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Abstract

This paper provides suffi cient conditions under which regular payoff monotonic

evolutionary dynamics (a class of imitative dynamics that includes the replicator

dynamic) select against strategies that do not survive a sequence of iterated elim-

ination of weakly dominated strategies. We apply these conditions to Bertrand

duopolies and first-price auctions. Our conditions also imply evolutionary selection

against iteratively strictly dominated strategies.

Keywords: Iterated elimination of weakly dominated strategies; Iterated ad-

missibility; Payoff monotonicity; Convex monotonicity; Evolutionary dynamics;

Replicator dynamic.

JEL code: C72, C73.

1 Introduction

The foundations of iterated elimination of strictly dominated strategies are relatively

well-understood from the perspectives of both evolutionary and epistemic game-theory.

Similarly, the epistemic foundations of iterated elimination of weakly dominated strate-

gies have been explored in depth.1 In contrast, little is known about the evolutionary

∗We thank Yuval Heller, Alexandros Rigos, and Bill Sandholm, as well as audiences at GAMES 2016
and in Lund for helpful comments and suggestions. Two anonymous referees provided exceptionally
useful comments on a previous draft. Bernergård thanks Handelsbankens forskningsstiftelser for a Jan
Wallander and Tom Hedelius scholarship. Mohlin is grateful to Handelsbankens Forskningsstiftelser
(grant #P2016-0079:1), the Swedish Research Council (grant #2015-01751), and the Knut and Alice
Wallenberg Foundation (Wallenberg Academy Fellowship 2016-0156) for their financial support.
†Department of Economics, Södertörn University. Address: Alfred Nobels allé 7, 141 89 Huddinge,

Sweden. E-mail: axel.bernergard@gmail.com.
‡Department of Economics, Lund University. Address: Tycho Brahes väg 1, 220 07 Lund, Sweden.

E-mail: erik.mohlin@nek.lu.se.
1Epistemic foundations of iterated strict dominance have been provided by Bernheim (1984), Pearce

(1984), and Tan and Werlang (1988). For the case of weak dominance the situation is more involved, see
the contrasting perspectives of Brandenburger et al. (2008) and Asheim and Dufwenberg (2003).
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underpinning of iterated weak dominance. In the current paper we present results that

narrow this knowledge gap.

A number of results deal with deterministic evolutionary selection against strate-

gies that fail to survive iterated elimination of strictly dominated strategies (IESDS).2

Samuelson and Zhang (1992) (see also Nachbar 1990) show that, starting from any inte-

rior initial state, pure strategies that are iteratively strictly dominated by pure strategies

vanish asymptotically along the solution trajectory of any (payoff ) monotonic dynamic.

A dynamic is monotonic if it satisfies the condition that one strategy has a higher growth

rate than another strategy if and only if the former strategy earns a higher payoff than

the latter. Samuelson and Zhang (1992) also establish that mixed strategies that are

iteratively strictly dominated by mixed strategies vanish under any aggregate monotonic

evolutionary dynamic. This class of dynamics includes the replicator dynamic (Taylor

and Jonker 1978). Hofbauer and Weibull (1996) consider evolutionary dynamics that

satisfy convex monotonicity. They find that, starting from any interior initial state, pure

strategies that are iteratively strictly dominated by mixed strategies vanish asymptot-

ically under any convex monotonic dynamic. Viossat (2015) completes the picture by

showing that under concave monotonic dynamics, mixed strategies that are iteratively

strictly dominated by pure strategies vanish asymptotically.3 All of the above classes of

dynamics are imitative, meaning that strategies that are currently absent from the pop-

ulation remain absent forever. Hofbauer and Sandholm (2011) show that a large class of

evolutionary dynamics that are non-imitative fail to eliminate strictly dominated strate-

gies in some games. For this reason we restrict attention to imitative dynamics when

developing our results in this paper.

When it comes to weak dominance, it is well known that in some games some strategies

that are eliminated by iterative elimination of weakly dominated strategies (IEWDS) do

not vanish under the replicator dynamic and related dynamics (e.g. games G2, G4, and

G6 below). In other games strategies that do not survive iterative elimination of weakly

dominated strategies do become extinct under the replicator dynamic (e.g. games G1, G3,

and G5 below). A few papers establish evolutionary selection against iteratively weakly

dominated strategies in particular (important) games, such as Cressman (1996) for the

finitely repeated Prisoner’s Dilemma game, and Ponti (2000) for the Centipede game.

The present paper is motivated by an interest in finding out whether there are any

general characteristics of games that imply that iteratively weakly dominated strategies

are eliminated by a large class of evolutionary dynamics. Given the abundance of results

2There is also a literature on elimination of weakly dominated strategies (though not iterated elimi-
nation) under stochastic evolutionary dynamics, e.g. Samuelson (1994) and Kuzmics (2011).

3Since aggregate monotonic dynamics are both convex monotonic and concave monotonic, the results
of Hofbauer and Weibull (1996) and Viossat (2015) imply that for aggregate monotonic dynamics both
pure strategies that are iteratively strictly dominated by mixed strategies, and mixed strategies that are
iteratively strictly dominated by pure strategies, vanish asymptotically.
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on iterated strict dominance, the scarcity of results on iterated weak dominance is in-

triguing. On a more practical note, games with iteratively weakly dominated strategies

occur in many applications, some of which we discuss below.

We focus on a class of regular payoff monotonic dynamics.4 In addition to being

payoff monotonic such dynamics have the crucial property that if one strategy yields a

higher payoff than another strategy, then the ratio of the growth-rate difference to the

payoff difference is bounded away from zero. The replicator dynamic is regular payoff

monotonic as are all aggregate monotonic and all convex monotonic dynamics.

We define three properties on sequences of pure strategies dominated by pure strate-

gies in symmetric two-player games, called (a) monotonicity, (b) pairwise weak domi-

nance, and (c) local strict transitivity. For finite symmetric two-player games, we show

that if a sequence of IEWDS has these three properties, then any regular payoffmonotonic

dynamic, starting from any interior initial state, is guaranteed to asymptotically elimi-

nate all pure strategies that are iteratively weakly dominated by pure strategies in that

IEWDS.

To the best of our knowledge we are the first to provide general conditions under which

imitative dynamics select against strategies that fail to survive IEWDS.5 Any sequence of

iterated elimination of pure strategies that are strictly dominated by pure strategies has

the three key properties. Thus, from the perspective of imitative evolutionary dynamics,

the well-established distinction between iterated strict and iterated weak dominance seems

less important than the hitherto neglected distinction between different kinds of iterated

weak dominance.

We apply our result to a discretised versions of Bertrand duopoly and a first-price

auction. In these games all strategies except one can be removed by a sequence IEWDS

that satisfies our conditions. As the grid is made finer this strategy converges to the Nash

equilibrium of the game with continuous strategy sets. Hence our result guarantees that

any regular payoff monotonic dynamic selects the Nash equilibrium in these games.

The rest of the paper is organised as follows. Section 2 provides basic notation and

definitions. Section 3 contains (3.1) the main result and (3.2) illustration and motivation

of the different components of our suffi cient condition. Section 4 contains all proofs,

including (4.1) a summary, (4.2) proofs of lemmata, and (4.3) proof of the main theorem.

Applications are considered in section 5. Section 6 concludes.

4We thank Bill Sandholm for suggesting this terminology.
5An earlier version of this paper was included in Bernergård’s PhD thesis (Bernergård 2014). A very

limited precursor was also included in the online appendix to Mohlin (2012). Laraki and Mertikopoulos
(2013) introduce the higher-order replicator dynamic and show that it performs one round of elimination
of weakly dominated strategies. Marx (1999) defines a belief-based adaptive learning process, similar
to that of Milgrom and Roberts (1991), and shows that if it converges then players only put positive
probability on strategies that survive IEWDS.
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2 Notation and Definitions

Let G be a two-player normal-form symmetric game with a finite pure-strategy set S =

{1, ...,m}, strategy-profile set S2, and a payoff function u : S2 → R. The mixed strategy
set is denoted by ∆, and π : ∆2 → R is the mixed payoff function. For s ∈ S, let es ∈ ∆

denote the unit vector with 1 in the s-th position.

Definition 1 A pure strategy s ∈ S is weakly dominated if there exists a mixed strategy
x ∈ ∆ such that π (x, y) ≥ π (es, y) for all y ∈ ∆, and π (x, y) > π (es, y) for some y ∈ ∆.

Iterative weak dominance is not well defined in the sense that which strategies survive

can depend on the order of elimination, and in the sense that there might not be any

strategy which survives all iterated eliminations. We will look at specific cases of iterative

elimination of weakly dominated strategies where each eliminated strategy is eliminated

by a pure strategy:

Definition 2 An IEWDS for the symmetric two-player game G is a sequence ((sk, dk))
m′
k=1

such that for k = 1, . . . ,m′, sk ∈ S\{sk−1, sk−2, . . . , s1} is weakly dominated by dk ∈
S\{sk−1, sk−2, . . . , s1} in the game that is constructed from G by restricting the strategy

set to S\{sk−1, sk−2, . . . , s1} for both players.

It is important to note that according to this definition of IEWDS a strategy is

removed from both players’strategy set at the same time. This is natural given that we

only consider single population dynamics as specified below. We will sometimes write

“a sequence of IEWDS”instead of “an IEWDS”to refer to a sequence ((sk, dk))
m′
k=1 for

linguistic reasons or to emphasize that an IEWDS is a sequence.

Individuals from an infinite population are randomly matched to play the game G.

Each individual is programmed to play one of the m pure strategies. A population state

is a point x = (x1, ..., xm) ∈ ∆. The expected payoff of an s-strategist, at state x is

πs (x) =
∑

i u (s, i)xi. The average payoff in the population is π̄ (x) =
∑

i πi (x)xi.

Evolution of the fraction of s−players is governed by an evolutionary dynamic of the
form

ẋs = gs(x)xs,

where the growth-rate functions g1, . . . , gm from ∆ to R are Lipschitz continuous and

satisfy
∑

sgs(x)xs = 0. This defines a vector field ϕ : ∆ → Rm, such that ẋ = ϕ (x).

By standard arguments the system has a unique solution ξ (·, x0) : R → ∆ through any

initial condition x0, such that ξ (0, x0) = x0 and ∂
∂t

(ξ (t, x0)) = g(ξ (t, x0))ξ (t, x0) for all

t.

We will assume that dynamics are monotonic, and in addition that there is uniform

bound on how small the growth-rate difference can be relative to the payoff difference.6

6The reader who is familiar with uniform monotonicity defined by Cressman (2003) will recognise this
condition as half of the requirements for uniform monotonicity.
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Definition 3 Let sgn denote the sign function. The dynamic defined by g1, . . . , gm is

monotonic if sgn(gi(x)− gj(x)) = sgn(πi (x)− πj(x)) for all i, j ∈ S and all x ∈ ∆.

Definition 4 The dynamic defined by g1, . . . , gm is regular monotonic if there is a positive

constant λ such that gi(x)− gj(x) ≥ λ (πi (x)− πj(x)) for all i, j ∈ S and all x ∈ ∆ with

πi (x) ≥ πj(x). Equivalently, the dynamic defined by g1, . . . , gm is regular monotonic if it is

monotonic and there is a positive constant λ such that |gi(x)− gj(x)| ≥ λ |πi (x)− πj(x)|
for all i, j ∈ S and all x ∈ ∆.

We note that monotonic dynamics are such that strategies grow at the same rate if

and only if they yield the same expected payoff. We will use this property frequently to

determine the limiting behavior of ratios of the form xi/xj.

All aggregate monotonic dynamics (Samuelson and Zhang 1992) are evidently regular

payoff monotonic since if a dynamic is aggregate monotonic, then there is a positive

and continuous function λ such that gi(x)− gj(x) = λ(x)(πi (x)− πj(x)) and we can set

λ = minx∈∆ λ(x). Hofbauer and Weibull (1996) show that any convex monotonic dynamic

can we written as

gs(x) = λ(x)f(πs(x)) + µ (x) ,

for a positive and continuous function λ, a convex and strictly increasing function f , and

a real-valued function µ. So, if πi (x) ≥ πj(x), then by the convexity of f,

gi(x)− gj(x) = λ(x) [f(πi(x))− f(πj(x))] ≥ λ(x) · (min ∆f) · [πi(x)− πj(x)] ,

where min ∆f = f(mins∈S,y∈∆ πs(y))− f(mins∈S,y∈∆ πs(y)− 1). Hence there is a positive

constant λ = miny∈∆ λ(y) · (min ∆f), such that if πi (x) ≥ πj(x), then

gi(x)− gj(x) ≥ λ (πi (x)− πj(x)) , (1)

for all i, j ∈ S and all x ∈ ∆ with πi (x) ≥ πj(x); and thus convex monotonicity implies

regular payoff monotonicity.

3 Result

3.1 Properties of IEWDS and Main Result

The following definition introduces three properties that a sequence of IEWDSmay satisfy

Definition 5 Consider an IEWDS ((sk, dk))
m′
k=1. Define three properties that the IEWDS

may satisfy as follows:
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(a) Monotonicity: For any k ∈ {1, 2, ...,m′ − 1}, the strategy dk that eliminates
strategy sk in step k is either eliminated in step k + 1, i.e. sk+1 = dk, or is used to

eliminate another strategy in step k + 1, i.e. dk+1 = dk.

(b) Pairwise weak dominance: For any k ∈ {1, 2, ...,m′}, u (dk, sk) > u (sk, sk) or

u (dk, dk) > u (sk, dk).

(c) Local strict transitivity: For any k ∈ {1, 2, ...,m′−1} and k̃ ∈ {k+1, ...,m′}, if
sk̃ is the strategy that eliminates sk, i.e. sk̃ = dk, so that dk̃ is the strategy that eliminates

the strategy that eliminates sk, then u (dk̃, sk̃) = u (dk̃, dk) > u (sk, dk).

Remark 1 If sk̃ = dk, then by the definition of iterated weak dominance u (dk̃, sk̃) ≥
u (sk̃, sk̃) = u (dk, dk) ≥ u (sk, dk). Hence the clause “u (dk̃, dk) > u (sk, dk)” in (c) is

equivalent to “u (dk̃, sk̃) > u (sk̃, sk̃′) or u (dk, dk) > u (sk, dk)”. Thus local strict transi-

tivity is satisfied if u (dk, sk) > u (sk, sk) holds for all k = 1, . . . ,m′, or if u (dk, dk) >

u (sk, dk) holds for all k = 1, . . . ,m′.

The first condition, monotonicity, says that the strategy d
k
which is used to eliminate

strategy sk in step k of elimination is either eliminated or eliminates one more strategy

in step k + 1 of elimination. The second condition, pairwise weak dominance, requires

that for each step in the given order of elimination, the weakly dominant strategy d
k

earns strictly more against the strategy sk that it weakly dominates than what the weakly

dominated strategy earns against itself, or the weakly dominant strategy d
k
earns strictly

more against itself than what the strategy sk earns against dk. The third condition, local

strict transitivity, requires that if dk eliminates sk and dk̃ eliminates dk then either dk
earns strictly more than sk against dk or dk̃ earns strictly more than dk against dk.

For any given game G there may be several sequences of IEWDS that satisfy these

three properties. Furthermore, which strategies that remain when no more eliminations

can be made can depend on the order of elimination. However, there will always be some

strategies that survive all such sequences of IEWDS, and the following theorem shows

that only those strategies can survive evolution in the long run if the dynamic is regular

monotonic.

Theorem 1 Consider a regular payoff monotonic dynamic with induced solution map-
ping ξ (t, x0). Let E ⊂ S denote the set of all s ∈ S for which there exists an IEWDS
(sk, dk)

m′
k=1 with s = sk for some k = 1, . . . ,m′ that satisfies (a) monotonicity, (b) pairwise

weak dominance, and (c) local strict transitivity. Then limt→∞ ξs (t, x0) = 0 for all s ∈ E
and all interior initial states x0.

Before proving this theorem we will motivate regular payoff monotonicity and the

three properties that together constitute our suffi cient condition.7

7There is a literature that has developed conditions for order indepence of iterated elimination of
weakly dominated strategies, e.g. Marx and Swinkels (1997). There appears to be no substantial
connection between these conditions and our condition.
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3.2 Motivation of the Jointly Suffi cient Conditions and of Reg-

ular Monotonicity

In this section we motivate our jointly suffi cient conditions (a) monotonicity, (b) pairwise

weak dominance, and (c) local strict transitivity. For each condition we provide an

example of a game in which there is a sequence of IEWDS which does not satisfy the

condition in question, and we show that some strategies eliminated by that IEWDS are

not eliminated by evolution. Moreover, we motivate the restriction to regular monotonic

dynamics by presenting a game with a strategy that is eliminated by a sequence of IEWDS

satisfying (a)-(c), but which may remain in the population forever if the evolutionary

dynamic is non-regular monotonic.

3.2.1 (b) Pairwise Weak Dominance

Consider the following two games: 0 0 0

1 0 0

0 1 1


 0 0 0

0 1 1

1 1 1


G1 G2

In both games there is a sequence of IEWDS where strategy 2 eliminates 1 and then strat-

egy 3 eliminates strategy 2. Formally, ((sk, dk))
2
k=1 with (s1, d1) = (1, 2) and (s2, d2) =

(2, 3). In G1 this is the only possible order of elimination —the only other IEWDS is the

trivial one in which strategy 2 eliminates 1 and the process is then halted. In G1 any

regular payoff monotonic evolutionary dynamic, starting from any interior initial state,

will asymptotically eliminate strategies 1 and 2. Thus, evolution selects the only profile

that survives all IEWDS in G1. Figure 1a illustrates this for the replicator dynamic.8 By

contrast, Figure 1b illustrates the replicator dynamic in game G2. In this game strategy

2 is not always eliminated by evolution, despite not surviving all IEWDS. The set of all

states at which strategy 1 is eliminated by evolution constitutes an asymptotically stable

8All figures were created using Dynamo software (Sandholm and Dokumaci 2007).
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set (Thomas 1985), represented by the thick black line segment in Figure 1b.

Figure 1a. G1 Figure 1b. G2

We note the following property, which the suggested IEWDS satisfies in G1 but not in

G2: strategy 2, which eliminates strategy 1, earns strictly more than strategy 1 against

strategy 1. Likewise, strategy 3, which eliminates strategy 2, earns strictly more than

strategy 2 against strategy 2. Formally, if we consider the IEWDS ((sk, dk))
2
k=1 with

(s1, d1) = (1, 2) and (s2, d2) = (2, 3), then in game G1 it holds that u (dk, sk) > u (sk, sk),

whereas in G2 this is not the case.

Next consider the following two games. 1 0 0

1 1 0

0 1 1


 1 0 0

1 1 1

0 1 1


G3 G4

In G3, (s1, d1) = (1, 2) and (s2, d2) = (2, 3) is an IEWDS, and this is the only possible

order of elimination. Any regular payoff monotonic evolutionary dynamic, starting from

any interior initial state, will asymptotically eliminate strategies 1 and 2, as illustrated

for the replicator dynamic in Figure 2a. The sequence (1, 2), (2, 3) does not satisfy the

property that u (dk, sk) > u (sk, sk) for all k, but we do have that u (dk, dk) > u (sk, dk) for

all k. In G4, (s1, d1) = (3, 2) is an IEWDS which does not satisfy u (dk, dk) > u (sk, dk).

It turns out that strategy 3 is not always asymptotically eliminated by regular payoff

monotonic evolutionary dynamics. The set of all states at which strategy 1 is eliminated

constitutes an asymptotically stable set in game G4, as illustrated for the replicator

8



dynamic in Figure 2b.

Figure 2a. G3 Figure 2b. G4

3.2.2 (c) Local Strict Transitivity

Above we showed examples of IEWDS with u (dk, sk) > u (sk, sk) or u (dk, dk) > u (sk, dk)

where strategies which were eliminated by such an IEWDS also were asymptotically

eliminated by regular payoffmonotonic evolutionary dynamics. The following two games

demonstrate that this property is not suffi cient to guarantee selection against strategies

that fail to survive IEWDS.1 −1 0

2 0 0

0 0 1


1 0 0

2 0 0

0 0 1


G5 G6

In both G5 and G6, (1, 2), (2, 3) is an IEWDS, and this is the only possible order of

elimination. As illustrated in Figure 3, the replicator dynamic, starting from any interior

initial state, will asymptotically eliminate strategies 1 and 2 in G5, while in game G6

strategy 2 is not always eliminated by evolution. In fact, if initially x1 ≥ x3 then all

monotonic dynamics (not necessarily regular monotonic) converge to the state where only

strategy 2 remains in the population.9 The thin diagonal line in Figure 3b represents the

9Notice that strategies 1 and 3 have the same payoff against all strategies s with s 6= 1, 3. In the
Appendix we show that therefore u(1, 3) > u(3, 3) is enough to ensure that, under a monotone dynamic,
x3(t)→ 0 if x1(0)/x3(0) is suffi ciently large.
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set of states at which x1/x3 = 1/2.

Figure 3a. G5 Figure 3b. G6

We note the fact that in G5 it is the case that since d1 = 2 = s2 it holds that if dk = sk̃,

then π (dk̃, dk) > π (dk, dk) or π (dk, dk) > π (sk, dk). This is not the case in game G6.

3.2.3 (a) Monotonicity

Above we have studied the properties (b) pairwise weak dominance and (c) local strict

transitivity. In games with more than three strategies these two properties are not strong

enough for our purposes. To see this consider the game
1 0 0 0

2 0 0 0

0 0 1 0

2 0 0 0


G7

.

This game is similar to G6 but we have added a fourth strategy, which is identical to

strategy 2, against which all strategies earn 0. In G7, (1, 4), (2, 3) is an IEWDS in which

strategy 2 is eliminated. Furthermore, both (b) pairwise weak dominance and (c) local

strict transitivity are satisfied by this IEWDS (local strict transitivity is trivially satisfied

since there are no k, and k̃ for which dk = sk̃ ). But, as we show in the Appendix, G
7 is

such that all monotonic dynamics converge to states where strategy 1 and 3 are absent,

provided that x1 ≥ x3 initially.

10



3.2.4 Regular Monotonicity

The following game G8 has a sequence of IEWDS where strategy 2 eliminates strategy 1,

and then strategy 4 eliminates strategy 2 and 3.
0 0 0 0

0 1 0 0

2 2 0 −1

−2 2 0 0


G8

.

This sequence of IEWDS satisfies our three properties (a)-(c), and thus all regular

monotonic dynamics are such that starting from any interior initial condition x4(t)→ 1.

An implication of this is that if we start from an interior initial condition x(0) with

x1(t) > x2(t) > x4(t), then x2(t) must eventually become larger than x1(t) because oth-

erwise strategy 4 would never start growing. For dynamics that are monotonic but not

regular monotonic this does not necessarily happen because the growth rate difference

between strategy 2 and strategy 1 can freeze to 0 too fast as we get closer and closer

to x3 = 1. In the Appendix we give an example of a monotonic dynamic for which

x3(t)→ 1 starting from some interior initial conditions x(0) with x1(0) > x2(0) > x4(0).

We have not performed any complete investigation into the differences in results for

regular monotonic dynamics and monotonic dynamics but this example shows that our

theorem fails if the extra requirement of regular monotonicity is removed.

4 Proofs

4.1 Example

Before proving Theorem 1 we prove the result for just the game G5 to convey an idea of

how the proof works. ForG5, (1, 2), (2, 3) is an IEWDS. Since strategy 2 weakly dominates

strategy 1, and since strategy 2 is strictly better than strategy 1 against strategy 2 we can

use Lemma 3 below to conclude that either
∫∞

0
x2(t)dt < +∞ and x1(t)/x2(t) converges

to a real number r (possibly 0); or
∫∞

0
x2(t)dt = +∞ and x1(t)/x2(t)→ 0.

In the first case, by the comparison theorem for positive integrals, it follows from∫∞
0
x2(t)dt < +∞ and x1(t)/x2(t) → r that

∫∞
0
x1(t)dt < +∞. By standard arguments,

using the uniform continuity of xi(t),
∫∞

0
x1(t)dt < +∞ and

∫∞
0
x2(t)dt < +∞ implies

x1(t)→ 0 and x2(t)→ 0. So, in this case x1(t)→ 0, and x2(t)→ 0 as we wanted to show.

In the second case we can compare the payoffs for strategy 1 and 3 and, since strategy

3 is strictly better against strategy 2, apply Lemma 3 to conclude that x1(t)/x3(t)→ 0.

After that we can compare the payoffs for strategy 2 and 3 and, since strategy 3 is

11



strictly better against 3 and only worse against 1, apply Lemma 3 again to conclude that

either
∫∞

0
x3(t)dt < +∞ and x2(t)/x3(t)→ r, or

∫∞
0
x3(t)dt = +∞ and x2(t)/x3(t)→ 0.

But,
∫∞

0
x3(t)dt < +∞ and x2(t)/x3(t) → r is not possible because it would violate the

comparison theorem for positive integrals since
∫∞

0
x2(t)dt = +∞. So, in this case we

have that x1(t)/x2(t) → 0 and x2(t)/x3(t) → 0 which clearly implies x1(t) → 0, and

x2(t)→ 0.

Proving our general theorem requires going through a number of similar steps, using

Lemma 3 and Lemma 4, to show that the order in a sequence of IEWDS that satisfies

properties (a) to (c) matches the order of the speed of evolutionary elimination in the

sense that xsk(t)/xdk(t) → 0, with the only possible exception to this rule being when∫∞
0
xsk(t)dt and

∫∞
0
xdk(t)dt are both finite and xsk(t)/xdk(t) converges to a real number

(possibly 0).

4.2 Four Lemmata

The proof of Theorem 1 relies on four lemmata that we prove in this subsection.

Lemma 1 If the growth-rate functions are Lipschitz continuous, and the dynamic is
regular payoff monotonic, then there is a constant λ̄ such that gi(x)− gj(x) ≤ λ̄(πi(x)−
πj(x)) for all i, j and all x ∈ ∆ such that πi (x) ≥ πj(x).

Proof. We prove the lemma by finding a constant λ̄ (i, j) for an arbitrary pair i

and j. The desired result then follows from taking the smallest of these constants for all

combinations of strategies i and j. If x ∈ ∆ is such that πi (x) = πj(x), then regular

payoff monotonicity implies gi(x) = gj(x) so we do not have to be concerned about such

x. So, let x ∈ ∆ be such that πi (x)− πj(x) > 0.

Suppose first that πi (y)− πj(y) > 0 for all y ∈ ∆. Then, by continuity of the growth

rate and payoff functions, we can define λ̄ (i, j) > 0 by

λ̄ (i, j) =
maxy∈∆(gi(y)− gj(y))

miny∈∆(πi (y)− πj(y))
.

Suppose instead that πi (y) − πj(y) ≤ 0 for some y ∈ ∆. Let S+ = {s ∈ S : u(i, s) >

u(j, s)} and S− = S\S+ = {s ∈ S : u(i, s) ≤ u(j, s)}. The set S+ is not empty since

πi (x) − πj(x) > 0. Similarly, the set S− is not empty since πi (y) − πj(y) ≤ 0 for some

y ∈ ∆. Let x′ ∈ ∆ be such x′s ≤ xs for s ∈ S+, x
′
s ≥ xs for s ∈ S−, and πi (x′)−πj(x′) = 0.

That is, x′ is constructed from x by decreasing the fractions for s ∈ S+ and increasing

the fraction for s ∈ S− until πi (x′) = πj(x
′). Note that for the 1-norm, ‖x− x′‖1 =∑

s∈S |xs − x′s| = 2
∑

s∈S+(xs − x′s). By Lipschitz continuity there is a constant C > 0

such that

gi(x)− gj(x)− (gi(x
′)− gj(x′)) = gi(x)− gj(x) ≤ C ‖x− x′‖1 . (2)

12



Let c = mins∈S+(u(i, s)−u(j, s)) > 0. Since x′ is such that (xs − x′s) (u(i, s)− u(j, s)) ≥ 0

for all s,

πi (x)− πj(x) = πi (x)− πj(x)− (πi (x
′)− πj(x′)) =

∑
s∈S

(xs − x′s)(u(i, s)− u(j, s)) (3)

≥
∑
s∈S+

(xs − x′s)(u(i, s)− u(j, s)) ≥ c
∑
s∈S+

(xs − x′s)

=
c

2
‖x− x′‖1 .

Together, (2) and (3) imply

gi(x)− gj(x) ≤ 2C

c
(πi (x)− πj(x)) .

Lemma 2 Assume that growth-rate functions are Lipschitz continuous, and that the dy-
namic is regular payoff monotonic. Consider a trajectory x. Suppose that s, d ∈ S and
T ∈ R+ are such that there are integrable functions a(t) : R+ → R+ and b(t) : R+ → R+

with
∫∞
t=0

b(t)dt < +∞ and

πd(x(t))− πs(x(t)) > a(t)− b(t) (4)

for all t > T. Then xs(t)/xd(t) converges to a real number which is 0 if
∫∞
t=0

a(t)dt = +∞.

Proof of Lemma 2. It follows from our assumption of regular monotonicity and

Lemma 1 that there are constants λ and λ̄ such that

λ |πd(x(t))− πs(x(t))| ≤ |gd(x(t))− gs(x(t))| ≤ λ̄ |πd(x(t))− πs(x(t))| (5)

for all t > T. Together (4) and (5) imply that gd(x(t)) − gs(x(t)) > λ(a(t) − b(t)) if

a(t)− b(t) ≥ 0; and gd(x(t))− gs(x(t)) > λ̄(a(t)− b(t)) if a(t)− b(t) < 0. Hence

gd(x(t))− gs(x(t)) > λa(t)− λ̄b(t)

for all t > T. Therefore, since
∫∞
t=0

b(t)dt < +∞,

∫ ∞
t=0

(gd(x(t))− gs(x(t)))dt =

{
+∞ if

∫∞
t=0

a(t)dt = +∞,
r ∈ R or +∞ if

∫∞
t=0

a(t)dt < +∞.

Since

ln(xd(τ)/xs(τ))− ln(xd(0)/xs(0)) =

∫ τ

t=0

(gd(x(t))− gs(x(t)))dt.

the desired result follows.
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Lemma 3 Assume that growth-rate functions are Lipschitz continuous, and that the dy-
namic is regular payoff monotonic. Consider a trajectory x. If d, j, s ∈ S are such that

(i) u(d, j) > u(s, j), and

(ii) xi(t)/xj(t)→ 0 for all i such that u(d, i) < u(s, i) and
∫∞

0
xi(τ)dτ = +∞,

then xs(t)/xd(t) converges to a real number.

If we also have that

(iii)
∫∞

0
xj(τ)dτ = +∞,

then xs(t)/xd(t)→ 0.

This lemma says that if (i) strategy d performs strictly better than strategy s against

strategy j, (ii) all strategies against which s is a better reply than d, and which remain in

the population for a long time, eventually become infinitely less frequent than strategy j,

and (iii) strategy j remains in the population for a long time, then strategy s eventually

becomes infinitely less frequent than strategy d. If (iii) does not hold then the ratio of

strategy s to strategy d may converge to a positive number.10

Proof of Lemma 3. Let S0 be the set of strategies i 6= j such that
∫∞

0
xi(t)dt < +∞

and let S1 = S\(S0 ∪ {j}). Set

a(t) =
1

2
xj(t),

b(t) =
∑
i∈S0

xi(t) |u(d, i)− u(s, i)| ,

c(t) =
1

2
xj(t) +

∑
i∈S1

xi(t)(u(d, i)− u(s, i)).

Then

πd(x(t))− πs(x(t)) ≥ a(t)− b(t) + c(t).

Since xi(t)/xj(t) → 0 holds for all i ∈ S1 with u(d, i) < u(s, i), there is a T such that

c(t) > 0 for all t > T. Therefore Lemma 2 applies and yields the desired conclusion.

Lemma 4 Assume that growth-rate functions are Lipschitz continuous, and that the dy-
namic is regular payoff monotonic. Consider a trajectory x. If s, d ∈ S are such

(i) u(d, s) > u(s, s)

(ii)
∫∞

0
xd(τ)dτ = +∞, and

10To make the intuition more transparent one may think of Lemma 3 as follows: (i) states that strategy
j is "prey" for d. (ii) states that all of the prey for s (d’s "competitor") that survive long enough is
infinitely less frequent than j. (iii) states that d’s prey survives long enough. Hence, eventually d becomes
infinitely more frequent than s.
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(iii) xi(t)/xd(t)→ 0 for all i with u(d, i) < u(s, i),

then xs(t)/xd(t)→ 0.

Lemma 4 says that if (i) strategy d performs strictly better than strategy s against

strategy s, (ii) strategy d remains in the population for a long time, and (iii) all strategies

against which s is a better reply than d eventually become infinitely less frequent than

strategy d, then strategy s eventually becomes infinitely less frequent than strategy d.11

Claim 1 Let z : R+ → R be differentiable. Assume that there exists η > 0 and T > 0

such that for any t ≥ T, ż(t) < 0 whenever z(t) = η. Then either z(t) > η for all t ≥ T

or there exists T ′ ≥ T such that z(t) ≤ η for all t ≥ T ′.

Proof of Claim 1. If z(s) ≤ η for some s ≥ T then we can set T ′ = min{t ∈ R+ :

T ≤ t ≤ s, z(t) ≤ η}.
Proof of Lemma 4. Let η > 0 be given. To prove Lemma 4 it is suffi cient to show

that xs(t)/xd(t) < η for all suffi ciently large t. Under the assumptions of Lemma 4, there

exists positive constants c1, c2, depending on the payoff function, such that

πd(x(t))− πs(x(t)) ≥ c1xs(t)− c2xd(t)
∑

i:u(d,i)<u(s,i)

xi(t)

xd(t)
. (6)

Since xi(t)/xd(t)→ 0 for all i with u(d, i) < u(s, i) there is some T such that the sum in

(6) is smaller than c1η/(2c2) for all t ≥ T. Thus

πd(x(t))− πs(x(t)) ≥ c1xs(t)− c1xd(t)η/2 = c1xd(t)

[
xs(t)

xd(t)
− η

2

]
.

for all t ≥ T. Let z(t) = xs(t)/xd(t). For any t ≥ T, if z(t) = η, then πd(x(t))−πs(x(t)) >

0; and hence by monotonicity ż(t) < 0. By Claim 1 it follows that either (a) z(t) > η for

all t ≥ T ; or (b) there exists T ′ such that z(t) ≤ η for all t ≥ T ′. If (b) holds then we are

done by definition of z. If (a) holds, then

πd(x(t))− πs(x(t)) ≥ ηc1xd(t)/2

for all t ≥ T and Lemma 2 applies with a(t) = ηc1xd(t)/2 and b(t) = 0 implying

xs(t)/xd(t)→ 0.12

11Again, to make the intuition more transparent one may think of Lemma 4 as follows: (i) states that
strategy s is "prey" for d, (ii) states that s’s competitor d remains in the population for a long time. (iii)
states that all of s’s prey becomes much less frequent than strategy d. Hence s becomes extinct.
12Case (a) never occurs since xs(t)/xd(t)→ 0 contradicts z(t) > η for all t ≥ T.
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4.3 Proof of Theorem

Let ((sk, bk))
m′
k=1 be a given IEWDS that satisfies (a) monotonicity, (b) pairwise weak

dominance, and (c) local strict transitivity. We can assume, without loss of generality,

that sk = k for k = 1, . . . ,m′ and that bm′ = m′ + 1. Let d1, d2, . . . , dn be the increasing

list of all s ∈ S such that s = bk for some k ∈ {1, . . . ,m′}. For notational purposes, let
d0 = 1. By monotonicity, (dk)

n
k=1 is such that for each k = 1, . . . , n, dk is used to eliminate

all strategies s with dk−1 ≤ s < dk in the sequence of IEWDS. We now prove Theorem 1

by way of induction on (dk)
n
k=1.

4.3.1 Induction Base

We want to show that

Property 0
∫∞

0
xs(t)dt < +∞ and xs(t)/xd1(t)→ rs ≥ 0 for all s ≤ d1; or

Property 1
∫∞

0
x
d1

(t)dt = +∞ and xs(t)/xd1(t)→ 0 for all s < d1.

Set s1 = 1 and βs1 = u(d1, s1) − u(d1, d1), and γs1 = u(d1, d1) − u(s1, d1). Since d1

eliminates 1 in the IEWDS we know by (b), pairwise weak dominance, that βs1 > 0 or

γs1 > 0.

Suppose βs1 > 0. Then we can apply Lemma 3 with j = s1, s = s1, and d = d1. (Note

that part (ii) of the lemma is satisfied by weak dominance.) If
∫∞

0
xs1 (t)dt = +∞, then

xs1 (t)/xd1(t)→ 0. By the comparison test for improper integrals,
∫∞

0
xs1 (t)dt = +∞ and

xs1 (t)/xd1(t)→ 0 imply that
∫∞

0
x
d1

(t)dt = +∞ . So, if
∫∞

0
xs1 (t)dt = +∞, then Property

1 is satisfied for s = s1. If
∫∞

0
xs1 (t)dt < +∞, then xs1 (t)/xd1(t) → r ≥ 0; and if r > 0,

then we cannot have
∫∞

0
x
d1

(t)dt = +∞ since
∫∞

0
x
d1

(t)dt = +∞,
∫∞

0
xs1 (t)dt < +∞.

and xs1(t)/xd1(t) → r > 0 contradicts the comparison test for improper integrals. So, if∫∞
0
xs1 (t)dt < +∞, then Property 0 or Property 1 is satisfied for s = s1.

Suppose γs1 > 0. Then we can apply Lemma 3 with j = d1, s = s1, and d = d1.

(By weak dominance part (ii) of the lemma is satisfied.) If
∫∞

0
xd1(t)dt = +∞, then

xs1 (t)/xd1(t) → 0 and Property 1 is satisfied for s = s1. If
∫∞

0
x
d1

(t)dt < +∞, then
xs1(t)/xd1(t)→ r ≥ 0. By the comparison test for improper integrals,

∫∞
0
x
d1

(t)dt < +∞
and xs1(t)/xd1(t)→ r ≥ 0 imply that

∫∞
0
xs1(t)dt < +∞. Thus Property 0 is satisfied for

s = s1 if
∫∞

0
x
d1

(t)dt < +∞.
We have now examined all possibilities to show that Property 0 or Property 1 holds

for s = s1 = 1.

Set s2 = s1 + 1 and assume that s2 < d1. Let βs2 = u(d1, s2)− u(s2, s2), and let γs2 =

u(d1, d1)−u(s2, d1). Since d1 eliminates s2 in the IEWDS we know by assumption (b) that

βs2 > 0 or γs2 > 0. Suppose first that Property 0 holds for s = s1. Then
∫∞

0
xd1(t)dt < +∞

and thus we do not have to be concerned about the sign of u(s2, s1)− u(d1, s1) when we
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apply Lemma 3. If βs2 > 0, then Lemma 3 applies with j = s2, and if γs2 > 0 then Lemma

3 applies with j = d1. In both cases the implied result is that xs2(t)/xd1(t) converges to a

real number which in turn, since
∫∞

0
xd1(t)dt < +∞, by the comparison test for improper

integrals implies that
∫∞

0
xs2(t)dt < +∞. So, Property 0 holds for s = s2 if it holds for

s = s1. Suppose instead that Property 1 holds for s = s1. Then
∫∞

0
x
d1

(t)dt = +∞ and

xs1(t)/xd1(t)→ 0 so if βs2 > 0, then Lemma 4 implies that xs2(t)/xd1(t)→ 0. If γs2 > 0,

then we can apply Lemma 3 with j = d1 to derive the same result. So, Property 1 holds

for s = s2 if it holds for s = s1.

Set s3 = s2 + 1, and assume that s3 < d1. Then we can repeat the same arguments

since we now know that either Property 0 holds for s < s3 or Property 1 holds for s < s3.

We can continue using the same argument until we reach s = d1 − 1.

4.3.2 Induction Step

Suppose that for all k̃ = 1, . . . , k,

Property A0
∫∞

0
xs(t)dt < +∞ and xs(t)/xdk̃(t)→ rs ≥ 0 for all s ≤ dk̃; or

Property A1
∫∞

0
xdk̃(t)dt = +∞ and xs(t)/xdk̃(t)→ 0 for all s < dk̃.

Then

Property B0
∫∞

0
xs(t)dt < +∞ and xs(t)/xdk+1(t)→ rs ≥ 0 for all s ≤ dk+1; or

Property B1
∫∞

0
xdk+1(t)dt = +∞ and xs(t)/xdk+1(t)→ 0 for all s < dk+1.

To see that this is true suppose first that Property A0 is satisfied for k̃ = k. Then∫∞
0
xs(t)dt < +∞ for all s ≤ dk and we may employ the same argument as in the proof

of the induction base to show that Property B0 or B1 is satisfied since strategies s ≤ dk

will not matter when we apply Lemma 3.13

If Property A0 is not satisfied for k̃ = k, then Property A1 is satisfied for k̃ = k and

thus xs(t)/xdk(t) → 0 for all s < dk and
∫∞

0
xdk(t)dt = +∞. We first wish to show that

xdk(t)/xdk+1(t)→ 0.

Our sequence of IEWDS is such that dk+1 is the strategy that eliminates dk and thus

u(dk, dk) ≤ u(dk+1, dk). If u(dk, dk) < u(dk+1, dk), then Lemma 3 applies (set s = j = dk

and d = dk+1) and yields xdk(t)/xdk+1(t) → 0, as desired. Therefore, assume u(dk, dk) =

u(dk+1, dk). Then by (b), pairwise weak dominance, u(dk+1, dk+1) > u(dk, dk+1).

13There will be two cases to check. One where
∫∞
0
x
dk+1

(t)dt < +∞, in which case Property B0 will
be satisfied; and one where

∫∞
0
x
dk+1

(t)dt = +∞ in which case Property B1 will be satisfied.
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Consider s = dk−1 (which is eliminated by dk) and examine the ratio xdk−1(t)/xdk+1(t).

Since the IEWDS is such that dk+1 eliminates dk and dk eliminates dk − 1,

u(dk+1, i) ≥ u(dk, i) ≥ u(dk − 1, i) for all i ≥ dk.

Thus, u(dk+1, i) ≥ u(dk − 1, i) for all i ≥ dk and xi(t)/xdk(t)→ 0 for all i < dk. Further-

more, by (c), local strict transitivity, the inequality u(dk+1, i) ≥ u(dk − 1, i) is strict at

i = dk. Therefore Lemma 3 applies and yields xdk−1(t)/xdk+1(t)→ 0.

Now consider s = dk − 2 and assume dk − 2 is eliminated by dk and not by dk − 1.

Since dk+1 eliminates dk, and since dk eliminates dk − 2,

u(dk+1, i) ≥ u(dk, i) ≥ u(dk − 2, i) for all i ≥ dk,

and, by local strict transitivity, at least one of these inequalities is strict at i = dk, and

so u(dk+1, dk) > u(dk− 2, dk). Since xi(t)/xdk(t)→ 0 for all i < dk, Lemma 3 applies and

yields xdk−2(t)/xdk+1(t)→ 0.

By repeating the argument we can conclude that xs(t)/xsk+1(t) → 0 for all s with

dk−1 ≤ s ≤ dk−1, where dk−1 = 1 if k = 1. By the induction hypothesis xs(t)/xdk−1(t)→
rs for all s ≤ dk−1, and therefore xdk−1(t)/xdk+1(t)→ 0 implies

xs(t)/xdk+1(t)→ 0 for all s < dk. (7)

Recall that u(dk, dk+1) < u(dk+1, dk+1) by (b). It therefore follows from (7) and Lemma 3

that xdk(t)/xdk+1(t) converges to a real number. Since
∫∞

0
xdk(t)dt = +∞ it follows from

the comparison test for improper integrals that
∫∞

0
xdk+1(t)dt = +∞ and so, by part (iii)

of Lemma 3, the real number that xdk(t)/xdk+1(t) converges to is 0.

We have shown that∫ ∞
0

xdk+1(t)dt = +∞ and
xs(t)

xdk+1(t)
→ 0 for all s ≤ dk. (8)

Set s = dk + 1, and assume that s < dk+1. If u(dk+1, dk+1) > u(s, dk+1), then (8) and

Lemma 3 yield xs(t)/xdk+1(t) → 0. If π(dk+1, s) > π(s, s), then (8) and Lemma 4 yield

xs(t)/xdk+1(t)→ 0. Therefore,∫ ∞
0

xdk+1(t)dt = +∞ and
xs(t)

xdk+1(t)
→ 0 for all s ≤ dk + 1.

We can repeat this step for s = sk + 1, sk + 2, . . . , sk+1 − 1, and so xs(t)/xdk+1(t)→ 0 for

all such s. We have thus shown that Property B1 is satisfied if Property A1 is satisfied

for k̃ = k, and this completes the proof of the induction step.
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5 Applications

We go through two applications, discretised versions of Bertrand duopoly and a two-

player first-price auction, which are both such that it is straightforward to construct a

sequence of IEWDS that satisfies the conditions of Theorem 1 and that eliminates all

but one strategy. Thus our main result implies that a regular payoffmonotonic dynamic

selects this strategy, which approaches the Nash equilibrium strategy as the grid is made

finer.

5.1 Bertrand Duopoly

Consider the following discretised Bertrand duopoly. Let 1/M be the smallest monetary

unit. Firm i sets price pi ∈
{

0, 1
M
, 2
M
, ..., M−1

M
, 1
}
. Demand is 1− p for the firm with the

lowest price. The marginal cost is equal to zero. Thus the profit is

u(pi, pj) =


pi (1− pi) if pi < pj
1
2
pi (1− pi) if pi = pj

0 if pi > pj

.

The payoff matrix is

0 1
M

2
M

· · · M−1
M

1

0 0 0 0 · · · 0 0
1
M

0 1
2

1
M

(
1− 1

M

)
1
M

(
1− 1

M

)
· · · 1

M

(
1− 1

M

)
1
M

(
1− 1

M

)
2
M

0 0 1
2

2
M

(
1− 2

M

)
· · · 2

M

(
1− 2

M

)
2
M

(
1− 2

M

)
...

...
...

...
. . .

...
...

M−1
M

0 0 0 · · · 1
2
M−1
M

(
1− M−1

M

)
M−1
M

(
1− M−1

M

)
1 0 0 0 · · · 0 0

Since it is better to have a slightly lower price than your opponent than to have the same

price, for every l ∈ {0, 1, 2, ...,M − 1} ,

u

(
l

M
,
l + 1

M

)
=

l

M

(
1− l

M

)
>

1

2

l + 1

M

(
1− l + 1

M

)
= u

(
l + 1

M
,
l + 1

M

)
.

Since is also better to have the same price as your opponent than to have a higher price,

u

(
l

M
,
l

M

)
> u

(
l + 1

M
,
l

M

)
.

Therefore, if we set s = l+1
M
and d = l

M
, then both u (d, s) > u (s, s) and u (d, d) >

u (s, d) are satisfied and we can create a sequence of IEWDS that satisfies the conditions

of Theorem 1 by eliminating strategies in decreasing order from 1 to 2/M and finally
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eliminating 0. Then only strategy 1/M remains and thus this strategy is selected by

evolution. By increasing M evolution selects a strategy profile that is arbitrarily close to

0.

5.2 Two-Player First-Price Auction with Common Values

The structure of a discretised first-price common-value auction with two players is similar

to that of a discretised Bertrand duopoly. Let 1/M be the smallest monetary unit. Buyer

i places a bid pi ∈
{

0, 1
M
, 2
M
, ..., M−1

M
, 1
}
. The value of the prize is 1. Thus the payoff is

u(pi, pj) =


1− pi if pi > pj

1
2

(1− pi) if pi = pj

0 if pi < pj.

The payoff matrix is

0 1
M

2
M

· · · M−1
M

1

0 1
2

0 0 · · · 0 0
1
M

1− 1
M

1
2

(
1− 1

M

)
0 · · · 0 0

2
M

1− 2
M

1− 2
M

1
2

(
1− 2

M

)
· · · 0 0

...
...

...
...

. . .
...

...
M−1
M

1− M−1
M

1− M−1
M

1− M−1
M

· · · 1
2

(
1− M−1

M

)
0

1 0 0 0 · · · 0 0

It is better to bid slightly above your opponent than to bid the same so, for every

l ∈ {0, 1, 2, ...,M − 1} ,

u

(
l

M
,
l − 1

M

)
= 1− l

M
>

1

2

(
1− l − 1

M

)
= u

(
l − 1

M
,
l − 1

M

)
.

It is also better to bid the same as your opponent than to bid below,

u

(
l

M
,
l

M

)
> u

(
l − 1

M
,
l

M

)
.

Therefore, if we set s = l−1
M
and d = l

M
, then both u (d, s) > u (s, s) and u (d, d) > u (s, d)

are satisfied and we can create a sequence of IEWDS that satisfies the conditions of

Theorem 1 by eliminating strategies in increasing order from 0 to (M − 2)/M and finally

eliminating 1. Then only strategy (M − 1)/M remains and thus this strategy is selected

by evolution. By increasingM evolution selects a strategy profile that is arbitrarily close

to 1.
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6 Conclusion

To the best of our knowledge we are the first to provide general conditions under which

a large class of imitative dynamics select against iteratively weakly dominated strate-

gies. If a sequence of IEWDS satisfies our suffi cient conditions, then, starting from any

interior initial state, the strategies that are eliminated by that sequence become extinct

asymptotically. Our results are proved for the class of regular payoff monotonic dynam-

ics, which includes convex monotonic and aggregate monotonic dynamics such as the

replicator dynamic.

A potential shortcoming of our result is that it is not readily applicable to extensive

form games, which is an important context in which weakly dominated strategies occur

naturally. We note that Cressman (2003) provides some reason to be sceptical about

the prospects of finding general conditions for evolutionary selection of iteratively weakly

dominated strategies in extensive form games. It should also be pointed out that although

our condition ensures that, starting from any interior initial state, strategies that fail

iterative elimination of weakly dominated strategies become extinct asymptotically, our

condition does not imply that the set of strategies that survive iterated weak dominance

is Lyapunov stable. See Sandholm (2015), page 752, for a counterexample.

It is well known that reinforcement learning (Arthur 1993, Cross 1973, Erev and Roth

1998) is closely linked with the replicator dynamic in the sense that the latter can be

obtained as the mean field approximation of the former, as established by Börgers and

Sarin (1997) and Hopkins (2002). In light of this it would be interesting to test whether

the convergence results of this paper are borne out in learning environments conducive

to reinforcement learning, such as environments where subjects have no knowledge of the

game they play and only receive feedback information about their own payoffs (as in Nax

et al. 2016). We leave for future work the testing of our theorems in information settings

conducive to learning heuristics that induce the replicator dynamic.
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7 Appendix

7.1 (c) Local Strict Transitivity

In section 3.2.2 we claimed that for G6 and under any monotonic dynamic, x2(t) → 1 if

x1(0) ≥ x3(0). This is a consequence of the following more general result.14

Lemma 5 Assume that growth-rate functions are Lipschitz continuous, and that the dy-
namic is payoff monotonic. Suppose that (i) u(1, s) = u(3, s) for any s /∈ {1, 3}; and
(ii) u(1, 1) > u(3, 1). If x(0) ∈ ∆ is such that x1(0) > 0 and the ratio x1(0)/x3(0) large

enough to imply that π1(x(0)) > π3(x(0)), then x3(t)→ 0 as t→∞.

Proof of Lemma 5. Let z(t) = x3(t)/x1(t) and z(0) = η. Since π1(x(0)) > π3(x(0)),

and since the dynamic is monotonic, we have that ż(0) < 0 and assumptions (i) and (ii)

then imply that ż(t) < 0 and π1(x(t)) > π3(x(t)) for all t > 0. Thus, by monotonicity,

g1(x(t))− g3(x(t)) > 0 for all t > 0.

If x3(t) 9 0, then there exists ε1 > 0 and t1 < t2 < · · · such that tk → ∞ and

x3(tk) ≥ 2ε1 for all k. Let ε2 > 0 be such that π1(x)− π3(x) > ε2 if ε1 ≤ x3 ≤ ηx1. Note

that ηx1(t) ≥ x3(t) since z(0) = η and z decreases with time. By uniform continuity

of x3(·), which is implied by Lipschitz continuity of the growth-rate functions, there is a
κ > 0 such that x3(t) ≥ ε for all t ∈ (tk−κ, tk +κ) for all k.We can assume, without loss

of generality, that tk+1−tk > κ for all k. Since π1(x)−π3(x) ≥ ε2 for all t ∈ (tk−κ, tk+κ),

there exists ε3 > 0 such that g1(x)− g3(x) ≥ ε3 for all t ∈ (tk − κ, tk + κ).15 Thus∫ ∞
t=0

(g1(x(t))− g3(x(t)))dt ≥
∞∑
k=1

ε3κ = +∞

which implies x3(t)/x1(t) → 0. This, in turn, implies x3(t) → 0. This completes the

proof. Alternatively, it can be shown that Lemma 5 is implied by Proposition 4.1 in

Ponti (2000).

For G6 we have that π2(x(0)) − π1(x(0)) = x1(0). An argument similar to the one

we just used to prove Lemma 5 then shows that x1(t) → 0 as t → ∞ from all interior

initial conditions, and for all monotonic dynamics. (If x1(t) 9 0, then x1(t)/x2(t) → 0

by uniform continuity of x1(·).) Also, G6 is such that it follows from Lemma 5 that

x3(t) → 0 as t → ∞ if x1(0) < x3(0). If x1(0) = x3(0), then strategies 1 and 3 earn the

same and monotonicity implies that they both shrink towards 0 at the same rate and

thus x3(t)→ 0 in this case too.

14We are grateful to an anonymous referee for suggestions that lead us to the following analysis.
15We can find ε3 by minimizing the continuous function x 7→ g1(x)−g3(x) on the compact set of x ∈ ∆

with π1(x)− π3(x) ≥ ε2. Since the growth rate functions are monotonic this minimum will be positive.
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7.2 (a) Monotonicity

In section 3.2.3 we claimed that for G7 and under any monotonic dynamic x1(t) → 0

and x3(t) → 0 if x1(0) ≥ x3(0). Since strategy 4 is identical to strategy 2, and since all

strategies earn 0 against strategy 4, this follows from what we have already proven for

game G6.

7.3 Regular Monotonicity

Our goal is to define a monotonic dynamic and find an interior initial condition x(0) such

that x3(t)→ 1 for the game G8, introduced in section 3.2.4. Let the strategies be named

1, 2, 3, and 4 according to row order. Write s1(x) for the strategy that has the highest

payoff at the population state x, and s2(x) for the strategy that has the second highest

payoffand so on. When two or more strategies have the same payoffat a population state

x then the ties can be broken arbitrarily, for example by giving priority to the strategy

whose name is the lower number. To simplify the notation we write si instead of si(x)

and define growth rate functions by setting

gs1(x) = (πs1(x)− πs2(x))(xs2 + xs3 + xs4) (9)

+ (πs2(x)− πs3(x))n(xs3 + xs4) + (πs3(x)− πs4(x))xs4 ,

gs2(x) = gs1(x)− (πs1(x)− πs2(x)),

gs3(x) = gs2(x)− (πs2(x)− πs3(x))n,

gs4(x) = gs3(x)− (πs3(x)− πs4(x)) ,

for some positive integer n. For n = 1 we get the replicator dynamic since then gsi(x) =

πsi(x) − π̄(x). The growth rate functions defined by (9) are well defined for all positive

integers k in the sense that
∑

i gsi(x)xsi = 0.16 They are also Lipschitz continuous because

each gsi is a degree n polynomial of payoff differences with x1, x2, x3, x4 as coeffi cients,

and if there is a point x∗ which is a boundary point of both the set of x with si(x) = j

and the set of x with si(x) = k, then πj(x∗) = πk(x
∗) and gj(x∗) = gk(x

∗). They are also

monotonic since gs1(x) ≥ gs2(x) ≥ gs3(x) ≥ gs4(x), with strict inequality wherever payoffs

are not equal. However, for n > 1, regular monotonicity is violated if there exists x∗ ∈ ∆

such that πs2(x
∗) = πs3(x

∗), and for every δ > 0 there is an x ∈ ∆ with ‖x∗ − x‖ < δ

such that πs2(x) 6= πs3(x). To see this, note that for any sequence x1, x2, . . . from ∆ that

converges to x∗, with πs3(x
t)(xt) 6= πs3(x

t)(xt) for all t, we have

gs2(xt)(x
t)− gs3(xt)(x

t)

πs2(xt)(xt)− πs3(xt)(xt)
= (πs2(xt)(x

t)− πs3(xt)(x
t))n−1 → 0

16To see this note that
∑

i gsi(x)xsi = gsi(x)−(πs1(x)−πs2(x))(xs2+xs3+xs4)−(πs2(x)−πs3(x))n(xs3+
xs4)− (πs3(x)− πs4(x))xs4
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as t→∞ if n > 1. For the game G8 regular monotonicity is violated in a neighborhood of

x∗ = (0, 0, 1, 0) if n > 1 and we can use for example the sequence xt = 1
10t

(3, 2, 10t− 6, 1)

to show it.

From now on, assume that n = 2. For G8, consider the subsetX of∆ where x1 ≥ x2 ≥
3x4 and x3 ≥ 3/4. For all x ∈ X we have that s1(x) = 3, s2(x) = 2, s3(x) = 1, s4(x) = 4;

and, importantly, the only way for a solution to our differential equations to leave X is

for x2(t) to outgrow x1(t). Setting s1(x) = 3, s2(x) = 2, s3(x) = 1, s4(x) = 4 yields

g2(x) = (πs1(x)− πs2(x))(−xs1) + (πs2(x)− πs3(x))2(xs3 + xs4) + (πs3(x)− πs4(x))xs4

= (2x1 + x2 − x4)(−x3) + x2
2(x1 + x4) + (2x1 − 2x2)x4.

Since x1 ≥ x2 ≥ 3x4 and x3 ≥ 3/4 for x ∈ X we can put a simple upper bound on g2(x)

for x ∈ X:

g2(x) = (2x1 + x2 − x4)(−x3) + x2
2(x1 + x4) + (2x1 − 2x2)x4

< −3(2x1 + x2 − x4)/4 + x2
2(x1 + x4) + (2x1 − 2x2)x4

= −x2/2− (x2/4− 3x4/4)− x1(6/4− x2
2 − 2x4)− x4(2x2 − x2

2)

< −x2/2.

It follows that ẋ2(t) = g2(x(t))x2(t) ≤ −x2(t)2/2.

The differential equation ż(t) = −z(t)2/2 is separable and has the solution z(t) =

2/(t + 2/z(0)). Since ẋ2(t) ≤ ż(t) whenever x2(t) ≥ z(t), we can conclude that if z(0) =

x2(0), then x2(t) ≤ z(t) for all t, which implies∫ ∞
0

x2
2(t)dt ≤

∫ ∞
0

z(t)2dt =

∫ ∞
0

4

(t+ 2/z(0))2
dt

=

[
−4

t+ 2/z(0)

]∞
0

= 2z(0) = 2x2(0).

So, for solution mappings that never leave X we have established an upper bound for∫∞
0
x2

2(t)dt that depends on x2(0). Because of how our growth rate functions are defined

with n = 2 we can use this to establish an upper bound for x2(t)/x1(t). Pick any x(0) ∈ X
such that x2(0) = 1/100 and x1(0) = e2/100.17 Then, for all T such that x(t) ∈ X for all

t ≤ T,

ln

(
x2(T )

x1(T )

)
=

∫ T

0

(g2(x(t))− g1(x(t)))dt+ ln

(
x2(0)

x1(0)

)
=

∫ T

0

x2
2(t)dt+ ln

(
x2(0)

x1(0)

)
≤ 2x2(0) + ln

(
x2(0)

x1(0)

)
=

2

100
− 2 ln e < −1.

17Here e2 denotes Euler’s number squared, not a unit vector in ∆.

26



It follows that x2(T )/x1(T ) ≤ e−1 for all such T. Since x2(t)/x1(t) changes continuously

with time, it follows that x2(t) < x1(t) for all t ≥ 0 and thus x(t) ∈ X for all t ≥ 0.

Since the solution mapping never leaves X, strategy 3 grows forever and strategies 1, 2, 4

decrease forever. To rule out that x1, x2, x4 converge to something other than 0 we can

look at g3(x) − g1(x) which satisfies g3(x(t)) − g1(x(t)) ≥ x1(t) for x ∈ X. Hence, if

x1(t) converged to something other than 0, then x1(t)/x3(t) would converge to 0, which

contradicts that x1(t) converges to something other than 0. Thus x1(t) → 0, and since

x1 ≥ x2 ≥ x4 for x ∈ X it follows that x2(t) and x3(t) converge to 0 as well. The reason

that this happens for n = 2 is that for n = 2,
∫∞

0
(g2(x(t))− g1(x(t)))dt can be finite even

if
∫∞

0
x2(t)dt is infinite.18 For n = 1, i.e., for the replicator dynamic, this is not possible.

18We did not prove that
∫∞
0
x2(t)dt is infinite for the x(0) ∈ X we picked but it is since g2(x(t)) >

−(2x1(t) + x2(t)) > −(2e2 + 1)x2(t) for all t.
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