,t

PR,t

= Rdt+ σdZt,

while prices for safe risk-free assets Ps;t follow a simple drift process:

dPs,t

Ps,t
= rdt.

Individuals hold a number Ni in each asset making overall wealth Wt =
∑2

i=1 Ni,tPi,t.
As such, the evolution of overall wealth is given by:

dWt =
2
∑

i=1

Ni,tdPi,t + (Et − Ct)dt,

with earnings Et and consumption Ct. Defining µt =
NR,tPR,t

Wt
and hence 1 −µt = Ns,tPs,t

Wt
,

this leads to:

dWt = (µt(R− r)Wt + rWt + Et − Ct)dt+ σµtWtdZt. (38)

Taking into account the growth rate of income g and the bequest flow, we end up with
the Hamilton-Jacobi-Bellman (HJB) equation. Here, we provide the solution to HJB
characterizing the household problem:

(ρ+p−(1−γ)g)V = max
c,b,µ

{U+V ′((p(1+θ)+r−g)w+µ(R−r)w+e−c−p(1+θ)b)+0.5σ2µ2w2V ′′}.

The first order condition for consumption c is:

∂U

∂c
= (c− c̄)−γ = V ′,

comparable to the first-order condition of bequests:

∂U

∂b
= p(1 − τb)

1−γχ(b+ b̄)−γ = p(1 + θ)V ′

Thus, we have b = (1 + θ)−
1
γ (c − c̄)(1 − τb)

1−γ
γ χ

1
γ − b̄. The first-order condition for the

optimal portfolio is:

µ = −
R− r

σ2

V ′

wV ′′
.
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As usual, we have to guess a value function. Our educated guess is:

V (w) =
K1(w +K2(e− c̄+ p(1 + θ)b̄))1−γ

1 − γ
,

for some parameters K1 and K2 to be determined. For the first-order conditions this
implies:

c = c̄+K
−1/γ
1 (w +K2(e− c̄+ p(1 + θ)b̄)) = c̄+K

−1/γ
1 X,

as well as:
b = (1 + θ)−

1
γχ

1
γ (1 − τb)

1−γ
γ K

−1/γ
1 X − b̄

and

µw =
(R− r)

γσ2
(w + K2(e− c̄+ p(1 + θ)b̄)) =

(R − r)

γσ2
X,

for which X ≡ w +K2(e− c̄+ p(1 + θ)b̄).
Inserting this result into the HJB we can derive:

(ρ+ p− (1 − γ)g)
K1X

1−γ

1 − γ

= K
−1/γ
1

K1X
1−γ

1 − γ

(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1

γ

)

+K1X
−γ

(

[(1 + θ)p+ r − g]w +
(R− r)2

γσ2
X

−K
−1/γ
1 X

(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1
γ

)

− c̄+ e+ p(1 + θ)b̄
)

−K1X
1−γ (R− r)20.5

γσ2
.

It is easy to see that 1/K2 = (1 + θ)p + r − g. Inserting this result, performing
some algebraic manipulations, and dividing by the common factor K1X

1−γ leads to the
characteristic equation:

K1X
1−γ([(1 − γ)g − ρ− p]

+γK
−1/γ
1

(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1
γ

)

+ (1 − γ)((1 + θ)p + r − g) + (1 − γ)
0.5(R− r)2

γσ2
) = 0,

for which we can solve:

K
−1/γ
1

(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1

γ

)

=
p(γ − (1 − γ)θ) + ρ− (1 − γ)r

γ
− 0.5

1 − γ

γ

(R− r)2

γσ2

→ K
−1/γ
1 =

ρ+ p(γ − (1 − γ)θ) − (1 − γ)
(

r + 0.5 (R−r)2

γσ2

)

γ
(

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1
γ

) = cw.
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The value K
−1/γ
1 is also the marginal propensity to consume out of wealth cw. In fact,

the optimal consumption function looks as follows:

ct = c̄+ cw

(

wt +
e− c̄+ p(1 + θ)b̄

p(1 + θ) + r − g

)

= c̄+ cwXt,

while the optimal portfolio composition is given by:

µt =
R− r

γσ2

wt + e−c̄+p(1+θ)b̄
p(1+θ)+r−g

wt

= µ̃
wt + e−c̄+p(1+θ)b̄

p(1+θ)+r−g

wt

= µ̃
Xt

wt

.

In this case, µ̃ = R−r
γσ2 represents the standard optimal portfolio share of risky assets

(cf. e.g. Merton (1969)) which would prevail if e− c̄+ p(1 + θ)b̄ = 0.
Finally, we can compute the bequest values as:

bt =
(1 + θ)−

1
γ (1 − τb)

1−γ
γ χ

1
γ

1 + p(1 + θ)
γ−1

γ (1 − τb)
1−γ

γ χ
1
γ

c̃wXt − b̄,

for which c̃w = ρ+p(γ(1+θ)−θ)−(1−γ)r
γ

− 0.51−γ
γ

(R−r)2

γσ2 represents the marginal propensity to
consume that would prevail absent a bequest motive.

We can rewrite the consumption function in the following manner:

ct = c̄+ cw

(

wt +
e− c̄ + p(1 + θ)b̄

r − g

)

= (1 − ce)c̄+ ce(e+ p(1 + θ)b̄) + cwwt = (1 − ce)c̄+ cep(1 + θ)b̄+ cw(wt + h),

with cw ≡ K
−1/γ
1 (as given by equation 5), K2 = 1

(1+θ)p+r−g
, ce = K2cw, and h =

e
(1+θ)p+r−g

being the human capital.

C. Income transition matrices

Let us start with the transitory shocks. Following the seminal work of Huggett (1993)
we assume two time-varying states Sj,t, with j ∈ {g, b} representing a good and a bad
state (Sg > Sb). Huggett (1993) approaches this in a very general manner, yet the
straight-forward interpretation of the two states are employment and unemployment.
The switching between states is modeled by a Markov transition matrix Mg,b given by:

Mg,b =

[

1 − λb λb

λg 1 − λg

]

, (39)

for which λg > 0 captures the transition probability from good to bad, while λb > 0 is
the transition from bad to good.
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Secondly, we turn to permanent shocks. We assume that permanent shocks are of
either a high or low nature (j ∈ {h, l}, with Ph > Pl). Permanent shocks are absorbing
states, making the transition matrix Mh,l the identity matrix.

Combining the two shocks results in the following 4-state transition matrix:62

MP;S =

[

Mg,b 0
0 Mg,b.

]

(40)

Finally, we consider the retirement state. Once again, we model this as a Markov
transition matrix Mr,w (with r signifying retired and w working):

Mr,w =

[

1 − pw pw

pr 1 − pr

]

.

The value 1
pw

captures the average time in employment, whereas 1
pr

measures the average

time in retirement. The overall expected life length amounts to T̃ = 1
p

= 1
pr

+ 1
pw

. The
period of retirement is not planned in advance, but comes as an exogenous shock. If a
retired individual dies (with probability pr), she will be replaced by her offspring who
are in the working age.63

The intergenrational transition matrix Mgen is constructed as follows. Assume an in-
tergenerational correlation ρz. Using the method of Rouwenhorst (1995) for discretizing
a continuous AR(1) process into two states results in:

Mgen =

[

1+ρz

2
Mg,b

1−ρz

2
Mg,b

1−ρz

2
Mg,b

1+ρz

2
Mg,b

]

. (41)

Despite having 64 entries the matrix is controlled by 5 parameters only (λg, λb, pw, pr,
ρz).64

We add a superstar state (Castaneda et al., 2003) for both working and retired people
constituting the overall transition matrix:

M
e =











(1 − λs)MP;S(1 − pw) λs1(1 − pw) pwI 0
(1 − pw) · 0.25 · 1′ 0 0′ pw

prMgen 0 (1 − pr)I 0
pr · 0.25 · 1′ 0 0′ (1 − pr)











. (42)

Table 9 reports the matrix for the process calibrated as detailed in section 3.1. The
resulting stationary distribution with the respective efficiency states zj is documented
in Table 8.

62Note that the zero entry is a square matrix of order 2.
63A similar modeling is used in Krueger et al. (2016).
64Eventually, of the 64 possible entries 32 are zeros.
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State j 1 2 3 4 5 6 7 8 9 10 z̃

zj 1 3.4 4.2 14.28 163.35 0.46 1.56 1.93 6.55 74.93 6.31

πj[%] 18.75 18.75 18.75 18.75 0.74 6 6 6 6 0.24 100

Table 8: Labor efficiency states and stationary distribution for the model calibrated to
the USA

The value z̃ is the average labor efficiency.

0.774 0.194 0 0 0.010 0.022 0 0 0 0
0.194 0.774 0 0 0.010 0 0.022 0 0 0
0 0 0.774 0.194 0.010 0 0 0.022 0 0
0 0 0.194 0.774 0.010 0 0 0 0.022 0
0.245 0.245 0.245 0.245 0 0 0 0 0 0.022
0.036 0.009 0.019 0.005 0 0.931 0 0 0 0
0.009 0.036 0.005 0.019 0 0 0.931 0 0 0
0.019 0.005 0.036 0.009 0 0 0 0.931 0 0
0.005 0.019 0.009 0.036 0 0 0 0 0.931 0
0.017 0.017 0.017 0.017 0 0 0 0 0 0.931

Table 9: Labor efficiency transition matrix (discrete time) for the model calibrated to
the USA

Details on the structure of the matrix are presented in Section 3.1.
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D. Solution algorithm

For the model we employ the solution algorithm developed, described, and explained
in Achdou et al. (2017). The use of a continuous time framework is not only helpful
for gaining more analytic intuition, but allows for efficient numerical solutions to the
model. In particular, it uses the fact that for small (lim∆→0

xt+∆−xt

∆
= dx

dt
) time steps a

continous process can only move into the adjacent bin of the state space.65 The model
is implemented in the software MATLAB using its efficient methods for handling sparse
matrices, allowing for fast computation. For more details the interested reader is referred
to Achdou et al. (2017).

1. Grid Construct a discrete grid for the endogenous state of wealth wi ∈ {w, w̄}
with I elements.66 Constructing a reasonable grid that features both a detailed
view of the bottom 90% (having non-linear policy rules) as well as the fat top tails
is not trivial. We choose the following specification:

w =
w̄ − w

C1 + C2

(

C1x+ C2 · xP
)

+ w,

with some constants C1 = 1, C2 = 50 > 0, and a power exponent P = 10 > 1
for x ∈ {0; 1}.67 The exogenous state of labor endowment zj features J elements.
Thus, the state space (wi, zj) is a vector with I · J elements and the considered
square transition matrices will be of dimension I · J . For the exogenous income
switching process we can construct a square income switching matrix Mz of di-
mension I · J . The matrix elements are given by:

M
z
1+(i−1)·I:i·I,1+(j−1)·I:j·I = I · Ri,j, i, j∀{1, 2, · · · , J}

with I being an identity matrix of dimension I. Basically, this is a blown-up version
of the regular continuous time income transition matrix R in order to account for
the I wealth states. This can be written in a more compact way using the tensor
product: M

z = R ⊗ I.

2. Initial guess Guess an initial value Vij for the value function starting from the
closed-form solution of the HJB as elaborated in Section B. Note that the solution
holds exactly in the absence of portfolio constraints (i.e. borrowing and short-sale

65Note, however, that for jumps any part of the state space can be reached even with continous time
steps.

66Gouin-Bonenfant and Toda (2019) argue that if the truncation level w̄ is chosen too low the model
will underestimate top tails as well as aggregate capital. They provide an approach in discrete
time using the closed-form solution of the tail in order to overcome this issue. Our ratio between
maximum w̄ and capital in the representative agent economy is roughly 103, which in their paper
was shown to give reasonably small errors. Moreover, we use a substantially larger grid (I = 103)
compared to their approach which was also shown to reduce error. Finally, we tried specifications,
in which we substantially increased w̄, showing no major differences in the outcome.

67Gouin-Bonenfant and Toda (2019) similarly suggest to have a linear grid for low wealth levels and
an exponential grid in the upper tail.
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constraints) and deterministic income. Also guess an initial factor price R from
which we can deduce kD and thus wages ω. Furthermore, provide an initial guess
for the risk-free rate r. Also set a range of Rmax = 0.99ρ̃ and Rmin = r.

3. HJB: Inner loop This is basically the discretized version of the HJB equation.
For the current loop step q compute the local first and second-order derivatives
of the value function using finite differences. The derivatives are computed both
as forward and backward derivatives (index f respectively b). Given prices R,
r, and ω, compute the individual decisions using the respective local first-order
conditions from the value function and its local derivatives. Aggregate the decision
for consumption c, portfolio composition µ, and bequests b to find an overall savings
rule dw = s both for the forward and backward difference. The partial derivative
of the value function is aggregated as follows:

dV = dVf1sf >0 + dVf1sb<0 + dV0(1 − 1sf >0 − 1sb<0).

for which 1i ∈ {0; 1} represents an indicator function depending on the sign of
the drift in the forward, respectively, backward equation. For the special case
of sf < 0 < sb it is assumed that savings are zero, for which dV0 is the partial
derivative of the policy rule corresponding to this policy. The term dV is employed
to compute the final policy rules for consumption c, bequests b, and portfolio
composition µ (regardless of forward or backward difference). Using the savings
rules sf and sb we construct a sparse quadratic matrix M

s with I elements with
a diagonal vector with elements D ≤ 0 and an upper, respectively, lower diagonal
U,L ≥ 0. Following from the drift and diffusion terms in the HJB the vectors are
given by:

D = −1sf >0
sf

dwf
+ 1sb<0

sb

dwb
− σ2(µw)2 1

dwbdwf
,

U = 1sf >0
sf

dwf

+ 0.5σ2(µw)2 2

(dwf + dwb)dwf

,

L = −1sb<0
sb

dwb
+ 0.5σ2(µw)2 2

(dwf + dwb)dwb
,

For the stationary equilibrium sf < 0 < sb and thus 1sf >0 = 1sb<0 = 0. Basically,
the equation thereby decides on whether to employ the forward or backward dif-
ference. The values dwi represent the forward, respectively, backward difference
in the wealth grid.68 In order to implement a reflecting barrier at w̄ for the last
element i = I the following assumptions are made:

M
s
I,I =

s̃b

dwb
− 0.5σ2w̄2µ2 1

dwb
,

68Note that for a linear spaced grid dwb = dwf ≡ dw, simplifying the equations substantially.

56



with s̃b = min{sb, 0} and in order to ensure the standard property of continuous
time Markov chains:

M
s
I,I−1 = −M

s
I,I .

This matrix M
s, which consists of the vectors D, U and L, is quadratic of size I

and has to be blown up by the dimension of the income states J in the following
manner:

M
sz
1+I·(j−1):j·I,1+(j−1)·I:j·I = M

s j∀ {1, 2, · · · , J}

Compute the joint transition M
J = M

sz + M
z for endogenous savings and ex-

ogenous income. Compute utility uij given the decision rules. Define a vector
Ṽij = uij + ΓV q

ij and a matrix M̃ = [ρ̃ + Γ]I − M
J with I being the identity ma-

trix. The parameter Γ is a dampening parameter in the updating algorithm for
which low values increase the likelihood of convergence, but slow down convergence
speed. The updated guess (index q + 1) of the value function is given by:

V q+1
ij = M̃

−1Ṽij .

Repeat the procedure until |V q+1
ij − V q

ij| < ǫV .

4. FP Given saving rules s employ the Fokker-Planck equation given by ġ
!

= 0 =
(MT −pI+pMbirth)g to find the stationary wealth distribution gj(wi). The term pI
adjusts for stochastic deaths following a jump process. The matrix M

birth depends
on the concrete taxation scheme and determines the initial endowment level of
wealth for the new generation of the dynasty. Without taxation we have M

birth =
I.We have to make a slight adjustment and set 01 = 1 (otherwise consisting of
zeros) and M̃1,1 = 1 to avoid singularity in the matrix division. Normalize in order
to ensure

∑

j

∫ w̄
w gj(wi)dwi = 1 also implying

∫ w̄
w gj(wi)dwi = πj .

5. Prices: Outer loop Use the aggregate distribution to compute aggregate capital
supply kS =

∑

j

∫ w̄
w gj(wi)kj(wi)dwi and compare it to aggregate capital demand

kD given by a production function as in Aiyagari (1994). Define excess supply
of capital ∆k = kS − kD. The update sets Rmax = R if ∆k > 0 respectively
Rmin = R for ∆k < 0 and updates R = 0.5(Rmax + Rmin) (bisection method).
Define Bs =

∑

j

∫ w̄
w gj(wi)(wi − kj(wi))dwi the excess supply of bonds. Update

g < rq+1 = rq(1 − ζBs) < R with some adjustment parameter ζ > 0. For
min{|Bs|, |∆k|} < ǫk the algorithm has converged (sufficiently). In any other case
go back to iteration step 3.

E. Further calibration robustness checks

This section presents some further robustness checks regarding the calibration of the
model.
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Gini Quintile Top

Wealth I II III IV V 10% 1% 0.1%

1 Baseline 0.82 -1.62% 0.11% 4.05% 13.83% 83.63% 66.30% 21.55% 5.80%
2 θ > 0 0.82 -1.62% 0.02% 3.91% 13.74% 83.95% 66.72% 22.04% 5.98%

3 No beq. 0.84 -1.64% -0.23% 3.22% 12.46% 86.19% 69.83% 24.41% 6.98%
3PE No beq. 0.85 -1.80% -0.46% 3.11 12.63% 86.52% 69.84% 23.69% 6.31%

4 + γ > 1 0.85 -1.89% -0.40% 3.03% 12.53% 86.73% 70.01% 24.18% 6.79%

5 No super 0.79 -1.73% 0.83% 5.47% 16.11% 79.32% 61.87% 21.24% 6.23%

Table 10: Measures of wealth inequality in the model under different preference specifi-
cations.

The result are robust to introducing a annuity premium (θ > 0). Without a bequest motive inequality
increases. This result is robust to adding preferences with a dominating income effect (γ > 1). The
lack of superstars decreases overall wealth inequality but increases inequality at the tails.

Shares Shorrocks

0-25 25-50 50-75 75-90 90-95 95-99 99-100 index

1 Baseline 0.744 0.557 0.654 0.599 0.384 0.600 0.700 0.460

2 θ > 0 0.732 0.569 0.641 0.600 0.380 0.590 0.700 0.465

3 No beq. 0.675 0.555 0.641 0.611 0.400 0.615 0.700 0.467
3PE No beq. 0.643 0.570 0.638 0.605 0.408 0.615 0.700 0.470

4 + γ > 1 0.650 0.525 0.635 0.612 0.408 0.615 0.700 0.476

5 No super 0.738 0.596 0.628 0.571 0.348 0.580 0.700 0.473

Table 11: Diagonal elements for extended wealth transition matrix and Shorrocks index
- US evidence (Kennickell and Starr-McCluer, 1997) and model predictions for
different preference types

The lack of a bequest motive increases mobility. Results are robust to introducing an annuity premium
and to preferences with a dominating income effect (γ > 1).

We introduced the annuity premium θ > 0 as a further market incompleteness, yet
abstained from it in the baseline calibration. This entails the implicit assumption of
actuarial fair insurance markets. As a robustness assume a premium θ = 10%. As
shown in Tables 10 and 11, results remain largely unchanged.

We can contrast our baseline with a scenario without a bequest motive (χ = 0), for
which overall inequality increases (cf. line 3 in Table 10). This is somewhat surprising
as Proposition 2.4 predicts that a reduction in bw reduces inequality at the top. This,
however, does not take into account the bottom end of the distribution. In a partial
equilibrium framework (cf. line 3PE in Table 10), it becomes apparent that more in-
dividuals end up in a poverty trap. As the lack of the bequest motive reduces savings
– in general equilibrium – this leads to an increase in interest rates further eventually
increasing top inequality.

While the lack of the bequest motive makes wealth more unequally distributed, its
mobility increases as the connection between the generations is reduced.
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The calibration presented makes the unusual assumption of γ < 1. The model was
also simulated under the assumption of γ = 1.33 > 1. The results presented under
number 4 in Table 10 and 11, considering inequality and mobility measures, change only
marginally.

We also consider a case without superstar income shocks (number 5 in Table 10 and
11). By construction, we fail to measure income inequality (the Gini-coefficient reduces
to 0.47) especially at the top. As a result this model also produces a lower overall
wealth inequality as measured by the Gini-coefficient. Due to the absence of the extreme
superstar savings, the overall capital stock is lower, implying a higher interest rate, and
thus – in line with the analytic rationale – a higher tail inequality. As such, the superstar
theory and the idiosyncratic wealth risk theory are substitutes (and not complements)
to explain top inequality. Not suprisingly, the lack of the highly transitory superstar
state reduces mobility in income. However, and as also highlighted by Pugh (2018),
without superstars wealth mobility generally increases, bringing model and evidence
closer together. As the income earned in the superstar state is mostly saved, this locks
in the position of an individual in the wealth distribution.
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