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Abstract

We consider taxation of exchanges among a set of agents where each agent owns one

object. Agents may have different valuations for the objects and they need to pay

taxes for exchanges. We show that if a rule satisfies individual rationality, strategy-

proofness, constrained efficiency, weak anonymity and weak consistency, then it is

either the no-trade rule or a fixed-tax core rule. For the latter rules, whenever

any agent exchanges his object, he pays the same fixed tax (a lump sum payment

which is identical for all agents) independently of which object he consumes. Gale’s

top trading cycles algorithm finds the final assignment using the agents’ valuations

adjusted with the fixed tax if the induced preferences are strict.

JEL Classification: C71, C78, D63, D71, D78.

Keywords: Fixed Tax, Exchanges, Top Trading.

1 Introduction

A large literature on house exchange problems has been developed since the pioneering

work of Shapley and Scarf (1974). These problems contain a finite set of agents, each of

∗We are grateful to two anonymous referees and the Associate Editor for their helpful comments and
suggestions. Financial support from the Jan Wallander and Tom Hedelius Foundation (P2018–0100) and
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whom is endowed with a single house. Agents are willing to take part in cyclical exchanges

if they are better off by such trades. The key assumption in the model is that monetary

transactions are not allowed. In spite of its simplicity, house exchange models have been

demonstrated to be powerful in many real-life applications. Maybe the best-known ex-

amples are the design of kidney exchange programs (Roth et al., 2004) and school choice

mechanisms (Abdulkadiroğlu and Sönmez, 2003). However, even if it is natural to abstain

from monetary transfers in some settings, it is very unnatural in others. In a real-life

house exchange problem, for example, it is not unlikely that local authorities tax house

exchanges.1 This paper considers a house exchange problem where the monetary transfers

are non-positive meaning that agents pay a non-negative tax whenever being involved in a

house exchange. Before detailing the model and the main results of the paper, we provide

a more general motivation for the type of problem considered here.

In recent years, many online services that facilitate house exchange have been devel-

oped. Even if most of these online services arrange temporary trades of vacation homes

(e.g., HomeExchange.com), there are some alternative websites where persons are helped

to perform permanent home swaps. For example, on the UK based site EasyHouseEx-

change.com, homeowners list their properties by, e.g., uploading photographs and detailed

descriptions of their houses (including estimated market values), and state what housing

they are looking for in return. The main idea is to create trading cycles among house

owners. Most of these websites saw the light of the day in the global financial crises in

2008–2009. For example, Sergei Naumov who, in 2009, was the CEO of one of the largest

US house exchange platforms GoSwap.org stated that:

“Since the housing market tanked, homeowners wishing to upgrade to bigger

homes, downsize or relocate have become more open to the idea of making a

home swap.”2

The main reason for the increased popularity in permanent house exchanges during the

financial crises was that some persons lived in houses that they no longer were able to

afford. Because they also were unable to find a buyer, it was better to downsize to a smaller

house than declaring bankruptcy even if this resulted in a financial loss. Persons with a

more advantageous financial situation were not late to take advantage of this situation.

1Even in the absence of such tax, it is not unlikely that monetary transfers are needed to compensate
for differences in house values.

2See www.bankrate.com/finance/real-estate/home-swap-tough-market-1.aspx. Retrieved June
1, 2018.
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Consequently, permanent trading opportunities emerged. However, even if a homeowner is

involved in a permanent cyclical trade, this does by no means imply that the homeowner

can avoid paying taxes. For example, experts at EasyHouseExchange.com informed their

customers that:

“Any transaction should be dealt with in the same way that a traditional sale or

purchase would be.”3

The framework analyzed in this paper can be thought of as a situation where a social

planner attempts to design a tax schedule for house exchange. In relation to the Easy-

HouseExchange.com example and related online services, the findings in this paper can

be applied to better understand exactly how to design a tax schedule for house owners

involved in permanent home swaps. As will be apparent, these options are very limited, at

least if the social planner is interested in a tax scheme satisfying a number of natural and

desirable properties.

Each agent is endowed with a single indivisible object and has quasi-linear preferences

over consumption bundles. Here, a consumption bundle is a pair consisting of one object

and a tax attached to that object. The aim for the social planner is to define a mech-

anism or, equivalently, a tax schedule that, based on the self-reported preferences of the

agents, determines the trades and the taxes. However, such a mechanism is not unique.

Consequently, the social planner has the option to restrict the set of possible mechanisms

by requiring that the outcome of the mechanism should satisfy a number of desirable

properties. These properties are informally described below.

Individual rationality says that each agent weakly prefers his consumption bundle to his

endowment and paying no tax. Strategy-proofness ensures that agents honestly report their

true preferences over consumption bundles (to the social planner). Constrained efficiency

says that the rule is efficient on its range of allocations. Consistency says that the rule is

robust subject to the departure of a set of agents with their allotments when those coincide

with their endowments. Anonymity says that whenever objects are reassigned, then the

names of the agents do not matter. It turns out that both consistency and anonymity

are too strong in our context as only the no-trade rule (where all agents always keep

their endowments and pay zero tax) satisfies one of these axioms in conjunction with the

other requirements and we will, therefore, define weaker versions of these axioms. These

weakenings will be motivated in detail in Section 2.1, but the general idea behind them is

3See the article “Fair Trade?” in Financial Times (May 17, 2009).
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that they should respect the core ideas in the stronger versions of the axioms, but only for

the cases that are most relevant for the considered house allocation problem.

The main innovation of this paper is the introduction of a class of taxation rules called

Gale’s fixed-tax core rules. Here two ingredients play a key role. The first is the no-trade

rule that prescribes that all agents keep their endowments and pay no taxes. The second

is a given number α ≥ 0, henceforth referred to as Gale’s fixed-tax (a lump sum payment

which is identical for all agents). Given the number α, each agent’s valuations induce a

weak ordinal ranking over the objects. More precisely, an object is weakly preferred over

another object if and only if the valuation of the first object minus Gale’s fixed-tax is

greater than or equal to the valuation of the second object minus Gale’s fixed-tax. When

the induced rankings are strict, Gale’s fixed-tax core rule finds the assignment by applying

Gale’s top trading cycles mechanism (first defined in Shapley and Scarf, 1974), and agents

who keep their endowments pay zero tax whereas agents exchanging their endowment pay

the fixed-tax α. The main result of the paper (Theorem 1) shows that any rule satisfying

the above properties (individual rationality, strategy-proofness, constrained efficiency, weak

consistency and weak anonymity) must be either the no-trade rule or a Gale’s fixed-tax

core rule. Existence of such rules is demonstrated (Theorem 2) by using a construction

from Saban and Sethuraman (2013), called the Highest Priority Object (HPO) algorithm.4

Our model and the results derived from it relate to and extend previous work in the

literature. As we study quasilinear preferences, the Clarke-Groves rules are focal (Clarke,

1971; Groves, 1973). These have the benefits of satisfying our properties and utilitarian

optimality. Of course, as is well known, this latter property requires that the mechanism be

able to sustain an arbitrarily high budget deficit. Possibly more problematic in practice is

the fact that, in exchange settings, any individually rational Clarke-Groves rule will allow

agents to receive a net transfer. While this is acceptable in some environments, it is infea-

sible in others. For example, it is illegal in all countries except Iran for persons to receive

money for their organs, while patients typically do pay for organ transplants in some way

(i.e., insurance copayments). It is therefore necessary for us to forego utilitarian optimality.

Thus, we do not have access to the standard results in auction theory, and we must simulta-

neously deduce the assignment and payment rules. We discuss the technical consequences

of this in Section 5.1, but it is worth noting here that, unlike the Clarke-Groves rules, Gale’s

fixed-tax core rules are defined on the full domain, including non-quasilinear preferences

(see Section A, Remark 2). Sun and Yang (2003) also study quasilinear preferences in the

4This class of algorithms generalizes the procedure found by Jaramillo and Manjunath (2012).
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presence of lower-bounds on payments, and in particular, object-wise lower bounds. They

found that minimizing these payments subject to envy-freeness yields a strategy-proof and

(Pareto) efficient rule.5 However, this rule is not individually rational. Thus, it seems we

must forego efficiency in general, and not just utilitarian optimality. Thankfully, we find

that efficiency on a restricted range is possible.

Instead of insisting on pointwise efficiency, Sprumont (2013) showed that the max-

med mechanisms are constrained optimal among all anonymous, strategy-proof, and envy-

free mechanisms. Note that Gale’s fixed-tax core rules are fundamentally different from

the max-med mechanisms, and consistency cannot be applied to max-med mechanisms

as they are defined only for two agents. Furthermore, neither the rule defined by Sun

and Yang (2003) nor Clarke-Groves mechanisms satisfy consistency because they both

generalize the “price externality” feature seen in second-price auctions (Vickrey, 1961).

That is, the losing bidders determine the price paid by the winner, and by considering sub-

populations containing the winner and some different sets of losing bidders, each population

might generate a different price. However, Ehlers (2014) demonstrated that no efficient,

individually rational, and strategy-proof rule can be consistent. Consequently, we do not

aim for full consistency but rather for a conditional version. The above cited rules still fail

this weaker condition while this paper uncovers a continuum of rules that satisfy it.

Miyagawa (2001) shows, in a setting where positive transfers to agents are allowed, that

any mechanism satisfying individual rationality, strategy-proofness, ontoness, and non-

bossiness must be a fixed price core rule. Under such rule, any agent has a personalized

price for any object and if involved in an exchange, the transfer is equal to his personalized

price of the object he consumes. By adding budget-balance, these personalized prices are

represented by a price vector and an agent’s transfer is equal to the difference between his

personalized price and the price of the object he consumes. The ontoness axiom means

that all exchanges are possible. Note that the mechanisms considered in this paper do not

have any property pertaining to the thickness of its range. Furthermore, as it turns out,

except for the no-trade rule, fixed-tax core rules, by satisfying constrained-efficiency, violate

non-bossiness. This is also due to the fact that in showing the existence of fixed-tax core

rules satisfying the above properties, we employ recent contributions on house exchange

with indifferences and no monetary transfers. In this context Jaramillo and Manjunath

(2012) have shown that there exist rules satisfying individual rationality, efficiency and

5These results were later proved on a more general preference domain by Andersson and Svensson
(2008).
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strategy-proofness.6 The allocations in the range of a fixed-tax core rule correspond to all

possible assignments in the house exchange model (because the same fixed-tax is always

paid), and constrained efficiency in this model becomes efficiency in that model. Indeed, as

demonstrated in this paper, the rules proposed by Jaramillo and Manjunath (2012) satisfy

all of the above defined properties.

The remaining part of this paper is organized as follows. Section 2 presents the model

and some desirable properties. Section 3 introduces Gale’s fixed-tax core rules and states

our main result. Section 4 shows the existence of rules satisfying our properties and a

discussion about the implications for the presented results on a more general preference

domain than the quasi-linear one. Section 5 contains some general remarks, e.g., a discus-

sion of the Clarke-Groves mechanisms in our context for the two-agent economy.

2 Agents, Preferences and Allocations

Let N = {1, ..., n} denote the finite universal set of agents. Agent i owns object i and N

also denotes the set of indivisible objects. Let e : N → N denote the endowment vector

such that ei = i for all i ∈ N . For all N ′ ⊆ N , let eN ′ = (ei)i∈N ′ . Agent i’s utility function

ui ∈ RN assigns utility uij for receiving object j. We set uii = 0. Let Ui denote the set of

all utility functions for i. For all N ′ ⊆ N , let UN ′ = ×i∈N ′Ui. A consumption bundle is a

tuple (j, ti) where j ∈ N and ti ∈ R+, i.e. agent i pays the tax ti for consuming j and his

utility from consuming (j, ti) is given by uij − ti.7

Given N ′ ⊆ N , a list u = (ui)i∈N ′ of individual utility functions (where ui ∈ Ui for all

i ∈ N ′) is a (utility) profile (for N ′). The set of utility profiles having the above properties

is denoted by U = ∪N ′⊆NUN ′ .
Given N ′ ⊆ N , a (feasible) assignment a : N ′ → N ′ assigns every agent i ∈ N ′ an

object j ∈ N ′ such that ai 6= aj for all i 6= j (where ai denotes the object assigned to

agent i). Note that any feasible assignment (for N ′) assigns every agent one object and all

objects are assigned.

Given N ′ ⊆ N , an allocation (for N ′) consists of an assignment a and a tax vector

t = (ti)i∈N ′ ∈ RN ′
+ , denoted by (a, t) for short. Here ti denotes the tax agent i is paying

in allocation (a, t) and (ai, ti) denotes i’s allotment in (a, t). Let AN ′ denote the set of all

allocations for N ′ and A = ∪N ′⊆NAN ′ . An allocation rule ϕ is a pair (aϕ, tϕ) choosing for

6Independently Alcalde-Unzu and Molis (2011) have proposed another class of rules satisfying these
properties.

7Note that ti is not necessarily fixed.
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each N ′ ⊆ N and each utility profile u ∈ UN ′ an allocation (aϕ(u), tϕ(u)) ∈ AN ′ . Whenever

it is unambiguous and for ease of notation, we use the convention to write ϕ = (a, t) instead

of ϕ = (aϕ, tϕ) and ϕi(u) = (ai(u), ti(u)) for any i ∈ N ′ ⊆ N and u ∈ UN ′ . We say that

two rules ϕ = (a, t) and ϕ̄ = (ā, t̄) are equivalent if for all N ′ ⊆ N and all u ∈ UN ′ we

have uiai(u) − ti(u) = uiāi(u) − t̄i(u) for all i ∈ N ′, i.e. for any utility profile the two chosen

allocations are utility-equivalent for all agents. Sometimes we use the term mechanism

instead of (allocation) rule.

Under the no-trade rule NT , each agent keeps his endowment and no taxes are paid,

i.e. for all N ′ ⊆ N and all u ∈ UN ′ , NT (u) = (eN ′ , 0N ′) (where 0N ′ = (0, . . . , 0)).

2.1 Properties

In the following we introduce some basic properties for an allocation rule ϕ = (aϕ, tϕ) ≡
(a, t). Individual rationality says that nobody should be worse off than keeping his endow-

ment and paying no tax.

Individual Rationality: For all N ′ ⊆ N , all u ∈ UN ′ , and all i ∈ N ′, uiai(u) − ti(u) ≥ 0.

Obviously, if ϕ is individually rational and ai(u) = i, then we have uii−ti(u) = −ti(u) ≥ 0.

As (by assumption) taxes are non-negative, we have ti(u) ≥ 0 and we obtain ti(u) = 0.

Thus, agent i pays no tax (or zero tax) if i keeps his endowment and ϕ is individually

rational.

Strategy-proofness says that truth-telling is a weakly dominant strategy and because

agents’ preferences are private information, this property ensures that the mechanism’s

chosen allocations are based on the true preferences.

Strategy-Proofness: For all N ′ ⊆ N , all u ∈ UN ′ , all i ∈ N ′ and all u′i ∈ Ui, uiai(u) −
ti(u) ≥ uiai(u′i,u−i) − ti(u′i, u−i).

Constrained efficiency says that the rule is efficient on its range. Given N ′ ⊆ N , let AϕN ′
denote the range of rule ϕ for N ′, i.e. AϕN ′ = {(a(u), t(u))|u ∈ UN ′}. Let Aϕ = ∪N ′⊆NAϕN ′ .

Constrained Efficiency: For all N ′ ⊆ N and all u ∈ UN ′ , if ϕ(u) = (a(u), t(u)), then

there exists no (â, t̂) ∈ AϕN ′ such that for all i ∈ N ′, uiâi
− t̂i ≥ uiai(u) − ti(u) with strict

inequality holding for some j ∈ N ′.

Note that any rule choosing for any set of agents a unique allocation is constrained efficient,

and for example, the no-trade rule is constrained efficient.
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Consistency requires that if the rule allocates the endowments of some set of agents

S ⊆ N among the agents in S and if the problem is restricted to only contain the agents

in S and their endowments, then the agents in S must be assigned the same houses and

pay the same taxes as in the problem containing all agents and all endowments.8 In this

sense, consistency is a notion of stability since the recommendation of the allocation rule

is robust to population changes (Thomson, 1988).9 It can be argued that consistency

is a desirable property, because in the absence of specific tax revenue goals or balanced

budget requirements it seems natural (a) that the tax of agent i should only depend on

the exchange that the agent is part of and (b) that the tax of agent i should not depend

on if some other agent j decides to enter or exit the housing market (unless agents i and

j are involved in the same cyclical exchange).10 The consistency axiom takes care of both

(a) and (b).

To formally define consistency, consider a given set of agents S ⊆ N ′ ⊆ N with corre-

sponding utilities u ∈ UN ′ , and let u|S = (ui)i∈S and ϕS(u) = (ϕi(u))i∈S.

Consistency: For all S ⊆ N ′ ⊆ N and all u ∈ UN ′ , if ∪i∈S{ai(u)} = S, then ϕ(u|S) =

ϕS(u).

Unfortunately, as we show later in Corollary 1, consistency is very strong in conjunction

with our other properties as basically only the no-trade rule will satisfy them.11 Thus, we

study instead a weaker version of the axiom.

The strong version of the consistency axiom, as defined in the above, was motivated

using the stability arguments (a) and (b). But are these strong requirements really natural

for the considered house exchange model with taxes? If, for example, agent i is involved

in an exchange but is indifferent between his allotment and some other allotment outside

of his own exchange cycle, then one may argue that it not unreasonable that the taxes of

agent i potentially can be affected if this equally preferred allotment is removed from the

problem. For example, in the classical work by, e.g., Guesnerie and Seade (1982), Stiglitz

(1982) and Weymark (1986), the structure of the solution to the optimal taxation problem

8See Thomson (1992, 2009) for in-depth surveys of consistency.
9Other notions of stability is known to play a key-role for the long-term survival of matching markets,

e.g., medical residency programmes (McKinney et al., 2005), school choice programmes (Abdulkadiroğlu
et al., 2005), and labour markets for federal court clerkships (Roth and Xing, 1994).

10An alternative interpretation of (b) is that, because the consistency property holds for any subset of
agents S, agents that not are assigned an endowment from an agent in S should not be able to destroy
the trades among the agents in S simply by exiting from the housing market.

11This is not surprising. For instance, in the context of allocating indivisible objects (without monetary
transfers), Ehlers and Klaus (2007) show that basically only mixed dictator-pairwise-exchange rules satisfy
consistency in conjunction with strategy-proofness and efficiency.
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involves indifferences, through a set of binding incentive compatibility constraints, and if

a set of agents are removed from the problem, a different set of incentive compatibility

constraints may bind, which ultimately affects the taxes that the agents are charged. Our

weakening of the consistency axiom also captures this idea. More precisely, the type of

stability property discussed in the above is only applied to sets of agents S that can be

“isolated” from the rest of the agents in the economy in the sense that they strictly prefer

their allotments to any allotment not assigned to an agent in S. Indifferences are therefore

allowed to play a role in the weaker notion of consistency exactly as they are in the classical

optimal taxation problem.

Weak Consistency: For all S ⊆ N ′ ⊆ N and all u ∈ UN ′ , if ∪i∈S{ai(u)} = S and for all

i ∈ S and all j ∈ N ′\S, uiai(u) − ti(u) > uiaj(u) − tj(u), then ϕ(u|S) = ϕS(u).

Note that by definition, if ∪i∈S{ai(u)} = S, then consistency requires both ϕ(u|S) = ϕS(u)

and ϕ(u|N ′\S) = ϕN ′\S(u) whereas weak consistency does not necessarily constrain the rule

for N ′ \ S.

Anonymity says that the chosen allocations do not depend on the names of the agents,

i.e., if the names of the agents and their endowments are permuted, their assignments should

also be permuted in the same way. To formally define this property, let σ : N ′ → N ′′ be

a permutation. For any utility profile u for N ′, let σ(u) denote the utility profile for N ′′

where both the names of the agents and their endowments are relabeled according to σ.12

Similarly, σ is used for relabeling assignments and tax vectors.

Anonymity: For all N ′, N ′′ ⊆ N with |N ′| = |N ′′|, all u ∈ UN ′ and all permutations

σ : N ′ → N ′′, if ϕ(u) = (a(u), t(u)), then ϕ(σ(u)) = (σ(a(u)), σ(t(u))).

Note that in the context of exchange anonymity does not imply that agents with symmetric

utility functions are treated equally: for instance, if two agents i and j have symmetric

utility functions in the sense that uij = uji and uil = ujl for all l 6= i, j, anonymity does not

imply that agents i and j are treated equally (unless i and j form a pairwise exchange), as

for instance the no-trade rule satisfies anonymity.

Exactly as for the consistency axiom, the anonymity axiom is too strong in conjunction

with the other properties of interest (see Corollary 1). Anonymity has been used earlier

by, e.g., Miyagawa (2002) to characterize the core rule in house exchange problems. In his

problem, however, no monetary transfers are allowed and agents have strict preferences.

This also means that there are no exclusive (top-trading) exchange cycles, i.e., agents that

12Formally, for all i, j, k ∈ N ′ we have uij − ti ≥ uik − t′i if and only if uσ(i)σ(j) − ti ≥ uσ(i)σ(k) − t′i.
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are involved in exchanges strictly prefer their allotment to any other attainable allotment.

When indifferences are present, e.g., because an agent has identical valuations for several

different objects or because the numeraire good compensates for differences in object valu-

ations, exchange cycles can be exclusive. If so, the anonymity axiom can be violated even

under very mild assumptions (see Example 1). To mitigate the effect that indifferences

play in the considered house allocation problem with monetary transfers, we consider a

weakening of the anonymity axiom that captures the central message of the strong version

of the axiom.13 Namely, the chosen allocation should not depend on the names of the

agents, but only in cases where there are no indifferences, i.e., when indifferences cannot

play a role (exactly as they don’t play a role in Miyagawa, 2002). More precisely, weak

anonymity says that when all agents strictly prefer their allotments to any other allotment

(including the agent’s own endowment), then the names of the agents should not matter.

Weak Anonymity: For allN ′, N ′′ ⊆ N with |N ′| = |N ′′|, all u ∈ UN ′ and all permutations

σ : N ′ → N ′′, if ϕ(u) = (a(u), t(u)) and for all i ∈ N ′ and all j ∈ N ′\{i}, uiai(u) − ti(u) >

max{0, uiaj(u) − tj(u)}, then ϕ(σ(u)) = (σ(a(u)), σ(t(u))).

Note that (i) consistency implies weak consistency and (ii) anonymity implies weak

anonymity (but the reverse implications are not true). Similarly to consistency, as we

show later in Corollary 1, anonymity will turn out to be too strong and basically only the

no-trade rule will satisfy anonymity and our other properties. This is illustrated in the

example below.

Example 1. Let N = {1, 2, 3} and u ∈ UN be such that u12 = 1 = u32, u13 = −1 = u31

and u21 = u23 = 1. Furthermore, let σ : N → N be the permutation such that σ(1) = 3,

σ(3) = 1 and σ(2) = 2. Then σ(u) = u.

The no-trade rule NT satisfies anonymity for u as NT (u) = NT (σ(u)).

Let ϕ be an individually rational rule such that ϕ(u) = (a(u), t(u)) 6= NT (u). Then

either a1(u) 6= 1 or a3(u) 6= 3. If a1(u) 6= 1, then by individual rationality of ϕ we have

a1(u) = 2, t1(u) ≤ 1, a3(u) = 3, and t3(u) = 0. Since σ(u) = u and σ(a(u)) 6= a(u), we

obtain ϕ(u) = ϕ(σ(u)) 6= (σ(a(u)), σ(t(u))), i.e. ϕ violates anonymity. Furthermore, note

that u3a1(u) − t1(u) ≥ 0 = u3a3(u) − t3(u), i.e. the presumption for weak anonymity is not

satisfied and ϕ does not violate weak anonymity at profile u. If a3(u) 6= 3, then the same

conclusions are drawn. In addition, weak consistency cannot be invoked for S = {1, 2} as

we have u21 − t2(u) ≤ u23 − t3(u).

13For a discussion of different weakenings of the anonymity axiom, see Hikaru (2019).
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Now instead suppose that u′21 = 1, u′23 = 0, u′ = (u′2, u−2) and ϕ(u′) = (a(u′), t(u′)) =

((2, 1, 3), 0N) (where this means a1(u′) = 2, a2(u′) = 1 and a3(u′) = 3). Then u′12− t1(u′) >

u′13 − t3(u′) and u′21 − t2(u′) > u′23 − t3(u′) and weak consistency invoked for ϕ(u′) and

S = {1, 2} implies ϕ(u′|S) = ϕS(u′).

Similarly, suppose u′′ ∈ UN is such that u′′12 > u′′13, u′′23 > u′′21, u′′31 > u′′32 and

ϕ(u′′) = (a(u′′), t(u′′)) = ((2, 3, 1), 0N). Then for all i ∈ N we have u′′iai(u′′) − ti(u
′′) >

max{0, u′′iaj(u′′) − tj(u′′)} for all j ∈ N\{i}. Now if ϕ satisfies weak anonymity, then for all

permutations σ : N → N we have ϕ(σ(u′′)) = (σ(a(u′′)), σ(t(u′′))). �

Furthermore, a natural weakening of constrained efficiency is constrained unanimity: this

property only requires constrained efficiency when there is a unique constrained efficient

allocation. In a private goods setting, this means that any agent prefers his allotment to

any other agent’s allotment. Now this is captured by our weakening of anonymity and of

consistency.

3 Gale’s Fixed-Tax Core Rules

In the following, we define (Gale’s) fixed-tax core rules. Let α ≥ 0 be Gale’s fixed tax (a

lump sum payment which is identical for all agents). Given i ∈ N ′ ⊆ N and u ∈ UN ′ , we

define the relation Ri(ui, α) over N ′ as follows: for all j, k ∈ N ′\{i},

(i) jRi(ui, α)k ⇔ uij − α ≥ uik − α; and

(ii) jRi(ui, α)i⇔ uij − α ≥ uii.

Let Pi(ui, α) denote the strict ranking associated with Ri(ui, α). Given N ′ ⊆ N and u ∈
UN ′ , let RN ′(u, α) = (Ri(ui, α))i∈N ′ . Based on the fixed tax α, each utility profile induces

“ordinal” rankings over the endowments. We say that RN ′(u, α) is strict (over acceptable

objects) if for all distinct i, j, k ∈ N ′, jRi(ui, α)kRi(ui, α)i implies jPi(ui, α)kPi(ui, α)i

and iRi(ui, α)j implies iPi(ui, α)j. Now if the induced preferences are strict, then we may

apply Gale’s top trading cycles algorithm14 in order to find the unique core assignment.

For strict RN ′(u, α), let C(RN ′(u, α)) denote the unique core assignment.

Definition 1. A rule ϕ = (a, t) is a (Gale’s) fixed-tax core rule if there exists α ≥ 0 such

that for all N ′ ⊆ N and all u ∈ UN ′ ,
14The Appendix defines the HPO-algorithm, which reduces to Gale’s top trading cycles algorithm when

the induced preferences are strict.
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1. for all i ∈ N ′, if ai(u) 6= i, then ti(u) = α,

2. for all i ∈ N ′, if ai(u) = i, then ti(u) = 0, and

3. if RN ′(u, α) is strict, then a(u) = C(RN ′(u, α)).

In words, a rule is a fixed-tax core rule if there exists a fixed tax α such that for any utility

profile, if an agent does not keep his endowment, then he pays the fixed tax α, the agents

who keep their endowment pay zero, and for any utility profile that induces strict ordinal

rankings, the core assignment of objects is chosen. We call α Gale’s fixed tax as once the

fixed tax is chosen, Gale’s top trading cycles algorithm finds the unique core assignment if

the induced preferences are strict.

Theorem 1. If rule ϕ satisfies individual rationality, strategy-proofness, constrained effi-

ciency, weak consistency and weak anonymity, then ϕ is a fixed-tax core rule or ϕ is the

no-trade rule.

3.1 Proof of Theorem 1

Obviously, if ϕ = NT , then Theorem 1 is true. Let ϕ 6= NT . We need additional notation.

Note that any assignment consists of cyclic exchanges or cycles. Formally, in assignment

a, a cycle c is a sequence of distinct agents, c = (i1, i2, . . . , ik) such that ail = il+1 for all

l ∈ {1, . . . , k − 1}, and aik = i1. Then k is the length of cycle c. We use the convention to

write c for both the cycle c and the coalition of agents belonging to cycle c. Let Ck denote

the set of all cycles of length k, and C = ∪k∈{2,...,|N |}Ck the set of all cycles of length at least

two. Let Cϕk = {c ∈ Ck : there exists u ∈ Uc such that a(u) = c}.15 Similarly we define

Cϕ = ∪k∈{2,...,|N |}Cϕk .

The roadmap of the proof of Theorem 1 consists of three parts.

The first part shows the following two basic facts. Lemma 1 shows that if a cycle of

length k belongs to Cϕk , then all cycles of length k belong to Cϕk and all agents must pay

the same tax α(k) in any cycle of length k. Lemma 2 shows the non-emptiness of Cϕ given

that ϕ 6= NT .

The second part considers the case Cϕ2 6= ∅. Lemma 3 shows that then we must have

Cϕk = Ck for all k ∈ {3, . . . , |N |} (meaning all cycles of length k are executed) and Lemma

4 shows that in any cycle of arbitrary length all agents pay the same fixed tax. Lemma 5

shows that any agent, who does not keep his endowment, pays this fixed tax. Finally, given

15Note that this implies ac(u) = a(u) = c as u ∈ Uc.
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the fixed tax, Lemma 6 shows that whenever the induced ordinal preferences are strict,

then the core assignment has to be chosen.

The third part (Lemma 7) shows that if Cϕ 6= ∅, then Cϕ2 6= ∅, i.e., that we always are

in the second part of the proof when Cϕ is non-empty.

Lemma 1. Let c = (1, 2, . . . , k) ∈ Cϕk . Then Cϕk = Ck and there exists α(k) ≥ 0 such that

for all c′ ∈ Ck and all u ∈ Uc′, if a(u) = c′, then for all i ∈ c′, ti(u) = α(k).

Proof: Suppose that (c, t), (c, t′) ∈ Aϕc with t 6= t′. By constrained efficiency, for some

i, j ∈ c, ti < t′i and tj > t′j. Let y = 1 + maxl∈{1,...,k}{tl, t′l}. Let u ∈ Uc be such that for

all i ∈ c, uii+1 = y, uii = 0 and uij = −1 for j 6= i, i + 1. By (c, t) ∈ Aϕc and constrained

efficiency, a(u) = c. Let i ∈ c. We show that uii+1 − ti(u) > 0: suppose not; then by

individual rationality and uii+1 = y, ti(u) = y; let u′i ∈ Ui be such that u′ii+1 = y − 1
2

and u′ij = −1 for all j 6= i, i + 1, and u′ = (u′i, u−i). By strategy-proofness and individual

rationality, ai(u
′) = i and ti(u

′) = 0. Thus, by construction and individual rationality,

a(u′) = ec and tl(u
′) = 0 for all l ∈ c. This is now a contradiction to constrained efficiency

as (c, t) ∈ Aϕc and u′ll+1 > tl for all l ∈ c.
Thus, for all i ∈ c, uii+1 − ti(u) > 0, and a(u) = c. By construction, uiai(u) − ti(u) >

max{0, uiaj(u)−tj(u)} for all j 6= i. Now by weak anonymity, for all i, j ∈ c, ti(u) = tj(u) ≡
α(k). Because t 6= t′, then either t 6= (α(k))i∈c or t′ 6= (α(k))i∈c, say t′ 6= (α(k))i∈c. If

for all i ∈ c, t′i ≥ α(k), then by constrained efficiency the allocation (c, t′) can never be

chosen for utility profiles of coalition c, which is a contradiction to (c, t′) ∈ Aϕc . Thus, for

some i ∈ c, α(k) = ti(u) > t′i. But then using strategy-proofness and constrained efficiency

yields a contradiction: i may report u′ii+1 = 1
2
(ti(u) + t′i) and u′ij = uij for j 6= i + 1, and

then by strategy-proofness and individual rationality, a(u′i, u−i) = ec and t(u′i, u−i) = 0c,

which is a contradiction to constrained efficiency by (c, t′) ∈ Aϕc .

Hence, for all (c, t), (c, t′) ∈ Aϕc we have t = t′, and α(k) = t′i = ti for all i ∈ c. Let

c′ ∈ Ck and σ : c → c′ be a permutation. By weak anonymity and a(u) = c, we obtain

a(σ(u)) = c′ and for all i ∈ c′, ti(σ(u)) = α(k). Hence, Cϕk = Ck.

The next lemma finishes the first part of the proof.

Lemma 2. If ϕ 6= NT , then Cϕ 6= ∅.

Proof. Since ϕ 6= NT , there exist N ′ ⊆ N and u ∈ UN ′ such that ϕ(u) 6= NT (u). By

individual rationality, for all i ∈ N ′, ai(u) = i implies ti(u) = 0, and thus, N ′′ = {i ∈ N ′ :

ai(u) 6= i} 6= ∅. Let u′ ∈ UN ′ be such that (i) for all i ∈ N ′′, u′iai(u) − ti(u) > 0 > u′ij for all

j ∈ N ′\{ai(u), i}, and (ii) for all i ∈ N ′\N ′′, u′ii = 0 > u′ij for all j ∈ N ′\N ′′.
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Then by constrained efficiency, a(u′) 6= eN ′ and a(u′) contains at least one cycle c (of

length greater than or equal to two). Without loss of generality, let c = (1, 2, . . . , k) with

k ≥ 2. Hence, for all i ∈ N ′, u′iai(u′) − ti(u
′) ≥ 0 > u′ij − tj(u′) for all j ∈ N ′\c where the

first inequality follows from individual rationality and the second from our construction

and that transfers are non-negative. Thus, by weak consistency, ϕ(u|c) = ϕc(u) and we

have c ∈ Cϕk , the desired conclusion. �

For the second part of the proof, let Cϕ2 6= ∅. The next lemma shows then Cϕ = C. By

weak anonymity and strategy-proofness, if Cϕ2 6= ∅, then Cϕ2 = C2 and in any pairwise trade

agents pay the tax α(2) for two-agent utility profiles.

Let c = (1, 2, . . . , k). We say that u ∈ Uc is c-cyclic if for each i ∈ c, uii+1 > uii−1 > α(2)

and uij < 0 for all j ∈ c\{i− 1, i, i+ 1}.

Lemma 3. Let Cϕ
2 6= ∅. Then for all k ∈ {3, . . . , |N |}, Cϕk = Ck.

Proof: Suppose that for some k ∈ {3, . . . , |N |}, Cϕk = ∅. Let c = (1, 2, . . . , k), c′ =

(k, k − 1, . . . , 1), and fix a c-cyclic u ∈ Uc. By Cϕk = ∅, we have a(u) 6= c, c′.

Because u is c-cyclic and from individual rationality, the only admissible trading ar-

rangement is a mix of pairwise trading and keeping one’s endowment. First, we show

that no agent keeps his endowment by invoking weak consistency and the fact that in any

pairwise trade agents pay the tax α(2) for two-agent utility profiles.

Suppose that there exists i ∈ {1, . . . , k} such that ai(u) = i, say i = 2. By individual

rationality, a2(u) = 2 and t2(u) = 0. Let u′2 ∈ U2 be such that u′21 = u21 and u′2l < 0

for all l ∈ c\{1, 2}. Let u′ = (u′2, u−2). By individual rationality, a2(u′) ∈ {1, 2}. If

a2(u′) = 1, then by strategy-proofness and both a2(u) = 2 and t2(u) = 0, t2(u′) = u21.

But then choose u′′2 ∈ U2 such that u′21 > u′′21 > α(2) and u′′2l = u′2l for all l ∈ c\{1}.
Let u′′ = (u′′2, u−2). Then by strategy-proofness and individual rationality, a2(u′′) = 2 and

t2(u′′) = 0. Thus, without loss of generality, we may suppose for u′ that a2(u′) = 2 and

t2(u′) = 0 (by individual rationality). By Cϕk = ∅, we have a1(u′) ∈ {1, k}.
If a1(u′) = 1, then let u′′1 ∈ U1 be such that u′′12 = u12 and u′′1l < 0 for all l ∈ c\{1, 2}.

Let u′′ = (u′′1, u
′
−1). By strategy-proofness, individual rationality and Cϕk = ∅, a1(u′′) = 1

and t1(u′′) = 0. Hence, by individual rationality, a2(u′′) = 2 and t2(u′′) = 0. But now by

weak consistency, a(u′′{1,2}) = (1, 2), which is a contradiction to constrained efficiency as

((2, 1), (α(2), α(2)) ∈ Aϕ(2,1).

If a1(u′) = k, then using the same argument as above, strategy-proofness and weak
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consistency (because 1 may deviate as above, obtain 2 and pay α(2)), we must have

u12 − α(2) ≤ u1k − t1(u′) < u12 − t1(u′)

where the first inequality follows from strategy-proofness and the second one from u1k <

u12. Thus, we have t1(u′) < α(2). Now let u′′1 ∈ U1 be such that u′′1k − t1(u′) > 0 >

u′′1k − α(2) and u′′1l < 0 for all l ∈ c\{1, k}. Let u′′ = (u′′1, u
′
−1). By strategy-proofness,

a1(u′′) = k and t1(u′′) = t1(u′). By Cϕk = ∅, we have ak(u
′′) = 1. But now by construction,

u′′1k − t1(u′′) > u′′1aj(u′′) − tj(u′′) for all j ∈ c\{1, k}. If uk1 − tk(u′′) > ukaj(u′′) − tj(u′′) for

all j ∈ c\{1, k}, then by weak consistency, ϕ(u′′|{1,k}) = ϕ{1,k}(u
′′). Thus, a1(u′′|{1,k}) = k

and t1(u′′|{1,k}) = t1(u′′) = t1(u′) < α(2), which is a contradiction to the fact that in any

pairwise trade for two-agent utility profiles agents pay the tax α(2). Otherwise (uk1 −
tk(u

′′) ≤ ukaj(u′′) − tj(u′′) for some j ∈ c\{1, k}), choose u′′′k ∈ Uk such that u′′′k1 = uk1 + 1

and u′′′kl < 0 for all l ∈ c\{1, k}, and let u′′′ = (u′′′k , u
′′
−k). Now by strategy-proofness,

ak(u
′′′) = 1 and tk(u

′′′) = tk(u
′′). By Cϕk = ∅ and individual rationality, a1(u′′′) = k and

0 ≤ t1(u′′′) < α(2). But now as above we use weak consistency to derive a contradiction to

the fact that in any pairwise trade for two-agent utility profiles agents pay the tax α(2).

Thus, for all i ∈ {1, . . . , k} we have ai(u) 6= i. Hence, k is even and a(u) must consist

of k
2

pairwise exchanges (and k ≥ 4). Without loss of generality, let a1(u) = k. Note that

u12 > u1k and for all i ∈ c\{1}, uii+1 > uii−1. Now starting with agent 1, 1 strictly prefers

the pairwise trade with agent 2 to the pairwise trade with agent k when paying the tax

α(2). We show below using individual rationality, strategy-proofness and weak consistency

that agent 1 can induce a pairwise trade with agent 2. Now similarly, agent 2 strictly

prefers the pairwise trade with agent 3 to the pairwise trade with agent 1 when paying the

tax α(2), and using the same arguments, then agent 2 can induce a pairwise trade with

agent 3. Then by induction we obtain a contradiction for the cycle c = (1, . . . , k).

Let a1(u) = k. If t1(u) < α(2), then let u′1 ∈ U1 be such that u′1k−t1(u) > 0 > u′1k−α(2)

and u′1l < 0 for all l ∈ c\{1, k}. Let u′ = (u′1, u−1). By strategy-proofness, a1(u′) = k and

t1(u′) = t1(u). Thus, by Cϕk = ∅, we have ak(u
′) = 1. Now we derive a contradiction as

above using weak consistency and the fact that in any pairwise trade for two-agent utility

profiles agents pay α(2).

If t1(u) ≥ α(2), then let u′1 ∈ U1 be such that u′12 = u12 and u′1l < 0 for all l ∈ c\{1, 2}.
Let u′ = (u′1, u−1). By individual rationality, a1(u′) ∈ {1, 2}. If a1(u′) = 2, then by

strategy-proofness, u12 − t1(u′) ≤ u1k − t1(u) < u12 − t1(u) which implies t1(u′) > t1(u) ≥
α(2). But then choose u′′1 ∈ U1 such that u′′12 − t1(u′) < 0 < u′′12 − α(2) and u′′1l < 0 for all
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l ∈ c\{1, 2}. Let u′′ = (u′′1, u−1). Now from strategy-proofness and individual rationality,

it follows a1(u′′) = 1 and t1(u′′) = 0.

Thus, without loss of generality, let t1(u) ≥ α(2), u′ = (u′1, u−1) be such that u′12 > α(2),

u′1l < 0 for all l ∈ c\{1, 2}, and both a1(u′) = 1 and t1(u′) = 0. Now by weak consistency

and strategy-proofness, we cannot have a2(u′) = 2 (otherwise let u′′2 ∈ U2 be such that

u′′21 = u21 and u′′2l < 0 for all j 6= 1, 2, and then we use strategy-proofness and weak

consistency for (u′′2, u
′
−2) to derive a contradiction as above). Thus, by Cϕk = ∅, a2(u′) = 3

and a3(u′) = 2. Now we can use the same arguments as above for 3 in the role of 1 to

deduce t3(u′) ≥ α(2) and (without loss of generality) for u′′3 ∈ U3 such that u′′34 > α(2) and

u′′3l < 0 for all l ∈ c\{3, 4} and u′′ = (u′′3, u
′
−3), we have a3(u′′) = 3 and t3(u′′) = 0 (and

a2(u′′) 6= 3). Again by strategy-proofness and weak consistency, we cannot have a4(u′′) = 4.

If k = 4, then a4(u′′) = 1 and by Cϕk = ∅, a1(u′′) = k, which is a contradiction to individual

rationality (by u′1k < 0). If k > 4, then by weak consistency and Cϕk = ∅, a4(u′′) = 5 and

a5(u′′) = 4. Then using the same arguments as above for 5 in the role of 1, we obtain a

contradiction since k is finite and even.

Thus, Cϕk 6= ∅. Now weak anonymity implies Cϕk = Ck.

Note that by Lemma 1, all agents pay in any cycle of length k the same fixed tax α(k).

Let α(2) = α. We aim to show that whenever a cycle c of length k forms, all agents pay

the fixed tax α(k) = α.

Lemma 4. Let Cϕ
2 6= ∅. Then for all k ∈ {3, . . . , |N |}, α(k) = α.

Proof: Let k ∈ {3, . . . , |N |}. Without loss of generality, let c = (1, 2, . . . , k) ∈ Cϕk . By

Lemma 1, all agents pay the fixed tax α(k) in cycle c for all u ∈ Uc such that a(u) = c,

and by Lemma 3, Cϕk = Ck.
We show α(k) = α. Suppose not, i.e. α(k) < α or α(k) > α.

First, suppose α(k) < α. Consider the c-cyclic utility profile uc ∈ Uc for the cycle

c = (1, . . . , k) such that α(k) < uii−1 < uii+1 < α for all i ∈ c. Let c′ = (k, . . . , 1). Suppose

that a(u) 6= c, c′, ec. Because in any cycle c all agents pay the fixed tax α(k), constrained

efficiency implies uiai(u) − ti(u) > uii+1 − α(k) > 0 for some i ∈ c. But then ai(u) 6= i and

uii+1 − ti(u) ≥ uiai(u) − ti(u) > uii+1 − α(k), (1)

which implies α(k) > ti(u). Let u′i ∈ Ui be such that α(k) > u′iai(u) > ti(u) and 0 > u′il for

all l 6= i, ai(u). Let u′ = (u′i, u−i). By strategy-proofness, ai(u
′) = ai(u) and ti(u

′) = ti(u).

But then by individual rationality and α(k) > u′iai(u), i is part of a pairwise exchange
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under u′ with agent j = ai(u
′) (and j 6= i). Let u′′j ∈ Uj be such that u′′ji = uji and

u′′jl = −1 for all l 6= i, j. Let u′′ = (u′′j , u−j). By strategy-proofness, aj(u
′′) = aj(u

′) = i.

By individual rationality, ai(u
′′) = j and ti(u

′′) < α(k) < α. This is now a contradiction to

weak consistency (since u′iai(u′) < α(k) < α and in any pairwise trade for two-agent utility

profiles agents pay α). Hence, a(u) ∈ {c, c′, ec}. By constrained efficiency and the fact that

in any cycle of length k all agents pay the same fixed tax α(k), we have a(u) = c.

Let u′2 ∈ U2 be such that α(k) < u′23 < u′21 < α and u′2l = −1 for l 6= 1, 2, 3. Let u′ =

(u′2, u−2). Suppose that a(u′) 6= c, c′. If for some i ∈ c\{2}, uiai(u′) − ti(u′) > uii+1 − α(k),

then we use the same arguments as above for (1) to derive a contradiction. Otherwise, by

constrained efficiency, u′2a2(u′) − t2(u′) > u′23 − α(k) > 0 and 2 is involved in a pairwise

trade under u′. Let û ∈ Uc be such that for all i ∈ c, ûiai(u′) = u′iai(u′) and ûil < 0 for

l 6= i, ai(u
′). If there is any trading under û, then it must be pairwise as a(u′) 6= c, c′.

If there is any pairwise trade under û, then using weak consistency gives together with

Lemma 1 gives us a contradiction as for all i, l ∈ c we have ûil < α. Thus, ai(û) = i for all

i ∈ c which is a contradiction to constrained efficiency as ûiai(u′) − ti(u′) ≥ 0 for all i ∈ c
and û2a2(u′) − t2(u′) > 0 (and (a(u′), t(u′)) ∈ Aϕc ). Hence, a(u′) ∈ {c, c′}.

Suppose that a(u′) = c. Because c is a cycle of length k, t2(u′) = α(k). Let u′′2 ∈ U2

be such that u′′21 = u′21 and u′′2l = −1 for l 6= 1, 2. Let u′′ = (u′′2, u−2). If a(u′′) = c′, then

t2(u′′) = α(k). But now we have u′21 − α(k) > u′23 − α(k), a contradiction to strategy-

proofness. Thus, a(u′′) consists of a mix of pairwise trading and keeping one’s endowment

(and a(u′′) contains at least one pairwise trade by constrained efficiency). But then using

the same profile û as above we derive a contradiction using weak consistency and individual

rationality as u′′ij < α for all i, j ∈ c.
Hence, a(u′) = c′ and a1(u′) = k. Let u′′1 ∈ U1 be such that u′′12 = u12 and u′′1l = −1

for l 6= 1, 2. Let u′′ = (u′′1, u
′
−1). If a(u′′) = c, then t1(u′′) = α(k). But now we have

u′12 − α(k) > u′1k − α(k), a contradiction to strategy-proofness. Thus, a(u′′) consists of

a mix of pairwise trading and keeping one’s endowment (and a(u′′) contains at least one

pairwise trade by constrained efficiency). But then using the same profile û as above we

derive a contradiction using weak consistency and individual rationality as u′′ij < α for all

i, j ∈ c. Hence, α(k) < α is not possible.

Second, suppose α(k) > α. Consider the same type of utility profile u for the cycle

c = (1, . . . , k) as in Lemma 3 such that α < uii−1 < uii+1 < α(k) for all i ∈ c. Because

in cycles of length k the fixed tax α(k) is paid, by individual rationality, a(u) consists of a

mix of pairwise trading and keeping one’s endowment. Then using the same arguments as
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in the proof of Lemma 3 yields a contradiction. �

Next we show that if agent i does not keep his endowment, then i pays the fixed tax α.

Lemma 5. Let Cϕ
2 6= ∅. For all N ′ ⊆ N and all u ∈ UN ′, if ai(u) 6= i, then ti(u) = α.

Proof. Let i ∈ N ′ ⊆ N and u ∈ UN ′ be such that ai(u) 6= i. We show ti(u) = α. Suppose

ti(u) < α. Let u′i ∈ Ui be such that u′iai(u) = 1
2
(α + ti(u)) and u′il = −1 for all l 6= ai(u), i.

Let u′ = (u′i, u−i). By strategy-proofness, ai(u
′) = ai(u) and ti(u

′) = ti(u). Let j ∈ N ′ be

such that aj(u
′) = i, and u′′j ∈ Uj be such that u′′jaj(u′) = ujaj(u′) + 1 and u′′jl = −1 for all

l 6= aj(u
′), j. Let u′′ = (u′′j , u

′
−j). By strategy-proofness, aj(u

′′) = i and tj(u
′′) = tj(u

′). By

individual rationality and our construction, ai(u
′′) = ai(u

′) and ti(u
′′) < α. If ai(u

′′) = j,

then applying weak consistency yields a contradiction because in all pairwise exchanges

the fixed tax α is paid. If ai(u
′′) 6= j, then let ah(u

′′) = j and u′′′h ∈ Uh be such that

u′′′hj = uhj + 1 and u′′′hl = −1 for all l 6= j, h. Then we derive the same conclusions as above.

At some point we arrive at a profile ũ such that a(ũ) contains the cycle c, i ∈ c, ti(ũ) < α,

and ũhah(ũ) − th(ũ) ≥ 0 > ũhj − tj(ũ) for all h ∈ c and all j ∈ N ′\c. Then applying weak

consistency yields a contradiction because by Lemma 4 in the exchange c the fixed tax α

is paid by all agents belonging to c.

Thus, for all i ∈ N ′, if ai(u) 6= i, then ti(u) ≥ α. Let û ∈ UN ′ be such that (i)

ûiai(u) − α > 0 > ûij for all j ∈ N ′\{i, ai(u)} and all i ∈ N ′ with ai(u) 6= i and (ii) 0 > ûij

for all j ∈ N ′\{i} and all i ∈ N ′ with ai(u) = i. Then by constrained efficiency, weak

consistency and Lemma 4, a(û) = a(u) and for all i ∈ N with ai(u) 6= i, ti(û) = α. Thus,

the assignment a(u) together with everybody, who does not keep his endowment, paying

α belongs to AϕN ′ .
Suppose that tj(u) > α for some j ∈ N ′. Because ti(u) ≥ α for all i ∈ N ′ such that

ai(u) 6= i, the assignment a(u) together with everybody, who does not keep his endowment,

paying α belongs to AϕN ′ and Pareto dominates (a(u), t(u)), which is a contradiction to

constrained efficiency. �

The next lemma completes the second part of the proof of Theorem 1.

Lemma 6. For all N ′ ⊆ N and all u ∈ UN ′, if RN ′(u, α) is strict, then a(u) =

C(RN ′(u, α)).

Proof. Let c = (i1, . . . , ik) be a top cycle in RN ′(u, α). Suppose that c is not part of a(u),

say aik(u) 6= i1. Because RN ′(u, α) is strict and in any exchange agents pay the fixed tax

α, then uiki1 − α > uikaik (u) − tik(u). Let u′ik ∈ Uik be such that u′iki1 = uiki1 and u′ikl < 0
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for all l 6= i1, ik. By strategy-proofness and the fact that in cyclical exchanges the fixed

tax α is paid, aik(u′ik , u−ik) = ik and tik(u′ik , u−ik) = 0. Note that RN ′(u
′
ik
, u−ik , α) is strict

and c remains a top cycle under R(u′ik , u−ik , α). Thus, aik−1
(u′ik , u−ik) 6= ik. Similar as

above uik−1
can be replaced u′ik−1

∈ Uik−1
such that u′ik−1ik

= uik−1ik and u′ik−1l
< 0 for all

l 6= ik−1, ik. Then we arrive at a profile u′ = (u′{i1,...,ik}, u−{i1,...,ik}) where c is still a top

cycle under RN ′(u
′, α) but all agents in c receive their endowments, i.e. for l ∈ {i1, . . . , ik},

al(u
′) = l and tl(u

′) = 0. By construction, for all l ∈ {i1, . . . , ik} and all j ∈ N ′\{i1, . . . , ik},
0 > ulaj(u′)− tj(u′). Thus, by weak consistency, for all l ∈ {i1, . . . , ik}, al(u′{i1,...,ik}) = l and

tl(u
′
{i1,...,ik}) = 0. This is a contradiction to constrained efficiency because c is top cycle

under RN ′(u
′, α) and for all l ∈ {1, . . . , k}, u′ilil+1

− α = uilil+1
− α > 0.

Thus, c must be part of a(u). Consider a top cycle in N ′\c, say c′ = (j1, . . . , jm).

If c′ is not part of u, then we can do the same as above: let u′jm ∈ Ujm be such that

u′jmj1 = ujmj1 and u′jml < 0 for all l 6= j1, jm, and u′ = (u′jm , u−jm). Then under u′ the cycle

c remains a top cycle in the strict RN ′(u
′, α), and thus by the above, a(u′) contains c. But

then by strategy-proofness and the fact that in cyclical exchanges the fixed tax α is paid,

ajm(u′) = jm and tjm(u′) = 0. Note that RN ′(u
′, α) is strict and c remains a top cycle

under RN ′(u
′, α) and c′ is a top cycle in N ′\c. Now the same arguments as above yield a

contradiction to weak consistency and constrained efficiency. �

We have shown that if Cϕ2 6= ∅, then by Lemma 4, Lemma 5 and Lemma 6, ϕ is a fixed-tax

core rule.

Our final lemma shows the third part and completes the proof of Theorem 1.

Lemma 7. If Cϕ 6= ∅, then Cϕ2 6= ∅.

Proof. Suppose that Cϕ2 = ∅. By Cϕ 6= ∅, let k be minimal such that Cϕk 6= ∅ and for

all l ∈ {2, . . . , k − 1}, Cϕl = ∅. By weak anonymity, Cϕk = Ck. Let c = (1, . . . , k) and

c′ = (k, . . . , 1). By Lemma 1, there exists a unique symmetric fixed tax α(k) for cycles of

length k. Let u ∈ Uc be such that (i) u21 > u23 > α(k) and u2l = −1 for l 6= 1, 2, 3 and (ii)

for all i ∈ c\{2}, uii+1 > uii−1 > α(k) and uil = −1 for l 6= i − 1, i, i + 1. If a(u) 6= c, c′,

then a(u) is a mix of pairwise trading and keeping one’s endowment. Then we use a similar

argument as in Lemma 4, via a profile like û, to deduce a contradiction to the hypothesis

that Cϕ2 = ∅. By constrained efficiency and our choice of k, a(u) ∈ {c, c′}.
First, let a(u) = c. Then by Lemma 1, t2(u) = α(k). Let u′2 ∈ U2 be such that

u′21 = u21 and u′2l = −1 for l 6= 1, 2. By constrained efficiency and our choice of k,

a(u′2, u−2) = c′ and t2(u′2, u−2) = α(k). But this is now a contradiction to strategy-proofness

as u21 − α(k) > u23 − α(k).
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Second, let a(u) = c′. Let u′1 ∈ U1 be such that u′12 = u12 and u′1l = −1 for l 6= 1, 2. By

constrained efficiency and our choice of k, a(u′1, u−1) = c and t1(u′1, u−1) = α(k). But this

is now a contradiction to strategy-proofness as u12 − α(k) > u1k − α(k). �

Note that Lemma 4, Lemma 5 and individual rationality imply 1. and 2. of Definition 1,

and this together with Lemma 6 and Lemma 7 implies 3. of Definition 1.

Remark 1. For all i ∈ N , ui ∈ Ui is a vector ui ∈ RN such that uii = 0. Then (strictly

speaking) for N ′ ( N and u ∈ UN ′ , the allocation ϕ(u) may depend on the utilities of the

agents in N ′ over N\N ′. Our definition of a rule did not exclude this. However, as one

may check, the proof of Theorem 1 did not require this.16

Theorem 1 says very little when the induced rankings are not strict (and this is similar in

Miyagawa (2001)). Then the rule ϕ satisfies the properties in Theorem 1 if ϕ makes the

“right” choices (or tie-breaking decisions among several allocations). Below we show that

there exist fixed-tax core rules satisfying all the properties in Theorem 1.

4 Existence

Theorem 1 showed if a rule ϕ satisfies individual rationality, strategy-proofness, constrained

efficiency, weak consistency and weak anonymity, then ϕ is a fixed-tax core rule or ϕ is the

no-trade rule. Let ϕ be a fixed-tax core rule with fixed tax α ≥ 0. Note that the range of ϕ

for N ′ ⊆ N is given by AϕN ′ = {(â, t̂) ∈ AN ′|t̂i = 0 if âi = i and t̂i = α otherwise}. Let Wi

denote the set of all weak ordinal rankings over N . Under ϕ, agent i’s possible consumption

bundles are (i, 0) and (j, α) with j 6= i. Thus, agent i’s utility functions induce all weak

ordinal rankings over his consumption bundles or over N , i.e. {Ri(ui, α)|ui ∈ Ui} =Wi.

Now in order to establish, for the fixed tax α, the existence of a rule satisfying our

properties, we use a construction of Saban and Sethuraman (2013), called the Highest Pri-

ority Object (HPO) algorithm. This is a class of algorithms that generalizes the procedure

found by Jaramillo and Manjunath (2012), which was together with Alcalde-Unzu and

Molis (2011) the first to demonstrate the existence of individually rational, strategy-proof

and efficient rules for the model of house exchange with indifferences and no monetary

transfers.

16Indeed, if two agents are indifferent between a pairwise trade and keeping their endowments, our
requirements do not pin down the chosen allocation, and in such situations either the agents keep their
endowment and trade pairwise depending on the utilities over other houses.
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Given N ′ ⊆ N , let ON ′ denote the set of feasible assignments for N ′. Let f :

∪N ′⊆NWN ′ → ∪N ′⊆NON ′ be an assignment rule. Then

(i) f is assignment-individually-rational if and only if for all N ′ ⊆ N and all R ∈ WN ′ ,

we have fi(R)Rii for all i ∈ N ′,

(ii) f is assignment-strategy-proof if and only if for all N ′ ⊆ N , all R ∈ WN ′ , all i ∈ N ′

and all R′i ∈ Wi, fi(R)Rifi(R
′
i, R−i), and

(iii) f is assignment-efficient if and only if for all N ′ ⊆ N and all R ∈ WN ′ , there exists no

feasible assignment a ∈ ON ′ such that aiRifi(R) for all i ∈ N ′ with strict preference

holding for some j ∈ N ′.

Fix an assignment rule f belonging to the class of Highest Priority Object Algorithms

(we define this class formally in the Appendix). Then by Saban and Sethuraman (2013),

f is assignment-individually-rational, assignment-strategy-proof and assignment-efficient.

Note that by Sönmez (1999), whenever the core is non-empty, any such assignment rule

chooses a core allocation and all agents are indifferent among all core allocations.17

Given α ≥ 0 and an assignment rule f , Gale’s fixed α-tax rule ϕα,f = (aα,f , tα,f ) based

on f is defined as follows: for all N ′ ⊆ N and all u ∈ UN ′ , we have aα,f (u) = f(RN ′(u, α))

and for all i ∈ N ′, tα,fi (u) = 0 if aα,fi (u) = i and tα,fi (u) = α otherwise.

Theorem 2. Let α ≥ 0 and f be an assignment rule belonging to the class of HPO-

algorithms. Then the fixed α-tax rule ϕα,f = (aα,f , tα,f ) based on f satisfies individual ra-

tionality, strategy-proofness, constrained efficiency, weak consistency and weak anonymity.

Proof: It is straightforward to check that ϕα,f satisfies individual rationality, strategy-

proofness and constrained efficiency because f is assignment-individually-rational,

assignment-strategy-proof and assignment-efficient.

For weak consistency, let S ⊆ N ′ ⊆ N and u ∈ UN ′ (setting R = RN ′(u, α)) be such

that S = ∪i∈S{aα,fi (u)} = ∪i∈S{fi(R)} and uifi(R) − tα,fi (u) > uij − tα,fj (u) for all i ∈ S

and all j ∈ N ′\S. This means that for all i ∈ S and all j ∈ N ′\S, fi(R)Pij. But

then in the HPO-algorithm, agents in S do not point to agents in N ′\S (as agents always

point to one of their most preferred objects) and any pointing from the agents in N ′\S to

17Furthermore, by Saban and Sethuraman (2013, Theorem 3.2) for any N ′ ⊆ N and R ∈ WN ′ , f(R)
belongs to the weak core of R. This means that there exists no feasible assignment a ∈ ON ′ such that for
some S ⊆ N ′, ∪i∈S{ai} = S and aiPifi(R) for all i ∈ S.
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agents in S is irrelevant. Thus, aα,f (u|S) = f(R|S) = fS(R) = aα,fS (u) and (by definition)

tα,f (u|S) = tα,fS (u). Hence, ϕα,f satisfies weak consistency.

For weak anonymity, suppose that for some N ′ ⊆ N and u ∈ UN ′ we have for all

i ∈ N ′ and all j ∈ N ′\{i}, aα,fi (u) − tα,fi (u) > 0 and aα,fi (u) − tα,fi (u) > aα,fj (u) − tα,fj (u).

Setting RN ′ = RN ′(u, α), this means for all i ∈ N ′, fi(RN ′)Pii and fi(RN ′)Pij for all

j ∈ N ′\{i, fi(RN ′)}. But then f(RN ′) is the unique efficient assignment for RN ′ . Now

for any permutation σ : N ′ → N ′′ (where N ′′ ⊆ N and |N ′′| = |N ′|), σ(f(RN ′)) remains

the unique efficient assignment for σ(RN ′), and thus, by assignment-efficiency of f we

have aα,f (σ(u)) = f(σ(RN ′)) = σ(f(RN ′)) = σ(aα,f (u)) and (by definition) tα,f (σ(u)) =

σ(tα,f (u)). Hence, ϕα,f satisfies weak anonymity.

The agents-optimal mechanism in Theorem 2 is the fixed-tax rule with α = 0 (call it the

zero-tax rule) and the agents-worst mechanism in Theorem 2 is the no-trade rule. Both

these rules are worst for the mechanism designer (the government) in terms of monetary

transfers from the agents to the mechanism because no taxes collected. Of course, this

disregards consumer surplus and other welfare-enhancing considerations.

Below we strengthen constrained efficiency to efficiency and obtain a characterization

of a class of fixed 0-tax rules.

Efficiency: For all N ′ ⊆ N and all u ∈ UN ′ , if ϕ(u) = (a(u), t(u)), then there exists no

(â, t̂) ∈ AN ′ such that for all i ∈ N ′, uiâi
− t̂i ≥ uiai(u)− ti(u) with strict inequality holding

for some j ∈ N ′.

We need to introduce two other properties: ordinality says that the chosen allocation shall

be invariant if the induced ordinal rankings over objects coincide with zero taxes; and

assignment-weak-consistency defines this property for assignment rules.

Ordinality: For all N ′ ⊆ N and all u, u′ ∈ UN ′ , if RN ′(u, 0) = RN ′(u
′, 0), then ϕ(u) =

ϕ(u′).

Assignment-Weak-Consistency: For all S ⊆ N ′ ⊆ N and all R ∈ WN ′ , if

∪i∈S{fi(R)} = S and for all i ∈ S and all j ∈ N ′\S, fi(R)Pifj(R), then f(R|S) = fS(R).

Theorem 3. A rule ϕ satisfies individual rationality, strategy-proofness, efficiency, weak

consistency, weak anonymity and ordinality if and only if there exists an assignment rule

f satisfying assignment-individual-rationality, assignment-strategy-proofness, assignment-

efficiency, and assignment-weak-consistency such that ϕ is the fixed 0-tax rule based on

f .
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Proof: First, let ϕ = (aϕ, tϕ) satisfy individual rationality, strategy-proofness, efficiency,

weak consistency, weak anonymity and ordinality. By efficiency, ϕ 6= NT . Since efficiency

implies constrained efficiency, Theorem 1 implies that ϕ is a fixed-tax core rule for some

fixed α ≥ 0. Hence, by efficiency we must have α = 0. Then it is straightforward that aϕ is

a well-defined assignment rule (by ordinality) satisfying assignment-individual-rationality,

assignment-efficiency, assignment-strategy-proofness and assignment-weak-consistency.

Conversely, let f be an assignment rule satisfying assignment-individual-rationality,

assignment-strategy-proofness, assignment-efficiency, and assignment-weak-consistency.

Consider the fixed 0-tax rule ϕ0,f = (a0,f , t0,f ) based on f . Note that by definition, ϕ0,f

satisfies ordinality.

We show that ϕ0,f is efficient. If not, then there exists N ′ ⊆ N and u ∈ UN ′ such

that for some (â, t̂) ∈ AN ′ , we have for all i ∈ N ′, uiâi
− t̂i ≥ uia0,fi (u) − t

0,f
i (u) with strict

inequality holding for some j ∈ N ′. Without loss of generality, we may suppose that for

all i ∈ N ′, t̂i = 0. Since t0,fi (u) = 0 for all i ∈ N ′, setting R = RN ′(u, 0) this implies (as

a0,f (u) = f(R)) âiRifi(R) for all i ∈ N ′ with strict preference holding for some j ∈ N ′.
But then f is not assignment-efficient, a contradiction. That ϕ0,f satisfies all the remaining

properties follows as in the proof of Theorem 2.

Note that the class of HPO-algorithms are assignment rules satisfying all properties in

Theorem 3, and that without ordinality, our requirements do not determine the assignment

when there are “many” indifferences.18

In the setting where positive transfers are allowed, Miyagawa (2001) shows that any

rule satisfying his properties must be a fixed price core rule: under such rule any agent i

has a personalized price pij for consuming object j and setting p = (pij)i,j∈N , any utility

function ui of agent i induces an ordinal ranking over objects as follows: for all j, k ∈ N ,

jRi(ui, p)k ⇔ uij − pij ≥ uik − pik. Similar to us, he shows that for any utility profile, if

the induced preferences are strict, then the fixed price core rule based on p must choose

the unique core assignment of the induced preferences.

Most importantly, in showing existence of a fixed price core rule satisfying his properties,

ties are broken exogenously if the induced preferences are weak to obtain a strict profile

18For instance, let f belong to the class of HPO-algorithms and ϕ0,f be the fixed 0-tax rule based on
f . Let µ ∈ ON be an assignment such that µi 6= i for all i ∈ N . Now define the rule ϕ̃ as follows: (i)
for any u ∈ UN such that uiµi = 0 for all i ∈ N , ϕ̃(u) = NT (u) if ϕ0,f (u) 6= NT (u), and ϕ̃(u) = (µ, 0N )
if ϕ0,f (u) = NT (u), and (ii) otherwise ϕ̃(u) = ϕ0,f (u). Then the modified rule ϕ̃ satisfies all properties
in Theorem 3 except for ordinality. This is similar to Saban and Sethuraman (2013) who suggest that it
is most likely impossible to characterize all assignment rules satisfying assignment-individual-rationality,
assignment-strategy-proofness and assignment-efficiency.
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and choose its unique core allocation. Those assignment rules are characterized by Ehlers

(2014) and they do not satisfy efficiency but always choose a competitive allocation. Thus,

even though Miyagawa (2001) and we show that when the induced preferences are strict,

the unique core assignment is chosen, in establishing existence, Miyagawa’s class and our

class of assignment rules are disjunct: this is easily seen by the usual three agent example

below.

Example 2. Let N = {1, 2, 3} and agent i be endowed with house i. Let R1 : [23]1 (which

stands for 2I13P11), R2 : 132 and R3 : 123.

Then for R = (R1, R2, R3) the assignments (2, 3, 1) (which stands for agent 1 receiv-

ing house 2, agent 2 receiving house 3, and agent 3 receiving house 1) and (3, 1, 2) are

assignment-efficient.

The assignment (2, 1, 3) is the core assignment after breaking the tie between houses 2

and 3 at R1 in favor of house 2, i.e. (2, 3, 1) is the unique core assignment for the strict

profile R̂1 : 231, R2 : 132 and R3 : 123. The assignment (3, 2, 1) is the core assignment

after breaking the tie between houses 2 and 3 at R1 in favor of house 3.

Fixed price core rules choose either (2, 1, 3) or (3, 2, 1) whereas any assignment-efficient

rule chooses either (2, 3, 1) or (3, 1, 2). �

Remark 2 (General Preferences). One may check that all our results remain true if agents

have general preferences over consumption bundles: for all i ∈ N , let Bi = {(i, 0)}∪{(j, ti) :

j ∈ N\{i} and ti ≥ 0} and Ri denote the set of all preference relations on Ri being

(i) complete and transitive, (ii) monotonic: for all j ∈ N\{i} and all 0 ≤ ti < t′i we

have (j, ti)Pi(j, t
′
i) and (iii) bounded: for all j ∈ N\{i}, all k ∈ N and all ti, t

′
i ≥ 0, if

(j, ti)Pi(k, t
′
i), then there exists t′′i > ti such that (k, t′i)Pi(j, t

′′
i ). As quasi-linear preferences

are a subset of Ri, it is easy to check that Theorem 1 and its proof remain true for general

preferences. Similarly, Theorem 2 continues to hold on the general preference domain and

existence is guaranteed. Note that here, instead of using for i ∈ N , Ri(ui, α), we use

Ri|{(i, 0)} ∪ {(j, α) : j ∈ N\{i}},

which is the restriction of Ri to the consumption bundles i may receive under Gale’s fixed

tax rule based on the fixed tax α.
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5 Discussion

We end this paper with some remarks and discussions related to the main findings of the

paper. Section 5.1 considers the case when the set N only contains two agents. This

restriction enables us to characterize generalized versions of Clarke-Groves mechanisms

using our considered axioms (except constrained efficiency). Section 5.2 demonstrates that

the axioms used in the main characterization Theorem 1 are independent, i.e., by dropping

any of them from Theorem 1, it is possible to construct a non-fixed-tax-rule that satisfies

all of the other axioms. Finally, Section 5.3 shows that by strengthening weak consistency

to consistency or weak anonymity to anonymity, no fixed-tax core rule satisfies our axioms

and we are, consequently, only left with the no-trade rule.

5.1 Two Agents

Suppose in the remaining part of this subsection that the universal set N contains only

two agents. This also means that they either exchange their houses with each other or

keep their own houses. We will show that in this setting, the properties in Theorem 1

(without constrained efficiency) characterize the familiar Clarke-Groves payments (Clarke,

1971; Groves, 1973) satisfying our constraints.19 In those payment schemes, the tax paid

by an agent depends only on the valuation of the other agent and whether or not trade is

executed. If we would impose efficiency, then trade occurs whenever u12 + u21 > 0 and,

together with our other axioms, we easily deduce the pivotal rule in the family of Clarke-

Groves rules (Green and Laffont, 1979; Moulin, 1986). We do not, however, impose this

condition, and so we have access only to Roberts’ (1979) theorem. However, this only tells

us that agents are to trade when their valuations are sufficiently high. This leaves the work

of deducing 1) what threshold should be set for trade and 2) which Clarke-Groves payment

schemes satisfy our conditions. We show that there is a space of functions that work, but

that this space is nonetheless constrained in subtle ways.

Referring briefly back to our general model, recall that our set of social alternatives there

was exponential in the primitives: any subset of agents could be asked to trade amongst

themselves. Thus, while Roberts’ theorem does hold here, to use it would require us to pin

down exponentially many constants. Anonymity might have allowed us to symmetrize the

agent-wise constants, but weak anonymity does not immediately have this power. Similarly,

some form of neutrality might have helped to simplify the outcome-wise constants, but weak

19Pápai (2003) studies fair prices in bidding settings.
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consistency does not immediately yield such structure. Finally, our proof simultaneously

deduces the assignment and payment rules, and restrictions on payments were important

for deducing the assignment rule, and therefore, it is not clear whether a proof via Roberts’

theorem is simpler.

In the following, we will introduce regular taxation schemes. Loosely speaking any

such scheme is based on a non-increasing function. Let x, x ∈ R+ be such that x ≤ x.

Let I = [x, x] denote the closed interval with endpoints x and x. Let g : I → R+

be a non-increasing function such that g(x) ≥ x. Let g(I) = {g(x) : x ∈ I} denote

the image of g. Note that for any such function we have I ≤ g(I)20 and that g may

contain points of discontinuities, i.e. for x ∈ I we may have21 g(x−) ≥ g(x) > g(x+) or

g(x−) > g(x) ≥ g(x+) (where both inequalities may be strict and we set both g(x−) = +∞
and g(x+) = x). For our purposes, a function g−1 : [x,+∞) → I is an “inverse” of g if,

for each z ∈ [x,+∞), g−1(z) ∈ cl({x ∈ I : g(x−) ≥ z ≥ g(x+)}). Note that g−1 is not

the inverse of g in the usual sense because g−1 is defined over [x,+∞) and not only g(I).

Furthermore, for some x′, x′′ ∈ I we may have g(x′) = g(x′′) = z and x′ 6= x′′, i.e. g−1(z)

may select x′ or x′′ (or possibly other elements in cl({x ∈ I : g(x−) ≥ z ≥ g(x+)})). Let

G = {g : I → R+ : g is non-increasing, g(x) ≥ x, and g−1 is defined as above}.
Let g ∈ G. For each u ∈ U , we define first a “hypothetical” (regular) tax h(u) in order

to check whether exchanging objects makes both agents better off. Below the tax h2(u)

for agent 2 is defined in dependance of u12, agent 1’s valuation for 2’s object.

(i) If u12 /∈ I ∪ [x,+∞), then h2(u) = +∞.

(ii) If u12 ∈ I, then h2(u) = g(u12).

(iii) If u12 ∈ [x,+∞), then h2(u) = g−1(u12).

Note that for u12 > g(I) we have g−1(u12) = x. In a symmetric way we define h1(u). Note

that this is actually a Clarke-Groves payment that satisfies our constraints.22

Now a regular tax rule checks first whether the agents’ valuations for the other object

exceed the hypothetical tax or not. If both valuations exceed the hypothetical taxes, then

they exchange their objects and they pay these taxes. If not, then both agents keep their

endowments and they pay no taxes. Formally, the regular tax rule φg = (ag, tg) is defined

20We use the usual convention that for two sets J and J ′ we write J ≤ J ′ if z ≤ z′ for all z ∈ J and all
z′ ∈ J ′.

21Here we use the convention g(x−) = limε→0 g(x− ε) and g(x+) = limε→0 g(x+ ε).
22See for instance Nisan (2007, Theorem 9.36) and Sprumont (2013, Lemma 1).
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as follows: for all u ∈ U , (i) if both u12 ≥ h1(u) and u21 ≥ h2(u), then ag(u) = (2, 1)

and tg(u) = h(u), and (ii) otherwise ag(u) = e and tg(u) = (0, 0). The following is

straightforward and left to the reader.

Proposition 1. Let N = {1, 2}. Any regular tax rule and the no-trade rule satisfy indi-

vidual rationality, strategy-proofness, consistency and weak anonymity.

Note that regular tax rules do not necessarily satisfy constrained efficiency.

Example 3. Let I = [0, 1] and for all x ∈ I, g(x) = 2 − x. If agents 1 and 2 report u2

(with u2
ii = 0 and u2

ij = 2), then ag(u2) = (2, 1) and tg(u2) = (0, 0). If agents 1 and 2

report u1 (with u1
ii = 0 and u1

ij = 1), then ag(u1) = (2, 1) and tg(u1) = (1, 1). Now for u1,

φg violates constrained efficiency because both agents strictly prefer φg(u2) to φg(u1). �

5.2 Independence

Below we show that the properties in Theorem 1 are independent, i.e. by dropping any

property in Theorem 1 we construct a rule satisfying all other properties and which is not

a fixed-tax rule (Proposition 1 shows that constrained efficiency is independent from the

other properties in Theorem 1).

Example 4 (Not individually rational). Let N = {1, . . . , n}. Use the same construc-

tion as for Theorem 2 just with the difference that any agent pays 2α when he keeps his

endowment. Any such rule satisfies all properties of Theorem 1 except for individual ratio-

nality. Note that such a rule is not a fixed-tax rule because the assignment C(RN ′(u, α)) is

not necessarily chosen: agents pay for keeping their endowment and might instead prefer

buying another house while for not paying any tax, then they keep their endowment. �

Example 5 (Not strategy-proof). Let N = {1, 2, 3}, and 0 < α(3) < α(2). In any cycle

c of length 3, agents pay α(3), and in any cycle of length 2, agents pay α(2). For all

u ∈ UN , if there exists a cycle c = (i1, i2, i3) of length 3 such that uilil+1
− α(3) ≥ 0 for

all l = 1, 2, 3, then (choose some cycle of length 3, say c) a(u) = c and for all i ∈ N ,

ti(u) = α(3). Otherwise a two-cycle is chosen (and the other agent keeps his endowment).

For N ′ = {i1, i2}, if ui1i2 − α(2) ≥ 0 and ui2i1 − α(2) ≥ 0, then a(u) = (i2, i1) and

t(u) = (α(2), α(2)) (and otherwise a(u) = e{i1,i2} and t(u) = (0, 0)). Then ϕ satisfies all

the properties in Theorem 1 except for strategy-proofness (because agents might disagree

on which cycle of length 3 to choose, like in the proof of Lemma 4). �
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Example 6 (Not weakly consistent). Let N = {1, . . . , n} and α > 0. For all N ′ ⊆ N and

all u ∈ UN ′ , (i) if |N ′| is odd, then ϕ(u) = NT (u) and (ii) if |N ′| is even, let ϕ(u) be the

allocation chosen by an HPO-algorithm having as fixed tax α. Then this rule satisfies all

properties of Theorem 1 except for weak consistency. �

Example 7 (Not weakly anonymous). Let N = {1, . . . , n}, c = (1, 2, . . . , n) and β ∈ RN
+

be a vector non-negative payments. For all N ′ ⊆ N and all u ∈ UN ′ , (i) if N ′ = N and for

all i ∈ N , uii+1− βi ≥ 0, then ϕ(u) = (c, β) and (ii) otherwise a(u) = eN ′ and ti(u) = 0 for

all i ∈ N ′. Then this rule satisfies all properties of Theorem 1 except for weak anonymity. �

5.3 Anonymity and Consistency

As will be demonstrated in this subsection, if weak consistency is strengthened to con-

sistency or if weak anonymity is strengthened to anonymity, then no fixed-tax core rules

satisfies our properties and we are only left with the no-trade rule (assuming that there

are at least 7 agents).

Corollary 1. Let |N | ≥ 7.

(i) A rule ϕ satisfies individual rationality, strategy-proofness, constrained efficiency,

consistency and weak anonymity if and only if ϕ is the no-trade rule.

(ii) A rule ϕ satisfies individual rationality, strategy-proofness, constrained efficiency,

weak consistency and anonymity if and only if ϕ is the no-trade rule.

Proof: In showing (i), suppose that ϕ = (a, t) 6= NT . Then Cϕ 6= ∅. By the proof

of Theorem 1, we then have Cϕ = C. Then a must be an assignment rule satisfy-

ing assignment-individual-rationality, assignment-strategy-proofness, assignment-efficiency

and assignment-consistency23. By Ehlers (2014, Proposition 2 (b)) no such rule exists. We

repeat the example below:

Let N = {1, 2, 3, 4, 5, 6, 7} and R ∈ WN be given as follows:

R1 R2 R3 R4 R5 R6 R7

5 5 1, 6 2, 7 6, 7 3 4

2 1 3 4 5 6 7

1 2 4 1 1 1 1
...

...
...

...
...

...
...

.

23Assignment-Consistency: For all S ⊆ N ′ ⊆ N and all R ∈ WN ′ , if ∪i∈S{fi(R)} = S, then
f(R|S) = fS(R).
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Because either agent 1 or agent 2 does not receive object 5, it is easy to check

that µ = (5, 1, 6, 2, 7, 3, 4) and µ′ = (2, 5, 1, 7, 6, 3, 4) are the only individually ra-

tional and efficient assignments. Suppose that f is an assignment rule satisfying

assignment-individual-rationality, assignment-strategy-proofnees, assignment-efficiency,

and assignment-consistency. Then f(R) = µ or f(R) = µ′.

Let f(R) = µ. Then {f3(R), f6(R)} = {3, 6} and by assignment-consistency,

f2(R−3,6) 6= 5. Let R′2 ∈ W2 be such that R′2 : 5, 2, . . .. By assignment-individual-

rationality and assignment-strategy-proofness, f2(R′2, R−2,3,6) = 2. Thus, by assignment-

individual-rationality, f(R′2, R−2,3,6) ∈ {(1, 2, 7, 5, 4), (1, 2, 4, 5, 7)}. This contradicts

assignment-efficiency because both assignments are Pareto dominated by (1, 5, 2, 7, 4).

Let f(R) = µ′. Then {f4(R), f7(R)} = {4, 7} and by assignment-consistency,

f1(R−4,7) 6= 5. Let R′1 ∈ W1 be such that R′1 : 5, 1, . . .. By assignment-individual-

rationality and assignment-strategy-proofness, f1(R′1, R−1,4,7) = 1. Thus, by assignment-

individual-rationality, f(R′1, R−1,4,7) ∈ {(1, 2, 6, 5, 3), (1, 2, 3, 5, 6)}. This contradicts

assignment-efficiency because both assignments are Pareto dominated by (5, 2, 1, 6, 3).

Hence, we must have ϕ = NT .

In showing (ii), suppose that ϕ = (a, t) 6= NT . Then Cϕ 6= ∅. By the proof of Theorem

1, we then have Cϕ = C and in any exchange the fixed tax α ≥ 0 is paid. Then a must

be an assignment rule satisfying assignment-individual-rationality, assignment-strategy-

proofness, assignment-efficiency and assignment-anonymity. Consider N ′ = {1, 2, 3} and

u ∈ UN ′ such that u12 = 2 + α = u32, u13 = 1 + α = u31, and u21 = 2 + α = u23.

Then u induces the following ordinal rankings: R1(u1, α) : 231, R2(u2, α) : [13]2 and

R3(u3, α) : 213. By (constrained) efficiency, a(u) = (2, 3, 1) or a(u) = (3, 1, 2). But then

considering the permutation σ : N ′ → N ′ such that σ(1) = 3, σ(2) = 2 and σ(3) = 1 gives

us a contradiction to anonymity because σ(u) = u and σ(R) = R, but if a(u) = (2, 3, 1),

then σ(2, 3, 1) = (3, 1, 2) 6= a(u), and if a(u) = (3, 1, 2), then σ(3, 1, 2) = (2, 3, 1) 6= a(u).

Hence, ϕ = NT .

Regarding Corollary 1, one might wonder whether keeping one of the two requirements

(consistency or anonymity) and dropping the other one results in rules different than the

no-trade rule.

The example below shows that serial dictatorship rules, where only pairwise exchanges

with agent 1 are allowed, satisfy all properties in (i) of Corollary 1 except for weak

anonymity.

Example 8. Let |N | ≥ 3 and α > 0. The rule below chooses from the set of allocations

29



where only agent 1 can be part of a pairwise exchange with another agent (and they pay

the tax α) and all other agents keep their endowment and pay nothing. For all 1 ∈ N ′ ⊆ N ,

let ÂN ′ = {(eN ′ , 0N ′)} ∪ {(b, t)|b1 6= 1, bb1 = 1, t1 = α = tb1 and for all i ∈ N ′\{1, b1}, bi =

i and ti = 0}. Then for all N ′ ⊆ N and all u ∈ UN ′ , (i) if 1 /∈ N ′, then ϕ(u) = (eN ′ , 0N ′);

and (ii) if 1 ∈ N ′, then ϕ(u) is chosen according to a serial dictatorship (with “right”

tie-breaking): let N ′ = {i1, . . . , ik} with i1 = 1 < i2 < · · · < ik and

Xi1(u) = {(c, t′) ∈ ÂN ′ |ui1ci1 − t′i1 ≥ ui1bi1 − ti1 for all (b, t) ∈ ÂN ′},

and for l ∈ {2, . . . , k},

Xil(u) = {(c, t′) ∈ Xil−1
(u)|uilcil − t′il ≥ uilbil − til for all (b, t) ∈ Xil−1

(u)};

then ϕ(u) = (a(u), t(u)) ∈ Xik(u) such that for l ∈ {1, . . . , k} with ail(u) = 1, we have

biv 6= 1 for all (b, t) ∈ Xik(u) and all v ∈ {1, . . . , l − 1}. Then it is straightforward to

verify that ϕ satisfies individual rationality, strategy-proofness, constrained efficiency and

consistency (but not weak anonymity). �

Dropping weak consistency in (ii) of Corollary 1 we continue to get the no-trade rule for

utility profiles with more than two agents.

Corollary 2. If a rule ϕ satisfies individual rationality, strategy-proofness, constrained

efficiency, and anonymity, then for all N ′ ⊆ N with |N ′| > 2 and all u ∈ UN ′, ϕ(u) =

NT (u).

Proof: Let ϕ = (a, t). Suppose that for some N ′ ⊆ N with |N ′| > 2 and some u ∈ UN ′ ,
ϕ(u) = (a(u), t(u)) 6= NT (u). Without loss of generality, let N ′ = N . Then a(u) contains

a cycle c of length greater than or equal to two, say c = (1, . . . , k). Without loss of

generality, let c be a cycle of smallest length greater than or equal to two contained in any

allocation belonging to AϕN . Note that Lemma 1 does not use weak consistency and the

same parallel arguments show that whenever (a(u), t) and (a(u), t′) belong to AϕN , then

t = t′ and all agents belonging to the same cycle pay the same tax. Let α(k) = ti(u) for

all i ∈ c. Now by anonymity, it follows that for any permutation σ : N → N such that

σ(i) = i for all i ∈ N\c, we have ϕ(σ(u)) = (σ(a(u)), σ(t(u))). In particular, for all i ∈ c,
ϕi(σ(u)) = (cσ(i), α(k)).

We distinguish two cases depending on whether k ≥ 3 or k = 2.
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First, let k ≥ 3. Then we construct û ∈ UN inducing the following ordinal profile

over objects: R1 : 231[N\{1, 2, 3}], R2 : [13]2[N\{1, 2, 3}], R3 : 243[N\{1, 2, 3}], Ri :

[c\{i}]i[N\c] for all i ∈ c, and Rj : aj(u)j[N\{j}]. For agent 1, we choose û1 ∈ U1 such that

û12−α(k) = 2 > 1 = û13−α(k) > 0 > −1 = û1j−tj(u) for all j ∈ N\{1, 2, 3}. In addition,

for agent 2: û2 ∈ U2 is such that û21 − α(k) = 1 = û23 − α(k) > 0 > −1 = û1j − tj(u) for

all j ∈ N\{1, 2, 3}, for agent 3: û3 ∈ U3 is such that û32 − α(k) = 2 > 1 = û31 − α(k) >

0 > −1 = û1j − tj(u) for all j ∈ N\{1, 2, 3}, for each agent i ∈ c\{1, 2, 3}: ûi ∈ Ui is such

that ûil − α(k) = 1 > 0 > −1 = û1j − tj(u) for all l ∈ c\{i} and all j ∈ N\c, and for each

agent j ∈ N\c: ûj ∈ Uj is such that ûjaj(u) − aj(u) = 1 > 0 > −1 = ûjl − tl(u) for all

l ∈ N\{j, aj(u)}.
Let σ : N → N be such that σ(1) = 3, σ(3) = 1 and σ(i) = i for all i ∈ N\{1, 3}.

By our choice of c and constrained efficiency, a(u) = c or a(u) = σ(c), say a(u) = c.

But then σ(u) = u, and thus, ϕ(σ(u)) = ϕ(u) which is a contradiction to anonymity

as c 6= (σ(a(u)))i∈c (as agent 2 cannot be assigned the same object since c2 = 3 and

σ2(a(u))) = 3).

Second, let k = 2. If cycles of length 3 are not possible, then the same arguments as

above yield a contradiction. If cycles of length 3 are possible, then we do the same as in

the proof of (ii) of Corollary 1.

APPENDIX

A The HPO Algorithms

In order to establish, for some flat tax α, the existence of a rule satisfying our axioms, we use

a construction of Saban and Sethuraman (2013), called the Highest Priority Object (HPO)

algorithm. In this section, we elaborate on these algorithms for the sake of completeness.

We shall first describe the algorithm in words. Note that efficient exchange in the

presence of indifferences is much more complicated than in their absence. Any allocation

will decompose into trading cycles, but these will not be the simple “top cycles” used in

the classical algorithm. Rather than find these cycles directly, the literature has employed

a familiar, simpler strategy: having agents trade until all gains are exhausted. That is,

unlike in the Top Trading Cycles algorithm, agents are required to stay in the market even

after they have traded. This is because trading within their thick indifference set may

benefit others while not harming them.
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There are two phases in each step of the generic HPO algorithm, removal and update

and improvement. During removal and update, the algorithm removes the agents who are

holding one of their favorite objects, among those remaining, and whose participation in

further trading cycles cannot benefit others. These agents are then permanently assigned

the object they hold and sent away. The remaining agents update their preferences, given

that some objects are no longer available. Any agent holding an object they value at least

as much as all remaining objects is called satisfied.

During improvement, trading cycles are executed. A single agent may trade several

times, and hold several different objects, before finally being removed in the removal and

update phase.

We first make formal the removal and update phase. Because agents may hold several

different objects before leaving the algorithm, we can no longer conflate agents with objects.

Let Ω be the set of (remaining) objects and µ : N → Ω a one-to-one assignment of agents to

objects. Given µ and preference profile R, the ttc graph, denoted G(N,µ,R), has vertices

N and directed edges {(i, j) : ∀ω ∈ Ω, µ(j) Ri ω}. Note that the ttc graph may have loops,

as agents may hold their favorite object and remain in the algorithm. As in the body text,

we write (i, i2, i3, . . . , j) to refer to the directed path {(i, i2), (i2, i3), . . . , (in−1, j)}. A sink,

S, of a generic directed graph G is a (strongly) connected component: for each i, j ∈ S,

there is a directed path (i, i2, i3, . . . , j) ⊆ G with {i, i2, i3, . . . , in−1, j} ⊆ S, and for each

i ∈ S, j /∈ S, there is no such path from i to j. A terminal sink ST is a sink with

the property that for each i ∈ ST , (i, i) ∈ G. Agents in a terminal sink of G(N,µ,R) are

satisfied. Moreover, they do not belong to any (directed) circuit that includes someone who

is not satisfied. Thus, they cannot contribute to any Pareto improving trades and so are

permanently assigned the objects they hold and are removed. The remaining agents have

their preferences updated so that the objects just removed are no longer in their preference

ranking.

The improvement phase consists mainly of selecting a simple graph, in which each node

has out-degree 1, from the starting graph G(N,µ,R). Let L be the possibly-empty set of

labeled agents. The phase may begin with some agents labeled, depending on the previous

step in the algorithm. In the first step, no agents begin labelled. If there are any labeled

agents, they select the same agent they pointed to in the last step. Thus, for these agents,

ties are broken by history. Next, agents who are not satisfied break ties based on the name

of the objects, with everyone using a common order ≺. Finally, satisfied agents break ties

in a more complicated manor. Label all agents whose ties are already broken, so at this
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point, all the previously-labelled and unsatisfied agents are labelled. Recursively, perform

the following operations: 1) Select an unlabelled agent who is pointing to a labelled agent,

breaking ties in this selection by the name of the object each holds; 2) Break the selected

agent’s ties first by eliminating all objects held by unlabelled agents and then using the

name of the objects (and ≺); 3) Label the selected agent.

The set of labelled agents will expand to the entire set of agents, at which point all ties

have been broken, and we are left with a simple subgraph G ⊆ G(N,µ,R). Now remove all

labels, and execute all trading cycles. We must apply labels again for use in the next step.

For each unsatisfied agent, j, who did not just trade, identify the longest path of satisfied

agents (i1, i2, . . . , j) ⊆ G(N,µ,R). Label each of these satisfied agents. This completes one

step of the algorithm. Proceed now to the next step, beginning with removal and update.

We also give a complete, formal description of the algorithm in two figures. Algorithm

1 contains subroutines necessary to run HPO, while the HPO algorithm is Algorithm 2.

The algorithms are written in pseudocode, so the meaning of “=” is what it means in

programming: “set the name on the left hand side to refer to the value stored on the right.”

Thus, the potentially confusing sentence N = N \ S means, “henceforth, symbol N refers

to what was previously meant by N \ S.” The order ≺ is on the names of the objects.

The core of the algorithm consists of the repeated application of three subroutines,

Prune(), Subgraph(), and Trade(). Prune() is run first, and removes all terminal

sinks from consideration, making the sub-allocation for those agents final. Subgraph()

performs the tie-breaking described above. Finally, Trade() executes trading cycles, and

should only be passed graphs that are the output of Subgraph(), as it cannot process

overlapping cycles.

Given R ∈ WN , Ω = N , and for the strict priority order ≺ on Ω, let f≺(R) denote

the output of the HPO Algorithm. For all N ′ ⊆ N and R′ ∈ WN ′ , let Ω′ = N ′ and ≺ |Ω′
denote the restriction of ≺ to Ω′, and let f≺(R′) denote the output of the HPO Algorithm

when applied to R′ and ≺ |Ω′ . Now by Saban and Sethuraman (2013), f≺ is assignment-

individually-rational, assignment-strategy-proof and assignment-efficient. The argument

in the proof of Theorem 2 shows that f≺ satisfies weak anonymity.

In order to see weak consistency of f≺, let S ⊆ N ′ ⊆ N and R ∈ WN ′ be such that

∪i∈S{f≺i (R)} = S and for all i ∈ S and all j ∈ N ′\S, f≺i (R)Pif
≺
j (R). By ∪i∈S{f≺i (R)} =

S, the last condition implies for all i ∈ S and all j ∈ N ′\S, f≺i (R)Pij. Thus, if i ∈ S

belongs to the terminal sink ST in the HPO Algorithm applied to R and ≺ |N ′ , then

ST ⊆ S. But then applying the HPO algorithm to RS and ≺ |S yields the same terminal
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Algorithm 1 Subroutines

1: procedure Prune(N,Ω, µ, R)
2: G = G(N,µ,R)
3: while there is a terminal sink S of G do
4: (N,Ω, µ, R) =

(
N \ S, Ω \ µ(S), µ|N\S, (Ri|µ(N\S))i∈N\S

)
. Remove and

update
5: G = G(N,µ,R) . Repeat with new graph
6: end while
7: return (N,Ω, µ, R)
8: end procedure

L is the set of labelled agents, possibly empty.
GL is a graph storing the edges that were previously selected for the labelled agents.
It might also be empty.
The subgraph selection automatically chooses GL, and then builds upon it.

9: procedure Subgraph(N,Ω, µ, R, L,GL)
First the unsatisfied agents point, with ties broken by ≺

10: for i ∈ N \ L, (i, i) /∈ G(N,µ,R) do
11: ω = min≺maxRi

Ω . Break i’s ties with ≺
12: GL = GL ∪ {(i, µ−1(ω))} . i points to whomever holds ω
13: L = L ∪ {i}.
14: end for

Now the satisfied agents point
15: while there is an unlabelled agent, i ∈ N \ L do
16: G = G(N,µ,R)
17: A = {i ∈ N \ L : ∃j ∈ L, (i, j) ∈ G} . Agents pointing to labelled agents. This

set is not empty, for otherwise there would be a terminal sink.

18: i = µ−1
[

min≺ µ(A)
]

. i holds the highest priority object among A

19: Ω = µ(L) . i will point to the object of a labelled agent
20: ω = min≺maxRi

Ω . Break ties with ≺.
21: GL = GL ∪ {(i, µ−1(ω))} . Increase the simple subgraph GL

22: L = L ∪ {i} . i is labelled
23: end while
24: return GL . The output is the simple subgraph GL

25: end procedure

26: procedure Trade(G, µ)
27: for circuits (i1, i2, . . . , in, i1) ⊆ G do
28: for k ∈ {1, . . . , n} do
29: µ(ik) = µ(ik+1) mod n
30: end for
31: end for
32: return µ
33: end procedure 34



Algorithm 2 The HPO Algorithm

1: L = ∅
2: GL = ∅
3: µ = e
4: while N 6= ∅ do
5: (N,Ω, µ, R) = Prune(G(N,µ,R))
6: L = L \N
7: GL = GL|N
8: G =Subgraph(N,Ω, µ, R, L,GL)
9: α =Trade(G, µ)

10: L = {i ∈ N : (i, j) ∈ G, (i, i) ∈ G(N,µ,R), α(j) = µ(j)} . Agents labelled for next
step

11: GL = {(i, j) : i ∈ L, (i, j) ∈ G} . Labeled agents’ tie-breakers stored
12: µ = α . Trade updated
13: end while

sinks for the agents belonging to S (because they do not point to any objects in N ′\S)24

and hence, f≺(RS) = f≺S (R), which is the desired conclusion.

24The careful reader may check that Saban and Sethuraman (2013, Claim 1) is here useful.
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