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Abstract

Long-run saving dynamics are a crucial component of consumption-saving be-

havior. This paper makes two contributions to the consumption literature. First,

we exploit inheritance episodes to provide novel causal evidence on the long-run

effects of a large financial windfall on saving behavior. For identification, we

combine a longitudinal panel of administrative wealth reports with variation in

the timing of sudden, unexpected parental deaths. We show that after inheri-

tance net worth converges towards the path established before parental death,

with only a third of the initial windfall remaining after a decade. These dynam-

ics are qualitatively consistent with convergence to a buffer-stock target. Second,

we analyze our findings through the lens of a generalized consumption-saving

framework, and show that life-cycle consumption models can replicate this be-

havior, but only if the precautionary saving motive is stronger than usually as-

sumed. This result also holds for two-asset models, which imply a high marginal

propensity to consume.
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Life-cycle consumption behavior has been a central area of economic research for

decades (Modigliani and Brumberg, 1954 and Friedman, 1957; later Deaton, 1991

and Carroll, 1997). Recent years have seen critical advances in understanding the

short-run dynamics of life-cycle models. These advances, obtained by e.g. incorporat-

ing illiquid assets in life-cycle models (Kaplan and Violante, 2014), have focused on

matching the empirical estimates of short-run consumption responses out of small

transitory shocks (Shapiro and Slemrod, 2003; Johnson, Parker and Souleles, 2006;

Parker et al., 2013).

By focusing instead on long-run saving dynamics, this paper contributes to the

consumption literature in two ways. First, we provide novel reduced-form evidence

on the long-run evolution of savings following a large financial windfall. We find

that heirs quickly deplete their inheritance, and that net worth converges towards

the path established before parental death: only about a third of the initial increase

in net worth remains nine years after parental death. Second, we show that life-cycle

consumption models can replicate both the amount of wealth people accumulate over

their life-cycle and the high depletion rate we observe after inheritance, but only if

the precautionary saving motive is stronger than usual. Because life-cycle models

are a commonly used tool for evaluating the design of social security, taxation, and

pension systems (Heathcote, Storesletten and Violante, 2009), their long-run proper-

ties have direct policy implications. Our results imply that these evaluations should

rest on models with a stronger than usual precautionary saving motive, and there-

fore with higher values assigned to private and social insurance mechanisms.

To produce our first contribution, we exploit unexpected inheritance episodes and

a unique panel dataset drawn from seventeen years of third-party reported Danish

administrative records on individual wealth holdings to estimate the causal effect

of large financial shocks on wealth accumulation in the decade following parental

death. To identify the causal effect of inheritances, we exploit the random timing of

sudden parental deaths due to car crashes, other accidents, and unexpected heart

attacks. We then compare the behavior of individuals receiving an inheritance a few

years apart from one another.1

Heirs respond to this sudden, salient, and sizable increase in available financial

resources by decreasing their saving efforts in the ten years after inheriting, caus-
1Fadlon and Nielsen (2015) exploit a similar identification strategy to estimate the effect of health

shocks on household labor supply.
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ing their net worth to converge back towards the path established before parental

death. Moreover, the convergence patterns of different wealth components differ

substantially. While heirs quickly deplete their excess of liquid assets, financing

consumption or investments in real estate and financial instruments, accumulated

wealth in housing equity, stocks, bonds, and mutual funds persists longer.

These findings are qualitatively consistent with convergence to a buffer-stock tar-

get. In order to assess their quantitative implications, we analyze them through a

general structural consumption-saving framework, which allows for inheritance ex-

pectations and a bequest motive (De Nardi, 2004; De Nardi and Yang, 2014). As

special cases, this framework nests the standard buffer-stock model (Deaton, 1991;

Carroll, 1997; Gourinchas and Parker, 2002), a buffer-stock model with heteroge-

neous preferences (Krueger, Mitman and Perri, 2016; Carroll et al., 2017), and a two

asset model distinguishing between liquid and illiquid wealth (Kaplan and Violante,

2014).

We show that standard parametrizations of the buffer-stock model—with the de-

gree of impatience and the strength of the bequest motive calibrated to match the

life-cycle profile of median wealth—are unable to quantitatively reproduce the long-

run saving dynamics we document. Holding constant the ability of the model to repli-

cate the empirical life-cycle wealth profile, we show that the buffer-stock model re-

quires a stronger than usual precautionary saving motive to generate a high enough

rate of wealth depletion after inheritance. Specifically, we show that buffer-stock

models able to replicate both the life-cycle wealth profile and the long-run saving

dynamics imply a 25 to 50 percent increase in precautionary savings compared to a

standard parametrization, and that agents start accumulating assets for retirement

and bequest purposes only in the last 20 years before retirement.

Our results highlight that the long-run saving dynamics provide orthogonal infor-

mation relative to the life-cycle profile. We show that an appropriate simultaneous

increase in impatience, risk aversion, and the strength of the retirement saving and

bequest motives does not change the life-cycle profile of wealth: While impatience re-

duces overall wealth accumulation, higher risk aversion induces more saving early

in life, and stronger retirement saving and bequest motives induce more saving late

in life (Cagetti, 2003). However, the implied long-run saving dynamics differ sharply

across these different combinations of parameters. By evaluating a model by its
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ability to replicate not only the life-cycle wealth profile, but also the long-run saving

dynamics, we are able to exclude a large set of potential parametrizations.

More specifically, we find that a buffer stock model needs a coefficient of rela-

tive risk aversion equal to 6.17 to replicate both sets of empirical moments. While

higher than its standard value of 2 (Carroll, 1997; Aaronson, Agarwal and French,

2012; Berger and Vavra, 2015), this coefficient is reasonable and within the range of

usual choices. Moreover, adjusting risk aversion is not necessary for replicating our

empirical findings. Amplifying the precautionary saving motive through alterna-

tive channels, such as the income risk faced by agents, or their beliefs about income

risk, achieves the same result. These finding are consistent with recent evidence

by Guvenen et al. (2016), who show that estimating a more general income process

than the standard permanent-transitory process we use can triple the welfare cost

of idiosyncratic income risk.

We further show that our findings also apply to models with heterogeneous pa-

tience and to two-asset models. Our results on the two-asset model highlight the con-

ceptual difference between short- and long-run saving dynamics. If the precaution-

ary saving motive is too weak, despite implying a marginal propensity to consume of

37 percent, a two-asset model is worse at replicating the empirical long-run saving

dynamics than a single-asset buffer-stock model implying a marginal propensity to

consume of just 6 percent. If the precautionary saving motive is strong enough, the

two-asset model replicates not only the the life-cycle profile of wealth, but also the

long-run dynamics of both total and liquid net worth.

This paper adds to the literature studying consumption responses out of liquidity

(Gross and Souleles, 2002; Leth-Petersen, 2010) and wealth changes.2 Compared

to the shocks exploited in this literature, our use of inheritance has the combined

advantage of being a sizable, salient, and sudden windfall. Inheritance not only re-

leases enough financial resources to allow intensive and extensive margin responses

in both the financial (Andersen and Nielsen, 2011) and housing markets, but also

requires no effort or any degree of financial sophistication for agents to be aware of

it. Moreover, by focusing on long-run effects, we provide novel evidence compared to

the existing short-run estimates of the elasticity of consumption on wealth (Paiella
2Estimates of wealth effects have been performed with both aggregate (Lettau and Ludvigson, 2001;

Lettau, Ludvigson and others, 2004) and household-level data (Juster et al., 2006; Browning, Gørtz and
Leth-Petersen, 2013; Paiella and Pistaferri, 2016). Jappelli and Pistaferri (2010) provide a detailed re-
view of the evidence.
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and Pistaferri, 2016) and housing equity (Mian, Rao and Sufi, 2013; Kaplan, Mitman

and Violante, 2016).

The remainder of the paper is organized as follows. Section 1 describes the data

we use in our analysis. Section 2 illustrates our identification strategy. Section

3 presents our estimates of the causal effect of inheritance on wealth accumula-

tion in the long run. Section 4 presents a general structural framework of life-

cycle consumption-saving behavior augmented with rational inheritance expecta-

tions. Section 5 analyzes our reduced-form results through the lens of our structural

framework. Section 6 concludes.

1 Data

This paper exploits Danish administrative register data from 1995 through 2012.3

In a unique dataset we combine birth and mortality registers, individual tax returns,

housing and land registers, and yearly third-party reports from financial institutions

on individual wealth holdings. For every individual in the sample, yearly reports

from financial institutions separately record the December 31 market value of liquid

assets held in checking and savings accounts, debts with and without collateral, and

the sum of financial investments in stocks, bonds and mutual funds. The combina-

tion of data on collateralized debts (chiefly mortgages) and data from the land and

housing registers provides us with a measure not only of wealth held in housing eq-

uity, but also of the number of housing units (apartments, houses, summer homes)

owned by each individual in the sample. Moreover, we construct a measure of per-

manent income computed as a moving weighted average of disposable income after

tax and transfers over the previous five years.

In our analysis we focus on individuals likely to inherit amounts large enough

to affect savings in the long run. Danish central authorities do not store informa-

tion on actual inheritance. Therefore, we exploit data on parental wealth at death

to identify individuals with large potential inheritance. We follow Andersen and

Nielsen (2011, 2012) and calculate a measure of potential inheritance by splitting

the wealth holdings of a deceased parent equally among his or her children, and

deducting inheritance tax accordingly.4 We then use this measure to identify our
3To construct a measure of permanent income we use tax returns from 1991 through 2012 .
4Details on this calculation appear in Online Appendix F. This procedure for identifying heirs likely
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estimation sample. More specifically, our main sample consists of heirs whose par-

ents die unmarried between 1995 and 2012, and for whom our measure of potential

inheritance is larger than their yearly permanent income. To estimate the effect of

inheritance on saving dynamics, we use the net worth of these heirs as an outcome

and the timing of parental death for identification.

As we observe heirs for up to 10 years after parental death, we focus on indi-

viduals inheriting when aged between 25 and 50 years and thus always in working

age. We exclude the wealthiest 1 percent of the population because their inheritance

structure, saving motives and saving trajectories differ markedly from those of the

general population.

In our analysis we focus on unexpected inheritances, defined as those due to a

sudden death caused by either violent accidents (e.g. car crashes) or heart attacks for

people with no known history of cardiac disease. These deaths, identified according

to the WHO’s ICD-10 codes, represent about 10 percent of all deaths in the sample.5

We thus exploit a total of 6,286 heirs. Table 1 describes the characteristics of heirs

one year before parental death according to the type of inheritance received. The first

column pools all inheritance episodes in the sample. The second and third columns

progressively select inheritance episodes that are unexpected and larger than one

year of permanent income.

Table 1 shows that while heirs who receive unexpected inheritances receive sim-

ilar windfalls and are only slightly poorer than heirs receiving potentially expected

inheritances, inheritance size is not random in the population. Heirs who are going

to receive larger inheritances are wealthier even before a sudden parental death.

This difference, while important for correctly interpreting the results, is consistent

with earlier studies (Holtz-Eakin, Joulfaian and Rosen, 1993; Avery and Rendall,

2002; Zagorsky, 2013). As a consequence, we restrict our analysis to heirs receiving

sizable inheritances, and use heirs receiving small or no bequests as a placebo rather

than as a control.
to receive large inheritances has the advantage of circumventing the potential endogeneity of inheri-
tance if parents allocate bequests strategically among their children (Bernheim, Shleifer and Summers,
1985; Francesconi, Pollak and Tabasso, 2015). This approach is similar to that adopted by Boserup,
Kopczuk and Kreiner (2016) in studying the role of inheritance in shaping wealth inequality in Den-
mark.

5The ICD-10 codes defining a death as sudden are I21*-I22*, V*, X*, Y* and R96*.
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Table 1: Inheritance and heir characterization, one year before parental death
All Unexpected inheritance

All
Sizable pot.
inheritance

Permanent income, 1000 DKK 207.628 202.391 205.363

Net worth, normalized 0.250 0.195 0.636

− Liquid assets, normalized 0.229 0.216 0.304

− Uncollateralized debts, normalized 0.596 0.585 0.515

− Financial investments, normalized 0.061 0.056 0.095

− Housing equity, normalized 0.556 0.508 0.752

− Housing value, normalized 1.895 1.776 2.166

−Mortgage, normalized 1.339 1.268 1.414

− Home owner 0.507 0.501 0.571

− Owner of 2+ units 0.051 0.046 0.058

Disposable income, 1000 DKK 212.878 207.583 210.379

Married 0.467 0.462 0.518

Year of inheritance 2003.669 2002.641 2002.609

Age at inheritance 39.890 39.307 40.615

Parental age at death 70.994 70.639 74.022

# individuals 223355 21750 6286

NOTE. Unexpected inheritances are those due to sudden parental death. Sizable potential inheritances
are those larger than one year of the permanent income of the heir. Permanent and disposable income
are in thousands DKK. In 2012 (December 31), one USD was equal to 5.64 DKK. All wealth measures are
normalized by permanent income.

2 Identification

Estimating the causal effect of inheritance on wealth accumulation is challenging for

three reasons. First, unlike extraordinary transitory income shocks such as lottery

winnings (Cesarini et al., 2017; Imbens, Rubin and Sacerdote, 2001), individuals

may expect to receive an inheritance at some point in their life. Second, heirs could

predict the time of parental death, for example in cases of terminal illness, and

react to it in advance. Third, inheriting from a parent requires parental death,

an event that may affect individual wealth accumulation independently from the

wealth transfer.

The first challenge stresses the danger of comparing the behavior of heirs with

that of other individuals in the population, some of whom might already have inher-

ited and thus do not expect another such windfall in their lifetime. While Andersen

and Nielsen (2011, 2012) use a matching algorithm to find a suitable control group

of non-heirs for their sample of heirs, this strategy relies heavily on the conditional
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Figure 1: Identification strategy: An example

NOTE.The figure shows the average change with respect to 1999 in individual net worth of heirs inherit-
ing more than one year of their permanent income in 2000 and 2006 due to a sudden parental death. The
units of the vertical axes are years of permanent income.

independence assumption. To ensure the internal validity of our results, we focus

instead on a homogeneous sample that by construction has similar expectations. All

heirs in our sample inherit a comparable inheritance between 1996 and 2012, and all

know that they will inherit at some point in the future. Thus they differ only in the

timing of parental death. This identification strategy exploits the randomness in the

timing of parental death and is similar to that used by Fadlon and Nielsen (2015) to

estimate the effect of health shocks on household labor market supply and by John-

son, Parker and Souleles (2006), Agarwal, Liu and Souleles (2007), and Parker et al.

(2013) to estimate the effect of tax rebates on short-term consumption.

To tackle the second concern and to ensure that heirs do not anticipate—and

thus react in advance to—the timing of parental death, we perform our analysis on

a sample of heirs inheriting because of sudden deaths, as defined in Section 1. More-

over, the long panel of yearly wealth observations allows us to check for anticipatory

behavior by analyzing wealth accumulation trends in the years preceding parental

death.

To deal with the third challenge and show that parental death alone does not

affect the wealth accumulation strategies of heirs, we replicate our analysis on a

sample of heirs whose parents died with little or no wealth to leave as a bequest.

This placebo analysis reinforces the validity of our identification strategy: If our

strategy cleanly identifies the effect of inheritances, then the placebo should have

zero effect on wealth accumulation patterns in the medium and long run.
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Figure 1 illustrates our identification strategy. In the left panel of the figure we

compare the evolution of average net worth (normalized by permanent income) of

individuals inheriting more than one year of permanent income in 2000 and 2006,

respectively. In this example, individuals inheriting in 2000 represent the treated

group. Individuals inheriting in 2006 act as a natural control group through 2005.

Both groups inherit because of a sudden parental death. The right panel of Figure

1 shows the difference between the two groups, effectively identifying the effect of

receiving an inheritance in 2000 on wealth accumulation between 2000 and 2005.

The difference-in-differences (DiD) approach of Figure 1 works by eliminating

confounding year and group (or individual) fixed effects. However, this approach ex-

ploits a limited subset of the information available in the data. Observations after

2005 are not used, and the data contains more combinations across years of inheri-

tance than that in Figure 1. To fully exploit the available information while main-

taining the identification of Figure 1, we describe the wealth holdings y at year t of

an individual i inheriting at time τi as

yi,t = γ<−51 [t− τi < −5]+

−2∑

n=−5
γpren 1 [t− τi = n]+

9∑

n=0

γpostn 1 [t− τi = n]+Λi,t+Ψi+εi,t,

(1)

where Ψi and Λi,t are respectively individual and year-by-cohort fixed effects. The

reference category for the set of coefficients γpren and γpostn , which estimate the effect

of inheritance n years before and after parental death respectively, is one year before

parental death, or n = −1. In all estimations we allow for arbitrary autocorrelation

of errors εi,t within individuals.

Our approach can be viewed as an event study with separately identifiable year(-

by-cohort) fixed effects. However, while this approach maintains the identification

argument and the assumptions (crucially, that of common trends) of a standard

DiD, it has two advantages over the DiD approach. First, for a given comparison

of inheritance-year groups, we exploit the ordered structure of dynamic effects to

identify the effect of inheritance beyond the point in time at which the control group

receives its inheritance.6 Second, we can include all available data in the same esti-
6Intuitively, in Figure 1, this approach means decomposing the difference between groups in, e.g.,

2008 as the sum of γpost8 for the treated group and γpost2 for the control group. If the sequence of γpostn

is the same for heirs inheriting in different years and if γpost2 is identified by the group comparison in
2002, then γpost8 can also be identified.
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mation, thereby exploiting more combinations across time of inheritance τi.7

Our approach has two related consequences. First, effects for small n are iden-

tified by more combinations over τi than effects for high n. Our estimates are thus

more precise as n approaches zero. Therefore, we focus on the first 10 years after

parental death and exclude all observations for which n > 9, as after this period the

estimation is too imprecise for a meaningful interpretation of the results. Second,

the control group varies at each n. We show that the varying control group over

n does not drive our result both by performing a placebo estimation for individu-

als inheriting small or zero wealth, and by replicating our results while enforcing

a (balanced) fixed control group over n (thus replicating the identification of Fadlon

and Nielsen, 2015). While more imprecisely estimated, the results obtained follow-

ing this second approach are virtually identical to those resulting from estimating

equation (1) on the same sample. This second robustness check appears in Table 8

in Appendix A.

3 The causal effect of inheritance

This section reports the causal effect of inheritance on long-run saving dynamics,

and demonstrate the robustness of our results to alternative explanations. We pro-

ceed in three steps. First, we present our main empirical results, obtained on the

sample of heirs for whom our measure of potential inheritance is larger than a year

of their permanent income. Second, we test the validity of our identification strategy

and exclude that parental death alone drives our results by performing a placebo

test. Third, we exclude that confounding factors such as endogenous labor supply

responses or committed expenditures drive our results.

Figure 2 presents the main empirical results of the paper. The scales of all verti-

cal axes refer to years of permanent income.8 The top left panel of Figure 2 shows the

effect of inheritance on net worth up to ten years after parental death. Heirs deplete

most of the initial burst of wealth obtained through inheritance within six years of

parental death, and continue a gradual convergence towards the path established

before parental death throughout our estimation period.
7A step-by-step dissection of our identification strategy, and on how it nests the approach of Fadlon

and Nielsen (2015), appears in Online Appendix C.
8We show in Table 2 that the normalization with permanent income is not important for our results

but simplifies the interpretation.
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Figure 2: The effect of inheritance on wealth accumulation

NOTE.The left panels of the figure show the estimated effects and 95 percent confidence intervals of large
unexpected inheritances on the accumulation of net worth and liquid assets respectively. The top right
panel shows the estimated effects and 95 percent confidence intervals of a small inheritance on wealth
accumulation. These effects are estimated according to equation (1) both before and after parental death.
Standard errors are clustered at the individual level. The bottom right panel of the figure decomposes the
effects shown in the top left panel in the period after parental death into its main components. The scale
of all vertical axes refer to years of permanent income.
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Table 2: The effect of inheritance on wealth accumulation

Absolute values Normalized values
(thousands of Danish Kroner) (years of permanent income)

Years from shock −2 1 5 9 −2 1 5 9

Panel A: Potential inheritance larger than a year of perm. income

Net worth 1.181 188.284 126.459 70.358 -0.001 0.879 0.492 0.277
(4.305) (8.065) (18.418) (29.577) (0.018) (0.034) (0.069) (0.111)

− Liq. assets 0.960 80.823 21.212 6.012 0.005 0.389 0.069 0.005
(1.614) (3.118) (4.962) (7.828) (0.007) (0.015) (0.021) (0.033)

− Housing equity 1.896 40.775 44.694 22.554 -0.002 0.184 0.168 0.088
(3.886) (6.508) (15.290) (24.628) (0.017) (0.027) (0.061) (0.096)

− Fin. investments -1.071 59.363 57.147 49.784 -0.004 0.265 0.227 0.182
(1.294) (3.270) (5.866) (9.809) (0.005) (0.014) (0.021) (0.033)

− Unc. debts 0.603 -7.322 -3.405 7.991 0.000 -0.040 -0.028 -0.002
(1.681) (2.587) (5.670) (9.738) (0.008) (0.014) (0.030) (0.047)

Panel B: Potential inheritance smaller than a month of perm. income (placebo)

Net worth -1.204 6.577 -4.812 -10.757 -0.005 0.035 -0.014 -0.033
(2.557) (3.682) (9.280) (14.990) (0.011) (0.016) (0.037) (0.061)

− Liq. assets 1.096 4.361 -0.346 -3.263 0.007 0.022 -0.004 -0.007
(0.892) (1.323) (3.204) (4.973) (0.004) (0.006) (0.011) (0.018)

− Housing equity -0.132 -2.360 -11.742 -19.560 -0.004 0.001 -0.019 -0.037
(2.432) (3.457) (8.186) (13.279) (0.010) (0.014) (0.032) (0.052)

− Fin. investments -0.493 1.831 0.952 0.620 -0.000 0.010 0.009 0.007
(0.435) (0.652) (1.391) (2.208) (0.002) (0.003) (0.006) (0.009)

− Unc. debts 1.675 -2.744 -6.324 -11.446 0.008 -0.001 -0.001 -0.004
(1.466) (2.060) (5.530) (8.989) (0.006) (0.009) (0.021) (0.034)

NOTE.The table shows the effect of inheritance on different wealth components two years before and one,
five, and nine years after parental death. The full set of coefficients appears in Online Appendix G. The
coefficients are estimated according to equation (1). The coefficients in the top panel are estimated on a
sample of heirs receiving unexpected inheritances larger than one year of the heir’s permanent income;
those in the bottom panel, on a sample of heirs receiving unexpected inheritances smaller than a month
of permanent income. The specification includes individual and year-by-cohort fixed effects. Standard
errors, clustered at the individual level, are shown in parentheses.

We separately analyze the convergence pattern of liquid assets held in checking

and saving accounts. The bottom left panel of Figure 2 shows that the effect of in-

heritance on liquid assets disappears within seven years of parental death. These

assets are either consumed or invested in other types of assets, and explain the ma-

jority of the convergence of total net worth. The bottom right panel of the figure,

which decomposes the effect of inheritance on total net worth, shows that changes

in housing equity and financial investments (stocks, bonds, and mutual funds) due

to inheritance instead persist over time, suggesting that these vehicles are the pre-

ferred ones for channeling and investing long-term life-cycle savings.

The top panel of Table 2 expands the results in Figure 2 for all wealth compo-
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Table 3: Dynamics of housing equity components

Years from shock −2 1 5 9

Housing equity -0.002 0.184 0.168 0.088
(0.017) (0.027) (0.061) (0.096)

− Housing value -0.018 0.318 0.347 0.387
(0.022) (0.039) (0.090) (0.144)

− Home owner 0.004 0.052 0.050 0.050
(0.004) (0.006) (0.015) (0.024)

− Owner of 2+ units 0.002 0.042 0.038 0.028
(0.002) (0.004) (0.008) (0.013)

−Mortgage -0.016 0.133 0.179 0.300
(0.016) (0.028) (0.066) (0.106)

NOTE.The table shows the effect of inheritance on several outcomes measured two years before and one,
five and nine years after parental death. The full set of coefficients appears in Online Appendix G. The
coefficients are estimated according to equation (1) on a sample of unexpected inheritances larger than
one year of the heir’s permanent income. The specification includes individual and year-by-cohort fixed
effects. Standard errors, clustered at the individual level, are shown in parentheses.

nents. The table shows four γ̂n ≡ (γpren , γpostn ) coefficients (from equation 1) describ-

ing, respectively, eventual anticipatory behavior one year before parental death, the

burst of wealth due to inheritance one year after parental death, and the evolution of

wealth components in the medium run (five years after parental death) and the long

run (nine years after parental death).9 Because inheritance is not always received

in the same year of parental death, the effect of inheritance on accumulated wealth

one year after parental death provides a reference for interpreting the start of the

convergence process.

The left part of the table shows the effect of inheritance on nominal wealth in

thousands DKK. The right part of the table shows the effect of inheritance on wealth

normalized by permanent income. The convergence pattern is the same in both sets

of results, demonstrating that these results do not depend on the permanent income

normalization.

The effect of inheritance on the accumulation of housing equity is not as straight-

forwardly interpretable. By separately analyzing the components of housing equity,

Table 3 provides the necessary details to describe this convergence process. The ta-

ble shows that although total housing value increases over time following parental

death, mortgages increase more than proportionally. The response at the extensive

margins provides the key mechanism: While the proportion of individuals owning
9The full list of coefficients for all regressions appears in Online Appendix G.
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any real estate increases by 5 percent after inheritance and remains stable in the

following years, the number of people owning more than one real estate unit de-

creases over time after the initial jump due to inheritance. These patterns suggest

that heirs sell excess housing units not only to finance consumption but also to up-

grade their main estate and climb the property ladder, maxing out their mortgage

debt in the process.

We demonstrate that invalid identification or parental death alone do not affect

wealth holdings in the bottom panel of Table 2. Here we replicate the analysis on

a sample of individuals receiving little or no inheritance. We show that a parental

death associated with an inheritance worth less than a month of permanent income

does not affect trends of wealth accumulation, and has only a negligible impact on

assets held one year after parental death. We estimate that heirs receiving such

small inheritances accumulate an excess worth of 3.5 percent of yearly permanent

income one year after parental death, depleting it within a year.

Similarly, Table 4 shows that other changes in inflows and outflows of individual

resources as a response to inheritance are unable to explain our results. Holtz-

Eakin, Joulfaian and Rosen (1993) show that large inheritances can lead to lower

labor market participation, and Cesarini et al. (2017) and Imbens, Rubin and Sacer-

dote (2001) show that lottery winnings decrease labor supply, reducing the inflow of

resources to the household. We find no evidence of inheritance reducing yearly dis-

posable income after tax and transfers, and only a small short-term effect of inher-

itance on gross yearly salary (gross earnings minus income from self-employment,

bonuses and professional fees). This short-run effect is comparable in magnitude

with that estimated by Cesarini et al. (2017) on a sample of Swedish lottery win-

ners, but disappears after two years from parental death.

Finally, Table 4 shows that endogenous household formation or sudden increased

contributions to pension funds do not explain the convergence patterns shown in

Table 2. Marriage rates and fertility remain stable around parental death and net

worth is not transferred to spouses. Moreover, while we cannot directly observe

wealth held in pension funds, Panel 3 of Table 2 show that contribution flows to

individually managed pension funds increase on average of only 0.8 percent of per-

manent income one year after parental death and fade out quickly thereafter, for a

cumulative impact of 2.5 percent of permanent income in five years.
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Table 4: Other budget incomings and outgoings

Years from shock −2 1 5 9

Panel A: Income and labor supply (1000DKK)

Net disposable income 0.060 2.115 8.522 8.096
(0.751) (1.114) (4.097) (4.147)

Gross earnings 2.265 -2.974 1.297 7.086
(1.521) (2.038) (5.370) (8.860)

Gross salary 2.399 -3.878 -1.291 0.930
(1.438) (1.946) (5.221) (8.521)

Panel B: Pension contributions (fraction of perm. income)

Employment scheme 0.000 -0.002 -0.003 -0.004
(0.001) (0.001) (0.003) (0.005)

Personal funds -0.001 0.008 0.001 -0.000
(0.001) (0.002) (0.002) (0.003)

Panel C: Household composition

Married -0.000 0.009 0.003 0.002
(0.004) (0.006) (0.015) (0.025)

# children 0.035 0.012 -0.003 0.036
(0.035) (0.027) (0.052) (0.094)

Spouse net wortha -0.028 0.092 -0.061 -0.097
(0.074) (0.065) (0.148) (0.263)

Household net worthb -0.029 0.756 0.472 0.341
(0.043) (0.045) (0.106) (0.185)

NOTE.The table shows the effect of inheritance on several outcomes measured two years before and one,
five and nine years after parental death. The full set of coefficients appears in Online Appendix G. The
coefficients are estimated according to equation (1) on a sample of unexpected inheritances larger than
one year of the heir’s permanent income. The specification includes individual and year-by-cohort fixed
effects. Standard errors, clustered at the individual level, are shown in parentheses.

aThese results are estimated on a sample restricted to individuals that are either married or in a
registered partnership.

bThese results are estimated on the unrestricted sample (i.e., singles are included), but only for the
years for which the household composition is identical with that observed the year before parental death.
Household net worth is normalized by household permanent income.

Overall, labor supply and committed expenditures do not explain the long-run

convergence dynamics of wealth after large financial shocks. These causally es-

timated patterns represent a novel empirical moment that life-cycle consumption

models should be able to replicate. Qualitatively, the observed patterns of wealth

convergence are consistent with convergence to a buffer-stock target. In the remain-

der of the paper we show that, quantitatively, standard parametrizations of life-cycle

models imply too little convergence with respect to what we observe empirically.
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4 A general consumption-saving framework

This section describes the modeling framework we use to draw insights from the

long-run dynamics of saving estimated in the previous section. Our starting point is

the single-asset buffer-stock consumption model of Deaton (1991, 1992) and Carroll

(1992, 1997, 2012), with a flexible retirement value function similar to Gourinchas

and Parker (2002). To account for inheritance expectations, we augment the stan-

dard model with an exogenous process for receiving inheritance. We assume that the

agents are fully aware of this process and thus have rational expectations. We fur-

ther generalize this model by considering both heterogeneity in the discount factor10

and a two-asset version of the model distinguishing between liquid and illiquid as-

sets as in Kaplan and Violante (2014) and Kaplan, Moll and Violante (2018). These

two extensions strengthen the baseline model’s ability to match short-run saving dy-

namics (i.e., the marginal propensity to consume). They further allow us to fit the

distribution of wealth over the life-cycle, and to investigate heterogeneous saving

dynamics across asset types.

4.1 The model

The economy is populated by a continuum of individuals indexed by i and working

for TR periods, t ∈ {1, 2, . . . , TR}. All individuals have Epstein-Zin preferences with

1/σ as the elasticity of intertemporal substitution and ρ as the relative risk aversion

coefficient. The discount factor is denoted βi. We assume that the discount factor

is uniformly distributed with [β − ∆, β + ∆], where ∆ = 0 is the baseline case of

homogeneous preferences.

Individuals can always save in and borrow from a liquid asset, At. Saving in

the liquid asset provides a risk-free gross return of R, and borrowing from it costs a

gross interest rate of R− > R . The individual can borrow up to a fraction ω of his

permanent income Pt, but cannot retire with debt, such that

At ≥ −ωPt. (2)

ATR ≥ 0

10In practice, we discretize the heterogeneity into five types. Similar approaches are used by Carroll
et al. (2017) and Krueger, Mitman and Perri (2016).
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In the two-asset versions of the model, the individual can additionally save in, but

not borrow from, an illiquid asset Bt providing a risk-free gross return of RB > R.

To transact in the illiquid asset, the individual must pay a fixed adjustment cost of

λ ≥ 0.

Labor earnings are given by a standard permanent-transitory income process

Yt = Ptξt (3)

Pt = Gt−1Pt−1ψt (4)

where

logψt ∼ N (−0.5α2σ2
ψ, α

2σ2
ψ)

log ξt ∼ N (−0.5α2σ2
ξ , α

2σ2
ξ ),

and Gt−1 is the common deterministic age-specific growth factor of income. The

parameter α scales the volatility of the permanent and transitory income shocks,

and thus allow us to parsimoniously vary the strength of the precautionary saving

motive by amplifying income risk. Similarly, we introduce the parameter α̃, which

scales the agent’s belief regarding the volatility of the permanent and transitory

income shocks.

To account for inheritance expectations, consistently with the assumptions of our

empirical analysis we assume that the agents know the size of the inheritance they

will receive but are uncertain about its timing . Let dt ∈ {0, 1} denote whether

or not the individual’s parent has died: If dt = 0, the last parent is still alive in

the beginning of period t. We denote the age-dependent chance of receiving the age-

dependent inheritance Ht at the end of the period t by πt, and model the parental age

at death as a normal distribution with mean µH and standard deviation σH . Given

the age difference between child and the parent δH , this distribution determines the

life-cycle profile of the probability of receiving inheritance. The beginning-of-period

levels of cash-on-hand and illiquid wealth are thus given by

Mt+1 = R(At)At + Yt+1 +Ht1dt=01dt+1=1 (5)

Nt+1 = RBBt. (6)
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To model the motive to save for retirement and bequests flexibly we use the an-

alytical solution to a frictionless perfect foresight problem to compute the consump-

tion and value functions in the terminal period TR. Specifically, we assume that

agents live in retirement from period TR to T with pension benefits as a fraction, κ,

of their permanent income at retirement, PTR , and that their utility function in re-

tirement is scaled by the taste shifter ζ ≥ 0. The parameter ζ controls the strength

of the retirement saving motive. For ζ = 0, there is thus no retirement saving or

bequest motive, while for ζ = 1, the only motive is consumption smoothing in re-

tirement. Values of ζ > 1 represents additional saving motives due to, e.g., bequest

or non-modeled uncertainty. Details on the consumption and value functions in the

terminal period appear in Appendix B.

4.2 Recursive formulation

Defining the post-decision value function

Wt ≡




Et[Vt+1 (•)] if ρ = σ

Et[Vt+1 (•)1−ρ] 1
1−ρ else

. (7)
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the recursive formulation of the model is

Vt(Mt, Nt, Pt, dt) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiWt

1−σ]
1

1−σ else
(8)

s.t.

At = Mt − Ct + (Nt −Bt)− 1Bt 6=Ntλ

Mt+1 = R(At)At + Yt+1 +Ht1dt=01dt+1=1

Yt = ξt+1Pt, log ξt+1 ∼ N (−0.5α̃2α2σ2
ξ , α̃

2α2σ2
ξ )

Pt = Gt−1Pt−1ψt, logψt+1 ∼ N (−0.5α̃2α2σ2
ψ, α̃

2α2σ2
ψ)

Nt+1 = RBBt

Pr[dt+1 = 1] =





1 if dt = 1

πt else

Bt ≥ 0

At ≥ −ωPt

ATR ≥ 0.

We solve the single-asset buffer-stock model by using the endogenous grid method

originally presented in Carroll (2006). We solve the two-asset buffer-stock model

by using an extended endogenous grid method proposed in Druedahl (2018), which

builds on extensions of the endogenous grid method to non-convex (Fella, 2014;

Iskhakov et al., 2017) and multi-dimensional (Druedahl and Jørgensen, 2017) mod-

els. Online Appendix E provides details on these methods.

4.3 Calibration

We calibrate the model in two steps. In the first step we externally fix all parameters

except for the preference parameters (β, ρ, σ, ζ,∆) and the scaling parameters α and

α̃, which we internally calibrate in a second step (see Section 5). The fixed and

externally calibrated parameters appear in Table 5. The fits of the exogenous income

and inheritance processes appear in Online Appendix D.

Individuals enter the model at age 25, work until age 60 (TR = 35), and die at age

85 (T = 60). The average earnings profile during working life (regulated by Gt) is

19



Table 5: Fixed and externally calibrated parameters

Parameter Description Value Target / source

T Life span after age 25 60

TR Working years 35

Gt Growth factor of income see text Externally calibrated
σψ Std. of permanent shock 0.120 Externally calibrated
σξ Std. of transitory shock 0.087 Externally calibrated
κ Retirement replacement rate 0.90 Jørgensen (2017)
ω Borrowing constraint, working 0.25 Standard choice
δH Age difference 30 Externally calibrated
µH Mean death age of parent. 77 Externally calibrated
σH Std. of death age of parent. 9 Externally calibrated
h45 Inheritance size 0.93 Externally calibrated
η Growth factor of inheritance 1.00 Externally calibrated

Single-asset buffer-stock model
R Return of liquid assets, saving 1.020 Kaplan, Moll and Violante (2018)
R− Return of liquid assets, borrowing 1.078 Kaplan, Moll and Violante (2018)

Two-asset model
R Return of liquid assets, saving 1.020 Kaplan, Moll and Violante (2018)
R− Return of liquid assets, borrowing 1.078 Kaplan, Moll and Violante (2018)
RB Return of illiquid assets 1.057 Kaplan, Moll and Violante (2018)
λ Fixed adjustment cost 0.02 · E[Pt] Kaplan and Violante (2014)

NOTE.The table shows the externally calibrated parameters that we fix for all our model iterations. In
the fourth column we report the source of these parameters.

chosen to match the profile in our data. Using the method in Meghir and Pistaferri

(2004), we estimate the standard deviation of the permanent shocks to be σψ = 0.120,

and the standard deviations of the transitory shocks to be σξ = 0.087. Following

Jørgensen (2017), we set the retirement replacement rate equal to κ = 0.90.

We use the same interest rates and borrowing constraints as in Kaplan, Moll and

Violante (2018). The individuals can borrow up to a fraction ω = 0.25 of their annual

permanent income, and the fixed cost for illiquid asset adjustment λ is 2 percent of

average yearly income.

We choose the parameters regulating the timing of inheritance by matching the

life-cycle profile of inheritance receipts. This calibration gives us δH = 30 as the

age difference between child and parent, and µH = 71 and σH = 8 as the mean and
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standard deviation of death age of the parent. For the size of the inheritance we

assume that Ht = η(25+t)−45 · h45, where we choose h45 = 0.93 to match the average

inheritance at age 45 relative to permanent income, and η = 1.00 to match the life-

cycle profile of inheritances.

To calibrate the initial states, we model the initial distribution of permanent

income as a log-normal distribution, whose variance matches that observed in the

data. The correlation between income and wealth is very weak at early ages. We

thus match the initial wealth holdings we observe in the data at age 25 by assigning

zero wealth to 70 percent of all agents, and some (illiquid) assets to the remaining

30 percent independently of income. We model the initial distribution of assets for

these 30 percent as a log-normal distribution, whose variance matches that in the

data.

5 Implications for consumption-saving behavior

In this section we interpret our causal evidence on long-run saving dynamics after

inheritance through the lens of the consumption-saving framework presented in Sec-

tion 4. We investigate under which conditions consumption-saving models can repli-

cate the patterns observed in the data, and quantify the implications of matching

the long-run saving dynamics for the amount of precautionary savings held through

the life-cycle.

We proceed in three steps. We begin by showing that, in line with the previous

literature (Cagetti, 2003), a range of different parametrizations can equally repli-

cate the observed life-cycle profile of wealth. Specifically, a calibrated simultaneous

increase in impatience, risk aversion, and the strength of the retirement saving and

bequest motives leaves the life-cycle profile of wealth unchanged. Although stronger

impatience reduces overall wealth accumulation, higher risk aversion induces more

saving early in life, and stronger retirement saving and bequest motives induce more

saving late in life.

However, the implied long-run saving dynamics differ sharply across these dif-

ferent parametrizations. In our second step, we show that specifications with high

impatience, a strong precautionary saving motive, and strong retirement saving and

bequest motives imply much faster convergence of wealth to the path established
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Table 6: Replicating long-run saving dynamics
Parameters Fits

β ρ σ ζ α̃ α LCP LRD MPC

Panel A: Targeting Life-Cycle Profile (LCP) only

Fixed risk aversion (ρ) 0.969† 1.50 0.67 1.15† 1.00 1.00 0.006‡ 0.424 0.05

0.964† 2.00 0.67 1.22† 1.00 1.00 0.006‡ 0.322 0.06

0.948† 4.00 0.67 1.44† 1.00 1.00 0.006‡ 0.104 0.08

0.936† 6.00 0.67 1.58† 1.00 1.00 0.008‡ 0.038 0.11

Panel B: Targeting both Life-Cycle Profile (LCP)
and Long-Run Dynamics (LRD)

Free risk aversion (ρ) 0.935† 6.17† 0.67 1.59† 1.00 1.00 0.008‡ 0.034‡ 0.11

Free perceived risk (α̃) 0.935† 4.00 0.67 1.61† 1.25† 1.00† 0.009‡ 0.030‡ 0.11

Free risk (α) 0.939† 4.00 0.67 1.53† 1.00 1.21† 0.008‡ 0.031‡ 0.11

NOTE.The table shows preference and scaling parameters, fit measures and the implied marginal propen-
sity to consume for alternative parametrizations of the buffer-stock model from Section 4. The remaining
model parameters are shown in Table 5. β is the discount factor. ρ is the relative risk aversion coefficient.
1/σ is the intertemporal elasticity of substitution. ζ controls the strength of the retirement saving and
bequest motives. α̃ scales perceived income risk. α scales actual income risk. The marginal propensity to
consume (MPC) is the median for agents between age 30 and 59. The fit of the Life-Cyle Profile of median
wealth (LCP) is the mean squared difference between the profile implied by the model and that in the
data from age 30 to age 59. The fit of the Long-Run Dynamics (LRD) is the weighed mean squared dif-
ference between our empirical estimates from Section 3 and estimates on simulated data from the model
with the same sample selection on age.

† internally calibrated parameter. ‡ targeted moment.

before the shock. Whether the strength of the precautionary saving motive is due to

risk aversion, income risk, or perceived income risk does not affect our results.

Finally, we quantify through a structural decomposition the share of wealth held

for precautionary motives over the life-cycle. This wealth represents the buffer to

which households wish to have access in order to smooth income shocks over their

life-cycle. We show that this buffer is much larger in specifications matching not only

the life-cycle profile of wealth, but also the observed long-run saving dynamics. We

argue that this result has direct implications for counter-factual policy evaluations.

Table 6 collects our main results. The top panel of the table shows that differ-

ent combinations of preference parameters deliver very similar life-cycle profiles of

wealth. In each row, we set an intertemporal elasticity (1/σ) of 1.5 and a relative

risk aversion coefficient (ρ) of either 1.5, 2, 4 or 6. For each of these choices, we in-
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ternally calibrate the discount factor (β) and the strength of the retirement saving

and bequest motives (through the utility shifter ζ) to replicate the life-cycle profile

of median wealth.11

The seventh column (LCP) of the table—which reports the mean squared dif-

ference between the life-cycle profile of wealth implied by the model and that in the

data—shows that each of these models can equally well replicate the life-cycle profile

of wealth. The top-left plot of Figure 3 shows this result graphically.

However, these alternative parametrizations imply sharply different long-run

saving dynamics. These differences are evident both graphically in the top-right

panel of Figure 3, and in the eighth column (LRD) of Table 6—which reports the

weighed mean squared difference between our empirical estimates and estimates

on simulated data from the model. For the standard choice of a relative risk aver-

sion coefficient of 2 (Carroll, 1997; Aaronson, Agarwal and French, 2012; Berger and

Vavra, 2015), the model implies that the amount of the initial shock left after un-

der a decade is twice as large as what we estimate empirically. However, the gap

between the empirical and the simulated dynamics decreases in the high risk aver-

sion specifications, for which the calibrated discount factor is lower and the motive

to save for retirement and bequests is stronger.12

These results show that the long-run saving dynamics provide orthogonal infor-

mation relative to the life-cycle profile. In other words, by evaluating a model by its

ability to replicate not only the life-cycle wealth profile, but also the empirical long-

run saving dynamics, we are able to exclude a large set of potential parametrizations.

In the first row of Panel B of Table 6 we explicitly exploit this additional information,

and also calibrate the relative risk aversion coefficient by simultaneously targeting

the life-cycle profile of wealth and the long-run saving dynamics. The resulting risk

aversion coefficient of 6.17 is higher than the standard value of 2, but within the

range of usual choices (e.g., Favilukis, Ludvigson and Van Nieuwerburgh, 2017, use

a risk aversion coefficient equal to 8). Similarly, the discount factor β decreases with
11In Online Appendix Table D.1, we show that our results are not sensitive to our choice of the in-

tertemporal elasticity of substitution (1/σ).
12All specifications appearing in Table 6 have Epstein-Zin preferences. Under the more restrictive as-

sumption of CRRA preferences, where the intertemporal elasticity of substitution is equal to the inverse
of the relative risk aversion coefficient (σ = ρ), increasing aversion still improves the model fit of the
long-run saving dynamics for a constant fit of the life-cycle profile of wealth. However, the improvement
in the fit of the long-run saving dynamics is smaller, and the required decrease in the discount factor is
larger. These results appear in Online Appendix Table D.2.
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(b) Targeting both the Life-Cycle Profile (LCP) and the Long-Run Dynamics (LRD)

Figure 3: Replicating long-run saving dynamics

NOTE.The figure compares the empirical and simulated life-cycle profiles of median net worth (left) and
long-run saving dynamics after inheritance (right) for the parametrizations of the buffer-stock model in
Table 6.

respect to the standard case, but its value (0.94) is within the range of reasonable

parameter values.

Adjusting risk aversion is however not necessary for replicating the empirical

long-run saving dynamics. Amplifying the precautionary saving motive through al-

ternative channels equivalently allows the model to simultaneously replicate the

life-cycle profile of wealth and the long-run saving dynamics. We prove this result

by fixing the degree of risk aversion, and instead calibrate the standard deviations

of shocks in the income process (via the scaling parameter α) or the agent’s beliefs

about these standard deviations (via the scaling parameter α̃). For ρ equal to 4, we
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Figure 4: Structural decomposition of wealth held for precautionary (left) and life-
cycle motives (right)

NOTE.Using the models calibrated in Table 6, we calculate savings accumulated exclusively for precau-
tionary motives by simulating a counterfactual wealth profile under the assumption of no motive to save
for retirement or bequests (ζ = 0). This counterfactual simulation isolates wealth held solely for precau-
tionary purposes. We label the residual accumulated wealth as life-cycle savings.

show that a 25 percent increase in the standard deviation of income shocks, or a 21

percent perceived increase in these standard deviations, is sufficient to replicate the

convergence we observe in the data holding the fit of the life-cycle profile of wealth

constant.13

Although increasing risk aversion, income risk, or beliefs about income risk all

represent amplifications of the precautionary saving motive, translating these dif-

ferent structural parameters into a quantifiable and clearly interpretable statistic

is less immediate. We therefore follow Gourinchas and Parker (2002) and calcu-

late the average amount of wealth held solely for precautionary purposes for the

parametrizations presented in Table 6. Using the calibrated model parameters, we

simulate counterfactual life-cycle wealth profiles assuming households have no mo-

tive to save for retirement or bequests (ζ = 0). These households save solely to

smooth income fluctuations throughout their life-cycle, and therefore the wealth they

accumulate over the life-cycle represent their precautionary savings. We label the

residual wealth as life-cycle savings.

Figure 4 shows that, with respect to the standard case, models able to fit both
13While in the interest of space we only report in Table 6 calibrations for ρ = 4, we replicate these

results for different choices of risk aversion. Naturally, the required scaling parameters are decreasing
in the choice of risk aversion. These results appear in Online Appendix Table D.3.
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the life-cycle profile of wealth and the long-run saving dynamics imply substantially

higher precautionary savings (between 50 percent and 25 percent higher in the ages

between 35 and 55). The amount of precautionary savings implied by the model does

not depend on the choice of internally calibrated parameters, but only on whether the

model is capable of replicating the empirically observed long-run saving dynamics.

Moreover, because wealth levels are constant across models, agents matching our

empirical sets of moments do not begin accumulating wealth for retirement purposes

until after age 40. This behavior is consistent with recent evidence that households

approaching retirement age make more active decisions when managing their hold-

ings (Agarwal et al., 2009), and that tax incentives aimed at increasing retirement

savings have small or no effects on young savers (Chetty et al., 2014).

Overall, our results make the general point that, in order to replicate empirical

regularities, consumption-saving models need to incorporate a stronger than usual

precautionary saving motive. This finding is consistent with the recent evidence that

generalizations of the permanent-transitory income process, e.g. with non-linear dy-

namics and non-Gaussian income shocks, can triple the welfare costs of income risk

(Guvenen et al., 2016). In our framework, scaling perceived income risk approxi-

mates the implications of introducing an income process with higher order income

risk. Incorporating financial or expense risk into the model represent alternative

channels to affect the strength of the precautionary saving motive.

The relative strength of various saving motives has direct implications for counter-

factual policy evaluations. On one hand, a strong precautionary saving motive in-

dicates high welfare costs of imperfections in asset markets, which limit the ability

of the agents to smooth income shocks. On the other hand, a strong precautionary

saving motive also implies large welfare benefits from social insurance programs.

5.1 Extensions to the buffer-stock model

We have shown that the long-run saving dynamics we estimate in our data identify

buffer-stock models with a strong precautionary saving motive. In this subsection,

we show that the same conclusion generalizes to common extensions of the stan-

dard buffer-stock model, such as a two-asset model and a model with preference het-

erogeneity. These extensions allow us to capture more complex empirical features,

such as the increase in the interquartile range of wealth over the life-cycle, and
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the high marginal propensity to consume documented, among others, by (Shapiro

and Slemrod, 2003), Johnson, Parker and Souleles (2006) and Parker et al. (2013).

Nonetheless, we find that for both extensions a stronger than usual precautionary

saving motive is necessary to simultaneously replicate the observed life-cycle profile

of wealth and long-run saving dynamics.

Table 7 replicates the results of Table 6 for a buffer-stock model with heterogene-

ity in the discount factor (Krueger, Mitman and Perri, 2016; Carroll et al., 2017)

and a two-asset model à la Kaplan and Violante (2014). With respect to Table 6,

we additionally evaluate the performance of these models in replicating the increase

in the interquartile range of wealth over the life-cycle and, in the two-asset model,

the empirical long-run saving dynamics of net liquid worth. For completeness, in

the top panel of the table we report the same measures for the buffer-stock model

specifications presented in Table 6.

Panel B shows that introducing heterogeneous impatience slightly improves the

ability of the model to replicate the empirical long-run dynamics of savings. How-

ever, consistently with the results of Table 6, the model with heterogeneous patience

fails to replicate the empirical long-run saving dynamics with a standard risk aver-

sion parameter of 2. Moreover, the fit of the long-run dynamics improves as the

degree of risk aversion increases, holding constant the fit of the life-cycle wealth

profile. By simultaneously targeting the life-cycle profile of wealth, the increase in

the interquartile range of wealth, and the long-run saving dynamics, we calibrate a

relative risk aversion coefficient of 6.82, in line with our results for the buffer-stock

model with homogeneous preferences.

In the third panel of the table, we extend the model with an illiquid asset (Kaplan

and Violante, 2014). This extension enables the model to produce a high marginal

propensity to consume (MPC), and thus replicate the short-run dynamics documented

in the empirical literature. However, for the same degree of risk aversion, the two-

asset model is less capable of replicating the observed long-run saving dynamics

compared to the single-asset model, which implies a much smaller MPC. This dif-

ference stresses the qualitative difference between short- and long-run dynamics in

consumption-saving models. Moreover, our main results apply also to the two-asset

model: As the precautionary saving motive increases, the fit of long-run saving dy-

namics improves. Simultaneously targeting the life-cycle profile of wealth and the
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Table 7: Extensions: Preference heterogeneity and two-asset model
Parameters LCP LRD

Targeting β ρ σ ζ Median IQR
Net

worth
Liquid
worth MPC

Panel A: Buffer-stock model

LCP only 0.969† 1.50 0.67 1.15† 0.006‡ 0.194 0.424 - 0.05

LCP only 0.964† 2.00 0.67 1.22† 0.006‡ 0.198 0.322 - 0.06

LCP only 0.948† 4.00 0.67 1.44† 0.006‡ 0.184 0.104 - 0.08

LCP only 0.936† 6.00 0.67 1.58† 0.008‡ 0.159 0.038 - 0.11

LCP & LRD 0.935† 6.17† 0.67 1.59† 0.008‡ 0.160 0.034‡ - 0.11

Panel B: Buffer-stock model with preference heterogeneity

LCP only [0.960;0.977] 1.50 0.67 1.16† 0.007‡ 0.009‡ 0.302 - 0.05

LCP only [0.955;0.973] 2.00 0.67 1.22† 0.006‡ 0.009‡ 0.251 - 0.06

LCP only [0.937;0.963] 4.00 0.67 1.40† 0.008‡ 0.011‡ 0.134 - 0.08

LCP only [0.923;0.953] 6.00 0.67 1.54† 0.008‡ 0.010‡ 0.068 - 0.10

LCP & LRD [0.915;0.952] 6.82† 0.67 1.63† 0.010‡ 0.015‡ 0.049‡ - 0.11

Panel C: Two-asset model

LCP only 0.941† 1.50 0.67 1.00† 0.005‡ 0.146 1.056 0.128 0.36

LCP only 0.937† 2.00 0.67 1.05† 0.005‡ 0.155 0.862 0.109 0.37

LCP only 0.922† 4.00 0.67 1.23† 0.005‡ 0.164 0.315 0.043 0.37

LCP only 0.911† 6.00 0.67 1.35† 0.005‡ 0.149 0.136 0.015 0.37

LCP & LRD 0.901† 8.57† 0.67 1.47† 0.007‡ 0.125 0.093‡ 0.007 0.36

NOTE.The table shows preference and scaling parameters, fit measures and the implied marginal propen-
sity to consume for alternative parametrizations of the buffer-stock model from Section 4. The remaining
model parameters are shown in Table 5. β is the discount factor. ρ is the relative risk aversion coefficient.
1/σ is the intertemporal elasticity of substitution. ζ controls the strength of the retirement saving and
bequest motives. α̃ scales perceived income risk. α scales actual income risk. The marginal propensity to
consume (MPC) is the median for agents between age 30 and 59. The fit of the Life-Cyle Profile of median
wealth (LCP, median) is the mean squared difference between the profile implied by the model and that
in the data, from age 30 to age 59. The fit of the life-cycle profile of the increase in the interquartile range
of wealth (LCP, IQR) is also computed from age 30 to 59. The fit of the Long-Run Dynamics (LRD) of net
worth and liquid assets is the weighed mean squared difference between our empirical estimates from
Section 3 and estimates on simulated data from the model with the same sample selection on age.

† internally calibrated parameter. ‡ targeted moment.
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Figure 5: Two-asset model: Long-run saving dynamics of net worth (left) and net
liquid worth (right)

NOTE.The figure compares the empirical and simulated and long-run saving dynamics after inheritance
of total net worth (left) and liquid net worth (right) for the calibrated two-asset model in Table 7.

long-run saving dynamics, we obtain a calibrated risk aversion coefficient of 8.57.

Remarkably, such a model is also able to closely replicate the (non-targeted) em-

pirical dynamics of net liquid worth. The empirical and simulated long-run saving

dynamics for the two-asset model appear in Figure 5.

5.2 Additional robustness checks

We conduct a series of additional robustness checks by investigating the implica-

tions of changing each of the externally calibrated parameters in Table 5. These

robustness checks appear in Online Appendix Table D.4. We find that changing

the parameters affecting the borrowing constraint (R−,ω), or the inheritance process

(µH , σH , h45, η),14 only marginally affect the combination of impatience (β), risk aver-

sion (ρ), and retirement saving and bequest motive (ζ) necessary to simultaneously

match both the life-cycle wealth profile and the long-run saving dynamics observed

empirically. Changing the replacement rate in retirement (κ) affects the scaling of

the utility shifter for the strength of the retirement saving and bequest motives (ζ),

and changing the interest rate (R) implies an change in the opposite direction of the

discount factor (β). However, the calibrated degree of risk aversion does not change

substantially.
14Online Appendix Figure D.1 shows that assuming that inheritance is completely unexpected

slightly improves the model’s fit of the long-run saving dynamics.
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Finally, reducing the standard deviation of the permanent shocks (σψ) implies

that a higher degree of risk aversion (ρ), lower discount factor (β) and a stronger

retirement saving and bequest motive (ζ) is needed. This result is the flip-side of the

effect of increasing the standard deviation of income shocks through α, which ap-

pears in the bottom panel of Table 6. Our results are almost not affected by changing

the standard deviation of the transitory income shocks (σξ). Overall, our results are

thus very robust to changing our baseline calibration choices.

6 Conclusions

Long-run saving dynamics are a crucial component of life-cycle consumption and

saving models. This paper introduces a novel strategy—exploiting large financial

windfalls to characterize long-run dynamics of saving—for the calibration of struc-

tural consumption models, and is the first to provide quasi-experimental evidence

on these dynamics.

We combine a unique panel dataset drawn from seventeen consecutive years

of Danish administrative records with large inheritances due to sudden parental

deaths, and estimate their effect on wealth accumulation strategies in the following

years. We show that after parental death average net worth converges towards the

path established before parental death. However, these patterns differ markedly

across wealth components, with excess liquid assets being consumed or converted

in other saving vehicles within six years. Endogenous labor supply and committed

expenditures (e.g., pension savings or family growth) do not drive these results.

We analyze these results through the lens of a structural model of life-cycle con-

sumption and savings, augmented with inheritance expectations and nesting the

standard buffer-stock and two-asset models as special cases. We show that long-

run saving dynamics provide orthogonal information relative to the life-cycle profile

for the calibration of consumption-saving models: Only by allowing for impatient

agents with a stronger than usual precautionary saving motive can these models

fit both the empirical long-run dynamics of saving and life-cycle wealth levels. The

two-asset model can fit the different shock dynamics of both net worth and liquid

worth.

These novel model parametrizations carry important policy implications. First,
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in these models agents do not save exclusively for retirement until the last twenty

years of their working life. Second, as wealth held for precautionary purposes is

substantially larger than the standard case, these models imply that liquidity con-

straints and frictions in financial markets carry higher welfare costs, and that agents

place a higher value on insurance able to reduce the risk of income fluctuations.
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A Robustness of the empirical results: DiD and bal-

anced samples

Table 8: Comparison of DiD (balanced and unbalanced) and our identification strat-
egy for individuals inheriting in 1999-2001 and 2008-2010

Net worth Liquid assets

n Event study DiD
DiD,

balanced Event study DiD
DiD,

balanced

-3 0.042 0.175 0.149 0.016 0.018 0.010
(0.049) (0.093) (0.095) (0.021) (0.040) (0.040)

-2 0.015 0.104 0.074 0.015 0.012 0.007
(0.044) (0.088) (0.090) (0.019) (0.038) (0.038)

0 0.342 0.399 0.391 0.243 0.214 0.201
(0.044) (0.086) (0.090) (0.019) (0.037) (0.037)

1 0.839 0.931 0.917 0.389 0.379 0.370
(0.049) (0.088) (0.091) (0.021) (0.038) (0.038)

2 0.775 0.890 0.860 0.283 0.273 0.264
(0.054) (0.089) (0.093) (0.023) (0.038) (0.039)

3 0.644 0.794 0.794 0.162 0.166 0.163
(0.057) (0.089) (0.093) (0.025) (0.038) (0.039)

4 0.623 0.694 0.699 0.120 0.126 0.131
(0.060) (0.089) (0.093) (0.026) (0.038) (0.039)

5 0.581 0.677 0.693 0.118 0.078 0.068
(0.063) (0.089) (0.093) (0.027) (0.038) (0.039)

6 0.470 0.560 0.555 0.106 0.081 0.069
(0.065) (0.088) (0.093) (0.028) (0.038) (0.039)

7 0.408 0.491 0.476 0.088 0.066 0.055
(0.069) (0.089) (0.094) (0.030) (0.038) (0.039)

8 0.331 0.378 0.371 0.094 0.080 0.064
(0.075) (0.092) (0.096) (0.032) (0.040) (0.040)

# episodes 2508 2483 2125 2508 2483 2125

NOTE. The table compares the saving dynamics estimated on the sample of heirs inheriting between
1999 and 2001, and between 2008-2010. The first and fourth column use the identification strategy of
the paper, estimating equation (1) in the paper on the full sample. The second and fifth column use
the DiD identification strategy of Fadlon and Nielsen (2015), assigning an explicit control group to each
inheritance year (e.g., the control group for heirs inheriting in 1999 is heirs inheriting in 2008). The third
and sixth column replicate this estimation strategy on a strictly balanced sample.
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B Terminal consumption and value functions

From period TR onward the recursive problem is

V t(M t, PTR) = max
Ct




ζtC

1−σ
t /(1− σ) + βiV t+1(M t+1, PTR) if ρ = σ

((1− βi)ζtC1−σ
t + βiV t+1(M t+1, PTR)1−σ)

1
1−σ else

s.t.

At = M t − Ct

M t+1 = RAt + κPTR

ζt = 1t=TR + 1t>TRζ

ATR ≥ 0

AT ≥ 0,

where R = R in the buffer-stock model and R = Rb in the two-asset model, and

MTR = MTR +NTR +HTR1dTR=0.

The optimal consumption function then is

CTR(MTR , PTR) = min

{
MTR ,

γ1(MTR + (1 + γ0)R
−1
κPTR)

R
−1

(βiRζ)
1
σ + γ1

}

where γ0 ≡ 1−(R−1
)T−TR

1−R−1 − 1 and γ1 ≡ 1−R−1
(βiR)1/σ

1−(R−1
(βiR)1/σ)T−TR

.

The value function is

V TR(MTR , PTR) =





C1−σ
TR

1−σ + βi
ζγ−1

1 C1−σ
TR+1

1−σ if ρ = σ

((1− βi)C1−σ
TR

+ βi(γ2CTR+1)1−σ)
1

1−σ else

where γ2 ≡ ((1− β)ζγ−11 )
1

1−σ and

CTR+1 ≡





(βiRζ)
1
σCTR if CTR < MTR

γ1(1 + γ0κ)PTR else
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Abstract

This document contains (C) supplementary details on the identi�ca-

tion strategy, (D) additional �gures and tables, (E) details on the solution

algorithm, (F) information about access to administrative data and the

de�nitions of the wealth variables used in the analysis and (G) additional

robustness checks and the full list of γn coe�cients estimated in the em-

pirical section of the paper.

C Identi�cation: DiDs and event study

This appendix highlights the connection between the identi�cation strategy of

Fadlon and Nielsen (2015)�henceforth FN�and that of this paper. FN com-

pare the labor market outcomes of a given group of individuals whose spouse

experiences a health shock at time τ1 (treatment) with those of individuals

whose spouse experiences a shock at time τ2 = τ1 + ∆. The time interval be-

tween shocks ∆ is a �xed, pre-established number. FN thus explicitly assign a

placebo shock at time τ1 for individuals actually experiencing a shock at time

τ2, which are used as explicit controls, and estimate the e�ect of the shock for

∆ − 1 time periods using a di�erence-in-di�erences estimator. The crucial ad-

vantage of this strategy is to be able to separately identify and distinguish the

dynamic e�ects of a shock from spurious time and group �xed e�ects.
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Figure C.1 illustrates this identi�cation strategy for a subset of our data,

comparing the average wealth holdings of individuals inheriting in 2000 with

that of individuals inheriting in 2006 (∆ = 6 in the notation of FN). The average

wealth holdings of the two groups overlap until 2000, after which the wealth of

the group inheriting �rst increases, and then starts converging towards the path

established before inheritance over time. We can thus identify the e�ect of

inheritance for the group of heirs inheriting in 2000 for a period of six years.

Maintaining the crucial property of separately controlling for time and group

�xed e�ects, we extend this identi�cation strategy in two ways. First, we add

a minimal amount of structure to the model, allowing not only a more e�cient

extraction of information but also, under the same assumptions, the identi�ca-

tion of the e�ect of a shock beyond the time horizon of ∆. Second, as a natural

extension, by removing restrictions on ∆ we use more data points and groups

by year of inheritance in the same estimation.

We show these extensions in three steps. First, we show that the FN DiD

estimator and our estimation strategy in a restricted dataset estimate the exact

same e�ects. Second, we show how the additional structure imposed by our

strategy allows us to extract information more e�ciently from the data, and to

identify the e�ect of inheritance beyond the time range de�ned by ∆. Third,

we generalize the estimation strategy by relaxing the constraints on ∆, thus

sacri�cing some of the intuition about explicit control groups in favor of max-

imizing the extraction of information. We show that while the consequence of

this approach is to use varying control groups for the estimation of the e�ects of

inheritance as we move further from the time of parental death, selection does

not drive our results and, crucially, the convergence patterns we observe.

a Comparison with the FN DiD estimator

We begin by rewriting a simpli�ed version of the estimation equation in the

paper similar to that used by FN (pp. 14-15), noting the time of parental death

2



Figure C.1: Improving precision with individual FEs
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as τ .1 We describe the wealth holdings at year t of an individual i inheriting at

time τ as

yit = Λt + Ψτ + γn + εit (1)

where n = t − τ and E[εi,t] = 0. This equation, while imposing a minimal

amount of structure on the evolution of individual wealth holdings, describes

γn�the average impact of inheritance on individual wealth holdings over n

(years from parental death)�non-parametrically. We impose the standard DiD

assumption that, absent the shock, the outcomes of the groups de�ned by τ

would run parallel.

Under the assumption of parallel trends, we can compare the FN DiD es-

timator for γFNn | 0 < n < ∆ with the quantity γn obtained by estimating

equation (1) on a sub-sample of our data. More speci�cally, consistently with

1For simplicity, we replace individual and cohort-by-year �xed e�ects Ψi and Λi,t with
the aggregated �xed e�ects by the time of inheritance Ψτ and year �xed e�ects Λt. Figure
C.1 shows that the inclusion of more granular �xed e�ects greatly reduces the amount of
unexplained variation in the model and improves the precision of our estimates.
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FN, we restrict our sample to two groups of individuals inheriting a �xed num-

ber ∆ of years apart (e.g. comparing people inheriting in 2000 and 2006, with

∆ = 6) and explicitly assigning a placebo shock at time τ1 to people inheriting

at time τ2 = τ1 + ∆.

The FN DiD estimator compares the average wealth outcomes of these two

groups at time t = τ1 + n as

γFNn ≡ (ȳτ1t − ȳτ1+∆
t )− (ȳτ1τ1−1 − ȳτ1+∆

τ1−1 ) (2)

where ȳτt = E [yτt ]. The top two panels of Figure C.2 illustrates this identi�ca-

tion strategy for two pairs of τ groups, using individuals inheriting in 2000 as

the treatment group and those inheriting in 2006 and 2010 as separate controls.

These graphs mirror Figure C.2, and show that, after an initial increase, the

average wealth holdings of treatment and control groups converge over time.

The relationship between γFNn and γn in our descriptive equation (1) is

straightforward. By substituting equation (1) in the FN estimator, we have

that

E
[
γFNn

]
= (Λt + Ψτ1 + γn − Λt −Ψτ2 − γn−∆)

−(Λτ1−1 + Ψτ1 + γ−1 − Λτ1−1 −Ψτ2 − γ−1−∆)

= γn − γ−1 + γ−1−∆ − γn−∆.

Under the identifying assumption of parallel trends, with respect to γ−1 we have

that, for n < ∆, γ−1−∆ = γn−∆ = γ−1 = 0. Thus, γFNn identi�es γn.

This result is a special case of the general principle that any di�erence-in-

di�erences study can be rewritten as an event study with separately identi�able

time and group �xed e�ects, and dynamic e�ects of the treatment. In our

case, the γn coe�cients and year �xed-e�ects are separately identi�able for all

n observed in at least two separate years. E.g. with our data the �xed e�ect

relative to year 2010 and γn=14�only observed in 2010 for individuals inheriting

in 1996� are not separately identi�able: The 2010 �xed e�ect will identify the

4



Figure C.2: Estimation of γn for net worth using pairs of τ groups
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(c) 2000 vs 2006, event study (restr. identi�ca-
tion)
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(d) 2000 vs 2010, event study (restr. identi�ca-
tion)
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(e) 2000 vs 2006, event study
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(f) 2000 vs 2010, event study

sum of the real year e�ect plus the unidenti�ed γ14. In our analysis we thus

restrict the estimation to n ∈ {−5,−4, . . . , 9}. Notice that in practice we can

recover the exact FN estimator in an event study by substituting γn with a

separate dummy for observations in group τ2 for all n, thus using group τ2

exclusively as a control.
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b Identifying γn for n ≥ ∆

The advantage of imposing a minimal structure and estimating equation (1)

instead of an explicit di�erence-in-di�erence estimator is that, by sacri�cing

some of the intuition, under the same assumptions we are able to simultaneously

estimate all identi�able γn. To see this, we can use the FN estimator in (2) to

estimate γ∆+1. In the left panes of Figure C.2, this corresponds to estimating the

e�ect of inheritance in 2007, n = 7 years after parental death for the treatment

group inheriting in 2000. In a simple DiD framework γ∆+1 is not identi�able,

as equation (2) shows that the di�erence between the two time series (Figure

C.2, second-to-last panel) is

E
[
γFN∆+1

]
= γ∆+1 − γ−1 + γ−1−∆ − γ1

and as γ1 6= γ−1, E
[
γFN∆+1

]
6= γ∆+1.

By estimating (1) instead we estimate simultaneously all γn coe�cients. As

Section b shows that γ1 is identi�ed, γ∆+1 is also identi�ed as E
[
γFN∆+1

]
+ γ̂1.

The coe�cient γ∆+1 is thus identi�ed separately from year and group �xed

e�ects. The bottom four panels of Figure C.2 show that by estimating all γn

simultaneously in an event study with identi�able group and time �xed e�ects

we can recover estimates of γn for n > ∆ by using two treatment groups (e.g.

τ2000 and τ2006) and imposing the structure in equation (1) augmented with

individual �xed e�ects.

The second row of panels in Figure C.2 identi�es γn∀n < ∆ exclusively from

the DiD comparison of τ2000 and τ2006.
2 The third row of panels in Figure

C.2 estimates equation (1), augmented with individual �xed e�ects, with no

data restrictions. In the third row, all identi�able γn coe�cients are estimated

simultaneously.

2In practice, we estimate equation (1) augmented with individual �xed e�ects and substi-
tuting γn with a separate dummy for observations in group τ2 for all n < 0.
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c Allowing for multiple ∆

As ∆ does not restrict the estimation of γn, a natural generalization of the es-

timation of equation (1) is relaxing the restriction of a �xed ∆ and allowing for

multiple implicit control groups in the regression. As in the previous section,

as long as time and group �xed e�ects are separately identi�able, under the

assumption of parallel trends equation (1) estimates the same quantities as a

DiD design. However, allowing for multiple ∆ in the same equation, thus aban-

doning the assignment of explicit control groups, not only sacri�ces part of the

intuition but highlights how the composition of the sample changes into that

of an unbalanced panel. Namely, the observations on which γn1
and γn2

are

estimated will be di�erent, as the equation uses di�erent τ -groups for identi�-

cation. However, under the assumptions stated in this appendix, that the panel

is unbalanced does not necessarily a�ect our results. More speci�cally, it does

not mechanically drive the convergence patterns we document.

We highlight this point in Figure C.3, which compares estimates obtained by

the FN estimator (on a balanced panel) with those obtained estimating equation

(1) on the same data. In the left panels of Figure C.3 we thus impose ∆ = 9 and

estimate the e�ect of inheriting between 1999 and 2001 explicitly using people

inheriting between 2008 and 2010 as a control. As in FN, we explicitly assign a

placebo shock in 1999 to individuals inheriting in 2008, a placebo shock in 2000

to individuals inheriting in 2009, and a placebo shock in 2001 to individuals

inheriting in 2010. We choose these speci�c years as they allow not only a high

∆ but also the estimation of coe�cients for n < 0. In the results appearing in

the �gure we restrict the sample to be balanced over all observed years.

The right panels of Figure C.3 estimate the same quantity through (1), thus

using the full information provided by the data and changing the combinations

of inheritance-group years providing identi�cation. That is, coe�cient γ1 is

not only identi�ed by three combination of inheritance years, but also by the

comparison between people inheriting in 1999, 2000 and 2001, and 2008, 2009

and 2010.
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Figure C.3: Comparison of explicit control group (FN, balanced panel) versus
event study design (this paper, varying control groups), estimated on individuals
inheriting in 1999-2001 and 2008-2010
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(a) Net worth, explicit control groups
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(b) Net worth, event study design
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(c) Liquid assets, explicit control groups
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(d) Liquid assets, event study design

The �gure shows not only that the convergence paths estimated by the two

approaches are virtually identical, but also that by exploiting the structure of

the dynamic response (and thereby using more information), the event study

approach improves the precision of the empirical estimates. This improvement

in precision occurs primarily for coe�cients for which more combination of in-

heritance year provide identi�cation, i.e. for n close to zero. Figure C.3 also

shows that our results are robust to imposing a balanced panel and a balanced

(explicit) control group across n. The full list of estimated coe�cients and

standard errors for all n appear in Table C.1.
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Table C.1: Comparison of DiD (balanced and unbalanced) and our identi�cation
strategy for individuals inheriting in 1999-2001 and 2008-2010

Net worth Liquid assets

n Event
study

DiD DiD,
balanced

Event
study

DiD DiD,
balanced

-3 0.042 0.175 0.149 0.016 0.018 0.010
(0.049) (0.093) (0.095) (0.021) (0.040) (0.040)

-2 0.015 0.104 0.074 0.015 0.012 0.007
(0.044) (0.088) (0.090) (0.019) (0.038) (0.038)

0 0.342 0.399 0.391 0.243 0.214 0.201
(0.044) (0.086) (0.090) (0.019) (0.037) (0.037)

1 0.839 0.931 0.917 0.389 0.379 0.370
(0.049) (0.088) (0.091) (0.021) (0.038) (0.038)

2 0.775 0.890 0.860 0.283 0.273 0.264
(0.054) (0.089) (0.093) (0.023) (0.038) (0.039)

3 0.644 0.794 0.794 0.162 0.166 0.163
(0.057) (0.089) (0.093) (0.025) (0.038) (0.039)

4 0.623 0.694 0.699 0.120 0.126 0.131
(0.060) (0.089) (0.093) (0.026) (0.038) (0.039)

5 0.581 0.677 0.693 0.118 0.078 0.068
(0.063) (0.089) (0.093) (0.027) (0.038) (0.039)

6 0.470 0.560 0.555 0.106 0.081 0.069
(0.065) (0.088) (0.093) (0.028) (0.038) (0.039)

7 0.408 0.491 0.476 0.088 0.066 0.055
(0.069) (0.089) (0.094) (0.030) (0.038) (0.039)

8 0.331 0.378 0.371 0.094 0.080 0.064
(0.075) (0.092) (0.096) (0.032) (0.040) (0.040)

# episodes 2508 2483 2125 2508 2483 2125

Note. The table compares the saving dynamics estimated on the sample of heirs inherit-
ing between 1999 and 2001, and between 2008-2010. The �rst and fourth column use the
identi�cation strategy of the paper, estimating equation (1) in the paper on the full sam-
ple. The second and �fth column use the DiD identi�cation strategy introduced in Appendix
A.b, assigning an explicit control group to each inheritance year (e.g., the control group for
heirs inheriting in 1999 is heirs inheriting in 2008). The third and sixth column replicate this
estimation strategy on a strictly balanced sample.
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D Additional Figures and Tables

(a) Conditional distribution given age (b) Marginal probability, Pr[dt = 1|dt = 0]

Figure D.1: Inheritance process

Note. This �gure shows central properties of the inheritance process common across all
model speci�cations.

(a) Permanent income (b) Receiving inheritance (c) Size of inheritance

Figure D.2: Fit of external calibration

Note. This �gures compares moments in our sample of treated individuals with simulation
outcomes common across all model speci�cations. Panel (a) shows the average level of per-
manent income, panel (b) shows the probability of receiving inheritance conditional on age,
panel (c) shows the average size of the received inheritance relative to permanent income.
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Table D.1: Robustness: Various σ

Parameters Fits

β ρ σ ζ LCP LRD MPC

0.969† 1.50 0.50 1.14† 0.007‡ 0.369 0.06

0.965† 2.00 0.50 1.20† 0.006‡ 0.281 0.06

0.951† 4.00 0.50 1.38† 0.006‡ 0.070 0.09

0.940† 6.00 0.50 1.49† 0.009‡ 0.032 0.12

0.932† 8.00 0.50 1.54† 0.014‡ 0.045 0.14

0.927† 10.00 0.50 1.57† 0.021‡ 0.060 0.16

0.968† 1.50 0.80 1.15† 0.006‡ 0.440 0.05

0.963† 2.00 0.80 1.23† 0.006‡ 0.361 0.06

0.946† 4.00 0.80 1.49† 0.006‡ 0.128 0.08

0.932† 6.00 0.80 1.66† 0.007‡ 0.048 0.10

0.923† 8.00 0.80 1.76† 0.010‡ 0.031 0.12

0.914† 10.00 0.80 1.85† 0.016‡ 0.032 0.14

0.965† 1.50 1.50 1.19† 0.006‡ 0.519 0.05

0.958† 2.00 1.50 1.29† 0.006‡ 0.453 0.05

0.933† 4.00 1.50 1.75† 0.005‡ 0.209 0.07

0.914† 6.00 1.50 2.11† 0.006‡ 0.104 0.09

0.898† 8.00 1.50 2.41† 0.008‡ 0.056 0.10

0.885† 10.00 1.50 2.68† 0.011‡ 0.033 0.12

Note. † internally calibrated parameter. ‡ targeted moment.
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Table D.2: Robustness: CRRA

Parameters Fits

β ρ σ ζ α̃ α LCP LRD MPC

Panel A: Targeting Life-Cycle Pro�le (LCP) only

Fixed risk aversion (ρ) 0.965† 1.50 1.50 1.19† 1.00 1.00 0.006‡ 0.519 0.05

0.955† 2.00 2.00 1.34† 1.00 1.00 0.005‡ 0.491 0.05

0.893† 4.00 4.00 2.83† 1.00 1.00 0.005‡ 0.361 0.06

0.805† 6.00 6.00 8.41† 1.00 1.00 0.004‡ 0.242 0.07

Panel B: Targeting both life-cycle pro�le (LCP)
and Long-Run Dynamics (LRD)

Free perceived risk (α̃) 0.766† 4.00 4.00 15.11† 1.68† 1.00† 0.017‡ 0.025‡ 0.14

Free risk (α) 0.833† 4.00 4.00 5.31† 1.00 1.38† 0.009‡ 0.031‡ 0.10

Note. † internally calibrated parameter. ‡ targeted moment.

Table D.3: Robustness: α̃ and α vs. ρ

Parameters Fits

β ρ σ ζ α̃ α LCP LRD MPC

Panel A: Perceived income risk (α̃)

0.941† 1.50 0.67 1.54† 1.94† 1.00† 0.013‡ 0.028‡ 0.12

0.938† 2.00 0.67 1.57† 1.73† 1.00† 0.011‡ 0.028‡ 0.12

0.936† 3.00 0.67 1.60† 1.44† 1.00† 0.010‡ 0.029‡ 0.12

0.935† 4.00 0.67 1.61† 1.25† 1.00† 0.009‡ 0.030‡ 0.11

Panel B: Actual income risk (α)

0.957† 1.50 0.67 1.33† 1.00 1.42† 0.007‡ 0.029‡ 0.08

0.951† 2.00 0.67 1.43† 1.00 1.33† 0.010‡ 0.027‡ 0.08

0.944† 3.00 0.67 1.50† 1.00 1.25† 0.007‡ 0.029‡ 0.10

0.939† 4.00 0.67 1.53† 1.00 1.21† 0.008‡ 0.031‡ 0.11

Note. † internally calibrated parameter. ‡ targeted moment.
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Table D.4: Robustness: External calibration

Parameters Fits

β ρ σ ζ LCP LRD MPC

κ = 0.80 0.933† 6.31† 0.67 1.54† 0.008‡ 0.032‡ 0.11

κ = 1.00 0.935† 5.92† 0.67 1.72† 0.009‡ 0.031‡ 0.11

σψ = 0.08 0.919† 19.58† 0.67 1.81† 0.018‡ 0.030‡ 0.13

σψ = 0.10 0.924† 11.31† 0.67 1.74† 0.014‡ 0.030‡ 0.13

σξ = 0.05 0.934† 6.13† 0.67 1.63† 0.010‡ 0.032‡ 0.11

σξ = 0.07 0.934† 6.11† 0.67 1.63† 0.009‡ 0.031‡ 0.11

ω = 0.15 0.933† 6.36† 0.67 1.63† 0.009‡ 0.030‡ 0.11

ω = 0.35 0.933† 6.30† 0.67 1.64† 0.009‡ 0.030‡ 0.11

R = 1.01 0.945† 5.86† 0.67 1.64† 0.009‡ 0.027‡ 0.10

R = 1.03 0.921† 7.21† 0.67 1.64† 0.009‡ 0.034‡ 0.13

R− = 1.06 0.933† 6.38† 0.67 1.63† 0.009‡ 0.030‡ 0.11

R− = 1.10 0.933† 6.38† 0.67 1.63† 0.009‡ 0.030‡ 0.11

µH = 70 0.933† 6.14† 0.67 1.67† 0.006‡ 0.033‡ 0.11

µH = 85 0.935† 6.55† 0.67 1.58† 0.010‡ 0.033‡ 0.11

σH = 6 0.933† 6.54† 0.67 1.63† 0.011‡ 0.032‡ 0.11

σH = 12 0.932† 6.83† 0.67 1.63† 0.008‡ 0.029‡ 0.12

h45 = 0.70 0.934† 6.35† 0.67 1.62† 0.008‡ 0.037‡ 0.11

h45 = 1.10 0.931† 6.99† 0.67 1.64† 0.010‡ 0.027‡ 0.12

η = 0.99 0.933† 6.29† 0.67 1.65† 0.009‡ 0.031‡ 0.11

η = 1.01 0.934† 6.40† 0.67 1.62† 0.009‡ 0.031‡ 0.11

Note. † internally calibrated parameter. ‡ targeted moment.
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(a) Bu�er-stock model
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(b) Two-asset model

Figure D.3: Long-run saving dynamics without inheritance expectations

Note: The �gure shows the long-run saving dynamics of net worth assuming agents do not

expect to receive any inheritance. We use a ρ of 2 and the β and ζ calibrated to match the

life-cycle pro�le of wealth in the main text.
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E Solution algorithm

The appendix contains detailed information on the solution algorithm, its im-

plementation and some validation tests.

a Choice-speci�c value functions

Let zt ∈ {0, 1} denote the choice of whether to adjust or not. The model can

then alternatively be written as a maximum over zt-speci�c value functions

conditioning on the discrete choice of whether to adjust or not, i.e.

Vt(Mt, Pt, Nt, dt) = max
zt∈{0,1}

vt(Mt, Pt, Nt, dt, zt), (3)

where zt = 0 denote no adjustment of the illiquid assets, and zt = 1 denote

some adjustment triggering the �xed adjustment cost.

We have that the value function for no-adjustment is

vt(Mt, Pt, Nt, dt, 0) = max
Ct




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(4)

s.t.

At = Mt − Ct

Bt = Nt,

and the value function for adjustment is

vt(Mt, Pt, Nt, dt, 1) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(5)

s.t.

At = Mt − Ct + (Nt −Bt)− λ

Bt ≥ 0,
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where the remaining constraints in both cases are as in the main text.

We denote the optimal choice functions by C?t (•, 0), C?t (•, 1) and B?t (•, 1).
The optimal discrete choice is denoted z?t (•).

b EGM for non-adjusters

Using a standard variational argument it can be proven that the optimal con-

sumption choice for non-adjusters must satisfy one of the following four condi-

tions

C−σt = βREt
[
C−σt+1V

σ−ρ
t+1

]
W ρ−σ
t , Ct < Mt (6)

C−σt = βREt
[
C−σt+1V

σ−ρ
t+1

]
W ρ−σ
t , Ct ∈ (Mt,Mt + ωPt) (7)

Ct = Mt + ωtPt (8)

Ct = Mt. (9)

The �rst two equations are Euler-equations for the saving and borrowing regions,

and the latter two amount to being at the borrowing constraint or at the kink

between saving and borrowing. Notice that under CRRA preferences, ρ = σ, the

value function terms disappears and we are back to standard Euler-equations.

In the bu�er-stock model the Euler-equations (6) and (7) are both necessary

and su�cient, and the endogenous grid method (EGM) originally developed by

Carroll (2006) can be used to solve the model. In the two-asset model they are,

however, only necessary. They are not su�cient because the value function, due

to the �xed adjustment cost, might not be globally concave. As �rst showed

by Fella (2014) and Iskhakov et al. (2017) the EGM can, however, still be

used if a so-called upper envelope algorithm is applied to discard solutions to

the Euler-equations which are not globally optimal. Speci�cally, we use the

approach proposed in Druedahl (2018) building on the upper envelope algorithm

in Druedahl and Jørgensen (2017) developed for multi-dimensional EGM in

models with non-convexities and multiple constraints (but for a model class not

including the present model).
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c Reducing the state space for adjusters

To reduce the state space for the adjusters it is useful to de�ne the following

problem

ṽt(Xt, Pt, dt) = max
Ct,Bt




C1−ρ
t /(1− ρ) + βiWt if ρ = σ

[(1− βi)C1−σ
t + βiW

1−σ
t ]

1
1−σ else

(10)

s.t.

At = Xt − Ct −Bt − ωPt

Bt ≥ 0.

By using the result that the distinction between beginning-of-period liquid as-

sets, Mt, and illiquid assets, Nt, does not matter for adjusters, we now have

that

vt(Mt, Pt, Nt, dt, 1) = ṽt(Xt, Pt, dt) (11)

s.t.

Xt = Mt +Nt − λ+ ωPt.

We can further also see that the consumption choice for the adjusters can be

pro�led out by using the optimal consumption choice for the non-adjusters as
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follows

ṽt(Xt, Pt, dt) = max
st∈[0,1]




C1−ρ
t /(1− ρ) + βiWt

1−σ) if ρ = σ

[(1− βi)C1−σ
t + βiWt]

1
1−σ else

(12)

s.t.

Mt = (1− st)Xt − ωPt

Nt = stXt

Ct = C?t (Mt, Nt, Pt, dt, 0)

At = Mt − C?t
Bt = Nt.

This reduces the choice problem for the adjusters to a one-dimensional prob-

lem. Given that �nding the global maximum for each point in the state space

can be challenging, and requires a multi-start algorithm, this is computationally

very bene�cial.

d Some implementation details

Interpolation. We never need to construct the over-arching value function,

Vt(Mt, Pt, Nt, dt). With Epstein-Zin preferences we can instead e.g. use that

Wt(•) = βEt







vt+1(•, 0)1−ρ if z?t+1(•) = 0

ṽt+1(•)1−ρ if z?t+1(•) = 1




1
1−ρ

(13)

where

Xt+1 = Mt+1 +Nt+1 − λ+ ωPt+1

We also interpolate Et
[
C−σt+1V

σ−ρ
t+1

]
from equations (6)-(7) in a similar way.

Grids. We have separate grids for Pt, Mt, Nt, At and Xt while the grid for

Bt is the same as that for Nt. All grids vary by t, and the assets grids vary by

the current element in Pt, but are otherwise tensor product grids.
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1. The grid for At is chosen to explicitly include {−ωPt,−ωPt + ε,−ε, ε},
where ε is a small number, such that the borrowing constraint and the

kink at At = 0 is well-approximated. A dense grid for At is costly as we

for each element need to do numerical integration of the next-period value

function and apply EGM.

2. A dense grid for Nt (and thus Bt) is costly for the same reason as At.

3. The grid for Mt is only used in the upper envelope algorithm, and it is

therefore feasible for this grid to be very dense.

4. The grid for Xt is only used for the adjusters. Consequently it is feasible

to has a rather dense grid.

5. A dense grid for Pt is costly both for the same reason as At and because

it implies that the adjuster problem has to be solved more times.

In general all grids are speci�ed such that they are relatively more dense for

smaller values, and this even more so for small Pt. The largest node in each

grid is proportional to Pt. In the two-asset model we chose grid sizes #M = 300,

#X = 200 and #A = #N = 100 and #P = 150. For the bu�er-stock model we

instead use #M = 600 and #A = 150.

Numerical integration. For evaluating expectations we use Gauss-Hermit

quadrature with 6 points for each shock, #ψ = #ξ = 6.

Multi-start. For solving the problem in (12) we use #k = 5 multi-start

values for st.

Code. The code is written in C++ (OpenMP is used for parallelization) with

an interface to MATLAB for setting up grids and printing �gures. The optimiza-

tion problems are solved by the Method of Moving Asymptotes from Svanberg

(2002), implemented in NLopt by Johnson (2014).

e Code validation

In this section we show that the code package developed for this paper deliv-

ers robust simulation results, which also aligns with theoretical results when
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(a) Consumption (b) Net worth

Figure E.1: Bu�er-stock: Constant consumption

Note. This �gure shows life-cycle pro�les of average consumption and average net worth from
a bu�er-stock model with β = 0.97, , σ = ρ = 2, ζ = 0, σψ = σε = 0, R = β−1, ω = 2,
h45 = 0 and the remaining parameters as in the main text. In the simulation all agents are
born wealthy with A0 = 5.

available.

Figure E.1 �rstly illustrates that consumption is constant in a bu�er-stock

model with:

1. No risk (σψ = σε = 0 and h45 = 0),

2. CRRA preferences (σ = ρ = 2) where R = β−1 = 1
0.97 ,

3. No post-retirement saving motive (ζ = 0),

4. Loose borrowing constraint (ω = 2).

This aligns well with theory as the model then basically becomes a Permanent

Income Hypothesis (PIH) model where the Euler-equation directly imply that

consumption should be constant.

Next, it illustrates that consumption is also constant in the following three

alternative cases

1. Epstein-Zin preferences with ρ 6= σ.

2. Active post-retirement saving motive, ζ > 0.

3. Some inheritance, h45 > 0, if and only if η = R.
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(a) Consumption (b) Net worth

Figure E.2: Bu�er-stock model: VFI

Note. This �gure shows life-cycle pro�les of average consumption and average net worth from
a bu�er-stock model with the calibration from the main text and σ = 2/3, β = 0.97, ρ = 2
and ζ = 1.

This also aligns well with theory. (1) With no risk the choice of risk aversion

(ρ) does not a�ect the optimal consumption choice. (2) A motive to save for

retirement does not a�ect the Euler-equation, and thus not the growth rate

of consumption, but only the level of consumption. (3) When there is no risk

and η = R then inheritance is a perfect liquidity shock and only the level of

consumption should be a�ected, not its growth rate.

Figure E.2 shows that we obtain very similar life-cycle pro�les of average

consumption and average net worth when using a simpler, but much slower,

Value Function Iteration (VFI) algorithm.

Figure E.3 shows average net worth at retirement when varying σ and ζ.

First, we see that when ρ = σ then model is the same with CRRA and Epstein-

Zin preferences. Second, we see that when ζ → 0 agents save less and less for

retirement, speci�cally limζ→0ATR = 0.

Figure E.4 shows average net worth at age 45 and at retirement when varying

the grid size scaled by j. We see that choosing too sparse grids can result in

biased results. Denser grids than in the baseline (j = 0) does not a�ect the

results.

Now we turn to the two-asset models. Figure E.5 shows that when λ → 0
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(a) Net worth at retirement (b) Net worth at retirement

Figure E.3: Bu�er-stock model: Varying σ and ζ
Note. This �gure shows average net worth at retirement across various σ and ζ starting from
a bu�er-stock model with the calibration from the main text and σ = 2/3, β = 0.97, ρ = 2
and ζ = 1.

(a) Net worth at age 45 (b) Net worth at retirement

Figure E.4: Bu�er-stock model: Grids

Note. This �gure shows average net worth at age 45 and retirement across various grid sizes
from a bu�er-stock model with the calibration from the main text and σ = 2/3, β = 0.97,
ρ = 2 and ζ = 1. Grids are speci�ed as #M = 600 + j · 100, #P = 150 + j · 40 and
#A = 150 + j · 40.
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(a) Net worth at age 45 (b) Net worth at retirement

Figure E.5: Two-asset model: λ→ 0
Note. This �gure shows average net worth at age 45 and retirement when λ→ 0 starting from
a two-asset model with the calibration from the main text and σ = 2/3, β = 0.935, ρ = 2 and
ζ = 1.

then average net worth at age 45 and at retirement converge to the levels implied

by a bu�er-stock model with the same return opportunities. When λ is negligible

in a two-asset model there should be no saving in the liquid asset, so this aligns

well with theory.

Figure E.5 shows that grids denser than in the baseline does not a�ect the

implied average net worth at age 45 or at retirement. Figure E.7 shows that we

obtain very similar life-cycle pro�les of average consumption and average net

worth when using a simpler, but much slower, Value Function Iteration (VFI)

algorithm. Finally, Figure E.8 shows that varying β, ρ, σ, ζ, κ, and σψ imply

results in line with economic intuition.
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(a) Net worth at age 45 (b) Net worth at retirement

Figure E.6: Two-asset model: Grids

Note. This �gure shows average net worth at age 45 and retirement across various grid sizes
from a two-asset model with the calibration from the main text and σ = 2/3, β = 0.935, ρ = 2
and ζ = 1. Grids are speci�ed as #M = 300 + j · 80, #X = 200 + j · 60, #P = 150 + j · 40,
#N = 100 + j · 30, and #A = 100 + j · 30.

(a) Consumption (b) Net worth

Figure E.7: Two-asset model: VFI

Note. This �gure shows life-cycle pro�les of average consumption and average net worth
from a two-asset model with the calibration from the main text and σ = 2/3, β = 0.935, ρ = 2
and ζ = 1.
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(a) β (b) ρ

(c) σ (d) ζ

(e) κ (f) σψ

Figure E.8: Two-asset model: Varying β, ρ, σ, ζ, κ, and σψ
Note. This �gure shows average net worth at retirement starting from a two-asset model
with the calibration from the main text and σ = 2/3, β = 0.935, ρ = 2 and ζ = 1.
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F Data Appendix

This appendix contains details with respect to the data and the speci�c variables

used in the analysis of the paper.

The paper exploits con�dential administrative register data from Denmark.

Researchers can gain similar access by following a procedure described at the

Statistics Denmark website. Researchers need to submit a written application

to Statistics Denmark. The application should include a detailed research pro-

posal describing the goals and methods of the project, a detailed list of variables,

and the selection criteria to be used. Once received, applications must be ap-

proved by the Danish Data Protection Agency in order to ensure that data are

processed in a manner that protects the con�dentiality of registered individuals.

Conditional on these approvals, Statistics Denmark will then determine which

data one may obtain in accordance with the research plan. All processing of

individual data takes place on servers located at Statistics Denmark via secure

remote terminal access. Statistics Denmark is able to link individual data from

di�erent administrative registers thanks to a unique individual social security

code (CPR). While Statistics Denmark provides access to this anonymized data

for research purposes, the data is con�dential.

We now provide a short description of the variables used in the paper, their

construction, and the list of the names of their basic components as de�ned by

Denmark Statistics with a link to its o�cial description (this information is only

available in Danish).

Tables F.1 and F.2 reports sources and construction of the variables used in

the analysis�with the exception of potential inheritance and permanent income,

whose construction we describe next.

In order to identify individuals likely to receive larger inheritances, we follow

Andersen and Nielsen (2011, 2012) and calculate a measure of potential inheri-

tance by splitting the wealth holdings of a deceased individual equally among his

or her children. For each heir we then calculate the net inheritance after taxes,
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applying the marginal rate of 15 percent to the portion of inheritance exceeding

a tax-free threshold, which varies yearly. The applied tax-free thresholds are

reported in Table F.3.3

Given parental net worth networthp at and the number of heirs n_heirs at

the time of parental death, we compute potential inheritance as

inheritance =





(0.85·(networthp−bundfr)+bundfr)
n_heirs if networthp > bundfr

networthp
n_heirs if networthp ≤ bundfr

where bundfr is the deduction applicable at the time of parental death. Table

F.3 reports the yearly deductions.

We compute permanent income at time t, perminct, as the weighted average

perminct = 0.45dispinct+0.25dispinct−1+0.15dispinct−2+0.10dispinct−3+0.05dispinct−4.

We de�ne sudden deaths according to WHO's ICD-10 codes. More specif-

ically, We de�ne a death as sudden if the primary cause of death is coded as

I21*-I22*, V*, X*, Y* or R96*.

3This calculation is appropriate in Denmark both because a minority of Danes draft a will
(Andersen and Nielsen, 2011) and because under Danish law the surviving children are always
entitled to a part of the inheritance even in presence of a will (Danish Inheritance Act No.
515 of 06 June 2007 Section 5). Using reported inheritance data in a similar legal and cultural
context, Erixson and Ohlsson (2014) show that only few estates in Sweden are not equally
divided among surviving children.
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Table F.3: Inheritance deductions and CPI

Year Deduction (DKK) CPI

1996 184900 74.43
1997 186000 76.06
1998 191100 77.45
1999 196600 79.41
2000 203500 81.70
2001 210600 83.66
2002 216900 85.62
2003 224600 87.42
2005 231800 88.48
2004 236900 90.03
2006 242400 91.75
2007 248900 93.30
2008 255400 96.49
2009 264100 97.79
2010 264100 100.00
2011 264100 102.78
2012 264100 105.23

Note. Deductions for inheritance taxation vary according to the proximity the heir to the de-
ceased. This table reports deductions valid for the direct o�spring of the deceased. Deductions
are stable between 2009 and 2013, and start increasing again in 2014.
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Table G.1: The role of liquidity constraints

Years from shock −2 1 5 9

Net worth -0.032 0.826 0.560 0.539
(0.024) (0.046) (0.095) (0.152)

− Liq. assets 0.044 0.416 0.222 0.251
(0.006) (0.019) (0.021) (0.033)

− Housing equity -0.060 0.143 0.141 0.115
(0.022) (0.038) (0.084) (0.134)

− Fin. investments -0.001 0.190 0.124 0.105
(0.005) (0.016) (0.019) (0.030)

− Unc. debts 0.015 -0.077 -0.072 -0.068
(0.011) (0.018) (0.040) (0.064)

Note. The table shows the e�ect of inheritance on di�erent wealth components two years
before and one, �ve and nine years after parental death. The liquidity constraint sample
refers to heirs holding less than one month of permanent income in liquid assets one year
before inheriting.

G Extended empirical results

a Further empirical robustness checks

Table G.1 shows that shows that heirs who hold less than a month of permanent

income in liquid assets before parental death do not dissipate the excess of wealth

accumulated with inheritance quicker that those who are not constrained. If

anything, heirs holding relatively little liquid assets before parental death exploit

their inheritance to accumulate a bu�er stock of liquid assets in the long run

and escape their liquidity-constrained state.

b Extended main results

This section displays the set of estimated coe�cients γn for n ∈ {−5, . . . , 9}
estimated in the empirical section of the paper.

31



Table G.2: Extended results: Table 2, normalized values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 0.033 -0.001 0.020 -0.001 -0.016
(0.043) (0.014) (0.038) (0.012) (0.020)

-4 0.032 0.012 0.014 -0.001 -0.007
(0.035) (0.013) (0.031) (0.010) (0.016)

-3 0.016 0.006 -0.002 -0.003 -0.015
(0.027) (0.010) (0.024) (0.007) (0.012)

-2 -0.001 0.005 -0.002 -0.004 0.000
(0.018) (0.007) (0.017) (0.005) (0.008)

0 0.398 ∗∗ 0.230 ∗∗ 0.069 ∗∗ 0.096 ∗∗ -0.003
(0.023) (0.012) (0.018) (0.008) (0.008)

1 0.879 ∗∗ 0.389 ∗∗ 0.184 ∗∗ 0.265 ∗∗ -0.040 ∗∗

(0.034) (0.015) (0.027) (0.014) (0.014)

2 0.809 ∗∗ 0.272 ∗∗ 0.222 ∗∗ 0.278 ∗∗ -0.037 ∗

(0.041) (0.015) (0.035) (0.015) (0.017)

3 0.679 ∗∗ 0.168 ∗∗ 0.218 ∗∗ 0.251 ∗∗ -0.042 +

(0.049) (0.016) (0.044) (0.016) (0.022)

4 0.588 ∗∗ 0.108 ∗∗ 0.191 ∗∗ 0.247 ∗∗ -0.043 +

(0.059) (0.018) (0.052) (0.018) (0.025)

5 0.492 ∗∗ 0.069 ∗∗ 0.168 ∗∗ 0.227 ∗∗ -0.028
(0.069) (0.021) (0.061) (0.021) (0.030)

6 0.416 ∗∗ 0.037 0.156 ∗ 0.209 ∗∗ -0.014
(0.080) (0.024) (0.070) (0.024) (0.034)

7 0.329 ∗∗ 0.012 0.127 0.188 ∗∗ -0.001
(0.089) (0.026) (0.078) (0.026) (0.038)

8 0.295 ∗∗ 0.003 0.114 0.187 ∗∗ 0.009
(0.100) (0.030) (0.087) (0.030) (0.043)

9 0.277 ∗ 0.005 0.088 0.182 ∗∗ -0.002
(0.111) (0.033) (0.096) (0.033) (0.047)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.3: Extended results: Table 2, absolute values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 8.711 -0.244 8.742 2.570 2.358
(10.506) (3.100) (8.671) (4.159) (4.157)

-4 11.386 3.503 9.168 0.241 1.526
(8.504) (2.998) (7.156) (2.529) (3.237)

-3 6.974 1.396 4.203 -1.142 -2.517
(6.352) (2.054) (5.478) (1.819) (2.318)

-2 1.181 0.960 1.896 -1.071 0.603
(4.305) (1.614) (3.886) (1.294) (1.681)

0 78.209 ∗∗ 44.604 ∗∗ 12.270 ∗∗ 20.807 ∗∗ -0.528
(5.314) (2.359) (4.221) (1.863) (1.631)

1 188.284 ∗∗ 80.823 ∗∗ 40.775 ∗∗ 59.363 ∗∗ -7.322 ∗∗

(8.065) (3.118) (6.508) (3.270) (2.587)

2 186.560 ∗∗ 62.046 ∗∗ 52.279 ∗∗ 67.027 ∗∗ -5.208
(10.328) (3.380) (8.577) (3.991) (3.269)

3 160.557 ∗∗ 41.127 ∗∗ 55.515 ∗∗ 61.062 ∗∗ -2.853
(12.707) (3.722) (11.038) (4.344) (4.888)

4 146.127 ∗∗ 30.115 ∗∗ 49.737 ∗∗ 61.659 ∗∗ -4.616
(15.665) (4.247) (13.095) (5.160) (4.880)

5 126.459 ∗∗ 21.212 ∗∗ 44.694 ∗∗ 57.147 ∗∗ -3.405
(18.418) (4.962) (15.290) (5.866) (5.670)

6 110.028 ∗∗ 15.414 ∗∗ 41.578 ∗ 54.762 ∗∗ 1.726
(21.231) (5.687) (17.782) (6.895) (6.768)

7 89.426 ∗∗ 10.212 33.924 + 51.030 ∗∗ 5.740
(23.952) (6.243) (20.020) (7.642) (7.677)

8 78.007 ∗∗ 8.250 29.610 51.859 ∗∗ 11.711
(26.613) (7.157) (22.269) (8.778) (9.133)

9 70.358 ∗ 6.012 22.554 49.784 ∗∗ 7.991
(29.577) (7.828) (24.628) (9.809) (9.738)

Note.. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.4: Extended results: Table 2, placebo, normalized values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 -0.021 0.007 -0.014 0.001 0.015
(0.026) (0.007) (0.022) (0.004) (0.015)

-4 -0.006 0.008 -0.004 0.000 0.011
(0.021) (0.006) (0.018) (0.004) (0.012)

-3 -0.006 0.006 0.001 0.000 0.012
(0.016) (0.005) (0.015) (0.003) (0.010)

-2 -0.005 0.007 -0.004 -0.000 0.008
(0.011) (0.004) (0.010) (0.002) (0.006)

0 0.043 ∗∗ 0.031 ∗∗ -0.002 0.004 ∗ -0.010 +

(0.011) (0.005) (0.010) (0.002) (0.006)

1 0.035 ∗ 0.022 ∗∗ 0.001 0.010 ∗∗ -0.001
(0.016) (0.006) (0.014) (0.003) (0.009)

2 0.018 0.008 -0.003 0.007 + -0.005
(0.021) (0.006) (0.018) (0.003) (0.012)

3 0.005 0.001 -0.014 0.008 + -0.010
(0.026) (0.008) (0.023) (0.004) (0.015)

4 -0.002 -0.007 -0.010 0.008 -0.007
(0.032) (0.009) (0.028) (0.005) (0.018)

5 -0.014 -0.004 -0.019 0.009 -0.001
(0.037) (0.011) (0.032) (0.006) (0.021)

6 -0.012 -0.002 -0.025 0.007 -0.008
(0.043) (0.012) (0.037) (0.006) (0.024)

7 -0.010 -0.010 -0.020 0.006 -0.014
(0.049) (0.014) (0.042) (0.007) (0.028)

8 -0.037 -0.016 -0.038 0.008 -0.010
(0.055) (0.015) (0.047) (0.008) (0.031)

9 -0.033 -0.007 -0.037 0.007 -0.004
(0.061) (0.018) (0.052) (0.009) (0.034)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.5: Extended results: Table 2, placebo, absolute values

n Net worth Liq. assets Housing equity Fin. invest. Unc. Debts

-5 -3.514 1.293 -1.938 -0.472 2.397
(5.883) (1.616) (5.064) (1.043) (3.321)

-4 -0.462 0.939 0.779 -0.846 1.334
(4.713) (1.268) (4.088) (0.847) (2.723)

-3 -0.609 1.410 1.217 -0.628 2.608
(3.694) (1.095) (3.409) (0.637) (2.211)

-2 -1.204 1.096 -0.132 -0.493 1.675
(2.557) (0.892) (2.432) (0.435) (1.466)

0 7.136 ∗∗ 5.507 ∗∗ -1.543 0.668 + -2.504 +

(2.436) (0.982) (2.401) (0.404) (1.370)

1 6.577 + 4.361 ∗∗ -2.360 1.831 ∗∗ -2.744
(3.682) (1.323) (3.457) (0.652) (2.060)

2 4.997 2.272 -3.012 1.371 + -4.366
(4.892) (1.569) (4.490) (0.823) (2.809)

3 0.876 -0.446 -6.958 1.604 -6.676 +

(6.553) (2.274) (5.932) (1.039) (3.863)

4 -1.229 -2.040 -7.355 1.596 -6.570
(7.906) (2.647) (7.113) (1.245) (4.719)

5 -4.812 -0.346 -11.742 0.952 -6.324
(9.280) (3.204) (8.186) (1.391) (5.530)

6 -5.145 -0.555 -13.151 0.608 -7.953
(10.699) (3.544) (9.451) (1.564) (6.386)

7 -3.804 -1.959 -12.429 0.369 -10.215
(12.177) (4.019) (10.743) (1.741) (7.166)

8 -10.433 -3.777 -17.311 0.489 -10.165
(13.634) (4.527) (11.958) (1.985) (8.041)

9 -10.757 -3.263 -19.560 0.620 -11.446
(14.990) (4.973) (13.279) (2.208) (8.989)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.6: Extended results: Table 3

n Housing equity Housing value Home owner Owner of 2+
units

Mortgage

-5 0.020 -0.062 0.001 0.002 -0.082 +

(0.038) (0.056) (0.010) (0.005) (0.043)

-4 0.014 -0.034 0.005 0.005 -0.049
(0.031) (0.046) (0.008) (0.004) (0.036)

-3 -0.002 -0.027 0.005 0.003 -0.025
(0.024) (0.035) (0.006) (0.003) (0.026)

-2 -0.002 -0.018 0.004 0.002 -0.016
(0.017) (0.022) (0.004) (0.002) (0.016)

0 0.069 ∗∗ 0.128 ∗∗ 0.023 ∗∗ 0.025 ∗∗ 0.059 ∗∗

(0.018) (0.024) (0.004) (0.003) (0.018)

1 0.184 ∗∗ 0.318 ∗∗ 0.052 ∗∗ 0.042 ∗∗ 0.133 ∗∗

(0.027) (0.039) (0.006) (0.004) (0.028)

2 0.222 ∗∗ 0.369 ∗∗ 0.059 ∗∗ 0.044 ∗∗ 0.147 ∗∗

(0.035) (0.051) (0.008) (0.005) (0.037)

3 0.218 ∗∗ 0.373 ∗∗ 0.061 ∗∗ 0.042 ∗∗ 0.155 ∗∗

(0.044) (0.064) (0.010) (0.006) (0.046)

4 0.191 ∗∗ 0.364 ∗∗ 0.053 ∗∗ 0.040 ∗∗ 0.174 ∗∗

(0.052) (0.078) (0.012) (0.007) (0.056)

5 0.168 ∗∗ 0.347 ∗∗ 0.050 ∗∗ 0.038 ∗∗ 0.179 ∗∗

(0.061) (0.090) (0.015) (0.008) (0.066)

6 0.156 ∗ 0.353 ∗∗ 0.048 ∗∗ 0.033 ∗∗ 0.197 ∗∗

(0.070) (0.104) (0.017) (0.009) (0.075)

7 0.127 0.353 ∗∗ 0.052 ∗∗ 0.030 ∗∗ 0.226 ∗∗

(0.078) (0.117) (0.019) (0.010) (0.085)

8 0.114 0.350 ∗∗ 0.053 ∗ 0.028 ∗ 0.236 ∗

(0.087) (0.130) (0.021) (0.011) (0.096)

9 0.088 0.387 ∗∗ 0.050 ∗ 0.028 ∗ 0.300 ∗∗

(0.096) (0.144) (0.024) (0.013) (0.106)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.7: Extended results: Table 4, income and pension contributions

n Disp. Income Labor income Salary Pension from
empl. scheme

Personal
pension

-5 4.797 ∗ 6.996 + 8.259 ∗ 0.001 0.000
(2.443) (4.030) (3.908) (0.002) (0.002)

-4 1.283 4.733 5.068 0.000 0.000
(1.490) (3.207) (3.151) (0.002) (0.001)

-3 1.130 3.609 3.399 -0.001 0.001
(1.160) (2.525) (2.443) (0.002) (0.001)

-2 0.060 2.265 2.399 + 0.000 -0.001
(0.751) (1.521) (1.438) (0.001) (0.001)

0 0.667 -0.920 -1.534 0.000 0.003 ∗∗

(0.742) (1.421) (1.347) (0.001) (0.001)

1 2.115 + -2.974 -3.878 ∗ -0.002 0.008 ∗∗

(1.114) (2.038) (1.946) (0.001) (0.002)

2 5.137 ∗∗ -0.274 -2.925 -0.003 0.005 ∗∗

(1.773) (2.797) (2.709) (0.002) (0.002)

3 5.863 ∗∗ 1.791 -0.455 -0.003 0.003 ∗

(1.863) (3.735) (3.601) (0.002) (0.002)

4 7.259 ∗∗ 0.933 -0.795 -0.004 0.001
(2.596) (4.589) (4.463) (0.003) (0.002)

5 8.522 ∗ 1.297 -1.291 -0.003 0.001
(4.097) (5.370) (5.221) (0.003) (0.002)

6 10.783 ∗ 3.894 0.887 -0.002 0.001
(4.605) (6.323) (6.105) (0.004) (0.002)

7 7.019 ∗ 3.912 0.380 -0.001 0.001
(3.407) (7.007) (6.794) (0.004) (0.002)

8 7.630 ∗ 5.203 1.239 -0.002 0.002
(3.702) (7.992) (7.757) (0.005) (0.003)

9 8.096 + 7.086 0.930 -0.004 -0.000
(4.147) (8.860) (8.521) (0.005) (0.003)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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Table G.8: Extended results: Table 4, household outcomes

n Married # children Spouse net worth Household net
worth

-5 0.035 0.001 -0.023 -0.036
(0.060) (0.011) (0.103) (0.073)

-4 -0.025 0.000 -0.000 -0.014
(0.033) (0.009) (0.077) (0.055)

-3 0.010 0.003 -0.008 -0.025
(0.030) (0.006) (0.059) (0.041)

-2 0.035 -0.000 -0.028 -0.029
(0.035) (0.004) (0.074) (0.043)

0 0.006 0.003 0.039 0.340 ∗∗

(0.011) (0.003) (0.047) (0.032)

1 0.012 0.009 0.092 0.756 ∗∗

(0.027) (0.006) (0.065) (0.045)

2 0.005 0.009 0.023 0.685 ∗∗

(0.038) (0.008) (0.115) (0.074)

3 -0.023 0.009 0.076 0.624 ∗∗

(0.035) (0.011) (0.094) (0.068)

4 -0.002 0.006 0.027 0.560 ∗∗

(0.046) (0.013) (0.121) (0.086)

5 -0.003 0.003 -0.061 0.472 ∗∗

(0.052) (0.015) (0.148) (0.106)

6 0.037 0.006 -0.042 0.458 ∗∗

(0.069) (0.018) (0.172) (0.123)

7 0.014 0.004 -0.113 0.343 ∗

(0.069) (0.020) (0.207) (0.145)

8 0.019 0.005 -0.097 0.346 ∗

(0.081) (0.023) (0.240) (0.168)

9 0.036 0.002 -0.097 0.341 +

(0.094) (0.025) (0.263) (0.185)

Note. Standard errors in parentheses; ∗∗p < 0.01, ∗p < 0.05, +p < 0.1
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