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Abstract

We apply the Atkinson (1970) inequality index to time series of asset re-

turns to offer a novel measure of financial risk consistent with expected-utility

theory. This measure is converted to a certainty-equivalent return serving

as a performance measure. We extend the Atkinson index to HARA utility

and derive closed-form solutions to our measures for a number of preference-

return combinations. Further, we establish relationships between risk aver-

sion and the weights assigned to the cumulants of the return distribution for

our performance measure. Using data from hedge funds and asset-pricing

anomalies, we find that our performance measure contains additional, eco-

nomically meaningful information.
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1. Introduction

The most commonly-used performance measure for financial assets – well-known to

basically any student of Finance – is the so-called Sharpe ratio (Sharpe, 1966, 1994),

which is computed as the expected excess return divided by the standard deviation of

returns. It is based on the mean-variance framework and is commonly used to rank

available investment opportunities. The measure is consistent with maximization of

expected utility if and only if the expected utility of the optimal mix of the risky and

the risk-free asset is a monotonic function of the Sharpe ratio. This would be the case

if, for example, returns are normally distributed or if the utility function is quadratic.1

The above-mentioned assumptions – normally distributed returns and quadratic util-

ity – are very strong and certainly unrealistic. Financial returns are commonly found

not to follow normal distributions (Cont, 2001) but exhibit negative skewness (downside

risk) and excess kurtosis (fat tails). However, the Sharpe ratio does not account for inde-

pendent higher-order risk and can therefore be manipulated using option-type strategies

(Goetzmann et al., 2002, 2007). Secondly, the case of quadratic utility implies a sati-

ation point. Once the input variable of wealth exceeds this threshold value, marginal

utility turns negative. It is also quite easy to come up with examples where an asset

yields a lower Sharpe ratio, but is preferred according to first-order stochastic dominance

(Hodges, 1998) and thus, in such examples, the ranking according to the Sharpe ratio

violates any ranking based on expected utility with elementary utility functions that are

non-decreasing in wealth.

1A common misunderstanding is that, since Chamberlain (1983) shows that spherically distributed
returns imply mean-variance preferences and Owen and Rabinovitch (1983) show that CAPM can
be extended to elliptical distributions, the Sharpe ratio is also a valid performance measure if
returns are elliptically or spherically distributed. However, Smetters and Zhang (2013) provide a
counterexample in which a spherically distributed asset yields a higher Sharpe ratio than another
spherically distributed asset but a lower expected utility. Since Smetters and Zhang (2013) show
that it is not valid for spherical distributions and the spherical distribution is a special case of the
elliptical one, we can conclude that it is not valid for elliptical distributions either.
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Most of the early critics of the Sharpe ratio use formal arguments based on the incon-

sistency with maximization of expected utility in general or provide intuitive counterex-

amples in which it fails. Using the standard deviation or variance as a measure of risk

has also received a substantial amount of criticism, not least because it fails to distin-

guish between good (”upside”) risk and bad (”downside”) risk. This calls for alternative,

more sophisticated risk and performance measures.

To our knowledge, this paper is the first to apply the Atkinson (1970) index – well-

known within the literature of social inequality – to financial returns, thereby obtaining

a measure of financial risk that can easily be transformed into a performance measure,

which is consistent with maximization of expected utility. As such, it is general in the

following sense: If a return distribution nth-order stochastically dominates another re-

turn distribution, then—provided that the elementary utility function is of e.g. CRRA

or CARA type—our performance measure will show a higher value.2 Since Smetters and

Zhang (2013) show the impossibility of preference-free higher-order performance mea-

sures, our measure is inevitably preference-dependent, but the conclusions can be made

more generally valid by varying e.g. the coefficient of relative risk aversion of a CRRA

utility function within some reasonable range (say, between one and ten), and checking

whether some assets are superior to others for the whole range.3 Using cumulants, we

derive general expressions for our risk and performance measures. We also extend the

Atkinson (1970) index to the general class of HARA utility. In addition, we provide an-

alytical solutions for a number of combinations of preferences and return distributions,

including the Normal Inverse Gaussian distribution first proposed by Barndorff-Nielsen

(1997a). We later apply our performance measure to hedge fund data and show that

it has a low rank correlation with existing ones, indicating that it contains additional,

2Suppose a return distribution nth order stochastically dominates another return distribution, then
—provided that (−1)ku(k)(x) < 0 for k = 1, 2, ..., n and all x— we show that our performance
measure will attain a higher value.

3Of course, the conclusions will have to rely on numerics with a reasonable division of the interval of
plausible values on the relative risk aversion (a non-integer valued step size is probably preferred).
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economically meaningful information. Moreover, we provide an in-depth examination

of well-known market anomalies and show that they lose their glamour once considered

under a more sophisticated performance measure.

The idea of applying measures of social inequality to financial returns is not new.

Yitzhaki (1982) was the first to apply the Gini coefficient (Gini, 1912) to financial returns

in order to measure risk and he uses the Gini mean difference to rank assets. He shows

that, for non-crossing generalized Lorenz curves, the Gini mean difference is consistent

with second-order stochastic dominance. There are, however, many cases in which the

generalized Lorenz curves cross. For instance, in the example provided by Goetzmann

et al. (2002) to illustrate the manipulability of the Sharpe ratio, we show that the

generalized Lorenz curves actually intersect, and that the Gini-based approach suggests

that the manipulated is the superior asset, while our performance measure identifies the

non-manipulated asset as the superior one for reasonable levels of risk aversion.

Given its generality, one might ask why we do not use a stochastic dominance ap-

proach, which seems simple at first sight, especially considering the power of modern

computers. Using the results in Eeckhoudt et al. (2009), which in turn build on those

of Ekern (1980) and Eeckhoudt and Schlesinger (2006), one could – with the help of a

computer – check for the lowest order of stochastic dominance by which a specific asset

dominates or is dominated by another one, and this ordering would then be consistent

with maximization of expected utility for all elementary utility functions whose deriva-

tives have alternating signs (starting with a positive first-order derivative). The main

difficulty with this approach – although it is very general – is that the number of asset

pairs that one needs to compare grows very quickly with the number of assets. With the

help of an index, we can easily compute its value for each asset and then compare the

values of all assets in our investment universe. Moreover, assuming e.g. CRRA or CARA

utility, our performance index will be in line with nth-order stochastic dominance, as

explained above.
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Goetzmann et al. (2007) and Zakamouline and Koekebakker (2009) propose alter-

native performance measures that overcome some well-known limitations of the Sharpe

ratio. In fact, we show that the measure proposed in Goetzmann et al. (2007) is a nested

special case of our approach for Constant Relative Risk Aversion preferences, and we

show how their measure can be decomposed into one part related to expected returns

and one part related to risk in the form of the Atkinson index. Thus, we both extend

their work and show how it is related to our framework. In Zakamouline and Koeke-

bakker (2009), they do not account for higher moments than skewness. Our measures

take kurtosis and even higher moments into account. In the bulk of their empirical

work, Zakamouline and Koekebakker (2009) assume a parametric distribution, whereas

our measures can be easily calculated without specifying a specific parametric distribu-

tion. Another contribution relative to Goetzmann et al. (2007) and Zakamouline and

Koekebakker (2009) is that we show how our measures are related to the cumulants of

the return distribution.

Martin (2013a,b) and Lundtofte and Wilhelmsson (2013) show the advantages of using

cumulants in consumption-based asset pricing. Previous attempts to incorporate higher-

order moments build on truncating Taylor expansions (Kraus and Litzenberger, 1976),

but it is vulnerable to the critique of Brockett and Kahane (1992) showing serious flaws

in using this common approach and interpreting e.g. a positive third-order derivative as

a preference for skewness. In this paper, we use a similar cumulant-based approach, but

instead of applying it to consumption-based asset pricing, we use it to develop general

formulae for the Atkinson index and certainty-equivalent returns.

Smetters and Zhang (2013) provide a generalization of the Sharpe ratio for a wider

admissible preference-probability space and in the process, they prove an impossibility

theorem stating that ”any ranking measure that is valid at non-Normal ’higher moments’

cannot generically be free from investor preferences” (Smetters and Zhang, 2013, p. 24).

Naturally, their impossibility theorem is reflected in our results. However, our goal is not
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to generalize the Sharpe ratio but to explore the usefulness of the Atkinson index and

rank fund returns directly – not optimal combinations between those returns and the risk

free asset. We note that Smetters and Zhang’s (2013) impossibility theorem applies not

only to our paper but also to Goetzmann et al. (2007) and Zakamouline and Koekebakker

(2009). While Goetzmann et al. (2007) and Zakamouline and Koekebakker (2009)—

implicitly or explicitly—assume specific values on preference parameters, we explore the

robustness of rankings to variation of preference parameters within a reasonable range.

We employ our measure to rank assets in two empirical settings. We consider both a

large number of hedge fund strategies and well-known market anomalies (size, value, and

momentum). Our novel measure suggests a substantially different ranking as compared

to standard measures such as the Sharpe measures and more elaborate measures based

on tail risk. Some of the well-known market anomalies lose their glamour when evaluated

under our novel performance measure by loading on higher order risk. For high levels

of risk aversion the rank ordering of assets changes substantially, allowing for clear

statistical discrimination between the assets in settings with measurement error. These

results can be compared to the empirical findings in Eling and Schuhmacher (2007)

showing that the ranking of hedge funds is very similar for the various performance

measures that they consider.

There is a vast literature proposing alternative performance measures (Caporin et al.,

2014) in particular focusing on downside risk (e.g., the popular Value at Risk). As

mentioned above, Eling and Schuhmacher (2007) put those measures to the test using

empirical evidence from hedge fund returns. They, however, find that the ranking of

hedge funds does not change substantially for different performance measures. More

formally, in Schuhmacher and Eling (2011) they show that if the distribution of returns

satisfies the location-scale (LS) property4 – which holds for a large number of return

distributions – a large number of (drawdown) performance measures increase in a concave

4That implies a Probability Density Function f(y) (PDF) with the property f(a + by) = bf(y).
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manner with the Sharpe ratio. Thus, one might consider the diverse failures of the

Sharpe ratio as academic nitpicking, which, yet, have little practical relevance. Our

paper challenges this view, in that we find low rank correlations between our proposed

performance measures and existing ones, including the Sharpe ratio. While most of the

other approaches simply replace variance or standard deviation in the Sharpe ratio by

other risk measures, our proposed class of performance measures is firmly grounded in

the theoretical foundations of financial economics.

The remainder of the paper is organized as follows. Section 2 contains background

information regarding inequality measures; Section 3 presents closed-form solutions for

the Atkinson index under CRRA utility; Section 4 extends the results to Hyperbolic

Absolute Risk Aversion (HARA) utility and introduces a class of performance measures;

in Section 5, we apply our risk and performance measures to hedge funds and market

anomalies; finally, Section 6 concludes the paper.

2. Background

Since the theory behind applying inequality measures to financial data is not widely-

known among researchers in Finance, this section provides a review of the literature

on the financial applications of Lorenz curves and the Gini coefficient and, finally, we

provide a general discussion of the Atkinson index and how it can be applied to financial

data.

2.1. Inequality measures applied to financial time series

In financial economics the standard deviation has been widely acknowledged as a measure

of dispersion and thus of risk. Meanwhile–and seemingly unrelated–there has been a

literature in the economics of inequality trying to find a simple measure of the dispersion

of economic quantities in a cross-section of individuals that is easy to interpret. The
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most popular measure is certainly the so-called Gini coefficient (Gini, 1912). Yitzhaki

(1982) was the first to propose its usage for the time series of financial asset returns for

the purpose of ranking assets. The Gini coefficient can be defined as

G =
E[|x1 − x2|]

2E[x]
, (1)

where x1 and x2 are independent replicates of the random variable x. Provided that

x ≥ 0, the Gini coefficient is bounded to be between zero and one, i.e., 0 ≤ G ≤ 1. High

values correspond to high dispersion.

Yitzhaki (1982) proposes the Gini as a measure of financial risk (high values implying

high risk) and he introduces the Gini mean difference to rank assets. His measure of

fund performance is given by

λi = E[xi] − Γi,

for some fund i with a mean of E[xi]. The measure Γi – labeled Gini’s mean difference5

– is defined as follows

Γi = 0.5
∫ ∞

−∞

∫ ∞

−∞
|x − x′|dFi(x)dFi(x

′) =
∫ ∞

−∞
Fi(x)[1 − Fi(x)]dx,

where Fi is the cumulative distribution function of fund i’s returns. In fact, this measure

is just the Gini coefficient multiplied by its mean Γi = E[xi]Gi. Thus, the performance

measure reads

λi = E[xi] − E[xi]Gi = E[xi](1 − Gi). (2)

Given the range of the Gini coefficient (0 ≤ Gi ≤ 1) this is an inequality adjusted mean

for which λi ≤ E[xi]. Yet, this measure is also problematic as it does not generally allow

for a ranking of assets that is consistent with second-order stochastic dominance. As

5Sometimes 2Γi is referred to as Gini’s mean difference (Yitzhaki and Schechtman, 2013, Ch. 2).
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explained below, the latter requires a second assumption about non-crossing generalized

Lorenz curves (Lorenz, 1905).

An asset A second-order stochastically dominates an asset B if their cumulative dis-

tribution functions, FA and FB, respectively, satisfy

∫ x(q)

−∞
(FB(t) − FA(t))dt ≥ 0 ∀0 ≤ q ≤ 1, (3)

with strict inequality for some q. Formally, this can be checked by employing the concept

of the Lorenz curve (Lorenz, 1905), defined as:

L(F ) =

∫ F −1(x)
−∞ xf(x)dx
∫∞

−∞ xf(x)dx
=

∫ F
0 F ′(−1)(x)dF ′

∫ 1
0 F ′(−1)(x)dF ′

,

which due to the definition of the arithmetic mean E[x] =
∫∞

−∞ xf(x)dx =
∫ 1

0 F ′(−1)(x)dF ′

can be rewritten as:

L(F ) =
1

E[x]

∫ F −1(x)

−∞
xf(x)dx =

1

E[x]

∫ F

0
F ′(−1)(x)dF ′.

Graphically, for x > 0, the Lorenz curve L(F ) is a concave curve ranging from 0 ≤ F ≤ 1

and 0 ≤ L(F ) ≤ 1 which lies below the 45-degree line. If the Lorenz curve L(FA) lies

strictly above the Lorenz curve L(FB), then we say that FA Lorenz dominates FB. If

we adjust the Lorenz curve by its mean E[xi], we get the so-called generalized Lorenz

curve GLi:

GLi = E[xi]L(Fi) =
∫ F

0
F

′(−1)
i (x)dF ′

i . (4)

As argued in Shorrocks (1983), we can then make a statement about second order

stochastic dominance when comparing generalized Lorenz curves. If the generalized

Lorenz curve for some asset B lies strictly above the same curve for asset A, asset B
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second-order stochastic dominates asset A. In case, the curves intersect, no clear ranking

in terms of second order stochastic dominance is possible.

The Gini coefficient can be directly retrieved from the Lorenz curve using

G = 1 − 2
∫ 1

0
L(F )dF. (5)

Graphically, it is the ratio between the area between the Lorenz curve and the 45-degree

line as a ratio of the total area under the 45-degree line (which is 0.5). Note that using

the Gini coefficient it is (almost always) possible to rank distributions. Nevertheless, it

does not have to imply second-order stochastic dominance if generalized Lorenz curves

can intersect. This issue is well-known in the economics of inequality (Cowell, 2000).

2.2. The Gini coefficient and intersecting Lorenz curves

Let us now illustrate this theory with the help of the example of Goetzmann et al.

(2002), also taken as a litmus-test in Zakamouline and Koekebakker (2009). In their

paper, Goetzmann et al. (2002) argue that fund managers can gamble the Sharpe ratio

by selling out of the money call and put options. Thus, the Sharpe ratio can be increased.

Yet, investors are exposed to negative skewness and high kurtosis. For comparison, we

adopt the procedure of Zakamouline and Koekebakker (2009) – who also develop an

alternative performance measure – and fit a Normal Inverse Gaussian distribution (NIG)

both to the stock prices themselves and to the manipulated portfolio. By construction,

the returns on the non-modified portfolio follow a normal distribution. The latter is

nested within the NIG distribution.

As shown in Figure 1, the manipulated portfolio contains an extreme left tail and

thus exposes the investor to a large degree of downside risk. We report the first four

moments and the performance measure in Table 1. For the assumed risk-free rate of 5%
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Figure 1: Histograms of returns of standard asset (A) and manipulated asset (B) for
NIG fit.

The figure displays the return distributions for an asset A and an asset B having properties as docu-
mented in Table 1. Asset B is a manipulated version of asset A in order to gamble the Sharpe ratio
as suggested in Goetzmann et al. (2002). The results were created by fitting the NIG distribution (for
details cf. equation 3) using the four available moments and creating a Monte-Carlo simulation with
N = 100, 000 observations each.

the Sharpe ratio of the manipulated portfolio is higher, suggesting a favorable investment

opportunity.

Figure 2 plots the respective generalized Lorenz curves for arithmetic excess returns

rE . It becomes apparent that they intersect twice, both at the low end and at the high

end. At the low end asset A is superior, as the manipulated asset exposes the investors to

higher downside risk.6 The same holds true at the right end following from the fact that

the non-manipulated asset also displays higher mean returns.7 Only in the intermediate

6Moreover, the curve undercuts the x-axis due to negative returns. If we use the exponential transfor-
mation (R = exp(r)) the curve is always above the x-axis. Yet, the two curves still intersect twice
but the difference is very small. In general, the inequality measure of the transformed value R is
lower than the one featuring negative values.

7The right end of the generalized Lorenz curve equals it mean GLi(q = 1) = E[xi] as Li(q = 1) = 1
and GLi(q) = E[xi]Li(q).
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Moments A B (manipulated)
Mean 0.162 0.139
Std. dev. 0.177 0.12
Skewness 0.456 -2.358
Kurtosis 3.342 12.355
Sharpe ratio 0.631 0.743
Gini coeff. 0.1 0.055
λ 1.024 1.04
Atkinson index (ρ = 3) 0.045 0.025
RCE

E (ρ = 3) 1.088 1.074

Table 1: Moments, risk and performance measures for the example of Goetzmann et al.
(2002).

The manipulated asset B with the given first four moments produces a higher performance measure
than the asset A if one judges it by the Sharpe ratio respectively the Gini mean difference λ (starting
from the Gini coefficient as a measure of risk). This is not the case for certainty equivialent excess
return RCE

E (based on the Atkinson index as a measure of risk) with a risk aversion of ρ = 3. The
risk-free rate is assumed to be 5% in line with Zakamouline and Koekebakker (2009).

area – the one which is targeted by the Sharpe ratio – the manipulated asset B appears

superior. Due to the intersection(s), a ranking – in the sense of second-order stochastic

dominance – is generically not possible. Thus, both approaches – the standard Sharpe

ratio and the modified approaches of Goetzmann et al. (2007) and Zakamouline and

Koekebakker (2009) – deliver rankings that are somewhat unstable in the sense that

they are effectively imposing a specific degree of risk aversion and other degrees of risk

aversion can potentially alter the rankings. In Table 1, we also see that the Gini mean

difference (λ) ranks the manipulated asset higher. We argue that these issues can be

addressed by applying the so-called Atkinson index (Atkinson, 1970) and varying the

preference parameters within a plausible range.
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Figure 2: Generalized Lorenz curves for returns of standard asset (A) and manipulated
asset (B).

The generalized Lorenz curves of returns r from asset A and the manipulated asset B (with the moments
presented in Table 1) intersect twice meaning that it is not possible to rank them in terms of second-order
stochastic dominance.

2.3. The Atkinson index

Drawing on standard utility theory with a utility function u, Atkinson (1970) proposes

a dispersion measure and he starts from the certainty equivalent xCE , defined through

u(xCE) =
∫ ∞

−∞
u(x)f(x)dx ↔ xCE = u−1

(∫ ∞

−∞
u(x)f(x)dx

)

. (6)

He proposes the usage of power utility with a power exponent of 1 − ρ for which ρ

represents the coefficient of relative risk aversion. Thus, the underlying utility function
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exhibits Constant Relative Risk Aversion (CRRA). Using this idea, he constructs a

measure of inequality – henceforth called the Atkinson index A – defined as:

A = 1 − xCE

E[x]
. (7)

Note that, for risk averse agents and payoffs with support on the positive part of the

real line, we have that the Atkinson index is always between zero and one, where one

is the highest degree of inequality, while 0 is the lowest. His initial application was

ranking countries not by overall respectively per capita Gross Domestic Product, but

by explicitly incorporating income inequality. The index itself is an adjustment for

inequality and helps to evaluate income under the veil of ignorance.

Solving for the Atkinson index in the case of constant relative risk aversion, we have

A(ρ) =











1 − 1
E[x]

(E[x1−ρ])
1

1−ρ ρ > 0, ρ 6= 1,

1 − 1
E[x]

eE[ln x] ρ = 1.
(8)

The index features the free parameter ρ measuring the degree of risk aversion. For the

special case of risk neutrality we would have A(ρ = 0) = 0 and thus xCE = E[x]. The

special case of ρ = 1 (log-utility) implies that the Atkinson index A(ρ = 1) = 1 − GM [x]
E[x]

represents a relationship between arithmetic and geometric mean GM [x]. In fact, in this

case, the certainty equivalent is the geometric mean. In the special case when ρ = 2,

the certainty equivalent equals the harmonic mean.8

Now, we want to apply the Atkinson index to fund returns. So far, we assumed some

arbitrary random variable x. The literature in the economics of inequality has focused

on the cross-sectional distribution of measures such as income or consumption. In the

financial economics setting – which is considered here – utility depends on future wealth.

Thus, we can replace the generic value x with w0R for which w0 is initial wealth (at time

8The latter is defined as HM(x) =
(

E[x−1]
)−1

.
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t = 0) and R represents the earned gross return. Below, we also model continuously

compounded returns r, such that even if r can become negative, R = exp(r) stays

positive.

To facilitate comparisons with other performance measures, we also define certainty

equivalent returns and certainty equivalent geometric excess returns. Note that geo-

metric excess returns (index E) are given by the ratio between returns and risk-free

rates, while arithmetic excess returns – as e.g. employed in the standard Sharpe ratio –

are defined as the difference between returns and risk-free rates. The geometric excess

return is (among others) used in the rating of Morningstar (Morningstar, 2016). The

certainty equivalent return (RCE) is the return on a risk-free investment that yields the

same utility as an investment in the risky asset, defined implicitly through

u(w0R
CE) = E[u(w0R̃)] ↔ RCE =

1

w0

u−1(E[u(R)]), (9)

in line with equation (6). The certainty equivalent geometric excess return is defined as

RCE
E ≡ RCE

Rf

, (10)

and the geometric excess return on a risky asset is defined as

R̃E ≡ R̃

Rf

. (11)

Hence, the Atkinson index equals

A = 1 − w0R
CE

E[w0R̃]
= 1 − RCE

E[R̃]
= 1 − RCE

E

E[R̃E ]
. (12)
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From the above equation, we can see intuitively why the Atkinson index is a risk measure:

For a given expected return (E[R̃] or E[R̃E ]), A is decreasing in the risk-adjusted return

(RCE or RCE
E ) and the risk-adjusted return is lower whenever the risk is higher.

One important reason in favor of using (10) as a performance measure is that it is in

line with stochastic dominance. Essentially, there are results connecting expected utility

and stochastic dominance, so that —given some assumptions on the utility function—

if a return distribution stochastically dominates another return distribution, expected

utility and therefore certainty equivalent returns will be higher. The details are put

forth in the following proposition.

Proposition 2.1 Suppose that we are comparing two return distributions, FA and FB.

Further, suppose that the elementary utility function u(w) is sufficiently differentiable

and satisfies (−1)ku(k)(w) < 0 for k = 1, 2, ..., n and all w. Then, we have that if FA

nth-order stochastically dominates FB, it must be that RCE
E,A ≥ RCE

E,B.

Proof The proof is relegated to Appendix A.1.

If we use CRRA or CARA utility, for example, we have that our performance measure

is automatically in line (in the above sense) with nth-order stochastic dominance, regard-

less of the coefficients of risk aversion. In particular, if the elementary utility function is

increasing and FA first-order stochastically dominates FB, our performance measure will

yield a (weakly) higher value for returns following the distribution FA (cf. Levin, 2006).

Thus, it is not vulnerable to the same type of criticism that Hodges (1998) put forth

regarding the Sharpe ratio (see Table 2). In his example, our performance measure will

never yield a higher value for the first-order stochastically dominated asset, as long as

the chosen utility function is increasing and Table 2 confirms this result in the case when

we let the coefficient of relative risk aversion be equal to three. Another implication is

that if the elementary utility function is increasing and concave and FA second-order
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stochastically dominates FB, our performance measure will yield a (weakly) higher value

for returns following the distribution FA (cf. Laffont, 1989, Section 2.5). Further, with

CRRA utility, the Atkinson index is independent of both initial wealth w0 and a con-

stant risk-free rate. As we demonstrate below, these properties do not carry over to all

utility functions.

1 2 3 4 5 6 7 8 9 10

Risk aversion ρ

0

0.2

0.4

0.6
Atkinson index A(ρ)

Asset A
Asset B (manipulated)

1 2 3 4 5 6 7 8 9 10

Risk aversion ρ

0.6

0.8

1

1.2
Certainty equivalent R

E
CE

Asset A
Asset B (manipulated)

Figure 3: Atkinson index and certainty equivalent excess return for standard asset A
and manipulated asset B for a range of values on ρ.

The Atkinson index A(ρ) (upper panel) as a measure of risk in asset A (with the moments presented
in Table 1) and the manipulated asset B intersect allowing no general ranking. Yet, the certainty
equivalent excess return is always superior for asset A for a risk aversion in the range 1 ≤ ρ ≤ 10. The
risk-free rate is assumed to be 5% in line with Zakamouline and Koekebakker (2009).

Returning to the example of Goetzmann et al. (2002) with an original distribution

A and a manipulated one, B, and using a CRRA utility function, we find that, for

intersecting generalized Lorenz curves – as depicted in Figure 2 – the value of ρ becomes

important. For low values of ρ, agents focus on the upside and thus the manipulated

distribution B yields a lower Atkinson index (indicating risk). Only for a sufficiently

high ρ > ρ∗ (which in our case is approximately 6, cf. Figure 3), does the Atkinson index

indicate that asset A carries a lower risk. In contrast, the certainty equivalent excess
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Excess Return [%]
Probability Asset C Asset D
0.01 -25 -25
0.04 -15 -15
0.25 -5 -5
0.4 5 5
0.25 15 15
0.04 25 25
0.01 35 45
Mean 0.05 0.051
Std. dev. 0.1 0.103
Skewness 0 0.305
Kurtosis 3.4 4.487
Sharpe ratio 0.5 0.493
Gini coeff. 0.0535 0.0544
λ 1.0002 1.0007
Atkinson index (ρ = 3) 0.015 0.0156
RCE (ρ = 3) 1.041 1.042

Table 2: Moments and performance measures for the example of Hodges (1998).
The table presents the probability distribution of an asset C and another asset D as suggested by
Hodges (1998) and the associated first four moments. Asset D first-order stochastically dominates
asset C by having a more favorable return in one state. Yet, the Sharpe ratio fails to identify it as
the superior asset. Meanwhile, both the Gini mean difference λ (built on the Gini as a risk measure)
and the certainty equivalent RCE (based on the Atkinson index as risk measure) with a risk aversion
of ρ = 3 identify asset D as superior.

17



return RCE
E is superior for the unmanipulated asset A over the whole range of values

on ρ (cf. lower panel of Figure 3). In fact, the manipulated asset B loses in relative

attractiveness for high values of ρ.

The example depicted in Figure 1 compares returns following a normal distribution –

being the basic working hypothesis in Finance and also the underlying assumption behind

the Sharpe ratio – with a distribution obeying a NIG distribution. In the following, we

derive closed-form measures for these two important parametric distributions. Moreover,

we present a non-parametric approach using cumulants. Given this, we discuss the

usefulness and the limitations of applying the Atkinson index to financial returns.

Another easy-to-grasp example in which the Sharpe ratio fails was proposed by Hodges

(1998). Moreover, it is frequently taken as a litmus-test (cf. e.g. Zakamouline and

Koekebakker (2009)) to benchmark alternative risk measures. Table 2 shows the payoff

structure of two assets, C and D. The only difference is that asset D has a favorable state

in which it delivers a higher return than asset C. Thus, it first-order dominates asset

C. In terms of moments asset D has a higher mean, but also a higher variance. As the

latter effect dominates, the Sharpe ratio of asset D is lower – erroneously indicating that

asset C is more favorable. In terms of higher moments, asset D has a higher skewness,

but also a higher kurtosis. Due to first-order stochastic dominance, both the Gini mean

difference and the excess geometric certainty equivalent return correctly identify asset

D as superior.

Finally, we want to compare our novel performance measure to some existing and

popular measures. A very common measure – in particular to rank mutual funds – is

the so-called Morningstar rating published by the investment research firm Morningstar

(Morningstar, 2016). The rating itself is given in stars ranging from one to five given the

overall investment category. 10% of the overall assets are labeled as one star (respectively

5 stars), 22.5% as 2 stars (respectively 4 stars) leaving a residual of 35% being 3 star

assets. The Morningstar ratings are based on the certainty equivalent geometric excess
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returns for a CRRA utility function with a coefficient of relative risk aversion of three9

(ρ = 3) and thus, there is a close connection between the Morningstar ratings and the

Atkinson index. Below, we define M(ρ), where M(3) corresponds to the Morningstar

index:

M(ρ) ≡ RCE
E (ρ) − 1 = (1 − A(ρ))E[R̃E ] − 1. (13)

In Goetzmann et al. (2007), they propose a manipulation-proof performance measure

that is in particular insensitive to dynamic trading strategies. Theoretically, the latter

is defined as:

θ̂(ρ) =
1

1 − ρ
ln
(

E[R̃1−ρ
E ]

)

, (14)

where they let

ρ =
ln
(

E[Rb]
Rf

)

V ar(ln Rb)
, (15)

with Rb being the return on a benchmark portfolio. It is easy to see that we have

θ̂(ρ) = ln(1 + M(ρ)) = ln(1 − A(ρ)) + ln E[R̃E]. (16)

Thus, we can decompose Goetzmann et al.’s (2007) measure into one part that is

related to the Atkinson index, which measures risk, and one part related to expected

returns.

9Note that in their classification Morningstar (2016) use an exponent of −γ rather than 1 − ρ as
suggested here. Thus, the value of γ = 2 used by Morningstar (2016) translates into a value of
ρ = 3.
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3. Closed-form relations for the standard Atkinson index

(CRRA utility)

In his seminal article, Atkinson (1970) assumes CRRA utility, which is convenient, be-

cause in this case, the certainty equivalent return, RCE is independent of initial wealth,

and thus, through equation (12), the Atkinson index is also independent of initial wealth.

Below, we provide a general result, which links the standard Atkinson index to the cu-

mulants of the return distribution. We then exemplify its properties for two specific and

commonly assumed return distributions.

Given that the moment-generating function (MGF) and the cumulants exist,10 we are

able to express the Atkinson index and the certainty equivalent return in terms of the

moment-generating function or the cumulants of the distribution.

Proposition 3.1 (Relation between certainty equivalent and cumulants for

CRRA utility) Suppose we have CRRA utility with a coefficient of relative risk aversion

of ρ and that gross returns are given by R = er, where r follows some ”well-behaved”

distribution. Then, the Atkinson index equals

A(ρ) = 1 − (Ψr(1 − ρ))
1

1−ρ

Ψr(1)
, (17)

where Ψr(t) ≡ E[etr] is the moment-generating function of r, and the continuously

compounded certainty equivalent excess return is given by

rCE
E (ρ) ≡ ln RCE

E =
1

1 − ρ
kr(1 − ρ) − rf , (18)

10In particular, we exclude cases with non-finite moments. In the following we will refer to this class
of moment-generating functions more briefly as ”well-behaved”.
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where kr(t) ≡ ln Ψr(t) = ln E[etr] is the cumulant-generating function of r.

The above expression can also be written as

rCE
E (ρ) =

∞
∑

n=1

κr
n · (−1)n−1 · (ρ − 1)n−1

n!
− rf , (19)

where κr
n ≡ k(n)

r (0) is the nth cumulant of r.

Proof A proof is given in Appendix A.2.

The first four cumulants are given by

κr
1 = E[r] (20)

κr
2 = V ar[r] = σ2 (21)

κr
3 = Skew[r]σ3 = E[(r − E[r])3]σ3 (22)

κr
4 = (Kurt[r] − 3V ar[r]2)σ4 = (E[(r − E[r])4] − 3V ar[r]2)σ4. (23)

Note that the fourth cumulant is the excess kurtosis relative to the normal distribution.

In fact, the cumulant approach is helpful in order to restrict the values of ρ. Consider

the CRRA utility function underlying our performance measure

u(w) =
w1−ρ − 1

1 − ρ
.

For integer-valued ρ > 1 and n > 1, we can write the nth derivative as follows

∂nu(w)

∂wn
= (−1)n−1w1−ρ−n(n − 1)!

(

ρ + n − 2

ρ − 1

)

,
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Figure 4: Weight ωn as function of cumulant n for CRRA utility with ρ = 5.

Weight ωCRRA
n attached to the n-th cumulant when computing the certainty equivalent rCE with

CRRA utility. For the displayed case of relative risk aversion ρ = 5 the largest weights are attached to
cumulants 3 and 4. Weights alternate in sign starting with a positive value for n = 1.

with the last term being the binomial coefficient. The sign of this measure is positive for

odd moments (mean, skewness, ...) and negative for even moments (variance, kurtosis,

...). In contrast to the quadratic utility function, the derivatives of the utility do not

disappear for higher levels of n (for quadratic utility this is the case for n > 2), but

eventually explode in absolute terms.

A similar pattern emerges for the weights attached to the cumulants ωCRRA
n = (−1)n−1(ρ−1)n−1

n!
.

Moreover, low moments are of higher importance than higher moments. In particular,

the weight converges to zero for very high cumulants11

lim
n→∞

(−1)n−1(ρ − 1)n−1

n!
= 0.

11In contrast, the absolute value of the nth derivative explodes as n → ∞.
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The absolute weight is largest for

n∗ = ρ − 1,

and n∗ − 1 with ωn∗ = −ωn∗−1.

For example for ρ = 5 the highest absolute weight is put on the cumulants n = 3

(skewness) and n = 4 (kurtosis) (ω3 = −ω4 > 0). This case is displayed in Figure 4.

As already discussed, odd (even) cumulants carry positive (negative) coefficients, which

converge to zero as n goes to infinity.

For ρ = 3 – as used in the Morningstar rating (Morningstar, 2016) – the largest

weights are attached to the mean and variance. In fact, ρ = 3 constitutes a lower barrier

for this type of reasoning.

In order to illustrate our general findings we want to consider two specific return

distributions. Even though it is widely rejected in empirical data, the assumption of

normally distributed returns is still the working hypothesis in financial markets, pre-

sumably due to its mathematical convenience. If continuously compounded returns r

are normally distributed, R = exp(r) will be log-normally distributed. The following

proposition summarizes the value of the Atkinson index in the case that R is log-normally

distributed.

Corollary 3.2 (Atkinson index for CRRA utility and log-normally distributed

returns) Suppose we have CRRA utility with a coefficient of relative risk aversion of ρ

and that gross returns are given by R = er, where r ∼ N(µr, σ2
r). Then, the Atkinson

index equals

0 < A(ρ) = 1 − exp
{

−ρσ2
r /2

}

< 1. (24)
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Proof Here, we can use that E[R(1−ρ)] = E[e(1−ρ)r] and results regarding the moment-

generating function for a normally distributed random variable. The complete proof is

relegated to Appendix A.2.1.

Note that for a given variance, higher risk aversion ρ increases the Atkinson index,

and for a given coefficient of relative risk aversion, a higher variance likewise increases

the Atkinson index. It is also interesting to point out that in this case, risk only depends

on the variance σ2
r .

From equation (12), we can see that the continuously compounded certainty equivalent

return is given by

rCE(ρ) = ln RCE = µr +
1

2
(1 − ρ)σ2

r . (25)

Note that the certainty equivalent depends on the value of ρ which is an exogenous

risk aversion parameter. In the special case of log-utility (ρ → 1), the continuously

compounded certainty equivalent return is equal to the geometric mean (rCE(ρ = 1) =

µr). In the case that returns follow a log-normal distribution this is also equal to the

log of the median. Moreover, if ρ = 3 we have that rCE(ρ = 3) = µr − σ2
r , which in

turn equals the log of the mode. An increase in risk aversion ρ increases the Atkinson

index and decreases the value of the certainty equivalent. The latter is true for general

distributions, not just the log-normal distribution.

We want to contrast the above with returns r following the NIG distribution implying

that gross returns R = exp(r) follow a log-NIG distribution. The NIG distribution was

introduced by Barndorff-Nielsen (1997a) and since it allows for negatively skewed and

fat-tailed return distributions, it plays an important role in modeling returns in finance

(Barndorff-Nielsen, 1997b). Its probability density function is given by

f(r; α, β, µ, δ) =
δα exp(δγ + β[r − µ])

π
√

δ2 + (r − µ)2
K1(α

√

δ2 + (r − µ)2)

24



with γ ≡
√

α2 − β2 and K1 being the modified Bessel function of the third kind. Each

of the four parameters has some intuitive interpretation. The parameter µ is a loca-

tion parameter implying that changing µ translates the probability density function.

Meanwhile, δ > 0 scales the overall distribution. The important parameter β captures

asymmetry. In particular, for β < 0 we have negative skewness, which in our financial

application captures downside risk.12 Finally, the parameter α > 0 captures the tail of

the distribution. In particular, low values indicate fat tails and thus high kurtosis. The

variables have to obey |β| < α implying γ > 0.

The distribution can be easily summarized using the moment-generating function

(MGF), which is given by

Ψr(t) ≡ E[exp(tr)] = exp(tµ + δ(γ −
√

α2 − (β + t)2)),

and generates an infinite number of moments. The first four moments, which are also

the most important, amount to

E[r̃] ≡ M = µ + δ
β

γ
,

V ar[r̃] ≡ σ2 = δ
α2

γ3
,

Skew[r̃] ≡ S = 3
β

α
√

δγ
,

Kurt[r̃] ≡ K = 3 +
3

δγ



1 + 4

(

β

α

)2


 .

12This is also important as most parametric distribution functions are either symmetric or exhibit
positive skewness (Evans et al., 2000).
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With help of the above relations, we can solve for the four free parameters. Following

Karlis (2002), we can thus fit the distribution with:

α̂ =
3
√

3K̄ − 9 − 4S̄2

σ̄2(3K̄ − 9 − 5S̄2)
,

β̂ =
3S̄

σ̄(3K̄ − 9 − 5S̄2)
,

µ̂ = M̄ − 3S̄σ̄

3K̄ − 9 − 4S̄2
,

δ̂ = 3σ̄

√

3K̄ − 9 − 5S̄2

3K̄ − 9 − 4S̄2
,

for which the hat indicates an estimated value and the bar signifies the moment in

the sample, with M denoting the mean, S skewness and K kurtosis, respectively. The

function can only be fitted if K̄ − 3 > 5
3
S̄2.13

Another convenient feature of the NIG distribution is that we can retrieve the standard

normal distribution as a special case by letting β = 0 (symmetry), δ → ∞, α → ∞, and

δ
α

= σ2
r . Below, we solve analytically for the standard Atkinson index in the case when

the continuously compounded returns follow a NIG distribution.

Corollary 3.3 (Atkinson index for CRRA utility and log-NIG distributed re-

turns) Suppose we have CRRA utility with a coefficient of relative risk aversion of ρ,

and that gross returns are given by R = er, where r ∼ NIG(µ̂r, δr, αr, βr). Then, the

Atkinson index equals

A(ρ) = 1−exp

{

δr

1 − ρ

(

ρ
√

α2
r − β2

r + (1 − ρ)
√

α2
r − (βr + 1)2 −

√

α2
r − (βr + (1 − ρ))2

)

}

.

(26)

13Otherwise, we would have |β| > α.
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Proof Here, we can use that E[R(1−ρ)] = E[e(1−ρ)r] and results regarding the moment-

generating function for a NIG distributed random variable. We present a complete proof

in Appendix A.2.2.

The log (continuously compounded) certainty equivalent return is given by

rCE(ρ) = µ̂r +
δr

1 − ρ

(

√

α2
r − β2

r −
√

α2
r − (βr + (1 − ρ))2

)

(27)

The geometric mean (nested for ρ = 1) is not well-defined in this case. Moreover, for

the solutions in (26) and (27) to be well-defined, the parameter values must satisfy

αr ≥ max{|βr|, |βr + 1|, |βr + (1 − ρ)|}.

Due to the higher number of free parameters, the relation between the Atkinson

index and the parametric distribution is more involved for the log-NIG distribution

as compared to the log-normal distribution. To gauge the effects of parameter shifts

around reasonable values we calibrate the first four moments to the average first four

moments of hedge fund returns (covered in detail in section 5). Table 3 displays the

results. As a benchmark we assume a parameter of risk aversion of three (ρ = 3), in

line with the calibration of Morningstar (2016). We provide (numerical) comparative

statics by varying individual parameters around the benchmark calibration. As before,

the Atkinson index does not depend on the translation parameter µ̂r. However, the

Atkinson index increases with the parameter of risk aversion ρ (cf. Figure 5c). As shown

in Figure 5d the index is sensitive to scaling δr as a larger value of δr is accompanied by

a higher Atkinson index. In general higher values of δr increase the first two moments

– being in the focus for a risk aversion of ρ = 3. More interestingly, the Atkinson index

decreases with αr being our inverse tail parameter (cf. Figure 5a). Low values of αr

increases the absolute values of the third and the fourth moment relative to the second

moment. Finally, the parameter βr in particular drives the skewness. More negative

values implying more negative skewness also increase the Atkinson index, indicating
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Return r Return R
Moment
Mean 0.49 % 1.0042
Std. dev. 4.91 % 5.76%
Skewness -0.41 -0.467
Kurtosis 8.27 8.07
Calibrated NIG log-NIG NIG
µ 0.02 0.02
δ 0.03 0.032
α 12.52 12.32
β -1.05 -1.19

Table 3: Calibrated NIG model for average hedge fund data.
Using data from the Lipper Hedge Fund database of active funds from July 2007 to July 2017 (cf. Table
4), we calculate the first four moments of monthly returns r and transformed returns R = exp(r) > 0,
respectively. The left column reports the fit of the four parameters when fitting a NIG distribution
on r (and thus a log-NIG distribution on R), while the right column reports the parameter values
when fitting a NIG distribution on R. We regard these values as reasonable steady state values for the
comparative static exercises conducted in Figures 5 and 6, respectively.

that the model is able to capture this effect. Interestingly, the partial derivative of

the Atkinson index with respect to βr is ambiguous (cf. Figure 5b). For high values

of βr implying high positive skewness and thus upside potential the Atkinson index is

increasing in βr. Note that this ambiguity stems from the fact that a higher βr also

increases the tails of the distribution and thus the kurtosis.
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Figure 5: Parameter variation for log-NIG distributed returns and CRRA utility.
Atkinson index with CRRA utility with variation around the steady state values as reported in Table
3 (left column) for the parameters αr, βr, δr and relative risk aversion ρ.
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4. Extensions of the Atkinson index within the class of

HARA utility functions

In his seminal article, Atkinson (1970) uses CRRA utility, but his concept is open to

essentially any monotone utility function. In order to generalize his concept, we can

assume Hyperbolic Absolute Risk Aversion (HARA) utility which, e.g., nests CRRA

utility as a special case;

u(w) =
ρ

1 − ρ

(

λw

ρ
+ φ

)1−ρ

. (28)

Obviously, φ = 0 results in CRRA utility. Assuming φ = 1 and letting ρ → ∞, we

obtain Constant Absolute Risk Aversion (CARA) utility with λ being the coefficient of

absolute risk aversion. Further, in the special case when ρ = −1, we obtain quadratic

utility.

Proposition 4.1 (Atkinson index for general HARA utility) In the case of HARA

utility (see equation 28), and a distribution of gross returns f(R), we have that the Atkin-

son index is given by

A(ρ, λ, φ) = 1 +
ρ

λw0µR





φ −




∫ ∞

−∞

(

λw0R

ρ
+ φ

)1−ρ

f(R)dR





1

1−ρ





 , (29)

where w0 is initial wealth and µR =
∫∞

−∞ Rf(R)dR. Further, the certainty equivalent

geometric excess return is given by

RCE
E (ρ, λ, φ) = (1 − A)

E[R̃]

Rf

=
ρ

λw0Rf











∫ ∞

−∞

(

λw0R

ρ
+ φ

)1−ρ

f(R)dR





1

1−ρ

− φ





 .

(30)
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Proof The result follows directly from applying the relations in (12) to the case of

HARA utility (see equation 28).

In the following, we explore some interesting cases in which we can solve for the Atkin-

son index in closed form.

4.1. Uniformly distributed returns and general HARA utility

The first case in which we can solve for the Atkinson index in closed form is the case of

uniformly distributed returns and general HARA utility.

Corollary 4.2 (Atkinson index for HARA utility and uniformly distributed

returns) Suppose gross returns are uniformly distributed,

f(R) =
1

b − a
(a < R < b). (31)

Then, the Atkinson index is given by

A(ρ, λ, φ) = 1 +
2ρφ

λw0(a + b)

− 2

(a + b)

(

ρ

λw0

)
2−ρ
1−ρ





1

(2 − ρ)(b − a)





(

λw0b

ρ
+ φ

)2−ρ

−
(

λw0a

ρ
+ φ

)2−ρ








1

1−ρ

.(32)

The corresponding certainty equivalent geometric excess return amounts to

RCE
E (ρ, λ, φ) = − ρφ

λw0Rf

+
1

Rf

(

ρ

λw0

)
2−ρ

1−ρ





1

(2 − ρ)(b − a)





(

λw0b

ρ
+ φ

)2−ρ

−
(

λw0a

ρ
+ φ

)2−ρ








1

1−ρ

(33)
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Proof The result follows immediately from inserting the distribution in (31) into the

expression in (29) and calculating the integral.

Here, we can note that, in general, initial wealth w0 and the risk aversion parameter

λ enter the equation jointly. The latter determines the degree of absolute risk aversion

for the case of a utility function of the Constant Absolute Risk Aversion (CARA) type.

Thus, in this case, the level of initial wealth w0 matters for risk considerations.

The uniform distribution is certainly not a realistic description of asset returns. In

particular, this distribution has zero skewness and negative excess kurtosis (amounting

to -1.2). Yet, it has the convenient feature that it places both a lower bound (the variable

a) and an upper bound b on asset returns. A natural lower bound is a = 0 implying

R > 0.

Let us consider the case of CRRA utility already discussed so far. The latter is nested

in the general result for φ = 0. Let us also assume a = 0 and 0 < ρ < 2. In this case,

the geometric certainty equivalent return simplifies to

RCE(ρ) = (2 − ρ)
1

ρ−1 b.

First of all, the result is independent of initial wealth w0 – which is always the case for

CRRA utility. Secondly, the certainty equivalent increases with the maximum return b

in a linear manner. Moreover, it decreases with risk aversion ρ for 1 < ρ < 2.

We can also investigate the case of CARA utility. In this case, we have

RCE(λ) = −1

λ
ln (1 − exp(−λb)) +

1

λ
ln(λb) ≈ ln(λb)

λ
.

The first part can be neglected for reasonably high values on both λ and b. Of course,

the certainty equivalent decreases with λ while it increases with b in a concave manner.
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4.2. Quadratic utility

Another case in which it is relatively easy to arrive at analytical solutions is the case of

quadratic utility, which occurs when ρ = −1.

Proposition 4.3 (Atkinson index for quadratic utility) Suppose the utility func-

tion is quadratic, i.e., ρ = −1 and that the return distribution has positive support

only for R ∈ (0, φ/(λw0)), where the upper bound guarantees nonsatiation. Then, the

Atkinson index is given by

A(λ, φ) = 1 − 1

λw0µR

(

φ −
√

λ2w2
0σ2

R + (φ − λw0µR)2

)

. (34)

Here, we note that with the distributional restriction of positive support only for

R ∈ (0, φ/(λw0)), the Atkinson index lies between zero and one.14 Further, if the

variance of returns is zero (σ2
R = 0), the Atkinson index takes a value of zero, meaning

that we have total equality.

First of all, if we assume quadratic utility, we also assume away any impact of moments

higher than the variance and thus, we face similar restrictions as for the Sharpe ratio.

Second, marginal utility can become negative if we do not pick parameter values such

that the returns stay below the satiation point. If we allow returns to have positive

support beyond the satiation level, the Atkinson index can become greater than one

even for positive expected returns, meaning that the certainty equivalent return can

become negative.

Third, as we have in principle already shown, it is at most in line with second-order

stochastic dominance. This is because the derivatives of the utility function for orders of

n > 2 are all zero. Thus, in cases in which there is no second-order stochastic dominance

14This is very intuitive, because over that range of returns, the utility function is concave (and increas-
ing). To see it algebraically, it helps to note that R < φ/(λw0) implies that µR < φ/(λw0), and that
/R2 < φ2/(λ2w2

0) implies that σ2
R + µ2

R < φ2/(λ2w2
0).
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but, e.g., third-order stochastic dominance, the value of the certainty equivalent return

based on quadratic utility might be lower.

The certainty equivalent return is given by

RCE
E (λ, φ) =

1

λw0Rf

(

φ −
√

λ2w2
0σ2

R + (φ − λw0µR)2

)

. (35)

For σ2
R = 0 we have that RCE = µR. Using the normalization w0 = 1/Rf , the above

expression simplifies to

RCE
E (λ, φ) =

1

λ

(

φ −
√

λ2w2
0σ2

R + (φ − λw0µR)2

)

. (36)

A specific and insightful case would be the one of a uniform distribution introduced

in the previous section. In this case we have a mean of µR = 0.5(a + b) and a variance

of σ2
R = 1

12
(b − a)2 implying the following certainty equivalent if we normalize λ to unity

(λ = 1)

RCE
E = φ − 1√

3

√

a2 + b2 + ab − 3φ(a + b) + 3φ2.

In order to avoid the satiation property of the quadratic utility function it is reasonable

to assume φ = b simplifying the previous relation to

RCE
E = b − 1√

3
(b − a).

The above certainty equivalent increases with the maximum possible return b and de-

creases with the range b−a (also proportional to the standard deviation) as a measure of

dispersion. For the realistic special case of a = 0 we would have RCE
E =

√
3−1√

3
b ≈ 0.42b.

For the opposing case in which b = a – i.e. no dispersion – we would have RCE
E = b as

the return now is certain.
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4.3. CARA utility

We want to contrast our results for Constant Relative Risk Aversion (CRRA) to the

case of Constant Absolute Risk Aversion (CARA) which is a special case of the more

general HARA utility: we can obtain CARA utility with a constant absolute risk aversion

coefficient of λ by letting φ = 1 and ρ → ∞.

As it turns out, under CARA utility, the Atkinson index is given by

A(λ) = 1 +
1

λw0µR

ln
(

E[e−λw0R̃]
)

, (37)

It is easy to check that if R is constant, we get that A(λ) = 0 for all λ, i.e., ”total

equality”.

Further, the certainty equivalent geometric excess return is given by

RCE
E (λ) = − 1

λw0Rf

ln
(

E[e−λw0R̃]
)

. (38)

Applying the normalization w0 = 1/Rf , we get

RCE
E (λ) = −1

λ
ln
(

E[e−λR̃E ]
)

, (39)

where RE is the geometric excess return.

Similar to the CRRA case, we present a non-parametric performance measure using

cumulants. Afterwards we exemplify this for the two parametric cases of a normal

distribution and a NIG distribution.

35



Proposition 4.4 (Relation between certainty equivalent and cumulants for

CARA utility) Suppose we have CARA utility and that gross returns R follow some

”well-behaved” distribution. Then, the Atkinson index equals

A(λ) = 1 +
kR(−λw0)

λw0µR

, (40)

where kR(t) ≡ ln E[etR] is the cumulant-generating function of R. Further, the certainty

equivalent geometric excess return is given by

RCE
E (λ) = −kR(−λw0)

λw0Rf

. (41)

Applying the normalization w0 = 1/Rf to the above expression, we get

RCE
E (λ) = −kR(−λ/Rf )

λ
=

∞
∑

n=1

κR
n · (−1)n−1λn−1R−n

f

n!
, (42)

where κR
n = k

(n)
R (0) is the nth cumulant of R.

Proof We present a formal proof in Appendix A.3.

As in the CRRA case, the sign of the derivative of the utility function is positive

for odd n, corresponding to odd moments (mean, skewness, ...) and negative for even

n, corresponding to even moments (variance, kurtosis, ...).15 Moreover, low moments

15The nth derivative of the utility function u(w) = − exp(−λw) is given by ∂nu(w)
∂wn =

(−1)n−1λn exp(−λw).
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are of higher importance than higher moments. In particular, the discount ωCARA
n =

(−1)n−1λn−1wn
0

n!
vanishes for very high cumulants:

lim
n→∞

(−1)n−1λn−1wn
0

n!
= 0. (43)

Similar to the case of CRRA utility there is a local maximum for the weights. The

absolute maximum weight is attained for

n∗ = λ − 1, (44)

and n∗ + 1. If – for example – we have λ = 3 the largest weights are ω3 = −ω2 > 0. In

fact, a similar relation as presented in Figure 4 holds when replacing ρ with λ − 1.

The CARA utility results are reminiscent of the approach proposed in Stutzer (2000).

His performance measure is given by:

PS = max
η>0

{

− ln
(

E[e−η(R̃E −Rb)]
)}

, (45)

where Rb is the return on the benchmark portfolio.

Thus, using the normalization w0 = 1/Rf and using the risk-free asset as a benchmark

(Rb = Rf), we can write the Stutzer index as

PS = max
λ>0

{

1

λ
RCE

E (λ) − λRf

}

. (46)

However, in general, for stochastic benchmark portfolio returns Rb, the relation will not

be as straight-forward.

In order to gain intuition into the general findings we want to consider specific para-

metric distributions starting with the assumption of normally distributed returns.
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Corollary 4.5 (Atkinson index for CARA utility and normally distributed

returns) Suppose we have CARA utility and that gross returns are normally distributed,

i.e., R ∼ N(µR, σ2
R). Then, the Atkinson index is given by

A(λ) =
1

2
λw0

σ2
R

µR

, (47)

and the certainty equivalent geometric excess return is given by

RCE
E (λ) =

µR

Rf

− 1

2

λw0σ
2
R

Rf

. (48)

Applying the normalization w0 = 1/Rf to the above expression, we get

RCE
E (λ) =

µR

Rf

− 1

2

λσ2
R

R2
f

. (49)

Proof The proof is presented in Appendix A.3.1.

The result itself contains some interesting insights. As compared to the case with

CRRA utility and positive gross returns, the Atkinson does not need to be smaller than

one. This is because the distribution that we assume above has positive support for

negative gross returns. In general, both the Atkinson index and the certainty equivalent

returns increase with the variance σ2
R as well as the degree of absolute risk aversion λ. In

the case of CARA utility, however, the level of risk perception depends on initial wealth

(w0). As individuals have a constant absolute level of risk endurance, this implies that

— ceteris paribus— wealthier individuals (higher levels of w0) derive a higher Atkinson

index respectively a lower certainty equivalent for a given asset. The index takes similar

values as for the case with CRRA utility with ρ = λ if we normalize initial wealth to
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one (w0 = 1) and make the (reasonable) assumption that expected net returns are small

(µR ≈ 1).16

Similar to the case of CRRA utility we can not only derive closed-form solutions for

the normal distribution, but also for the more interesting NIG distribution.
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Figure 6: Parameter variation for NIG distributed returns and CARA utility.
Atkinson index with CARA utility where we vary the parameter values αR, βR, δR and absolute risk
aversion λ around the steady state values as reported in table 3 (right column).

16Moreover, we use the approximation exp(x) ≈ 1 + x.
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Corollary 4.6 (Atkinson index for CARA utility and NIG-distributed re-

turns) Suppose we have CARA utility and that gross returns are NIG-distributed, i.e.,

R ∼ NIG(µ̂R, δR, αR, βR). Then, the Atkinson index is given by

A(λ) = 1 +
1

λ

(

−λw0µ̂R + δR

(

√

α2
R − β2

R −
√

α2
R − (βR − λw0)2

))

w0

(

µ̂R + δRβR√
α2

R
−β2

R

) , (50)

and the certainty equivalent geometric excess return is given by

RCE
E (λ) =

1

λw0Rf

(

λw0µ̂R − δR

(

√

α2
R − β2

R −
√

α2
R − (βR − λw0)2

))

. (51)

Here, we can also apply the normalization w0 = 1/Rf :

RCE
E (λ) =

µ̂R

Rf

− δR

λ

(

√

α2
R − β2

R −
√

α2
R − (βR − λw0)2

)

. (52)

Proof The proof is relegated to Appendix A.3.2.

Note that in order for the solutions in (51) and (52) to be well-defined, the parameter

values need to satisfy αR ≥ max{|βR|, |βR − λw0|}.

In Figure 6, we repeat a similar exercise already undertaken for the case in which

returns follow a log-NIG distribution and the utility function is of the standard CRRA

type. In this case, however, we consider CARA utility and NIG-distributed returns.

Once again, we use a realistic calibration of the four free parameters of the NIG distri-

bution to fit hedge fund returns and vary the free parameters around it (see Table 3). As

a benchmark, we assume a risk aversion parameter of λ = 3 and normalize initial wealth

to one (w0 = 1). The results not only point to the same qualitative result (as captured

by the slopes of the curves in both Figure 6 and 5), but also the overall magnitudes of
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both indexes are very close. The only major difference between the two utility functions

is that for CARA utility, the parameter µ̂R driving the mean matters. In fact, high

values of µ̂R decrease the Atkinson index, while increasing the certainty equivalent.

So far, we presented some general closed-form results. As demonstrated below, these

results are of high importance for business practitioners.

5. Empirical tests

In this section, we bring the previously discussed methods to the data. We consider two

cases. In the first application, we look at a large number of hedge funds showing that

our approach yields new insights as compared to several other well-known performance

measures by looking at rank correlations. We contrast this exercise with a large number

of (opaque) investment strategies by having a close and detailed look at the most popular

and well-studied market anomalies (size, value and momentum) and we show that these

strategies lose their glamour once considered under the lens of our performance measure.

In the second part we also show that the ranking is robust to measuring error for a high

risk aversion.

5.1. Hedge funds

While low-risk securities might be well-described by a normal distribution, this assump-

tion is highly questionable for more sophisticated investment strategies such as the ones

undertaken by hedge funds. In fact, it is well documented that hedge funds exhibit

non-normal returns (Malkiel and Atanu (2005), Brooks and Kat (2002)) in particular

featuring left tail risk (Agarwal and Naik, 2004). Thus, in the literature evaluating

alternative performance measures, they are frequently considered as appropriate data

to compare different indexes (Eling and Schuhmacher, 2007; Zakamouline and Koeke-

bakker, 2009).
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Category Obs. Mean Std. dev. Skewness Kurtosis Rejected Rejected
N [%] [%] JB [%] AD [%]

Credit Focus 31 0.79 4.29 -0.35 10.83 100 100
Emerging Markets 73 0.51 10.03 -0.86 8.64 78.08 69.86
Equity Market Neutral 31 0.4 3.96 -0.54 7.19 77.42 64.52
Event Driven 64 0.46 4.23 -0.39 7.41 95.31 89.06
Fixed Income Arbitrage 26 0.59 3.93 -1.38 15.98 96.15 92.31
Global Macro 33 0.57 4.21 0.13 7.13 75.76 72.73
Long-Short Equity 232 0.48 5.12 -0.23 5.42 70.69 63.36
Managed Futures CTA 142 0.49 5.64 0.09 5.50 44.37 35.21
Multi Strategies 41 0.11 2.78 -0.90 6.36 80.49 70.73

All 673 0.49 4.91 -0.41 8.27 79.81 73.09

Table 4: Summary statistics for hedge fund returns.
Summary statistics for the first four moments of monthly returns for Hedge Funds covered in the
Lipper Hedge Fund database from July 2007 to July 2017. The strategies are split up into 9 distinctive
categories in which CTA stands for Commodity Trading Advisors. For each time series, we run both
a Jarque-Bera (JB) and an Anderson-Darling (AD) test for normality with a significance level of 5%.
The table reports the share of hedge fund time series failing this test.

We employ the so-called Lipper Hedge Fund (formerly TASS) database provided by

Thomson Reuters. We consider monthly returns of funds active17 between July 2007

and June 2017 (i.e. 120 observations in time). In the database, the funds are grouped

into nine distinctive investment strategies. In Table 4, we present summary statistics

for monthly fund returns. Most fund categories feature excess kurtosis and are also

frequently characterized by negative skewness indicating downside risk. More formally,

we compute both the Jarque-Bera test (JB) and the alternative Anderson-Darling (AD)

test of normality with a significance level of 5%. The majority of the funds fail this test.

While both tests yield similar results, the JB test is in general more strict, rejecting the

hypothesis of normality for a larger share of hedge fund returns.

We use monthly data on the three-month Treasury bill provided by the Federal Reserve

Bank of St. Louis as our proxy for the risk-free rate. We insert the excess returns18

17Note that the focus on funds that were active during the complete sample (in order to get a long obser-
vation period) reduces the overall sample substantially from approx. 7,500 funds to 673. Moreover,
it imposes the issue of survivorship bias. Note that Zakamouline and Koekebakker (2009) perform
a similar exercise with the TASS database, but with data ranging from 1994 until 2007, i.e., their
sample ends before the financial crisis. In general, we find lower returns and more volatility.

18More specifically, we use the geometric excess returns RE,i,t =
Ri,t

Rf,t
> 0.
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Gini CRRA 3 CRRA 10 Quad Sharpe ASSR
Credit Focus 1 1 3 1 1 1
Emerging Markets 9 9 9 7 8 8
Equity Market Neutral 5 5 7 8 5 5
Event Driven 4 4 4 6 4 3
Fixed Income Arbitrage 2 2 6 2 2 7
Global Macro 6 3 2 3 3 2
Long-Short Equity 7 6 5 5 6 6
Managed Futures CTA 8 8 8 4 7 4
Multi Strategies 3 7 1 9 9 9

Table 5: Ranking hedge fund strategies using different performance measures.
Ranking of overall hedge fund investment strategies with data as reported in Table 4 from best (1) to
worst (9) according to different performance measures: Gini mean difference (Gini), certainty equivalent
from Atkinson index with constant relative risk aversion with risk aversion ρ = 3 (Morningstar, 2016)
and ρ = 10, respectively (CRRA 3 and CRRA 10, respectively), certainty equivalent with quadratic
utility (Quad), Sharpe ratio and Adjusted for Skewness Sharpe Ratio (ASSR) with a coefficient of
constant relative risk aversion of 3 (Zakamouline and Koekebakker, 2009).

into our Atkinson- and Gini-based certainty equivalent measures. In contrast to well-

known performance measures, the Atkinson index – from which we compute the certainty

equivalent as our performance measure – entails a degree of freedom which controls

the degree of risk aversion. As mentioned earlier, the popular Morningstar rating is a

special case of the certainty equivalent with CRRA utility having a coefficient of relative

risk aversion of three (ρ = 3) (Morningstar, 2016). Thus, we consider this a good

starting point in terms of risk aversion. We cross-check this with higher values of ρ

which assign larger weights to higher-order cumulants. Other alternative measures that

we consider are the Gini-ratio (Yitzhaki, 1982) and the Adjusted for Skewness Sharpe

Ratio (ASSR) of Zakamouline and Koekebakker (2009) with a coefficient of constant

relative risk aversion of three.

Using this approach, we can rank the nine distinctive hedge fund strategies identi-

fied by Thomson Reuters. The results are reported in Table 5. By construction, the

approach of Zakamouline and Koekebakker (2009) taking skewness into account ranks

the fixed-income arbitrage strategy, which exhibits a large amount of negative skewness
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Gini CRRA 3 CRRA 4 CRRA 5 CRRA 6 CARA 2 Quad Sharpe ASSR

Gini 1.00
CRRA 3 0.72 1.00
CRRA 4 0.82 0.98 1.00
CRRA 5 0.87 0.94 0.99 1.00
CRRA 6 0.91 0.90 0.96 0.99 1.00
CARA 2 0.57 0.96 0.90 0.84 0.78 1.00
Quad 0.21 0.75 0.63 0.54 0.47 0.88 1.00
Sharpe 0.61 0.92 0.87 0.83 0.78 0.94 0.85 1.00
ASSR 0.47 0.84 0.79 0.75 0.70 0.88 0.84 0.93 1.00

Table 6: Rank correlation of hedge funds when evaluated according to different perfor-
mance measures.

Spearman rank correlation of performance measures for all assets with data as reported in Table 4. We
compare Atkinson-based certainty equivalents based on CRRA utility (with coefficient of relative risk
aversion ranging between 3 and 6), CARA (risk aversion λ = 2), and quadratic utility (Quad) with
existing measures of Gini mean difference (Gini), Sharpe ratio (Sharpe), and Adjusted for Skewness
Sharpe Ratio (ASSR, risk aversion 3).

considerably lower. The same holds true for the Atkinson approach if we use a large

coefficient of risk aversion. Yet, the Atkinson approach also captures higher moments

such as kurtosis. In particular, the highly non-normal strategy credit focus is not rated

as the best strategy according to the Atkinson approach with a high risk aversion. Note

that this simple analysis only takes into account the average group performance and

consequently, it ignores the substantial within-group variation. Thus, in the following,

we consider a more detailed approach.

In order to compare the methods, it is common in the literature to compute the rank

correlation (Spearman, 1904) between the measures. If these are close to one (as e.g.

reported in Eling and Schuhmacher (2007)), the performance measures yield little new

insights. The correlation with the Sharpe ratio is of particular interest.

We compute the Spearman correlation matrix for all individual funds and report

it in Table 6. The table contains several interesting insights. First of all – and in

contrast to the study of Eling and Schuhmacher (2007) – in general the table features

low correlations (below 0.95) indicating that the measures provide different rankings. For

higher degrees of risk aversion for the Atkinson-based measures, the correlation with the

standard Sharpe ratio decreases. This is in line with the notion that higher risk aversion

implies a shift to higher cumulants beyond the second order, as considered in the Sharpe
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ratio. In general, the ASSR has a lower correlation than the standard Sharpe ratio with

the novel measures, yet the overall pattern for different degrees of risk aversion pertains.

Meanwhile, the correlation with the Gini coefficient increases with assumed risk aversion

in Atkinson-type measures. Constant absolute and relative risk aversion performance

measures with similar risk aversion have high correlations. The latter is also due to the

(implicit) assumption of a normalized value of wealth w0 = 1. The measure based on

the quadratic utility function has the lowest overall correlation with other measures.19

Out of the performance measures that we consider, the Sharpe ratio and the CARA

measure with an absolute risk aversion of two come closest to quadratic utility, which

is natural, since they place their focus on the mean and the variance according to our

results towards the end of Section 3.

In Figure 7 we plot the cumulants for the given observations up to an order of 6. In

general, the median cumulant decreases with its order. Yet, with a higher order the

measures feature more extreme observations. As presented in the upper panel of Figure

7, for a high order the mean cumulant exceeds the 95% quantile range indicating some

substantial deviations for some individual observations. Thus, in general high order

cumulants do not play an important role. Yet, they can take substantial values for

certain assets and thus should be taken into account by investors.

So far, we considered the novel performance measures discussed respectively intro-

duced in this paper and contrasted them with the standard Sharpe ratio. We can, how-

ever, also compare them to other more established performance measures such as those

considered in Eling and Schuhmacher (2007) which are also standard in business prac-

tice. These measures all consist of ratios for which the numerator captures arithmetic

excess returns (E(ri − rf)) and the denominator is a measure of risk. As emphasized,

e.g., by Hodges (1998), one major shortcoming of using the simple standard deviation as

a risk measure is that it also punishes upside potential. Thus, in the following, we focus

19Note that, in order to avoid negative marginal utility, we set the satiation level to the highest observed
monthly return in the dataset (rmax = 505%).
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Figure 7: Cumulants in the dataset: Mean (upper panel) and median (lower panel) as
well as 90% quantiles.

Values of the first 6 (integer) cumulants in the dataset as reported in Table 4. While the median
cumulants decrease to a value close to zero for higher order (cf. lower panel), there are some extreme
deviations for higher order cumulants as captured by high mean value exceeding the 90% interval (cf.
upper panel).

on measures with an emphasis on downside risk as is common in the risk management

literature.

We start with measures related to the lower partial moment. The latter is defined as

LP Mn(r̄) =
∫ r̄

−∞
(r̄ − r)nf(r)dr, (53)

where n stands for the order of moment and r̄ is some threshold. Basically, the lower

partial moment only considers values below the threshold value r̄. We choose the mean

(”average”) risk-free rate E(rf ) as the threshold value. Starting from this partial mo-
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ment several performance measures can be computed. The Omega ratio (Keating and

Shadwick, 2002) is given by

Omegai =
E(ri − rf)

LP M1(E(rf ))
+ 1. (54)

The Sortino ratio (Sortino and van der Meer, 1991) is closely connected to the standard

Sharpe ratio by considering the second moment

Sortinoi =
E(ri − rf )

√

LP M2(E(rf))
. (55)

The Kappa3 ratio (Kaplan and Knowles, 2004) uses the third partial moment

Kappa3i =
E(ri − rf )

3

√

LP M3(E(rf))
. (56)

A different approach is the mean-absolute deviation (MAD) approach (Caporin et al.,

2014). Compared to the standard Sharpe ratio the excess returns are divided by the

absolute deviation which is never larger than the standard deviation.20 The performance

measure thus reads

MADi =
E(ri − rf )

E[|ri − E[ri]|]
. (57)

Due to the properties described in the above, it is never smaller than the Sharpe ratio.

Another measure, the Calmar ratio (Young, 1991) uses the worst (negative) return –

the maximum drawdown (MD):

Calmari =
E(ri − rf)

−MDi

. (58)

20Note that if returns follow a normal distribution with standard deviation σi there is a simple linear

relation: MADi

σi
=
√

2
π

≈ 0.8 < 1 (Geary, 1935).
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The most common measure used in business practice to consider tail events is the

Value at Risk. The latter measures best expected return for the lower α% tail (V aRα).

From this measure the so-called Dowd ratio can be computed (Dowd, 2000):

Dowdα
i =

E(ri − rf )

V aRα
i

. (59)

Usually, it is assumed that returns follow a normal distribution to make a statement

about the right tail.21 In particular, this is the case for the implementation in the

software tool Matlab, which is commonly used by business practitioners. In fact, all

of the above-mentioned additional risk measures are already implemented in Matlab.

Thus, it is very convenient and easy to compute these performance measures.

Once again, we compute the Spearman rank correlation for the different measures for

our sample of hedge funds. The results are summarized in Table 7. We are able to repli-

cate similar results as reported in Eling and Schuhmacher (2007). That is, the standard

measures (displayed in the lower right part of the table) are all highly correlated among

each other (> 95%). Moreover, these more sophisticated measures exhibit a substantial

correlation with the standard Sharpe ratio. Note that some of the measures have an im-

plicit underlying normality assumption (e.g. the Dowd ratio). As compared to the data

sample considered in Eling and Schuhmacher (2007) our data is more frequently rejected

by formal normality tests (cf. Table 4). Nevertheless, the high correlations between the

measures remain. The measures related to the lower partial moment (Omega, Sortino,

Kappa3) are highly correlated among each other, yet this correlation diminishes as the

gap between the order of the moments increases (e.g., comparing Omega and Kappa3).

By construction the Sharpe ratio is highly correlated to the Sortino ratio as well as the

MAD approach. The same holds true for the correlation between MAD and the Omega

ratio.

21In this case the tail is computed as V aRα
i = −(E(ri) + σizα) where zα represents the α-quantile of

the standard normal distribution.
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Gini CRRA 3 CRRA 10 Quad Sharpe Calmar MAD Omega Sortino Kappa3 Dowd 5% Dowd 1%
Gini 1.00
CRRA3 0.72 1.00
CRRA10 0.95 0.77 1.00
Quad 0.21 0.75 0.28 1.00
Sharpe 0.61 0.92 0.65 0.85 1.00
Calmar 0.53 0.89 0.61 0.87 0.98 1.00
MAD 0.61 0.91 0.64 0.85 0.99 0.97 1.00
Omega 0.60 0.91 0.63 0.85 0.99 0.97 1.00 1.00
Sortino 0.57 0.91 0.64 0.87 0.99 0.99 0.99 0.99 1.00
Kappa3 0.55 0.90 0.63 0.87 0.98 0.99 0.97 0.97 1.00 1.00
Dowd 5% 0.58 0.90 0.63 0.85 0.97 0.96 0.97 0.97 0.97 0.96 1.00
Dowd 1% 0.60 0.91 0.65 0.86 0.99 0.97 0.99 0.99 0.99 0.98 0.98 1.00

Table 7: Rank correlations between Atkinson-based and standard performance measures.
Spearman rank correlations between performance measures for all assets with data as reported in Table 4. We compare Atkinson-based certainty
equivalents based on CRRA utility (risk aversion ρ = 3 and ρ = 10), CARA (risk aversion λ = 2), and quadratic utility (Quad) with existing
measures of Gini mean difference (Gini), Sharpe ratio (Sharpe), and standard downside-risk based performance measures. The latter include the
Calmar ratio, Mean Absolute Deviation (MAD), measures related to lower partial moments (Omega, Sortino, Kappa3), and the Dowd ratio
with Value at Risk values of α = 5% and 1%, respectively.
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Compared to the above-mentioned levels of correlation, the correlations with the novel

measures introduced in this paper are low. The standard Atkinson case (CRRA utility)

with a risk aversion of 3 – in line with Morningstar (2016) – is in the area of 90%. As we

increase the coefficient of relative risk aversion to ten (ρ = 10), the correlations between

the Atkinson index and the standard measures decrease – in line with the theoretical

discussion below Proposition 3.3. The Gini-based performance assessment has the lowest

overall correlation with standard measures. The simple quadratic utility – only taking

into account the first two moments – has a low correlation with the Gini- and Atkinson-

based measures, while exhibiting a higher correlation with the standard measures. All

in all, our results thus suggest that the measures we propose in this paper contain new

information about asset performance that is not captured by the standard approaches.

5.2. Market anomalies

So far we presented an example in which our novel approach presented new insights

as compared to standard approaches. Given the large number of funds – and in line

with the existing literature – we focused on the rank correlation as an easy-to-interpret

measure of value-added. Of course, this obstructs from many details. In particular, the

differential ranking might be subject to measurement noise.

In order to get a more detailed look at the workings of our measure, we consider a

different and more sparse data set: rather than looking at several hundred (opaque)

hedge fund strategies we consider the three most common market anomalies (size, value,

and momentum) and compare them to each other as well as the market strategy.22

The deviations from the standard Capital Asset Pricing Model were introduced in

Fama and French (1993) (size and value) respectively Carhart (1997) (momentum).

Fama and French (1993) show that investors can earn excess returns by having a port-

22A similar exercise was conducted in Kadan and Liu (2014) in order to benchmark their newly proposed
performance measure.
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Market Size Value Momentum
Mean [%] 0.66 0.21 0.38 0.66
Std. Dev. [%] 5.35 3.21 3.50 4.71
Skewness 0.19 1.94 2.17 -3.06
Kurtosis 10.84 22.46 22.06 30.81

Table 8: Summary statistics for market anomalies.
Summary statistics for the first four moments of monthly returns for market anomalies and the market
portfolio for the US stock universe from 1927 to 2017.

folio with a long position in firms with low market capitalization while shorting those

with a high market capitalization (size effect). In addition, they show that one can

generate excess returns by having a long position in high book-to-market firms and a

corresponding short position in those with low book-to-market values (value strategy).

Finally, Carhart (1997) demonstrates that a portfolio with long positions in assets with

high recent returns (winners) together with a short position in assets with recent low

returns (losers) is also able to generate abnormal returns.

Kenneth French constructs these portfolios as well as the market portfolio (returns

in excess of the risk-free rate) for the US stock market and makes them freely available

on his homepage.23 We employ his database and consider monthly returns from the

years 1927 (beginning of the datasample) until February, 2018 (the most recent obser-

vation).24 Table 8 provides descriptive statistics for the four strategies and shows that

all strategies exhibit excess kurtosis. Moreover, the momentum strategy also displays

negative skewness making it especially prone to downside risk. All time series fail both

the formal Jarque-Bera and Anderson-Darling test for normality at a 1% level.

We investigate the strategies in terms of performance using both our newly derived

Atkinson index (with different utility specifications) and compare it to the classic Sharpe

ratio. The results are reported in Table 9. First of all, the Sharpe ratio considers the

23It can be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
24Note that in their exercise, Kadan and Liu (2014) only consider a sub-sample lasting from 1962 to 2009

avoiding extreme stock price movements such as the Great Depression. Nevertheless, we recover their
main conclusion of the value strategy being more attractive under alternative performance measure
and the momentum strategy loosing in attractiveness.
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Market Size Value Momentum
Sharpe 0.123 [2] 0.066 [4] 0.109 [3] 0.141 [1]
CRRA 3 0.222 [1] 0.067 [4] 0.210 [2] 0.196 [3]

5 -0.095 [3] -0.026 [2] 0.103 [1] -0.418 [4]
10 -1.078 [3] -0.254 [2] -0.156 [1] -7.173 [4]

CARA 2 0.374 [2] 0.113 [4] 0.263 [3] 0.416 [1]
4 0.080 [3] 0.019 [4] 0.154 [1] 0.084 [2]
9 -0.753 [3] -0.205 [2] -0.103 [1] -1.837 [4]

Quad 0.298 [2] 0.083 [4] 0.226 [3] 0.384 [1]

Table 9: Performance measures – Sharpe ratio vs. Atkinson-based.
The table reports the performance of each strategy using the Sharpe ratio as well as the Atkinson-based
measures. Values within brackets show the ranking with 1 indicating the best performance.

momentum strategy the most attractive and the size strategy the least attractive of them

all. The very same ranking of the four strategies is obtained with the Atkinson-based

performance measure under both quadratic utility as well as CARA preferences with a

risk aversion of 2. This is not surprising as they only consider the first two moments

respectively place the largest weight on these moments. This, however, is not the case

for CRRA utility which in general is considered as a more realistic utility function.

Moreover, the ordering changes depending on the assumed value of risk aversion. In

fact, for high values of risk aversion CARA and CRRA utility rankings become identical.

For high levels of risk aversion, the momentum strategy eventually turns out to be the

least attractive, whereas the value strategy delivers the best performance. Thus, the

more sophisticated measures punish the presence of substantial downside risk (negative

skewness) more heavily.

Given that we only consider four strategies in total, we end up with six possible

pairwise comparisons. This also allows us to assess whether the performance measures

can be statistically distinguished from each other. In Table 10, we report the pairwise

comparison.25 In general, the performance measure is more able to distinguish different

25They are computed by the ratio of the gap between the two measures and the respective standard
deviation. The standard errors are bootstrapped. For the Sharpe ratio and non-normal returns the

standard error is eventually known and given by
√

1
T

(1 + 0.5S2 − M3 · S + 0.25(M4 − 3)S2) with S
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MA-S MA-V MA-MO S-V S-MO V-MO
Sharpe 0.057 0.015 -0.018 -0.042 -0.075 -0.033

(3.151) * (0.827) (-0.824) (-2.467) * (-3.561) ** (-1.580)
CRRA 3 0.155 0.012 0.026 -0.143 -0.129 0.014

(1.752) (0.135) (0.199) ( -2.365) * (-1.179) (0.122)
5 -0.069 -0.198 0.322 -0.129 0.392 0.520

(-0.727) (-2.051) * (1.366) (-2.187) * (1.755) (2.326) *
10 -0.825 -0.922 6.095 -0.098 6.920 7.017

(-5.641) ** (-6.291) *** (3.714 ) ** (-1.555) (4.230) ** (4.290) **
CARA 2 0.261 0.111 -0.042 -0.150 -0.304 -0.153

(3.085) * (1.277) (-0.403) (-2.512) * (-3.536) ** (-1.793)
4 0.061 -0.074 -0.004 -0.135 -0.065 0,070

(0.678) (-0.816) (-0.026) (-2.293) * (-0.550) (0.594)
9 -0.548 -0.650 1.084 -0.102 1.632 1.734

(-4.802) ** (-5.668) ** (2.192 ) * (-1.678) (3.365) ** (3.575) **
Quad 0.215 0.072 -0.086 -0.143 -0.301 -0.158

(2.684) * (0.886) (-0.833) (-2.533) * (-3.563) ** (-1.841)

Table 10: Performance measures measures – Sharpe ratio vs. Atkinson-based.
The table reports the difference between the strategies (MA: market, S: size, V: value, MO: Momentum) and the associated t-statics (in parentheses).
Asterisks denote statistical significance at the 0.1% (***), 1% (**), and 5% (*) levels.
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Market Size Value Momentum
Std. Dev. [%] 5.35 [4] 3.21 [1] 3.50 [2] 4.71 [3]
CRRA 3 0.436 [4] 0.145 [1] 0.170 [2] 0.465 [3]

5 0.751 [3] 0.237 [1] 0.276 [2] 1.075 [4]
10 1.727 [3] 0.464 [1] 0.534 [2] 7.786 [4]

CARA 2 0.284 [4] 0.099 [1] 0.117 [2] 0.246 [3]
4 0.576 [3] 0.192 [1] 0.225 [2] 0.577 [4]
9 1.404 [3] 0.416 [1] 0.481 [2] 2.485 [4]

Quad 0.360 [4] 0.129 [1] 0.154 [2] 0.279 [3]

Table 11: Risk measures – Standard deviation vs. Atkinson-based.
The table reports the measure of risk for each strategy differentiating between the standard deviation
(as used in the Sharpe ratio) and the Atkinson-based measures (all in %). Values in parentheses give
the respective ranking with 1 indicating the lowest risk.

strategies under a high assumed risk aversion. For the case of CRRA utility with risk

aversion of ρ = 3 (as implicitly assumed in the Morningstar rating), the performance

measures cannot be distinguished from each other. In general, it is difficult to distinguish

the market portfolio from both the value and the momentum strategy other than for

high values of risk aversion. This is also in line with the example displayed in Figure 3 for

which the gap between the certainty equivalents for two given distributions substantially

increases with the risk aversion. On the other hand, with a low risk aversion it might

be hard to distinguish the two given distributions for example in small samples.

So far, we only considered the certainty equivalent. In Table 11, we perform a similar

exercise for the corresponding risk measures, i.e., the standard deviation and the respec-

tive Atkinson indexes. In this case, only the ranking of the market and the momentum

strategy switches for CRRA and CARA utility with high levels of risk aversion. For

high levels of risk aversion, the momentum strategy is classified as riskier and thus loses

its glamour. As shown in Table 12 it is generally harder to distinguish between the

riskiness of the size and the value effect. More interestingly, both the difference between

the riskiness of the market and the momentum effect is significant for the standard de-

being the Sharpe ratio, T the number of observations, and M3 and M4 representing the skewness
respectively kurtosis (Mertens, 2002).
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MA-S MA-V MA-MO S-V S-MO V-MO
Std. dev. 2.146 1.853 0.646 -0.294 -1.500 -1.207

(13.515) *** (11.733 ) *** (3.246) ** (-1.957) (-6.701) *** (-5.559) **
CRRA 3 0.291 0.266 -0.029 -0.025 -0,320 -0,295

(14.861) *** (13.439) *** (-0.505) (-2.214) * (-5.708) ** (-5,261) **
5 0.513 0.474 -0.324 -0.039 -0.838 -0.799

(15.242) *** (13.697) *** (-1.776) (-2,318) * (-4.651) ** (-4.431) **
10 1.263 1.193 -6.059 -0.069 -7.321 -7.252

(12.479) *** (11.799) *** (-3.772) ** (-2.352)* (-4.566) ** (-4.523) **
CARA 2 0.186 0.168 0.038 -0.018 -0.147 -0.130

(15.355) *** (13.151) *** (1.620) (-2.140) * (-6.861) *** (-5.896) ***
4 0.384 0. 351 0.000 -0.033 -0.384 -0.351

(16.041) *** (14.355) *** (-0.007) (-2.371) * (-6.035) *** (-5.501) **
9 0.988 0.923 -1.081 -0.065 -2.069 -2.004

(14.371) *** (13.330) *** (-2.404) * (-2.442) * (-4.647) *** (-4.501) **
Quad 0.231 0.206 0.081 -0.025 -0.150 -0.125

(13.110) *** (11.351) *** (3.146 ) * (-2.013) * (-6.761) *** (-5.529 ) **

Table 12: Risk measures – Standard deviation vs. Atkinson-based.
The table reports the difference between the strategies (MA: market, S: size, V: value, MO: Momentum; all in percentage points) and the associated
t-statics (in parentheses). Asterisks denote statistical significance at the 0.1% (***), 1% (**), and 5% (*) levels.
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viation and an Atkinson index with high Constant Relative Risk Aversion, but the sign

– indicating the ranking - is different. Consequently, the (rank) correlation between the

different risk measures is higher than between the performance measures.

6. Conclusion

In this paper, we explore the usefulness of applying the Atkinson (1970) index – well-

known in the literature on economic inequality – to financial time series of returns in

order to measure financial risk. Combining the Atkinson index with the expected return

and the risk-free rate, we obtain a very general performance measure, which encompasses

the Morningstar index (Morningstar, 2016) as a special case. We derive closed-form so-

lutions for a large number of combinations of preferences and return distributions, along

with general formulae based on the cumulants of the return distribution. Finally, we

apply our risk and performance measures to hedge fund data and well-known market

anomalies (Fama-French and momentum-based strategies), and we find that our pro-

posed class of performance measures contains additional information, not captured by

existing ones.

A possible avenue for future research would be to use the Atkinson index in combina-

tion with expected returns in order to more conveniently arrive at optimal portfolios for

expected utility maximizers when returns cannot plausibly be assumed to be normally

distributed.
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A. Additional Proofs

A.1. Certainty equivalent returns and nth-order stochastic

dominance

Suppose a distribution FA nth-order stochastically dominates a distribution FB and that

the elementary utility function satisfies (−1)ku(k)(w) < 0 for k = 1, 2, ..., n and all w.

Then, it follows from Section 5 in Ekern (1980) (see also Theorem 1 in Eeckhoudt et al.

(2009)) that

E[u(w0R̃A)] ≥ E[u(w0R̃B)]. (60)

Since, by assumption, u is strictly increasing, the above implies that

RCE
E,A =

1

w0Rf

u−1(E[u(w0R̃A)]) ≥ 1

w0Rf

u−1(E[u(w0R̃B)]) = RCE
E,B. (61)

A.2. Atkinson index for CRRA utility

For CRRA utility we know that the Atkinson index is defined as

A(ρ) = 1 − E[R̃1−ρ]
1

1−ρ

E[R̃]
. (62)

It is easy to express this relation using the moment-generating function (MGF) Ψr(t) =

E[exp(tr)] for which R = exp(r). Due to the exponential transformation of the variable

of interest – the geometric returns R – we can write the Atkinson index as

A(ρ) = 1 − E[exp(r(1 − ρ))]
1

1−ρ

E[exp(r)]
. (63)
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We can then exploit the relation between the MGF and the cumulant-generating function

(CGF) kr(t) given by kr(t) = ln(Ψr(t)) ↔ exp(kr(t)) = Ψr(t). Therefore, the Atkinson

index can be rewritten as

A(ρ) = 1 − Ψr(1 − ρ)
1

1−ρ

Ψr(1)
= 1 − exp(kr(1 − ρ))

1

1−ρ

exp(kr(1))

= 1 −
exp

(

kr(1−ρ)
1−ρ

)

exp(kr(1))
= 1 − exp

(

kr(1 − ρ)

1 − ρ
− kr(1)

)

.

(64)

Given that the certainty equivalent equals RCE(ρ) = (1 − A(ρ))E[R̃], we can write the

latter as

RCE(ρ) = exp

(

kr(1 − ρ)

1 − ρ

)

(65)

and we have that

rCE(ρ) ≡ ln RCE(ρ) =
kr(1 − ρ)

1 − ρ
. (66)

Log returns in excess of the risk-free rate rf are thus given by

rCE
E (ρ) =

kr(1 − ρ)

1 − ρ
− rf . (67)

The specific case for returns following a log-normal distribution respectively a log-NIG

distribution are easy to establish from this general result.

A.2.1. Atkinson index for CRRA utility and log-normally distributed returns

If we assume that geometric returns R follow a log-normal distribution, arithmetic re-

turns r will follow a normal distribution r ∼ N(µr, σr). For this case, the MGF is

well-known and given by

Ψr(t) = exp(µrt + 0.5σ2
r t2), (68)
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implying the following cumulant generating function:

kr(t) = µrt + 0.5σ2
r t2. (69)

Taking this result and inserting it in the general relation given in equation (64), it is

easy to verify that

A(ρ) = 1 − exp(−0.5ρσ2
r ). (70)

A.2.2. Atkinson index for CRRA utility and log-NIG distributed returns

In the case where geometric returns R follow a log-NIG distribution, arithmetic returns

r are described by a NIG distribution (r ∼ NIG(µ̂r, δr, αr, βr)) with an MGF

Ψr(t) = exp(µ̂rt + δr(
√

α2
r − β2

r −
√

α2
r − (βr + t)2)), (71)

implying a CGF of

kr(t) = µ̂rt + δr(
√

α2
r − β2

r −
√

α2
r − (βr + t)2). (72)

Similar to the case with log-normally distributed returns we can insert the latter function

into the general result in equation (64) to arrive at

A(ρ) = 1−exp

{

δr

1 − ρ

(

ρ
√

α2
r − β2

r + (1 − ρ)
√

α2
r − (βr + 1)2 −

√

α2
r − (βr + (1 − ρ))2

)

}

.

(73)

Note that the result is independent of µ̂r.
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A.3. Atkinson index for CARA utility

For a utility function of the CARA type the Atkinson index is given by

A(λ) = 1 +
ln(E[exp(−λw0R̃)])

λw0µR

. (74)

Similar to the proof in A.2.1 we can exploit the properties of the CGF kR(t). It is

important to keep in mind that in this case we make assumptions about the gross returns

R rather than the log transform r = ln(R) as considered for CRRA utility. Using the

definition kR(t) = ln(ΨR(t)) = ln(E[exp(tR)]) the Atkinson index can be written as

A(λ) = 1 +
kR(−λw0)

λw0µR

. (75)

Using the relation RCE
E = (1 − A(λ))E[R̃E] together with E[R̃E] = µR

Rf
, we can express

the certainty equivalent geometric excess return as

RCE
E (λ) = −kR(−λw0)

λw0Rf

. (76)

A.3.1. Atkinson index for CARA utility and normally distributed returns

In the case in which returns follow a normal distribution, R ∼ N(µR, σR), we can insert

the definition of the CGF

kR(t) = µRt + 0.5σRt2, (77)

together with the mean E[R̃] = µR in the general equation presented in (75) to arrive

at

A(λ) =
1

2
λw0

σ2
R

µR

. (78)
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The geometric certainty equivalent excess return is thus given by

RCE
E (λ) =

µR

Rf

− 0.5
σ2

Rλw0

Rf

. (79)

A.3.2. Atkinson index for CARA utility and NIG distributed returns

Now, we assume that returns follow a NIG distribution, R ∼ NIG(µ̂R, δR, αR, βR). Once

again, we employ the general result (75) jointly with the CGF of the NIG distribution

kr(t) = µ̂Rt + δR(
√

α2
R − β2

R −
√

α2
R − (βR + t)2) (80)

as well as the general mean

E[R̃] = µ̂R + δR

βR
√

α2
R − β2

R

(81)

to arrive at

A(λ) = 1 +
1

λ

(

−λw0µ̂R + δR

(

√

α2
R − β2

R −
√

α2
R − (βR − λw0)2

))

w0

(

µ̂R + δRβR√
α2

R
−β2

R

) (82)

The certainty equivalent geometric excess returns thus amounts to

RCE
E (λ) =

µ̂R

Rf

−
δR(

√

α2
R − β2

R −
√

α2
R − (βR − λw0)2)

λw0Rf

(83)
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