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Abstract

Motivated by school admission systems used in, e.g., Turkey and Sweden, this paper inves-
tigates a sequential two-stage admission system with public and private schools. To perform
the analysis, relevant axioms and equilibrium notions need to be tailored for the considered
dynamic setting. In particular, a notion of truthfulness, referred to as straightforwardness,
is introduced. In sharp contrast to classic one-stage admission systems, sequentiality leads
to a trade-off between the existence of a straightforward (i.e., truthful) equilibrium and non-
wastefulness. Given this insight, we identify the unique set of rules for two-stage admission
systems that guarantees the existence of a straightforward equilibrium and, at the same time,
reduces the number of wasted school seats. Several existing admission systems are also
theoretically analyzed within our general framework and empirically evaluated using school
choice data from Sweden. The latter analysis allows us to quantify various trade-offs in
sequential admission systems.
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1 Introduction

In most countries, both private and public schools are an integral part of the education system.
In the OECD countries, for example, 18 percent of all 15-year-old students are admitted to pri-
vately managed schools. In fact, among the OECD countries and their 14 partner economies,
only Azerbaijan, Romania and the Russian Federation do not have any private schools (OECD,
2012). In many of these countries, school seats are sequentially assigned to students in two or
more stages. The main difference between one-stage and multi-stage admission systems is that
the latter type of system must include a set of rules that determines, e.g, the subset of schools
that are available in each stage, the set of students that are allowed to participate in each stage,
and a stage-dependent mechanism for determining school assignments. In, for example, Boston1

and New York City2, the admissions to exam schools and regular public schools are conducted
separately and sequentially from each other, and students are allowed to select their most pre-
ferred school from the two separate admissions. In the context of high school admissions to
private and public high schools in Turkey, the order in which public and private schools admit
students and whether a student can vie for both types of schools without commitment to enroll
has changed in recent years. A third example is the municipality of Botkyrka, which is part of the
Greater Stockholm Region in Sweden, where a centralized public school assignment follows the
admissions to private schools.3 A final example is college admissions in China which are based
on a tiered-admissions system where assignments to prestigious top-tier colleges are followed by
assignments to lower-tier colleges (Chen and Kesten, 2017).

The pioneering work by Abdulkadiroğlu and Sönmez (2003) initiated a large literature on
school choice. The vast majority of the papers in this literature assume that students are as-
signed to public schools in a single, centralized admission4 stage and aim to design matching
mechanisms based on desideratum represented by formal axioms. In particular, much attention
has been directed towards the trade-off between stability and efficiency while maintaining good
incentive properties (see, e.g., Abdulkadiroğlu et al., 2009; Kesten, 2010). The main character-
istic that distinguishes the considered framework from most of the existing literature is that our
framework focuses on multi-stage admission systems that may feature any possible combination
of centralized and decentralized admissions, which is a prevalent feature of almost all real-life
student admissions.

When students seek assignment through sequential admissions, presumed properties pos-
sessed under static admission systems may be compromised since students need to make multiple
decisions over time, which inevitably leads to spillovers across different types of schools, e.g., a
student admitted both at a public and a private school may subsequently vacate her seat at either

1See www.bostonpublicschools.org/Page/7080 and www.bostonpublicschools.org/Page/6594.
2For more information, see Abdulkadiroğlu et al. (2009).
3For more information, see Kessel and Olme (2018).
4Very few papers exclusively model decentralized college admissions, c.f. Chade et al. (2014), Che and Koh

(2016) and Hafalir et al. (2018).
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school leading to a vacancy, which can potentially jeopardize the stability of the assignments
obtained through a one-shot admissions system. A central question then concerns the trade-off
between welfare and incentive issues. In particular, this paper addresses the following question:
“how should a multi-stage system be ideally organized in terms of timing, participation, and
assignment rules across and within stages in light of such trade-offs?”

The high school admissions system that determines the placements of over a million students
in Turkey has recently undergone a series of reforms and remains a source of much controversy.
In the system that was in use in 2014, students who were admitted to public schools in a cen-
tralized first stage could go on to be admitted to private schools in a decentralized second stage
before eventually deciding on their actual assignments. This “admission without commitment”
feature of the system gave rise to tens of thousands of seats of both types of schools to be sub-
sequently vacated. In the aftermath of the epic number of vacancies, the ministry of education
made a failed attempt to address the demand for vacated seats and coordinate the subsequent
vacancy chains via multiple reassignment rounds throughout summer 2014. The highly chaotic
process continued well after the academic year started.5 The overwhelming public dismay and
administrative burden with this system lead the ministry to implement a major reform through a
new system the following year. Many believed that the problem with the old system had to do
with the organization of the timing of admissions for the two types of schools. In particular, it
was decided that private schools should run admissions before public schools in the new system
of 2015. A second, more subtle change concerned the “rules of entry” into the second stage.
Students who were admitted into a private school in the first stage were no longer permitted to
apply to public schools in the second stage. The reforms successfully mitigated the problems
associated with seat vacations observed in the previous year. This is indeed confirmed by our
analysis which shows that the unique equilibrium outcome of the new system is at least as good
as the truth-telling equilibrium outcome of the old system. Despite improved welfare, however,
a new type of problem, one of incentives, surfaced in the new system. Families felt under heavy
pressure to broadly choose between private and public schooling without actually knowing what
specific assignment the admissions stage they have chosen to participate in would lead to.6

The admissions systems used in many Swedish municipalities bear interesting similarities
to the old and new Turkish systems. In Stockholm, for example, the public and private school
admissions are entirely decentralized and independently administered with little coordination in
the absence of any central oversight of an entity such as the Ministry of Education in Turkey.
An epidemic problem that plagued the city’s education system has been due to the fact that a
student can freely enroll at several schools (possibly of the same type) before eventually decid-

5An overall five supplementary rounds took place that year in which 13,398, 15,694, 39,037, 13,130, and 18,014
students were assigned and reassigned, respectively.

6A letter from a parent to the President of the Republic of Turkey echoes this concern: “The current system forces
us to make a decision between public and private schools in the beginning... Hence, many parents are forming a line
before private schools fearing that they would not be admitted to any public school.” (Haberturk newspaper, July
2015).
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ing on her actual assignment. Much like the old Turkish system, unclaimed seats have lead to
severe waste and coordination problems, which has been a source of much controversy.7 In the
Swedish municipality Botkyrka, on the other hand, legislation makes it possible for private and
public schools to coordinate their admissions through the municipality. Specifically, students
submit joint preferences by ranking a private school together with other public schooling op-
tions. After the private schools process the applications of those who listed them as first choice,
the unassigned private school applicants (together with those who only listed public schools) are
placed to public schools based on the remaining portion of their preferences through a central
assignment. The manner in which preference submissions are constrained in Botkyrka leads to
an incentive problem similar to that in the new system of Turkey: if a student’s true first choice is
not a private school, by listing only public schools, she needs to forego any admission chances to
a private school; or if she still wishes to apply to a private school that is not her true first choice,
then she may miss out on a more preferred public school that would otherwise admit her. It turns
out that the set of equilibria of the Botkyrka system is essentially the same as those of the new
Turkish system.

Of particular interest for our analysis are systems in which only public schools are consid-
ered in the first admission stage and only private schools are considered in the second admission
stage or vice versa as in, e.g., Turkey and some municipalities in Sweden. Similar to the existing
literature, the point of departure is a set of desirable axioms. From the previous literature, it is
known that some of these axioms are considered to be of particular importance (see, e.g., Ab-
dulkadiroğlu and Sönmez, 2013, for an overview). One such property is non-wastefulness which
means that after the matching mechanism has assigned the students to schools, there should exist
no student who prefers a school with an empty seat to her assigned school. Another such prop-
erty is that the matching mechanism should be designed in such fashion that it is impossible for
students to gain by strategic misrepresentation of their preferences. Even if most of the consid-
ered axioms naturally can be extended to the multi-stage setting (e.g., non-wastefulness), it is
more complicated to define a multi-stage notion of truthfulness. To encompass for the latter, we
define a sequential notion of truthfulness called “straightforwardness”. This notion means that
the students report their true preferences over the (relevant) schools in each round of the sequen-
tial admission process. The notion also captures the idea of sequential rationality as it implies
that students aim to improve their current situation in each admission round.

In one-stage admission systems, mechanisms that always select a non-wasteful matching
where students, in addition, have incentives to truthfully report their preferences are known to
exist. A prominent example of such a mechanism is the student-proposing deferred acceptance
algorithm (Abdulkadiroğlu and Sönmez, 2003; Gale and Shapley, 1962). It is, however, more
demanding to design a matching mechanism that satisfies these two specific properties in multi-
stage admission systems due to the dynamic nature of sequential systems. That is, multi-stage

7This problem has, e.g., been discussed in an official proposal that was submitted to the Swedish parliament on
October 6, 2015 (Motion 16:2156, 2015).
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systems assign students in each stage and allow students to adopt more complex strategies. As
a consequence, school seats may be wasted in each stage of the admission process, and the
complex structure of the strategy sets makes it more demanding to exclude the possibility of
successful manipulation. Our results also show that there is a trade-off between the existence
of a straightforward Subgame Perfect Nash Equilibrium (SPNE) and non-wastefulness. In fact,
the complex nature of sequential admission systems leads to that very specific admission rules,
related to when students are allowed to participate in specific rounds and whether or not they
can “keep” their assignment from the first stage of the admission process when participating in
the second stage, are required to guarantee the existence of a straightforward SPNE. Our main
theoretical result (Theorem 1) is there is a unique set of rules for sequential assignment systems
that guarantees the existence of a straightforward SPNE and at the same time minimizes the
waste of school seats. These results enable us to propose a new system for two-stage school
admissions.

To quantify the theoretical results, the 2015 admission data from the Swedish municipality
Botkyrka is analyzed. This data is ideal for our purposes since all applications are handled in a
centralized application system even if admissions to private schools precede admissions to public
schools. Consequently, the data contains information about how students rank public schools in
relation to private schools and we are not aware of any other data set with this specific prop-
erty. This unique property of the data set also enables us to empirically analyze the theoretical
properties of several existing two-stage admission systems, e.g., the new and the old Turkish sys-
tem, using the Botkyrka admission data. Our empirical analysis quantifies the cost of inducing
truthfulness in a sequential assignment system. Our main ïňĄnding from this analysis is that the
waste of school seats can be dramatically reduced by organizing the two-stage admission system
in such a fashion that students in the ïňĄrst stage are allowed to apply only to either private or
public schools depending on which of the two sets of schools that is expected to have the fewest
number of applicants.

Our theoretical and empirical results suggest a way to minimize waste while preserving truth-
ful incentives. Importantly, the proposed approach incentivizes private schools to voluntarily join
centralized assignment, which in turn facilitates convergence to a uniïňĄed centralized assign-
ment system that can readily avoid the trade-offs faced in sequential assignments.

1.1 Previous Literature

As described above, this paper deviates from the vast majority of the papers in the existing school
choice literature as it considers a general framework for analysing sequential admission systems.
There are very few papers that deal with multiple school admissions systems when viewed from
a single lens. The three contemporaneous works that are most closely related to us are Ekmekci
and Yenmez (2014), Manjunath and Turhan (2016), and Dur and Kesten (2018).
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Ekmekci and Yenmez (2014) study sequential assignments where the centralized admission
for district schools precedes individual admissions for charter schools. Their main focus is on
schools’ incentives to be part of a centralized system as opposed to remaining within the se-
quential system, and they show that such centralized admission is never incentive compatible
for charter schools. A charter school is better off running its independent admissions after the
centralized admissions. To remedy this problem, they propose a mechanism with virtual charter
schools and accordingly show that an equilibrium then can be sustained if all schools participate
in the centralized clearinghouse.

Manjunath and Turhan (2016) investigate a school district where groups of schools run their
admissions processes in parallel8 and independently from each other. They show that the re-
sulting school assignment is often inefficient, and offer a way to Pareto improve upon these
assignments by iteratively rematching students. Dur and Kesten (2018) underline the conflict be-
tween efficiency and incentives in sequential systems where students are forced to choose which
stage of admissions to participate in and argue that unified admissions leads to superior welfare
and incentive properties.

Differently than these approaches, our focus is on private vs. public school admissions.
Given the fact that there are institutional barriers that categorically preclude unification of ad-
missions processes for both type of schools, admissions are inherently separate. As such we do
not seek to unify the admissions processes across different stages into a single centralized round,
but rather ask how should the “right” sequential system be operationalized in the face of such
constraints. Parallel admission systems and limited sequential systems such as those in Dur and
Kesten (2018) whereby a student can be assigned in at most one stage, are special cases of our
general model. To our knowledge, a model with this level of generality has not been considered
before. Such a framework proves useful in assessing the trade-offs both theoretically and em-
pirically when the planner is unconstrained in the organization of the admission system and her
choice of the underlying sets of rules.

One of the early papers that addressed sequentiality in a matching framework is due to Al-
calde et al. (1998), where a two-stage mechanism is proposed for a two-sided job market. Their
mechanism implements the set of stable matchings in SPNE. Similarly, in many-to-one match-
ing markets, Alcalde and Romero-Medina (2000) show that the set of stable matchings can be
obtained as an equilibrium when agents play in a sequential manner.9

Abdulkadiroğlu et al. (2009) provide an informal discussion of sequential school assignments
in New York City and argue that the current multi-round assignment plan may result in unstable
student assignments. Westkamp (2013) studies the German college admissions system which
operates through a combination of the Boston mechanism and the college proposing deferred
acceptance algorithm. He demonstrates that the set of SPNE is characterized by the set of stable

8Anno and Kurino (2016) similarly study parallel admissions.
9As for many-to-many matching markets, Echenique and Oviedo (2006), Romero-Medina and Triossi (2014)

and Sotomayor (2004), provide similar characterizations.

6



matchings.
In recent works, Doğan and Yenmez (2018a) and Doğan and Yenmez (2018b) analyze recent

developments in the Chicago school system in which there are unified and divided enrollment
systems for different types of schools. In the former paper, they compare the welfare of students
under unified and divided enrollment systems when students are not strategic. In the latter paper,
they allow students to be strategic in a two-stage game in which the same set of schools are
available under both stages. Finally, Haeringer and Iehle (2017) analyze the multi-stage college
admission system in France.

1.2 Outline of the paper

The remaining part of the paper is outlined as follows. Section 2 introduces the school choice
problem with private and public schools together with some important definitions and axioms.
The sequential student assignment game is stated in Section 3. This section also includes a formal
definition of the notion of straightforwardness. The general theoretical results are provided in
Section 4 whereas the theoretical results related to country specific admission systems are stated
in Section 5. The empirical analysis is contained in Section 6. Section 7 concludes the paper. The
appendices contain a more formal description of the extensive form student assignment game, the
proofs of the theoretical results as well as a more detailed analysis of the decentralized Turkish
private school admission game.

2 The School Choice Problem with Private and Public Schools

This section introduces the basic ingredients of the school choice problem with private and public
schools together with a number of important concepts, axioms and definitions.

2.1 The Basic Model

A school choice problem with private and public schools consists of a set of private schools, a
set of public schools, the capacities of the schools, and a set of students. Students are assumed
to have strict preferences over the schools and the option of remaining unassigned. Schools
are endowed with strict priority orderings over the students and the option of leaving a school
seat unfilled. Formally, a school choice problem with private and public schools contains the
following ingredients:

• A finite set of schools S = Spr ∪ Spu where Spr and Spu denote the set of private and
public schools, respectively. Note also that each school is either a private school or a
public school, i.e., Spr ∩ Spu = ∅.

• A finite set of students I .
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• A capacity vector q = (qs)s∈S where qs is the number of available seats at school s ∈ S.

• A student preference profile P = (Pi)i∈I where Pi is the strict preference relation of
student i ∈ I over the schools in S and the option of remaining unassigned. The latter
option is denoted by s∅.

• A school priority ordering �= (�s)s∈S where �s is the strict priority relation of school
s ∈ S over the students in I and the option of leaving a school seat unfilled. The latter
option is denoted by ∅.

The option for a student to remain unassigned (i.e., s∅) is referred to as the null-school and it is
assumed that qs∅ = |I|, i.e., that the model allows each student to remain unassigned. A school
choice problem with private and public schools is denoted by (S, I, q, P,�) and is, henceforth,
referred to as a grand problem. For any given subset of schools S̄ ⊆ S and any given subset of
students Ī ⊆ I , the related subproblem is denoted by (S̄, Ī , qS̄, P̄Ī |S̄,�S̄ |Ī). Here, qS̄ = (qs)s∈S̄
is the capacity vector of the schools in S̄. Furthermore, P̄Ī |S̄ and�S̄ |Ī are the preferences of the
students in Ī over the schools in S̄∪{s∅} and the priorities of the schools in S̄ over students in Ī ,
respectively. Note also that the preferences of the students in Ī over the schools in S̄ ∪ {s∅} can
be different from the preferences of the students in Ī over the schools in S ∪ {s∅}. To simplify
notation, a subproblem (S̄, Ī , qS̄, PĪ |S̄,�S̄ |Ī) is denoted by (S̄, Ī , q̄, P̄ , �̄) in the remaining part
of the paper.

School s ∈ S is acceptable for student i ∈ I if school s is strictly preferred to the null-
school, i.e., if sPis∅. Student i ∈ I is acceptable for school s ∈ S ∪ {s∅} if student i is strictly
preferred to an unfilled seat, i.e., if i �s ∅. By assumption, each student i ∈ I is acceptable for
the null-school, i.e., i �s∅ ∅ for each i ∈ I .

School priorities over subsets of students in I are assumed to be responsive. This means that
for any school s ∈ S, any subset of students J ⊂ I with |J | < qs, and any two students i, j /∈ J ,
the following two conditions hold:

(i) (J ∪ i) �s J ⇐⇒ i �s ∅,

(ii) (J ∪ i) �s (J ∪ j) ⇐⇒ i �s j.

These conditions mean that as long as the capacity constraint of the school is not binding, the
school prefers (i) an additional acceptable student to leaving a seat empty and (ii) a student with a
higher priority to a student with a lower priority when filling an additional seat. For each student
i ∈ I , let Ri denote the at least as good as relation associated with Pi, i.e.:

sRis
′ ⇐⇒ sPis

′ whenever s 6= s′.
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Similarly, let for each school s ∈ S, %s denote the at least as good as relation associated with
�s, i.e.:

J %s K ⇐⇒ J �s K whenever J 6= K.

For a given subproblem (S̄, Ī , q̄, P̄ , �̄), a matching is defined as a function µ : Ī → S̄ ∪ {s∅}
such that the number of students assigned to school s ∈ S̄ does not exceed the capacity of school
s, i.e., |µ−1(s)| ≤ qs for all s ∈ S̄ and i ∈ Ī . With slight abuse of notation, in the rest of the
paper, µi and µs are used instead of µ(i) and µ−1(s), respectively. Let M̄ ≡ M(S̄, Ī , q̄, P̄ , �̄)

be the set of all possible matchings for subproblem (S̄, Ī , q̄, P̄ , �̄). All possible matchings under
grand problem (S, I, q, P,�) is denoted byM, i.e.,M≡M(S, I, q, P,�).

2.2 Axioms

A number of axioms are used to compare and evaluate matchings. For simplicity, these axioms
are defined for the grand problem (S, I, q, P,�) but they are straightforwardly defined for any
given subproblem (S̄, Ī , q̄, P̄ , �̄).

A matching µ is non-wasteful (for private schools) [for public schools] if there exists no
student that prefers a school with an empty seat to her assigned school, i.e., if there exists no
student i ∈ I and school s ∈ S (s ∈ Spr) [s ∈ Spu] such that i �s ∅, |µs| < qs and sPiµi.

A matching µ is individually rational if no student is assigned to a school that she finds
unacceptable or she is unacceptable for. Formally, a matching µ is individually rational if µiRis∅
and i �µi ∅ for all i ∈ I .

A matching µ is fair if whenever a student prefers some other student’s assignment to her
own, then the other student has a higher priority for that school than herself. Formally, µ is fair
if for every i, j ∈ I , µj ∈ S and µjPiµi imply j �µj i.

A matching µ is stable if it is non-wasteful, individually rational and fair.
A matching µ is mutually best if there does not exist a student i ∈ I and school s ∈ S such

that sPis′ for all s′ ∈ (S ∪ {s∅}) \ {s}, i �s i′ for all i′ ∈ I \ {i} and µi 6= s.
A student i ∈ I prefers matching µ ∈ M to matching ν ∈ M if and only if she prefers µi

to νi. A matching µ is Pareto dominated by matching ν if all students weakly prefer matching ν
to matching µ and at least one student strictly prefers matching ν to matching µ, i.e., matching
µ is Pareto dominated by matching matching ν if νiRiµi for all i ∈ I and there exists at least
one student j ∈ I where νiPiµi. A matching µ is Pareto efficient if there does not exist another
matching ν which Pareto dominates µ.

A mechanism φ is a systematic procedure that selects a matching for any given subprob-
lem (S̄, Ī , q̄, P̄ , �̄). The outcome selected by mechanism φ in subproblem (S̄, Ī , q̄, P̄ , �̄) is
denoted by φ(S̄, Ī , q̄, P̄ , �̄), and the match of student i ∈ Ī and school s ∈ S̄ are denoted by
φi(S̄, Ī , q̄, P̄ , �̄) and φs(S̄, Ī , q̄, P̄ , �̄), respectively.
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A mechanism φ is non-wasteful <individually rational> [fair]{stable} (Pareto efficient) <mu-
tually best> if it selects a non-wasteful <individually rational> [fair] {stable} (Pareto efficient)
<mutually best> matching for any given subproblem (S̄, Ī , q̄, P̄ , �̄).

3 The Sequential Student Assignment Game

The essential difference between the school choice model presented in the previous section and
the standard model (Abdulkadiroğlu and Sönmez, 2003) is that the set of schools is partitioned
into a set of private schools and a set of public schools, i.e., S = Spr∪Spu and Spr∩Spu = ∅. This
seemingly small deviation from the standard model makes a large difference when coupled with
a sequential admission system. As will be exemplified in Section 5, many countries separate the
admission to private schools from the admission to public schools. Students may, for instance,
first have the option to apply to private schools and the private school admission is then followed
by a centralized public school admission (e.g., the admission system used in Turkey between
2015–2017). Such two-stage admission processes also introduce many details that need to be
analyzed. For example, if the admission to private schools proceeds the admission to public
schools, can a student that is assigned to a private school also participate in the admission to
public schools? If so, can the student “keep” her placement at the private school or does she have
to “give up” the placement to participate in the public school admission?

To analyze the sequential school choice model under different sets of rules, a game in which
play proceeds in a sequence of three rounds is considered. The analysis is restricted to the case
where S̄ ∈ {Spr, Spu}, i.e., the case where the admission to private and public schools can be
separated from each other in two different rounds of the game (as in, e.g., the above mentioned
Turkish system). Because the considered admission systems, the game, and the theoretical find-
ings can be explained without introducing a massive body of notation, a simpler exposition is
adopted in the main body of the paper for ease of exposition. The interested reader is referred to
Appendix A for the formal technical definitions.

The sequential student assignment game contains three separate rounds. In Round 1, only
private or only public schools are available. The set of available schools in Round 1 is denoted
by S1 and, consequently, S1 ∈ {Spr, Spu}. Students that participate in Round 1 are collected
in the set I1. Note that it may be the case that all students participate in Round 1, i.e., I1 = I .
The students in I1 submit a rank order list over the schools in S1 ∪ {s∅}. If only private schools
(public schools) are available in Round 1, then only public schools (private schools) are available
in Round 2. The set of participating schools and students in Round 2 are denoted by S2 and I2,
respectively. The students in I2 submit a rank order list over the schools in S2∪{s∅}. Because we
only analyze systems in which the admission to private schools is separated from the admission to
public schools, it follows that S2 = S\S1 and, consequently, that S1∪S2 = S and S1∩S2 = ∅. In
Round 3, the students are assigned to schools. However, whether or not a student can participate
in Round 2 and what alternatives the students have in Round 3 depend on the rules of the game.
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The rules of the game are given by the mechanisms φ1 and φ2 that are used for assigning
students to schools in Rounds 1 and 2, respectively, together with two correspondences, ψ and
γ. Here, the correspondence ψ determines the set of students that are allowed to participate in
Round 2, and the correspondence γ provides the alternatives for the students in Round 3. The
correspondence ψ may or may not depend on the outcome of the mechanism φ1. The analysis in
this paper is restricted to two cases, namely when the correspondence ψ prescribes that:

• only students that are assigned to the null-school in Round 1 are allowed to participate in
Round 2, i.e., I2 = {i ∈ I : φ1

i (S
1, I1, q1, P 1,�1) = s∅},

• all students in I are allowed to participate in Round 2, i.e., I2 = I .

Note that it is easy to extend the correspondence ψ to also include the intermediate cases in which
some of the assigned students in Round 1 can participate in Round 2 and some of the unassigned
students in Round 1 cannot participate in Round 2. All results presented in this paper still hold
for these intermediate cases. The reason for restricting attention to the above situations is simply
that they describe real-life admission systems (see Section 5).

The correspondence γ provides the alternatives for the students in Round 3. These alterna-
tives do not only depend on the outcomes of the mechanisms φ1 and φ2, but also on if the student
is allowed to participate in Round 2 or not. More precisely, the correspondence γ includes the
following situations:

(1) If student i is not allowed to participate in Round 2, then she has to select the Round 1
assignment.

(2) If student i is allowed to participate in Round 2, then the selection can take three different
forms:

(a) student i can select the Round 1 or the Round 2 assignment if she participates in
Round 2,

(b) student i has to select the Round 2 assignment (the Round 1 assignment) if she (does
not) participates in Round 2,

(c) student i has to select the Round 1 assignment (the Round 2 assignment) if she par-
ticipates in Round 2 and the Round 2 assignment is the null-school (distinct from the
null-school).

Note that independently of if case (1) or (2) prevails, the correspondence γ is a subset of assign-
ments from Rounds 1 and 2. Note also that even if the rules of the game are generally defined
in the above, many existing sequential school admission systems fit perfectly in this framework.
This will be discussed and exemplified in Section 5.

The sequential admission process described above and how it is related to the rules of the
game can formally be described as:
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Round 1. Each student i ∈ I1 submits a rank order list P 1
i over the schools in S1 ∪ {s∅}.

The mechanism φ1 assigns each student i ∈ I1 to school φ1
i (S

1, I1, q1, P 1,�1) in S1∪{s∅}.

Round 2. The correspondence ψ determines the set of students that are allowed to partic-
ipate in Round 2. Each student that is allowed and willing to participate in Round 2, i.e.,
the students in the set i ∈ I2, submit a rank order list P 2

i over the schools in S2∪{s∅}. The
mechanism φ2 assigns each participating student i ∈ I2 to school φ2

i (S
2, I2, q2, P 2,�2) in

S2 ∪ {s∅}.

Round 3. The correspondence γ provides the school alternatives for each student i ∈ I

based on the assignments in Rounds 1 and/or 2, and each student i ∈ I selects one of the
alternatives prescribed by γ.

One can think of students that are allowed to but do not wish to participate in Round j ∈ {1, 2} as
students that simply submit the null-school as their top choice when they report their preferences.
In such case, students can always (and without loss of generality) be allowed to keep their Round
1 assignments. To simplify our analysis, a student who is allowed to but do not wish to participate
in Round j ∈ {1, 2} to rank s∅ as her top choice.

Throughout the paper, it is assumed that the moves in Round 1 are observed before Round
2 begins, and that the moves in Round 2 are observed before Round 3 begins. Participating
students also move simultaneously within each round.

3.1 The Extensive Form Game

The above sequential process can also be regarded as an extensive form game. A detailed
description of this game is provided in Appendix A. The informal definition follows next.

The game proceeds in three rounds. The initial node of the game, say h1, can be thought
of as Round 1, and it is based on subproblem (S1, I1, q1, P 1,�1). In this node, a subgame is
played. In this subgame, each student or, equivalently, each player, i ∈ I1, reports a ranking
P 1
i over the schools in S1 ∪ {s∅}. The reported ranking belongs to the set of all possible (strict)

rankings over the schools in S1 ∪ {s∅} and it need not be truthful. The reported ranking P 1
i also

represents the action of student i ∈ I1. The actions played by the students in I1 at node h1

together with the rules of the game will take the extensive form game to an intermediate node
node, say h. Note that node h belongs to some set of possible nodes H2 but exactly what node
in H2 that the game ends up in depends on the actions as well as the rules of the game. Node
h is based on subproblem (S2, I2, q2, P 2,�2) and it can be thought of as Round 2. A subgame,
where each student i ∈ I2 reports her ranking P 2

i over the schools in S2 ∪ {s∅}, is then played
at node h. Note here that the subgame played at node h is defined based on the play at the initial
node h1, i.e., the subgame at node h depends not only on the rules of the game but also on the
history of the game. In a similar manner as in the above, the play at node h together with the
rules of the game will take the extensive form game to a penultimate node, say h̄. Node h̄ can
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be regarded as Round 3 where each student selects a school (possibly the null-school) from the
alternatives proposed to her. Again, the choices at node h̄ depends on the history and the rules
of the game. In this sense, the initial node h1 and the strategies played in the various subgames
define a unique penultimate node of the extensive form game.

Because the considered game is a sequential game, it is natural to adopt the notion of a
Subgame Perfect Nash Equilibrium (SPNE, henceforth) as the equilibrium concept. Such an
equilibrium is a strategy profile that induces a Nash Equilibrium in every subgame.

3.2 The Notion of Straightforwardness

It is well established in the school choice literature that students often can gain by misrepresent-
ing their preferences over schools and that they sometimes use this possibility to their advantage
(see, e.g., Abdulkadiroğlu et al., 2005; Dur et al., 2018; Pathak and Sönmez, 2018, 2013). Obvi-
ously, students can have different strategies also in the considered sequential game and not all of
these strategies involve truthful reports over the available schools in each round. Because truth
telling plays an important role in the school choice literature, we also need to introduce such a
concept for the considered extensive form game. This is the notion of straightforwardness.

Definition 1. Given rules of the game (φ1, φ2, ψ, γ), a student i ∈ I plays a straightforward
strategy if it involves the following actions:

Round 1: Student i reports her true ranking over the schools in S1 ∪ {s∅}.

Round 2: Student i reports her true ranking over the schools in S2 ∪ {s∅} that are strictly
more preferred to her Round 1 assignment (note that the Round 1 assignment might be s∅).

Round 3: Student i selects her most preferred school out of the schools prescribed by γ.

The notion of straightforwardness does not only capture the idea that students report truthful
rankings over the schools, the notion also captures rationality in the sense that any student that
play a straightforward strategy at the same time makes sure that their current situation in the
game weakly improves according to her true preferences. For example, before Round 1 starts,
no student is assigned to any school and, therefore, each student that plays a straightforward
strategy reports a ranking over the schools that are (weakly) preferred to her current situation of
being unassigned. Similarly, any student that participates in Round 2 and plays a straightforward
strategy will weakly improve her current situation. For example, if the student is assigned the
Round 2 assignment whenever it is distinct form the null-school, the student cannot lose anything
by adopting the action to only report a ranking over the schools in S2 ∪ {s∅} that are strictly
preferred to her Round 1 assignment. The same holds for Round 3 where it, obviously, is rational
to select the most preferred school of the available alternatives. Note also that the definition of a
straightforward strategy covers all considered alternatives prescribed by the correspondence γ.
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Finally, a Subgame Perfect Nash Equilibrium (SPNE) is straightforward if each student in I
plays a strategy composed of only the straightforward actions.

4 General Equilibrium Analysis of Sequential School Admission Systems

Before investigating sequential systems used in different countries, a more general analysis of the
sequential school admission game is provided. As will be demonstrated in this section, the rules
of the game need to have very specific properties to guarantee the existence of a straightforward
SPNE. Furthermore, there is a trade-off between existence of a straightforward SPNE and non-
wastefulness. To reach these conclusions, we first establish two impossibility results related to
the rules of the game. These negative results will pin down the exact conditions that are needed
to define rules of the game that guarantee the existence of a straightforward SPNE. First, we
focus on the impossibility results caused by the mechanisms φ1 and φ2.

Proposition 1. For any i, j ∈ {1, 2} and i 6= j, if the mechanism φi is individually irrational
<wasteful> [unfair], then for any (ψ, γ, φj) there exists a problem (I, S, q,�, P ) such that ei-
ther none of the SPNE are straightforward or any straightforward SPNE induces an individually
irrational <wasteful> [unfair] matching.

Proposition 1 implies that we can restrict attention towards mechanisms φ1 and φ2 that are indi-
vidually rational, non-wasteful and fair. This is, in fact, a natural restriction because, in school
choice contexts, assigning students to unacceptable schools, violating the priorities (obtained,
e.g., from a centralized exam or predetermined criteria) or wasting some school seats are often
highly criticized by the public.

In the following, we also consider mechanisms that are mutually best. Note that fairness
and non-wastefulness imply mutual best, and that mutual best is weaker than fairness and non-
wastefulness together. Furthermore, all well-studied school choice mechanisms, e.g., the de-
ferred acceptance algorithm, the top trading cycles mechanism and the serial dictatorship mech-
anism, satisfy mutual best. The latter means that as long as one of the mentioned well-studied
mechanisms are used, the result in Proposition 1 is strictly speaking not necessary for our con-
clusions.

Next, we focus on impossibility results caused by correspondences ψ or γ.

Proposition 2. Let (φ1, φ2, ψ, γ) be the rules of the game. Then:

1. If φ1 is non-wasteful and individually rational, φ2 is non-wasteful, and (ψ, γ) prescribes
that only students that are assigned the null-school in Round 1 can participate in Round 2,
then there exists a problem (I, S, q,�, P ) such that there exists a unique SPNE that is not
straightforward under the induced game.
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2. If φ1 is non-wasteful and individually rational, φ2 is mutually best, and (ψ, γ) prescribes
that all students are allowed to participate in Round 2 but have to select the Round 2
assignment if they participate in Round 2, there exists a problem (I, S, q,�, P ) such that
there exists no straightforward SPNE under the induced game.

3. If φ1 is non-wasteful and mutually best, φ2 is non-wasteful, and (ψ, γ) prescribes that all
students are allowed to participate in Round 2, then there exists a problem (I, S, q,�, P )

such that at least one of the SPNE outcomes is wasteful for the schools in S1 under the
induced game.

4. If φ1 is non-wasteful and individually rational, φ2 is mutually best, and (ψ, γ) prescribes
that all students are allowed to participate in Round 2 and can select their most preferred
outcomes from Rounds 1 and 2, then there exists a problem (I, S, q,�, P ) such that at
least one of the SPNE outcomes is wasteful for the schools in S2 under the induced game.

Given that φ1 and φ2 are individually rational, non-wasteful and mutually best, the first two parts
of Proposition 2 imply that if not all agents are allowed to participate in Round 2 or are forced
to give up their Round 1 assignment to participate in Round 2, then some problems do not have
a straightforward SPNE. Moreover, the third part of Proposition 2 implies that if all agents are
allowed to participate in Round 2, then some problems always lead to a wasteful SPNE outcome
for the schools in S1 (induced by a straightforward SPNE). Finally, the last part of Proposition 2
implies that if all students are allowed to participate in Round 2 without giving up their Round 1
assignment, then some problems always lead to a wasteful SPNE outcome for the schools in S2

(induced by a straightforward SPNE).
The findings in Proposition 2 give important information about how the correspondences ψ

and γ must be defined in order to guarantee the existence of a straightforward SPNE for any
problem. More precisely, the first two parts of Proposition 2 imply that all students should
be allowed to participate in Round 2 without giving up their Round 1 assignment. However,
if such rules are adopted, for some problems, a straightforward SPNE induces an equilibrium
outcome in which some school seats in Round 1 are wasted. Furthermore, if students are allowed
to participate in Round 2 without giving up their Round 1 assignment, for some problems, a
straightforward SPNE induces an equilibrium outcome in which some school seats in Round 2
are wasted. These findings suggest that there is some type of trade-off between the existence of
a straightforward SPNE and non-wastefulness.

Consider now the correspondences ψ∗ and γ∗ where the former prescribes that all students
are allowed to participate in Round 2, and the latter prescribes that any student that is assigned
a school distinct from the null-school in Round 2 have to select the Round 2 assignment.10 Let
now the mechanisms φ1∗ and φ2∗ be any two mechanisms that are individually rational, non-
wasteful and fair. Given the above insights, the rules of the game (φ1∗, φ2∗, ψ∗, γ∗) are not only

10In other words, only her Round 2 assignment will be available in Round 3.
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well-defined but also the only remaining option that potentially can guarantee the existence of
straightforward SPNE and at the same time reduce waste. As illustrated in the following theorem,
this only remaining option will, in fact, do the job.

Theorem 1. Suppose that all schools in S have the same relative priorities over acceptable stu-
dents and that the rules of the game are given by (φ1∗, φ2∗, ψ∗, γ∗). Then, for any sequential
problem, the induced game has a straightforward SPNE and in any equilibrium outcome the
seats for the schools in S2 are not wasted.

Note now that when all schools have the same relative priorities over acceptable students, a con-
strained version of the serial dictatorship mechanism (or SD for short) is the unique individually
rational, non-wasteful and fair mechanism. In particular, in this version of the serial dictatorship
mechanism, the remaining student with the highest priority for all remaining schools will, in
each step, select her highest ranked school among the available schools that find her acceptable.
The following corollary now follows directly from Propositions 1–2 and Theorem 1.

Corollary 1. Suppose that all schools in S have the same relative priorities over acceptable stu-
dents. Then, (SD,SD, ψ∗, γ∗) are the unique rules of the game such that there exists a straightfor-
ward SPNE and any equilibrium outcome (induced by straightforward SPNE) is fair, individually
rational and non-wasteful for schools in S2.

Two remarks are in order. First, when all schools in S have the same relative ranking over ac-
ceptable students, under (SD,SD, ψ∗, γ∗), playing straightforward strategy is a weakly dominant
strategy for all students. This follows from the facts that a student cannot affect the assignments
of students with higher priorities in any round and in Round 2 she only applies for the better
schools than her Round 1 assignment.

Second, Theorem 1 holds whenever all schools in S have the same relative priorities over ac-
ceptable students. As demonstrated in the following example, the latter assumption is crucial for
the result to remain true. More precisely, if schools are allowed to have heterogenous priorities,
then the existence of a straightforward SPNE is not guaranteed even if the rules of the game are
given by (φ1∗, φ2∗, ψ∗, γ∗).

Example 1. Let S1 = Spu = {s1}, S2 = Spr = {s2}, and I = {i1, i2}. Suppose further that
each school has one available seat, and that student preferences are given by: s2Pi1s1Pi1s∅ and
s1Pi2s2Pi2s∅. The school priorities are given by i1 �s1 i2 �s1 ∅ and i2 �s2 i1 �s2 ∅. Let the rules
of the game be given by (φ1∗, φ2∗, ψ∗, γ∗). When both students play straightforward strategies,
then student i1 is assigned to school s1, and student i2 is assigned to school s2. However, if i1
deviates to a strategy in which she ranks the null-school s∅ above school s1 in Round 1 and ranks
s2 above the null-school in any node in Round 2, and i2 plays a straightforward strategy, then
student i1 is assigned to school s2 and student i2 is assigned to school s1. Hence, there is no
straightforward SPNE in this game. �
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5 Sequential School Admission Systems

This section describes three different sequential school admission systems and shows how they
should be interpreted in the considered sequential school admission framework.

5.1 The Old Turkish System

The Ministry of Education (MOE) in Turkey implemented some reforms in the Turkish high
school admissions in 2014. In this system, students participated in two nationwide high school
entrance exams in the eighth grade of elementary school. A Score for Placement (SFP) was cal-
culated for each student by taking a weighted average of the test scores from the two nationwide
entrance exams and the Grade Point Average (GPA). All public schools admissions are admin-
istered by MOE via a centralized clearinghouse, and priorities of public schools over students
were based on the SFPs. Accordingly, all public schools had the same priorities over the students.
However, private schools was not included in the centralized match as MOE lacks jurisdiction
over private school admissions. Note, however, that private schools often had different sets of
acceptable students in the sense that they had different views on the lowest acceptable SFPs (the
so-called cut-off scores).11

The old Turkish system worked as follows. In Round 1, each student submitted a ranking
over 15 public schools. Students were then assigned to public schools based on the serial dicta-
torship mechanism where the priorities were given by the SFPs. In Round 2, all students were
allowed to participate independently of the outcome in Round 1. Participating students applied
to private schools and were admitted to private schools in a decentralized way. In Round 3, the
students selected their most preferred outcome from Rounds 1 and 2. Formally, this means that
the correspondence ψ prescribes that I2 = I and that the correspondence γ is described by case
(2a) from Section 3. Appendix C demonstrates that the decentralized admission game for private
schools has a unique SPNE outcome which is equivalent to the outcome of the (constrained)
serial dictatorship mechanism under true preferences and true cut-off scores.12

It is next demonstrated that any SPNE outcome of the old Turkish system is fair and indi-
vidually rational but that it need not be non-wasteful. The latter conclusion is demonstrated by
means of an example and it intuitively holds because students need not give up their Round 1
assignments to participate in Round 2. Consequently, if some student that was assigned a school
in Round 1 selects her Round 2 assignment, a school seat from Round 1 may be wasted.

Proposition 3. Any SPNE outcome of the old Turkish system is individually rational and fair.

11Most private schools also form their priorities via SFPs. There are only few private schools (mostly international
schools) that use different weights.

12In particular, we consider a sequential game in which private schools announce their cut-off scores and students
that apply to schools can hold at most one offer at a time.
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Example 2. To demonstrate that the old Turkish system is wasteful, let S1 = Spu = {s1},
S2 = Spr = {s2}, and I = {i1, i2, i3}. Suppose further that each school has two available
seats, and that student preferences are given by: s2Pi1s1Pi1s∅, s1Pi2s2Pi2s∅ and s1Pi3s2Pi3s∅.
The school priorities are given by i1 �s i2 �s i3 �s ∅ for all s ∈ S. In this example, a strategy
where each student submits her true preferences over the available schools in any node in Rounds
1 and 2, and then selects her most preferred school in any node in Round 3 is a SPNE. Given
such strategy, students i1 and i2 are admitted to school s1 in Round 1, and students i1 and i2
are admitted to school s2 in Round 2. Consequently, the outcome in Round 3 is that student
i1 is assigned to school s2, student i2 is assigned to school s1, and student i3 is assigned to the
null-school s∅. Hence, one seat at school s1 and and one seat at school s2 is wasted. �

Finally, we note that Proposition 3 and Example 2 hold also when private school assignment is
done before the public school assignment as long as the correspondences ψ and γ are defined as
in the old Turkish system. Hence, the wastefulness in the assignment cannot be solved by just
changing the order of assignment.

Because of the option of holding offers in both rounds and unrestricted entrance to Round 2,
one can see similarities between the old Turkish system and parallel assignment systems in which
students can apply to public and private schools at the same time and then pick the best offer she
receives. In this sense, the old Turkish system and the parallel assignment system adopted by
most Swedish municipalities have common equilibrium properties.

5.2 The New Turkish System

As demonstrated in the previous example, the old system resulted in a large amount of vacant
seats in public schools. This led to many rounds of reassignments which hardly resolved the
problem. To mitigate these issues, MOE replaced the admissions system in 2015. The main
difference compared to the old system was that the roles of the private and public schools were
reversed, and that the rules related to which students that are allowed to participate in Round 2
(i.e., the correspondence ψ) was changed. More precisely, in Round 1, students applied to private
schools and the admission was, again, organized in a decentralized fashion. Only students that
remained unassigned after Round 1 were allowed to participate in Round 2. The participating
students submitted a ranking over 25 public schools. Formally, this means that the correspon-
dence ψ prescribes that I2 = {i ∈ I : φ1

i (S
1, I1, q1, P 1,�1) = s∅} and that correspondence γ is

described by case (1) from Section 3. Note also that this procedure will assign each student to
at most one school in Round 3. As demonstrated next, in contrast to the old Turkish system, any
SPNE in the new Turkish system is stable.

Proposition 4. Any SPNE outcome of the new Turkish system is stable, i.e., non-wasteful, indi-
vidually rational and fair.13

13Since all schools rank the acceptable students in the same order, there is a unique stable matching.
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As in the old Turkish system, the decentralized admission game for private schools has a unique
SPNE outcome which is equivalent to the outcome of the (constrained) serial dictatorship mech-
anism under true preferences and true cut-off scores (see Appendix C) and the result holds also
when reversing the roles of the public and private schools in the assignment process.

Although any SPNE outcome of the new Turkish system is stable, Proposition 2 implies
that for some problems under the new Turkish system there does not exist a straightforward
SPNE. To be more specific, in the new system, students are faced with a risky decision: either
register for the best available private school and do not apply in the second round, or give up
your private school assignment and try your chances for a better public school (this concern was
also ventilated in a letter from a parent to the President of Republic of Turkey, see footnote 6).
Another interesting implication of Propositions 2 and 4 is the following corollary.

Corollary 2. Suppose that all schools in S have the same relative priorities over acceptable
students. Then, the new Turkish system’s rules are the unique rules of the game such that any
SPNE outcome is stable.

Finally, when we compare the equilibrium outcomes under the old and new Turkish systems,
Propositions 3 and 4 imply the following corollary.

Corollary 3. Suppose that all schools in S have the same relative priorities over acceptable
students. Then, any equilibrium outcome of the old Turkish system is (weakly) Pareto dominated
by the unique equilibrium outcome of the new Turkish system.

5.3 The Botkyrka System

In Sweden, the municipalities determine the admission process for public schools even if they
are guided by national legislation (Skollagen). Admission to public schools is centralized within
each municipality and the priorities for public schools are decided based on relative distance to
schools. The latter means that public schools typically have different priorities over students.
Admission to private schools is decentralized but is also guided by legislation. The municipality
of Botkyrka (south-west of Stockholm) will be used to illustrate the Swedish system.14

In the Botkyrka system, parents rank schools in a centralized online application system using
a drop down menu. This menu contains all private and public schools in the municipality. The
system allows parents to rank at most three schools in total. However, an application to a private
school will only be considered if it is top-ranked (i.e., the most preferred school according the the
students submitted ranking).15 In Round 1, the application for each student that ranks a private
school as a top-choice is forwarded to that private school. All private schools have a waiting
list, and priority is given on first-come-first-served basis. The private schools then match the

14See Andersson (2017) for a detailed description of the Swedish school choice system, and Kessel and Olme
(2018) for a more detailed description of the Botkyrka system.

15See also the discussion in Section 6.
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applications to their waiting lists, and returns the names of the students they wish to admit to the
centralized application system. In Round 2, only students that remain unassigned after Round
1 are allowed to participate. The ranking of public schools for these students are forwarded
to a centralized clearinghouse and the admission is done via the (student proposing) deferred
acceptance algorithm. This procedure will assign each student to at most one school in Round 3.

Note that the correspondences ψ and γ are defined as in the new Turkish system but that the
mechanisms φ1 and φ2 as well as the priority orders differ from the new Turkish system. This
will also have the consequence that the properties of any SPNE outcome differs between the new
Turkish system and the Botkyrka system. More precisely, a SPNE need not be non-wasteful for
public schools in the Botkyrka system unless there is a SPNE where students play straightforward
actions in Round 2.16 Furthermore, a SPNE outcome of Botkyrka system need not be fair. The
latter result is illustrated by means of an example.

Proposition 5. Any SPNE outcome of Botkyrka system is non-wasteful and fair for private
schools, and individually rational. Moreover, when students play true preferences in Round 2,
any SPNE outcome is non-wasteful for the public schools.

Example 3. Let S1 = Spr = {s1}, S2 = Spu = {s2, s3}, and I = {i1, i2, i3}. Suppose further
that each school has one available seat, and that student preferences are given by: s2Pi1s1Pi1s∅,
s2Pi2s3Pi2s∅, and s3Pi3s2Pi3s∅. The school priorities are given by i1 �s1 i2 �s1 i3 �s1 ∅,
i3 �s2 i1 �s2 i2 �s2 ∅, and i2 �s3 i3 �s3 i1 �s3 ∅. In this example, straightforward play by
all students is a SPNE. The outcome of this strategy is that student i1 is assigned to school s1,
student i2 is assigned to school s2, and student i3 is assigned to school s3. But this outcome is not
fair since student i1’s priority is not respected at public school s2 since s2 is assigned to student
i2 but s2Pi1s1 and i1 �s2 i2. �

Proposition 5 stated that any SPNE outcome is non-wasteful for the public schools when students
submit their true preferences in Round 2 (this is a weakly dominant strategy in each subgame
in that round). In the following example, it is illustrated that one may end up with wasteful
equilibrium outcomes for the public schools when students play other equilibrium strategies.

Example 4. Let S1 = Spr = {s1}, S2 = Spu = {s2, s3}, and I = {i1, i2}. Suppose further that
each school has one available seat, and that student preferences are given by: s2Pi1s1Pi1s3Pi1s∅
and s3Pi2s2Pi2s∅. The school priorities are given by i1 �s1 i2 �s1 ∅, i2 �s2 i1 �s2 ∅, and
i2 �s3 i1 �s3 ∅. In this example, the following strategy profile is a SPNE: (a) both students play
their straightforward action in Round 1, (b) both students rank the school in which they have the
highest priority in Round 2 at the top whenever the other student also participates in Round 2,
and rank their most preferred school in Round 2 at the top otherwise. In the outcome related to

16If we focus on the simultaneous preference revelation game in which students submit a single preference list,
any Nash equilibrium outcome is non-wasteful, individually rational and fair for private schools.
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this SPNE, student i1 is assigned to school s1 and student i2 is assigned to school s3. Hence, the
seat at s2 is wasted. �

Although, we may end up with wasteful and/or unfair equilibrium outcomes under Botkyrka
system, both Botkyrka and the new Turkish systems are structurally the same. In particular, if
we consider Botkyrka system under homogeneous priorities for all schools, then any equilibrium
outcome will be stable (see the proof of Proposition 4).

6 Empirical Evaluation

From the theoretical findings in the previous sections, we know that the new Turkish system is
the only of the investigated systems that is non-wasteful for all schools in any SPNE even if some
of the other systems are non-wasteful for private or public schools. We also know that the only
rule that induces all straightforward SPNE with non-wasteful outcomes for schools in Round 2
is defined in Section 4 and given by (φ1∗, φ2∗, ψ∗, γ∗), but that this rule produces a wasteful out-
come. Because we are interested in straightforward SPNE, the aim of this section is to quantify
the wastefulness for various rules of the game and, furthermore, to produce a measure of the
exact trade-off between the existence of a straightforward SPNE and wastefulness. To achieve
this, the 2015 data for the school admission of 6-year-old children in Botkyrka municipality will
be analyzed.17

The reason for using the Botkyrka admission data to evaluate the theoretical findings is that
the data is ideal for our purposes since all applications are handled via a centralized application
system even if admissions to private schools are decentralized (see Section 5.3). This also means
that the data contains information about how students rank public schools in relation to private
schools. This type of information is impossible to get if students submit their rankings to private
and public schools in separate application systems. We are not aware of any other data set
on school choice with this specific property. However, for such information to be valuable,
there must be a “sufficiently large” variation in the submitted rankings. For example, if students
that rank private schools rank exactly one private school and, in addition, always as their top-
choices, then there is almost no variation in the rankings since only two types of rankings then
are contained in the data set, i.e.:

(a) all three ranked schools are public schools,

(b) the top-ranked school is a private school and the other two ranked schools are public
schools.

17The current practice in Botkyrka is not immune to manipulation by students. However, students do not have any
incentive to misreport the relative ranking of public schools listed. In particular, it is a (weakly) dominated strategy
to change the true ranking of public schools. Given that our main goal is to quantify wastage under various models
rather than performing a full-fledged welfare analysis, it suffices to restrict attention to schools that are reported as
acceptable. Clearly, declaring a truly unacceptable school as acceptable is also dominated.
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Recall now from Section 5.3 that only rankings of type (a) and (b) play a role in the Botkyrka
admission system. However, this information is not transmitted to the parents and this fact gives
a variation in the types of reported rankings that can be used to evaluate different admission
systems.18 In fact, in the 2015 admission data, it can be seen that only 85.5% of all students
submit a ranking of type (a) or (b). For example, 7.1% of all students rank a private school as
their third choice but are unaware of the fact that they never can be assigned to that school (since
it not is top-ranked).

In 2015, there were 24 schools in Botkyrka municipality including 18 public and 6 private
schools. These schools had between 10 and 76 school seats each. A total number of 1,109
students applied to the schools but the analysis only considers 1,033 of these students. Reasons
for excluding students are, e.g., that the student no longer lived in Botkyrka at the end of the
admission period, that the student decided to start at a school outside of Botkyrka, etc. The data
contains all information needed to evaluate the theoretical results except a unified priority order
based on, e.g., test scores. Because no such priority order exists in Botkyrka, the analysis is
based on the average of 1,000 randomly drawn priority orders.19

We consider two versions of three different models of sequential admission systems. The two
versions are defined based on if admission to private schools is conducted before the admission
to public schools (the private–public version, henceforth) or vice versa (the public–private ver-
sion, henceforth). Independently of which version of the model that is analyzed, the mechanisms
φ1 and φ2 will be defined by the serial dictatorship mechanism. In this case, the new Turkish
system and the Botkyrka system coincide. The following models will be considered in its two
different versions:

Model 1. The rules of the game are as in the new Turkish system.20

Model 2. The rules of the game are as in the old Turkish system.

Model 3. The rules of the game are given by (φ1∗, φ2∗, ψ∗, γ∗) as defined in Section 4.

The following example illustrates that the above three models can generate distinct matchings
given that reported rankings can differ from (a) and (b) in the above.

Example 5. Let I = {i1, i2, i3, i4, i5}, Spr = {s1, s2, s3} and Spu = {s4, s5}. All schools
have exactly one school seat. Suppose further that the common priority order for all schools
s ∈ S is given by i1 �s i2 �s i3 �s i4 �s i5 �s ∅. The rankings of the students are given by

18It is not very difficult to see that if all parents would report rankings only according to (a) and (b), then all
rules considered in this section will generate identical matchings. As later will be obvious from Example 5 and the
empirical analysis, this is not the case given that some parents report rankings different from (a) and (b).

19More precisely, the priority orders are given by a uniform random permutation of the vector containing the
1,033 students in the data set.

20Recall from the above that the rules of the game are identical for the new Turkish system and the Botkyrka
system when the mechanisms φ1 and φ2 are given by the serial dictatorship mechanism.
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s1Pi1s2Pi1s5Pi1s∅, s1Pi2s4Pi2s2Pi2s∅, s4Pi3s3Pi3s5Pi3s∅, s3Pi4s5Pi4s4Pi4s∅, and s1Pi5s2Pi5s3Pi5s∅.
Students are assumed to play straightforward strategies. In particular, under Model 2, students
rank all schools in Round 2 truthfully. Given this, the private–public version of Models 1–3
generate the following matchings where µmj denotes the matching of student ij at Model m:

µ1 = (µ1
1, µ

1
2, µ

1
3, µ

1
4, µ

1
5) = (s1, s2, s3, s5, s∅),

µ2 = (µ2
1, µ

2
2, µ

2
3, µ

2
4, µ

2
5) = (s1, s4, s3, s∅, s∅),

µ3 = (µ3
1, µ

3
2, µ

3
3, µ

3
4, µ

3
5) = (s1, s4, s3, s5, s∅).

Consider first Model 1. Because all students play straightforward strategies and all students
have ranked at least one private school, all students participate in Round 1 and report their true
rankings over the private schools. By the priority order, schools s1, s2 and s3 are in Round 1
assigned to students i1, i2, and i3, respectively. These students are not allowed to participate in
Round 2. Note next that student i5 does not rank any public school and will, consequently, not
participate in Round 2. Hence, only student i4 is allowed and willing to participate in Round 2,
and student i4 is, consequently, assigned her most preferred public school, i.e., school s5. This
gives matching µ1.

Consider next Model 2. Here, students assigned in Round 1 can keep their assignment and
participate in Round 2 and decide which placement to select in Round 3. Again, because all
students play straightforward strategies and all students have ranked at least one private school,
all students participate in Round 1 and report their true rankings over the private schools. By the
priority order, schools s1, s2 and s3 are in Round 1 assigned to students i1, i2, and i3, respectively.
In Round 2, all students except student i5 will participate by straightforwardness (in fact, student
i5 ranks s∅ as her top choice). By the priority order, schools s4 and s5 are assigned to students
i2 and i1, respectively. The students then select the best schools of the schools they have been
assigned in the two rounds. For example, student i2 is assigned school s2 in Round 1 and school
s4 in Round 2. Because s4Pi2s2, student i2 selects school s4. This generates matching µ2.

Consider now Model 3. Because students that participate in Round 1 can decide after seeing
their Round 1 assignment weather to participate in Round 2 or not, all students that have applied
to a private school will participate in Round 1 by straightforwardness. By the same arguments as
in the above, schools s1, s2 and s3 are assigned to students i1, i2 and i3, respectively. Because stu-
dents play straightforward strategies, students i2 and i3 will participate in Round 2 since s4Pi2s2

and s4Pi3s3, respectively. Hence, all students except students i1 and i5 participate in Round 2 (in
fact, students i1 and i5 rank s∅ as their top choice). Note, however, that students i2 and i3 will, in
Round 2, by straightforwardness, only report the public schools that they find strictly better than
their match from Round 1. This means that students i2 and i3 only report school s4 in Round
2. By the priority order, school s4 is first assigned to student i2 in Round 2. Then student i3 is
assigned school s∅ (consequently, school s3 will be the final matching for student i3). Finally,
student i4 is assigned school s5. This gives matching µ3. �
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Because the considered models are based on different rules, they also imply different round
participation for the students (this is also apparent from Example 5). However, independent of
which model that is analyzed, all students that have applied to a private school (public school)
will participate in Round 1 for the private–public setting (public–private setting) when they play
straightforward strategies. This follows since these students cannot lose anything by such play.21

Table 1 states the round participation rates for the different models.

Table 1: Round participation for the different models (averages over 1,000 simulations). Stan-
dard deviation within brackets.

Version Model Round 1 participation Round 2 participation
Private–Public Model 1 19.65% (0.00) 90.19% (0.13)

Model 2 19.65% (0.00) 99.71% (0.00)
Model 3 19.65% (0.00) 95.58% (0.34)

Public–Private Model 1 99.71% (0.00) 4.120% (0.37)
Model 2 99.71% (0.00) 19.65% (0.00)
Model 3 99.71% (0.00) 16.67% (0.41)

By the above conclusion that each student that has applied to a school in S1 always participates in
Round 1, it follows from Table 1 that 19.65% of all students have applied to (at least) one private
school and 99.71% of all students have applied to (at least) one public school. Note also that the
Round 2 participation is lower for Model 1 than the other two models. This follows since students
that are assigned a school distinct from the null-school in Round 1 are not allowed to participate
in Round 2. Similarly, in Model 3, all students are allowed to participate in Round 2 but a
student will only do so if she ranks a school that participates in Round 2 (e.g., a public school
in the private–public setting) higher than her Round 1 assignment. This increases the Round
2 participation compared to Model 1, but the participation rate is still strictly lower in Model 3
compared to Model 2 since students in Model 2 never can lose anything by participating in Round
2. Furthermore, since all students that have applied to a private school (public school) participate
in Round 1 for the private–public setting (public–private setting), the standard deviation for the
Round 1 participation is always zero.

Table 2 describes the percentage of students assigned to their first ranked, second ranked, and
third ranked school. In addition, the table also specifies the percentage of students not assigned
to any of their three ranked schools (i.e., unassigned students). As can be seen from the table,
Model 3 assigns the largest proportion of students to their most preferred schools. This finding
is a direct consequence of the rule that all students are allowed to participate in Round 2 and the
strategy choice to do so only if they could potentially be assigned a more preferred school. Such
a rule and such strategy choices do not prevail in Models 1 and 2. From Table 2 it is also clear that

21This is true for homogeneous priorities.
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Models 1 and 2 has the lowest and the highest rate of unassigned students, respectively.22 As will
be obvious later, this finding follows from the fact that Model 1 (Model 2) is the least wasteful
(the most wasteful) model and, therefore, students will on average hold fewer (more) school
seats in Round 3 in comparison to the other models and this, necessarily, reduces (increases) the
number of unassigned students.

Table 2: Placements for the different models (averages over 1,000 simulations). Standard devia-
tion within brackets.

Sequence Model Rank 1 Rank 2 Rank 3 Unassigned Sum
Private–Public Model 1 83.62% (0.75) 8.87% (0.66) 4.84% (0.53) 2.67% (0.30) 100.00%

Model 2 81.75% (0.61) 6.21% (0.60) 2.78% (0.46) 9.26% (0.29) 100.00%
Model 3 85.24% (0.68) 6.63% (0.57) 2.56% (0.42) 5.57% (0.39) 100.00%

Public–Private Model 1 79.87% (0.82) 10.2% (0.65) 4.41% (0.52) 5.57% (0.42) 100.00%
Model 2 81.75% (0.61) 6.21% (0.60) 2.78% (0.46) 9.26% (0.29) 100.00%
Model 3 85.29% (0.63) 4.87% (0.55) 2.30% (0.42) 7.54% (0.40) 100.00%

To quantify the degree of wastefulness at a given matching µ, the following measure will be
adopted for each school s that has not reached their capacity at the given matching µ, i.e., for
each school s with |µs| < qs at matching µ:

WASTEs = number of students i where i �s ∅ and sPiµi.

In, e.g., Model 2 in Example 5, the waste measure for school s2 is WASTEs2 = 1 since student i5
is unassigned, no student is assigned to school s2, and both school s2 and student i5 would prefer
that they are matched. Note also that this measure implies that a student can be included in the
measure WASTEs for multiple schools s ∈ S, e.g., if the student is unassigned but would like
to be matched to several distinct schools with unfilled school seats. In this sense, the measure
of wastefulness, for a given school, is the number of students that would prefer to be matched
to that school rather than their current match given that the school has empty school seats and
prefer the student over an empty seat ∅. The aggregated waste measures for private and public
schools are given by:

WASTEpr =
∑
s∈Spr

WASTEs,

WASTEpu =
∑
s∈Spu

WASTEs,

respectively. The total wastefulness for a given model is defined as the sum of wastefulness for

22In particular, the straightforward strategy under Model 3 is one of the straightforward strategies under Model
2. However, in order to emphasize the differences between models we focus on the straightforward strategy under
which students rank all schools truthfully in Round 2.
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public and private schools, i.e.:

Total WASTE = WASTEpu + WASTEpr.

The waste measures for the different models are displayed in Table 3.

Table 3: The wastefulness measure for the different models (averages over 1,000 simulations).
Standard deviation within brackets.

Sequence Model WASTEpr WASTEpu Total WASTE
Private–Public Model 1 0.000 (0.00) 31.70 (8.18) 31.70

Model 2 87.38 (5.34) 254.6 (18.8) 342.0
Model 3 75.68 (5.84) 0.000 (0.00) 75.68

Public–Private Model 1 84.31 (4.53) 0.000 (0.00) 84.31
Model 2 254.6 (18.8) 87.38 (5.34) 342.0
Model 3 0.000 (0.00) 256.7 (15.5) 256.7

As expected, Model 1 is the least wasteful model in total. This conclusion holds for both the
private–public and the public–private setting, and is in line with the equilibrium predictions in
Sections 4 and 5. For example, Proposition 4 predicts that Model 1 is non-wasteful in any SPNE.
However, straightforward play, as assumed in this section, is not a SPNE in Model 1 and it is,
therefore, expected that the waste measure for Model 1 in Table 3 is greater than zero. In Model
3, the waste is zero for the public schools in the private–public setting and zero for the private
schools in the public–private setting. This is exactly according to the equilibrium prediction in
Theorem 1 (recall that students play straightforward strategies in this section). Because Model 2
is the only model where students are allowed to participate in Round 2 without any restrictions,
it is expected that Model 2 performs the worst of the three models in both the private–public and
the public–private setting.

Note also that the waste is, on average, almost three times higher in the public–private setting
than in the private–public setting for any given model. This is a direct consequence of the fact that
students apply to more public schools (recall from the above that only 19.65% of the students
apply to a private school whereas 99.71% of the students apply to a public school). Maybe
the most important conclusion is that a social planner has to pay a quite high price in terms of
wastefulness in order to implement an equilibrium where students play straightforward strategies.
This can be seen by comparing the outcomes in terms of waste for Model 1 and 3 where the waste
is almost three times higher in the latter model (recall, again, that the waste is zero for Model
1 in equilibrium by Proposition 4). In this sense, there is a trade-off between the existence of
a straightforward SPNE and waste. However, the rule used in Model 3 does not lead to wasted
school seats for the schools in S2 by Theorem 1, and the above findings then suggest that by
defining S1 as the least popular set of Spu and Spr in terms of applications (i.e., private schools
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in the Botkyrka case), the total waste can be minimized. Of course, the decision related to the
which of the two sets that are “least popular” cannot depend on the reports of the students in
order to avoid introducing further manipulation possibilities. Instead, it must be based on some
exogenous factor or historical data. In the Botkyrka case, for example, in the last few years,
around 20% of the students have applied to private schools but close to 100% have applied to
public schools. In such a case, it is not unrealistic to believe that private schools will be less
popular in terms of applications also in the next application period.

7 Conclusions

This paper has studied sequential school choice systems formulated as general multi-stage se-
quential games. One of the main takeaway messages of the paper is that there is a trade-off
between the existence of a straightforward SPNE and non-wastefulness. More precisely, earlier
studies has established that there are trade-offs that involve existence of equilibria and “effi-
ciency notions” both in systems with parallel school assignments and in systems with sequential
admissions (Doğan and Yenmez, 2018a; Dur and Kesten, 2018; Ekmekci and Yenmez, 2014;
Manjunath and Turhan, 2016, see, e.g.,). What separates this study from these papers is that the
considered general sequential setting enables us to demonstrate that there is a unique set of rules
for two-stage admission in school choice that guarantee the existence of a straightforward SPNE
which, at the same time, reduces the waste of school seats.

Given the theoretical and empirical observations that manipulation is a problem in school
choice, (see, e.g. Abdulkadiroğlu et al., 2005; Abdulkadiroğlu and Sönmez, 2013; Agarwal and
Somain, 2014; Dur et al., 2018; Pathak and Sönmez, 2018, 2013), the results in this paper also
imply that there exists a rule that induces truthfulness (defined by the notion of straightforward-
ness) also for sequential settings. As already concluded in the above, using this rule comes at
a cost in terms of wastefulness. However, as revealed by the empirical analysis, this waste can
be reduced by designing the school application sequence in a fashion such that students apply
to either public or private schools first, depending on which set of schools that have the fewest
number of (expected) applicants. The policy implication that comes out of this analysis is that
if a social planner believes that truthful reporting is important, then the planner has to accept
that school seats will be wasted but the waste can be reduced by a clever design. Moreover, this
unique design gives incentives for the schools assigned in Round 1 (private schools) to join the
assignment in Round 2 (centralized public school admission).23 Eventually, it will result in a
unified admission system without coercing any school.

Because this paper is one of the first to study sequential school choice, there is room for
future research. For example, the emphasis in this paper has been to introduce a notion of truth-
fulness in sequential school choice and to analyze the conditions needed for the existence of a

23We prove this result in Proposition 6 Appendix B.
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straightforward SPNE in a very general framework and the implications on, e.g., wastefulness.
Of course, there is a number of other axioms, notions and potential trade-offs that may be policy
relevant, and it is therefore difficult to draw too general conclusions based on this study alone.
Hence, the findings and the analysis in this paper should be seen as a first step and not as a com-
plete solution as more research is needed to fully understand complex sequential school choice
systems.

Appendices
A The Extensive Form Game

This appendix gives a formal description of the extensive form game that previously was in-
formally introduced in Section 3. The appendix first defines the extensive form game in general
terms and then describes how this game fits in the considered sequential school admission frame-
work.

An extensive form matching mechanism is a list E = (I,H,M, π) where I is the set
of players, H is the set of histories (nodes), M is the strategy space, and π is the outcome
function.24 The strategy space is composed of the actions that can be played at every history:
M = Πi∈IMi and Mi = Πh∈HM

h
i for every i ∈ I where Mh

i is the actions that can be played
by player i ∈ I at history h ∈ H .25 For a given strategy profile m ∈ M , we denote the
strategy of player i with mi. Hence, m = (mi)i∈I . Let h1 be the initial node and HT be the
set of penultimate nodes. The outcome function π : HT → M gives a matching for each
penultimate node. Note that, given the initial node h1, every strategy profile m ∈ M defines a
unique penultimate node. Let hm be the penultimate node defined by strategy m. With a slight
abuse of notation, for each strategy profile m, we use π(m) instead of π(hm). A preference
profile P and extensive form matching mechanism E constitute a game Γ = (I,H,M, π, P ).

Each node h ∈ H \ HT identifies a subgame Γ(h) = (I,H(h),M(h), πh, P ) where h is
an initial node, H(h) = {h′ ∈ H|h′ follows h}, M(h) = Πi∈IΠh′∈H(h)M

h′
i , and πh(m) =

π(h̄) where strategy m ∈ M(h) specifies penultimate node h̄ ∈ HT starting from node h. Let
m(h) ∈M(h) be the strategy of subgame Γ(h) related with m ∈M . A Subgame Perfect Nash
Equilibrium (SPNE) is a strategy that induces a Nash Equilibrium in every (proper) subgame.
That is, the strategy profile m∗ ∈M is a subgame perfect Nash equilibrium if for all h ∈ H and
each player i ∈ I , it holds that πh(m∗(h))Riπh(m

′
i,m

∗
−i(h)) for every m′i ∈ Πh′∈H(h)M

h′
i .

We next describe how the above defined game can be translated into the sequential school

24We use a similar notation as Romero-Medina and Triossi (2014).
25Note that the analysis allows for the possibility thatMh

i = s∅ for some i ∈ I and for some h ∈ H . In particular,
Mh

i = s∅ means that player i ∈ I is not active at node h.
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admission framework considered in this paper. For this purpose, denote the histories in Round
k of the sequential admission process by Hk. Because the admission process starts in Round 1,
the initial node h1 is unique and belongs to the set H1 = {h1}. Moreover, because the sequential
admission process consists of three rounds, it follows that the set of penultimate nodes is given
by HT = H4. Let the set of “active students” (discussed below) in node h be given by Ih. With
slight abuse of notation, if i /∈ Ih for some h ∈ H , we suppose that Mh

i = s∅ (see also footnote
25). The set of active schools in Rounds 1 and 2 are given by S1 and S2, respectively. The sets of
all possible (strict) rankings over S1 ∪ {s∅} and S2 ∪ {s∅} are given by P1 and P2, respectively.
Consequently, the actions that can be played by any student i ∈ Ih1 at node h1 are given by
Mh1

i = P1. Similarly, the actions that can be played by any student i ∈ Ih at node h ∈ H2 are
given by Mh

i = P2. Suppose now that h ∈ Hk, and let h′ = ((ai)i∈Ih , h) ∈ Hk+1 be the node
obtained from node h when each student i ∈ Ih plays an action ai ∈Mh

i .
In the above, nothing has explicitly been stated about (i) the set of active students Ih at node

h ∈ H2 and (ii) the actions they can play at node h ∈ H3. Both (i) and (ii) are determined by the
rules of the game. As already explained in Section 3, these rules are given by the mechanisms
φ1 and φ2 used in Rounds 1 and 2, respectively, and the correspondences ψ and γ. Here, the
correspondence ψ determines the set of active students Ih at node h = (a, h1) ∈ H2. Note that
the set of active students may depend on the Round 1 assignments that are determined by the
mechanism φ1(a). From Section 3, we know that the correspondence ψ prescribes that one of
the following two cases prevail:

• Ih = {i ∈ I : φ1
i (a) = s∅},

• Ih(a) = I .

The correspondence γ provides the actions that can be played by students in Ih at node h ∈ H3,
i.e., Πi∈IhM

h
i , where Mh

i ⊆ {φ1
i (ā), φ2

i (â)} and h = (â, (ā, h1)). Moreover, the actions Mh
i that

a student i can take at node h = (â, (ā, h1)) ∈ H3 depends on the whether student i belongs to
I(ā,h1) or not. A more detailed description of the conditions (1) and (2a)–(2c) from Section 3 is
as follows:

(1) if i /∈ I(ā,h1), then Mh
i = {φ1

i (ā)},

(2) if i ∈ I(ā,h1), then one of the following three cases holds:

(a) Mh
i = {φ1

i (ā), φ2
i (â)},

(b) Mh
i =

{
{φ1

i (ā)} if âi = s∅

{φ2
i (â)} otherwise,

(c) Mh
i =

{
{φ1

i (ā)} if φ2
i (â) = s∅

{φ2
i (â)} otherwise.
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Note that in case (2b), âi = s∅ is interpreted as not participating in Round 2 although student i is
allowed to participate.

In the considered framework, a given problem (S, I, q, P,�) and list of rules (φ1, φ2, ψ, γ) in-
duce the above described extensive form game and, consequently, the game Γ = (I,H,M, π, P ).

We end this appendix by stating a more formal definition of the notion of straightforwardness
(see also Definition 1 in Section 3).

Definition 1. Given rules of the game (φ1, φ2, ψ, γ), a student i ∈ I plays a straightforward
strategy mi if:

Round 1. For nodes h ∈ H1 = {h1}, the action mh
i represents the true preferences of

student i over the schools in S1 ∪ {s∅}.

Round 2. For nodes h = (ā, h1) ∈ H2, the action mh
i represents the true preferences of

student i over the schools in S2 ∪ {s∅} that are strictly preferred to φ1
i (ā) (note that φ1

i (ā)

might be ∅).

Round 3. For nodes h ∈ H3, the action mh
i for student i is always given by mh

i =

argmaxPi
Mh

i .

B Proofs

This appendix contains the proofs of all theoretical results presented in Sections 4 and 5.

Proof of Proposition 1. To prove the result, we provide counterexamples in which either S1 or
S2 is empty.26

Case S1 = ∅. Since φ2 is individually irrational <wasteful> [unfair], there exists a problem
such that φ2 selects a matching which is individually irrational <wasteful> [unfair]. Suppose that
φ2(I, S2, q2,�2, P 2) is individually irrational <wasteful> [unfair] and S1 = ∅. Then, (I, S, q,�
, P ) = (I, S2, q2,�2, P 2) and for any (ψ, γ, φ1) if there exists a straightforward SPNE the related
equilibrium outcome, φ2(I, S2, q2,�2, P 2) is individually irrational <wasteful> [unfair].

Case S2 = ∅. Since φ1 is individually irrational <wasteful> [unfair], there exists a problem
such that φ1 selects a matching which is individually irrational <wasteful> [unfair]. Suppose that
φ1(I, S1, q1,�1, P 1) is individually irrational <wasteful> [unfair] and S2 = ∅. Then, (I, S, q,�
, P ) = (I, S1, q1,�1, P 1) and for any (ψ, γ, φ2) if there exists a straightforward SPNE the related
equilibrium outcome, φ1(I, S1, q1,�1, P 1) is individually irrational <wasteful> [unfair]. �

Proof of Proposition 2. The four parts of the proposition are proved one after another:

Part 1. Let I = {i}, S1 = {s}, S2 = {s′}, and q = (1, 1). Suppose now that both schools
regard student i as acceptable and that s′PisPis∅. Under the induced game, there exists a unique

26Note that one can easily modify these counterexamples by adding schools to these sets.
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SPNE such that student i ranks s∅ above school s at the initial node h1, student i ∈ Ih ranks
school s′ over s∅ in any node h ∈ H2, and student i selects the best option according to her true
preferences in any node h ∈ H3. This unique SPNE is not straightforward.

Part 2. Let I = {i, i′}, S1 = {s}, S2 = {s′}, q = (1, 1), i′ �s i �s ∅, i′ �s′ i �s′ ∅, s′PisPis∅,
and s′Pi′s∅Pi′s. Under the induced game, there exists a unique SPNE such that (i) student i
ranks school s above s∅ and student i′ ranks s∅ above school s at the initial node h1, (ii) student i
ranks s∅ over school s′ (i.e. student i does not actively participate Round 2), and student i′ ranks
school s′ above s∅ in any node h ∈ H2, and (iii) students i and i′ select the best option according
to their true preferences in any node h ∈ H3. Now, when both students play straightforward
actions27, student i is matched to s∅ and she can profitably deviate by ranking s∅ over s′ in any
node h ∈ H2.

Part 3. It will be demonstrated that a straightforward SPNE induces a wasteful outcome for the
schools in S1. Let I = {i, i′}, S1 = {s}, S2 = {s′}, q = (1, 1), i �s i′ �s ∅, i �s′ i′ �s′ ∅,
s′PisPis∅, and sPi′s∅Pi′s′. Consider now the following strategy profile: (i) student i ranks school
s above s∅ at the initial node h1, school s′ above s∅ at any node h ∈ H2, and accepts her most
preferred school at any node h ∈ H3, and (ii) student i′ ranks school s above s∅ at the initial node
h1, school s∅ above school s′ at any node h ∈ H2, and accepts only school s whenever possible
at any node h ∈ H3. This strategy profile is a straightforward SPNE, and in the related outcome,
student i is matched to school s′ and student i′ is matched to s∅. Hence, the seat at school s is
wasted for student i′.

Part 4. It will be demonstrated that a straightforward SPNE induces a wasteful outcome for the
schools in S2. Let I = {i, i′}, S1 = {s}, S2 = {s′}, q = (1, 1), i �s i′ �s ∅, i �s′ i′ �s′ ∅,
sPis

′Pis∅ and s′Pi′s∅Pi′s. Consider now the following strategy profile: (i) student i ranks school
s above s∅ at the initial node h1, school s′ above s∅ at any node h ∈ H2, and accepts her most
preferred school at any h ∈ H3, (ii) student i′ ranks s∅ above school s at the initial node h1,
school s′ above s∅ at any node h ∈ H2, and accepts only school s′ whenever possible at any
h ∈ H3. This strategy profile is a straightforward SPNE, and in the related outcome, student i is
matched to school s and student i′ is matched to school s∅. Hence, the seat at school s′ is wasted
for student i′. �

Proof of Theorem 1. It is first established that there exists a straightforward SPNE. Let m be
the straightforward strategy profile. Let also h′ ∈ H2 be the node that is reached under strategy
profile m from the initial node h1. To obtain a contradiction, suppose that student i can be
matched to a more preferred school s according to her true preferences by deviating when all
other students play straightforward strategies.

27That is, (i) student i ranks school s above s∅ and student i′ ranks s∅ above school s at the initial node h1, (ii)
student i ranks school s′ over s∅ and student i′ ranks school s′ above s∅ in any node h ∈ H2, and (iii) students i
and i′ select the best option according to their true preferences in any node h ∈ H3.
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First note that, by definition of the rules (φ1∗, φ2∗, ψ∗, γ∗), each student in I has only one
option to select in Round 3. Hence, by definition, each student has a dominant strategy in each
node h ∈ H3, which is the straightforward action.

Suppose now that school s belongs to S1. Then, under strategy profile m, all seats of school
s are occupied by students with higher priority than student i. Since the constrained serial dicta-
torship mechanism is used in Round 1,28 student i’s deviation will not affect the assignments of
students with higher priority than i. That is, s /∈ S1.

By the above arguments, school s must belong to S2. Let now h′′ ∈ H2 be the node reached
from node h1 when student i deviates and all other students play straightforward strategies. Then,
at nodes h′ and h′′, students with higher priorities than student i play the same straightforward
actions. Since the constrained serial dictatorship mechanism is also used in Round 2, student i’s
deviation will not affect the assignments of students with higher priority than i. That is, s /∈ S2.
Hence, the strategy profile m is a SPNE.

Finally, it is demonstrated that any SPNE outcome is non-wasteful for the schools that are
available in Round 2. To obtain a contradiction, suppose that µ is an outcome related to the SPNE
(given actions m) but that there exists a school-student pair (s, i) such that s ∈ S2, |µs| < qs
and sPiµi. Consider now the following strategy: student i plays the same actions in Round 1
and ranks school s as her top choice in Round 2 in any node h ∈ H2. Since nothing changes
in Round 1, we will end up at the same node in Round 2 as when student i plays according to
mi. Because the constrained serial dictatorship mechanism is used, school s will be available for
student i and student i will then be assigned to school s as it is her top choice. Hence, any SPNE
outcome is non-wasteful for the schools that participate in Round 2. �

Proof of Proposition 3. Consider an arbitrary grand problem (S, I, q, P,�), let m be a SPNE
strategy profile, and µ the induced equilibrium outcome.

It is first demonstrated that any SPNE is individually rational. To obtain a contradiction,
suppose that µ is individually irrational. Then there exists a student i who prefers s∅ to her
match µi. But then student i can be better off by ranking s∅ as her top choice at each node
h ∈ H1∪H2 since she will be assigned to s∅ because an individually rational mechanism is used
in both rounds. This contradicts that the strategy profile m is a SPNE.

It is next demonstrated that any SPNE is fair. We first focus on public schools. Suppose that
there exist a student i and a public school s such that sPiµi and j �s i for some j ∈ µs. Then,
at node h1, student i can rank school s as her top choice and will, consequently, be assigned
to school s. The latter conclusion follows from the fact that the constrained serial dictatorship
mechanism is adopted (see the proof of Theorem 1). Consequently, whenever it is student i’s
turn, school s has an available seat and all remaining students have lower test scores than student
i. This contradicts that m is a SPNE.

28See the discussion following Theorem 1.
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Next consider private schools, and recall that under the old Turkish system, all students can
participate in Round 2. Suppose now that there exist a student i and a private school s such that
sPiµi and j �s i for some j ∈ µs. As explained in the above, student i can then be assigned to
school s by submitting the same action at node h1 and by ranking school s as her top choice in
any node h ∈ H2. This contradicts that m is a SPNE. �

Proof of Proposition 4. Consider an arbitrary grand problem (S, I, q, P,�), let m be a SPNE
strategy profile, and µ the induced equilibrium outcome.

It is first demonstrated that any SPNE is individually rational. To obtain a contradiction,
suppose that µ is individually irrational. Then there exists a student i who prefers s∅ to her match
µi. But then student i can be better off by ranking s∅ as her top choice at each node h ∈ H1∪H2

since she then will be assigned to s∅ because an individually rational mechanism is used in both
rounds. This contradicts that the strategy profile m is a SPNE.

It is next demonstrated that any SPNE is non-wasteful and fair. We first focus on private
schools. Suppose that there exist a student i and a private school s such that sPiµi and either
|µs| < qs or j �s i for some j ∈ µs. In both cases, at node h1, student i can rank school s as her
top choice and will, consequently, be assigned to school s. The latter conclusion follows from
the fact that the constrained serial dictatorship mechanism is adopted (see the proof of Theorem
1). Consequently, whenever it is student i’s turn, school s has an available seat and all remaining
students have lower test scores than student i. This contradicts that m is a SPNE.

Next consider public schools. Suppose first that there exist a student i who participates in
Round 2 under strategy profile m and a public school s such that sPiµi and either |µs| < qs or
j �s i for some j ∈ µs. As explained in the above, student i can be assigned to school s by
submitting the same action at node h1 and by ranking school s as top choice in any node h ∈ H2.
Suppose instead that there does not exist a student i who participates in Round 2 under strategy
profile m and a public school s such that sPiµi and either |µs| < qs or j �s i for some j ∈ µs.
Instead, there exist a student i who does not participate in Round 2 under strategy profile m and
a public school s such that sPiµi and either |µs| < qs or j �s i for some j ∈ µs. Consider
now the strategy m′i in which student i ranks s∅ as her top choice at node h1, and school s as
her top choice in any node h ∈ H2. Let m′ = (m′i,m−i). Under strategy profile m′ student i
is unassigned in Round 1 and she can, therefore, participate in Round 2. Moreover, the set of
students participating in Round 2 under strategy profile m′ is a subset of students participating in
Round 2 under strategy-profile m. Then, since the constrained serial dictatorship mechanism is
adopted in Round 2, in any node h ∈ H2, school s will have an available seat when it is student
i’s turn. That contradicts that m is a SPNE. �

Proof of Proposition 5. Consider an arbitrary grand problem (S, I, q, P,�), let m be a SPNE
strategy profile, and µ the induced equilibrium outcome.

It is first demonstrated that any SPNE is individually rational. To obtain a contradiction,
suppose that µ is individually irrational. Then there exists a student i who prefers s∅ to her match
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µi. But then student i can be better off by ranking s∅ as her top choice at each node h ∈ H1∪H2

since she then will be assigned to s∅ because an individually rational mechanism is used in both
rounds. This contradicts that the strategy profile m is a SPNE.

It is next demonstrated that any SPNE is non-wasteful and fair for private schools. Suppose
that there exist a student i and a private school s such that sPiµi and either |µs| < qs or j �s i
for some j ∈ µs. In both cases, at node h1, student i can rank school s as her top choice and will,
consequently, be assigned to school s. The latter conclusion follows from the fact that in both
cases, student i will be among the top qs students applying to school s according to �s. This
contradicts that m is a SPNE.

Finally, we focus on the public schools. Suppose that there exist a student i and public school
s such that sPiµi and |µs| < qs. We first consider the case such that student i is unassigned in
Round 1 and participates in Round 2 under strategy m. In this case, student i can get school
s by only changing her ranking in Round 2 by ranking s at the top for any h ∈ H2. Call this
strategy m′i and let m′ = (m′i,m−i). Since the rankings submitted in Round 1 are unchanged,
m will lead to the same subgame in Round 1. By using the sequential version of the deferred
acceptance algorithm (McVitie and Wilson, 1971), one can easily see that under strategy profile
m′ i is assigned to s.

Now consider the case where student i is assigned in Round 1. Recall that in order to par-
ticipate in Round 2, i needs to be unassigned in Round 1. Then, consider the following strategy
m′i for i: rank s∅ over all schools at h1 and rank s over all schools at any node h ∈ H2. Let
m′ = (m′i,m−i). Under strategy m′ let h′ ∈ H2 be the node reached in Round 2. Then, the
set of students active in node h′ will be a subset of the active students under m union i. If we
restrict them to playing their weakly undominated strategy, i.e., their true preferences over the
public schools then, by using the sequential deferred acceptance algorithm, and the fact that the
deferred acceptance algorithm is population monotonic we can show that when it is student i’s
turn she can get school s. �

Proposition 6. Suppose that all schools in S have the same relative priorities over acceptable
students. Let (SD, SD, ψ∗, γ∗) be the rules of the admission system. Suppose all students play
straightforward actions. For any problem ((Spu, Spr), I, q, P,�), let µ and ν be the outcomes
of this system when private school s ∈ Spr participates in the first round and the second round
while keeping everything else the same, respectively. Then, νs %s µs.

Proof. In the rest of the proof, we call the case in which all private schools participate in Round
1 as Case 1, and the case in which only private school s participates in Round 2 as Case 2. Let
µ1 and ν1 be the matchings selected in the first round of Case 1 and Case 2, respectively. When
all students and schools play straightforward actions, the outcome in the first round is equivalent
to the outcome of the serial dictatorship mechanism under true preferences over the available
schools in the first round. It is easy to see that when the number of available schools decreases,
all students become (weakly) worse off under the serial dictatorship mechanism. Hence, under
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Case 2, all students in µ1
s are assigned to a worse private school than s in ν1. All the other

students become weakly worse off under ν1.
On the contrary, suppose µs �s νs. Then, there exists at least one student ī such that µī = s,

νī 6= s and νīPiµī. To see this, we consider the following cases in which our claim does not hold:
Case (a) νi = s for each i ∈ µs, and Case (b) µs 6= νs and µiRiνi for all i ∈ µs. If Case (a) is
true, then µs ⊆ νs. Since all students in νs are acceptable for s, νs %s µs. If Case (b) is true, then
under ν school s fills all its available seats, i.e., |νs| = qs, and there exists at least one student
i ∈ µs such that µiPiνi. Without loss of generality, let i have the highest priority among such
students. That is, if j ∈ µs and j �s i , then νj = s. Moreover, all students in νs have higher
priority than i. Therefore, νs �s µs.

Without loss of generality suppose i is the student with highest priority such that µi = s but
νi 6= s and νiPis. Let s′ = νi. Since s is the only private school participating in Round 2 under
Case 2, s′ needs to be a public school. Since µiRiµ

1
i and s′Piµi, under Case 1 student i also

applies to s′ in Round 2. Since i is not assigned to s′ in Case 1 all assignees of s′ have higher
priority than i and |µs′ | = qs′ . Then, there exists at least one student who is assigned to s′ in µ
but not in ν. Let j ∈ (µs′ \ νs′). Then, j has higher priority than i and s′Pjs. Then j has to be
assigned to a better public school than s′ under ν. If we apply the same reasoning for student
j, then due to the finite number of students and schools we will have a contradiction ultimately.
That is, there does not exist i ∈ µs but i /∈ νs and νiPis. Hence if i ∈ µs but i /∈ νs then sPiνs.
That is, all slots of s are filled with students who have higher priority than i. Which means that
a better set of students is assigned to s under Case 2 and νs %s µs.

C Decentralized Turkish Private School Admission Game

Because almost all private schools in Turkey have the same ranking over the students, it is as-
sumed, without loss of generality, that for all schools s, s′ ∈ Spr and all students i, i′ ∈ I , it
holds that i �s i′ if and only if i �s′ i′. The priority order of the schools are determined based
on students’ Grade Point Averages and schools’ cut-off scores. Let t = (ti)i∈I be the test score
profile where ti ∈ R++ is the test score of student i ∈ I . We assume that for all i, i′ ∈ I , ti 6= ti′ .
Furthermore, for any school s ∈ S, i �s i′ if and only if ti > ti′ . Let x = (xs)s∈S be the
cut-off score vector where xs is the cut-off score of school s within the possible discrete score
set of X ⊆ R+. For any school s ∈ S and any student i ∈ I , i �s ∅ if and only if ti ≥ xs.
Because private schools may have different cut-off scores, they might also have different sets of
acceptable students.

The admission for the private schools are done through decentralized system which can be
formalized as a sequential game (see also Section 5). The players in this sequential game are the
students and the private schools. Throughout the game, schools and students move sequentially.
For the sake of clarity, we group these consecutive steps together and we call it a round. In each
Round k:
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• Each private school s announces a cut-off score xks ∈ X = {0, x1, x2, ..., xmax} where
X is a countably finite set of test scores and xmax is the maximum possible score that a
student can take in the centralized exam. We assume that schools are required to weakly
reduce their announced cut-off scores compared to xk−1

s , i.e., xks ≤ xk−1
s .

• After observing the cut-off scores, each student i chooses a subset of schoolsAki among the
ones she has not rejected before, possibly the empty set, where ti ≥ xks for each s ∈ Aki .

• Given the applicants in this round, each school s offers acceptance to the top min{qs −
aks , b

k
s} acceptable applicants according to xks where bks is the number of applicants in round

t and aks is the number of students holding school s’s offer in Round k − 1 and a1
s = 0.

• Each student s holds at most one offer among the ones she has received in Round k and
the school seat that she may hold from a previous round and rejects the rest.

The game ends when students do not reject any more offers. Since the number of schools and
students are finite, this game terminates. Each student is assigned to the school whose offer she
has been holding when the game terminates. In the game described above, each school gives
offers automatically according to its preference order over the students. Hence, a school s can
be strategic only in the very first step of each round when the cut-off score is set. In Theorem
2 below, we show that this admission game has a unique SPNE outcome which is equivalent to
the unique stable matching under true preferences and priorities implied by the test scores and
the true cut-off scores. This unique stable matching can be described as a constrained serial
dictatorship mechanism.29

Theorem 2. For given I , S, t and q, the decentralized admission game for the Turkish private
schools has a unique SPNE outcome which is equivalent to the constrained serial dictatorship
outcome under true preferences and true cut-off scores.

Proof. Let µ be the outcome of the constrained serial dictatorship mechanism under true prefer-
ences and true cut-off scores. One can easily verify that µ is the unique stable matching under
true preferences and true cut-off scores. It will be demonstrated that there is a unique SPNE
outcome of the game and it is µ. The result is proved by induction. Let student im be the student
with the mth highest test score for the private schools.

29Unlike the standard serial dictatorship mechanism, here students are allowed to choose schools which consider
them acceptable. The constrained serial dictatorship mechanism is defined through a priority ordering induced by
the test scores. Accordingly, a priority ordering is a one-to-one and onto function f : {1, ..., |I|} → I where f(k) is
the student with kth highest test score. The constrained serial dictatorship is defined iteratively as follows:

Step 1. The student with the highest test score f(1) selects her most preferred school among the schools which
consider her acceptable, i.e., with tf(1) ≥ xs.

Step k>1. The student with the kth highest test score f(k) selects her most preferred school among the remaining
schools which consider her acceptable, i.e., with tf(k) ≥ xs.
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It is first proved that in any SPNE outcome, student i1 is assigned to school µi1 . Let S1

be set of schools which student i1 considers acceptable, i.e., sP1s∅ for all s ∈ S1. Note that
µi1 ∈ S1 ∪ s∅. We need to consider two cases:

• Case µi1 = s∅. In this case, student i1’s test score is lower than the true cut-off score of
the schools in S1. Since student i1 has the highest score, any school s ∈ S1 considers all
students as unacceptable. Hence, in any SPNE outcome, these schools will not admit any
student. Otherwise, each school in S1 can deviate by setting the cut-off score strictly higher
than ti1 . Then, if student i1 is assigned to a school in a SPNE outcome, then that school
is unacceptable for student i1. However, by not applying to any school in any subgame
leaves student i1 unassigned and therefore, student i1 is assigned to school s∅ in any SPNE
outcome.

• Case µi1 ∈ S1. Consider any subgame in which, in some step, school µi1 sets its cut-off
score less than or equal to ti1 . Then, student i1 can get an offer from school µi1 whenever
she applies to it. Hence, in any equilibrium of the subgame following the node in which
school µi1 sets its cut-off score less than or equal to ti1 , student i1 will not be assigned to
a less preferred school than than µi1 . Moreover, if there exists an equilibrium in which
student i1 is assigned to a more preferred school than µi1 , then the school she is assigned
to considers her and all other students as unacceptable. Therefore, that school will prof-
itably deviate by setting its cut-off strictly higher than ti1 in every subgame. Thus, in that
subgame, student i1 will be assigned to school µi1 . Moreover, there cannot be any SPNE
in which school µi1 reports the cut-off score higher than ti1 . Otherwise, setting the cut-off
score equal to ti1 in the very first step would be a profitable deviation. Hence, in any SPNE
outcome, student i1 is assigned to school µi1 .

The above two cases complete the proof for the case when k = 1. We can now use an induction
argument for k > 1. For this purpose, suppose that, in any SPNE, student ik′ is assigned to school
µik′ for all k′ < k. Now we need to prove that, in any SPNE outcome, student ik is assigned
to school µik . Let Sk be set of schools which student ik considers acceptable, i.e., sPks∅ for all
s ∈ Sk. Note that µik ∈ Sk ∪ s∅. We need to consider two cases:

• Case µik = s∅. Because student ik is unassigned under µ either student ik’s test score is
lower than the true cut-off of the schools in Sk, or those schools have already filled their
capacity, i.e, for each school s ∈ Sk there exists a subset Ī ⊆ {i1, i2, ..., ik−1} such that
µj = s for all j ∈ Ī and qs = |Ī|. If the former case is true and student ik is assigned to
some school s ∈ Sk, then school s has a profitable deviation by setting its cut-off strictly
higher than tik . If the latter case holds for some school s ∈ Sk, then, by feasibility, student
ik cannot be assigned to school s in any SPNE outcome. Moreover, student ik cannot be
assigned to any school s ∈ S\Sk as she then would deviate by not applying to any school
in any round making sure that she would be unassigned, i.e., s∅Pks for all s ∈ S\Sk.
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• Case µik ∈ Sk. Consider any subgame in which, in some step, school µik sets its cut-off
score less than or equal to tik . Then, student ik can get an offer from school µik whenever
she applies to it. Hence, in any equilibrium of the subgame following the node in which
school µik sets its cut-off score less than or equal to tik , student ik will not be assigned to
a school which is less preferred than school µik . Moreover, if there exists an equilibrium
in which student ik is assigned to a more preferred school than µik , then the school she
is assigned to considers her and all students with test scores less than tik as unacceptable.
Therefore, that school will profitably deviate by setting its cut-off score higher than tik
in every subgame. Hence, in that subgame, student ik will be assigned to school µik .
Moreover, there cannot be any SPNE in which school µik reports a cut-off score higher
than tik . Otherwise, some seats at school µik will be wasted and setting a cut-off equal to
tik in the very first step would be a profitable deviation. Hence, in any SPNE outcome,
student ik is assigned to school µik .

The above two cases complete the proof for an arbitrary k > 1 and, consequently, the entire
proof.

Finally, we consider a version of the decentralized admission game in which private schools
report their cut-off score only once and at the beginning of the game. Under this setting, we get
the same equilibrium outcome as in the decentralized game described in the above.

Corollary 4. The decentralized admission game for the private schools in which private schools
report cut-off scores only once has a unique SPNE outcome which is equivalent to the constrained
serial dictatorship outcome under true preferences and true cut-off scores.

Note that the proof of Theorem 2 does not rely on the fact that the private schools report cut-off
scores more than once. Hence, the proof follows directly follows from the proof of Theorem 2.

Finally note that Theorem 2 and Corollary 4 show that the unique equilibrium outcome does
not depend on the fact that private schools report cut-off scores just in the beginning of the
mechanism or for every subgame.
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