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Abstract

In this paper we re-visit a recent theoretical idea introduced by Phillips and Lee
(2015). They examine an empirically relevant situation when multiple time series ex-
hibit different degrees of non-stationarity. By bridging the asymptotic theory of the
local to unity and mildly explosive processes, they construct a Wald test for the com-
monality of the long-run behavior of two series. Therefore, a vector autoregressive
(VAR) setup is natural. However, inference is complicated by the fact that the statis-
tic is degenerate under the null and divergent under the alternative. This is true
if the parameters of the data generating process are known and a re-normalizing
function can be constructed. If the parameters are unknown, as is usually the case
in practice, the test statistic may be divergent even under the null. We solve this
problem by converting the original setting of vector time series into a panel setting
with N individual vector series. We consider asymptotics with fixed N as T ! •
and extend the results to sequential asymptotics when T passes to infinity before N.
We show that the Wald test statistic converges to Chi-squared distribution which
is free of nuisance parameters under the null hypothesis of common local to unity
behavior.
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1 Introduction

While local to unity stochastic processes have been extensively used as alternatives in
unit root testing (see e.g. Phillips (1987), Chan and Wei (1987) or Elliott and Jansson
(2003)), explosive processes have been useful in modelling bubbles in financial markets
(see e.g. Phillips, Wu, and Yu (2011) or Phillips, Shi, and Yu (2015)). The type of ex-
plosive processes considered here is called mildly explosive and it was popularized by
the works of Phillips and Magdalinos (2007) and Magdalinos and Phillips (2009a). Both
local to unity and mildly explosive processes are in the vicinity of O(T) and O(kT), re-
spectively, where kT is a function of the sample size. However, they are on the different
sides of unit root.

Phillips and Lee (2015) considered the very challenging route of bridging the asymp-
totics of local to unity and mildly explosive cases when they occur in the same estima-
tion procedure. It is an interesting technical question and a realistic scenario when a
researcher is faced with potentially different degrees of non-stationarity. This naturally
leads to a question as to whether the persistence of the series is of the same nature.
Contrary to previous studies (e.g. Phillips et al. (2015)) where exact unit root behavior
is usually taken as the null hypothesis, they allow local to unity under the null. This
gives more flexibility as local to unity processes are very general and include pure unit
roots as a special case.

Since it is very unlikely that both series are unrelated, it is natural to analyze them
in a vector autoregressive (VAR) setting. In this setup, Phillips and Lee (2015) consider
a Wald test for the equivalence of the largest autoregressive root of the two series. They
show that if both series are local to unity, then the test statistic degenerates as the sample
size T increases, whereas it diverges if one of the series is mildly explosive. The asymp-
totic size of such test is therefore 0, which means that any set of critical values can be
used. Hence, while the test has discriminatory power between two persistence regimes,
the procedure is not really practical. The problem lies in the fact that while Wald statis-
tic is Op(1) under the null, it depends on the non-estimable localizing parameter c. The
statistic can be made to go to zero by re-scaling it by LT, which is a slowly diverging
function of kT which determines the vicinity. The problem is that LT is only determined
up to a certain rate of expansion with T since kT is unknown. This means that LT can
basically take any value.

This degeneracy problem in a time series context was addressed in Phillips and Lee
(2016) usingthe IVX estimator in a more general k-variate regression case. Phillips and
Magdalinos (2009b) showed that IVX Wald test statistics have a pivotal Chi-squared
distribution that is free of nuisance parameters, while Phillips and Lee (2016) extended
this result to certain prototypical mixed VARs, covering the problem in Phillips and Lee
(2015). However, they point out that the IVX instrument selection procedure remains
sub-optimal. The suggested a way out is to impose more structure by assuming which
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processes are mildly explosive or near integrated, which is equivalent to imposing a
degree of persistence under the null as in the original paper (Phillips & Lee, 2015).

In this paper we consider the same testing problem as in Phillips and Lee (2015).
The novelty is that we put it into a panel data context. The main idea is that the in-
creased number of observations will simplify the testing problem. Our results support
this. The analysis is based on sequential limit theory (see Phillips and Moon (1999b)
and Moon and Phillips (2000)). Instances of it can be found in panel unit root testing
(e.g. Im, Pesaran, and Shin (2003)) or testing for no cointegration (e.g. Pedroni (2004)).
An additional problem arises, because unlike Phillips and Lee (2015), we do not want to
assume independence but instead allow the errors to be weakly dependent over time,
as in the presence of e.g. measurement errors (Alvarez & Arellano, 2004). As a solu-
tion to this problem, we use the Fully Modified Least Squares (FMLS) estimator. It is
shown to be normal under the sequential asymptotics. Also, we allow cross-section het-
eroskedasticity under some regularity conditions. By using the panel setting, we make
an exploratory step to examine explosiveness in panels and contribute to somewhat
scarce theoretical literature on non-stationary panel VARs (see Binder et al. (2005) and
references therein).

The remainder of this paper is organized as follows. Section 2 describes the model
and provides assumptions we impose on the errors. Section 3 explores the asymptotic
distribution of the estimator of the VAR coefficient matrix RT for fixed N and large N.
Section 4 constructs and examines the Wald statistic for testing the common degree of
persistence in the panel VAR setting. The Technical Appendix contains the proofs of all
the necessary lemmas and theorems.

We use the following notation: P�!, D�! and Lp
�! represent convergence in probability,

distribution and Lp norm, respectively. Weak convergence in measure is represented by
) and (T, N)seq ! stands for sequential limits, while distributional equality is given

by D
=. The smallest sigma-algebra generated by a random variable under consideration

is s(.).

2 The Model

We consider the bivariate VAR(1) model as in Phillips and Lee (2015), but we add the
cross-section dimension consisting of N individuals. We also impose the common coef-
ficients among the N systems under consideration1.

Xit = RTXit�1 + uit, t = 1, ..., T, i = 1, ..., N (2.1)
1Hjalmarsson (2005) considered panels with riT = 1 + c+hi

T , where hi ⇠ N (0, s

2
i ) and suggested the

median-based estimator of c. However, this approach is aimed at summarizing the persistence patterns
in a data set rather than being employed in regression analysis. See Theorem 3.2 and Theorem 4.1 below.
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RT =

2

4

rT 0

0 qT

3

5 (2.2)

Here, Xit =
⇥

X1it X2it
⇤T and uit =

⇥

u1it u2it
⇤T. We keep the coefficient matrix RT

diagonal for clarity of the asymptotic theory, according to the common practice (e.g.
Phillips and Lee (2016), Phillips and Magdalinos (2009b)). The effects of further lags on
the large sample properties will be examined in future work. The coefficients represent
local to unity and mildly explosive cases in AR(1) process, respectively:

rT = 1 +
c
T

, qT = 1 +
b

kT
(2.3)

where c < 0 and b > 0. The strict inequalities are used to keep the processes in the
lower and the upper vicinity of the unit root, respectively (see Proposition 1 (a, b) in
the Technical Appendix). The mildly explosive coefficient qT depends on kT such that
kT = o(T). Hence, b

kT
goes to zero at a slower rate than c

T , which is a necessary condition
to discriminate between the locality to unity induced by rT and the mild explosiveness
induced by qT. In fact, kT can be any function satisfying kT = o(T). One possibility is to
set kT = Ta with a 2 (0, 1). However, this is by no means a restriction.

We focus on the square matrix RT and omit the intercept vector following the literature
that explores estimators with non-standard asymptotic behavior either on the lower
or upper vicinity of the unit root. For example, see Phillips et al. (2010), Giraitis and
Phillips (2012) or Arvanitis and Magdalinos (2018). For the recent development on the
mildly explosive processes with an intercept, see Fei (2018) and Quo et al. (2018).

We impose Xji0 = op(
p

kT) as T ! • and independent from s(ui1, ui2, ...) for j = 1, 2.
Assumptions 1 and 2 below state the properties of an individual uit.

Assumption 1 (Cross-section independence): uit and uks are independent for all i 6= k
and t, s which also implies that E[uituT

ks] = O (zero matrix).

Assumption 2 (Individual error moments). The error vectors {uit} are a covariance-
stationary sequence with E[uit] = 0 and E||uit||2+b < • for b > 0. They have an individual
specific positive definite covariance matrix:

E[uituT
it ] = Wi =

2

4

Wi.11 Wi.21

Wi.21 Wi.22

3

5 (2.4)

It is a weakly dependent sequence with a-mixing dependence structure and the following mixing
coefficients:

a(m) = sup
t

sup
A2F•

t ,B2F t�m
�•

| P(A \ B)� P(A)P(B) | (2.5)

4



where F t2
t1

represents the smallest sigma algebra containing information within the specified time

periods. For a generic matrix M, ||M|| =
q

r(MTM) represents the spectral norm2 and r(.)
is the largest eigenvalue operator.

This implies that the following Wold decomposition which is free of deterministic components
exists (see Phillips and Solo (1992)):

uit = Ci(L)eit =
•

Â
j=0

Cijeit�j (2.6)

where eit is IID with E[eit] = 0, E||eit||2+b < • for b > 0 and

E[eite
T
it ] = Sie =

2

4

s

2
i.11 si.21

si.21 s

2
i.22

3

5 (2.7)

which is positive definite. Here, Ci(L) is the infinite-order lag polynomial such that Â•
j=1 j

1
2 ||Cij||

< •.

For the further analysis, we employ the Beveridge-Nelson (BN) decomposition on the
lag operator Ci(L) to separate components of uit:

uit = Ci(L)eit = Ci(1)eit �4ẽit (2.8)

Here, Ci(1) = Â•
j=0 Cij, 4 = 1 � L and ẽit = Â•

j=0 C̃ijeit�j is a covariance-stationary
linear process with C̃ij = Â•

m=j+1 Cim. With the BN decomposition and Assumption 2,
we can define one-sided long-run covariance matrix of uit:

Li =
•

Â
h=1

E[uituT
it�h]

=

2

4

Li.11 Li.21

Li.21 Li.22

3

5

(2.9)

2Note that if M is a vector, the spectral norm becomes a simple Euclidean norm.
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As well as the long-run variance matrix of uit:

Gi = Wi + Li + LT
i

= Ci(1)SieCi(1)T

=

2

4

Gi.11 Gi.21

Gi.21 Gi.22

3

5

(2.10)

The one-sided covariance matrix Li will be important in describing the non-random
bias component of the asymptotic analysis of VAR(1) least squares (LS) estimator in the
local to unity part. The long-run variance Gi will be used in the Lindeberg condition in
Lemma D in the Technical Appendix.

3 Asymptotics of the FMLS Estimator

3.1 Fixed N
We consider the simpler fixed N limits, first. This presents the panel setting but also
exposes the problems that arise in the time series case. Using the matrix version of the
least squares estimator, we can estimate the coefficient matrix RT with the pooled matrix
estimator:

R̂T =

 

N

Â
i=1

T

Â
t=2

XitXT
it�1

! 

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1

(3.1)

Clearly, since both processes in 2.1 exhibit a different behavior around the unit root, dif-
ferent rates of convergence will apply. Therefore, as in Phillips and Lee (2015), we make
use of two asymptotically equivalent normalization matrices DT and FT. In particular

DT =

2

4

T 0

0 kTq

T
T

3

5 , FT =

2

6

4

T 0

0 q

T
T

q

2
T�1

3

7

5

(3.2)

Here, the asymptotic equivalence comes from the fact that q

2
T � 1 = 2 b

kT
+ b2

k2
T
= 2 b

kT
+

o(1) as T ! •. Using FT gives the same normalization asymptotically but helps to can-
cel out the nuisance parameter b. Using DT is more handy in proofs. Given these nor-
malization matrices, we formulate a generalized version of the Theorem 2.1 in Phillips
and Lee (2015).
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Theorem 3.1 Under Assumptions 1 and 2,

(R̂T � RT)FT ) F + Z (3.3)

as N stays fixed and T ! •. Here, F, Z 2 R2⇥2 are random matrices with the following
elements:

F =

2

6

6

6

4

ÂN
i=1 C2

1i(1)
R 1

0 J1ic(r)dB1i(r)

ÂN
i=1 C2

1i(1)
R 1

0 J2
1ic(r)dr

ÂN
i=1 C1i(1)C2i(1)X2i(b)Y1i(b)

ÂN
i=1 C2

2i(1)X2
2i(b)

ÂN
i=1 C1i(1)C2i(1)

R 1
0 J1ic(r)dB2i(r)

ÂN
i=1 C2

1i(1)
R 1

0 J2
1ic(r)dr

ÂN
i=1 C2

2i(1)X2i(b)Y2i(b)
ÂN

i=1 C2
2i(1)X2

2i(b)

3

7

7

7

5

Z =

2

6

6

6

4

ÂN
i=1 Li.11

ÂN
i=1 C2

1i(1)
R 1

0 J2
1ic(r)dr

0

ÂN
i=1 Li.21

ÂN
i=1 C2

1i(1)
R 1

0 J2
1ic(r)dr

0

3

7

7

7

5

(3.4)

Here, Jjic(r) ⌘
R r

0 e(r�s)cdBji(s) = si.jj
R r

0 e(r�s)cdWji(s) is the zero-mean Ornstein-Uhlenbeck
(O-U) process, Bji(s) and Wji(s) are Brownian Motion and standard Wiener process, respec-

tively, for j = 1, 2, both defined on the interval [0, 1]. X2i(b)
D
= Y2i(b)

D
= N (0, s

2
i.22
2b ) and

Y1i(b)
D
= N (0, s

2
i.11
2b ).

Remark 1. By the results of Lemma D and Lemma F in the Technical Appendix, J1ic(r)
is independent from X2i(b), Y2i(b) and Y1i(b). Plus, X2i(b), Y2i(b) and Y1i(b) are mutually
independent, as well as independent for i = 1, ..., N due to Assumption 1.

The joint convergence is a result of Lemma F and Lemma D. Z is a bias matrix that
is absent in Phillips and Lee (2015) and it occurs due to the weakly dependent errors.
Additionally, Z has a zero column because the mildly explosive part is unbiased (see
Lemma E in the Technical Appendix). The proof of Theorem 3.1 can be found in the
Technical Appendix. Clearly, (3.4) includes nuisance parameters and c cannot be con-
sistently estimated from a single time series3. This drives degeneracy if (3.4) is used in
test statistics.

Note that the stochastic bias matrix Z disappears for if we use the Fully Modified Least
Squares (FMLS) estimator:

R̂FM
T =

 

N

Â
i=1

h T

Â
t=2

XitXT
it�1 � TL̂i

i

! 

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1

(3.5)

3The elements in Gi and Li can be estimated non-parametrically using a single series. The parameter
b can also be found from a single series, however, it disappears in (3.4)
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where

L̂i =

2

4

L̂i.11 L̂i.12

L̂i.21 L̂i.22

3

5 =
J�1

Â
s=1

K
⇣ s

J

⌘ 1
T

T

Â
t=s+1

ûit�sûT
it (3.6)

is a consistent estimator of Li as T ! •. Here, K(x) = (1� |x|)1(|x|  1) is the Bartlett
kernel and J > 0 is an associated bandwidth parameter. If we use the FMLS estimator,
we obtain:

(R̂FM
T � RT)FT ) F (3.7)

as T ! •. To see this, it is sufficient to examine the first term after we substitute (2.1)
into (3.5):

N

Â
i=1

h T

Â
t=2

uitXT
it�1 � TL̂i

i

D�1
T

=

2

6

4

ÂN
i=1

1
T ÂT

t=2 X1it�1u1it ÂN
i=1

1
kTq

T
T

ÂT
t=2 X2it�1u1it

ÂN
i=1

1
T ÂT

t=2 X1it�1u2it ÂN
i=1

1
kTq

T
T

ÂT
t=2 X2it�1u2it

3

7

5

�

2

6

4

ÂN
i=1 L̂i.11

T
kTq

T
T

ÂN
i=1 L̂i.12

ÂN
i=1 L̂i.21

T
kTq

T
T

ÂN
i=1 L̂i.22

3

7

5

(3.8)

The bias matrix will vanish as T ! • due to the bias correction (the first column) and
the fact that L̂i is consistent and T

kTq

T
T
= o(1) (the second column). This type of estimator

will be exploited in the next section in order to get a correct centering of the asymptotic
distributions at 0 when N ! •.

3.2 Large N
In his section we will invoke the cross-section dimension and sequential limits to sim-
plify (3.4). To simplify the analysis we consider the properties of the following matrices
and vectors in two cases as T ! •:

When RT = diag(rT, qT):

F�1
T

T

Â
t=2

Xit�1XT
it�1F�1

T ) Bi 2 R2⇥2, Bi = E[Bi] (3.9)

F�1
T vec

⇣h T

Â
t=2

uitXT
it�1 � TL̂i

iT⌘

) Mi 2 R4, Mi = E[Mi MT
i ] (3.10)
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When RT = rTI2:

1
T2

T

Â
t=2

Xit�1XT
it�1 ) Ci 2 R2⇥2, Qi = E[Ci] (3.11)

1
T

vec
h T

Â
t=2

uitXT
it�1 � TL̂i

i

) Pi 2 R4, Xi = E[PiPT
i ] (3.12)

Here, vec represents the vectorization operator. Clearly, for fixed N, (3.9) - (3.12) rep-
resent random vectors or matrices with only diffusion processes (RT = rTI2) and dif-
fusion processes together with Normals (RT = diag(rT, qT)) from (3.4). Assumption 3
provides requirements on the moment matrices in (3.9) - (3.12).

Assumption 3 (Error heterogeneity). E||uit||4+b < • and E||eit||4+b < • for b > 0
where uit, eit are the same vectors in R2 as in Assumption 2. Also:

i) supi ||Bi|| < •, limN!•
1
N ÂN

i=1 Bi = B, ||B|| < •,

ii) supi ||Qi|| < •, limN!•
1
N ÂN

i=1 Qi = Q, ||Q|| < •,

iii) supi ||Mi|| < •, limN!•
1
N ÂN

i=1 Mi = M, ||M|| < •,

iv) supi ||Xi|| < •, limN!•
1
N ÂN

i=1 Xi = X, ||X|| < •,

v) limN!•

⇣

ÂN
i=1 Mi

⌘�1
Mi = O,

vi) limN!•

⇣

ÂN
i=1 Xi

⌘�1
Xi = O.

The conditions i) and ii) are required to invoke the WLLN for the matrices with het-
erogeneous means as N ! • (see Moon and Phillips (2000)). The conditions iii) - vi)
are sufficient to ensure that the multivariate Lindeberg condition for the CLT is satisfied
as N ! • and that no individual variance matrix dominates (see Theorem D.19A in
Greene (2003) and Proposition 2.27 in Van der Vaart (2000)). They do not depend on the
sample size and they will have a finite norm as long as certain products of individual
moments of uit coordinates are finite.

The structure of the matrices in (3.9) - (3.12) will be important for the Wald statistic. To
present their elements, we follow Hansen (1995) and define the correlation coefficient
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li using the long-run variance matrix4 in (2.10):

li =
Gi.21p

Gi.11Gi.22
(3.13)

Here li is the long-run (zero frequency) correlation between u1it and u2it. It is also the
long-run correlation between W1it and W2it that is generated by u1it and u2it after the
weak convergence in measure as T ! •.

The parameter li is used to orthogonalize the Wiener processes generated by u1it and
u2it:

Wji(r) = liWki(r) +
q

1 � l

2
i W?

ki (r) (3.14)

where j, k = 1, 2 and E[Wki(r)W?
ki (r)] = 0, hence independent because they are Gaus-

sian. We use 3.14 in Proposition 3 in the Technical Appendix to facilitate calculation of
covariances between diffusion processes and explicitly describe the matrices in (3.9) -
(3.12). We use the following result by Guillaume (2017):

Cov
h

Z t

0
f1(r, Wki(r))dWki(r),

Z T

0
f2(r, Wji(r))dWji(r)

i

= li

Z t

0
E
h

f1(r, Wki(r)) f2(r, Wji(r))
i

dr
(3.15)

with t  T, j, k = 1, 2. The functions f1 and f2 are the non-anticipatory and depend on
Wki, Wji and time, respectively. Also, li is the correlation coefficient in (3.13). For our
purposes, we have f1(r, Wki(r)) = Jkic(r) and f2(r, Wji(r)) = Jjic(r), implying f1 = f2.
We are able to generalize this approach to cases when k and j are switched in the inte-
grator since we can define an enlarged sigma-algebra F jk to which Jkic(r) and Jjic(r) are
adapted. Therefore, such integrals exist.

To derive the asymptotic behavior of R̂FM
T , we define two new asymptotically equiva-

lent block-normalization matrices to account for large N:

DNT = I2 ⌦
p

NDT, FNT = I2 ⌦
p

NFT (3.16)

where DT and FT are the same normalization matrices for fixed the N as in (3.2). ⌦
represents the Kronecker product and I2 is a 2 ⇥ 2 identity matrix. For the estimation,
we have to use (3.5) in order to remove the bias when invoking CLT. We re-scale the
FMLS estimator to account for the second limit as N ! •:

R̂FM
T =

 

N

Â
i=1

h T

Â
t=2

XitXT
it�1 �

p
NTL̂i

i

! 

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1

(3.17)

4Hansen (1995) uses two-sided long-run covariance matrix but it coincides with (2.10) by definition.
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Here, L̂i is the same as in (3.6). Given this, we can formulate the asymptotic result:

Theorem 3.2 Under Assumptions 1 and 3,

FNT(f̂
FM
T � fT)

D�! N
⇣

0, (I2 ⌦B)�1M(I2 ⌦B)�1
⌘

(3.18)

as (T, N)seq ! •, where (f̂FM
T � fT) = vec([R̂FM

T � RT]T).

The proof of Theorem 3.2 can be found in the Technical Appendix. Following Proposi-
tion 3 and denoting Gi.jj = C2

ji(1)s
2
i.jj for j = 1 or 2, they are the limiting averages of the

following matrices for each i:

Bi =

2

4

Gi.11
R 1

0
R r

0 e2(r�s)c 0

0 Gi.22

3

5 (3.19)

Mi =

2

6

6

6

6

6

6

6

6

6

6

4

G2
i.11
R 1

0
R r

0 e2(r�s)cdsdr 0 Gi.21Gi.11
R 1

0
R r

0 e2(r�s)cdsdr 0

0 Gi.11Gi.22
2b 0 0

Gi.21Gi.11
R 1

0
R r

0 e2(r�s)cdsdr 0 Gi.11Gi.22
R 1

0
R r

0 e2(r�s)cdsdr 0

0 0 0 G2
i.22
2b

3

7

7

7

7

7

7

7

7

7

7

5

(3.20)

The zeros in Bi occur due to Lemma F (c), while they occur in Mi due to zero means of
the Normals (Lemma D) or the asymptotic independence between the Normals and the
functionals of Brownian Motion (Lemma F (a)).

Remark 2. We still have 1
2b in Mi, because pre-multiplication by FNT from the left gives

2b in the T limit, while the variance terms on the mildly explosive side are scaled by 1
4b2 .

We conjecture that the asymptotic behavior of the FMLS estimator can be described
under the joint limits for T and N. However, as is well known (see e.g. Moon and
Phillips (2000)), the rate of expansion needs to be controlled. Particularly, N

T ! 0 as

(T, N)
j�! •. Under weakly dependent errors, this has to be imposed in order to avoid

a rapid accumulation of bias terms. Additionally, we would need stronger assumptions
on admissible kernels for the estimator in (3.6) together with assumptions on the band-
width parameter expansion rate. See Assumption 3 and Assumption 4 in Moon and
Phillips (2000). We do not pursue proofs of the joint limits for the clarity of exposition
as in Breitung and Pesaran (2008) or Harris et al. (2010).
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4 Wald Testing

4.1 Construction of the Wald Statistic

We invoke sequential limit theory to explore the large sample properties of the Wald
test statistic. We test H0 : RT = rTI2 against the alternative H1 : RT = diag(rT, qT). We
can additionally test if the off-diagonal terms are different from zero, however the block
statistic does not exhibit a proper behavior under H1 (see Remark 3 below). Similarly to
Phillips and Lee (2015), we employ the vector aT1 =

⇥

1 0 0 �1
⇤

to compactly write
H0 as aT1 vec(RT) = 0. We formulate the Wald statistic in the following way:

WNT =

h

aT1 vec(R̂FM
T )

i2

aT1
h

Q�1 ⌦ I2

i

X̂
h

Q�1 ⌦ I2

i

a1

(4.1)

In particular, Q = ÂN
i=1 ÂT

t=2 Xit�1XT
it�1 2 R2⇥2. Also, R̂FM

T is the FMLS estimator of
RT with an additionally scaled modification as in (3.17) using the same L̂i. The matrix
X̂ 2 R4⇥4 is a consistent estimator of the limiting average of Xi.

If we construct the consistent estimator of X̂, the asymptotic behavior of WNT under the
null and Assumption 3 as (T, N)seq ! • is described in the following result:

Theorem 4.1 Under H0: RT = rTI2, as (T, N)seq ! •

WNT
D�! c

2
1 (4.2)

where c

2
1 represents Chi-squared distribution with 1 degree of freedom.

The proof of Theorem 4.1 can be found in the Technical Appendix. Here, the denom-
inator converges to the variance of a normal variable under the square in (4.1), where
the matrix in the quadratic form is

h

Q�1 ⌦ I2

i

X
h

Q�1 ⌦ I2

i

which has the following
components:

Q = lim
N!•

1
N

N

Â
i=1

Qi, with

Qi =

2

4

Gi.11 li
p

Gi.11Gi.22

li
p

Gi.11Gi.22 Gi.22

3

5

Z 1

0

Z r

0
e2(r�s)cdsdr

=

2

4

Gi.11 Gi.21

Gi.21 Gi.22

3

5

Z 1

0

Z r

0
e2(r�s)cdsdr = Gi

Z 1

0

Z r

0
e2(r�s)cdsdr

(4.3)
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where we find the long-run variance matrix in (2.10) if we use li =
Gi.21p

Gi.11Gi.22
. Also:

X = lim
N!•

1
N

N

Â
i=1

Xi, with

Xi =

2

6

6

6

6

6

6

6

6

4

G2
i.11 Gi.21Gi.11 Gi.21Gi.11 G2

i.21

Gi.21Gi.11 Gi.11Gi.22 G2
i.21 Gi.21Gi.22

Gi.21Gi.11 G2
i.21 Gi.11Gi.22 Gi.21Gi.22

G2
i.21 Gi.21Gi.22 Gi.21Gi.22 G2

i.22

3

7

7

7

7

7

7

7

7

5

Z 1

0

Z r

0
e2(r�s)cdsdr

(4.4)

The structure of (4.3) and (4.4) is derived in Proposition 3 (g) in the Technical Appendix.
By using a panel dimension, we do not need the additional re-scaling of the statistic by
a diverging function LT (such that k2

T LT
T2 ! 0 as T ! •) which is the case in Phillips and

Lee (2015). This means that we do not need to have any knowledge about the functional
form of kT and we allow the Wald statistic to have a distribution, instead of asymptoti-
cally letting it converge to 0 and resorting to any arbitrary set of critical values.

A consistent estimation of X also allows the statistic to diverge under H1. Using the
same normalization as in Theorem 4.1, we can show that under H1 : RT = diag(rT, qT)
the Wald test statistic diverges for any b > 0 and c < 0.

Theorem 4.2 Under H1 : RT = diag(rT, qT) as (T, N)seq ! •

WNT ! • (4.5)

because the numerator has a dominant term
⇣p

NTb
kT

⌘2
and the denominator converges to

✓S2
2

S1

Z 1

0

Z r

0
e2(r�s)cdsdr

◆�1

Here, S1 = limN!•
1
N ÂN

i=1 G2
i.11 and S2 = limN!•

1
N ÂN

i=1 Gi.11.

Clearly, under the Assumption 3, the denominator is finite, since the integral is always
finite for c < 0. Therefore, under the alternative, WNT diverges as (T, N)seq ! •.

13



The proof of Theorem 4.2 can be found in the Technical Appendix. Under the alterna-
tive hypothesis, the denominator matrix in the quadratic form of (4.1) is asymptotically
singular. However, we investigate a special case where we avoid a potentially asymp-
totically undefined statistic.

4.2 Estimation of the Parameters in the Wald Statistic

As suggested by the Theorem 3.2 and also following Hjalmarsson (2006)5, a natural es-
timator of X would have the form of the sample moment matrix:

X̂ =
1
N

N

Â
i=1

h⇣ 1
T

T

Â
t=2

vec[ûitXT
it�1 � TL̂i]

⌘⇣ 1
T

T

Â
s=2

vec[ûstXT
is�1 � TL̂i]

⌘Ti

(4.6)

where ûit is the residual vector for the individual i. Using ûit = uit � (R̂T � RT)Xit�1
we receive:

vec
h 1

T

T

Â
t=2

ûitXT
it�1 � L̂i

i

= vec
h 1

T

T

Â
t=2

uitXT
it�1 � L̂i � T(R̂T � RT)

1
T2

T

Â
t=2

Xit�1XT
it�1

i

= vec
h 1

T

T

Â
t=2

uitXT
it�1 � L̂i

i

+ Op(1)

(4.7)

as T ! • under H0 : RT = rTI2. The bias term in the T limit can be simplified using
the N limit, however, (4.7) becomes explosive under H1:

vec
h 1

T

T

Â
t=2

uitXT
it�1

i

=
h

. . . , kTq

T
T

T
1

kTq

T
T

ÂT
t=2 X2it�1u1it,

kTq

T
T

T
1

kTq

T
T

ÂT
t=2 X2it�1u2it

iT
(4.8)

The last two terms in the vector are Op

⇣

kTq

T
T

T

⌘

as T ! •.

Therefore, we follow an alternative approach. Since we have an analytic expression of
Xi in (4.4) using the generalized Îto Isometry in Guillaume (2017), we define the direct
estimator which is fixed under both H0 and H1 in the following expression:

X̂ =
N

Â
i=1

T2X̂i =
N

Â
i=1

⇣

T2X̂
NP
i

⌘

Z 1

0

Z r

0
e2(r�s)ĉdsdr (4.9)

where X̂
NP
i is the non-parametric estimator part of the matrix in (4.4). We additionally

scale the estimator for the individual i by T2 because the statistic in (4.1) will not then
5Such estimator was employed in panel predictive regression setup with the local to unity predictor.
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need extra scaling when X̂ is inserted and 1
N will occur in front of (4.9) due to self-

normalization. For each individual, X̂
NP
i can be fully constructed from Ĝi. Following

Hansen (1995) and the definition in (2.10):

Ĝi =

2

4

Ĝi.11 Ĝi.21

Ĝi.21 Ĝi.22

3

5 =
1
T

T

Â
t=1

ûitûT
it +

J�1

Â
s=0

K
⇣ s

J

⌘ 1
T

T

Â
t=1

ûit�sûT
it

+

✓ J�1

Â
s=0

K
⇣ s

J

⌘ 1
T

T

Â
t=1

ûit�sûT
it

◆T

(4.10)

where K is an admissible kernel (e.g. Bartlett as in (3.6) or Parzen) which produces pos-
itive definite matrices and J is, again, a bandwidth parameter with an expansion rate
slower than the expansion of the sample size, i.e. J

T ! 0 as J, T ! •.

For the parametric component, the natural estimator of c is T(r̂T � 1), because c =
T(rT � 1) as in Moon and Phillips (2000). Clearly, due to weakly dependent errors, we
have to use the FMLS estimator in the following equation:

X1it = rTX1it�1 + u1it (4.11)

from which we find:

T(r̂FM
T � rT) =

1
N ÂN

i=1

h

1
T ÂT

t=2 X1it�1u1it � NTL̂i.11

i

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

1it�1
(4.12)

Using rT = 1 + c
T , we get ĉ � c = T(r̂FM

T � 1)� c = T(r̂FM
T � rT). Clearly from (4.12),

ĉ P�! c sequentially because 1
N ÂN

i=1 C2
1i(1)

R 1
0 J1ic(r)dB1i(r)

P�! 0 as N ! • which we
found by using WLLN. Then, by the CMT:

Z 1

0

Z r

0
e2(r�s)ĉdsdr P�!

Z 1

0

Z r

0
e2(r�s)cdsdr (4.13)

Remark 3. Similarly to Phillips and Lee (2015) we can generalize the Wald test and define
the block test with H0 : ATrvec(RT) = 0. Here

AT =

2

4

1 0 0 �1
0 1 0 0
0 0 1 0

3

5 =

2

4

aT1
aT2
aT3

3

5 (4.14)

15



is the matrix which additionally takes into account the off-diagonal terms in RT and tests if
the coefficients are zero. Also, rvec is the row vectorization operator6. The block (B) Wald test
statistic has the following form and the behavior under the null:

WB
NT =

h

ATrvec(R̂FM
T )

iT
 

AT
h

I2 ⌦ Q�1
i

X̂
h

I2 ⌦ Q�1
i

A

!�1
h

ATrvec(R̂FM
T )

i

D�! c

2
3

(4.15)

as (T, N)seq ! • which is Chi-squared distribution with 3 degrees of freedom. However,
under H1 the statistic is asymptotically undefined because the matrix in the quadratic form is
singular. Contrary to the case in (4.2), we cannot escape this problem because the matrix needs
to be actually inverted in the block statistic. See the discussion in Proposition 4 in the Technical
Appendix.

5 Concluding Remarks

In this paper, we re-visited the theory for bridging the asymptotic behavior of the local
to unity and the mildly explosive processes when they occur in a single estimation pro-
cedure. Converting the time series setting to the panel setting and making use of the
additional identification power that stems from the cross-section, we resolve the prob-
lem of the asymptotic degeneracy of the Wald test statistic under the null. Our approach
hinges on using sequential limit analysis and the direct estimator of the covariance ma-
trix which enters the Wald statistic. Similarly to Phillips and Lee (2016) in the time series
case, we find a Chi-squared distribution by employing the FMLS estimator. This is sim-
pler than using IVX that turned out to be sub-optimal for such mixed to unity cases in
time series.

6rvec(M) = vec(MT) for a generic matrix M, therefore the order of the Kronecker product in the (4.15)
changes. However, X̂ stays the same
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Technical Appendix

Proofs of Lemmas B, C, D, E and F are based on techniques from Phillips and Lee
(2015), Phillips and Magdalinos (2007) and Phillips and Magdalinos (2009b)

Auxiliary Propositions and Lemmas for Convergence

Proposition 1

a) For any c 2 R such that 1 + c
T > 0, 1 + c

T = exp(c/T{1 + o(1)}) as T ! •.
b) For each b > 0, q

�T
T = o(kT/T) as T ! •.

c) kT(q2
T � 1) ! 2b as T ! •.

Proof of Proposition 1

a) Using the fact that log(1 + x) = x + O(x2) as x ! 0, we receive the following as
T ! •:

log
⇣

1 +
c
T

⌘

=
c
T
+ O(1/T2)

=
c
T
{1 + O(1/T)}

=
c
T
{1 + o(1)} =) 1 +

c
T
= exp

⇣ c
T
{1 + o(1)}

⌘

as T ! •.

b) Similarly to the part a) and using properties of the natural logarithm we obtain:

log
⇣ T

kT
q

�T
T

⌘

= �Tlog(q) + log
⇣ T

kT

⌘

= �Tlog(1 + b/kT) + log
⇣ T

kT

⌘

= �T[b/kT + O(1/k2
T)] + log

⇣ T
kT

⌘

= �T
b

kT

h

1 +
1
b

log(T/kT)
T/kT

+ O(1/kT)
i

= �T
b

kT
[1 + o(1)] =) T

kT
q

�T
T = exp

⇣

� T
b

kT
[1 + o(1)]

⌘

= o(1)

as T ! • since b > 0.
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c)

kT(q
2
T � 1) = kT

⇣2b
kT

+
b2

k2
T

⌘

= 2b +
b2

kn
! 2b

as T ! •

Proposition 2

a) 1p
T

X1it ) C1i(1)
R r

0 e(r�s)cdB1i(s) ⌘ C1i(1)J1ic(r) ⌘ C1i(1)si.11 J̃1ic(r) for i = 1, ..., N
( J̃1ic(r) is the notation that will be relevant for the calculation of variances in Proposition
3).

b) 1
T2 ÂT

t=2 X2
1it�1 ) C2

1i(1)
R 1

0 J2
1ic(r)dr for i = 1, ..., N

Proof of Proposition 2

a)

1p
T

X1it =
1p
T

t

Â
j=1

r

t�j
T u1ij + op(1) =

1p
T

t

Â
j=1

r

t�j
T C1i(1)e1ij + op(1)�

1p
T

t

Â
j=1

r

t�j
T 4ẽ1ij

=
1p
T

t

Â
j=1

r

t�j
T C1i(1)e1ij + op(1)�

ẽ1itp
T
+

t

Â
j=1

4r

t�j+1
T ẽ1ij�1

The last two terms converge to 0 in L1 norm for any t = 1, ..., T. Given that 4r

t�j+1
T =

c
T r

t�j
T , we obtain:

E
h

�

�

�

� ẽ1itp
T
+

1p
T

t

Â
j=1

4r

t�j+1
ẽ1ij�1

�

�

�

i

 E[|ẽ1i1|]p
T

+
c

T
3
2

t

Â
j=1

exp
h

(t � j)
c
T
{1 + o(1)}

i

E[|ẽ1i1|]

 E[|ẽ1i1|]p
T

+ E[|ẽ1i1|]
tc
T

3
2
= o(1)

as T ! • because E[|ẽ1i1|] < •. The last inequality comes from the fact that 0 <
exp [(t � j) c

T{1 + o(1)}  1 for all j = 1, ..., t since c < 0. The first term converges ac-
cording to the functional theory in Phillips (1987).

b) The result follows from part a), CMT with the function f (x) = x2 and the fact that
t
T � t�1

T = 1
T .
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Proposition 3

a) Var


C2
1i(1)

R 1
0 J1ic(r)dB1i(r)

�

= C4
1i(1)s

4
i.11
R 1

0
R r

0 e2(r�s)cdsdr

b) E



C2
1i(1)

R 1
0 J2

1ic(r)dr
�

= C2
1i(1)s

2
i.11
R 1

0
R r

0 e2(r�s)cdsdr

c) E



C1iC2i
R 1

0 J1ic(r)J2ic(r)dr
�

= C1i(1)C2i(1)si.11si.22li
R 1

0
R r

0 e2(r�s)cdsdr

d) Var[C1i(1)C2i(1)X2i(b)Y1i(b)] = C2
1i(1)C

2
2i(1)

s

2
i.11s

2
i.22

4b2

e) Var[C2
2i(1)X2i(b)Y2i(b)] = C4

2i(1)
s

4
i.22

4b2

f) E[C3
2i(1)C1i(1)X2

2i(b)Y2i(b)Y1i(b)] = 0

g) Cross-terms. Here, we are interested in the occurrence of the correlation coefficient
li. Therefore, we omit long-run variance terms for brevity and adopt the ⇠ notation
immediately. Also, j, k = 1, 2 and j 6= k.

i) E
h⇣

R 1
0 J̃kic(r)dWji(r)

⌘2i
=
R 1

0
R r

0 e2(r�s)cdsdr

ii) E
h

R 1
0 J̃kic(r)dWji

R 1
0 J̃jic(r)dWki(r)

i

= l

2
i
R 1

0
R r

0 e2(r�s)cdsdr

iii) E
h

R 1
0 J̃kic(r)dWki(r)

R 1
0 J̃jic(r)dWki(r)

i

= li
R 1

0
R r

0 e2(r�s)cdsdr

iv) E
h

R 1
0 J̃kic(r)dWki(r)

R 1
0 J̃kicdWji(r)

i

= li
R 1

0
R r

0 e2(r�s)cdsdr

v) E
h

R 1
0 J̃kic(r)dWki(r)

R 1
0 J̃jic(r)dWji(r)

i

= l

2
i
R 1

0
R r

0 e2(r�s)cdsdr

*Here, we write the scaling constants explicitly. In Theorems 3.2, 4.1 and 4.2 we com-
pactly use C2

i.jj(1)s
2
i.jj = Gi.jj with j = 1 or 2.

Proof of Proposition 3

a)

E

✓

C2
1i(1)

Z 1

0
J1ic(r)dB1i(r)

◆2�

= C4
1i(1)s

4
i.11E

✓

Z 1

0
J̃1ic(r)dW1i(r)

◆2�

= C4
1i(1)s

4
i.11

Z 1

0
E[ J̃2

1ic(r)]dr

= C4
1i(1)s

4
i.11

Z 1

0

Z r

0
e2(r�s)cdsdr
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where the second and the third equality are obtained by using the Îto Isometry twice.
The proof for the process 2 is identical.

b)

E



C2
1i(1)

Z 1

0
J2
1ic(r)dr

�

= C2
1i(1)s

2
i.11

Z 1

0

Z

W
J̃2
1ic(w, r)dP(w)dr

= C2
1i(1)s

2
i.11

Z 1

0
E[ J̃2

1ic(r)]dr

= C2
1i(1)s

2
i.11

Z 1

0

Z r

0
e2(r�s)cdsdr

where we exchanged the expectation and the inner integral by using Fubini’s Theorem
on W ⇥ R, where W is our sample space. The proof for the process 2 is identical.

c)

E



C1i(1)C2i(1)
Z 1

0
J1ic(r)J2ic(r)dr

�

= C1i(1)C2i(1)si.11si.22

Z 1

0

Z

W
J̃1ic(w, r) J̃2ic(w, r)dP(w)dr

= C1i(1)C2i(1)si.11si.22

Z 1

0
E[ J̃1ic(r) J̃2ic(r)]dr

= C1i(1)C2i(1)si.11si.22li

Z 1

0

Z r

0
e2(r�s)cdsdr

where we moved from the second to the third equality using the generalized Îto Isom-
etry by Guillaume (2017) as in (3.15) in order to find the covariance between zero-mean
Îto Integrals that are functionals of two different dependent Wiener processes.

d)

E[(C1i(1)C2i(1)X2i(b)Y1i(b))2] = C2
1i(1)C

2
2i(1)E[X2

2i(b)]E[Y2
1i(b)]

= C2
1i(1)C

2
2i(1)

s

2
i.11s

2
i.22

4b2

because of independence shown in Lemma D.

e)

E[(C2
2i(1)X2i(b)Y2i(b))2] = C4

2i(1)E[X2
2i(b)]E[Y2

2i(b)]

= C4
2i(1)

s

4
i.22

4b2

because of independence shown in Lemma D.
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f)

E[C3
2i(1)C1i(1)X2

2i(b)Y2i(b)Y1i(b)]
= C3

2i(1)C1i(1)E[X2
2i(b)]E[Y2i(b)]E[Y1i(b)] = 0

because of independence shown in Lemma D.

g) The proof follows the similar lines provided in Guillaume (2017), where Îto Integrals
are constructed as the limits of the following incremental sums:
Ân�1

s=0 fs
�

W(rs+1) � W(rs)
�

. Given that F is the limiting sigma-algebra that nests all
Fr ⇢ Fr+1 and B is Borel sigma-algebra on R, then f (r) is a random function ( f (r, w))
such that:

1) f : [0, •]⇥ W ! R;
2) F ⇥ B measurable;
3) Fr � adapted;

4) E
h

Z T

S
f 2(r)dr

i

< • for finite S < T

It can approximated by a simple process Ân�1
j=0 fs1{rs, rs+1}(r). Here, fs’s are square-

integrable random variables. The approximation converges to f (r) in the mean square
sense and its existence is guaranteed if 1) - 4) are satisfied (see Øksendal (2003), p. 27-
28). This approximation allows us to exchange the limit and the expectation operator.
Additionally, fs’s are Frs measurable.

The key point to notice, is that we can define F jk which covers both processes for j 6= k
because we have a vector of dependent Wiener processes. This is necessary for the
existence of Îto Integrals of our required form:

Ikj =
Z 1

0
J̃kic(r)dWji(r)

Once their existence is guaranteed, we can proceed with calculating variances and co-
variances by conditioning on F j or F k individually as in Guillaume (2017). This is
important in order to avoid complications when conditioning products of the different
Wiener processes on an expanded sigma-algebra that is admissible to all of them. Such
product is not a martingale with respect to an expanded sigma-algebra.

We firstly invoke the discussed approximation by Guillaume (2017):

J̃kic(r) = lim
n!•

n�1

Â
s=0

fs(Wki)1{rs, rs+1}(r)

because O-U process satisfies 1) - 4). We put the Wiener process in the argument to
stress the fact that this approximated noise component of O-U process is a function of
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Wki. Because O-U processes for k = 1, 2 are Îto Integrals themselves which differ only
by the Wiener process inside but retain the same exponential function as the integrand,
we stress the heterogeneity by inserting the different Wiener process in the argument.

Given that s < m for two natural numbers s and m, we have sups((s+ 1)�m) = 0. Also,
if s > m, then supm((m + 1)� s) = 0. Using this in connection to the decomposition

Wji(r) = liWki(r) +
q

1 � l

2
i W?

ki (r) where W?
ki (r) is a Wiener process uncorrelated with

Wki, we first show that:

E
h

(Wki(rs+1)� Wki(rs))(Wji(rm+1)� Wji(rm))
i

= E
h⇣

Wki(rs+1)� Wki(rs)
⌘⇣

liWki(rm+1) +
q

1 � l

2
i W?

ki (rm+1)

� liWki(rm)�
q

1 � l

2
i W?

ki (rm)
⌘i

= liE
h

(Wki(rs+1)Wki(rm+1)
i

� liE
h

Wki(rs+1)Wki(rm)
i

� liE
h

Wki(rs)Wki(rm+1)
i

+ liE
h

Wki(rs)Wki(rm)
i

Therefore, if s < m and s > m, we have, respectively:

E
h

(Wki(rs+1)� Wki(rs))(Wji(rm+1)� Wji(rm))
i

= li[rs+1 � rs+1 � rs + rs] = 0

E
h

(Wki(rs+1)� Wki(rs))(Wji(rm+1)� Wji(rm))
i

= li[rm+1 � rm � rm+1 + rm] = 0

This result is important for the cases ii), iii) and v) when re-writing the covariances as
the products of incremental sums. However, we can use the decomposition of Wiener
process directly in the integral for the case i) and iv) because we will conveniently ob-
tain a product of Wki and W?

ki which is 0 in expectation.

i) Using the aforementioned decomposition, we write the integral as:
Z 1

0
J̃kic(r)dWji(r) = li

Z 1

0
J̃kic(r)dWki(r) +

q

1 � l

2
i

Z 1

0
J̃kic(r)dW?

ki (r)

Therefore, the variance can be calculated as:

E
h⇣

Z 1

0
J̃kic(r)dWji(r)

⌘2i

= l

2
i E
h⇣

Z 1

0
J̃kic(r)dWki(r)

⌘2i
+ 2li

q

1 � l

2
i E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃kic(r)dW?

ki (r)
i

+ (1 � l

2
i )E

h⇣

Z 1

0
J̃kic(r)dW?

ki (r)
⌘2i
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The middle covariance term is zero. To see this, we re-write:

E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃kic(r)dW?

ki (r)
i

= E
h

lim
n!•

n�1

Â
s=0

fs(Wki(rs))
�

Wki(rs+1)� Wki(rs)
�

lim
n!•

n�1

Â
m=0

fm(Wki(rm))
�

W?
ki (rm+1)� W?

ki (rm)
�

i

= lim
n!•

n�1

Â
s=0

n�1

Â
m=0

E
h

fs(Wki(rs)) fm(Wki(rm))
�

Wki(rs+1)� Wki(rs)
�

i

E
h

�

W?
ki (rm+1)� W?

ki (rm)
�

i

= 0

where we split the expectation because of the independence which comes from the de-
composition and the fact that the expectation of the Wiener increments is 0. Clearly, the
first and the third terms satisfy the Îto Isometry, therefore:

E
h⇣

Z 1

0
J̃kic(r)dWji(r)

⌘2i
= l

2
i

Z 1

0

Z r

0
e2(r�s)cdsdr + (1 � l

2
i )
Z 1

0

Z r

0
e2(r�s)cdsdr

=
Z 1

0

Z r

0
e2(r�s)cdsdr

ii) The covariance term can be computed in the following way:

E
h

Z 1

0
J̃kic(r)dWji(r)

Z 1

0
J̃jic(r)dWki(r)

i

= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fs(Wji(rs))
�

Wki(rs+1)� Wki(rs)
��

Wji(rs+1)� Wji(rs)
�

|F k
rs

ii

+ lim
n!•

n�1

Â
s,m=0
s>m

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))
�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

|F k
rm

ii

+ lim
n!•

n�1

Â
s,m=0,
m>s

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))
�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

|F k
rs

ii

= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fs(Wji(rs))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rs+1)� Wji(rs)
�

|F k
rs

ii

+ lim
n!•

n�1

Â
s,m=0
s>m

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rm

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

|F k
rm

ii

+ lim
n!•

n�1

Â
s,m=0,
m>s

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

|F k
rs

ii
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= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fm(Wji(rs))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rs+1)� Wji(rs)
�

ii

+ lim
n!•

n�1

Â
s,m=0
s>m

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rm

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

ii

+ lim
n!•

n�1

Â
s,m=0,
m>s

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rm+1)� Wji(rm)
�

ii

= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fm(Wji(rs))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rs+1)� Wji(rs)
�

ii

which follows from both increments of Wki and Wji being independent from the sigma-
algebra that we condition on and due to their independence on the different sub-intervals
of the partition (demonstrated above). Now:

E
h

�

Wki(rs+1)� Wki(rs)
��

Wji(rs+1)� Wji(rs)
�

i

= E
h⇣

Wki(rs+1)� Wki(rs)
⌘⇣

liWki(rs+1) +
q

1 � l

2
i W?

ki (rs+1)

� liWki(rs)�
q

1 � l

2
i W?

ki (rs)
⌘i

= liE
h

W2
ki(rs+1)

i

� liE
h

Wki(rs+1)Wki(rs)
i

� liE
h

Wki(rs)Wki(rs+1)
i

+ liE
h

W2
ki(rs)

i

= li[rs+1 � rs]� lirs + lirs = li[rs+1 � rs]

Therefore, the covariance term collapses to:

E
h

Z 1

0
J̃kic(r)dWji(r)

Z 1

0
J̃jic(r)dWki(r)

i

= lim
n!•

li

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fm(Wji(rs))|F k
rs

ii

(rs+1 � rs)

= lim
n!•

li

n�1

Â
s=0

E
h

fs(Wki(rs)) fm(Wji(rs))
i

(rs+1 � rs)

= li

Z 1

0
E
h

J̃kic(r) J̃jic(r)
i

dr = l

2
i

Z 1

0

Z r

0
e2(r�s)cdsdr

where the convergence happens in the mean square sense and we come to the last equal-
ity using the original result by Guillaume (2017) to find the covariance between the two
O-U processes.
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iii)

E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃jic(r)dWki(r)

i

= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fs(Wji(rs))
�

Wki(rs+1)� Wki(rs)
�2|F k

rs

ii

+ lim
n!•

n�1

Â
s,m=0
s>m

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))
�

Wki(rs+1)� Wki(rs)
��

Wki(rm+1)� Wki(rm)
�

|F k
rm

ii

+ lim
n!•

n�1

Â
s,m=0
m>s

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))
�

Wki(rs+1)� Wki(rs)
��

Wki(rm+1)� Wki(rm)
�

|F k
rs

ii

= lim
n!•

n�1

Â
s=0

E
h

E
h

fs(Wki(rs)) fs(Wji(rs))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
�2
ii

+ lim
n!•

n�1

Â
s,m=0
s>m

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rm

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wki(rm+1)� Wki(rm)
�

ii

+ lim
n!•

n�1

Â
s,m=0
m>s

E
h

E
h

fs(Wki(rs)) fm(Wji(rm))|F k
rs

i

E
h

�

Wki(rs+1)� Wki(rs)
��

Wki(rm+1)� Wki(rm)
�

ii

= lim
n!•

n�1

Â
s=0

E
h

fs(Wki(rs)) fs(Wji(rs))
i

(rs+1 � rs) =
Z 1

0
E
h

J̃kic(r) J̃jic(r)
i

dr

= li

Z 1

0

Z r

0
e2(r�s)cdsdr

where the convergence happens in the mean square sense. We use the the independence
of the Wiener increments (for the same process) and we come to the last equality using
the original result by Guillaume (2017) to find the covariance between the two O-U pro-
cesses.

iv) As in i), we can conveniently use the decomposition directly in the integral:

E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃kic(r)dWji(r)

i

= liE
h⇣

Z 1

0
J̃kic(r)dWki

⌘2i
+
q

1 � l

2
i E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃kic(r)dW?

ki (r)
i

= li

Z 1

0

Z r

0
e2(r�s)cdsdr

because the second term is zero due to independence of Wki and W?
ki which can be

shown in the same way as in the second term in i). The rest follows the usual Îto Isom-
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etry.

v) By applying the result of Guillaume (2017) iteratively:

E
h

Z 1

0
J̃kic(r)dWki(r)

Z 1

0
J̃jic(r)dWji(r)

i

= li

Z 1

0
E
h

J̃kic(r) J̃jic(r)
i

dr

= l

2
i

Z 1

0

Z r

0
e2(r�s)cdsdr

Note that re-writing in terms of the incremental sum would result in the same expres-
sion as in ii).

Hence, if we return the scaling by the long-run variances and use li =
Gi.21p

Gi.11Gi.22
, we can

describe the matrices in (3.9) - (3.12) as:

Mi = E[Mi MT
i ]

=

2

6

6

6

6

6

6

6

6

6

6

4

G2
i.11
R 1

0
R r

0 e2(r�s)cdsdr 0 liG
3
2
i.11

p
Gi.22

R 1
0
R r

0 e2(r�s)cdsdr 0

0 Gi.11Gi.22
2b 0 0

liG
3
2
i.11

p
Gi.22

R 1
0
R r

0 e2(r�s)cdsdr 0 Gi.11Gi.22
R 1

0
R r

0 e2(r�s)cdsdr 0

0 0 0 G2
i.22
2b

3

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

G2
i.11
R 1

0
R r

0 e2(r�s)cdsdr 0 Gi.21Gi.11
R 1

0
R r

0 e2(r�s)cdsdr 0

0 Gi.11Gi.22
2b 0 0

Gi.21Gi.11
R 1

0
R r

0 e2(r�s)cdsdr 0 Gi.11Gi.22
R 1

0
R r

0 e2(r�s)cdsdr 0

0 0 0 G2
i.22
2b

3

7

7

7

7

7

7

7

7

7

7

5
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Xi = E[PiPT
i ]

=

2

6

6

6

6

6

6

6

6

6

6

6

4

G2
i.11 liG

3
2
i.11

p
Gi.22 liG

3
2
i.11

p
Gi.22 l

2
i Gi.11Gi.22

liG
3
2
i.11

p
Gi.22 Gi.11Gi.22 l

2
i Gi.11Gi.22 li

p
Gi.11G

3
2
i.22

liG
3
2
i.11

p
Gi.22 l

2
i Gi.11Gi.22 Gi.11Gi.22 li

p
Gi.11G

3
2
i.22

l

2
i Gi.11Gi.22 li

p
Gi.11G

3
2
i.22 li

p
Gi.11G

3
2
i.22 G2

i.22

3

7

7

7

7

7

7

7

7

7

7

7

5

Z 1

0

Z r

0
e2(r�s)cdsdr

=

2

6

6

6

6

6

6

6

6

4

G2
i.11 Gi.21Gi.11 Gi.21Gi.11 G2

i.21

Gi.21Gi.11 Gi.11Gi.22 G2
i.21 Gi.21Gi.22

Gi.21Gi.11 G2
i.21 Gi.11Gi.22 Gi.21Gi.22

G2
i.21 Gi.21Gi.22 Gi.21Gi.22 G2

i.22

3

7

7

7

7

7

7

7

7

5

Z 1

0

Z r

0
e2(r�s)cdsdr

Bi = E[Bi] =

2

4

Gi.11
R 1

0
R r

0 e2(r�s)c 0

0 Gi.22

3

5 , Qi = E[Ci] =

2

4

Gi.11 Gi.21

Gi.21 Gi.22

3

5

Z 1

0

Z r

0
e2(r�s)cdsdr

Lemma A

a) 1
T ÂT

t=2 X1it�1u1it ) C2
1i(1)

R 1
0 J1ic(r)dB1i(r) + Li.11 for i = 1, ..., N

b) 1
T Ân

t=2 X1it�1u2it ) C1i(1)C2i(1)
R 1

0 J1ic(r)dB2i(r) + Li.21 for i = 1, ..., N

c) 1
T Ân

t=2 X1it�1u2it ) C1i(1)C2i(1)
R 1

0 J2ic(r)dB1i(r) + Li.12 for i = 1, ..., N

d) 1
T Ân

t=2 X1it�1u2it ) C2
2i(1)

R 1
0 J2ic(r)dB2i(r) + Li.22 for i = 1, ..., N

where Li.jj for j = 1, 2 come from Li.
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Proof of Lemma A

First, note that (2.9) can be expressed as:

Li =
•

Â
h=1

E[uituT
it�h]

=
•

Â
h=1

E
h •

Â
j=0

Cijeit�j

•

Â
j=0

e

T
it�h�jC

T
ij

i

=
•

Â
j=0

⇣ •

Â
h=1

Cij+h

⌘

SieCT
ij

=
•

Â
j=0

C̃ijSieCT
ij = E[ẽituT

it ] =

2

4

Li.11 Li.21

Li.21 Li.22

3

5

For both parts, we will invoke an approximation argument similar to the one in Westerlund
and Smeekes (2018).

a)

1
T

T

Â
t=2

X1it�1u1it =
1
T

T

Â
t=2

X1it�1C1i(1)e1it �
1
T

T

Â
t=2

X1it�14ẽ1it

Now, for convenience define X̃1it = Ât
j=1 r

t�j
T e1it + op(

p
T). The first term can be writ-

ten in the following way:

i)

1
T

T

Â
t=2

X1it�1C1i(1)e1it = C2
1i(1)

1
T

T

Â
t=2

X̃1it�1e1it +
1
T

T

Â
t=2

(X1it�1 � C1i(1)X̃1it�1)C1i(1)e1it

Note that using the BN decomposition in connection to 4r

t�j+1
T = c

T r

t�j
T , we can ex-

press X1it = C1i(1)X̃1it � Ât
j=1 r

t�j
T 4ẽ1ij = C1i(1)X̃1it � ẽ1it +

c
T Ât

j=1 r

t�j
T ẽ1ij�1. Taking

the first lag and inserting this into the expression above we get:

1
T

T

Â
t=2

X1it�1C1i(1)e1it = C2
1i(1)

1
T

T

Â
t=2

X̃1it�1e1it � C1i(1)
1
T

T

Â
t=2

ẽ1it�1e1it

+ C1i(1)
c

T2

T

Â
t=2

t�1

Â
j=1

r

t�j
T ẽ1ij�1e1it
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Now, define Fit�1 as the smallest sigma-algebra containing all the information on the
vector eit up until the period t� 1 (similarly to Proposition 3 (g)). Also, Eit�1[.] is the ex-
pectation conditional on such sigma-algebra. Clearly, E[e1it�1e1it] = E[ẽ1it�1Eit�1[ẽ1it]] =
0, because IID errors imply Martingale Difference Sequence (MDS). Further:

E
h⇣ 1

T

T

Â
t=2

ẽ1it�1e1it

⌘2i
=

1
T2

T

Â
t=2

E[ẽ2
1it�1Eit�1[e

2
1it]] +

1
T2

T

Â
s,t=2,

t>s

E[ẽ1it�1ẽ1is�1e1isEit�1[e1it]]

+
1

T2

T

Â
s,t=2,

s>t

E[ẽ1it�1ẽ1is�1e1itEis�1[e1is]] =
1

T2

T

Â
t=2

s

2
i.11E[ẽ2

1it�1] = O
⇣ 1

T

⌘

as T ! •, because E[ẽ2
1it�1] is finite by Assumption 2. This implies that 1

T ÂT
t=2 ẽ1it�1e1it

P�!
0. Also:

1
T2

T

Â
t=2

t�1

Â
j=1

r

t�j
T ẽ1ij�1e1it = Op(1/T)

This is because Ât�1
j=1 r

t�j
T ẽ1ij�1 asymptotically behaves just like X1it�1 and converges to

O-U process by Proposition 2 (a) if normalized by
p

T, because ẽ1ij�1 is a linear process.
Also, it is independent from e1it for all j = 1, ..., t � 1. Lastly, we are left with the term
which converges according to the theory in Phillips (1987):

C2
1i(1)

1
T

T

Â
t=2

X̃1it�1e1it ) C2
1i(1)

Z 1

0
J1ic(r)dB1i(r)

for i = 1, ..., N.

ii) Looking at the second term:

1
T

T

Â
t=2

X1it�14ẽ1it = � 1
T

T

Â
t=2

4X1itẽ1it +
1
T

T

Â
t=2

(X1itẽ1it � X1it�1ẽ1it�1)

= � 1
T

T

Â
t=2

4X1itẽ1it +
1
T

X1iT ẽ1iT = � 1
T

T

Â
t=2

4X1itẽ1it + Op

⇣ 1
T

⌘

because X1iT = Op(
p

T) and E
h

�

�

�

ẽ1iTp
T

�

�

�

i

= 1p
T

E[|ẽ1i1|] = o(1). Further, using rT = 1 + c
T

and 4X1it = (rT � 1)X1it�1 + u1it we obtain:

� 1
T

T

Â
t=2

4X1itẽ1it = � 1
T

T

Â
t=2

u1itẽ1it �
c

T2

T

Â
t=2

X1it�1ẽ1it = � 1
T

T

Â
t=2

u1itẽ1it + Op

⇣ 1
T

⌘
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Here, c
T2 ÂT

t=2 X1it�1ẽ1it = c
T2 ÂT

t=2 X1it�1K1i(1)#1it +
c

T2 ÂT
t=2 X1it�14#̃1it = Op

⇣

1
T

⌘

as
ẽ1it is a linear process, so we can apply the BN decomposition. The second term includes
the difference, thus it is asymptotically negligible. Finally, 1

T ÂT
t=2 u1itẽ1it

P�! Li.11, where
Li = E[ẽituT

it ] and Li.11 is its first diagonal element for i = 1, ..., N in this notation.

b) Similarly to part a) and using the same expression for X1it, we analyze two terms
after using the BN decomposition:

1
T

T

Â
t=2

X1it�1u2it =
1
T

T

Â
t=2

X1it�1C2i(1)e2it �
1
T

T

Â
t=2

X1it�14ẽ2it

i)

1
T

T

Â
t=2

X1it�1C2i(1)e2it = C1i(1)C2i(1)
1
T

T

Â
t=2

X̃1it�1e2it +
1
T

T

Â
t=2

(X1it�1 � C1i(1)X̃1it�1)C2i(1)e2it

= C1i(1)C2i(1)
1
T

T

Â
t=2

X̃1it�1e2it +
1
T

T

Â
t=2

⇣

� ẽ1it�1 +
c
T

t�1

Â
j=1

r

t�j
T ẽ1ij�1

⌘

C2i(1)e2it

Defining the same smallest sigma-algebra Fit�1 with information on vector eit up to
t � 1, we show that E[ẽ1it�1e2it] = E[ẽ1it�1Eit�1[e2it]] = 0 and:

E
h⇣ 1

T

T

Â
t=2

ẽ1it�1e2it

⌘2i
=

1
T2

T

Â
t=2

E[ẽ2
1it�1Eit�1[e

2
2it]] +

1
T2

T

Â
s,t=2,

t>s

E[ẽ1it�1ẽ1is�1e2isEit�1[e2it]]

+
1

T2

T

Â
s,t=2,

s>t

E[ẽ1it�1ẽ1is�1e2itEis�1[e2is]] =
1

T2

T

Â
t=2

s

2
i.22E[ẽ2

1it�1] = O
⇣ 1

T

⌘

as T ! •, which implies that 1
T ÂT

t=2 ẽ1it�1e2it
P�! 0. By the same argument of asymp-

totically equivalent behavior to X1it�1 and independence from e2it, we have:

1
T2

T

Â
t=2

t�1

Â
j=1

r

t�j
T ẽ1ij�1e2it = Op

⇣ 1
T

⌘

as T ! •.

Again, the first term converges according to the functional theory in Phillips (1987):

C1i(1)C2i(1)
1
T

n

Â
t=2

X̃1it�1e2it ) C1i(1)C2i(1)
Z 1

0
J1ic(r)dB2i(r)
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ii) Asymptotic behavior of the second term is similar:

1
T

T

Â
t=2

X1it�14ẽ2it = � 1
T

T

Â
t=2

4X1itẽ2it +
1
T

n

Â
t=2

(X1itẽ2it � X1it�1ẽ2it�1)

= � 1
T

T

Â
t=2

4X1itẽ2it +
1
T

X1iT ẽ2iT = � 1
T

T

Â
t=2

4X1itẽ2it + Op

⇣ 1
T

⌘

= � 1
T

T

Â
t=2

u1itẽ2it �
c

T2

T

Â
t=2

X1it�1ẽ2it + Op

⇣ 1
T

⌘

= � 1
T

n

Â
t=2

u1itẽ2it + Op

⇣ 1
T

⌘

where c
T2 ÂT

t=2 X1it�1ẽ1it =
c

T2 ÂT
t=2 X1it�1K1i(1)#1it +

c
T2 ÂT

t=2 X1it�14#̃1it = Op

⇣

1
T

⌘

. Also,
1
T ÂT

t=2 u1itẽ2it
P�! Li.21, where Li = E[ẽituT

it ] and L21 is its first element in the second
row for i = 1, ..., N in this notation.

*The proofs for the cases of 1
T ÂT

t=2 X2it�1u1it and 1
T ÂT

t=2 X2it�1u1it are analogous and
the bias terms will be Li.12 and Li.22, respectively.

Lemma B

a) 1p
kT

ÂT
j=1 q

�j
T 4ẽij = op(1) as T ! •

b) 1p
kT

ÂT
j=1 q

�(T�j)�1
T 4ẽij = op(1) as T ! •

Here, ẽij 2 R2 and covers each individual i.

Proof of Lemma B

a) At first, we re-write the sum to eliminate the difference and use the definition of qT:

1p
kT

T

Â
j=1

q

�j
n 4ẽij =

1p
kT

T

Â
j=1

q

�j
n ẽij �

1p
kT

T

Â
j=1

q

�j
n ẽij�1

=
1p
kT

T

Â
j=1

q

�j
T ẽij �

✓

1p
kT

T

Â
j=1

q

�1�j
T ẽij + op(1)

◆

=
1p
kT

(1 � q

�1
T )

T

Â
j=1

q

�j
T ẽij + op(1)

= � 1p
kT

q

�1
T

⇣

� b
kT

⌘ T

Â
j=1

q

�j
T ẽij + op(1)
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The first term converges to 0 in L1 norm:

E
h

�

�

�

�

�

�

1p
kT

q

�1
T

⇣ b
kT

⌘ T

Â
j=1

q

�j
T ẽij

�

�

�

�

�

�

i

 1p
kT

q

�1
T

⇣ b
kT

⌘ T

Â
j=1

q

�j
T E[||ẽij||]

= E[||ẽi1||]
1p
kT

q

�1
T

⇣ b
kT

⌘ T

Â
j=1

q

�j
T

= E[||ẽi1||]
1p
kT

q

�1
T

⇣ b
kT

⌘1 � q

�T
T

qT � 1

= E[||ẽi1||]q�1
T

1p
kT

(1 + o(1)) = o(1)

as T ! • due to covariance stationarity and E[||ẽi1||] < •. The same result holds in
scalar case replacing vector norm with an absolute value.

b) Similarly to part a):

1p
kT

T

Â
j=1

q

�(T�j)�1
T 4ẽij =

1p
kT

q

�T
T

T

Â
j=1

q

j�1
T ẽij �

✓

1p
kT

q

�T�1
T

T

Â
j=1

q

j�1
T ẽij + op(1)

◆

=
1p
kT

(1 � q

�1
T )q�T

T

T

Â
j=1

q

j�1
T ẽij + op(1)

= � 1p
kT

q

�1
T (1 � qT)q

�T
T

T

Â
j=1

q

j�1
T ẽij + op(1)

=
1p
kT

q

�2
T

b
kT

q

�T
T

T

Â
j=1

q

j
T ẽij + op(1)

Again, the first term converges to 0 in L1 norm:

E
h

�

�

�

�

�

�

1p
kT

q

�2
T

b
kT

q

�T
T

T

Â
j=1

q

j
T ẽij

�

�

�

�

�

�

i

 1p
kT

q

�2
T

b
kT

q

�T
T

T

Â
j=1

q

j
TE[||ẽij||]

= E[||ẽi1||]
1p
kT

q

�1
T

b
kT

1 � q

�T
T

qT � 1

= E[||ẽi1||]
1p
kT

q

�1
T (1 + o(1)) = o(1)

because of covariance stationarity and E[||ẽi1||] < •. The same result holds in a scalar
case replacing vector norm with an absolute value.
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Lemma C

a) q

�T
T
kT

ÂT
t=1 ÂT

j=t q

t�j�1
T u2iju2it = op(1) as T ! •

b) q

�T
T
kT

ÂT
t=1 ÂT

j=t q

t�j�1
T u2iju1it = op(1) as T ! •

Proof of Lemma C

a) By splitting the double sum

q

�T
T
kT

T

Â
t=1

T

Â
j=t

q

t�j�1
T u2iju2it =

q

�T
T
kT

T

Â
t=1

q

�1
T u2

2it +
q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T u2iju2it

Invoking Proposition 1 (b), both terms converge to 0 in L1 norm:

E
h

�

�

�

q

�T
T
kT

T

Â
t=1

q

�1
T u2

2it

�

�

�

i


q

�T�1
T
kT

T

Â
t=1

E[u2
2it] =

q

�T�1
T
kT

TWi.22 = o(1)

as T ! • due to covariance stationarity.

E
h

�

�

�

q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T u2iju2it

�

�

�

i


q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T E[|u2ij||u2it|]

 E[|u2i1|2]
q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T

= E[|u2i1|2]
q

�T�2
T
kT

T

Â
t=1

1 � q

�T
T

1 � q

�1
T

= E[|u2i1|2]
q

�T�1
T
kT

T
1 � q

�T
T

qT � 1

= E[|u2i1|2]
q

�T�1
T

b
T(1 + o(1)) = o(1)

as T ! • using the Cauchy-Schwartz inequality, covariance stationarity and the fact
that q

�T�1
T decays exponentially.

b) By splitting the double sum

q

�T
T
kT

T

Â
t=1

T

Â
j=t

q

t�j�1
T u2iju1it =

q

�T�1
T
kT

T

Â
t=1

u2itu1it +
q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T u2iju1it
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Again, both terms converge to 0 in L1 norm:

E
h

�

�

�

q

�T�1
T
kT

T

Â
t=1

u2itu1it

�

�

�

i


q

�T�1
T
kT

T

Â
t=1

E[|u2it||u1it|]


q

E[|u2i1|2]E[|u1i1|2]
q

�T�1
T
kT

T = o(1)

as T ! • using the Cauchy-Schwartz inequality and covariance stationarity.

E
h

�

�

�

q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T u2iju1it

�

�

�

i


q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T E[|u2ij||u1it|]


q

E[|u2i1|2]E[|u1i1|2]
q

�T
T
kT

T

Â
t=1

T

Â
j=t+1

q

t�j�1
T

=
q

E[|u2i1|2]E[|u1i1|2]
q

�T�2
T
kT

T

Â
t=1

1 � q

�T
T

1 � q

�1
T

=
q

E[|u2i1|2]E[|u1i1|2]
q

�T�1
T
kT

T
1 � q

�T
T

qT � 1

=
q

E[|u2i1|2]E[|u1i1|2]
q

�T�1
T

b
T(1 + o(1)) = o(1)

as T ! • using the Cauchy-Schwartz inequality, covariance stationarity and the fact
that q

�T�1
T decays exponentially.

Lemma D

⇥

X1iT YsiT
⇤ D�!

⇥

X1i(b) Ysi(b)
⇤

jointly for s = 1, 2, where:

X1iT =
1p
kT

T

Â
j=1

q

�j
T u1ij

YsiT =
1p
kT

T

Â
j=1

q

�(T�j)�1
T usij

X1i(b)
D
= Y1i(b)

D
= N

⇣

0,
1
2b

C2
1i(1)s

2
i.11

⌘

Y2i(b)
D
= N

⇣

0,
1
2b

C2
2i(1)s

2
i.22

⌘

The joint convergence comes from the asymptotic independence of the Normals.
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Proof of Lemma D

To demonstrate joint convergence in distribution, we will invoke Cramer-Wold device
(see Proposition 6.3.1 in Brockwell and Davis (2013)) in order to show convergence of a
linear combination to a Gaussian random variable. Additionally, if the variance of the
result is additively seperable, both variables in the linear combination are independent
by the additive property of Gaussian random variables.

Define C =
⇥

m h
⇤T and Bsi =

⇥

X1iT, YsiT
⇤T 2 R2. Then the linear combination to

invoke Cramer-Wold device is ZsiT = CTBsi for s = 1, 2.

i) For s = 1, using the BN decomposition and Lemma B, Z1iT can be written as:

Z1iT =
1p
kT

T

Â
j=1

mq

�j
T u1ij +

1p
kT

T

Â
j=1

hq

�(T�j)�1
T u1ij =

1p
kT

T

Â
j=1

mq

�j
T C1i(1)e1ij

� mp
kT

T

Â
j=1

q

�j
T 4ẽ1ij +

1p
kT

T

Â
j=1

hq

�(T�j)�1
T C1i(1)e1ij

� hp
kT

T

Â
j=1

q

�(T�j)�1
T 4ẽ1ij

=
T

Â
j=1

1p
kT

⇣

mq

�j
T + hq

�(T�j)�1
T

⌘

C1i(1)e1ij + op(1)

=
T

Â
j=1

x1iTj + op(1)

Due to Lemma B. Clearly, E
h

ÂT
j=1 x1iTj

i

= 0 and the asymptotic variance is the follow-
ing:

Var
h T

Â
j=1

x1iTj

i

=
T

Â
j=1

1
kT

(mq

�j
T + hq

�(T�j)�1
T )2C2

1i(1)s
2
i.11

=
⇣ 1

kT

T

Â
j=1

m2
q

�2j
T + 2

1
kT

Tq

�T�1
T mh +

1
kT

T

Â
j=1

h2
q

�2(T�j)�2
T

⌘

Gi.11

=
⇣m2

kT

1 � q

�2T
T

q

2
T � 1

+ o(1) +
h2

kT

1 � q

�2T
T

q

2
T � 1

⌘

Gi.11

!
⇣m2 + h2

2b

⌘

Gi.11
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as T ! • using the fact that e1ij are IID and Proposition 1 (c).

To demonstrate convergence in distribution to a random Normal variable, we check the
Lindeberg condition. For bounding, we will use the fact that (x + y)2  2(x2 + y2). Fix
arbitrary h > 0 and K 2 (0, •) to uniformly bound the right hand side of the asymptotic
variance equation:
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Â
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E
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�

�

�

x1iTj
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�
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2
1
n
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�

> h}
i

=
1

kT

T

Â
j=1

E
h

�

�

�

⇣
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⇣
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⌘
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⇣
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ii) For s = 2, using the BN decomposition and Lemma B, Z2iT can be written as:

Z2iT =
1p
kT

T

Â
j=1

mq

�j
T u1ij +

1p
kT

T

Â
j=1

hq

�(T�j)�1
T u2ij =

1p
kT

T

Â
j=1

mq

�j
T C1i(1)e1ij

� mp
kT

T

Â
j=1

q

�j
T 4ẽ1ij +

1p
kT

T

Â
j=1

hq

�(T�j)�1
T C2i(1)e2ij

� hp
kT

T

Â
j=1

q

�(T�j)�1
T 4ẽ2ij

=
T

Â
j=1

1p
kT

⇣

mq

�j
T C1i(1)e1ij + hq

�(T�j)�1
T C2i(1)e2ij

⌘

+ op(1)

=
T

Â
j=1

x2iTj + op(1)

due to Lemma B. Clearly, E
h

ÂT
j=1 x2iTj

i

= 0. The asymptotic variance is similar when
we take the covariance terms into account:

Var
h T

Â
j=1

x1iTj

i

=
1

kT

T

Â
j=1

m2
q

�2j
T C2

1i(1)s
2
i.11 +

1
kT

T

Â
j=1

h2
q

�2(T�j)�2
T C2

2i(1)s
2
i.22

+ 2C1i(1)C2i(1)
Tq

�T�1
T si.21

kT

=
1

kT

T

Â
j=1

m2
q

�2j
T Gi.11 +

1
kT

T

Â
j=1

h2
q

�2(T�j)�2
T Gi.22 + o(1)

=
⇣m2

kT

1 � q

�2T
T

q

2
T � 1

⌘

Gi.11 +
⇣ h2

kT

1 � q

�2T
T

q

2
T � 1

⌘

Gi.22 + o(1) ! m2Gi.11
2b

+
h2Gi.22

2b

as T ! • by Proposition 1 (c).

We show the asymptotic normality by the Lindeberg condition. We introduce M, N 2
(0, •) to uniformly bound the two sequences. Also, because m2, h2 are any finite con-
stants and C2

si(1) < • for s = 1, 2, we can find L such that L � m2C2
1i(1) and L �

h2C2
2i(1). Then:
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T

Â
j=1

E
h

�

�

�

x2iTj

�

�

�

2
1
n

�

�

�

x2iTj

�

�

�

> h

oi

=
1

kT

T

Â
j=1

E
h

�

�

�

⇣

mq

�j
T C1i(1)e1ij + hq

�(T�j)�1
T C2i(1)e2ij

⌘

�

�

�

2
1
n

�

�

�

x2iTj

�

�

�

> h

p

kT

oi

=
1

kT

T

Â
j=1

E
h

�

�

�

⇣

mq

�j
T C1i(1)e1ij + hq

�(T�j)�1
T C2i(1)e2ij

⌘

�

�

�

2
1
n

�

�

�

x2iTj

�

�

�

2
> h

2kT

oi

 2
C2

1i(1)
kT

T

Â
j=1

m2
q

�2j
T E

h

�

�

�

e1ij

�

�

�

2
1
n

�

�

�

⇣

mq

�j
T C1i(1)e1ij + hq

�(T�j)�1
T C2i(1)e2ij

⌘

�

�

�

2
> h

2kT

oi

+ 2
C2

2i(1)
kT

T

Â
j=1

h2
q

�2(T�j)�2
T E

h

�

�

�

e2ij

�

�

�

2
1
n

�

�

�

⇣

mq

�j
T C1i(1)e1ij + hq

�(T�j)�1
T C2i(1)e2ij

⌘

�

�

�

2
> h

2kT

oi

 2
C2

1i(1)
kT

T

Â
j=1

m2
q

�2j
T E

h

�

�

�

e1ij

�

�

�

2
1
n

2
⇣

m2
q

�2j
T C2

1i(1)e
2
1ij + h2

q

�2(T�j)�2
T C2

2i(1)e
2
2ij

⌘

> h

2kT

oi

+ 2
C2

2i(1)
kT

T

Â
j=1

h2
q

�2(T�j)�2
T E

h

�

�

�

e2ij

�

�

�

2
1
n

2
⇣

m2
q

�2j
T C2

1i(1)e
2
1ij + h2

q

�2(T�j)�2
T C2

2i(1)e
2
2ij

⌘

> h

2kT

oi

 M max
1jT

E
h

�

�

�

e1ij

�

�

�

2
1
n

2
⇣

m2
q

�2j
T C2

1i(1)e
2
1ij + h2

q

�2(T�j)�2
T C2

2i(1)e
2
2ij

⌘

> h

2kT

oi

+ N max
1jT

E
h

�

�

�

e2ij

�

�

�

2
1
n

2
⇣

m2
q

�2j
T C2

1i(1)e
2
1ij + h2

q

�2(T�j)�2
T C2

2i(1)e
2
2ij

⌘

> h

2kT

oi

 ME
h

�

�

�

e1i1

�

�

�

2
1
n

2
⇣

m2C2
1i(1)e

2
1i1 + h2C2

2i(1)e
2
2i1

⌘

> h

2kT

oi

+ NE
h

�

�

�

e2i1

�

�

�

2
1
n

2
⇣

m2C2
1i(1)e

2
1i1 + h2C2

2i(1)e
2
2i1

⌘

> h

2kT

oi

 ME
h

�

�

�

e1i1

�

�

�

2
1
n

L
⇣

e

2
1i1 + e

2
2i1

⌘

>
h

2kT
2

oi

+ NE
h

�

�

�

e2i1

�

�

�

2
1
n

L
⇣

e

2
1i1 + e

2
2i1

⌘

>
h

2kT
2

oi

= ME
h

�

�

�

e1i1

�

�

�

2
1
n

�

�

�

e1i1

�

�

�

2
+
�

�

�

e2i1

�

�

�

2
>

h

2kT
2L

oi

+ NE
h

�

�

�

e2i1

�

�

�

2
1
n

�

�

�

e1i1

�

�

�

2
+
�

�

�

e2i1

�

�

�

2
>

h

2kT
2L

oi

= o(1)

as T ! • because ||ei1||2 is integrable, which means that E
⇥

||ei1||21{||ei1||2 > a}
⇤

=
o(1) as a ! •. Using the simple Euclidean norm, this implies that:

E
⇥�

|e1i1|2 + |e2i1|2
�

1{|e1i1|2 + |e2i1|2 > a}
⇤

= E
⇥

|e1i1|21{|e1i1|2 + |e2i1|2 > a}
⇤

+ E
⇥

|e2i1|21{|e1i1|2 + |e2i1|2 > a}
⇤

= o(1)

as a ! •.
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Lemma E

a) q

�T
T
kT

ÂT
t=1 X2it�1u2it

D�! C2
2i(1)X2i(b)Y2i(b)

b) q

�T
T
kT

ÂT
t=1 X2it�1u1it

D�! C1i(1)C2i(1)X2i(b)Y1i(b)

c) q

�2T
T
k2

T
ÂT

t=1 X2
2it�1

D�! 1
2b C2

2i(1)X2
2i(b)

as T ! •. Here, X2i(b)
D
= Y2i(b) = N (0, s

2
i.22
2b ) and Y1i(b) = N (0, s

2
i.11
2b ).

Proof of Lemma E

a)

q

�T
T
kT

T

Â
t=1

X2it�1u2it =
q

�T
T
kT

T

Â
t=1

⇣ t�1

Â
j=1

q

t�j�1
T u2ij + q

t�1
T X2i0

⌘

u2it

=
q

�T
T
kT

T

Â
t=1

⇣ t�1

Â
j=1

q

t�j�1
T u2j

⌘

u2it +
X2i0p

kT

1p
kT

T

Â
t=1

q

�(T�t)�1
T u2it

=
q

�T
T
kT

T

Â
t=1

⇣ T

Â
j=1

q

t�j�1
T u2ij

⌘

u2it �
q

�T
T
kT

T

Â
t=1

⇣ T

Â
j=t

q

t�j�1
T u2ij

⌘

u2it + op(1)

=
⇣ 1p

kT

T

Â
j=1

q

�j
T u2ij

⌘⇣ 1p
kT

T

Â
t=1

q

�(T�t)�1
T u2it

⌘

+ op(1)
D�! C2

2i(1)X2i(b)Y2i(b)

as T ! • invoking Lemma C (a) and using joint convergence established in Lemma
D.

b) Analogous to part a):

q

�T
T
kT

T

Â
t=1

X2it�1u1it =
q

�T
T
kT

T

Â
t=1

⇣ t�1

Â
j=1

q

t�j�1
T u2ij + q

t�1
T X2i0

⌘

u1it

=
q

�T
T
kT

T

Â
t=1

⇣ t�1

Â
j=1

q

t�j�1
T u2ij

⌘

u1it +
X2i0p

kT

1p
kT

T

Â
t=1

q

�(T�t)�1
T u1it

=
q

�T
T
kT

T

Â
t=1

⇣ T

Â
j=1

q

t�j�1
T u2ij

⌘

u1it �
q

�T
T
kT

T

Â
t=1

⇣ T

Â
j=t

q

t�j�1
T u2ij

⌘

u1it + op(1)

=
⇣ 1p

kT

T

Â
j=1

q

�j
T u2ij

⌘⇣ 1p
kT

T

Â
t=1

q

�(T�t)�1
T u1it

⌘

+ op(1)
D�! C1i(1)C2i(1)X2i(b)Y1i(b)

as T ! • invoking Lemma C (b) and using joint convergence established in Lemma
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D.

c) Squaring both sides of X2it = qTX2it�1 + u2it, adding and subtracting X2
2it�1, solving

for it and summing over t we obtain:

q

�2T
T
k2

T

T

Â
t=1

X2
2t�1 =

1
kT(q2

T � 1)

⇣

q

�2T
T
kT

X2
2T �

q

�2T
T
kT

X2
2i0 � 2

q

�2T+1
T

kT

T

Â
t=1

X2it�1u2it �
q

�2T
T
kT

T

Â
t=1

u2
2it

⌘

=
1

kT(q2
T � 1)

⇣

q

�2T
T
kT

X2
2T � 2

q

�2T+1
T

kT

T

Â
t=1

X2it�1u2it �
q

�2T
T
kT

T

Â
t=1

u2
2it

⌘

+ op(1)

The last two terms in brackets are op(1) as T ! • because:

i)
q

�2T
n
kT

T

Â
t=1

u2
2it =

q

�2T
T
kT

T
1
T

T

Â
t=1

u2
2it = op(1)

due to Proposition 1 (b) and 1
T ÂT

t=1 u2
2it

P�! Wi.22.

ii)

q

�2T+1
T

kT

T

Â
t=1

X2it�1u2it =
q

�2T+1
T

kT

T

Â
t=1

t�1

Â
j=1

q

t�j�1
T u2iju2it +

q

�T+1
T X2i0p

kT

1p
kT

T

Â
t=1

q

�(T�t)�1
T u2it

=
q

�2T+1
T

kT

T

Â
t=1

t�1

Â
j=1

q

t�j�1
T u2iju2it + op(1)Op(1)

as T ! •. The first term converges to 0 in L1 norm:

E



�

�

�

q

�2T+1
T

kT

T

Â
t=1

t�1

Â
j=1

q

t�j�1
T u2iju2it

�

�

�

�


q

�2T+1
T

kT

T

Â
t=1

t�1

Â
j=1

q

t�j�1
T E(|u2ij||u2it|]

 E[|u2i1|2]
q

�2T+1
T

kT

T

Â
t=1

t�1

Â
j=1

q

t�j�1
T

= E[|u2i1|2]
q

�2T+1
T

kT

T

Â
t=1

q

t�1
T

1 � q

�(t�1)
T

qT � 1

= E[|u2i1|2]
q

�2T+1
T

kT(qT � 1)
1 � q

T
T

1 � qT
� E[|u2i1|2]

b
q

�2T+1
T T

=
E[|u2i1|2]

b
q

�T+1
T kT � E[|u2i1|2]

b
q

�2T+1
T kT + o(1) = o(1)
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as T ! • due to exponential decay of q

�2T+1
T . Finally:

1
kT(q2

T � 1)
q

�2T
T
kT

X2
2T =

1
kT(q2

T � 1)

⇣ 1p
kT

n

Â
j=1

q

�j
T u2ij + op(1)

⌘2 D�! 1
2b

C2
2i(1)X2

2i(b)

as T ! • by Lemma D, CMT and Proposition 1 (c).

Main Results to Bridge Local to Unity and Mildly Explosive Behavior

Lemma F

This Lemma is a direct generalization of the results bridging local to unity and mildly
explosive asymptotics in Phillips and Lee (2015). The proof is provided for complete-
ness.

a) Jjic(r) is independent from Xji(b) and Yji(b) for j = 1, 2 and i = 1, ..., N.

b) For all s, r > 0 the following joint convergence applies:

[
X1ibTrcp

T
,

X2ibTsc
p

kTq

bTsc
n

]
D�! [C1i(1)J1ic(r), X2i(b)] as T ! • and b.c is a function

picking the nearest integer value of the argument.

c) 1
TkTq

T
T

ÂT
t=1 X1it�1X2it�1 = op(1) as T ! •.

Proof of Lemma F

a) Clearly J1ic(r) is just a functional of B1i(r), which is a Gaussian process. Also, X2i(b)
is a Gaussian random variable, hence it is sufficient to check the asymptotic covariance
between

1p
T

T

Â
j=1

u1ij =
1p
T

T

Â
j=1

C1i(1)e1ij + op(1)

and

1p
kT

T

Â
j=1

q

�j
T u2ij =

1p
kT

T

Â
j=1

q

�j
T C2i(1)e2j + op(1)

by Lemma B (a). These terms converge to the objects under consideration. For conve-
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nience omitting the scaling constants, we obtain:

E



⇣ 1p
T

T

Â
j=1

e1ij

⌘⇣ 1p
kT

T

Â
j=1

q

�j
T e2ij

⌘

�

=
si.12p
TkT

T

Â
j=1

q

�j
T =

si.12p
TkT

1
qT

1 � q

�T
T

1 � q

�1
T

=
si.12

b

r

kT
T
{1 + o(1)} = o(1)

as T ! • using the definition of qT. This establishes independence between X2i(b) and
B1i(1), but the same holds for any r 2 [0, 1]. Independence between B1i(1) and Y2i(b) is
established similarly:

E



⇣ 1p
T

T

Â
j=1

e1ij

⌘⇣ 1p
kT

T

Â
j=1

q

�(T�j)�1
T e2ij

⌘

�

=
si.12p
TkT

T

Â
j=1

q

�(T�j)�1
T =

si.12p
TkT

q

�T
T

q

T
T � 1

qT � 1

=
si.12

b

r

kT
T
{1 + o(1)} = o(1)

as T ! •. Note that by the same argument B1i(1) is independent from Y1i(b) and B2i(1)
will be independent from X2i(b), Y2i(b) and Y1i(b) - only si.12 will be substituted for an-
other member of Sie in the proof.

b) The marginal convergence of
X1ibTrcp

T
is established by the functional theory in Phillips

(1987) in connection to Proposition 1 (a). To proceed, define an integer sequence LT ! •
such that kT

LT
= o(1). Then, clearly by Lemma E,

X2LTp
kTq

LT
T

D�! C2i(1)X2i(b). Next, observe

that by the similar mechanics used in Lemma B, one can obtain:

1p
kT

n

Â
j=LT+1

q

�j
T 4ẽ2ij =

1p
kT

T

Â
j=LT+1

q

�j
T ẽ2ij �

1p
kT

T

Â
j=LT+1

q

�1�j
T ẽ2ij + op(1)

=
1p
kT

(1 � q

�1
T )

T

Â
j=LT+1

q

�j
T ẽ2ij + op(1)

= q

�1
T

b

k
3
2
T

T

Â
j=LT+1

q

�j
T ẽ2ij + op(1)
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Now, the first term converges to 0 in L1 norm:

E



�

�

�

q

�1
T

b

k
3
2
T

T

Â
j=LT+1

q

�j
T ẽ2ij

�

�

�

�

 q

�1
T

b

k
3
2
T

T

Â
j=LT+1

q

�j
T E[|ẽ2ij|]

= E[|ẽ2i1|]q�1
T

b

k
3
2
T

1
q

LT+1
T

1 � q

�T+LT
T

1 � q

�1
T

= E[|ẽ2i1|]q�1
T

1p
kT

(q�LT
T � q

�T
T ) = o(1)

as T ! •. Given this, we receive the following:

X2iTp
kTq

T
T
=

X2iLTp
kTq

LT
T

+
1p
kT

T

Â
j=LT+1

q

�j
T u2ij =

X2iLTp
kTq

LT
T

+
1p
kT

T

Â
j=LT+1

q

�j
T C2i(1)e2ij + op(1)

While the first term converges in distribution according to Lemma D, the second one
converges to 0 in L2 norm:

E



�

�

�

1p
kT

T

Â
j=LT+1

q

�j
T C2i(1)e2ij

�

�

�

2
�

=
C2

2i(1)s
2
i.22

kT

T

Â
j=LT+1

q

�2ij
T

=
C2

2i(1)s
2
i.22

kT

1
q

2LT+2
T

1 � q

�2T+2LT
T

1 � q

�2
T

=
C2

2i(1)s
2
i.22

kT(q2
T � 1)

(q�2LT
T � q

�2T
T ) = o(1)

as T ! •. Now simply let LT = bTsc for s > 0 which preserves kT
LT

= o(1) and
X2ibnsc

p
kTq

bnsc
T

D�! C2i(1)X2i(b). Joint convergence is established by independence from part

a).

c) As in Phillips and Lee (2015) we, by Skorokhod Representation Theorem, choose an
alternative probability space such that:

[
X1ibTrcp

T
,

X2ibTsc
p

kTq

bTsc
T

]
P�! [C1i(1)J1ic(r), C2i(1)X2i(b)] as T ! • because we need convergence

to random variables. Picking LT such that LT
T = o(1) we obtain:
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1
TkTq

T
T

T

Â
t=1

X1it�1X2it�1 =
1p

TkTq

T
T

T

Â
t=LT+1

X1it�1p
T

X2it�1p
kTq

t�1
T

q

t�1
T

+
q

LT
Tp

TkTq

T
T

LT

Â
t=1

X1it�1p
T

X2it�1p
kTq

t�1
T

q

t�1
T

q

LT
T

=
C2i(1)X2i(b)p

TkTq

T
T

T

Â
t=LT+1

C1i(1)J1ic

⇣ t
T

⌘

q

t�1
T {1 + op(1)}+ Op

⇣ LTq

LT
Tp

TkTq

T
T

⌘

=
C2i(1)X2i(b)p

TkTq

n
T

T

Â
t=1

C1i(1)J1ic

⇣ t
T

⌘

q

t�1
T + op(1)

Now, the remaining term, excluding X2i(b), converges to 0 in L2 norm. Fixing M > 0 to
bound the finite covariance of the O-U process (since the variance is finite), we obtain:

E



�

�

�

1p
TkTq

T
T

T

Â
t=1

C1i(1)J1ic

⇣ t
T

⌘

q

t�1
T

�

�

�

2
�

=
1

TkTq

2T
T

C2
1i(1)
q

2
T

T

Â
t=1

T

Â
s=1

E



J1ic

⇣ t
T

⌘

J1ic

⇣ s
T

⌘

�

q

t+s
T

 1
TkTq

2T
T

M
C2

1i(1)
q

2
T

T

Â
t=1

T

Â
s=1

q

t+s
T

=
1

TkTq

2T
T

M
C2

1(1)
q

2
T

⇣ T

Â
t=1

q

t
T

⌘2

=
1

TkTq

2T
T

MC2
1i(1)

(qT
T � 1)2

(qT � 1)2

=
1

TkTq

2T
T

MC2
1i(1)

(kT(qT
T � 1))2

b2

 1
TkTq

2T
T

M
0 k2

Tq

2T
T

b2 = M
0 kT
Tb2 = o(1)

as T ! •. Here, M0 is another finite constant for bounding. Hence, 1
TkTq

T
T

ÂT
t=1 X1it�1X2it�1 =

op(1) because the result holds in the original sample space.

Proof of Theorem 3.1

Inserting (2.1) into (3.1), expanding and post-multiplying by DT we obtain:

(R̂T � RT)DT =

 

N

Â
i=1

T

Â
t=2

uitXT
it�1D�1

T

! 

N

Â
i=1

D�1
T

T

Â
t=2

Xit�1XT
it�1D�1

T

!�1
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By splitting the limit, we consider two terms separately:

i)

N

Â
i=1

T

Â
t=2

uitXT
it�1D�1

T =

2

6

4

ÂN
i=1

1
T ÂT

t=2 X1it�1u1it ÂN
i=1

1
kTq

T
T

ÂT
t=2 X2it�1u1it

ÂN
i=1

1
T ÂT

t=2 X1it�1u2it ÂN
i=1

1
kTq

T
T

ÂT
t=2 X2it�1u2it

3

7

5

)

2

6

4

ÂN
i=1 C2

1i(1)
R 1

0 J1ic(r)dB1i(r) + ÂN
i=1 Li.11 ÂN

i=1 C2i(1)C1i(1)X2i(b)Y1i(b)

ÂN
i=1 C1i(1)C2i(1)

R 1
0 J1ic(r)dB2i(r) + ÂN

i=1 Li.21 ÂN
i=1 C2

2i(1)X2i(b)Y2i(b)

3

7

5

as T ! • by Lemma A and Lemma E. Joint convergence is implied by the indepen-
dence results in Lemma D and Lemma F.

ii)
N

Â
i=1

D�1
T

T

Â
t=2

Xit�1XT
it�1D�1

T

=

2

6

4

ÂN
i=1

1
T2 ÂT

t=2 X2
1it�1 ÂN

i=1
1

TkTq

T
T

ÂT
t=2 X2it�1X1it�1

ÂN
i=1

1
TkTq

T
T

ÂT
t=2 X2it�1X1it�1 ÂN

i=1
1

k2
Tq

2T
T

ÂT
t=2 X2

2it�1

3

7

5

)

2

4

ÂN
i=1 C2

1i(1)
R 1

0 J2
1ic(r)dr 0

0 1
2b ÂN

i=1 C2
2i(1)X2

2i(b)

3

5

by Proposition 2 (b), Lemma E and Lemma F. Joint convergence is implied by the in-
dependence results in Lemma D and Lemma F. The final result in (3.4) follows from
repeating the same steps with the asymptotically equivalent FT to remove the nuisance
1
2b , invoking Continuous Mapping Theorem (CMT) and multiplying i) and ii).

Proof of Theorem 3.2.

Similarly to Theorem 3.1, inserting (2.1) into (3.17), expanding and transposing we ob-
tain:

(R̂FM
T � RT)

T =

 

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1 N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

!T
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Using vec(AB) = (I ⌦ A)vec(B) where A and B are generic square matrices, we obtain:

vec([R̂FM
T � RT]

T)

=

 

I2 ⌦
"

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

#�1!

vec

 "

N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

#T!

Using (A�1 ⌦ B�1) = (A ⌦ B)�1 for invertible square matrices A and B, we can split
the product above and consider both terms separately:

i)
 

D�1
NT

"

I2 ⌦
N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

#

D�1
NT

!�1

Putting ÂN
i=1 ÂT

t=2 Xit�1XT
it�1 ⌘ L and using (A ⌦ B)(C ⌦ D) = (AC)⌦ (BD) for the

generic square matrices, we obtain:

(I2 ⌦ d�1
NT)(I2 ⌦ L)(I2 ⌦ d�1

NT) = I2 ⌦ (d�1
NTLd�1

NT)

The identical blocks on the diagonal are the following:

d�1
NTLd�1

NT

=

2

6

4

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

1it�1
1p
N ÂN

i=1
1

TkTq

T
T

ÂT
t=2 X2it�1X1it�1

1p
N ÂN

i=1
1

TkTq

T
T

ÂT
t=2 X2it�1X1it�1

1
N ÂN

i=1
1

k2
Tq

2T
T

ÂT
t=2 X2

2it�1

3

7

5

P�!

2

6

4

S2
R 1

0
R r

0 e2(r�s)c 0

0 S5
1

4b2

3

7

5

⌘ B⇤

as (T, N)seq ! • by Proposition 2 (b), Proposition 3, Lemma E and Lemma F. Here:

S2 = lim
N!•

1
N

N

Â
i=1

Gi.11, S5 = lim
N!•

1
N

N

Â
i=1

Gi.22

Therefore, by the CMT, as (T, N)seq ! •:
 

D�1
NT

"

I2 ⌦
N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

#

D�1
NT

!�1
P�! (I2 ⌦B⇤)�1
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ii)

D�1
NTvec

 "

N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

#T!

= D�1
NT

N

Â
i=1

h T

Â
t=2

vec(Xit�1uT
it)�

p
NTvec(L̂T

i )
i

Writing the block d�1
NT = 1p

N

2

6

4

1
T 0

0 1
kTq

T
T

3

7

5

, as T ! •, first, we obtain7:

D�1
NT

N

Â
i=1

h T

Â
t=2

vec(Xit�1uT
it)�

p
NTvec(L̂T

i )
i

) 1p
N

N

Â
i=1

M⇤

Where the vector Mi is the outcome of Proposition 2, Lemma E and Lemma F:

Mi = vec

2

4

C2
1i(1)

R 1
0 J1ic(r)dB1i(r) C1i(1)C2i(1)

R 1
0 J1ic(r)dB2i(r)

C2i(1)C1i(1)X2i(b)Y1i(b) C2
2i(1)X2i(b)Y2i(b)

3

5

Here, E[Mi] = 0 because of independence of the products of Normals and the expecta-
tion of the integrals is 0. The elements in the limiting covariance matrix follow from the
Assumption 3, Proposition 3 and Lemma F (a) (independence between Normal random
variables and functionals of Brownian motions):

M⇤ = lim
N!•

1
N

N

Â
i=1

E[M⇤
i M⇤T

i ]

=

2

6

6

6

6

6

6

6

6

6

4

S1
R 1

0
R r

0 e2(r�s)cdsdr 0 S3
R 1

0
R r

0 e2(r�s)cdsdr 0

0 S4
4b2 0 0

S3
R 1

0
R r

0 e2(r�s)cdsdr 0 S4
R 1

0
R r

0 e2(r�s)cdsdr 0

0 0 0 S7
4b2

3

7

7

7

7

7

7

7

7

7

5

7Here, similarly to Theorem 3.1, as T ! •, the correcting terms on the mildly explosive side (where
we have no additive bias) vanish due to Proposition 1 (b).
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which is a positive definite matrix. Here:

S1 = lim
N!•

1
N

N

Â
i=1

G2
i.11, S3 = lim

N!•

1
N

N

Â
i=1

Gi.21Gi.11

S4 = lim
N!•

1
N

N

Â
i=1

Gi.11Gi.22, S7 = lim
N!•

1
N

N

Â
i=1

G2
i.22

Therefore, as (T, N)seq ! •, using conditions iii) - vi) in Assumption 2 we in total
obtain:

DNTvec([R̂FM
T � RT]

T)
D�! N (0, (I2 ⌦B⇤)�1M⇤(I2 ⌦B⇤)�1)

The final result in (3.18) follows from repeating the same steps with the asymptotically
equivalent FNT to remove the multiplicative nuisance (and obtain B and M) in terms
of b after letting T ! •, invoking CMT and multiplying i) and ii).

Proof of Theorem 4.1.

We will use:

WNT =

h

aT1 vec(R̂FM
T )

i2

aT1
h

Q�1 ⌦ I2

i

X̂
h

Q�1 ⌦ I2

i

a1

=

h

aT1 vec(
p

NT[R̂FM
T ])

i2

aT1
h⇣

1
NT2 Q

⌘�1
⌦ I2

i

1
N ÂN

i=1 X̂i

h⇣

1
NT2 Q

⌘�1
⌦ I2

i

a1

Under the H0 : RT = rTI2, we have:

vec
⇥

p
NT(R̂FM

T � RT)
⇤

= vec

" 

1p
NT

N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

! 

1
NT2

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1#

Now, using the relationship between the vectorization operator and the Kronecker prod-
uct vec(AB) = (B ⌦ I2)vec(A) when A, B 2 R2⇥2 we obtain:
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vec
⇥

p
NT(R̂FM

T � RT)
⇤

=

" 

1
NT2

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1

⌦ I2

#

vec

" 

1p
NT

N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

!#

=

" 

1
NT2

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

!�1

⌦ I2

# 

1p
NT

N

Â
i=1

h T

Â
t=2

vec
⇥

uitXT
it�1
⇤

�
p

NTvec
⇥

L̂i
⇤

i

!

We can analyze the limits separately:

i) As first T ! • we obtain the following convergence:

1p
NT

N

Â
i=1

h T

Â
t=2

vec
⇥

uitXT
it�1
⇤

�
p

NTvec
⇥

L̂i
⇤

i

) 1p
N

N

Â
i=1

Pi

where we define Pi as:

Pi = vec

2

6

4

C2
1i(1)

R 1
0 J1ic(r)dB1i(r) C1i(1)C2i(1)

R 1
0 J2ic(r)dB1i(r)

C1i(1)C2i(1)
R 1

0 J1ic(r)dB2i(r) C2
2i(1)

R 1
0 J2ic(r)dB2i(r)

3

7

5

2 R4

Then, as N ! •, using the conditions iii) - vi) in Assumption 2 we obtain the final
convergence result:

1p
N

N

Â
i=1

Pi
D�! N

�

0, X
�

2 R4

where

X = lim
N!•

1
N

N

Â
i=1

Xi

Here, Xi = E
⇥

PiPT
i
⇤

which is found invoking the results on Îto Integrals in Proposition
3.
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ii)

1
NT2

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

=

2

4

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

1it�1
1
N ÂN

i=1
1

T2 ÂT
t=2 X1it�1X2it�1

1
N ÂN

i=1
1

T2 ÂT
t=2 X1it�1X2it�1

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

2it�1

3

5

)

2

6

4

S2
R 1

0
R r

0 e2(r�s)cdsdr S6
R 1

0
R r

0 e2(r�s)cdsdr

S6
R 1

0
R r

0 e2(r�s)cdsdr S5
R 1

0
R r

0 e2(r�s)cdsdr

3

7

5

= Q

as (T, N)seq ! • applying Proposition 3 and Theorem 3.2 when both columns are local
to unity. Here:

S2 = lim
N!•

1
N

N

Â
i=1

Gi.11

S5 = lim
N!•

1
N

N

Â
i=1

Gi.22

S6 = lim
N!•

1
N

N

Â
i=1

Gi.21

Combining the results and using them in the Wald statistic by the CMT, under H0, we
obtain the following limiting distribution as (T, N)seq ! •:

WNT =

h

aT1 vec(
p

NT[R̂FM
T � RT])

i2

aT1
h⇣

1
NT2 Q

⌘�1
⌦ I2

i

1
N ÂN

i=1 X̂i

h⇣

1
NT2 Q

⌘�1
⌦ I2

i

a1

D�!

h

N
�

0, aT1
⇥

Q�1 ⌦ I2
⇤

X
⇥

Q�1 ⌦ I2
⇤

a1
�

i2

aT1
⇥

Q�1 ⌦ I2
⇤

X
⇥

Q�1 ⌦ I2
⇤

a1
⇠ c

2
1
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Proof of Theorem 4.2.

Under the H1 : RT = diag(rT, qT) we can write:

aT1 vec(
p

NTR̂FM
T ) =

p
NT(r̂FM

11 � r̂FM
22 ) =

p
NT(r̂FM

11 � rT)

�
p

NT(r̂FM
22 � qT) +

p
NT(rT � qT)

=
p

NT(r̂FM
11 � rT) +

p
NT(r̂FM

22 � qT) +
⇣p

Nc �
p

NTb
kT

⌘

Here,
p

NT(r̂FM
11 � r11) = Op(1) as (T, N)seq ! • by Theorem 3.2. Further:

p
NT(r̂FM

22 � qT) =
1

kTq

T
T

p
NTkTq

T
T(r̂

FM
22 � r22)

=
p

N
T

kTq

T
T

kTq

T
T ÂN

i=1

h

ÂT
t=2 X2it�1u2it �

p
NTL̂i.22

i

ÂN
i=1 ÂT

t=2 X2
2it�1

=
p

N
T

kTq

T
T

ÂN
i=1

1
kTq

T
T

ÂT
t=2 X2it�1u2it �

p
N ÂN

i=1
T

kTq

T
T

L̂i.22

ÂN
i=1

1
k2

Tq

2T
T

ÂT
t=2 X2

2it�1

which, for fixed N, is Op

⇣

T
kTq

T
T

⌘

, hence it will vanish under sequential limits. The third
term diverges for all c < 0 and b > 0 as (T, N)seq ! •.

Further, to examine the denominator of WNT, we explore asymptotics of the determi-
nant of the matrix Q:

Q =
N

Â
i=1

XT
i,�1Xi,�1 =

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

=

2

4

ÂN
i=1 ÂT

t=2 X2
1it�1 ÂN

i=1 ÂT
t=2 X1it�1X2it�1

ÂN
i=1 ÂT

t=2 X1it�1X2it�1 ÂN
i=1 ÂT

t=2 X2
2it�1

3

5
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Hence, the determinant is the following:

det(Q) =
N

Â
i=1

T

Â
t=2

X2
1it�1

N

Â
i=1

T

Â
t=2

X2
2it�1 �

⇣ N

Â
i=1

T

Â
t=2

X1it�1X2it�1

⌘2

=
N

Â
i=1

T

Â
t=2

X2
1it�1

N

Â
i=1

T

Â
t=2

X2
2it�1

 

1 �

⇣

ÂN
i=1 ÂT

t=2 X1it�1X2it�1

⌘2

ÂN
i=1 ÂT

t=2 X2
1it�1 ÂN

i=1 ÂT
t=2 X2

2it�1

!

=
N

Â
i=1

T

Â
t=2

X2
1it�1

N

Â
i=1

T

Â
t=2

X2
2it�1

 

1 �

⇣

ÂN
i=1

1
TkTq

T
T

ÂT
t=2 X1it�1X2it�1

⌘2

ÂN
i=1

1
T2 ÂT

t=2 X2
1it�1 ÂN

i=1
1

k2
Tq

2T
T

ÂT
t=2 X2

2it�1

!

=

✓ N

Â
i=1

T

Â
t=2

X2
1it�1

N

Â
i=1

T

Â
t=2

X2
2it�1

◆

Z

where Z contains the higher order terms then the product of sums in parentheses.

This implies that we can write the scaled inverse in the following way:

NT2Q�1 =
NT2

det(Q)

2

4

ÂN
i=1 ÂT

t=2 X2
2it�1 �ÂN

i=1 ÂT
t=2 X1it�1X2it�1

�ÂN
i=1 ÂT

t=2 X1it�1X2it�1 ÂN
i=1 ÂT

t=2 X2
1it�1

3

5

=

2

6

6

6

4

1
1

NT2 ÂN
i=1 ÂT

t=2 X2
1it�1

� ÂN
i=1 ÂT

t=2 X1it�1X2it�1
1

NT2 ÂN
i=1 ÂT

t=2 X2
1it�1 ÂN

i=1 ÂT
t=2 X2

2it�1

� ÂN
i=1 ÂT

t=2 X1it�1X2it�1
1

NT2 ÂN
i=1 ÂT

t=2 X2
1it�1 ÂN

i=1 ÂT
t=2 X2

2it�1

T2
1
N ÂN

i=1 ÂT
t=2 X2

2it�1

3

7

7

7

5

{1 + op(1)}

=

2

6

6

6

6

6

6

6

6

4

1
1

NT2 ÂN
i=1 ÂT

t=2 X2
1it�1

�
Tq

�T
T

kT
ÂN

i=1
1

TkTq

T
T

ÂT
t=2 X1it�1X2it�1

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

1it�1 ÂN
i=1

1
k2
Tq

2T
T

ÂT
t=2 X2

2it�1

�
Tq

�T
T

kT
ÂN

i=1
1

TkTq

T
T

ÂT
t=2 X1it�1X2it�1

1
N ÂN

i=1
1

T2 ÂT
t=2 X2

1it�1 ÂN
i=1

1
k2
Tq

2T
T

ÂT
t=2 X2

2it�1

T2
q

�2T
T

k2
T

1
N ÂN

i=1
1

k2
Tq

2T
T

ÂT
t=2 X2

2it�1

3

7

7

7

7

7

7

7

7

5

{1 + op(1)}

Clearly, as T ! • all the elements except for the upper left one converge to zero in
probability. As N ! • afterwards, we obtain the following matrix by the CMT:

⇣ 1
NT2 Q

⌘�1 P�!

2

6

4

1
S2
R 1

0
R r

0 e2(r�s)cdsdr
0

0 0

3

7

5

⌘ M
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Where S2 = limN!•
1
N ÂN

i=1 Gi.11. Because we identify the local to unity parameter c
from the first series which has the same properties under H1, we know that 1

N ÂN
i=1 X̂i !

X under H1 as (T, N)seq ! • as well. Therefore, we can analyze
⇥

M ⌦ I2
⇤

X
⇥

M ⌦ I2
⇤

.
Since each of the three matrices belongs to R4⇥4, we can conveniently apply block-
multiplication by noticing that

⇥

M ⌦ I2
⇤

contains only one non-zero block (the upper
left which is a diagonal matrix). Hence:

⇥

M ⌦ I2
⇤

X
⇥

M ⌦ I2
⇤

=

2

4

A O

O O

3

5

2

4

B C

D E

3

5

2

4

A O

O O

3

5 =

2

4

ABA O

O O

3

5

Because two first A and B contain reciprocal integral parts, we can write the final prod-
uct in the following way:

ABA =

2

6

4

1
S2

0

0 1
S2

3

7

5

2

4

S1 S3

S3 S4

3

5

2

6

4

1
S2

0

0 1
S2

3

7

5

 

Z 1

0

Z r

0
e2(r�s)cdsdr

!�1

where

S1 = lim
N!•

1
N

N

Â
i=1

G2
i.11

S3 = lim
N!•

1
N

N

Â
i=1

Gi.21Gi.11

S4 = lim
N!•

1
N

N

Â
i=1

Gi.11Gi.22

Now, given the structure of
⇥

M ⌦ I2
⇤

X
⇥

M ⌦ I2
⇤

under the H1, it is clear that aT1
⇥

M ⌦
I2
⇤

X
⇥

M ⌦ I2
⇤

a1 produces its upper left element, which also coincides with the upper

left element of ABA that is equal to

 

S2
2

S1

R 1
0
R r

0 e2(r�s)cdsdr

!�1

. Therefore, under H1 as

(T, N)seq ! •, the behavior of WNT can be described as:

WNT ! •

because the numerator of Wald statistic has a dominant term
✓p

NTb
kT

◆2

and the denom-

inator converges to
✓

S2
2

S1

R 1
0
R r

0 e2(r�s)cdsdr
◆�1

.
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Proposition 4. Under H1, WB
NT is asymptotically undefined.

Proof of Proposition 4.

i) We will use:

WB
NT =

h

ATrvec(R̂FM
T )

iT
 

AT
h

I2 ⌦ Q�1
i

X̂
h

I2 ⌦ Q�1
i

A

!�1
h

ATrvec(R̂FM
T )

i

= PT

 

AT
h

I2 ⌦
⇣ 1

NT2 Q
⌘�1i 1

N

N

Â
i=1

X̂i

h

I2 ⌦
⇣ 1

NT2 Q
⌘�1i

A

!�1

P

where P =
h

ATrvec(
p

NTR̂FM
T )

i

. The matrix in the quadratic form is different because:

rvec(R̂FM
T �RT) =

 

I2 ⌦
"

N

Â
i=1

T

Â
t=2

Xit�1XT
it�1

#�1!

vec

 "

N

Â
i=1

h T

Â
t=2

uitXT
it�1 �

p
NTL̂i

i

#T!

but, under the null, Xi will serve as the covariance matrix of the vector in the product
above as well, as (T, N)seq ! •. This is because covariances iii) and iv) in Proposition
3 (g) are the same, thus transposition above will not have any effect on the final expres-
sion of the covariance matrix.

Under the null, P behaves in the following way:

P =
h

ATrvec(
p

NTR̂FM
T )

i

=
h

ATrvec
�

p
NT[R̂FM

T � RT]
�

i

D�! N
�

0, AT⇥I2 ⌦ Q�1⇤X
⇥

I2 ⌦ Q�1⇤A
�

2 R3

as (T, N)seq ! • by the same logic as in the proof of Theorem 4.1 only using the matrix
A. Because the covariance matrix is non-singular under the H0, we obtain:

WB
NT

D�! c

2
3

as (T, N)seq ! • by the CMT.
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ii) To investigate H1, we examine the following vector first:

ATrvec(
p

NTR̂FM
T ) = ATrvec(

p
NT[R̂FM

T � RT]) + ATrvec(
p

NTRT)

=
⇥

p
NT(r̂FM

11 � rT)�
p

NT(r̂FM
22 � qT)

p
NT(r̂FM

12 � r12)
p

NT(r̂FM
21 � r21)

⇤T

+
⇥

p
NT(rT � qT) r12 r21

⇤T

=
h

Op(1)� Op

⇣

T
kTqT

⌘

Op

⇣

T
kTqT

⌘

Op(1)
iT

+
h⇣p

Nc �
p

NTb
kT

⌘

r12 r21

iT

due to Theorem 4.1 and Theorem 4.2. Here,
p

NT(r̂FM
22 � qT) and

p
NT(r̂FM

12 � r12)
are of the same order and they vanish when T ! •, while

p
NT(r̂FM

11 � rT) andp
NT(r̂FM

12 � r21) are Op(1) as (T, N)seq ! •. The rest is divergent as (T, N)seq ! • as
c < 0, b > 0. We are left to check if the middle matrix is invertible.

Note that:

I2 ⌦
⇣ 1

NT2 Q
⌘�1 P�! I2 ⌦ M =

2

4

M O

O M

3

5

as (T, N)seq ! •, where M is the same as in Theorem 4.2. Therefore:

AT
h

I2 ⌦
⇣ 1

NT2 Q
⌘�1i 1

N

N

Â
i=1

X̂i

h

I2 ⌦
⇣ 1

NT2 Q
⌘�1i

A P�! AT

2

4

MBM MCM

MDM MEM

3

5A ⌘ ATAA

as (T, N)seq ! • where the blocks B, C, D and E are the same blocks with the limiting
averages of the kernel estimators in X̂i as in Theorem 4.2. Because of the structure of
each 2 ⇥ 2 block in A (only upper left element is non-zero), we, for example, have:

aT2 Aa1 = aT2 Aa2 = aT2 Aa3 = 0

which gives a zero second row, therefore ATAA is singular.
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