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Abstract

Regression trees are evaluated with respect to mean square error (MSE), mean
integrated square error (MISE), and integrated squared error (ISE), as the size of the
training sample goes to infinity. The asymptotically MSE- and MISE minimizing
(locally adaptive) regression trees are characterized. Under an optimal tree, MSE
is O(n−2/3). The estimator is shown to be asymptotically normally distributed.
An estimator for ISE is also proposed, which may be used as a complement to
cross-validation in the pruning of trees.
Keywords: Piece-Wise Linear Regression; Partitioning Estimators; Non-Parametric

Regression; Categorization; Partition; Prediction Trees; Decision Trees; Regression
Trees; Regressogram; Mean Squared Error.
JEL codes: C14; C38.

1 Introduction

Regression trees are an important and widely used tool in machine learning. They are
easy to interpret and relatively fast to construct. Moreover they are resistant to the
inclusion of irrelevant predictor variables, and are able to handle non-smooth regression
surfaces (Hastie et al. 2009, chapter 10). The main drawback is that, for any particular
data set, there is usually a more accurate method available. This paper contributes to the
theoretical understanding of regression trees, and their predictive accuracy, by analysing
mean square error (MSE), mean integrated square error (MISE), and integrated squared
error (ISE), as the size of the training sample goes to infinity. The asymptotically MSE-
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grateful for financial support from the Swedish Research Council (Grant 2015-01751), and the Knut and
Alice Wallenberg Foundation (Wallenberg Academy Fellowship 2016-0156).
†Address: Department of Economics, Lund University, Tycho Brahes väg 1, 220 07 Lund, Sweden.

E-mail: erik.mohlin@nek.lu.se



and MISE-minimising regression trees are characterized. Asymptotic normality is proved.
Moreover, an estimator for ISE is proposed.
A regression tree is a tool for generating piece-wise constant regressions, and as such it

can be seen as a particular method for constructing regressograms, introduced by Tukey
(1947), and later developed and studied under the name of partitioning estimators (see
Györfi et al. (2002) and references therein). Regression trees were introduced by Morgan
and Sonquist (1963), and further developed by Breiman et al. (1984), Quinlan (1992),
and Loh (2002), among others. Loh (2011) is a recent survey. By a successive procedure
of binary splits, a set X ⊆ Rd is split into a number of cells in the shape of hyper-
rectangles. Together the cells partition the set X . In each step of the splitting procedure,
one dimension Xj ⊆ R and one splitting point z ∈ Xj is used to divide Xj into two halves.
Thus the sequence of splits can be represented as a binary tree τ . The prediction for each
cell is equal to the sample mean of the data in that cell. The criterion for evaluating a tree
is usually based on the residual sum of squares R (τ), with the addition of a complexity
cost α per split k. First one grows a large tree based on minimisation of R (τ), and
then one reduces the number of cells/splits by pruning. Typically pruning is based on
minimisation of Rα (τ) = R (τ) + αk, where the value of α is determined by some cross-
validation procedure. In contrast the current paper studies the bias-variance trade-off
analytically. The estimator of ISE that is proposed below may be used as a complement
to cross-validation in the pruning of trees.
Decreasing the size of cells has two effects: The within-cell differences between objects

tend to decrease, but the number of training observations in each cell tends to decrease,
thereby making inference less reliable. It follows that as the size of the training set n is
increased, the optimal number of cells is also increased, but at a slower rate, O

(
n−1/3

)
.

Asymptotically the width of the cell to which x belongs, is (i) increasing in the variance
of y conditional on x, (ii) decreasing in the derivative of the mean of y conditional on x,
and (iii) decreasing in the marginal density at x. Under an optimal tree, MSE is O(n2/3).
In the literature on regression trees the main focus has been on developing algorithms

rather than deriving analytical results. Consequently there are few asymptotic results
and no results on adaptive optimal cells. Similarly, Györfi et al. (2002) collect many
results on consistency of partitioning estimators, but it does not seem to exist any results
regarding locally adaptive optimal partitionings. The most closely related results are
due to Cattaneo and Farrell (2013). They analyse the asymptotic mean square error of
partitionings but do not allow the cells be locally adaptive.1

My results on optimal regression trees can be viewed as lying in between those previ-
ously obtained for, on the one hand, asymptotically optimal locally adaptive kernels for
non-parametric regression (e.g. Fan and Gijbels 1992), and on the other hand, asymp-

1When their theorem 3 is restricted to the case of estimation of the regression line (conditional mean)
by means of a constant fit, then it makes essentially the same statement about the mean square error as
my theorem 1 when all cells are restricted to have the same shape and volume.
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totically optimal locally adaptive histograms for non-parametric density estimation (e.g.
Kogure 1987). The results partly generalize Mohlin (2014b).

2 Model

2.1 Data

Consider a sample, or training set, {(Xs, Y s)}ns=1 of size n. Each realised observation is
a d + 1-dimensional attribute vector (xs, ys) = (xs1, x

s
2, ...x

s
d, y

s) ∈ X × Y, where Y = R,
and X = ×dj=1Xj is a compact subset of Rn, such that Xj = [aj, bj] ⊆ R for all dimensions
j. Observations are i.i.d. draws from a probability distribution with joint density f (x, y)
and marginal densities fX (x) and fY (y).2 The density of Y conditional on X = x is
fY (y|x) = f (x, y) /fX (x), assuming fX (x) > 0 for all x ∈ X . For all X ∈ X , write

Y = m (X) + ε (X) ,

where m (X) = E [Y |X] is the conditional mean, and ε (X) = Y −E [Y |X] is a noise term
with mean zero. Assume |E [Y |X = x]| <∞ so that the variance σ2 (x) = V ar (Y |X = x)
is well defined.
The set of samples, or training sets, of size n is denoted T (n).

2.2 Trees

A tree τ induces a set of cells (or categories) C = {C1, ..., Ck} that partitions X . Each cell
is a hyper-rectangle i.e. Ci = ×dj=1Cij, where component Cij is an interval (open, closed or
half-open) of length hij on R, such that

inf
xj
Cij = aij, sup

xj

Cij = aij + hij = bij.

We identify a tree τ by the set of cells (or categories) C that it induces. The prob-
ability that an object belongs to cell/category i is pi =

∫
x∈Ci fX (x) dx, which is re-

quired to be strictly positive. The conditional marginal density of y in Ci is fY (y|x ∈ Ci)
=
∫
x∈Ci f (x, y) dx/pi, and the conditional marginal density of x in Ci is fX (x|x ∈ Ci) =

fX (x) /pi. Denote the within-category variance V ar (Y i) = V ar (Y |X ∈ Ci), and the
within-category mean µi = E [m (X) |X ∈ Ci].
The relative size of cells is constrained by some (small) number ρ ∈ (0, 1) such that,

for all i and j, if pi ≥ pj then pj ≥ ρpi. For any finite number of cells this simply means

2More formally observations are drawn i.i.d. according to an absolutely continuous cumulative distri-
bution function F : V → [0, 1], with a bounded probability density function, f : V → R+. The marginal
densities are fX (x) =

∫
y∈Y f (x, y) dy and fY (y) =

∫
x∈X f (x, y) dx.
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that all cells have positive probability. When the number of cells goes to infinity, the
constraint implies that no cell becomes relatively infinitely larger than another cell. The
set of categorizations satisfying the assumptions above, called feasible categorizations, is
denoted Ψ. For a given training set t the set of feasible categorizations with non-empty
cells is Ψ (t).

2.3 Prediction Error and Optimality

Given a training set t, each cell Ci is associated with a unique (point) prediction ŷi. Let
ŷ (x) be the prediction for the cell to which x belongs. The squared error (SE) associated
with an object (x, y) is

SE (C, t) (x, y) = (y − ŷ (x))2 . (1)

In the statistical learning literature this is also known as the prediction error. Taking
expectation over objects (X, Y ) we obtain the integrated squared error (ISE), which is
also known as generalization error, or test error,

ISE (C, t) = E
[
(Y − ŷ (X))2] =

∫
E
[
(Y (x)− ŷ (x))2] fX (x) dx. (2)

Fixing X = x and taking expectation over Y one may define a point-wise version of ISE,
ISE (C, t) (x) = E

[
(Y − ŷ (X))2 |X = x

]
.

Ex ante the training set is a random variable T , and hence the resulting prediction is
also a random variable Ŷ . Fixing X = x and taking the expectation of SE (C, t) (x) over
Ŷ and Y yields the mean square error (MSE)

MSE (C, n) (x) = E
[(
Y (x)− Ŷ (x)

)2
]

= E
[(
Y − Ŷ (X)

)2

|X = x

]
. (3)

Now taking expectation over X yields the mean integrated squared error (MISE)

MISE (C, n) = E
[(
Y − Ŷ (X)

)2
]

=

∫
E
[(
Y (x)− Ŷ (x)

)2
]
fX (x) dx. (4)

In the statistical learning literature (MSE) and (MISE) are also known as the expected
prediction error or expected test error.

Remark 1 Some authors (e.g. Härdle 1990) focus on conditional square error (m (x)− ŷ (x)),
and hence on conditional MSE and conditional MISE, thereby ignoring the irreducible er-
ror σ2 (x). Results would essentially be unaffected by using (m (x)− ŷ (x))2 instead of
(y − ŷ (x))2 as the basis of evaluation. In particular the solution derived in theorems 1
and 2 would be the same.
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2.4 Prediction

The prediction rule remains to be specified. Fixing the training set one may look for
predictions {ŷi}ki=1 that minimize ISE (C, t), for a given categorization C. Thus, for each
cell i the optimal prediction ŷi solves

min
ŷi
E
[(
Y − ŷi

)2 |X ∈ Ci
]
. (5)

It is basic result of statistical decision theory that mean square error is minimized when
the prediction is equal to the conditional mean (see e.g. theorem 2.1 of Li and Racine
2007). In the current set-up this means that the solution to (5) is ŷi = E [Y |X ∈ Ci] = µi.
The true mean µi is not observed, but the sample mean ȳi is an unbiased estimator of
the true mean. For this reason the within-cell mean ȳi will be used as prediction, as
long as the cell is non-empty. The choice of predictor for empty cells will turn out to
be unimportant for the results. For simplicity I assume that the prediction for an empty
cell is the mean across all observations, ȳ. The training set for cell i is ti = t ∩ Ci. Let
ni = |ti|, so that

∑k
i=1 n

i = n. The prediction for cell i is

ŷi =

{
ȳi = 1

ni

∑
ys∈ti y

s if ni > 0

ȳ = 1
n

∑n
s=1 y

s if ni = 0
. (6)

Note that ex ante the number of observations in cell i is a random variable N i.

3 Results

3.1 Preliminary Results

The first two results provide expressions for ISE, MSE and MISE.

Lemma 1 The integrated square error for a categorization C ∈ Ψ (t), conditional on a
training set t, is3

ISE (C, t) =

k∑
i=1

pi
(
V ar

(
Y i
)

+
(
ȳi − µi

)2
)
.

Lemma 2 The mean squared error of categorization C ∈ Ψ, at x ∈ Ci, is

MSE (C, n) (x) = σ2 (x) +
(
Bias

(
Ȳ i
))2

+ V ar
(
Ȳ i
)
,

where (
Bias

(
Ȳ i
))2

=
(
m (x)− µi

)2
,

3Point-wise one may also calculate, ISE (C, t) (x) = σ2 (x) + (m (x)− ȳit)2.
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and

V ar
(
Ȳ i
)

= V ar
(
Y i
) n∑
r=1

Pr
(
N i = r

) 1

r
+ Pr

(
N i = 0

)
E
[(
Ȳn − µi

)2 |N i = 0
]
,

with N i ∼ Bin (n, pi).

Lemma 3 τThe mean integrated squared error is

MISE (C, n) =
k∑
i=1

pi
(
E
[
σ2 (X) |X ∈ Ci

]
+ V ar

(
m (X) |X ∈ Ci

)
+ V ar

(
Ȳ i
))

=

k∑
i=1

pi
(
V ar

(
Y i
)

+ V ar
(
Ȳ i
))
.

The expression for MSE (C, n) (x) reveals the fundamental bias-variance trade-off. In
addition the prediction error is affected by irreducible noise σ2 (x).

Remark 2 It is easy to see that ISE, MSE, and MISE are continuous in the distribu-
tion f . Mohlin (2014a) defines a metric on partitions which can be employed to show that
prediction errors ISE, MSE, and MISE are also continuous in the decision variable C.

3.2 MSE- and MISE-Optimal Trees

Intuitively, as n increases one may obtain a reasonable approximation of m (x) by increas-
ing the number of cells k, though at a slower rate than n. The following lemma formalizes
this intuition:

Lemma 4 For any ε > 0 there are n0 > 0 and δ > 0, such that if n > n0 and

MISE (C, n)− inf
C′∈Ψ

MISE (C ′, n) < δ,

then C satisfies 1/k < ε, and k/n < ε.

The lemma says that minimization of MISE (C, n) implies that if the number of
observations goes to infinity (n → ∞) then it is optimal to let the number of cells go to
infinity too (k →∞), but at a slower rate (k/n→ 0). This is the basis for the asymptotic
results that will now be derived.
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3.2.1 Fixed Design

Consider first a fixed design model where data is taken such that ni = npi. (See e.g.
Jennen-Steinmetz and Gasser (1988) for a similar fixed design assumption.) If f is three
times differentiable, Taylor approximations may be used to derive the asymptotically
optimal width of cells as n→∞.
As we let n → ∞ there exist corresponding sequences of optimal trees (for each n

there is at least one optimal tree τn). For a given sequence of optimal trees {τn}∞n=1 we
examine the sequence of cells

{
Ci(n) (x)

}∞
n=1

that contain an arbitrary point x.

Theorem 1 Let {τn}∞n=1 be a sequence of optimal trees, and let
{
Ci(n) (x)

}∞
n=1

be the
sequence of cells that contain x. Supressing the dependence on n, let the volume of Ci(n) (x)
be denoted h = ×dl=1hl. Suppose that f is three times differentiable at x, and fX (x) > 0.
Assume a fixed design model such that ni = npi. If n → ∞, k → ∞, and k/n → 0
(implying pi → 0 and npi →∞), then asymptotically,

MSE (C, n) (x) = σ2 (x) + h2

(∑
j

∂m (x)

∂xj
δj

)2

+O
(
h3
)

︸ ︷︷ ︸
Bias[Ȳ (x)]

2

+
σ2 (x)

fX (x)nh
+O

(
n−1
)

︸ ︷︷ ︸
V ar[Ȳ (x)]

, (7)

where δj ∈ [0, 1] is such that
∣∣∣E [sj|sj ∈ Ci(n)

j

]
− xj

∣∣∣ = δjhj. If
∑

j
∂m(x)
∂xj

δj 6= 0 then the

asymptotic MSE (C, n) (x) is minimized by

h =

 σ2 (x)

2nfX (x)
(∑

j
∂m(x)
∂xj

δj

)2


1
3

, (8)

which yields
MSE (C ′, n) (x) = σ2 (x) +O

(
n−

2
3

)
. (9)

The size of cells should decrease (and the number of cells should increase) at a rate
O
(
n−d/3

)
. Asymptotically, the size of the MSE-minimising cell is decreasing in the

density fX (x), and the curvature
∑

j
∂m(x)
∂xj

of the conditional mean. It is increasing in
the variance σ2 (x).

Remark 3 If f is not continuously differentiable but Lipschitz continuous we may still
derive an upper bound on the mean square error, and an expression for the associated
width h∗. Restrict attention to d = 1 and a fixed design model with ni = npi. Assume
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that σ2 (x), m (x), and f (x) are Lipschitz, so that for any x, α, β, γ ∈ Ci it holds that∣∣σ2 (x)− σ2 (α)
∣∣ < λ |x− α| ,

|m (x)−m (β)| < η |x− β| ,
|fX (x)− f (γ)| < φ |x− γ| .

In this case we find that

MSE (C, n) (x) < σ2 (x) + η2h2 +
σ2 (x)

f (x)hn
+O

(
n−1
)
.

The right hand side is minimised by

h =

(
σ2 (x)

2nη2f (x)

) 1
3

.

Evaluating MSE (C, n) (x) with this solution we find

MSE (C, n) (x) = σ2 (x) +O
(
n−

2
3

)
.

The results are is similar to those obtained with Taylor approximations. Note that η is a
measure of the roughness of the conditional mean, just like m′.

3.2.2 Random Design

We now verify that the speed of convergence is the same under a random design model
as under the fixed design model.

Theorem 2 Let {τn}∞n=1 be a sequence of optimal trees, and let
{
Ci(n) (x)

}∞
n=1

be the
sequence of cells that contain x. Supressing the dependence on n, let the volume of Ci(n) (x)
be denoted h = ×dl=1hl. Suppose that f is three times differentiable at x, and fX (x) > 0.
Assume a random design model. If n→∞, k →∞, and k/n→ 0 (implying pi → 0 and
npi →∞), then asymptotically,

MSE (C, n) (x) = σ2 (x) + h2

(∑
j

∂m (x)

∂xj
δj

)2

+O
(
h3
)

︸ ︷︷ ︸
Bias[Ȳ (x)]

2

+
σ2 (x)

fX (x)
O
(
(nh)−1)+O

(
n−1
)

︸ ︷︷ ︸
V ar[Ȳ (x)]

,

(10)

where δj ∈ [0, 1] is such that
∣∣∣E [sj|sj ∈ Ci(n)

j

]
− xj

∣∣∣ = δjhj. If
∑

j
∂m(x)
∂xj

δj 6= 0 then the
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asymptotic MSE (C, n) (x) is minimized by

h = O
(
n−

1
3

)
, (11)

which yields
MSE (C ′, n) (x) = σ2 (x) +O

(
n−

2
3

)
. (12)

3.2.3 Asymptotic Normality

The regression tree estimator is asymptotically normally distributed. This holds regardless
of whether a fixed or random design is assumed.

Theorem 3 Suppose that f is three times differentiable at x ∈ Ci, a point in the interior
of the support of X, and fX (x) > 0, σ2 (x) > 0. If n→∞, k →∞, and k/n→ 0, then
asymptotically,

√
ni

Ȳ (x)−m (x)− h2

(∑
j

∂m (x)

∂xj
δj

)2
 d→ N

(
0, σ2 (x)

)
.

3.3 ISE-Optimal Trees

Deriving the optimal trees by computing MSE and MISE relies on knowledge of the
underlying distribution f . In practice this information is not available to the analyst,
so the optimal tree is usually determined via cross-validation. An alternative approach
would be to find an estimator of MSE and MISE. I would like to suggest the following
estimator:

Definition 1 Let Ψ̂ (t) denote the set of feasible trees in which all cells have at least two
elements (ni ≥ 2) given the training set t. The sample integrated square error (SISE) for
a tree C ∈ Ψ̂ (t), conditional on a training set t, is

SISE (C, t) =

k∑
i=1

ni

n

(
1 +

1

ni

)
s2
i , s2

i =
1

ni − 1

∑
ys∈ti

(
ys − ȳi

)2
.

Note that this can be written

SISE (C, t) =
k∑
i=1

1

n

ni + 1

ni − 1

∑
ys∈ti

(
ys − ȳi

)2
.

In the absence of the factor (ni + 1) / (ni − 1) this expression would simply be the aver-
age residual sum of squares (RSS), which is also known as training error in the statistical
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learning literature. The factor (ni + 1) / (ni − 1) penalises cells with few members. The
motivation for this particular choice of adjustment of RSS comes from the following ob-
servations:

Theorem 4 For a given tree τ , inducing categorization C, and training set t̃ with an
allocation of observations to cells {ñ1, ñ2, ..., ñk}, such that ñi ≥ 2 for all i, let T

(
C, t̃
)
be

the set of training sets t such that ñi = ni for each cell i in C.
(a) If expectation is taken over T

(
C, t̃
)
, then

E [ISE (C, t)] =
k∑
i=1

pi
(

1 +
1

ni

)
V ar

(
Y i
)
,

and

E [SISE (C, t)] =

k∑
i=1

ni

n

(
1 +

1

ni

)
V ar

(
Y i
)
.

(b) For any sequence of training sets from T
(
C, t̃
)

P lim
n→∞

ISE (C, t) = P lim
n→∞

SISE (C, t) =
k∑
i=1

piV ar
(
Y i
)
.

Part (a) of the theorem implies that if the actual fraction of objects in each cell, ni/n,
is equal to the probability of receiving an object in the corresponding cell pi (as it was
under the fixed design assumption above), then ISE (C, t) and SISE (C, t) have the same
expected value on T (C, t) (the set of training sets such that ñi = ni for each cell i in C).
Part (b) confirms that for large enough n it is highly probable that ni/n = pi.
The estimator SISE (C, t) could be employed in the pruning of regression trees. (Note

that SISE (C, t) is well-defined also when the input variables are categorical rather than
numerical.) This would not require any use of cross-validation, since the cost-complexity
trade-off is decided on analytically. Indeed a SISE (C, t)-based pruning process might be
seen as a complement to traditional cross-validation methods. It should be straightforward
to modify the tree algorithm in the statistical software R since the command prune.tree
has an optional method argument whose default method="deviance" minimises average
RSS.

4 Discussion

Non-parametric kernel regression is another common method for estimating the condi-
tional mean m (x). To facilitate comparison with the results above restrict attention to

10



the one-dimensional case, d = 1. In this case (11) becomes

h∗C (x) =

(
σ2 (x)

2nfX (x) (δm′ (x))2

)1/3

. (13)

Fan and Gijbels (1992) derive the following expression for the locally adaptive asymptot-
ically optimal kernel bandwidth (where optimal is understood in the sense of minimizing
conditional MISE),

h∗K (x) = qK

(
σ2 (x)

nfX (x) (m′′ (x))2

)1/5

, (14)

where qK is a constant which is independent of x. This is very similar to the expression (13)
for the optimal cell width h∗C (x). One difference is that the curvature of the conditional
mean enters through the second derivative m′′ (x) here, compared to the first derivative
m′ (x) above. The reason is that the kernel is symmetric around x, whereas the cell
induced by a regression tree is not, except for a measure zero set of points. Another
difference is that speed at which the bandwidth vanishes is slower than the speed at
which the optimal cell width vanishes.
The kernels due to Priestley and Chao (1972), and Gasser and Müller (1979), lead to

expressions that are similar to (14), see e.g. Härdle (1990) and Brockmann et al. (1993).
The kernel of Nadaraya (1964) and Watson (1964) (being of first order) induces a bias
term that involves both the first and second order derivatives of m at x.
Within density estimation histograms is the closest related approach. Kogure (1987)

(see also Scott 1992) derives the following expression for the locally adaptive asymptoti-
cally optimal bin width,

h∗H (x) = qH

(
fX (x)

n (f ′X (x))2

)1/3

, (15)

where qH is a constant which is independent of x. In contrast to (13) and (14) this
expression is independent of the variance σ2 (x), and the optimal width at x is increasing
in density fX (x), rather than decreasing. Interestingly, the width of the bins optimally
vanishes at the rate O

(
n−1/3

)
, exactly as in (13).

In conclusion, the optimality result in theorem 2 lies between the results derived for
kernels in regression analysis and histograms in density estimation. This reflects the fact
that while the prediction task of regression trees and is essentially the same as that of
kernel regression, the tool (producing an estimate for each cell in a partition) is more
similar to histograms.
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5 Binary Outcomes / Classification

The framework developed above can be amended to handle the task of estimating the
probability of binary outcomes, with the aid of a tree. The binary outcome space could
signify membership in one of two classes. However, the question that is being asked is
different from the one posed by classification trees (e.g. Ripley (1996)). In that literature
the prediction is class membership, not the probability of a particular class member-
ship. Moreover the framework of this paper uses loss functions based on squared error,
something that is rarely the criterion for evaluation of classification trees.

5.1 Model

5.1.1 Data and Trees

Instead of a continuous outcome set, there is a binary outcome set Y = {0, 1}. Further-
more, instead of making a point prediction of what value Y will take (in the set Y), the
task will be to estimate the probability that Y takes either of the values in Y = {0, 1}.
The density f (x, y), the marginal densities fX (x) and fY (y), and the conditional den-
sity fY (y|x) are all defined as above. As before, let m (x) = E [Y |X = x] . Note that
E [Y |X = x] = fY (1|x). Thus the task is to estimate

m (x) = fY (1|x) = E [Y = 1|X = x] ∈ [0, 1].

One may still use the decomposition Y = m (X) + ε (X).
A tree is defined as above, along with the probability pi, the conditional marginal

densities fY (y|x ∈ Ci) and fX (x|x ∈ Ci). Feasible categorizations are also defined as
before.

5.1.2 Prediction Error

Given a training set t, each cell Ci is associated with a unique (point) estimate m̂i. Let
m̂ (x) be the estimate for the cell to which x belongs. Using m̂ (x) instead of ŷ (x), and
m (x) instead of y (x) (and Y (x)), in equations (1), (2), (3), and (4), redefine squared
error (SE), integrated squared error (ISE), mean square error (MSE), and mean integrated
squared error (MISE), for the present set-up.4 For example

ISE ′ (C, t) = E
[
m (X))− m̂ (X)2] =

∫
E
[
(m (x)− m̂ (x))2] fX (x) dx.

4This brings the definitions closer to the ones of Härdle (1990), mentioned above.
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and

MSE ′ (C, n) (x) = E
[(
m (x)− M̂ (x)

)2
]

= E
[(
m (X)− M̂ (X)

)2

|X = x

]
.

Here M̂ reflects the fact that the estimator is itself a random variable, just as the use of
Ŷ (X) in equation (3)

5.1.3 Prediction

By the same line of reasoning as before, look for a prediction ŷi, for each cell i, that
minimize

min
ŷi
E
[(
m (X)− m̂i

)2 |X ∈ Ci
]
,

and for the same reasons as before the solution is m̂i = E [m (X) |X ∈ Ci] = µi. Again,
the true mean µi is not observed, but the sample mean ȳi is an unbiased estimator of it.
Consequently the estimator of m̂i should be equal to the predictor ŷi used above:

m̂i =

{
ȳi = 1

ni

∑
ys∈ti y

s if ni > 0

ȳ = 1
n

∑n
s=1 y

s if ni = 0
.

5.2 Results

The results are almost identical to the case of a continuous outcome variable. The only
difference is that the irreducible noise vanishes. This is due to the fact that Y has been
replaced with m (X) in the definitions of prediction error. I only review the results for
(the revised version of) mean square error. Corresponding to lemma 2 the following holds:

Lemma 5 The mean squared error of categorization C ∈ Ψ, at x ∈ Ci, is

MSE ′ (C, n) (x) =
(
Bias

(
Ȳ i
))2

+ V ar
(
Ȳ i
)
,

where
(
Bias

(
Ȳ i
))2

and V ar
(
Ȳ i
)
are the same as in lemma 2.

In the same way theorem 1 is recovered, the only difference being that the irreducible
noise is taken away from equation (7).

Theorem 5 Let {τn}∞n=1 be a sequence of optimal trees, and let
{
Ci(n) (x)

}∞
n=1

be the
sequence of cells that contain x. Supressing the dependence on n, let the volume of Ci(n) (x)
be denoted h = ×dl=1hl. Suppose that f is three times differentiable at x, and fX (x) > 0.
Assume a fixed design model such that ni = npi. If n → ∞, k → ∞, and k/n → 0

13



(implying pi → 0 and npi →∞), then asymptotically,

MSE (C, n) (x) = h2

(∑
j

∂m (x)

∂xj
δj

)2

+O
(
h3
)

︸ ︷︷ ︸
Bias[Ȳ (x)]

2

+
σ2 (x)

fX (x)nh
+O

(
n−1
)

︸ ︷︷ ︸
V ar[Ȳ (x)]

,

where δj ∈ [0, 1] is such that
∣∣E [sj|sj ∈ Cij]− xj∣∣ = δjhj. If

∑
j
∂m(x)
∂xj

δj 6= 0 then the
asymptotic MSE (C, n) (x) is minimized by (8), which yields (9).

6 Conclusion

Hopefully the theoretical investigations of this paper will somehow prove useful in the
further development and application of regression trees and related machine learning
methods.
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7 Appendix

7.1 Proofs: Preliminaries

Proof of Lemma 1.

ISE (C, t) = E
[
(Y |X − ȳ (X))2]

=
∑
i

piE
[(
Y |X − ȳi

)2 |X ∈ Ci
]

=
∑
i

piE
[(
Y |X − µi

)2
+
(
ȳi − µi

)2 − 2
(
Y |X − µi

) (
ȳi − µi

)
|X ∈ Ci

]
=
∑
i

pi
(
V ar

(
Y i
)

+
(
ȳi − µi

)2
)

Proof of Lemma 2. Suppose x ∈ Ci. Start by noting

MSE (C, n) (x) = E
[(
Y (x)− Ȳ i

)2
]

= E
[(

(Y (x)−m (x))2 +
(
m (x)− Ȳ i

)2
+ 2 (Y (x)−m (x))

(
m (x)− Ȳ i

))]
= σ2 (x) + E

[(
m (x)− Ȳ i

)2
]

Using m (x)− Ȳ i = m (x)− µi − (Ȳ i − µi) we have

E
[(
m (x)− Ȳ i

)2
]

= V ar
(
Ȳ i
)

+
(
m (x)− µi

)2
.

Furthermore

V ar
(
Ȳ i
)

=
n∑
r=1

Pr
(
N i = r

)
E
[(
Ȳ i − µi

)2 |N i = r
]
+Pr

(
N i = 0

)
E
[(
Ȳn − µi

)2 |N i = 0
]
.

Note that if r ≥ 1 then E
[
Ȳ i|N i = r

]
= µi, so

E
[(
Ȳ i − µi

)2 |N i = r
]

= V ar
(
Ȳ i|N i = r

)
=

1

r
V ar

(
Y i
)
.

It is evident that the number of objects in a cell, N i, has a binomial distribution with
parameters pi and n.
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Proof of Lemma 3. It is straightforward to verify that

V ar
(
Y i
)

=

∫
x∈Ci

σ2 (x) fX
(
x|x ∈ Ci

)
dx+

∫
x∈Ci

(
m (x)− µi

)2
fX
(
x|x ∈ Ci

)
dx (16)

= E
[
σ2 (X) |X ∈ Ci

]
+ V ar

(
m (X) |X ∈ Ci

)
.

Using this we have

MISE (C, n) =
∑
i

pi
∫
x∈Ci

(
σ2 (x) + V ar

(
Ȳ i
)

+
(
m (x)− µi

)2
)
fX
(
x|x ∈ Ci

)
dx

=
∑
i

pi
(
E
[
σ2 (X) |X ∈ Ci

]
+ V ar

(
Ȳ i
)

+ V ar
(
m (X) |X ∈ Ci

))
.

7.2 Proofs: MSE- and MISE Optimality

Lemma 4 was proved in Mohlin (2014b).

7.2.1 Fixed design

Proof of Theorem 1. By lemma 4 an asymptotically optimal tree must satisfy k →∞
and k/n→ 0 as n→∞. This allows us to use lemma 2, to write, for x ∈ Ci,

MSE (C, n) (x) = σ2 (x) +
(
m (x)− µi

)2︸ ︷︷ ︸
(Bias[Ȳ (x)])

2

+ V ar
(
Y i
) 1

npi︸ ︷︷ ︸
V ar[Ȳ (x)]

. (17)

Also note

V ar
(
Y i
)

=

∫
s∈Ci

[
σ2 (s) +

(
m (s)− µi

)2
]
fX
(
s|s ∈ Ci

)
ds. (18)

A Taylor approximation yields,

pi =

∫ bid

aid

...

∫ bi1

ai1

[fX (s)] ds1...dsd

=

∫ bid

aid

...

∫ bi1

ai1

[fX (x) +D (fX (x)) (s− x) + ...] ds1...dsd.
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Note that if xj 6= aij + hj/2, then∫ bij

aij

(sj − xj) dsj =

(
aij +

hj
2
− xj

)
hij =

(
hj
2

+O (hj)

)
hj = O

(
h2
j

)
,

and if xj = aij+hj/2, then this is zero, so if there is at least one j such that xj 6= aij+hj/2,
then∫ bid

aid

...

∫ bi1

ai1

[D (fX (x)) (s− x)] ds1...dsd =

∫ bid

aid

...

∫ bi1

ai1

[∑
j

∂fX (x)

∂xj
(sj − xj)

]
ds1...dsd

= O
(
×dl=1hl

)
O (hj) ,

and if xj = aij + hj/2, for all j, then this is zero. Moreover, it can be verified that∫ bil

ail

1

2
(s− x)D2 (fX (x)) (s− x) dsl =

1

2

∑
i 6=l

∑
j 6=l

∂2fX (x)

∂xj∂xi
(si − xi) (sj − xj)hl +O

(
h3
l

)
,

so ∫ bid

aid

...

∫ bi1

ai1

[
1

2
(s− x)D2 (fX (x)) (s− x)

]
ds1...dsd

=

(∫ x1+h1/2

x1−h1/2

∂2fX (x)

∂2x1

(s1 − x1)2 ds1

)
h2h3...hd + ...

+ h1h3...hn−1

(∫ xd+h2/2

xd−h2/2

∂2fX (x)

∂2xd
(sd − xd)2 dsd

)

= O

(
×dl=1hl ·

∑
j

h2
j

)
.

Thus if there is some j with xj 6= aij + hj/2, then

pi =
(
×dl=1hl

)
[fX (x)] +O

(
×dl=1hl · hj

)
,

and of not then

pi =
(
×dl=1hl

)
[fX (x)] +

(
×dl=1hl ·

∑
j

h2
j

)
.
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Consequently, we can assume

1

npi
=

1

fX (x) · n ·
(
×dl=1hl

) +O
((
×dl=1hl · hj · n

)−1
)
. (19)

Another Taylor approximation yields

µi =

∫
s∈Ci

[
m (x) +D (m (x)) (s− x) +

1

2
(s− x)D2 (m (x)) (s− x) + ....

]
fX
(
s|s ∈ Ci

)
ds.

Note that ∫ bij

aij

sjfX
(
sj|sj ∈ Cij

)
dsj = E

[
sj|sj ∈ Cij

]
,

so ∫ bid

aid

...

∫ bi1

ai1

[
∂m (x)

∂xj
(sj − xj) fX

(
s|s ∈ Ci

)]
ds1...dsd =

∂m (x)

∂xj
δj (×nl=1hl) .

and ∫ bid

aid

...

∫ bi1

ai1

[
D (m (x)) (s− x) fX

(
s|s ∈ Ci

)]
ds1...dsd

=

∫ bid

aid

...

∫ bi1

ai1

[∑
j

∂m (x)

∂xj
(sj − xj) fX

(
s|s ∈ Ci

)]
ds1...dsd

= (×nl=1hl)
∑
j

∂m (x)

∂xj
δj.

Furthermore, note that∫ bid

aid

...

∫ bi1

ai1

[
1

2
(s− x)D2 (m (x)) (s− x) fX

(
s|s ∈ Ci

)]
ds1...dsd = O

((
×dl=1hl

)2
)
.

Thus,

µi = m (x) +
(
×dl=1hl

)∑
j

∂m (x)

∂xj
δj +O

((
×dl=1hl

)2
)
,

and consequently

(
m (x)− µi

)2
=

((
×dl=1hl

)∑
j

∂m (x)

∂xj
δj

)2

+O
((
×dl=1hl

)3
)
. (20)
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Next use this to find∫
s∈Ci

(
m (s)− µi

)2
fX
(
s|s ∈ Ci

)
ds (21)

=
(
×dl=1hl

)2
∫ bid

aid

...

∫ bi1

ai1

(∑
j

∂m (x)

∂xj
δj

)2

fX
(
s|s ∈ Ci

)
ds1...dsd

+O
((
×dl=1hl

)3
)

Finally, a Taylor approximation yields∫
s∈Ci

σ2 (s) fX
(
s|s ∈ Ci

)
ds = σ2 (x) +

∑
j

∂σ2 (x)

∂xj

(
×dl=1hl

)
δj +O

((
×dl=1hl

)3
)
. (22)

Thus, using (20) and (21), equation (18) becomes,

V ar
(
Y i
)

= σ2 (x) +O
(
×dl=1hl

)
.

Using (18)-(22) in (17) gives (7). This can be simplified to

MSE (C, n) (x) = σ2 (x) + h2

(∑
j

∂m (x)

∂xj
δj

)2

+
σ2 (x)

fX (x)nh
. (23)

Maximise w.r.t. h. The first order condition is

∂MSE (C, n) (x)

∂h
= 2h

(∑
j

∂m (x)

∂xj
δj

)2

− σ2 (x)

fX (x)

1

nh2
= 0,

or (8), and the second order condition is satisfied,

∂2MSE (C, n) (x)

∂h2
=

σ2 (x)

nfX (x)

1

h3
> 0.

Evaluating (23) at (8) yields (9).

The proof of the claims made in remark 3 are omitted, but available upon request.

7.2.2 Random Design

The proof of theorem 2 relies on lemmas 6 and 7 below.

Lemma 6 If n→∞, k →∞, and k/n→ 0, then
∑n

r=1 Pr (N i = r) /r = O (1/npi).
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Proof of Lemma 6. Note that k/n → 0 implies npi → ∞. A Chernoff inequality
for the binomial distribution (lemma 2.1 of Chung and Lu 2002) states that, for any real
number λ,

Pr (N ≤ tp− λ) ≤ e
−λ2
2tpi ,

so for λ = 1
2
npi,

Pr

(
N ≤ 1

2
tp

)
≤ e

−npi
8 .

Let r∗ =
⌊

1
2
npi
⌋
. Thus

n∑
r=1

Pr
(
N i = r

) 1

r
=

r∗−1∑
r=1

Pr
(
N i = r

) 1

r
+

n∑
r=r∗

Pr
(
N i = r

) 1

r

≤
r∗−1∑
r=1

Pr
(
N i = r

)
+

n∑
r=r∗

Pr
(
N i = r

) 1

r∗

≤ Pr (N ≤ r∗ − 1) +
1

r∗

≤ e
−npi
8 +

1⌊
1
2
npi
⌋

≤ e
−npi
8 +

1
1
2
npi − 1

.

Since npi/enp
i → 0, as npi →∞, we have

O

(
e
−npi
8 +

1
1
2
npi − 1

)
= O

(
1

1
2
npi − 1

)
= O

(
1

npi

)
.

Lemma 7 If n→∞, k →∞, and k/n→ 0, then, for all i,

Pr
(
N i = 0

)
E
[(
Ȳn − µi

)2 |N i = 0
]

= O
(
e−

n
k

)
.

Proof of Lemma 7. Using E
[
Ȳn|N i = 0

]
= µ−i, we have

E
[(
Ȳn − µi

)2 |N i = 0
]

= E
[(
Ȳn − µ−i

)2 |N i = 0
]

+
(
µ−i − µi

)2

= V ar
(
Ȳn|N i = 0

)
+
(
µ−i − µi

)2

=
1

n
V ar

(
Y |X /∈ Ci

)
+
(
µ−i − µi

)2
. (24)
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Next consider Pr (N i = 0) = (1− pi)n. Let pmax = maxi p
i and pmin = mini p

i. Note
that pmin > 1 − (k − 1) pmax. Since pmin/ρ ≥ pmax we have pmin > 1 − (k − 1) pmin/ρ, or
equivalently pmin > ρ/ (ρ+ (k − 1)). Hence

(
1− pi

)n ≤ (1− pmin)n ≤
((

1− ρ

ρ+ k − 1

)(ρ+k−1)
) n

ρ+k−1

.

As ρ+ k − 1→∞ this approaches e−ρ
n

ρ+k−1 . The desired result follows.

Proof of Theorem 2. By lemma 4 an asymptotically optimal tree must satisfy
k → ∞ and k/n → 0 as n → ∞. This allows us to use lemma 6 and lemma 7 together
with lemma 2, to write, for x ∈ Ci,

MSE (C, n) (x) = σ2 (x) +
(
m (x)− µi

)2︸ ︷︷ ︸
Bias[Ȳ (x)]

+ V ar
(
Y i
)
O

(
1

pin

)
+O

(
e−

n
k

)
︸ ︷︷ ︸

V ar[Ȳ (x)]

. (25)

Using (18)-(22) (from the proof of theorem 1) in (25) gives

MSE (C, n) (x) = σ2 (x) + h2

(∑
j

∂m (x)

∂xj
δj

)2

+O
(
h3
)

(26)

+
σ2 (x)

fX (x)
O
(
(n · h)−1)+O

(
n−1
)

+O
(
e−

n
k

)
.

From above, we know that asymptotically pi = O (h), and k−1 = O (h) so that O
(
e−

n
k

)
=

O
(
e−np

i
)
. Since npi · e−npi → 0 this means that (26) can simplified to (10) or

MSE (C, n) (x) = σ2 (x) + h2

(∑
j

∂m (x)

∂xj
δj

)2

+
σ2 (x)

fX (x)
O
(
(nh)−1) .

Maximise w.r.t. h. The first order condition is

2h

(∑
j

∂m (x)

∂xj
δj

)2

=
σ2 (x)

fX (x)
O
(
n−1h−2

)
,

and the second order condition is satisfied, so optimally (11). Using this in (10) yields
(12). Having established that h = O

(
n−2/3

)
it can be shown that e−

n
k vanishes faster

than h3 and n−1.
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7.2.3 Asymptotic Normality

Proof of Theorem 3. Since

E
[
Ȳ (x)

]
−m (x) = Bias

(
Ȳ (x)

)
= h2

(∑
j

∂m (x)

∂xj
δj

)2

+O
(
h3
)
,

we have, for x ∈ Ci,√
ni

V ar (Y i)

Ȳ (x)−m (x)− h2

(∑
j

∂m (x)

∂xj
δj

)2


=

√
ni

V ar (Y i)

[
Ȳ (x)− E

[
Ȳ (x)

]]
+

√
ni

V ar (Y i)

E [Ȳ (x)
]
−m (x)− h2

(∑
j

∂m (x)

∂xj
δj

)2


=

√
ni

V ar (Y i)

[
Ȳ (x)− E

[
Ȳ (x)

]]
+O

(√
nih3

)
=

√
ni

V ar (Y i)

∑
Y s∈ti

[
Y s

ni
− E

[
Y s

ni

]]
+ o (1)

=

√
ni

V ar (Y i)

[∑
Y s∈ti

Y s

ni
− E

[∑
Y s∈ti

Y s

ni

]]
+ o (1) .

We now use the Liapunov Central Limit Theorem (e.g. Lemma A.5 in Li and Racine 2007).
Define Zn,s ≡ Y s/ni and Sn =

∑
Y s∈ti Zn,s so that E [Zn,s] = µi/ni and V ar (Zn,s) =

V ar (Y s) / (ni)
2

= V ar (Y i) / (ni)
2, and V ar (Sn) =

∑
Y s∈ti V ar (Zn,s) = V ar (Y i) /ni.

Since Y s is bounded we have E |Zn,s|2+q <∞ for some q > 0. From (16) we see that

V ar
(
Y i
)

= E
[
σ2 (X) |X ∈ Ci

]
+ o (1) .

Finally note that
lim
ni→∞

∑
Y s∈ti

E |Zn,s − E [Zn,s]|2+q = 0,

for some q > 0. It follows that the Liapunov Central Limit Theorem implies√
ni

V ar (Y i)

[∑
Y s∈ti

Y s

ni
− E

[∑
Y s∈ti

Y s

ni

]]
d→ N (0, 1) ,
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or
√
ni

[∑
Y s∈ti

Y s

ni
− E

[∑
Y s∈ti

Y s

ni

]]
d→ N

(
0, σ2 (x)

)
.

7.3 Proofs: ISE-Optimality

Proof of Theorem 4. (a) Follows directly from the facts that

ET∈T (C,n)

[
Si2
]

= ET∈T (C,n)

[
1

ni − 1

∑
s∈T i

(
Y s − Ȳ i

)2

]
= V ar

(
Y i
)
,

and
ET∈T (C,t)

[(
Ȳ i − µi

)2
]

=
1

ni
V ar

(
Y i
)
.

(b) First we prove the result concerning ISE (C, t). Consider a cell Ci ∈ C. Suppose
that ni ≥ 1. It can be verified that

(
Ȳ i − µi

)2
=

(
1

ni

∑
s∈ti

Y s

)2

+ µi − 2µi
1

ni

∑
s∈ti

Y s.

Let ni →∞. Since, for each cell i, {Ys} is an i.i.d. sequence with E [Ys] = µi we can use
Kinchine’s law of large numbers and Slutsky’s lemma to conclude that P limni→∞

(
Ȳ i − µi

)2

= µi+µi−2µiµi = 0. In other words, for any ε > 0 and δ ∈ (0, 1), there is an n̄ such that

if ni > n̄ then Pr
((
Ȳ i − µi

)2
< ε
)
> δ1/2. Moreover, for any n̄ there is a n such that if

n > n then Pr (N i > n̄) > δ1/2. This implies that, for any ε > 0 and δ ∈ (0, 1), there is a

n such that if n > n then Pr
((
Ȳ i − µi

)2
< ε
)
> δ. Thus, for any ε > 0 and δ ∈ (0, 1),

there is a n such that if n > n then

Pr

(
k∑
i=1

pi
(
Ȳ i − µi

)2
< ε

)
> δ.

Since ISE (C, t) ≥ 0, the desired result follows.
The proof for SISE (C, t) is similar to the proof for ISE (C, t), using the standard

result P limni→∞ s
2
i = V ar (Y i).
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7.4 Proofs: Binary Outcomes

The proof of lemma 5 is the same as second half of the proof of lemma 2, and the proof
of theorem 5 is essentially the same as the proof of theorem 7.
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